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Abstract

A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated
in this paper. Distributive sensing scheme is designed to monitor the dynamics of the sensing structure.An artificial
neural network is used to process the measured data and to identify cell presence and density. Without specifying
any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of
biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve
seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics
information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All
of those experiments are carried out in a cell culture medium to simulate a practical working environment. The
EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell
lines represent a particular class of biological particles that have unregular shapes, non-uniform density and uncertain
growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that
the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive
sensory measurement, has great potential in biosensing applications.
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1. Introduction

Research into the use of biosensors for the detec-
tion of various biological particles/molecules have re-
ceived extensive interest in recent decades, due to the
rapid progress of micro/nano technologies. A biosensor
usually consists of a bioreceptor and a sensing trans-
ducer, in which the bioreceptor is the interface that the
biosensor interacts with the biological environment and
the transducer is used to convert the physical/chemical
information of the biological particles into a measur-
able signal[1]. Microcantilevers are the most widely
used transducer in mechanical-type biosensors, due to
their ultra-small size, high sensitivity and label-free
biological application by surface functionalization[2].
This kind of biosensor can be fabricated in arrays of
microcantilevers[3] and can be integrated into a CMOS-
based microsystem. In general, microcantilever can
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work under two different modes: static mode and dy-
namic mode[4, 5]. In a static mode, surface stresses
are accumulated after binding biological particles to
the microcantilever surface and it will inevitably in-
crease the static deformation of microcantilever. The
dynamic mode use a microbalance approach, which de-
tects surface-attached mass using resonant frequency
shift. However microcantilever based biosensors suffer
from low sensitivity in liquid environment and fragility
in practical operation[6].

Micromachined membranes (plate/diaphragm) have
gradually become a promising mass sensing structure
to replace the microcantilever in recent years. Com-
pared with microcantilevers, micro-membranes poten-
tially have larger sensing area, higher sensitivity in liq-
uid and less fragility. Moreover, it has the same advan-
tages as the microcantilever in the application of mass
sensing. Some researchers have made attempts to ap-
ply micro-membranes in biological detections. For ex-
amples, Carlen et al [7] designed a micromachined sur-
face stress sensor based on a thin suspended crystalline
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silicon circular plate to detect the bending behaviour
caused by vapor phase chemisorption of the alkanethiol
monolayers. Xu et al [6] developed a piezoelectric
membrane-based biosensor array for immunoassay ap-
plications.

Distributive sensing techniques have been widely
used to monitor and reconstruct the static deforma-
tion or dynamic responses of conventional structures,
in the field of vibration control, damage detection and
biomedical analysis etc. One famous instance is a beam-
like or plate-like smart sensing surface with few dis-
tributive tactile sensors. The sensors are placed at se-
lected locations and used to collect the data of surface
deformation. Any change upon the sensing surface can
result in a corresponding change of measurements in
each sensor. The features or the properties of contacted
object are related to the sensory data. Advanced non-
linear feature analysis methods, for example artificial
neural networks, can be applied to infer the properties
of the contacted subject. These kinds of tactile sensing
surfaces have been successfully applied to determine
a description of force loading[8], localize a contacting
subject[9] or even human gait analysis[10]. Apparently
the design of integrated microsystems for biosensing
can also borrow the concept of the smart sensing sur-
face, in which multi-dimensional signals rather than sin-
gle output from the sensing surface can be collected and
used for post-processing. Therefore it has good poten-
tial to extract more information such as distribution or
pattern of biological targets, rather than just the mass
variations.

Frequency response function (FRF) is one of the most
useful ways to represent the dynamics of a rectangular
membrane. Cell adhesion on a membrane surface re-
sults in the change of its mass, stiffness and damping,
all of which can be reflected in a FRF. By comparing the
FRFs of a sensing membrane with and without cell at-
tachment, we can identify the features of adhesive cells.
Many researchers have successfully employed neural
networks on the measued FRF data for structural health
monitoring and damage detection[11, 12, 13, 14]. This
paper presents the successful cell monitoring applica-
tion. Before applying FRF data into training a neural
network, the size of FRF data has to be reduced. Many
methods exist to perform the data dimension reduction,
such as sub-dataset[11], modal analysis[15] and princi-
pal component analysis[12]. In this paper, Karhunen-
Loeve decomposition is used for FRF data dimension-
ality reduction.

