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palavras-chave 
 

Sensores em fibra ótica, biomecânica, biomédica, coluna vertebral, disco 
intervertebral, ex vivo, in vivo 

 

resumo 
 
 

O presente trabalho teve como objetivo principal estudar o comportamento 
mecânico do disco intervertebral recorrendo a sensores em fibra ótica. 
Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma 
revisão exaustiva das várias configurações de sensores em fibra ótica que têm 
vindo a ser utilizadas em aplicações biomédicas e biomecânicas, 
nomeadamente para medição de temperatura, deformação, força e pressão. 
Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra 
ótica e apresentá-los como uma tecnologia alternativa ou até de substituição 
das tecnologias associadas a sensores convencionais. Tendo em vista a 
aplicação de sensores em fibra ótica no estudo do comportamento do disco 
intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, 
particularmente, do conceito de unidade funcional. A par de uma descrição 
anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e 
ligamentos espinais foram ainda destacadas as suas propriedades mecânicas 
e descritos os procedimentos mais usuais no estudo dessas propriedades. A 
componente experimental do presente trabalho descreve um conjunto de 
experiências efetuadas com unidades funcionais cadavéricas utilizando 
sensores convencionais e sensores em fibra ótica com vista à medição da 
deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui 
ainda a medição in vivo da pressão intradiscal num disco lombar de uma 
ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor 
comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. 
Finalmente apresenta-se os resultados da investigação em curso que tem 
como objetivo propor e desenvolver protótipos de sensores em fibra ótica para 
aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas 
soluções de sensores interferométricos para medição da pressão em fluídos 
corporais. 

 
 



vii 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

  

keywords 
 

Fiber optic sensors, biomechanics, biomedical, spine, intervertebral disc, ex 
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abstract 
 

The present work aimed to study the mechanical behavior of the intervertebral 
disc using fiber optic sensors. To address the theme an exhaustive review of 
the various configurations of fiber optic sensors that have been used in 
biomechanical and biomedical applications, in particular for measuring 
temperature, strain, force and pressure, was conducted. In this context, an 
effort was made to highlight the advantages of fiber optic sensors and present 
them as an alternative or even a substitution technology to conventional 
sensors. In view of the application of fiber optic sensors to study intervertebral 
disc behavior an exhaustive review of the spine and, particularly, of the spinal 
motion segment was made. Along with an anatomical and functional 
description of the intervertebral disc, the adjacent vertebrae and spinal 
ligaments, their mechanical properties were also highlighted as well as the 
most common procedures and guidelines followed in the study of these 
properties. The experimental section of the present work describes a set of 
tests performed with cadaveric spinal motion segments using conventional and  
fiber optic sensors to assess strain of the intervertebral disc under uniaxial 
compressive loads. This section also includes an experience reporting in vivo 
pressures measured in the lumbar disc of a sheep under general anesthesia. In 
this case, a commercial fiber optic sensor and a purpose-built interrogation unit 
were used. Finally, the results of ongoing research aiming to develop fiber optic 
sensors prototypes for biomedical and biomechanical applications are 
presented. Thus, the proof of concept of two possible interferometric 
configurations intended for pressure measurement in body fluids was 
presented. 
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Motivação / Motivation 

O homem é talvez o único ser vivo capaz de se interrogar. E nessa busca interior, das razões 

da sua existência, do seu comportamento e da sua relação, sustentada pela intrincada rede do 

instinto e do pensamento, pela matéria e pelo corpo, pela cultura e pela técnica, tem sido capaz de 

conquistar, ainda que reconhecendo retrocessos, desvios e limites. 

Assiste-o nessa conquista a dúvida e por isso é inesgotável o que há para saber. A dúvida é o 

limite do conhecimento e por essa razão o conhecimento não tem início nem fim, somente a 

expectativa de se alargar. A dúvida é a motivação para a construção de um intervalo do saber 

maior, a voz da consciência, apelando ao que há para saber sobre o passado, no presente e para 

o futuro.  

E é comungando dessa inquietação pelo saber, fecundada pela dúvida, que o autor do 

presente trabalho, com vestes de explorador e “equipamento limitado”, se precipita sobre as 

fronteiras do desconhecido. Interessa-o o corpo, matéria por excelência, manifestação palpável da 

existência. Interessa-o, sobretudo, o estudo das forças que nele atuam e que determinam o seu 

estado de repouso ou de movimento. E nessa ascese newtoniana, que o conduz à compreensão 

mais elementar das leis que regem a partícula, o corpo rígido ou deformável, tem encontrado 

novas questões e a motivação para explorar um pouco mais. 

Surgiu assim este programa doutoral, da voz da consciência. 

Alguns anos depois de ter tido aulas de Biomecânica com o Professor José António Oliveira 

Simões, num curso de pós-graduação em Engenharia Biomédica na Faculdade de Engenharia da 

Universidade do Porto, quis o destino que o voltasse a procurar. Preocupava-me o estudo da 

coluna vertebral, particularmente o das cargas a que está submetido o disco intervertebral. E se 

lhe soube expor o problema devo-o a quem me ensinou quase tudo, o Professor José Luís de 

Castro Gonçalves, meu professor de Biomecânica no Instituto Superior de Educação Física (atual 

Faculdade de Desporto da Universidade do Porto). Assim, e na condição de submeter e ver 

aprovado um projeto de investigação pela Fundação para a Ciência e Tecnologia pude contar com 

a supervisão do Professor José Simões no programa doutoral em Engenharia Mecânica da 

Universidade de Aveiro. Quis ainda o destino que os esforços para compreender o comportamento 

do disco intervertebral se centrassem na utilização de sensores minimamente invasivos 

apontando-se os sensores em fibra ótica como um recurso incontornável. Desse modo, e após 

uma primeira incursão pelo Laboratório de Sistemas Óticos Coerentes do Departamento de Física 

da Universidade de Aveiro, foi no INESC-Porto, e contando com a coorientação do Professor José 

Luís Santos, que encontrei as melhores condições para desenvolver e testar algumas 

configurações de sensores em fibra ótica com vista a aplicações biomecânicas e biomédicas. O 

processo culminou com a medição da pressão intradiscal in vivo num disco lombar de uma ovelha 

sob anestesia geral e a oportunidade de desenvolver sensores em fibra ótica para aplicações 

biomédicas e biomecânicas. 
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Man is perhaps the only living being capable of questioning himself. And in this inner search for 

the reasons for his existence, his behavior and his relationship, underpinned by the intricate 

network of instinct and thought, by matter and body, by culture and technology, he has been able 

to conquer, though acknowledging setbacks, detours and limits. 

In that quest doubt is always present and therefore what there is to know is inexhaustible. Doubt 

is the limit of knowledge and that is why knowledge has no beginning and no end, only the 

expectation of extending itself. Doubt is the motivation for building a greater range of knowledge, 

the voice of consciousness appealing to what there is to know about the past, present and future. 

Sharing this restlessness for knowledge, fertilized by doubt, the author of present work, with 

robes of explorer and "limited equipment", rushes on the borders of the unknown. Interested in the 

body, subject matter par excellence, tangible manifestation of existence. Interested especially in 

the study of forces that act on it and that determine its state of rest or motion. And in that 

Newtonian asceticism, which leads to the most basic understanding of the laws governing the 

particle, rigid or deformable body, he finds new issues and motivation to explore a little more. 

Thus emerged this doctoral program, from the voice of consciousness. 

Some years after having Biomechanics classes with Professor José António Oliveira Simões, in 

a postgraduate course in Biomedical Engineering in the Faculty of Engineering of University of 

Porto, Fate determined to contact him once more. I was worried about the study of the spine, 

particularly the loads to which the intervertebral disc is subjected. And if I knew how to present him 

the problem, I owe it to the one who taught me almost everything, Professor José Luís Gonçalves 

de Castro, my professor at the Institute of Biomechanics of Physical Education (now the Faculty of 

Sport, University of Porto). Thus, on condition of submitting and see a research project approved 

by the Foundation for Science and Technology, I could rely on the supervision of Professor José 

Simões, from the University of Aveiro, in the doctoral program in Mechanical Engineering. Fate still 

wanted that efforts to understand the behavior of the intervertebral disc should be focused on the 

use of minimally invasive sensors, mainly the optical fiber sensors, as an indispensable resource. 

Thus, after an initial foray by Coherent Optical Systems Laboratory, Department of Physics, 

University of Aveiro, it was at INESC-Porto, and relying on the co-supervision by Professor José 

Luis Santos, that I found the best conditions to develop and test some configurations of fiber optic 

sensors bearing in mind biomechanics and biomedical applications. The process resulted in the 

measurement of in vivo intradiscal pressure in the lumbar disc of a sheep under general anesthesia 

and the opportunity to develop optical fiber sensors for biomedical and biomechanical applications. 
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1. Objective and Thesis Organization 

The present thesis aimed to study the mechanical behavior of the intervertebral disc using fiber 

optic sensors.  

It is organized in four main parts. In Part I the author describes the motivation that led him to 

start the doctoral process and how he found the partners that supported his journey. Author main 

contributions are also described in Part I, namely those focusing on main academic contributions, 

in full fulfillment of the requirements of the doctoral syllabus in Mechanical Engineering at the 

University of Aveiro, and a list of posters, oral presentations and published papers. 

