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Abstract
Starting from the detailed catalyticmechanismof a biocatalyst we provide a coarse-graining procedure
which, by construction, is thermodynamically consistent. This procedure provides stoichiometries,
reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level.
It can treat active transporters andmolecularmachines, and thus extends the applicability of ideas that
originated in enzyme kinetics. Our results lay the foundations for systematic studies of the
thermodynamics of large-scale biochemical reaction networks.Moreover, we identify the conditions
underwhich a relation between one-way fluxes and forces holds at the coarse-grained level as it holds
at the detailed level. In doing so, we clarify the speculations and broad claimsmade in the literature
about such a general flux–force relation. As a further consequencewe show that, in contrast to
commonbelief, the second lawof thermodynamics does not require the currents and the forces of
biochemical reaction networks to be always aligned.

1. Introduction

Catalytic processes are ubiquitous in cellular physiology. Biocatalysts are involved inmetabolism, cell signaling,
transcription and translation of genetic information, as well as replication. All these processes and pathways
involve not only a few but rather dozens to hundreds, sometimes thousands of different enzymes. Finding the
actual catalyticmechanismof a single enzyme is difficult and time consumingwork. To date, formany enzymes
the catalyticmechanisms are not known. Even if such detailed informationwas at hand, including detailed
catalyticmachanisms into a large scalemodel is typically unfeasable for numerical simulations. Therefore, larger
biochemical reaction networks contain the enzymes as single reactions following enzymatic kinetics. This
simplified description captures only the essential dynamical features of the catalytic action, condensed into a
single reaction.

The history of enzyme kinetics [1] stretches backmore than a hundred years. After the pioneering work of
Brown [2] andHenri [3],Michaelis andMenten [4] laid the foundation for the systematic coarse graining of a
detailed enzymaticmechanism into a single reaction. Since then, a lot of different types ofmechanisms have
been found and systematically classified [5]. Arguably, themost important catalysts in biochemical processes are
enzymes—which are catalytically active proteins. However, other types of catalyticmolecules are also known,
some of themoccur naturally like catalytic RNA (ribozymes) or catalytic anti-bodies (abzymes), some of them
are synthetic (synzymes) [5]. For our purposes it does notmatter which kind of biocatalyst is being described by a
catalyticmechanism—we treat all of the above in the sameway.

From amore general perspective, other scientificfields are concernedwith the question of how to properly
coarse grain a process aswell.While inmost applications the focus lies on the dynamics, or kinetics, of a process,
it turned out that thermodynamics plays an intricate role in this question [6]. For processes occurring at
thermodynamic equilibrium, every choice of coarse graining can bemade thermodynamically consistent—after
all, the very foundation of equilibrium thermodynamics is concernedwith reduced descriptions of physical
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phenomena [7]. Instead, biological systems are open systems exchanging particles with reservoirs and as such
they are inherently out of equilibrium.Nonequilibriumprocesses, in general, do not have a natural coarse
graining.

When the particle numbers in a reaction network are small, it needs to be described stochastically with the
chemicalmaster equation. Indeed, there is increased interest in the correct thermodynamic treatment of
stochastic processes [8, 9].With stochastic processes it is possible to investigate energy-conversion inmolecular
motors [10–13], error correction via kinetic proofreading [14–16], as well as information processing in small
sensing networks [17–19]. In this field, different suggestions arose for coarse grainingsmotivated by
thermodynamic consistency [20–22]. In these cases, the dissipation in a nonequililibriumprocess is typically
underestimated—although also overestimationsmay occur [23]. For a general overview of coarse-graining in
Markov processes, see [24] and references therein.

For large-scale networks however, a stochastic treatment is unfeasable. On the one hand, stochastic
simulations quickly become computationally so demanding that they are effectively untractable. On the other
hand, when species appear in large abundances (e.g.metabolic networks) the stochastic noise is negligible. This
paper is exclusively concernedwith this latter case. The dynamics is governed by deterministic differential
equations: the nonlinear rate equations of chemical kinetics. Assuming a separation of time scales in these
equations,model reduction approaches have been developed [25–27]. However, they do not address the
question of thermodynamic consistency. Remarkably, recent development in the thermodynamics of chemical
reaction networks [28, 29]highlighted the strong connection between the thermodynamics of deterministic rate
equations and of stochastic processes, including the relation between energy, work, and information.
Unfortunately, these studies were limited to elementary reactions withmass–action kinetics. The present paper
addresses this constraint, thus extending the theory to kinetics of coarse-grained catalysts.

Understanding the nonequilibrium thermodynamics of catalysts is a crucial step towards incorporating
thermodynamics into large-scale reaction networks. There is ongoing effort in the latter [30–32]which very
often is based on the connection between thermodynamics and kinetics [33–35].

In this paperwe showhow to coarse grain the deterministic description of any biocatalyst in a
thermodynamically consistent way—extending the applicability of such simplifications even tomolecular
motors [10, 36] and activemembrane transport [37]. The starting point is the catalyticmechanismdescribed as a
reversible chemical reaction networkwhere each of theM reaction steps ρ is an elementary transition
representing a conformational change of amolecule or an elementary chemical reactionwithmass–action
kinetics. The corresponding rates are given by the fluxes (kinetic rate laws), fr

, that incorporate the reaction rate

constants and the dependence on the concentration of the reactantmolecules. Themass–action reaction forces
(negative Gibbs free energies of reaction) are f f-D =r r r

+ -G RT ln [38]. At this level, the reaction currents,

f f= -r r r
+ -J , of these elementary steps are alignedwith their respective reaction forces[39]: when one is

positive, so is the other. Fromherewe construct a reduced set ofC reactions with effective reaction fluxes ya
 and

net forces−ΔαG. Aswewill see later, there is a limited freedom to choose the exact set of reduced reactions.
Nonetheless, the number of reduced reactions is independent of this choice.

By construction, our coarse graining procedure captures the entropy-production rate (EPR) [39, 40] of the
underlying catalyticmechanism,

å ås f f y y- - D = - - D
r

r r r
a

a a a
+ - + -≔ ( ) ( )T G G 0,

M C

even though the numberC of effective reactionsα ismuch smaller than the numberM of original reaction steps
ρ. Therefore, our procedure is applicable in nonequilibrium situations, such as biological systems. In fact, the
above equation is exact under steady-state conditions. In transient and other time-dependent situations the
coarse graining can be a reasonable approximation.We elaborate this point further in the discussion.

Secondly, wework out the condition for this coarse graining to reduce to a single reactionα. In this case, we
prove that the followingflux–force relation holds true for this coarse-grained reaction:

y
y

-D =a
a

a

+

-G RT ln .