The purpose of this paper is to apply a microma-
chined rectangular membrane as biosensing platform
using the distributive sensing method. This novel ap-

proach is first in the field of biosensing, which paves
the way for developing more advanced biosensors with
high accuracy and multiple functions. The paper is
organised as follows. Section 2 presents the fabrica-
tion methods of biosensing platform including the dis-
tributive piezoresistive sensors and PZT actuators for
self-actuation and self-sensing. Section 3 presents the
process of biological testing. Experimental tests of
biosensing micro-membranes are used for detection of
EA.hy 926 endothelial cell lines in a natural liquid en-
vironment. EA.hy 926 is a well-established human
endothelial-like immortalised cell line that exhibits ad-
herence and migratory characteristics, resulting in non-
uniform shapes in culture. Dynamic responses of the
micro-membrane at a few specific points are measured
and recorded. Such information forms a set of distribu-
tive sensory data. In analysing the sensory data, first
a shift of resonance frequency at each measured mode
is used to perform a preliminary estimation of the cell
density. It is found that frequency based indices alone
is unable to accurately reflect the attached cell distri-
bution on the sensing surface. Finally, in Section 4, a
Back-Propagation (BP) neural network with one hidden
layer is trained to recognize the cell distribution from
the distributive sensory data of a series of repeated bio-
experiments. It shows precise prediction on cell density
by using this neural network model.

2. Fabrication of membrane biosensing devices

The silicon membranes were fabricated using the
standard micromachining techniques from silicon on in-
sulator (SOI) wafers. The membrane was created by
inductively coupled plasma (ICP) using the Deep Reac-
tive Ion etching (DRIE) process from the back side of
SOI wafer, stopping at the buried oxide layer. Bound-
ary conditions of the membrane were also defined by
DRIE from the top side of the wafer, using the buried
oxide as stop layer. The buried oxide layer was finally
removed to form the boundary holes. Figure 1 illus-
trates an approximate 200µm square membrane of can-
tilever structure. Three different boundary conditions of
the micro-membranes were fabricated and tested: two
opposite edges clamped and the other two edges free
(C-F-C-F), cantilever (C-F-F-F) and all edges clamped
(C-C-C-C). All of the membranes are designed to be
square and with lengths of 100µm, 200µm or 300µm.

Figure 2 demonstrates an integrated microsystem
based on a square sensing membrane, which was man-
ufactured with distributive piezoresistive sensors and
PZT actuators. Such a microsystem enables the device
to be capable of self-sensing and self-excitation. This
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microsystem can be embedded into an electronic circuit
to build a lab-on-chip system.

For the fabrication of distributive piezoresistive sen-
sors, a 500 nm-thick poly-silicon layer was deposited
onto the oxidised device layer of a SOI wafer by
low pressure chemical vapour deposition (PCVD). This
layer was then doped by ion beam implantation using
a 50Kev Boron source giving a doping density of 1e15
to enhance the piezoresistive deflection sensitivity. The
sensor shapes were formed by photo-lithography and
subsequent reactive ion etching (RIE).

In the PZT film fabrication, a sandwiched structure of
a 100 nm-thick Pt/Ti bottom electrode, a 1µm PZT film
and a 100 nm-thick Pt top electrode was deposited on
the SOI. The top and bottom electrodes were deposited
by evaporation using e-beam evaporator systems, the
deposited PZT was deposited as a spin on sol-gel which
is then annealed to produce the required PZT film. The
top and bottom electrodes are patterned and etched by
ion beam milling. The redundant PZT material was wet
etched.

Figure 1: Laser scanning image of a 200µm square pure membrane of
cantilever structure

Figure 2: SEM image of an integrated microsystem using a 100µm
square membrane and attaching with distributive piezoresistive sen-
sors and PZT actuators

3. Biological experiments

3.1. The process of bio-experiments

The human hybrid EA.hy 926 cell used in this paper
is derived from the fusion of the human umbilical vein
endothelial cells with A549/8 human lung carcinoma
cell line. EA.hy 926 is a permanent human endothe-
lial cell line that expresses highly differentiated func-
tions characteristic of human vascular endothelium. Hu-
man EA.hy 926 endothelial cell lines are maintained in
30ml Dulbecco’s Modified Eagle’s Medium (DMEM),
supplemented with 10% FBS, streptomycin 100µg/ml
and penicillin 100U/ml, and 10ml HAT (100µM hypox-
anthine, 0.4µM aminopterin, 16µM thymidine). Cells
were cultured in an incubator at 37◦C with an atmo-
sphere of 5% CO2 and 95% air. Cells were grown in
a 75cm2 flask and passaged when reaching ∼ 90% con-
fluence. Once cells roughly reached 90% confluence the
media was removed and the cells washed with 5ml phos-
phate buffered saline (PBS). The process of passage of
EA.hy 926 cells is that briefly cell culture media was re-
moved from the cells and cells were then washed with
10ml sterile PBS until the media appears without color.
EA.hy 926 cells were then detached by the addition of
2.5ml trypsin with a 3 minute standard incubation. Cell
clusters were also dispersed for uniform distribution by
repeated pipetting with 5ml new DMEM media.

