76 research outputs found

    Flexible tactile digital feedback for clinical applications

    Get PDF
    Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures

    A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis

    Get PDF
    A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    An in-process, non-contact surface finish sensor for high quality components generated using diamond turning

    Get PDF
    The object of this Ph.D. project was to design and construct an in-process, non contact surface finish sensor for high quality components generated using diamond turning. For this application the instrument must have the following properties: i rapid acquisition of data. ii capability of measuring translating and or rotating surfaces. iii ruggedness for in-process use. iv insensitivity to moderate vibrations. v remoteness from the surfaces to be measured. The remoteness requirement virtually excludes the otherwise ubiquitous stylus instrument, while the rapid gathering of data from rotating surfaces excludes other profiling techniques. The above mentioned properties strongly suggest an optical method. An optical diffraction technique has been chosen, since it produces an optical Fourier Transform of the surface. This transform is produced at the speed of light, since the optical system has the property of parallel data processing, unlike a typical electronic computer. With the aid of a microprocessor various surface finish parameters can be extracted from the optical transform. These parameters are respectively the rms surface roughness, slope and wavelength. The actual sensor consists of a measuring head and a minicomputer. It fulfils the above mentioned requirements. Its only limitations are: i limited to surface finishes up to 100nm ii presence of cutting fluids has to be avoided, although certain modern lubricating fluids can be tolerated. The algorithms devised to extract the surface finish parameters from the optical transforms have initially been tested on optical spectra produced by Thwaite. Comparison of the optical roughness values and the values quoted by Thwaite show close agreement. Thwaite's values are obtained by a stylus instrument. Rqopt (um) Rqstylus (um) 0.16 0.156 0.38 0.37 0.44 0.40 In addition a computer program has been devised which simulates the optical sensor head. The input data can be obtained by a profiling instrument, or generated by a computer program. This last option enables the creation of surface profiles with "controllable" machining errors. This program can be utilised to create an atlas, which maps optical diffraction patterns versus machine-tool errors

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation
    • …
    corecore