A trivial consequence is that the coarse-grained reaction current, y y= -a a a
+ -J , is alignedwith the net force,

−ΔαG. In the past, such aflux–force relation has been used in the literature [41, 42] after its general validity was
claimed [33] and later questioned [31, 34]. Fromhere the belief arises that in every biochemical reaction network
with any type of kinetics the currents and the forces of each reaction individually need to be aligned, a constraint
used especially influx balance analysis [43–45]. However, as we show in this paper, this relation does not hold
when the coarse-graining reduces the biocatalyst to two ormore coupled reactions.
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This paper is structured as follows: first we present our results. Then, we illustrate ourfindings with two
examples: the first is enzymatic catalysis of two substrates into one product. This can be reduced to a single
reaction, for whichwe verify theflux–force relation at the coarse-grained level. The second example is amodel of
activemembrane transport of protons, which is a prototype of a biocatalyst that cannot be reduced to a single
reaction. Afterwards, we sketch the proofs for our general claims. Finally, we discuss our results and their
implications. Rigorous proofs are provided in the appendix.

2. Results

Ourmain result is a systematic procedure for a thermodynamically consistent coarse graining of catalytic
processes. These processesmay involve several substrates, products,modifiers (e.g. activators, inhibitors) that
bind to or are released from a singlemolecule—the catalyst. The coarse graining involves only a few steps and is
exemplified graphically infigure 1:

(1) Consider the catalytic mechanism in a closed box and identify the internal stoichiometric cycles of the
system. An internal stoichiometric cycle is a sequence of reactions leaving the state of the system invariant.
Formally, internal stoichiometric cycles constitute the nullspace of the full stoichiometricmatrix, .

(2) Consider the concentrations of all substrates, modifiers, and products (summarized as Y) constant in
time—therefore reduce the stoichiometricmatrix by exactly those species. The remaining species,X,
representN different states of the catalyst. As a consequence, the reduced stoichiometricmatrix, X , has a
larger nullspace: new stoichiometric cycles emerge in the system. These emergent cycles cause a turnover in
the substrates/products while leaving the internal species invariant. Choose a basis, aC , of emergent
stoichiometric cycles that are linearly independent from the internal cycles.

(3) Identify the net stoichiometry,  aCY , together with the sum, -DaG, of the forces along each emergent
cycleα.

(4) Calculate the apparent fluxes ya
 along the emergent cycles at steady state.

Figure 1.Overview of the coarse-graining procedure: (Left) the starting point is a reaction networkwith elementary reactions
followingmass–action kinetics in a steady state. This example contains two catalyticmechanisms [blue boxes] and for illustrative
purposes some additional arbitrary reactions. Each of the two catalyst species, E and M, is conserved throughout the network. The
reaction partners of the catalysts re-appear in the rest of the network. From the perspective of the remaining network, only the
turnover [blue arrows] of thesemolecules are relevant. The involved concentrationsmay be global, as for S, or refer to different well
stirred sub-compartments [green box], as for P. (Right)The procedure provides few coarse-grained reactions [blue arrows] that
replace the originallymore complicatedmechanisms. The kinetic rate laws,ψ, of the coarse-grained reactions are different from
mass–action.We construct them explicitly during the coarse-graining procedure, so that the turnover is correctly reproduced.
Combinedwith the coarse-grained reaction forces [Gibbs free energies] also the entropy-production rate is reproduced exactly.We
work out the coarse graining of these two catalysts, E and M, in detail in section 3.
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For each emergent stoichiometric cycleα this procedure provides a new reversible reactionwith net
stoichiometry  aCY , net force−ΔαG, and net fluxes ya

. Furthermore, it preserves the EPR and, therefore, is
thermodynamically consistent.

Our second result is a consequence of themain result: we prove that the flux–force relation is satisfied at the
coarse-grained level by any catalyticmechanism forwhich only one single cycle emerges in step 2 of the
presented procedure, as in example 3.1.Whenmore cycles emerge, the flux–force relation does not hold aswe
show in the explicit counter-example 3.2.

3. Examples

3.1. Enzymatic catalysis
Let us consider the enzyme E that we introduced infigure 1. It is capable of catalyzing a reaction of two
substrates, S1 and S2, into a single productmolecule, P. The binding order of the two substrates does notmatter.
Every single one of these reaction steps is assumed to be reversible and to followmass–action kinetics. For every
reactionwe adopt a reference forward direction. Overall, the enzymatic catalysis can be represented by the
reaction network infigure 2.

We apply ourmain result to this enzymatic scheme and thus construct a coarse-grained description for the
net catalytic action.We furthermore explicitly verify our second result by showing that the derived enzymatic
reactionfluxes satisfy the flux–force relation.

3.1.1. Closed system—internal cycles
When this system is contained in a closed box, nomolecule can leave or enter the reaction volume. The
dynamics is then described by the following rate equations:

= ( ) ( )z J z
t

d

d
, 1

wherewe introduced the concentration vector z , the current vector ( )J z , as well as the stoichiometricmatrix :
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In the dynamical equations, only the currents ( )J z depend on the concentrations, whereas the
stoichiometricmatrix  does not. The stoichiometricmatrix thus imposes constraints on the possible steady-
state concentrations that can be analyzedwithmere stoichiometry: at steady state the current has to satisfy

= ( )J z0 ss or, equivalently, Î( )J z kerss . In our example, the nullspace ker is one-dimensional and
spanned by = - -( )C 1 1 1 1 0 0 .int Hence, the steady-state current is fully described by a single scalar
value, =( )J z CJ .ss int int The vector Cint represents a series of reactions that leave the system state unchanged: the
two substrates are bound along reactions 1 and 4 and released again along reactions−3 and−2. In the end, the
system returns to the exact same state as before these reactions. Therefore, we call this vector internal
stoichiometric cycle. Having identified this internal cycle renders the first step complete.

Figure 2.An enzymatic scheme turning two substrates into one product. The substrates can bind in arbitrary order.We adopt a
reference direction for the individual reactions: forward is from left to right, as indicated by the arrows. The backward reactions are
from right to left, thus every single reaction step is reversible. This scheme has a clear interpretation as a graph: the reactions are edges,
reactants/products are vertices, where different combinations of reactants/products are considered different vertices. This graph has
three disconnected components and contains no circuit.
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Note that this stoichiometric cycle does not correspond to a self-avoiding closed path, or circuit, in the
reaction graph infigure 2. This is due to the fact that combinations of species serve as vertices. If instead each
species individually is a vertex, then also each cycle corresponds to a circuit.