Figure 3 shows a LSM image that the endothelial
cells coated on the surface of a micro-membrane. It can
be seen that those endothelial cells were tightly adhered
to the silicon surface showing a typical spreading pat-
tern.

Figure 3: Laser scanning image of endothelial cells coating on the
surface of a micro-membrane

The seeding of biological experiment is separated
into two phases: seeding a certain amount of cells on the
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membrane (Figure 4-a,b) and measure the correspond-
ing dynamics of this membrane. The dynamic test-
ing device is illustrated in Figure 4-c. Identical micro-
membranes were repeatedly used several times for ob-
taining a batch of experimental results with different
densities of cells. Each experiment was performed ac-
cording to the following work flow:

1. Initially, silicon micromembranes were cleaned
and sterilised using washes (ethanol and acetone
mixture), autoclaving and UV light irradiation.

2. Before seeding cells on the micro-membranes, the
cell density of suspension during the process of
passage was established. The numbers of viable
cells were estimated by taking 20µl of the cell sus-
pension and mixing it with a 20µl trypan blue.
Cells count was then performed from this new mix-
ture by using improved Neubauer haemocytome-
ter. Once the cell density was established, a 5ml
cell suspension of EA.hy 926 cells of known den-
sity is made up using the media. By controling
the incubation time, various cell density and dis-
tribution on the membrane surface can then be
achieved.

3. Cell distribution on the membrane sensing surface
is recorded using a LSM (laser scan microscopy)
image. The density or distribution of cells can be
quantitated based on this LSM image.

4. The dynamics of membranes with adherent cells
are measured. The FRF data for each specific
micro-membrane with cells and without cells are
compared to infer the information of cells, which
is recorded in the LSM scanned images.

5. Finally, the cells are removed from the surface of
micro-membranes following the same procedure as
the first step. The re-sterilised micro-membrane
can be used for the next experiment.

Figure 4: Endothelial cells coating on the surface of a micro-
membrane: (a)The left upper image shows a silicon die (membrane)
inside in a petri dish, (b)The left bottom image shows the same after a
period of incubation, (c)The right image is the dynamic testing device.

3.2. Experimental results

Figures 5, 6 and 7 illustrate the frequency response
functions (FRFs) of three different types of micro-
membranes under three different cell densities. The
most dominant change of the dynamics of membrane
induced by cell-loading is the shift of resonance fre-
quencies. As the first mode shapes remain almost
constant[16], and the amplitudes of each FRF were self-
normalized with respect to the amplitude of first reso-
nant mode. Relative amplitudes of resonant modes are
found to be significantly varied after the cell loading.
It means that additional mass loading of attached cells
on the surface of membrane also results in the distor-
tion of vibration shapes. The mass or quantity of target
cells can be estimated through the detection of the shift
of resonance frequencies. Eq. 1 demonstrates the rela-
tionship between mass change and frequency shift of a
dynamic system, under the assumption that the stiffness
remains constant. This approach has been widely used
in the microcantilever based biosensors.
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f
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Comparing the changes of FRFs presented in Figures
5, 6 and 7, it is concluded that different types (dimen-
sion and boundary conditions) of the rectangular silicon
micro-membranes reflect very different biosensing per-
formance. It implies that the first type membrane (a 100
µm square C-F-F-F) has highest sensitivity among the
three membranes, in terms of resonance frequency shift.
It is also noted that nonlinearity occurs on the dynamics
of fluid-loaded micro-membranes. In fact most experi-
mental results of FRFs micro-membranes involved cell
attachment have suffered with nonlinearity to a certain
degree. In general, the experimental results shown in
Figures 5, 6 and 7 demonstrate the great potential abil-
ity of micro-membrane in biosensing, even when they
are immersed in a high-damping liquid environment.