Part II is devoted to the review of literature and was organized in two chapters. In chapter 1 an 

extensive review of fiber optic sensors that have been used in biomedical and biomechanical 

applications, in particular those measuring temperature, strain, force and pressure, was conducted. 

In chapter 2 a review focused on the spinal motion segment was made. This chapter seeks to 

describe the anatomical structures that have been the object of study during experimental work: the 

spinal motion segment and, particularly, the intervertebral disc. 

Part III represents author main contributions in terms of experimental work. Four studies were 

described. The purpose of study 1 is to demonstrate that strain gauges can be successfully glued 

to the outer surface of the intervertebral disc (IVD) and provide readings of circumferential and 

axial strain under compressive load. In study 2 a fiber Bragg grating is used to measure radial 

strain. In study 3, in vivo intradiscal pressures were measured using a fiber optic sensor implanted 

in the lumbar disc of an anesthetized sheep. Finally, in study 4 the results of ongoing research 

aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are 

presented.  

In Part IV some conclusions are drawn regarding the work that was done, its limitations, 

potentialities and, particularly the need for future work that could enhance the contribution of fiber 

optic sensors in biomedical and biomechanical applications. 
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2. Author Main Contributions 

2.1 Academic Work 

The doctoral program in Mechanical Engineering of the University of Aveiro presumes an 

individual syllabus with specific curricular units directed to the training for investigation. The author 

took this opportunity to get a more profound knowledge on the research methods used in 

mechanical engineering to conduct biomechanical studies (e.g., finite element analysis and 

mechanical testing of materials) and the techniques used on optoelectronics to fabricate and test 

fiber optics sensors. This work was accomplished at the facilities of the Biomechanics Laboratory 

of the Department of Mechanical Engineering of the University of Aveiro, the Laboratory of 

Coherent Optical Systems of the Physics Department of the University of Aveiro and at the 

Optoelectronics and Electronic Systems Unit (UOSE) of the Institute for Systems and Computer 

Engineering of Porto (INESC Porto). Along with the previous learning process and having in mind 

to create future lines of research, the state of the art about specific topics on spine biomechanics 

and about fiber optic sensors that are being used in biomechanical and biomedical applications 

was described. The most relevant reports that resulted from this process were
1
:  

 Finite element analysis of a lumbar vertebra under compression; 

 Intelligent and bio-inspired products: Spinal implants and prostheses; 

 Fiber Bragg grating sensors: A product and market overview; 

 Fiber Bragg grating sensor for intradiscal pressure measurement in vivo: A 

technological surveillance study; 

 Using MATLAB to visualize, filter and build neural networks with experimental data 

obtained from disc bulging under compression; 

 Fiber optic sensors for biomechanical and biomedical applications. 

2.2 Posters 

Roriz P, Abe I, Schiller M, Simões J Bulging of the intervertebral disc under compressive 

loading. In: Research Day, Aveiro, June 8 2011. University of Aveiro. 

Roriz P, Frazão O, Simões J, Santos J Sensores de pressão baseados em fibra ótica para 

aplicações biomédicas e biomecânicas. In: Física 2012: Comunicação e Informação em Ciência, 

Aveiro, September, 6-8 2012. 

  

                                                           
1
 Full access to these reports can be obtained from the thesis CD ROM or under request (paulororiz@ua.pt) 
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2.3 Conference Papers and Oral Presentations 

Roriz P, Abe I, Schiller M, Simões JA Intervertebral disc bulging measurement using a Fibre 

Bragg Grating sensor. In: Santos JL (ed) EWOFS 2010, Porto, September, 8-10 2010. SPIE, p 

131. 

Roriz P, Ramos A, Frazão O, Santos J, Simões J Não linearidade e anisotropia do anel fibroso 

do disco intervertebral submetido a compressão. In: I Simpósio de Biomecânica e Performance 

Humana, Universidade Fernando Pessoa, Porto, March, 25-6 2011. 

Roriz P, Frazão O, Santos JL, Simões J Fiber optic sensors for biomechanical and biomedical 

applications. In: Natal-Jorge R, Tavares JS, Belinha J, Parente ML, Martins PS (eds) 5th 

Portuguese Congress on Biomechanics, Espinho, Portugal, Feb. 8-9 2013. Sociedade Portuguesa 

de Biomecânica, pp 503-8. 

Roriz P, Frazão O, Santos JL, Simões J Fiber optic sensors for physiological pressure 

measurements. In: VIII RIAO/XI OPTILAS 2013, Porto, Portugal, July 22-26 2013, paper 100-692 

2.4 Papers in Journals 

Roriz P, Abe I, Schiller M, Gabriel J, Simões JA (2011) Intervertebral disc bulging measurement 

using a fibre Bragg grating sensor. Exp Mech 51:1573-7. 

Roriz P, Ramos A, Santos J, Simões J (2012) Fiber optic intensity-modulated sensors: A review 

in biomechanics. Photonic Sensors 2 (4):315-30. 

Roriz P, Frazão O, Lobo-Ribeiro A, Santos J, Simões J (2013) Review of fiber optic pressure 

sensors for biomedical and biomechanical applications. Journal of Biomedical Optics 18 (5):1-18. 

Ferreira MS, Roriz P, Silva SO, Santos JL, Frazão O (2013) Next generation of Fabry-Pérot 

sensors for high-temperature. Optical Fiber Technology. Available online 17 August 2013, (Invited 

paper). 
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Chapter 1 - Fiber Optic Sensors for Biomedical and 
Biomechanical Applications: A Review 2;3

                                                           
2
 Roriz P, Ramos A, Santos J, Simões J (2012) Fiber optic intensity-modulated sensors: A review in biomechanics. Photonic Sensors 2 (4): 

315-30. 
3
 Roriz P, Frazão O, Lobo-Ribeiro A, Santos J, Simões J (2013) Review of fiber optic pressure sensors for biomedical and biomechanical 

applications. Journal of Biomedical Optics 18 (5):1-18. 
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1. Introduction 

In the coming years in vivo biomedical and biomechanical applications will benefit from a wide 

range of fiber optic sensor (FOS) turnkey systems for sensing and measuring almost any physical 

quantity. These systems have four basic components: the light source, the optical fiber (OF), the 

sensor element, and the light detector (figure 1).   

 

Figure 1 - Schematic drawing of a typical laboratory fiber optic system. Optical fibers provide flexible 
connections between the optoelectronic components of the system. In this case an optical circulator 
connects the source to the sensor and the sensor to the detector. Optical spectrum analyzers are 
commonly used as optoelectronic light detectors and analyzer devices. 

The light source provides the electromagnetic (EM) radiation whose energy is transmitted 

through the OF to the sensor element, in general, under the principle of total internal reflection. The 

fiber optic sensor or transducer is the light modulator, i.e., the entity that causes a light property to 

change (e.g., amplitude or optical power, phase, polarization, and wavelength or optical frequency) 

under the influence of a certain physical quantity. Thus, a physical quantity (e.g., temperature) can 

change the physical properties of the sensing element, which in turn leads to a change in the light 

properties. The light detector is necessary to read and analyze a light property variation. Since the 

four light properties can be considered in most circumstances independent parameters they offer a 

wide range of solutions to sense several physical quantities. 

Fiber optic sensing technology is about forty years old and presents substantial advantages 

compared to conventional electric sensing systems. Conventional sensors applied in biomedical 

and biomechanical applications are based on piezoresistive, strain gauge (SG) or other solid-state 

sensing technologies. They represent a highly tested, mature and overspread technology, offering 

good sensitivity, precise measurements and competitive price. However, their miniaturization, 

typically requiring sensor head diameters below 0.5 mm, such as for minimally invasive 

procedures, presents some drawbacks. Mignani et al. [1] have pointed some of them, including 

fragility, long term instability, inconsistency and excessive drift. Additionally, their output is 
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restricted to a small sensing area making it necessary to use more sensors to sense larger regions 

(e.g., a temperature profile along a tissue), but only at the expense of increased dimensions and 

loss of flexibility [2]. These disadvantages combined with poor biocompatibility of metallic 

components and large sensitivity to EM interference, can compromise some in vivo applications 

and their use in clinical practice. A good example is their application in magnetic resonance 

imaging (MRI) environment. As  pointed by Ladd et al. [3] ferromagnetic based sensors should not 

be used because they will act as an antenna and generate significant heating effects, which might 

cause image artifacts. 