In the followingwe explainwhy the first step of the procedure is important. The closed systemhas to satisfy a
constraint that comes fromphysics: a closed systemnecessarily has to relax to a thermodynamic equilibrium
state—which is characterized by the absence of currents of extensive quantities on any scale. Thus
thermodynamic equilibrium is satisfied if =J 0int . One can show that this requirement is equivalent to
Wegscheider’s condition [46]: the product of the forward rate constants along the internal cycle equals that of
the backward rate constants,

=- - - - ( )k k k k k k k k . 21 4 3 2 1 4 3 2

Furthermore, irrespective of thermodynamic equilibrium, the steady state has to be stoichiometrically
compatible with the initial condition: there are three linearly independent vectors in the cokernel of :

For each such vector, the scalar º ℓ · zL evolves according to = =¶
¶

ℓ ℓ· · ( )z J z 0
t

, and thus is a conserved
quantity.We deliberately chose linearly independent vectors with a clear physical interpretation. These vectors
represent conservedmoieties, i.e. a part of (or an entire)molecule that remains intact in all reactions. The total
concentration of the enzymemoiety in the system is given by LE. The other two conservation laws, L1 and L2, are
the total concentrations ofmoieties of the substrates, S1 and S2, respectively.

Given a set of values for the conserved quantities from the initial condition,Wegscheider’s condition on the
rate constants ensures uniqueness of the equilibrium solution [46].

3.1.2. Open system—emergent cycles
So farwe only discussed the system in a closed box that will necessarily relax to a thermodynamic equilibrium.

Wenowopen the box and assume that there is amechanism capable offixing the concentrations of S1, S2

and P to some given levels. These three species therefore no longer take part in the dynamics. Formally, we
divide the set of species into two disjoint sets:

È     { } { }E, ES , ES , ES S , EP S , S , P .

X Y

1 2 1 2 1 2

Thefirst are the internal species,X, which are subject to the dynamics. The second are the chemostatted species,Y,
which are exchangedwith the environment.We apply this splitting to the stoichiometricmatrix,

 


=
⎛
⎝⎜

⎞
⎠⎟,

X

Y

and the vector of concentrations, = ( )z x y, . Analogously, the rate equations for this open reaction system split
into

¶
¶

= ( ) ( )x J x y
t

, , 3X

º
¶
¶

= +( ) ( ) ( )y J x y I x y
t

0 , , . 4Y

The equation (4) ismerely a definition for the exchange current I , keeping the speciesY at constant
concentrations. Note that the exchange currents I quantify the substrate/product turnover. The actual
dynamical rate equations, the equation (3), are a subset of the original equations for the closed system, treating
the chemostats as constant parameters. Absorbing these latter concentrations into the rate constants, we arrive at
a linearODE systemwith new pseudo-first-order rate constants ˜( )yk . For these rate equations, one needs to
reconsider the graphical representation of this reaction network: since the chemostatted species now aremerely
parameters for the reactions, we have to remove the chemostatted species from the former vertices of the
network representation and associate them to the edges. The resulting graph representing the open network is
drawn infigure 3.
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The steady-state current = ( )J J x y,ss ss of equation (3)needs to be in the kernel of the internal
stoichiometricmatrix X only. This opens up new possibilities. It is obvious that ker is a subset of ker X , but

ker X is in fact bigger. In our examplewe nowhave two stoichiometric cycles,

ð5Þ

Thefirst cycle is the internal cycle we identified in the closed system already: it only involves reactions that leave
the closed system invariant, thus upon completion of this cycle not a singlemolecule is being exchanged. The
second cycle is different: upon completion it leaves the internal species unchanged but chemostatted species are
exchangedwith the environment. Since this type of cycle appears only upon chemostatting, we call them
emergent stoichiometric cycles. Overall, the steady-state current is a linear combination of these two cycles:

= +J C CJ Jss int int ext ext. This completes step 2.
These two stoichiometric cycles correspond to circuits in the open reaction graph.We give a visual

representation on the right offigure 3. As a consequence of workingwith catalysts, the vertices of the reaction
graph for the open system coincidewith the internal speciesX. Therefore, for all catalysts the cycles of the open
system correspond to circuits in the corresponding graph.

The cycles are not the only structural object affected by the chemostatting procedure: the conservation laws
change aswell. In the enzyme examplewe havemerely one conservation law left—that of the enzymemoiety, LE.
The substratemoieties are being exchangedwith the environment, which renders L1 and L2 broken conservation
laws. Overall, upon adding three chemostats two conservation lawswere broken and one cycle emerged. In fact,
the number of chemostatted species always equals the number of broken conservation laws plus the number of
emergent cycles [47].

3.1.3. Net stoichiometries and net forces
Thenet stoichiometryof the emergent cycle is + S S P1 2 . This represents a single reversible reactiondescribing
thenet catalytic actionof the enzyme. For a complete coarse graining,we still need to identify thefluxes and thenet
force along this reaction. Its net force is givenby the sumof the forces along the emergent cycle.Collecting theGibbs
energies of reaction in a vector, D D D≔ ( )G G G, ...,r 1 6 , this sum is conciselywritten as

-D - D =
- - - -

≔ · [ ][ ]
[ ]

( )C GG RT
k k k k

k k k k
ln

S S

P
. 6ext ext r

1 4 5 6 1 2

1 4 5 6

One could also ask about the net stoichiometry and net force along the internal cycle. However, we have
 =C 0int since the internal cycle does not interact with the chemostats.Moreover, the net force along the
internal cycle is

- D = =- -

- -
· ( )C G RT

k k k k

k k k k
ln 0 7int r

1 4 3 2

1 4 3 2

by virtue ofWegscheider’s condition.

3.1.4. Apparent fluxes
Wenowdetermine the apparentfluxes along the two cycles of the system. To that end, we first solve the linear
rate equations to calculate the steady-state concentrations and the steady-state currents. For the steady-state

Figure 3. (Left)Enzymatic catalysis as an open chemical network. The species S1, S2 and P are now associated to the edges of the graph,
instead of being part of its vertices as in figure 2. This graph has only one connected component and contains three distinct circuits.
(Center, right)Graphical representation of the two circuits spanning the kernel of X . The lower left triangle constitutes the third
circuit. It can be recovered by a linear combination of the other two circuits.
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concentrations we use a diagrammaticmethod popularized byKing andAltman [48] that we summarize in
appendix A.