3.3. Preliminary analysis

Two resonant frequency based indices (Eq. 2) are uti-
lized to perform a preliminary analysis on the experi-
mental results in this paper. FDRn (Frequency Differ-
ence Ratio) is evaluated as the normalized resonant fre-
quency difference between the cell-loaded and cell-free
membrane at each measured resonance mode. AFDR is
the average of all measured FDRn.

FDRn =
∆ fn
fn
, AFDR =

1
N

N∑
n

FDRn (2)
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Figure 5: Above: endothelial cells coating on the surface of a 100
µm square C-F-F-F micro-membrane. Below: normalised velocity
amplitude according to cell density.

Figure 6: Above: endothelial cells coating on the surface of a 200
µm square C-F-C-F micro-membrane. Below: normalised velocity
amplitude according to cell density.

Figure 7: Above: endothelial cells coating on the surface of a 300
µm square C-C-C-C micro-membrane. Below: normalised velocity
amplitude according to cell density.

The indices of FDRn and AFDR evaluation were per-
formed on three batches of bio-experimental results us-
ing three different micro-membranes, which are all ap-
proximate 200 µm square C-F-C-F membranes. The
three micro-membranes are labeled as No.I, No.II and
No.III respectively. In each batch of the experiment, an
identical membrane was repeatedly used four times and
the cell culture density was gradually increased from to
25 × 103/µl to 200 × 103/µl. Figures 8, 9 and 10 illus-
trate the trends of the FDRn with increasing the amount
of cells of each tested micro-membrane. Figure 11 com-
pares the AFDR index of these three micro-membranes
in each batch of experiment.

First of all, some trends of the index FDRn at one
or two modes are not coherent with the increase of cell
quantity. This phenomenon is quite different with the
bio-experimental results of microcantilever, where the
FDR0 of its fundamental mode always has a linearly
relationship with cells number[17, 18]. The potential
reasons of this phenomenon are: (a)Micro-membranes
usually have much larger sensing area and carry many
more cells than microcantilever in the bio-experiments.
Apart from mass change, the accumulation of cells
may also result in change of structural stiffness. In
such cases, the linear relationship of FDR will be vio-
lated. (b)The bio-experiments presented in this work for
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Figure 8: Above: FDR trends of No.I micro-membrane in four inde-
pendent biological experiments. Below: typical cell growth observed
at the four time intervals selected.

micro-membranes are maintained in a relevant environ-
ment, for example the dynamics of microplates are mea-
sured in cell culture media. (c)Nonlinearity of the dy-
namics of submerged micro-membranes with randomly
distributed cells exists in most experimental measure-
ments.

On the other hand, index AFDR is capable of giving
an approximate prediction of the amount of cells. The
sensitivity of AFDR on these three micro-membranes is
quite different. The values of AFDR for No. I and No.
II membranes are very close, but that of No. III is much
lower. This is due to the fact that No. I and No.II mem-
branes were taken from the same wafer, while No.III is
from the other one. It reveals that using the index AFDR
for the micro-membrane as a biosensing platform is not
a robust method. Calibration on such a biosensing de-
vice is probably required before the estimation on cell
density.

Considering the submerged sensing membrane as a
general oscillation structure, resonant frequency can
be approximately determined only by its stiffness and
mass, the first equation in 1. If one assumes the sys-
tem stiffness is a constant, the mass change ratio is
proportional with frequency change ratio as shown in
second equation of 1. It is therefore believed that in-
dices FDRn and AFDR are able to roughly reflect the
cell density. However in realistic situations cells attach-
ment would also affect the stiffness of sensing micro-
membrane more or less, especially the endothelial cells.

It leads to more complication and FDRn and AFDR
more difficult to accurately indicate the cells density.

Figure 9: Above: FDR trends of No.II micro-membrane in four inde-
pendent biological experiments. Below: typical cell growth observed
at the four time intervals selected.

4. Neural network method

On the whole, resonant frequency based indices ei-
ther FDRn or AFDR are only able to predict the cell
density with very limited accuracy. It is mainly due to
the complication and nonlinearities of micro-membrane
sensing system. Other algorithms are desired to per-
form more accurate and reliable identification on cell
distribution from the measured dynamics data. In this
section, a simple attempt that using an artificial neural
network technique to build the relationship between the
sensory data and cell distribution is carried out.