While OFs guide light, the majority of conventional sensors guide electricity through metallic 

wires (e.g., copper-nickel alloys). This fundamental difference of carrying information, along with 

the following properties, makes OF the ideal tool in an increasingly number of sensing 

environments: 

 Inertness and biocompatibility: A typical OF is made of amorphous silica glass, also 

known as silicon dioxide (SiO2), fused silica or fused quartz. This compound is almost 

chemically inert and biocompatible [4]. Only hydrofluoric acid (HF) and some alkaline 

substances are capable of chemically attacking it [5-6]. Thus, an OF has the potential to 

neither adversely affect the physiological environment nor be adversely affected by it 

[7]. Under sterile conditions, OF will minimize contamination and the risk of infection 

associated to invasive procedures. Even so, there is a need of special care to glass 

debris that can be generated along with fiber breakage. Sharpened glass pieces can 

easily lacerate the skin, enter into the circulatory system or damage internal body cells 

and tissues. One should remember that some materials are biocompatible in their bulk 

form but wear debris can incite adverse reactions from the body cells. To avoid it the 

OF is usually embedded into biocompatible sterilizable protective layers, such as 

coatings, buffers, jackets and cables (figure 2). Materials such as polyimide, 

polydimethylsiloxane (PDMS), ethylene-tetrafluoroethylene (ETFE) or Tefzel, and 

polytetrafluoroethylene (PTFE) or Teflon are being used in biomedical and 

biomechanical applications [8-13]. The strength, fatigue and biocompatibility of silica 

fibers with several polymeric (e.g., UV-cured acrylate, silicone, and polyimide), metallic 

(e.g., aluminum, indium, tin, and gold) and inorganic (e.g., oxides, carbides, nitrides, 

and carbon) coatings were also studied by Biswas [9]. The UV-curable dual acrylate 

coating used in standard OF may be inappropriate for biomedical and biomechanical 

applications requiring heating procedures, because it cannot withstand temperatures 

above 85 ºC [14]. Some manufacturers, like Ocean Optics (Dunedin, FL, USA; 

www.oceanoptics.com) and OFS (Norcross, GA, USA; www.ofsoptics.com), are 

producing nontoxic and biocompatible fibers, cables and assemblies, with materials 

used in implants and/or approved by the United States Pharmacopeia (USP Class VI 

Biological Test for Plastics). Some examples of these materials are 

http://www.oceanoptics.com/
http://www.ofsoptics.com/
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polyetheretherketone (PEEK), fluoroacrylates, Poly(p-xylylene) or parylene, and 

polyimide. The OF can also be enclosed or encapsulated into surgical instruments, 

catheters, metallic tubes or needles. These objects can play several cumulative 

functions such as guide the FOS to the target during invasive procedures, protect the 

sensor or the host from direct contact, allow exposure of the sensing head only, 

minimize the risk of sensor breakage and the release of debris, or incorporate additional 

sensors and devices [10,15-21]. While almost all needles and metallic tubes are made 

of stainless steel, catheters can be made from a wide variety of materials, such as 

silicone rubber, latex, PTFE, polyethylene (PE), polyurethane (PU) and polyvinyl 

chloride (PVC); 

 

Figure 2 - Schematic drawing of a typical single mode fiber. This optical fiber has two main dielectric 
materials: the core and the cladding. The core is the inner and center cylinder of the fiber which transports 
the optical information. The clad provides an optical boundary capable of reflecting light back into the core 
due to a slightly lower refractive index than the core. The acrylate coating is a typical additional layer that 
protects the fiber from physical damage. 

 Low coefficient of thermal expansion and thermal conductivity. The coefficient of 

thermal expansion of an OF is 1/34 of copper [22]. This low sensitivity minimizes cross 

sensitivity in the sensor probe. The operating temperature of a silica fiber can go up to ~ 

900 °C, above which the core and the cladding material begin to migrate. Thus, an OF 

will not lose its integrity with body temperature monitoring, especially during 

hyperthermia or cryotherapy treatments. In fact, the critical issue relies on the selection 

of high temperature resistant layers for coating, buffering and cabling. Some 

recommended high temperature resistant polymers are Teflon/PTFE (230 ºC), 

polyimide (220 °C) and silicone rubber (200 °C) [16]. Other materials with higher 
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melting points, such as sapphire (2040 ºC) and silicon carbide (2700 ºC), can even 

replace silica based OF [22];  

 No electrical conductivity: An OF has excellent electrical insulation, up to approximately 

1000 °C [22-24]. Thus, it is intrinsically safer to be used in animals or patients without 

the risk of electrical shock or explosion; 

 Immunity to EM interference [23,25]: The dielectric properties offered by OF will 

maximize the signal-to-noise ratio and the sensitivity of any FOS system. Of particular 

importance is the possibility of using the OF in MRI rooms; 

 Remote operation and sensing: An OF is capable of transmitting a large amount of data 

over long distances (several kilometers) at the speed of light without significant signal 

loss (typically <0.4 dB km
-1

) [23,25]; 

 Small dimensions and lightweight: The OF is very thin, no thicker than a standard 

surgical suture [26]. A typical single mode fiber (SMF) has an outer diameter (OD) of 

only 125 m. Supplementary protective layers will increase dimensions, but to no more 

than 500 m OD if minimally invasive procedures are pursued. The OF is also 

lightweight. Silicon dioxide density (2200 kg m
-3

) is approximately four times smaller 

than that of copper [22], which also facilitates miniaturization; 

 Adhesion to biological tissues: An OF can easily adhere to bone by use of the US Food 

and Drug Administration (FDA) approved polymethyl-methacrylate (PMMA) as bonding 

adhesive [26]. This is of particular importance for ex vivo biomechanical experiments 

where bone strains need to be assessed; 

 Geometrical versatility: An OF can bend within the host structure to radii of 10 mm [23] 

making it suitable to adapt to complex surfaces, such as skin, teeth, joint and bone 

surfaces [27]; 

Particularly important is that OF itself can be used as the sensor element, without the necessity 

of adding any other element. These intrinsic sensors are clearly a step forward into development of 

miniaturized and minimally invasive sensors. 

An OF is only a component of FOS systems but its unique properties definitely contribute to 

enhance the performance of the whole system and to claim FOSs as a standard for sensing and 

capable of providing reliable solutions for those applications where conventional sensors are not 

suitable.  

FOSs were introduced in the 1960s, mainly for endoscopic, intravascular and cardiac 

applications [28-42]. In the last years, their expansion has been benefiting from the development of 

telecommunications and OF communications, in particular, which are offering high quality, 

miniaturized and affordable optoelectronic components at competitive prices. 
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The most common working principles applied to FOSs for biomedical and biomechanical 

applications are based on intensity, phase and wavelength modulation, the latter associated with 

the operation of fiber Bragg gratings (FBGs).  

Intensity modulated sensors were introduced in the early 1960s [29-42]. Their working principle 

is based on the variation of the light intensity or amplitude. Some possible configurations have 

been described [43]: 

 An OF placed in front of a movable reflecting mirror (figure 3). The fiber guides the light 

to the mirror. The measurand varies the original mirror distance to the fiber tip and 

changes the intensity of the reflected light that is coupled by the same fiber or another 

fiber parallel to the first one. As will be described, initial studies made use of similar 

configurations. However, instead of a single OF, bundles of OF were used as 

waveguides due to the difficulties in light coupling  [29-42,44]; 

 

Figure 3 - Schematic drawing of an optical fiber (OF) placed in front of a movable reflecting mirror. The 
back-reflected intensity decreases when the distance, d, between the OF and the mirror increases. 

 Two OF in front of each other at a known distance (figure 4). The measurand will 

change the distance between the two fibers and, consequently, the intensity 

transmitted. Differential configurations, with two or more fibers in front of the OF 

connected to the light source, can compensate changes in light source intensity or 

losses in the OF (figure 5); 
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Figure 4 - Schematic drawing of two optical fibers in front of each other at a known distance (d). The 
intensity transmitted decreases when d increases. 

 

Figure 5 - Schematic drawing of a differential configuration. The input light from one optical fiber (OF) is 
coupled by the two OF. If the distances, d1 and d2, between the longitudinal axis of the input OF and the 
corresponding longitudinal axes of the two output OF increase the intensity transmitted decreases. 
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 An OF submitted to macrobending (figure 6) or microbending (figure 7). These actions 

will result in light loss and decrease the light intensity output [45].  

 

 

Figure 6 - Schematic drawing of a typical macrobending configuration (figure-of-eight loop). A variation of 
elongation applied to both fiber ends is converted into a variation of curvature radius of both loops 
causing the macrobending light loss effect. 

 

Figure 7 - Schematic drawing of a microbend configuration. The optical power leakage is a function of the 
microbend radio of curvature which may be induced by strain or force applied along the fiber length. 

Interferometric based sensors also made several configurations possible (e.g., Sagnac 

interferometer, Michelson interferometer, Mach-Zehnder interferometer), but the Fabry-Pérot (F-P) 

interferometer [46] has been the most applied in minimally invasive sensors. F-P interferometer 

sensors were introduced in the early 1980´s and solved many drawbacks of intensity modulated 



Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review 

Introduction 

20 

 

sensors. Instead of measuring a change in light intensity, these sensors aim at phase differences in 

the light beams. Their most common configuration includes a small-size sensing element bonded 

to the tip of the fiber. This element is an optical cavity formed by two parallel reflecting surfaces 

where multiple reflections will occur (figure 8). One of the reflecting surfaces is a diaphragm that 

changes the optical cavity depth (i.e., the distance between the mirrors) under the action of the 

measurand and, consequently, the characteristics of the signal that reaches the photodetector. 

Compared to intensity modulated schemes and FBG sensors, F-P interferometers are capable to 

achieve high sensitivities and resolutions, but at the expense of relatively complex 

interrogation/detection techniques [47]. 

 

Figure 8 - Schematic drawing of a typical Fabry-Pérot (F-P) configuration that can be used for pressure 
measurements. 