As derived in step 2 of the procedure, the steady-state current vector is

Hence the two cycle currents are

= - = - = = -- -[ ] [ ][ ] [ ] [ ][ ]J J k k J J k kES E S , EP E P .int 2 2 2 2 2 ext 6 6 6

With the explicit steady-state concentrations given in appendix A.1, wefind (see appendix B.1 for details):
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x
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Here, LE is the total amount of available enzyme, ( )yNE is a positive quantity that depends on the chemostat
concentrations aswell as all rate constants, and

x = + + +-
- -

-
( ) [ ] [ ]
y k

k k

k
k

k k

k
S

S
.3 1

2 3 2

1
2

2 3

4

As expected, the current along the emergent cycle Jext is not zero, provided that its net force is not zero.
However, note that the current along the internal cycle does not vanish either, even though its ownnet force is
zero. Both currents vanish onlywhen the net force,-D Gext , vanishes—which is at thermodynamic
equilibrium.

Finally, we decompose the current y y= -+ -Jext into the apparent fluxes

y
x

y
x

= > = >+ -
- - - -

( )
( )

[ ][ ] ( )
( )

[ ] ( )y

y

y

y

L

N
k k k k

L

N
k k k kS S 0, P 0. 9E

E
1 4 5 6 1 2

E

E
1 4 5 6

Here, it is important to note thatwhile

y y- = -+ -
-[ ] [ ][ ]k kEP E P ,6 6

there are several cancellations happening in the derivation of equation (8) implying that

y y¹ ¹+ -
-[ ] [ ][ ]k kEP , E P .6 6

Weelaborate on these cancellations in this special case in appendix B.1 aswell as for the general case in
appendix B.3.

3.1.5. Flux–force relation
With the explicit expressions for the net force, equation (6), and the apparent fluxes, equation (9), of the
emergent cycle we explicitly verify the flux–force relation at the coarse-grained level:

y
y

= = -D
+

-
- - - -

[ ][ ]
[ ]

RT RT
k k k k

k k k k
Gln ln

S S

P
.1 4 5 6 1 2

1 4 5 6
ext

Thisflux–force relation implies that the reaction current is always alignedwith the net force along this reaction:
>  -D >J G0 0ext ext . In other words, the reaction current directly follows the force acting on this reaction.
In fact, in this casewe can connect the flux–force relation to the second law of thermodynamics. The EPR

reads



s

y y
y
y

=- D = - D - D

=- D = -+ -
+

-

( ) · · ·

( )

x y J G C G C GT J J

J G RT

,

ln 0.

ss ss r int int r ext ext r

ext ext

With this representation, it is evident that the flux–force relation ensures the second law: s 0.Moreover, we
see explicitly that the EPR is faithfully reproduced at the coarse-grained level. This shows the thermodynamic
consistency of our coarse-graining procedure.
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3.2. Activemembrane transport
Wenow turn to the second example introduced infigure 1: amembrane protein, M, thatmodels a proton pump
similar to the one presented in [37]. It transports protons fromone side of themembrane (side a) to the other
(side b). Themembrane protein itself is assumed to be charged to facilitate binding of the protons and to have
different conformations -M and -M where it exposes the binding site to the two different sides of the
membrane. Furthermore, when a proton is bound, it can either bind another substrate Swhen exposing the
proton to side a—or the respective product P when the proton is exposed to side b. The latter could be some
other ion concentrations on either side of themembrane—or an energy rich compound (ATP) and its energy
poor counterpart (ADP). The reactionsmodeling thismechanism are summarized in the reaction graph in
figure 4.

In order tofind a coarse-grained description for this transporter we apply our result. Since the procedure is
already detailed in example 3.1, we omit some repetitive explanations in this example.

3.2.1. Closed system—internal cycles
This closed systemhas no cycle, thereforeWegscheider’s conditions do not impose any relation between the
reaction rate constants. There are three conservation laws in the closed system,

They represent the conservation ofmembrane protein (LM), proton (LH), and substratemoieties (LS),
respectively, showing that these three are conserved independently. For any initial condition, the corresponding
rate equations will relax to a unique steady-state solution satisfying thermodynamic equilibrium, =( )J z 0.

3.2.2. Open system—emergent cycles
Wenowfix the concentrations of the protons +Ha and +Hb in the two reservoirs, as well as the substrate and the
product concentrations. The reaction network for this open system is depicted infigure 5. The open system still
has a conservedmembrane proteinmoiety while the conservation laws of protons and substrate are broken
upon chemostatting. Furthermore, there are two emergent cycles now,

ð10Þ

Their visual representation as circuits is given on the right offigure 5.

Figure 4.Reaction graph for themechanismmodeling the active transport of protons fromone side of amembrane, +Ha , to the other
side, +Hb . The transport is coupled to the catalysis of a substrate, S, to a product, P. The free transporter itself exists in two different
conformations denoted -M and -M , respectively. Again, all reactions are considered reversible and to followmass–action kinetics. A
reference forward direction is indicated as arrows from left to right.
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3.2.3. Net stoichiometry and net forces
Thefirst emergent cycle has the net stoichiometry S P, which represents pure catalysis with net force

-D = -

- - -

[ ]
[ ]

( )G RT
k k k k

k k k k
ln

S

P
. 11cat

2 3 4 7

2 3 4 7

The second cycle has net stoichiometry + +H Hb a . This represents the slip of one proton from side b back to
side awith net force

-D = - - - -
+

+
[ ]

[ ]
( )G RT

k k k k

k k k k
ln

H

H
. 12sl

1 5 6 7 b

1 5 6 7 a

For later reference, we note that the difference = -C C Ctr cat sl has net stoichiometry + ++ +H S H Pa b .
This is the active transport of a proton from side a to side b, under catalysis of one substrate into one product.
The net force of this reaction is

-D = -D + D =
+

- - - - - -
+

[ ][ ]
[ ][ ]

( )G G G RT
k k k k k k

k k k k k k
ln

H S

H P
. 13tr cat sl

1 2 3 4 5 6 a

1 2 3 4 5 6 b

3.2.4. Apparent fluxes
Solving the linear rate equations (see appendix A), we have a solution for the steady-state concentrations. The
exact expressions are given in appendix A.2.With the steady-state concentrations, we calculate the contributions
of both cycles to the steady-state current: = +( )J x y C CJ J,ss cat cat sl sl. Each current contribution is given by a
single reaction:

y y y y= - = - -+ - + -≕ ≕J J J J, .cat 2 cat cat sl 1 sl sl

With the abbreviations

x x+ + + +- -
+

-
+ + +

- - -≔ [ ] [ ][ ] [ ] ≔k k k k k k k k k k k kH H H H , ,cat 6 5 b 1 5 a b 6 1 a sl 3 4 2 4 3 2

we can express the apparent fluxes as

y x

y x

y x

y x

= +

= +

= +

= +

+ +
-

-
- - - - - -

+
- - -

+
- - - - - -

+
- - - -

+

- + +

[ ][ ] [ ]

[ ][ ] [ ]

[ ][ ] [ ]

[ ][ ] [ ]

N

L
k k k k k k k k k k

N

L
k k k k k k k k k k

N

L
k k k k k k k k k k

N

L
k k k k k k k k k k

H S S ,

H P P ,

H P H ,

H S H .