4.1. Quantitation of cell density

In the above experimental results, LSM images were
used to intuitively presented the cell population in the
micro-membrane sensing domain. However a quanti-
tative index is also necessary to indicate the amount
of cells for a more precise analysis. This is especially
true for endothelial cells, the number of which are very
hard to count. A simple image processing procedure
was carried out on each LSM image to convert it into
a binary image using the MATLAB Image Processing
Toolbox. Initially the LSM image is loaded and a most
clear layer is selected for the following processes, as
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Figure 10: Above: FDR trends of No.III micro-membrane in four
independent biological experiments. Below: typical cell growth ob-
served at the four time intervals selected.

Figure 11: AFDR trends of three different micro-membranes in each
batch of bio-experiments

the LSM image taken under the reflection mode usu-
ally contains three layers. Then the background im-
age of this LSM image is created by the morphological
opening technique. Afterwards the background image is
subtracted from the original image and the image con-
trast is enhanced, this is in order to highlight the area
of cells occupied. Finally the corresponding binary im-
age is created, in which the background is black and the
parts of implanted cells are white. Therefore the cells
population on the sensing domain can be approximately
evaluated by the white area ratio in this binary image.
This ratio is called cell density ratio (CDR) in this pa-
per. Figure 12 demonstrates the results of this evalua-
tion processes on four different LSM images, which are
obtained in a same batch of bio-experiments. It can be
seen that the white region of each binary image roughly
indicates the shapes of endothelial cells distribution, al-
though some local errors exist in the binary images. The
evaluated ratios of white region are also listed in the bot-
tom of Figure 12.

However, these evaluated CDRs are not suitable to be
used directly in the analysis due to the following points:
(1)Apart from each cell height above the growth sur-
face, the endothelial cells also generate a thin film over
all of the culture surface. Each evaluated CDR is raised
up 10% ∼ 15% to consider this thin film loading ef-
fect, for distinguishing from the case of no cells load-
ing; (2) For the case that cells covered nearly the whole
sensing domain, i.e. the 4th image in Figure 12, the
predicted value of CDR is usually much lower than the
actual situation. Therefore the predicted value needs to
be increased. The modified CDRs for each experimen-
tal sample are then used as the target values in neural
network applications.

4.2. FRF Data Normalization and Order-Reduction

Although all of experimental settings are the same in
each time of dynamic experiment, the amplitudes of ev-
ery FRF measurements are varied with experimental en-
vironment and external disturbances. Consequently it is
better to normalize the measured FRFs and scale them
into a same level for comparison and analysis. On the
other hand, there are multiple FRF datasets in each dy-
namical measurement and each FRF dataset contains a
very large number of frequency spectral lines. In this
work, frequency spectral lines are set to be 6400 for
each FRF and 4 sensory FRFs were recorded for each
test. Obviously such FRF datasets are too large to di-
rectly apply into the neural network. Therefore the di-
mension of each FRF has to be reduced before the ap-
plication of neural network.
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Figure 12: Quantization of cells population based on a simple image process technique

For the FRF normalization, each spectrum is normal-
ized with respect to the amplitude of its own first reso-
nant mode. The reason for choosing the first resonant
mode as the reference is based on the theoretical anal-
ysis results in [16], which prove that the mass loading
has the slightest effects on the first resonant mode of a
rectangular membrane.

For the dimensionality reduction, Karhunen-Loeve
(K-L) decomposition method is then used to extract
the principal components on a multiple-FRFs dataset.
The Karhunen-Loeve (K-L) decomposition is a useful
method to create low dimensional, reduced-order mod-
els of dynamical systems[19]. Assuming there are M
of FRFs with N frequency in each of dynamics mea-
surement of membrane, then this dataset forms a M ×N
matrix [H(ω)]M×N . The process of principal component
extraction of the matrix [H(ω)] using Karhunen-Loeve
(K-L) method has the following steps:

1. Firstly, a correlation matrix [C]M×M is created
based on the FRF matrix [H(ω)]M×N .

[C]M×M = [H(ω)]M×N[H(ω)]T
N×M (3)

2. The principal components are then obtained from
calculating the eigenvalues and corresponding
eigenvectors of matrix [C].

[C][X] = λ[X] (4)

3. Finally, the M extracted eigenvalues are exam-
ined. The eigenvectors associated with these
largest eigenvalues are then considered to be the
principal components and be able to represent the
most significant information of the original FRF
dataset.