Wavelength modulation is typically achieved through use of FBG sensors which are probably 

the simplest and most interesting type of FOSs, particularly, for temperature and strain 

measurements. A Bragg grating can be defined as a periodic perturbation of the refractive index of 

the fiber core (figure 9). Several disruptive discoveries have to occur to make their use as sensors 

possible. The first one in 1978 was the discovery of photosensitivity in OF by Hill et al. [48-49]. In 

1987 it was followed by the invention of the externally UV photowriting technique, by Meltz et al. 

[50]. In fact, it was this new transverse holographic UV photowriting technique of inscribing Bragg 

gratings into the core of OF with high concentration of core Ge-doping that contributed to the 

growth of FBG devices in the R&D telecom and sensing communities [51]. Their working principle 

is based on the reflection of light, at the Bragg wavelength, when the OF is illuminated by a 

broadband source whose center wavelength is close to the Bragg wavelength. When the fiber is 

stretched or compressed along its axis, the spacing between the grating lines (i.e. the grating 

period or grating pitch) will change. Because the Bragg wavelength is directly proportional to the 

grating period a shift in the Bragg wavelength will be observed making possible to monitor the 
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induced strain [52]. The sensitivities for strain and temperature of a FBG recorded at 1550 nm are 

approximately 1.2 pm 
-1

 and 13.7 pm ºC
-1

, respectively [52]. 

 

Figure 9 - Schematic drawing of a fiber Bragg grating (FBG). The grating acts as an effective optical filter. 
When illuminated by a broadband optical source, whose center wavelength is close to the Bragg 

wavelength (B), a narrow band loss centered in the Bragg wavelength is present in the transmitted 
spectrum (the missing light appears in the grating reflection spectrum). 

The possibility of multiplexing these structures is also revolutionizing the world of sensing. With 

time division multiplexing (TDM) and wavelength division multiplexing (WDM) or switching, 

hundreds in-line FBG sensors can be read with a single decoder unit [25,53-55]. As an example, 

considering strain, about 33 FBG sensors can be accommodated in a 50 nm spectrum using a 

Bragg wavelength spacing between 2-4 nm and taking into account each FBG is allowed an 

independent strain range of ±500  and a 250  guard band [56]. Additionally, multiplexing will 

also contribute to reduce the cost per sensor and of the whole system making FBG competitive 

with conventional sensors [57]. Compared to conventional sensors, namely the foil SG, FBG 

sensors are capable to provide absolute strain measurements with easier instrumentation [52]. 

They also offer an excellent measurand-type range and can be used as a generic sensing element 

to quantify other physical quantities (e.g., force, acceleration, pressure, vibration, EM field, etc.) 

and certain chemical quantities [58-59]. 

Some of the ideas just presented seem to be appellative. However, FOSs remains unknown to 

many engineers, clinicians and researchers. Most probably, because engineering courses and 

research are focused on conventional sensors and nonoptical technologies. On the other hand, 

there is a relatively small number of turnkey solutions as well as companies and retailers 

commercializing these devices, which may justify their limited wide spreading. Even so, some 

companies are offering customer specified or plug-and-play sensing solutions specifically for 

biomedical and biomechanical applications (table 1).  
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Table 1 - Companies commercializing fiber optic sensors for biomechanical and biomedical applications. 

Company Local, Country Website 

Arrow International, Inc Teleflex Medical, NC, USA www.arrowintl.com 

BioTechPlex Escondido, CA, USA www.biotechplex.com 

Camino Laboratories
4
 San Diego, CA www.integralife.com 

Endosense, SA Geneva, Switzerland www.endosense.com 

FISO Technologies, Inc. Québec, Canada www.fiso.com 

InnerSpace Medical, Inc. Tustin, CA, USA www.innerspacemedical.com 

InvivoSense Trondheim, Norway; www.invivosense.co.uk 

LumaSense Technologies Santa Clara, CA, USA www.lumasenseinc.com 

Luna Innovations Blacksburg, VA, USA www.lunainnovations.com 

MAQUET Getinge Group Rastatt, Germany http://ca.maquet.com 

Neoptix Inc. Québec, Canada www.neoptix.com 

Opsens Québec, Canada www.opsens.com 

Radi Medical Systems
5
 Uppsala, Sweden www.radi.se 

RJC Enterprises, LLC Bothell, WA, USA www.rjcenterprises.net 

Samba Sensors
6
 Västra Frölunda, Sweden www.sambasensors.com 

 

Some companies will benefit from small or hand held interrogators, capable of minimizing 

patient discomfort during continuous day-to-day monitoring [60]. Others will require more 

comparative studies, particularly in vivo experiments and clinical trials to clearly state their 

potentialities. In fact, an important drawback of some FOSs is the lack of scientific information (e.g., 

peer reviewed papers) reporting their use in clinical practice. Probably, they are being used but 

without the necessity of writing a paper or putting the brand name on it. The absence of detailed 

technical specifications (e.g., pressure range, accuracy, resolution, and response time) was also 

detected in some published papers that report use of commercial solutions, particularly from non 

original equipment manufacturer (OEM) or reseller companies. Those benefiting from approvals of 

the American Association for Medical Instrumentation (AAMI), International Organization for 

Standardization (ISO), US FDA or similar regional/country organizations will probably lead the 

market. Cost is also a critical issue. In fact, the high cost associated to some optoelectronic (e.g., 

integrated source and detector devices) and miniaturized solutions, developed to achieve the 

resolutions required for biomedical and biomechanical applications can compromise their 

                                                           
4
 acquired by FISO Technologies, Inc., a wholly owned subsidiary of Nova Metrix LLC (MA, USA). 

5
 operates as a subsidiary of St. Jude Medical Systems AB 

6
 FISO Technologies, Inc., a wholly owned subsidiary of Nova Metrix LLC, has acquired certain assets, including intellectual property assets, 

of Samba Sensors AB 

http://www.arrowintl.com/
http://www.biotechplex.com/
http://www.integralife.com/
http://www.endosense.com/
http://www.fiso.com/
http://www.innerspacemedical.com/
http://www.invivosense.co.uk/
http://www.lumasenseinc.com/
http://www.lunainnovations.com/
http://ca.maquet.com/
http://www.neoptix.com/
http://www.opsens.com/
http://www.radi.se/
http://www.rjcenterprises.net/
http://www.sambasensors.com/
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acquisition. A shared problem with almost sensors is that FOSs also suffer from interference of 

multiple effects or cross sensitivity. A good example is that of FBG sensors, presenting dual 

sensitivity to strain and temperature. Nevertheless, currently used compensation techniques are 

capable of minimizing erroneous readings or uncertainties from non-desirable effects [61]. To 

enable secure readings these techniques should always be implemented instead of assuming 

negligible effects under apparently controlled situations. 

Finally, FOSs are also competing with mature nonoptical technologies that seem capable of 

overcoming some of their traditional limitations. The most promising are microelectromechanical 

systems (MEMS) whose technology, along with examples and applications, is well described in the 

work of Polla et al. [62] and Voldman et al. [63]. The Neurovent microchip SG catheter (Raumedic 

AG, Münchberg, Germany; www.raumedic.com) is a good example of a commercially available 

solution offering zero drift and MRI compatibility [64-66]. Semiconductor SG, such as 

piezoresistive-based silicon devices, are also becoming competitive, particularly for micro-strain 

measurements. This powerful technology is offering linear mechanical and electrical response with 

negligible hysteresis and a relatively low temperature effect [67]. 

In the following sections, a review effort has been done to present the most relevant 

contributions of FOSs in biomedical and biomechanical applications. Some of the most pertinent 

physical parameters, such as temperature, strain, force and pressure were addressed. Other 

interesting chemical or physiological parameters, such as glucose, PH, gases or vapors, and 

deoxyribonucleic acid (DNA) were not and can be found elsewhere [60,68-75]. Our approach to 

FOSs has been carried out after a brief mention to conventional sensors and their limitations. 

Emphasis was given to description of in vivo experiments and clinical applications. Thus, we hope 

to have contributed for a better framework of FOSs, pointing their advantages and triggering new 

ideas for those engaged in their development and application in the biomedical and biomechanical 

fields. 

http://www.raumedic.com/
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2. Sensing Temperature 

In clinical practice, patient temperature is a basic diagnostic procedure and often a critical 

control parameter as in hyperthermia therapy [76]. Almost all chemical processes and reactions are 

temperature dependent justifying temperature sensors as the largest class of commercially 

available FOSs. Nevertheless, they are quite few compared to the large amount of schemes that 

have been proposed but never reached commercialization [77].  

Thermocouple and thermistor devices have been extensively used for temperature 

measurements in clinical practice. However, due to the presence of metallic conductors, they are 

inappropriate for clinical procedures involving incident radio frequency (RF), EM or microwave 

(MW) fields [57,78-79]. To overcome these limitations fiber optic fluorescent techniques have been 

proposed.  

The fluoroptic technology uses fluorescent materials, such as the rare-earth phosphors or the 

gallium arsenide (GaAs), and an adequate light source to excite them. Temperature can be 

determined by measuring fluorescence emission decay times in the fluoroptic probes [80-83]. Solid 

state materials can also be used for fluorescence thermometry and some schemes have been 

presented for biomedical purposes, using the ruby [80,84] and the trivalent-chromium ion doped 

material [85]. An excellent review of fluorescent intensity, the first technique being proposed, and 

fluorescence lifetime based systems was published by Grattan and Zhang [77].  