M

M
cat 1 2 3 4 5 6 a cat 7 2 3 4

M

M
cat 1 2 3 4 5 6 b cat 7 2 3 4

M

M
sl 1 2 3 4 5 6 b sl 1 5 6 7 b

M

M
sl 1 2 3 4 5 6 a sl 1 5 6 7 a

The derivation for these equations is detailed in appendix B.2.Note that NM depends on all rate constants and all
chemostat concentrations.

3.2.5. Breakdown of the flux–force relation
We see that the abbreviated terms ξ appear symmetrically in the forward and backward fluxes. Therefore, when
the net forces are zero, necessarily the currents vanish and the system is at thermodynamic equilibrium.
However, in general, the currents do not vanish.Moreover, the concentrations of the chemostats appear in the
four different fluxes in different combinations—indicating that both net forces couple to both coarse-grained
reactions. Due to this coupling, it is impossible tofindnice flux–force relations for the two reactions

Figure 5. (Left)Activemembrane transport as a graph representing the open chemical network. The proton concentrations +Ha and
+Hb , as well as the substrate and the product are chemostatted, thus are associated to the edges of the graph. (Right)Graphical

representations for the three distinct cycles in this graph.Only two of themare independent andwe choose Ccat and Csl as a basis in
themain text. The third is their difference = -C C Ctr cat sl.
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independently:

y
y

y
y

-D ¹ -D ¹
+

-

+

- ( )G RT G RTln , ln . 14cat
cat

cat
sl

sl

sl

To the contrary, it is easy tofind concentrations for the four chemostats where the catalytic force is so strong
that it drives the slip current against its natural direction—giving rise to a negative contribution in the EPR.
Nonetheless, the overall EPR is correctly reproduced at the coarse-grained level:

s = - D = - D - D·J GT J G J G 0.ss r cat cat sl sl

Since this is, by construction, the correct EPRof the full system at steady state, we know that it is always non-
negative—and that the coarse-graining procedure is thermodynamically consistent. This example shows
explicitly that biochemical reaction networks need not satisfy the flux–force relation, nor need their currents and
forces be aligned to complywith the second law. After all, the function of thismembrane protein is to transport
protons from side a to side b against the natural concentration gradient.

4. Cycle-based coarse graining

From the perspective of a single biocatalyst, the rest of the cell (or cellular compartment) serves as its
environment, providing a reservoir for different chemical species. Our coarse graining exploits this perspective
to disentangle the interaction of the catalyst with its environment—in the formof emergent cycles—from the
behavior of the catalyst in a (hypothetical) closed box at thermodynamic equilibrium—in the formof the
internal cycles. From the perspective of the environment, only the interactionswith the catalystmatter, i.e. the
particle exchange currents: they prescribe the substrate/product turnover andwhen combinedwith the
reservoir’s concentrations (chemical potentials) also the dissipation. Our coarse graining respects the reservoir’s
concentrations and incorporates all the emergent cycles that exchange particles with the reservoir. It thus
correctly reproduces the exchange currents: this is the fundamental reasonwhywe can replace the actual
detailedmechanism of the catalyst with a set of coarse-grained reactions in a thermodynamically exact way. A
formal version of this reasoning, including all necessary rigor and a constructive prescription tofind the
apparent fluxes, is provided in appendix B.

In our examples we illustrated the fundamental difference between the case where a catalyst can be replaced
with a single coarse-grained reaction and the casewhere this is not possible. In thefirst case, such a catalyst
interacts with substrate and productmolecules that are coupled via exchange ofmass in a specific stoichiometric
ratio. This is known as tight coupling.Whether or not the catalysis is additionallymodified by activators or
inhibitors, does not interfere with this condition. After all, themodifiers are neither consumed nor produced.
Thus they appear only in the normalizing denominators of the steady-state concentrations and affect the kinetics
while leaving the thermodynamics untouched. Furthermore, if there is only one single emergent cycle in a
catalyticmechanism, any product of pseudo-first-order rate constants along any circuit in the networkwill
either (i) satisfyWegscheider’s conditions or (ii) reproduce (up to sign) the net force,-DaG, of the emergent
cycle. Ultimately, this is why theflux–force relation holds in this tightly coupled case. A formal version of this
proof, including all necessary rigor, is provided in appendix C.

In the case wherewe have to provide two ormore coarse-grained reactions, the catalyticmechanism couples
several processes that are not tightly coupled via exchange ofmass. To the contrary: the turnover of different
substrates/products need not have fixed stoichiometric ratios. In fact, their ratios will depend on the
environment’s concentrations. In this case theflux–force relation does not hold in general, as we provedwith
our counter-example. After all, when several processes are coupled, the force of one process can overcome the
force of the second process to drive the second current against its natural direction. This transduction of
energy[12, 49]would not be possible at a coarse-grained level, if theflux–force relationwas always true.

We now asses the reduction provided by our procedure: the numberC of coarse-grained reactionsα is
always lower than the numberM of reaction steps ρ in the originalmechanism. This can be understood from the
graph representation of the open system: the numberB of circuits in a connected graph is related to its numberN
of vertices (catalyst states) and the numberM of edges (reaction steps) by = - +B M N 1 [50]. Some of the
circuits represent internal cycles, renderingB an upper bound to the number of emergent cyclesC. Since the
numberN of catalyst states is at least two, these numbers are ordered: >M B C . This proves that our coarse
graining always reduces the number of reactions.
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5.Discussion

The original work ofMichaelis andMenten [4]was based on a specific enzyme that converts a single substrate
into a single product assuming a totally irreversible step. Their goal was to determine the rate of production of
productmolecule. Later progress in enzyme kinetics extended theirmethod to deal with fully reversible
mechanisms, as well asmany substrates,many products andmodifiers [1]. The focus on the turnover ledmany
people to identify the net effect of the enzymewith a single effective reaction, describing its kinetics with the
Michaelis–Menten equation (or one of its generalizations). Our coarse-graining indeed incorporates all these
special cases: theMichaelis–Menten equation arises from coarse graining amechanism of the form

+ +   ( )S E ES EP E P 15

and assuming that the last reaction step, the release of the product, ismuch faster than the other steps. Then the
coarse-grained reaction current is identical to the substrate/product turnover. Importantly, our procedure
highlights that there is no direct correspondence between the number of required net reactions and the number
of circuits in the reaction graph—even of the open system. Some circuits correspond to internal cycles that play a
kinetic role, not leaving a trace in the thermodynamic forces. Only the emergent cyclesneed to be taken into
account for the coarse graining. Thus the net effect of amulti-cyclic catalystmight be consistently expressed as a
single effective reaction, as seen in the example 3.1.