4.3. Dataset creation

The dynamics (FRF) of 4 different used membranes
without any cells loading are also provided in the dataset
as references. Two additional samples are also provided
for the purpose of validation. Consequently there are
18 different samples in total are created for training and
validation of the neural network. The eigenvectors re-
lated to the largest eigenvalue of FRF dataset of each
sample are extracted as the neural network input and
the CDRs of every samples are calculated as the neural
network targets.

4.4. Network design and training

The widely used back-propagation (BP) neural net-
work was selected to predict cells density in this work.
Figure 13 illustrates the concept of using BP neural net-
work to predict the value of CDR. Besides the principal
components extracted from FRF datasets, the value of
index AFDR of each sample provide an additional in-
put to the neural network. As the index of AFDR has
been proved to be highly related to cells distribution in
last section, it can help the neural network to achieve a
fast convergence and good predictions. Among the 18
samples in the dataset, the first 14 samples are used for
training neural network and the left 4 sample are used
for validation.

As the number of samples are limited, it is more sen-
sible to design and use a simple neural network rather
than a complicated one. The BP neural network used
here is designed to have only one hidden layer with few
neurons. Several trials with different number of hidden
layer neurons were carried out to test the differences on
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Figure 13: Schematic diagram of BP network used for cells identifi-
cation

the normalized system error. It proves that the hidden
layer with 5 neurons produces the best performance.

The training process of BP network herein establishes
an approximate function (nonlinear regression) between
the inputs and targets, through iteratively adjusting the
weights and biases of network to meet a setting goal
(mean square error). The training parameters can affect
the network convergence speed as well as the final pred-
ication accuracy. Bad parameters may lead to very slow
training processes or over-fitting results. Several tests
were then carried out to find optimal training parame-
ters. The final training parameters used in this work are
selected as: moment rate is 0.9, learning rate is 0.1, the
max error is 0.001 and the max number of iteration is
3000.

4.5. Prediction results
Figure 14 demonstrates the prediction results of CDR

on samples of No.15 ∼ No.18 from the trained BP net-
work. The prediction results match very well with the
CDR values calculated from corresponding LSM im-
ages, with erros within 10 percent.

5. Conclusion and disscussion

The experiments implemented in this research have
examined the biosensing performance of a microma-
chined rectangular silicon membrane in a normal cell
culture environment. The principals of biosensing used
on the micro-membrane are based on the changes of its
dynamic properties caused by cell adhesion. In contrast
to previous research of biosensors, the bio-experiments
on each type of micro-membranes were repeated many
times. Initially, the shifts of resonant frequencies were
employed to analyse the experimental results. The an-
alytical results demonstrates that the rectangular micro-
membranes have capability on cell detection, under

high-damping liquid conditions. Nevertheless, a fairly
linear relationship of the micro-membrane sensitivity is
rarely achieved. It reflects the complexity of rectan-
gular micro-membrane in the applications of biosens-
ing. Those results also reveal the issue of that a certain
amount of difference of the biosensing sensitivity be-
tween two different micro-membranes exists, even they
are of an identical type.

Further biosensing analysis of the micro-membrane
is based on the novel methodology that uses an artificial
neural network with a distributed sensing scheme to es-
timate the adhesive cell distribution. Karhunen-Loeve
(K-L) decomposition method is successfully used to re-
duce the dimension of measured FRF datasets. A BP
neural network is trained from a set of selected experi-
menal samples. The final predicted results on the other
samples prove that this methodology can be success-
fully applied to identify the cell features. Significant ad-
vantages are discovered by applying this methodology
in the biosensing analysis: (1)it is a robust algorithm
and can repress the uncertainties in experimental mea-
surements, comparing with using a single value as sens-
ing parameter; (2)it is capble of eliminating the differ-
ences between diffferent substances of micro-membrane
based biosensors; (3)it can overcome the inherent non-
linearity of sensing structure; (4)it is suitable to anal-
yse the cells that are of very unregular shapes and non-
uniform density, such as the EA.hy 926.

The work described in this paper is the first attempt
of using the neural-network algorithm to perform the
biosensing function of rectangular micro-membranes
with a distributive sensory scheme. Much further re-
search is required to develop more potential applica-
tions of this methodology in the field of biosensing. Al-
though many repeated bio-experiments have been im-
plemented in this work, the number of samples remains
insufficient large for training a sophisticated neural net-
work. Current predicted results of cell adhesion is only
for the cell density spreading on the membrane sens-
ing surface, which primarily reflects the weight infor-
mation of cells. The distributive sensory data of mem-
brane also provide the space information of the adhesive
cells. Consequently, it is likely to predict the position,
morphology and behaviours of living biological parti-
cles by using the proposed methodology. Such informa-
tion are more useful in the biological applications than
the weight information.
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Figure 14: Predicted results on the CDR of No.15 ∼ No.18 samples using the trained BP neural network

[1] S. Mohanty, E. Kougianos, Biosensors: a tutorial review, IEEE
Potentials 25 (2) (2006) 35–40.