The Luxtron m3300 is a current available fluoroptic system that can be used in biomechanical 

and biomedical laboratory setting (LumaSense Technologies, Santa Clara, CA, USA). Its non-

metallic probe has a phosphorescent sensor localized at the probe tip and is capable of providing 

real-time temperature measurements, ranging from 0 ºC to 120 ºC, with an accuracy of ±0.2 °C and 

2 °C, respectively [86]. The probe has 0.5 mm OD and is protected with a Tefzel ETFE 

fluoropolymer jacket allowing its use in MRI, RF, or MW environments and during ablation 

procedures [11,87]. A reported limitation of the Luxtron fluoroptic probe is its propensity to record 

higher temperatures than reference thermocouples sensors [88]. This was observed under 

localized heating at distances less than 4 mm from the laser source  [88].  

The T1™ Fiber Optic Temperature Sensor (Neoptix Inc., Québec, Canada) is also a commercial 

available FOS based on a GaAs semiconductor crystal located in the tip of the sensor. Sensor 

specifications include a temperature range from -272 ºC to +250 ºC, an accuracy of ±0.2 ºC, a 

resolution of 0.1 ºC and a response time of 500 ms [89]. The outer protective jacket is made out of 

PTFE Teflon™ with 1.15 mm OD. It has been used to monitor temperature during cryogenic [90] 

and laser ablation  procedures [13,91] as well as in non-incineration methods for sterilizing hospital 

infectious wastes [92]. Unfortunately, fluorescent materials are relatively bulky and expensive, 

which rises the cost of these systems [78].  
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The interferometric technology was explored by Wolthuis et al. [78] who presented a F-P 

temperature sensor based on a LED-microshift method (figure 10). It consisted of a light emitting 

diode (LED) light source, used to interrogate changes in the optical cavity depth occurring between 

two reflectance peaks, and of a dichroic ratio technique used to analyze the returned signal [93]. 

Authors argued that the method was more sophisticated than others involving F-P sensors, such as 

incremental, intensity, white-light and LED-deep cavity. The optical cavity consisted of a thin layer 

of silicon packed between two pieces of glass. Temperature variations cause the silicon refractive 

index to change and, consequently, the light being reflected. Sensor performance fulfilled AAMI 

specifications presenting a span linearity of 1% and sensitivity of 0.1% ratio change per ºC. 

Temperature resolution and accuracy were 0.2 ºC (0.02 ºC with averaging) and 0.1 ºC, 

respectively, for a measurement range from 15 ºC to 55 ºC. Sensor was able to reach 90% of its 

final value for a temperature change from ice to boiling water in about 200 ms [78]. RJC 

Enterprises, LLC (Bothell, WA, USA) is commercializing this type of sensor with some possibilities 

of customization (e.g., total assembly length and capillary pedestal length). 

 

Figure 10 - Schematic drawing of the temperature sensor proposed by Wolthuis et al. [78]. 

An interferometric configuration was also applied by Rao and Jackson [94] to propose a high 

resolution temperature sensor (figure 11). It consisted of a miniature extrinsic fiber optic based 

Fizeau temperature sensor, with a cavity length of several hundred microns and a dual-wavelength 

pseudo-heterodyne phase detection scheme. A measurement resolution of 0.006 ºC, a 1% span 

linearity over a temperature range of 27.3 ºC to 62.5 ºC and a bandwidth of 30 Hz were achieved. 

To get temperature independent measurements, two FBG sensors located in a bimetallic beam 

were monitored interferometrically. Sensor performance meets or exceeds medical requirements 

but, to our best knowledge, it is not being marketed. 
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Figure 11 - Schematic drawing of the temperature sensor proposed by Rao and Jackson [94]. Stainless 
steel tube was made transparent to allow components visualization. 

Previously mentioned sensors are point sensors, i.e., they provide information only at the site 

they are placed, and may be insufficient for a more complete clinical assessment. Multiplexing 

techniques using FBG sensors can contribute to overcome this spatial constraint. First 

configurations for medical use were proposed by Rao et al. [57] and Rao [95], consisting of an 

array of four in-line FBG (4mm length each and 10 mm spaced) and a simple monochromator for 

demultiplexing the wavelength encoded signals (figure 12). Wavelength-shifts induced by 

temperature variations were measured using a high-resolution drift-compensated interferometric 

detection scheme, based on a bulk unbalanced Michelson interferometer. To minimize strain 

effects the probe end was sealed with a nylon sleeve of 1mm OD. A resolution of 0.1 ºC and an 

accuracy of ±0.2 ºC over a temperature range of 30 ºC to 60 ºC were achieved in bench tests [96]. 

 

Figure 12 - Schematic drawing of the temperature sensor proposed by Rao et al. [57]. Nylon sleeve was 
made transparent to allow components visualization. 
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The above sensor was proposed for in vivo temperature monitoring during tumor therapy and in 

vivo trials occurred later using a similar configuration, that was proposed by the same research 

group (Applied Optics Group, The University Canterbury, Kent, United Kingdom) [15]. A portable 

sensing unit with five in-line FBG was used. The source was a super luminescent diode (SLD) and 

the detector a miniature charge-coupled device (CCD) based spectrometer. Sensor resolution was 

0.2 °C. This type of sensor was used to monitor hyperthermia treatments of the kidney and liver on 

rabbits [15,97]. Nevertheless, it was not applied in clinical setting because a nonlinear response of 

some FBG sensors and an initial system calibration drift exceeding 10 °C was reported [98]. To 

overcome these limitations a polymer coated FBG (PFBG) probe was proposed [98]. It consisted of 

a 0.5 mm OD prototype with ten FBG sensors at 5 mm intervals and 50 mm length. The PFBG 

sensor closely followed the behavior of well-established commercial hyperthermia thermometry 

probes. A swept wavelength laser based readout system was capable to achieve 0.1 °C precision 

while maintaining a better than 0.5 °C stability over ten hours and an absolute measurement 

accuracy of ±0.25 °C [98]. The sensor was tested only under simulated MW hyperthermia 

treatment to a tissue equivalent phantom. 

The potentialities of other coating materials were explored in both MRI environment and 

cryoablation procedures. Samset et al. [10] were capable of observing the dynamics of the freezing 

process during in vivo cryoablation of a porcine liver in a MRI room. Two multiplexed FBG array 

probes were used, one coated with polyimide (1.25 OD), the other with titanium (1.40 mm OD). 

Materials were considered biocompatible, sterilizable and immune to EM interference. Probes 

exhibited an excellent mechanical stability under cooling (-195.8 °C), hitting over a sharp edge, and 

bending to a radius of 20 mm at body temperature. The sensor, with ten in-line FBG, was 

calibrated for temperature through immersion into liquid nitrogen (-195.8 °C), ice slush (0 °C) and 

boiling water (100 °C). A reference platinum thermoresistance (Pt-100) was used to obtain the 

wavelength to temperature conversion parameters. 

Temperature measurements performed during prostate cancer cryosurgery confirmed FBG 

sensor thermometry potentialities for clinical applications [99-100]. A commercial reusable 

multiplexed FBG temperature monitor system was used (TMS, MultitempTM 1601, InvivoSense, 

Trondheim, Norway). Ultrafine 17 gauge needles were used to guide the sensor to the target tissue 

and temperatures were measured in four and eight FBG sensors with 10 mm and 5 mm distance 

intervals, respectively. Temperatures of about -40 ºC or -60 ºC are attained during cryosurgery 

treatments, which are in the range (-100 ºC and +130 ºC) of these FBG multiplexed sensors. 

Use of FBG sensors and spatially distributed sensing techniques (e.g., modal modulation 

techniques) is also assuming particular relevance for non-intrusive monitoring of temperature and 

other clinically relevant parameters (e.g., pressure, heart rate, and respiration rate). These sensors 

are being developed for in bed-ridden and wheelchair patients, seeming to provide more 

automation and safety in patient care [101-102]. 
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FBG sensors also prove to be useful in the field of prosthesis design and testing, namely, to 

measure polymerization temperature profiles of cemented hip mantles [103]. Peak temperatures of 

110 °C reached within 300 s and stabilized to room temperature after 3600 s were measured with a 

resolution of 1  and a precision of ±5 . 
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3. Sensing Strain 

At least three categories of sensors can be identified for strain measurements of body tissues. 

Those with variation of electrical resistance, such as the liquid metal strain gauge (LMSG) or other 

electrical output SG sensors. Those measuring a variation of magnetic field, such as the Hall effect 

strain transducer (HEST) and the differential variable reluctance transducer (DVRT), and those 

based on light modulation, such as FOSs. 

The LMSG transducer, introduced by Whitney in 1953 [104], also known as the implanted 

mercury-in-silastic SG, has been extensively used to assess strain in soft tissues. The sensor is 

well described in the work of Ravary et al. [105]. It was widely applied for ex vivo studies of knee 

ligaments [104,106-111]. To the best of our knowledge, in vivo studies were performed with animal 

specimens only, namely in soft tissues [112-115] and bone [116]. The possibility of disruption of the 

silastic tube and release of toxic liquid, such as mercury, suggests caution for human in vivo 

procedures [105]. Mercury is also classified as a hazardous substance by the European Union 

Directive 2002/95/EC and shall not be used in electrical and electronic equipment. Other important 

limitations include a relatively small service life due to the porosity of the silastic tube, failure of wire 

connections [105,112], and inflammatory reactions [112,115].  