Likewise, in theoretical studies of biochemical systems, effective unimolecular reactions of the form

are frequently used, where the reaction rate constants satisfy

m m m m
=

- + -+

-

⎡
⎣⎢

⎤
⎦⎥

◦ ◦
k

k RT
exp .A B X Y

Here, the chemical potentials,μ, account for the thermodynamic force exerted byX andY. Evenwhen the actual
effective reaction does not followmass–action kinetics, this equation is assumed, implying that the effective
reactionfluxes are y=+ +[ ]k A and y=- -[ ]k B , and the ‘constants’ k indeed depend on some concentrations.
This is only consistent if the implicit conversionmechanism is tightly coupled by exchange ofmass: when tightly
coupled, the differences of the chemical potentials represent theGibbs free energy change along the reaction

+ +A X B Y . In this case, the above equation is theflux–force relation. Otherwise, our coarse-graining
procedure reveals that this is thermodynamically inconsistent: if the implicitlymodeled catalysis is not tightly
coupled via the exchange ofmass, there is a hidden thermodynamic driving force that is independent of the
concentrations ofA andB, while the turnover ofX/Y is not in a stoichiometric ratio to the turnover ofA/B.We
have seen in example 3.2 that theflux–force relation indeed does not hold in this case.

The failure of the flux–force relation in the nontightly coupled case does not imply inconsistent
thermodynamics. Our coarse-graining procedure indeed deals with this case very easily. The resultingfluxes and
forces reproduce the EPRwhile sacrificing the flux–force relation. The key difference to the original ideas in
enzyme kinetics is that the substrate/product turnover is split into several effective reactions with their own
reactionfluxes and forces, reproducing the EPR. This is especially important for complex catalysts:manymodels
formolecularmotors and active transporters are not tightly coupled. These free-energy transducers often
display slippage via futile cycles.While some enzymes also show signs of slippage,many simple enzymes are
modeled as tightly coupled—which implies they satisfy the flux–force relation.Our coarse graining deals with all
these cases and in that sense goes far beyondMichaelis–Menten.

Our procedure greatly reduces the number of species and reactions involved in a networkwhile reproducing
the EPR. This comes at the cost of complicated effective fluxes (rate laws). They are rational functions of the
involved concentrations and thusmore complicated than simplemass–action kinetics. Nonetheless, our
procedure is constructive by giving these complicated expressions explicitly.With the explicit solutions at hand,
further assumptions can bemade to simplify the effective fluxes—as in the case of the originalMichaelis–
Menten equation. Note that these additional simplificationsmay have an impact on the EPR, in theworst case
breaking the thermodynamic consistency. This trade-off between simplicity and thermodynamic correctness
needs to be evaluated case by case.

We nowdiscuss the limitations of our approach. The presented coarse-graining procedure is exact in steady-
state situations, arbitrarily far from equilibrium.When the surrounding reaction network is not in a steady state,
the coarse graining can still be used: then the coarse-grained reactionfluxes and forces have to be considered
instantaneous—they change in time due to the changing substrate/product (ormodifier) concentrations.
Underlying this point of view is a separation of time scales: when the abundance of substrates and products is
very large, as compared to the abundance of catalyst, then the concentrations of the latter changemuchmore
quickly. This results in a quasi-steady state for the catalyst-containing species. Consequently, our coarse graining
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cannot capture the contribution to dissipation that arises in this fast relaxation dynamics. It only captures the
dissipation due to the conversion of substrate into product. This reasoning can bemademore rigorous: there are
time-scale separation techniques for deterministic rate equations [25, 51] frequently used in biochemical
contexts [26], furthermore stochastic corrections due to small copy-numbers [52] and even effectivememory
effects [27, 53] can be incorporated.However, these techniques do not explicitly address the question of
thermodynamic consistency andwe think that combining our coarse-grainingwith these techniques is a
promising endeavor for the future.

We restricted the entire reasoning in this paper to catalysts. They follow linear rate equationswhen their
reaction partners have constant concentrations. This linearity allowed us to give explicit solutions for general
catalysts. Focusing on the emergent cycles to reproduce the correct thermodynamics paves theway to apply a
similar procedure beyond catalysts: reaction networks that remain nonlinear after chemostatting still have
emergent cycles [28]. They can be calculated algebraically frombases for the nullspaces of the full and the
reduced stoichiometricmatrices,  and X . The cycles in nonlinear networksmay not have a representation as
circuits in the reaction graph, aswe have seenwith the internal cycle of the enzyme in a closed box.Nonetheless,
each of the emergent cycles aC can serve as an effective reaction: it has awell defined stoichiometry,  aCY , and a
well defined net force,-D a·G Cr . The steady state concentrations as well as the fluxes, however, need to be
determined case by case. Nonlinear differential equations can bemulti-stable, where our coarse graining applies
to each stable steady state. Some nonlinearODEs exhibit limit cycles, thus never reaching a steady state. In this
case our procedure is no longer applicable.

6. Summary

Wehave presented a coarse-graining procedure for biocatalysts and have shown that it is thermodynamically
consistent. During this coarse graining procedure, a detailed catalyticmechanism is replaced by a few net
reactions. The stoichiometry, deterministic kinetic rate laws and net forces for the coarse-grained reactions are
calculated explicitly from the detailedmechanism—ensuring that at steady state the detailedmechanism and the
net reactions have both the same substrate/product turnover and the same EPR.

Furthermore, we have shown that in the tightly coupled case where a detailedmechanism is replaced by a
single reaction, this net reaction satisfies aflux–force relation. In the casewhere a detailedmechanismhas to be
replacedwith several net reactions, theflux–force relation does not hold for the net reactions due to cross-
coupling of independent thermodynamic forces. Ultimately, this cross-coupling allows the currents and forces
not to be aligned—while complyingwith the second law of thermodynamics.

Overall, we have shown that coarse-graining schemeswhich preserve the correct thermodynamics far from
equilibrium are not out of reach.
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AppendixA.Diagrammaticmethod for explicit steady states of linear reaction networks

Weconsider a catalyticmechanismwith a catalyst and several substrates, products, inhibitors or activators. The
mechanism is resolved down to elementary reactions followingmass–action kinetics.

