2,225 research outputs found

    The role of backward reactions in a stochastic model of catalytic reaction networks

    Get PDF
    We investigate the role of backward reactions in a stochastic model of catalytic reaction network, with specific regard to the influence on the emergence of autocatalytic sets (ACSs), which are supposed to be one of the pre-requisites in the transition between non-living to living matter. In particular, we analyse the impact that a variation in the kinetic rates of forward and backward reactions may have on the overall dynamics. Significant effects are indeed observed, provided that the intensity of backward reactions is sufficiently high. In spite of an invariant activity of the system in terms of production of new species, as backward reactions are intensified, the emergence of ACSs becomes more likely and an increase in their number, as well as in the proportion of species belonging to them, is observed. Furthermore, ACSs appear to be more robust to fluctuations than in the usual settings with no backward reaction. This outcome may rely not only on the higher average connectivity of the reaction graph, but also on the distinguishing property of backward reactions of recreating the substrates of the corresponding forward reactions

    On RAF Sets and Autocatalytic Cycles in Random Reaction Networks

    Full text link
    The emergence of autocatalytic sets of molecules seems to have played an important role in the origin of life context. Although the possibility to reproduce this emergence in laboratory has received considerable attention, this is still far from being achieved. In order to unravel some key properties enabling the emergence of structures potentially able to sustain their own existence and growth, in this work we investigate the probability to observe them in ensembles of random catalytic reaction networks characterized by different structural properties. From the point of view of network topology, an autocatalytic set have been defined either in term of strongly connected components (SCCs) or as reflexively autocatalytic and food-generated sets (RAFs). We observe that the average level of catalysis differently affects the probability to observe a SCC or a RAF, highlighting the existence of a region where the former can be observed, whereas the latter cannot. This parameter also affects the composition of the RAF, which can be further characterized into linear structures, autocatalysis or SCCs. Interestingly, we show that the different network topology (uniform as opposed to power-law catalysis systems) does not have a significantly divergent impact on SCCs and RAFs appearance, whereas the proportion between cleavages and condensations seems instead to play a role. A major factor that limits the probability of RAF appearance and that may explain some of the difficulties encountered in laboratory seems to be the presence of molecules which can accumulate without being substrate or catalyst of any reaction.Comment: pp 113-12

    Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation

    Get PDF
    AbstractStochasticity is an essential aspect of biochemical processes at the cellular level. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. Here we propose a method that allows us to calculate contributions of individual reactions to the total variability of a system’s output. We demonstrate that reactions differ significantly in their relative impact on the total noise and we illustrate the importance of protein degradation on the overall variability for a range of molecular processes and signaling systems. With our flexible and generally applicable noise decomposition method, we are able to shed new, to our knowledge, light on the sources and propagation of noise in biochemical reaction networks; in particular, we are able to show how regulated protein degradation can be employed to reduce the noise in biochemical systems

    Discreteness-Induced Slow Relaxation in Reversible Catalytic Reaction Networks

    Full text link
    Slowing down of the relaxation of the fluctuations around equilibrium is investigated both by stochastic simulations and by analysis of Master equation of reversible reaction networks consisting of resources and the corresponding products that work as catalysts. As the number of molecules NN is decreased, the relaxation time to equilibrium is prolonged due to the deficiency of catalysts, as demonstrated by the amplification compared to that by the continuum limit. This amplification ratio of the relaxation time is represented by a scaling function as h=Nexp(βV)h = N \exp(-\beta V), and it becomes prominent as NN becomes less than a critical value h1h \sim 1, where β\beta is the inverse temperature and VV is the energy gap between a product and a resource

    Thermodynamically Consistent Coarse Graining of Biocatalysts beyond Michaelis--Menten

    Get PDF
    Starting from the detailed catalytic mechanism of a biocatalyst we provide a coarse-graining procedure which, by construction, is thermodynamically consistent. This procedure provides stoichiometries, reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level. It can treat active transporters and molecular machines, and thus extends the applicability of ideas that originated in enzyme kinetics. Our results lay the foundations for systematic studies of the thermodynamics of large-scale biochemical reaction networks. Moreover, we identify the conditions under which a relation between one-way fluxes and forces holds at the coarse-grained level as it holds at the detailed level. In doing so, we clarify the speculations and broad claims made in the literature about such a general flux--force relation. As a further consequence we show that, in contrast to common belief, the second law of thermodynamics does not require the currents and the forces of biochemical reaction networks to be always aligned.Comment: 14 pages, 5 figure

    A stochastic model of catalytic reaction networks in protocells

    Full text link
    Protocells are supposed to have played a key role in the self-organizing processes leading to the emergence of life. Existing models either (i) describe protocell architecture and dynamics, given the existence of sets of collectively self-replicating molecules for granted, or (ii) describe the emergence of the aforementioned sets from an ensemble of random molecules in a simple experimental setting (e.g. a closed system or a steady-state flow reactor) that does not properly describe a protocell. In this paper we present a model that goes beyond these limitations by describing the dynamics of sets of replicating molecules within a lipid vesicle. We adopt the simplest possible protocell architecture, by considering a semi-permeable membrane that selects the molecular types that are allowed to enter or exit the protocell and by assuming that the reactions take place in the aqueous phase in the internal compartment. As a first approximation, we ignore the protocell growth and division dynamics. The behavior of catalytic reaction networks is then simulated by means of a stochastic model that accounts for the creation and the extinction of species and reactions. While this is not yet an exhaustive protocell model, it already provides clues regarding some processes that are relevant for understanding the conditions that can enable a population of protocells to undergo evolution and selection.Comment: 20 pages, 5 figure

    Metabolic Futile Cycles and Their Functions: A Systems Analysis of Energy and Control

    Full text link
    It has long been hypothesized that futile cycles in cellular metabolism are involved in the regulation of biochemical pathways. Following the work of Newsholme and Crabtree, we develop a quantitative theory for this idea based on open-system thermodynamics and metabolic control analysis. It is shown that the {\it stoichiometric sensitivity} of an intermediary metabolite concentration with respect to changes in steady-state flux is governed by the effective equilibrium constant of the intermediate formation, and the equilibrium can be regulated by a futile cycle. The direction of the shift in the effective equilibrium constant depends on the direction of operation of the futile cycle. High stoichiometric sensitivity corresponds to ultrasensitivity of an intermediate concentration to net flow through a pathway; low stoichiometric sensitivity corresponds to super-robustness of concentration with respect to changes in flux. Both cases potentially play important roles in metabolic regulation. Futile cycles actively shift the effective equilibrium by expending energy; the magnitude of changes in effective equilibria and sensitivities is a function of the amount of energy used by a futile cycle. This proposed mechanism for control by futile cycles works remarkably similarly to kinetic proofreading in biosynthesis. The sensitivity of the system is also intimately related to the rate of concentration fluctuations of intermediate metabolites. The possibly different roles of the two major mechanisms for cellular biochemical regulation, namely reversible chemical modifications via futile cycles and shifting equilibrium by macromolecular binding, are discussed.Comment: 11 pages, 5 figure

    BlenX-based compositional modeling of complex reaction mechanisms

    Full text link
    Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality
    corecore