Besides the LMSG a wide variety of electrical SG sensors were used to assess strain in body 

tissues, mainly in bone [117-124]. In fact, the SG was considered to be the gold standard for 

measuring deformation in bone [26]. Some of them have been used parallel to FOSs to study their 

correlation and will be mentioned later in this section. A large number, such as buckle transducers, 

have been applied to measure ligament and tendon forces and will be mentioned in the next 

section. For the moment, two in vivo studies making use of SG will be highlighted. The first one is 

the original study of Barnes and Pinder [117], carried out in 1974. Strain was measured in the 

metacarpal bone of the horse and results related to tendon action, weight bearing and locomotion.  

From comparison of large and small foil resistance SG sensors, valid results were possible to 

obtain with those covering 1 mm
2
 of bone surface [117]. The second study is a human in vivo 

application. Following earlier in vivo studies [118,125], tibial strains were measured with micro SG 

(Measurements Group Inc, Raleigh, NC, USA; www.vishaypg.com/micro-measurements) 

[122,126]. No pre or post-surgery complications were reported, but the implantation technique 

seems too complicated to be applied on a routine basis. It included a 20-30 mm skin incision under 

local anesthesia. Moreover, one subject reported a deep sensation of pain due to drilling through 

the cortical bone into the bone marrow [126]. Others had to be excluded due to problems in the 

attachment of the transducer [126]. In fact, these evidences are sufficient enough to justify 

improvements in developing new minimally invasive sensors and techniques to assess in vivo data. 

Looking to the category of magnetic field based sensors, the HEST (MicroStrain Inc., 

Burlington, VT, USA; www.microstrain.com) and the DVRT (MicroStrain Inc., Burlington, VT, USA) 

have been used to assess strain on ligaments and tendons either ex vivo [127-128] and in vivo 
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[129-133]. More recent than HEST, the DVRT exhibits a better performance [131]. Their 

implantation requires intra-articular anesthesia [130,134]. No significant patient adverse reactions 

due to surgical or experimental procedures have been reported [130,134]. Providing only localized 

measurements of strain they make it difficult to correlate strain with the total force in the ligament or 

tendon [135]. Theoretically, it is possible to map strain distribution in soft tissues using multiple 

DVRT but it requires further miniaturization [134]. Additionally, in the specific case of the DVRT and 

despite being classified as a miniature displacement sensor, it shall not be used in activities where 

the knee joint is near full extension, such as gait and jumping, due to impinging against the roof of 

the intercondylar notch [134]. 

FOSs, namely FBG sensors, seem to be in good position to substitute the above strain sensors. 

Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of 

infection, highly accurate, well correlated, inexpensive and multiplexable [57,136]. Moreover, FBG 

sensors have a linear response to axial strain and provide direct and absolute measurements 

[26,52]. Nevertheless, few applications with FBG sensors are known to assess strain in soft 

tissues. Ren et al. [137] proposed a displacement sensor based on a FBG and shape memory alloy 

technology to monitor cadaveric tendon and ligament strains. Recently, Roriz et al. [138] 

embedded a FBG sensor into the intervertebral disc (IVD) of a cadaveric porcine spine and 

measured disc bulging under axial compression (figure 13). 

 

Figure 13 - Schematic representation of the fiber Bragg grating sensor used to measure intervertebral 
disc bulging under compression [138]. 

FBG sensors can also contribute to map strain along the entire tissue using multiplexing 

techniques. This work still has to be done, but it will ensure more reliable comparisons. In fact, 

conventional sensors are only capable of providing an average strain output between the ligament 
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insertion sites or between known points within the ligament mid-substance [134]. Results from both 

techniques cannot be compared because strain varies along the ligament [139]. Because FBG can 

be multiplexed, strain can be mapped along the entire length or throughout the cross section of 

tendons or ligaments, giving a more complete picture of the whole structure. 

While few applications for soft tissues are known, many can be found for hard tissues and 

materials, such as skeletal bone, cartilages and dental implants. The study of Fresvig et al. [26], 

was an important contribution to appreciate the agreement between FBG sensors and SG sensors. 

An acrylic and bone sample were instrumented with eight sensors each (four FBG sensors and four 

SG) and loaded. Both type of sensors exhibited similar behavior without significant differences. The 

standard deviation (SD) of the measurements varied the same for both types of sensors ranging 

from 1.0 to 5.2%, in the acrylic sample, and from 3.1 to 31.5% in the bone sample evidencing the 

effect of its anisotropy. The Pearson correlation coefficient, r, between the sensors was significant 

at the 0.01 level (two-tailed) ranging from 0.986 to 1.0 in the acrylic sample, and from 0.629 to 

0.999 in the bone sample. Strain-load linearity in the acrylic was excellent for both types of sensors 

because the lowest linearity was 0.996 as expressed by the coefficient of determination (r
2
). In the 

bone sample linearity was better than 0.998 for five of the eight sensors. Two SG sensors showed 

less linearity (r
2
 = 0.75 and 0.97) and the value for the FBG sensors was r

2 
= 0.98. It was argued 

that this lack of linearity could reflect a genuine bone nonlinearity [26]. 

Study of dental implants and supporting tissues is a major topic in biomechanics and clinical 

dentistry. Carvalho et al. [140] tried to understand how the mandible behaves under static and 

impact loads acting on dental implants. Uncoated FBG sensors and standard SG were glued 

directly to the surface of a human cadaveric mandible (figure 14). Besides an excellent correlation 

between both types of sensors, the FBG sensor was considered to be more precise in predicting 

load transfer from the implant to the bone [140]. 

 

Figure 14 - Schematic representation of the FBG and SG sensors used to measure bone strain at the 
surface of an implanted cadaveric mandible [140]. 
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The loading effect of several dental implant materials, such as steel alloy, acrylonitrile butadiene 

styrene (ABS) and a combination of both, on the stress-strain patterns of different supporting 

structures (bovine cancellous bone and silicone) was also studied by the same research groups 

[141]. A good agreement was obtained for experimental and numerical results and contributed to a 

better comprehension of bone physiological response to load. 

A potential advantage of FOSs over conventional sensors is the possibility to embed the sensor 

in the material taking advantage of its small dimensions (typically 125 m OD). Several studies 

have reported use of FBG sensors to monitor the curing process of dental resin cements [142-144]. 

To compensate temperature effects and get precise strain measurements, read-outs from two FBG 

sensors are usually necessary [61,137]. One of the sensors needs to be placed on a location of the 

specimen with zero mechanical strain in order to sense temperature only whereas the active FBG 

will sense both quantities. Strain can be obtained by subtracting the signal of the compensation 

FBG from the active one. This technique was applied to measure polymerization contraction and 

setting expansion of several dental materials [144-145]. The compensation FBG was placed freely 

inside a needle to isolate it from strain and the other was placed directly in contact with the dental 

material (figure 15). 

 

Figure 15 - Schematic representation of the setup used to measure the setting expansion and 
temperature variation which occurred during the setting reaction of dental gypsum. The compensation 
FBG was placed freely inside a needle to isolate it from strain. The other was placed directly in contact 
with the dental material [144-145]. 
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Bone cements play an important role in the fixation of implants or prostheses and their long-

term stability is a critical issue in joint biomechanics. In vitro strain and temperature 

characterization of PMMA based bone cements of femoral prostheses was studied by Frias et al. 

[146] at different temperatures and load conditions, namely, those expected to occur inside the 

human body during locomotion. FBG sensors prove to be an interesting in situ measuring tool for 

characterization of these biomaterials. A similar study has contributed to confirm that FBG sensors 

are easier to implement and are less time consuming than standard SG, making them suitable for 

use in pre-clinical tests of prostheses and implants [103].  

A large number of implants and prostheses are metallic or incorporate metallic components, 

such as iron (Fe), titanium (Ti), cobalt (Co), chromium (Cr), molybdenum (Mo) or their alloys. As 

non-conductive devices, FBG sensors can offer new possibilities of measurement because it is 

technically complex to use SG in conductive metals. In the original work of Talaia et al. [147] seven 

FBG sensors were glued to stainless steel bone plates making it possible to study the effect of 

these fracture fixation plates in synthetic femurs (figure 16). 

 

Figure 16 - Schematic drawing of fiber Bragg gratings glued to a stainless steel bone plate  

Fractures may be caused by traumatic injuries or metabolic diseases, such as osteoporosis.  

This silent disease is the most common type of bone illness affecting two hundred million 

individuals worldwide [148]. FBG sensors can contribute to classify the stage of bone 

decalcification. First steps were taken in the in vitro experiment of Mishra et al. [149]. The strain 

response of bone under loading at a particular site gave a direct indication of the degree of calcium 

present in the bone. Further studies are needed to characterize the global response of bone and to 

apply the technique in vivo. 