Upon chemostatting all the substrates, products, inhibitors and activators—summarized as y—we are left
with rate equations that are linear in the catalyst-containing species—summarized as x.While the steady-state
equations alone, = ( )J x y0 ,X , are under-determined and linearly dependent, the open system still has a
conservation law for the total catalyst-moiety concentration = åL xi i, which again is a linear equation.We can
replace the first line of the steady-state equations with this constraint to arrive at linear equations = ( )e y xL 1 ,
where = ( )e 1, 0,...1 is the first Cartesian unit vector and( )y is an invertible squarematrix that depends on the
chemostat concentrations. According toCramer’s rule the unique solution to this problem is given by
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=
( )
( )

( )y

y

x

L

det

det
, A1i i

where ( )yi is identical to( )y just with the ith column replaced by e1.We nowprovide a diagrammatic
method to represent this solution. This diagrammaticmethod is frequently attributed toKing andAltman [48]
orHill [54], while an equivalent approachwas already employed byKirchhoff [55] to solve problems in electric
networks.We give the diagrammaticmethod in the language of graph theory [50, 56], for whichwe need some
definitions.

The open pseudo-first-order reaction network has a simple representation as a connected graph  where all
the catalyst-containing species i form the vertices  and the reactions Èr r- formbidirectional edges. The
reduced stoichiometricmatrix X is the incidencematrix for this graph.

A closed self-avoiding path in a graph is a circuit and can be identifiedwith a vector Îc over the edges,
whose entries are in fact restricted to -{ }1, 0, 1 . Since a circuit is a closed path, it satisfies  =c 0X and reaches
asmany vertices as it contains edges. A graph not containing any circuit is called forest, a connected forest is
called tree.

A connected subgraph t Ì is called spanning tree if it spans all the vertices but contains no circuit. The set
 of spanning trees of afinite graph is alwaysfinite. A rooted spanning tree is a tree where all the edges are
oriented along the tree towards one and the same vertex, called the root.

With these notions set, the determinants in equation (A1) can bewritten as

 

 å  å å = =
t r t

r
t r t

r
Î Î Î Î

( ) ˜ ( ) ( ) ˜ ( ) ≕ ( )y y y y yk k Ndet , det .i
ii i

Here,  i is the set of spanning trees rooted in vertex i, and r̃ ( )yk is the pseudo-first-order rate constant of
reaction ρ. Overall, Kirchhoff’s formula for the solution to the linear problem is

*


å =
t r t

r
Î Î( )

˜ ( ) ( )
y

y
x

L N
k

1
. A2i

i

From this result it is easy to confirm that the solution exists and is always unique as long as the chemostat
concentrations arefinite and positive. Furthermore, the steady-state concentrations are expressed as sums of
products of positive quantities, thus themselves are always positive.

While this formula is very compact and abstract, it is not obviously convenient for practical calculations.
However, the rooted spanning trees appearing in this formula can be visually represented as diagrams, as wewill
see in the following examples. These diagrams are intuitive enough tomake practical calculationswith this
formula feasible.

A.1. Steady-state concentrations for the enzymatic catalysis
The enzymatic catalysis example in themain text, when open, is represented by the graph infigure 3. This
graph hasfive vertices and six edges. It contains three distinct circuits and twelve different spanning trees.

A visual representation of Kirchhoff’s formula (A2) for its steady-state concentrations is given by the
following diagrams:

Here, each diagram represents a product of pseudo-first-order rate constants over a spanning tree that is rooted
in the (circled) vertex associatedwith the species wewant to solve for (left-hand side). Thus, the concentrations
are sums of twelve diagrams each, normalized by a denominator NE that equals the sumof all the 60 diagrams
given above.

A.2. Steady-state concentrations for the active transporter
The activemembrane transporter example in themain text, when open, is represented by the graph infigure 5.
This graph has six vertices and seven edges. It contains three distinct circuits and 15 different spanning trees.
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Avisual representation of Kirchhoff’s formula (A2) for its steady-state concentrations is given by the
following diagrams:

Here, each diagram represents a product of pseudo-first-order rate constants over a spanning tree that is rooted
in the (circled) vertex associatedwith the species wewant to solve for (left-hand side). Thus, the concentrations
are sums of 15 diagrams each, normalized by a denominator NM that equals the sumof all the 90 diagrams given
above.

Appendix B. Kinetic rate laws for the coarse-grained reactions

Wenow explicitly construct the kinetic rate laws as apparent cycle fluxes. First, wemake use of the diagrammatic
method to derive the coarse-grained kinetic rate laws for the two example systems of themain text. Thenwe
generalize these examples to generic catalysts.

B.1. Kinetic rate laws for the enzymatic catalysis
As shown in themain text, the cycle currents are

= - = - = = -- -[ ] [ ][ ] [ ] [ ][ ]J J k k J J k kES E S , EP E P .int 2 2 2 2 2 ext 6 6 6

Plugging in the diagrams (appendix A.1) for the steady-state concentrations of the enzyme-containing species
we arrive at

Next, wemultiply the remaining pseudo-first-order rate constants into the diagrams and highlight them in blue.
This leads us to

Note how some of the diagrams did not contain that edge before, leading to a circuit in the newdiagrams. The
newpseudo-first-order rate constant carries an arrowhead to highlight the orientation of that edge. The black
edges remain oriented along the other black edges towards the circled vertex. The remaining diagrams already
contained the reverse pseudo-first-order rate constant for the newly incorporated edge. The product of these
forward and backward pseudo-first-order rate constants is highlighted as a dashed blue edgewithout arrowhead.
The latter tree diagrams appear on both sides of theminus signs and can be canceled. Thus the currents are
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Here, we highlight the entire circuits in blue to emphasize the common factors in the remaining terms.Note that
the square representing the internal cycle remained in the internal cycle current on both sides of theminus sign.
However,Wegscheider’s conditions, equation (2), ensure that these terms cancel as well. Furthermore,
Wegscheider’s conditions allow us to express the diagrams containing the lower triangle with the upper triangle:

Overall, the currents expressedwith rate constants and concentrations are
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B.2. Kinetic rate laws for the active transporter
Weproceed analogously to the previous calculation for the enzymatic catalysis: plug the tree diagrams from
appendix A.2 into
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-
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and cancel all diagrams that do not contain a circuit. This leads us to

Since thismembrane transportermechanism does not have an internal cycle, we cannot exploitWegscheider’s
conditions to cancelmore terms.Nonetheless, we see that we can factor the circuits out of some of the terms.
Overall, we arrive at the cycle currents

y y y y- -+ - + -≕ ≕J J, .cat cat cat sl sl sl
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wherewe used the abbreviations

x x+ + + +- -
+

-
+ + +

- - -≔ [ ] [ ][ ] [ ] ≔k k k k k k k k k k k kH H H H , .cat 6 5 b 1 5 a b 6 1 a sl 3 4 2 4 3 2

B.3. Kinetic rate laws for generic catalysts
Bymaking use of the graph theory notation introduced in appendix A, we can generalize the above calculations
to generic catalysts.