[2] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechani-
cal cantilever-based biosensors, Sensors and Actuators B 79 (2-
3) (2001) 115–126.

[3] L. Carrascosa, M. Moreno, M. Alvarez, L. Lechuga, Nanome-
chanical biosensors: A new sensing tool, TrAC - Trends in An-
alytical Chemistry 25 (3).

[4] N. Lavrik, M. Sepaniak, P. Datskos, Cantilever transducers as a
platform for chemical and biological sensors, Review of Scien-
tific Instruments 75 (7) (2004) 2229–2253.

[5] K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H.
Park, T. S. Kim, Novel electrical detection of label-free dis-
ease marker proteins using piezoresistive self-sensing micro-
cantilevers, Biosensors and Bioelectronics 20 (10) (2005) 1932–
1938.

[6] T. Xu, Z. Wang, J. Miao, L. Yu, C. Li, Micro-machined piezo-
electric membrane-based immunosensor array, Biosensors and
Bioelectronics 24 (4) (2008) 638–432.

[7] E. T. Carlen, M. S. Weinberg, C. E. Dub, A. M. Zapata, J. T.
Borenstein, Micromachined silicon plates for sensing molecular
interactions, Applied Physics Letters 89 (17) (2006) 173123–
173124.

[8] X. Ma, P. Brett, The performance of a 1-d distributive tactile
sensing system for detecting the position, weight, and width of
a contacting load, IEEE Transactions on Instrumentation and
Measurement 51 (2) (2002) 331–6.

[9] B. M. Cowie, D. J. Webb, B. Tam, P. Slack, P. N. Brett, Distribu-
tive tactile sensing using fibre bragg grating sensors for biomed-
ical applications, Proceedings of the First IEEE/RAS-EMBS In-
ternational Conference on Biomedical Robotics and Biomecha-
tronics, 2006, BioRob 2006 2006 (2006) 312–317.

[10] M. Elliott, X. Ma, P. Brett, Tracking the position of an unknown
moving load along a plate using the distributive sensing method,
Sensors and Actuators: A. Physical 138 (1) (2007) 28–36.

[11] Z. Chaudhry, A. Ganino, Damage detection using neural net-
works: an initial experimental study on debonded beams, Jour-
nal of Intelligent Material Systems and Structures 5 (4) (1994)
585–9.

[12] C. Zang, M. Imergun, Structural damage detection using artifi-
cial neural networks and measured frf data reduced via principal
component prediction, Journal of Sound and Vibration 242 (5)
(2001) 813–27.

[13] Y. Ni, X. Zhou, J. Ko, Experimental investigation of seismic
damage identification using pca-compressed frequency response
functions and neural networks, Journal of Sound and Vibration

290 (1-2) (2006) 242–63.
[14] J. Lee, S. Kim, Structural damage detection in the frequency

domain using neural networks, Journal of Intelligent Material
Systems and Structures 18 (8).

[15] R. Levin, N. Lieven, Dynamic finite element model updating
using neural networks, Journal of Sound and Vibration 210 (5)
(1998) 593–607.

[16] Z. Wu, X. Ma, P. Brett, J. Xu, Vibration analysis of submerged
micro rectangular plates with distributed mass loading, Proceed-
ings A of the Royal Society 465 (A) (2009) 205–216.

[17] B. Ilic, Y. Yang, H. Craighead, Virus detection using nanoelec-
tromechanical devices, Applied Physics Letters 85 (13) (2004)
2604–2606.

[18] A. Gupta, D. Akin, R. Bashir, Single virus particle mass detec-
tion using microresonators with nanoscale thickness, Applied
Physics Letters 84 (11) (2004) 1976–1978.

[19] X. Ma, A. Vakakis, L. Bergman, Karhunen-loeve analysis and
order reduction of the transient dynamics of linear coupled oscil-
lators with strongly nonlinear end attachments, Journal of Sound
and Vibration 309 (3-5) (2008) 569–87.

10