Other interesting studies made use of FBG sensors to quantify the ventilatory movements of the 

chest. Wehrle et al. [24] used a fixed optical filter reference scheme with full width at half maximum 

(FWHM) of 1.5 nm to detect respiratory movements with frequencies up to 10 Hz. Besides FBG 

sensors, intensity modulated schemes were also applied to monitor the respiratory and cardiac 

function. That was the case of the fiber optic plethysmography (FOP) technique. Based on 

macrobending losses it consists of an expandable belt encircling the chest and a fiber optic loop 
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that changes its radius of curvature as a function of the chest perimeter [150-153]. Other FOP 

configurations may include long period gratings (LPG) arrays, which are more sensitive to bending 

[154-155]. Ensuring that LPG high sensitivity to the ambient refractive index is compensated, 

namely using multilayered fibers embedded into a flexible platform, the technique can be applied to 

obtain a three dimensional geometric profile of the chest and abdomen during respiratory 

movements [155].  

Of particular interest is the possibility of embedding FOSs into technical textiles to create smart 

wearable clothes and monitor some vital functions such as the respiratory rate (figure 17) [156]. A 

€2.3million European Project (Optical Fiber Sensors Embedded into Technical Textile for 

Healthcare - OFSETH) gave the first contributions in this promising field [157]. Commercial 

available products are still to apply. 

 

Figure 17 - Schematic drawing of macrobending sensor in optical fiber embedded into textile fabrics for 
the monitoring of respiratory movements [156]. 

FBG sensors were also embedded into MRI compatible needles to study their deflection [158]. 

Assuring temperature compensation, these preliminary investigations can contribute to improve 

MRI-guided percutaneous needle biopsy and brachytherapy procedures. The applications 

described to measure the heartbeat sound [159] and blood pressure [160] from non-invasive strain 

measurements are also interesting examples of the FBG technology versatility. 

Finally, we would like to highlight a recent application in sports and clinical biomechanics.  

Traumatic head and dental injuries can be avoided trough the use of protective devices, such as 

helmets and mouthguards. Mouthguards are particularly useful for athletes because they reduce 

the risk of injury caused by impacts resulting from many sports activities (e.g., boxing). Studying 
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their absorption capability like in the experiment of Tiwari et al. [161] can contribute for new designs 

and material improvements. In this study, pairs of FBG sensors were bonded parallel on the 

mouthguard and jaw model. The mouthguard was submitted to several impact loads and the 

corresponding absorbed impact energy was calculated by subtracting the strain in the mouthguard 

from that of the jaw. Results encourage use of mouthguards as effective protective devices. 



Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review 

Sensing Force 

36 

 

4. Sensing Force 

The study of ligament or tendon/muscle forces is a main topic in medicine and sports. 

Ligaments connect bone to bone. They resist stretch (tension) to assure the stability and 

congruency of a joint or a group of joints. Ligaments act like joint controllers of the range of motion 

(ROM). Tendons connect muscle to bone transferring to them the force generated during muscle 

contraction. Thus, studying the forces acting in these soft tissues will contribute to understand 

some of their main functions. Usually, in situ forces are measured with SG based transducers. 

They can be inserted in the ends of insertion sites or within the mid-substance. Most of them have 

been designed to measure strain as the result of a compressive action on the ligament or tendon 

when it is stretched. Therefore, to obtain force, strain has to be converted, meaning that the 

calibration protocol requires special attention. There is no single or universal calibration protocol for 

this type of studies. Those applied before implantation of the transducer should be avoided 

because re-implantation leads to different results [162]. Those applied after the experiment are 

restricted to animal experiments because they have to be sacrificed [163]. There is general 

agreement on the fact that calibration has to be made after implantation and the sensor must not 

be removed from the site where it was calibrated [134,164-165]. In addition, results comparison is 

possible only between similar implantation sites because it has been demonstrated the force varies 

along the tendon or ligament [134]. Even so, it should be taken into account that there is 

considerable variability between specimens making it difficult to compare results [166]. The 

calibration procedure also depends on the specific characteristics of the study. In fact, only this 

justifies a wide variety of technical resources that are being applied such as mechanical loading 

machines, analytical equations from cadavers, ergometer devices, equilibrium conditions from 

mechanics and use of pre-calibrated transducers [163-164,167-170]. 

Looking to conventional sensors used to measure ligament or tendon forces, the buckle 

transducer, introduced in 1969 by Salmons [171], has been the most used. The frame (i.e., buckle) 

where the SG is attached may present several different forms, such as a rectangular or oval form 

[117,164,172-177], a C-form [178-179], an E-form [180-182], an I-form [166,183], or an S-form 

[184]. Some of the previous frames and the corresponding working principles were described in the 

paper of Ravary et al. [105]. Despite wide spreading, these transducers have large dimensions 

compromising minimally invasive procedures. As an example, the size (length x width) of the 

implantable E-form buckle transducer for animal studies is about 95 mm [180] and about 3420 

mm for human studies [105]. Hence, far from being minimally invasive their use is typically 

restricted to large tissues, such as the Achilles tendon, the anterior cruciate ligament or the patellar 

tendon [105,134]. Long recovery times (two to three weeks) seem to be necessary for complete 

healing of the implantation wound [175,177,182,185]. They can also modify the natural 

biomechanical behavior of the tissue because the frame usually diminishes its length [135]. In vivo 

studies require surgery under local intra-articular anesthesia [164]. Their sensitivity can vary with 

joint angle, sensor placement and orientation [134,174]. 
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Besides buckle transducers, two other types of SG based transducers can be used to sense 

force in ligaments and tendons, namely the implantable force transducer (IFT) [127,162,167,169-

170,186-192] and the modified pressure transducer (MPT) [163,165]. The IFT was introduced in 

1992 by Xu et al. [187]. Some IFT configurations (e.g., two point, three point) and the 

corresponding working principles were described in the paper of Ravary et al. [105]. The IFT is 

smaller than buckle transducers but the MPT is the smallest. Typical dimensions of the MPT are 

3.5-4 mm OD and 0.5-1.5 mm thick [105]. Even so, all of them are much larger than FOSs. Like 

buckle transducers IFT sensitivity may vary with joint angle, sensor placement and orientation 

[165,167,169,187]. Depending on the calibration protocol results can vary significantly [167]. More 

repeatable results can be obtained using the in situ calibration method proposed by Herzog et al. 

[167]. Another important constraint is a nonlinear relationship between the compressive load acting 

on the sensor and the tensile load applied to the tissue [162,165,169,188].  

The first contribution of FOSs in measuring the force of ligaments and tendons was an attempt 

to reduce the errors associated to the large geometry of conventional sensors and to minimize 

subject’s complaints. This was pursued in the ex vivo experiment of Komi et al. [185] through the 

use of an intensity modulated sensor. A guiding needle was used to insert the OF (Toray Industries 

Inc., PG-series, 265m or 500m OD) in the rabbit common calcaneal tendon mid-substance. It 

was expected that the tensile load applied to the tendon would produce a compressive load on 

tendon fibers and bend the OF. The fiber was illuminated by an infrared LED with central 

wavelength at 820 nm and the detector was an integrated IC photodiode. Strain to force calibration 

was done using the moment equilibrium condition of a rigid body. Under static conditions a good 

linear fit (r = 0.999) was registered between the sensor output and the applied loads. Hysteresis 

was considered negligible. Under dynamic loading conditions (using load drops) the OF followed 

the response of a reference SG transducer, despite a time delay of 6.5 + 2.6 ms that was 

measured for the OF response [185]. 

In vivo studies followed that of Komi et al. [185]. The first, was probably that of Finni et al. [193] 

who used the same optical system, with telemetry incorporated, to measure the Achilles tendon 

force during locomotion. Instead of intra-articular anesthesia, an anesthetic cream was applied to 

the skin surrounding the tendon. Sensor calibration was made in situ, after implantation (figure 18), 

using an ankle ergometer to perform isometric plantar flexions (from 10 to 40% of maximum 

voluntary muscle contraction) [185]. Similar intensity modulated FOSs were used to carry out more 

in vivo experiments, namely to study the individual muscle contributions to the Achilles tendon 

force [168], leg muscles contributions to perform standardized jumps [194], muscle behavior during 

jump skills [195], the interaction between the lower leg muscles and the Achilles tendon in walking 

[196] and the influence of tendon’s creep in sensor behavior [197]. 
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Figure 18 - Schematic representation of the intensity modulated force sensor proposed by Komi et al., 

[185] to be implanted into the human Achilles tendon [168,193,196]. 

The validity of previous studies can be questioned in the absence of efforts to identify possible 

sources of error in estimating tendon forces. In fact and contradicting the original findings of Komi 

et al. [185] a nonlinear relationship was observed between the OF output and the tendon force, 

requiring use of 3
rd

 order polynomials for adequate curve fitting [136]. Hysteresis, cable migration, 

loading rate, joint angle and skin movement were also pointed as possible sources of error in force 

prediction. Root-mean-square (RMS) errors due to hysteresis were estimated to be less than 5% of 

maximum load [136]. RMS errors due to migration of the OF were less than 27% [136]. Differences 

in the loading rate led to RMS errors less than 17% [198]. RMS errors due to the combined effects 

of loading rate and cable migration were less than 32% [198]. Compared to the C-form transducer 

the FOS previously described by Komi et al. [185] seems to exhibit lower errors in force prediction 

but larger errors in hysteresis and loading rate [136,191]. Tendon creep [197] and skin movement 

artifacts [198] can also affect the output of the optical signal. In particular, ex vivo experiments 

should be conducted without skin, because RMS errors in estimating tendon force decreased from 

24-81% of maximum force to 10-33% after skin removal [198]. Finally, the applied calibration 

procedures required assumptions concerning the location of joint axes and the length of moment 

arms, another possible source of error [134]. Trying to diminish these sources of error is, in fact, a 

challenge because soft tissues are complex structures with nonlinear, visco or poroelastic 

properties requiring the most accurate sensors and techniques to get precise measurements.  