Before proceeding with calculations, we need a generalmethod to determine the cycle currents from
individual reaction currents. To that end, we construct a special spanning tree *t for the graph  of the open
system: (1)we start with the closed system and determine its internal cycles ker .We take the set  Ì of
edges that the internal cycles are supported on. (2)Consider this set of edges  Ì as a subgraph of the open
network. Choose a spanning tree t for this subgraph. (3)Complete t to a spanning tree *t of  . All the edges
not contained in the spanning tree are the chords.

There is a special connection between chords and circuits first highlighted by Schnakenberg [57]: the
spanning tree alone, by definition, does not contain any circuit. Adding a chord to the spanning tree gives rise to
a circuit composed of the chord together with edges from the spanning tree. Furthermore, by construction every
chord gives rise to a different circuit and the set of these circuits form a basis of the cycle space ker X . In this
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context the circuits associated to chords are also called fundamental cycles. The currents on the chords then are
identical to the steady-state currents along the fundamental cycles of the chords [57].

The special spanning tree *t that we constructed is separating the chords into two sets: each chord in  gives
rise to an internal cycle, while the chords not in  give rise to the emergent cycles. This construction provides a
basis for the entire cycle space, yet keeps the internal cycles and the emergent cycles separated. Therefore we call
it a separating spanning tree.

It is worth noting that not every basis of circuits can be expressed as fundamental cycles of a spanning tree.
This technical detail, however, has no impact on our results. Different bases are just different representations of
the same space. In the followingwe assume a spanning treemainly for convenience.

Let j i be the chord of an emergent cycle. Then the current through that chord is
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Next, we note that a lot of terms cancel by taking this difference. All the spanning trees that contain the edge
i j or j i, respectively, appear with both plus andminus sign:
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After canceling these spanning tree contributions, we define the apparent cycle fluxes as
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Weobviously have y y= -Jij ij ji. Thus the apparent cyclefluxes serve as kinetic rate laws for the coarse-grained
reactions.

There is, technically speaking, no strict necessity to cancel the spanning tree contributions in order to arrive
at expressions that can serve as coarse-grained kinetic rate laws. Keeping the spanning tree contributions results
in the apparentfluxes of the substrates/products that are being produced/consumed along the chord. This is a
natural choice for dealingwith data from isotope labeling experiments.With this definition for kinetic rate laws,
however, the flux–force relation is not satisfied—even in the case of a single emergent cycle [34]. In contrast, our
definition of apparentfluxes resembles the apparent cycle fluxes, rather than apparent exchangefluxes.
Comparing the apparent cycle fluxeswith the net force along the emergent cycle, we do have a flux–force
relation, as shown in the next section.

AppendixC. Proof of theflux–force relation

Beforewe prove theflux–force relation, we rewrite the apparent fluxes for the emergent cycles derived in
equation (B1). This simplifies thefinal proof considerably. To that end, we observe that adding a chord to a
spanning tree not containing this chord always creates a circuit. Since in equation (B1)we sumover all possible
spanning trees, the same circuits re-appear in several summands.We now re-sort the sums tofirst run over
distinct circuits, and then sumover the remainders of the spanning trees. For that we need some notation.

For any circuit cwe abbreviate the product of pseudo-first-order rate constants along it as
= r rÎ( ) ˜ ( )yw c kc . The net force along a circuit thus is concisely written as

å-D = =
-r

r

rÎ -

˜ ( )
˜ ( )

( )
( )

( )
y

y
G RT

k

k
RT

w c

w c
ln ln . C1c

c

Here,-c refers to traversing the circuit cwith reversed orientation. For any circuit, c, we furthermore define
( )c to be the set of subforests of  that (i) do not contain any edge of c, (ii) span the rest of the graph, and (iii) are
directed towards the circuit c. Analogously to the product of rate constants along a circuit, for this set of
subforests we denote the sumof products of rate constants as
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By construction, x x= -( ) ( )c c since the set ( )c does not depend on the orientation of c. Let ij be the set of
circuits traversing the edge j i. Note that these circuits are exactly the ones appearing in equation (B1) .

With this notationwe rewrite the apparent cycle fluxes in the followingway:


åy x=
Î( )

( ) ( )
y

L

N
w c c .ij

c ij

This rewriting is not limited to the case of a single emergent cycle. In fact, we used this form to express the
apparent cyclefluxes of the activemembrane transporter in appendix B.2.

We nowprove theflux–force relation—under the assumption that there is exactly one emergent cycle hc
with chord h = j i. Let-DhG be the net force along this cycle and let hJ be its current at steady state. Let
furthermore *t be a separating spanning tree, as we defined in appendix B.3.

Having only one emergent cyclemeans that for every circuit Îc ij we have one of the following cases:

• The circuit is formed by following the separating spanning tree fromvertex i back to j, inwhich case it is
exactly the emergent cycle: = hc c .

• The circuit is formed by traversingmore chords, inwhich case it can bewritten as g= +hc c where

g Î ker is an internal cycle. In this case we have = =g
g- - - -

h

h

h

h
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w c
due toWegscheider’s

conditions.

In any case we canwrite z =  h( ) ( ) ( )w c c w c where z z= -( ) ( )c c is a symmetric factor. Overall, the
apparent fluxes for the emergent cycle are

 
å åy x x z= = h
Î Î

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( )
( )

( ) ( ) ( )
y y

L

N
w c c

L

N
c c w c .ij

c cij ij

By construction, ξ and ζ are symmetric and also any sumover these terms is symmetric. Consequently, the
apparent forward and backward fluxes of the emergent cycle satisfy
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which, togetherwith equation (C1), concludes the proof.
From this proof it is evident, why the flux–force relation breaks down once there are several emergent cycles

with nonzero forces: in the case where a circuit Îc ij is not identical to the emergent cycle hc , we can still write
it as g= +hc c . However, now γneed not be an internal butmight be another emergent cycle. Therefore,
Wegscheider’s condition does not apply to it, thus g( )w and hence ζ(c)need not be symmetric. As a
consequence, the ratio of apparent forward and backward cycle fluxes cannot be expressed by the force of the
emergent cycle−ΔηG alone.

The proof also showswhy the choice of a separating spanning tree ismainly for convenience. In the case of a
single emergent cycle, the exact basis for the internal cycles does notmatter and you can alwaysfind an
appropriate separating spanning tree. In the case of several emergent cycles, there is no simple and direct relation
between the force and thefluxes of a cycle. The only consistency requirement is the EPR.However, the EPR is a
scalar and thus invariant under change of basis. Furthermore, it involves only the forces and the currents of the
cycles. This imposes no restrictions on the individual forward and backwardfluxes.
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