FBG sensors could represent a step forward in the way of sensing these soft tissue forces. We 

have found three ex vivo studies using them, meaning there is much to be done [199-201]. In the 

study of Vilimek [199] the force of porcine leg tendons was successfully estimated under loads 
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applied by a tensile machine. It has been argued that FBG measurements are more accurate than 

those obtained with intensity modulated sensors. Even so, accurate measurements will require a 

technique capable of avoiding migration of the OF and give the exact location of the grating within 

the tendon. FBG sensors were also used in the original study of Goh et al. [200] with the purpose 

of measuring the axial load within the menisci of porcine knee joints. A transverse load was applied 

and to relate it better with the measured axial load, the FBG sensor was placed between uneven 

layers of carbon-epoxy composites using a buckle configuration [56,200]. A tunable laser source 

(TLS) and an optical spectrum analyzer (OSA) were used. Calibration was accomplished with a 

mechanical testing machine and suggested a wavelength/load linear relationship. However, the 

overall dimensions of the probe (5×5 mm) compromise its use as a minimally invasive device [200]. 

A novel sensor was also proposed by Behrmann et al. [201] for tendon force measurements. The 

sensor incorporates FBG and microfabricated stainless steel housings that were used to convert 

radial forces applied to the housing into axial forces that could be sensed by the FBG. The 

housings were fabricated by several methods including laser micromachining, swaging, and 

hydroforming. Several designs allowing simultaneous temperature and force measurements and 

simultaneous resolution of multi-axis forces were presented. In vitro experiments were performed 

with success in excised tendon and in a dynamic gait simulator [201]. 

Dental biomechanics seems to be a promising field for FOSs. One of the first applications was a 

mouthpiece system capable of measuring the biting forces [202]. The mouthpiece, made of two 

stainless steel plates, had a microbending sensor placed between them. The sensor was able to 

measure forces ranging from 0 to 1000 N with a resolution of 10 N [202]. Force magnitude was 

also quantified in dental splints, which are orthodontic devices designed to address dental 

problems such as loose teeth and bruxism in addition to problems with snoring and apnea. In the 

original study of Tjin et al. [203] FBG sensors were applied to measure strain and temperature 

during positioning of a splint within the mouth and after its placement. The strain sensor was 

calibrated to measure force using a previously described protocol [56]. Temperature effects were 

compensated and the accuracy for force and temperature measurement was 0.5 N and 0.1 ºC, 

respectively [56,203]. More applications in dentistry biomechanics include use of high-birefringence 

(HiBi) FBG sensors to measure in vitro orthodontic forces [204], and use of bracket polymer 

photonic crystal fibers (PCF) sensors to measure the forces applied in the tooth during realistic 

orthodontic treatments [205-206].  

Specific applications for sports and robotic surgery have been also proposed, such as in the 

case of handgrip devices that were used to measure strength and to evaluate fitness condition. An 

alternative to conventional dynamometric devices was presented by Paul et al. [207], incorporating 

the advantage of assessing individual finger participation in force production. Five FBG sensors 

were sandwiched between rubber bushings in a cylindrical grip holder. Wavelength shifts were 

related to the pressure applied by fingers onto the rubber bushing [207].  
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Park et al. [208] took first steps in the creation of force sensing robot fingers to be used in the 

presence of large magnetic fields. Fingers were made of urethane polymer with embedded FBG 

sensors and a copper mesh has been applied to reduce creep and provide thermal shielding. 

Controlled grasp force during manipulation tasks of small weights (0.1 kgf) was possible to obtain.  

Efforts are being made to develop sensors capable of providing force feedback during robotic 

assisted minimally invasive surgeries and catheter based operations, such as cardiac 

catheterization and ablation procedures. Intensity modulated sensors [209-210] and FBG sensors 

have already been proposed [211-214]. A good example of a novel application of light intensity-

modulated sensors supported by reflective membranes is the RF ablation catheter with force 

feedback, presented by Polygerinos et al. [209-210]. Three plastic OFs were aligned inside a 

plastic catheter in a circular pattern to provide a three axes force sensing system (figure 19). The 

sensor was tested in an artificial blood artery showing a working range of 0 to 1.1 N, a resolution of 

0.04 N and good dynamic response. 

 

Figure 19 - Schematic drawing of the force sensor proposed by Polygerinos et al. [209-210]. 

TactiCathTM is a commercially available solution from Endosense SA (Geneva, Switzerland). 

This sensor is one of few sensors that have been submitted to prospective, randomized, multi-

center interventional studies [214]. It is composed of three FBG capable of measuring strain of the 

catheter tip (3.5 mm OD) in contact with tissue [211,215-216]. Contact forces along three different 

directions can be measured with a 10 Hz frequency and a resolution better than 0.001 kgf. 

Monitoring these forces during catheter based ablation procedures is an important task because it 

was demonstrated that the incidence of lesions increases with the catheter force applied to the 

tissue [211,215-216]. This is of particular importance in robotic surgery because it contributes to 
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minimize the lack of haptic feeling from the surgeon [212,217]. Also for surgery procedures 

requiring extremely subtle maneuvers and forces, usually lower than human perception [213]. 

Some advanced clinical procedures requiring MRI environment will benefit from the immunity of 

FOS systems to MW interference. As in the case of brain function, studied trough functional MRI 

(fMRI), FOSs can be implemented to assess other related functions such as the motor function 

[218-220]. Additionally, the possibility of combining haptic sensing and optical trackers, developed 

to trace curves of pertinent anatomical structures [221], seems a promising field in medicine. 
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5. Sensing Pressure 

Following some original works in the first half of the last century [222-225], it was in the 1960s 

that interstitial fluid pressure monitoring became a relevant procedure in biomedical and 

biomechanical applications [32,39,226-229]. In the early 1970s Millar Instruments Inc. (Houston, 

TX, USA; www.millarinstruments.com) made significant efforts to develop miniaturized 

piezoresistive pressure sensors and to integrate them into catheters for clinical practice [230]. 

These are currently known as the Millar Mikro-Tip® pressure transducer catheters. Their accuracy 

is 0.2% but they are also fragile, expensive and affected by EM interference [78,231].  

Fluid-filled catheters attached to external pressure transducers can be used as an alternative to 

the previous solid-state sensors [78,224,232]. Early configurations, such as a simple needle 

connected to a mercury pressure manometer [225], gave place to more advanced configurations, 

such as the wick catheter [229,233], the slit catheter [234] or the side-ported needle [235]. 

Nevertheless, besides low-cost, their performance seems to be lower than that of Millar catheters. 

According to the review of Kaufman et al. [236] the accuracy of fluid-filled systems ranges between 

1% and 18% and their linearity between 2% and 15%. They also suffer from hydrostatic artifacts 

caused by body movements, limiting their use to static positions or movements in the horizontal 

plane [232,237]. Furthermore, they require flushing or infusion to maintain accuracy, particularly 

during long-term measurements (i.e., more than one hour) [238]. Meanwhile, other fluid-filled 

catheter-transducers, such as the Spiegelberg intracranial pressure monitoring system 

(Spiegelberg KG, Hamburg, Germany; www.spiegelberg.de) and the AirPulse™ Air Management 

System (InnerSpace, Tustin, CA), have been developed to overcome the previous problems [239].  

FOSs are intrinsically free from hydrostatic artifacts and flushing, making them attractive for 

interstitial fluid pressure measurements. Intensity modulated schemes were initially proposed, 

namely for in vivo blood pressure measurement, such as in the original work of Lekholm and 

Lindström [40,44] and other similar configurations [39,240-241]. The previous work was also the 

basis for development of Camino pressure sensors (Camino Laboratories, San Diego, CA, USA; 

acquired by Integra LifeSciences; Plainsboro, NJ, USA), probably the most widespread dual-beam 

referencing intensity-modulated based sensors [242]. Camino sensors became popular in the 

1980s, and since that time they have been extensively used for pressure measurement in different 

sites of the body, as in the brain, muscles and joints. In 1996, Keck reported that the company was 

producing around 60000 devices/year [51]. These sensors also underwent extensive scrutiny 

leading to identification of several drawbacks and questioning their routine use, particularly in 

clinical practice [64,243-255]. 

To overcome some of the drawbacks of intensity modulated sensors alternative configurations 

have been presented. In the early 1980s, F-P interferometer based sensors were introduced. An 

earlier configuration of a F-P sensor was presented in 1983 by Cox and Jones [256], but large size 

and complex signal analysis limited further applications [78]. MetriCor Inc. (acquired by 
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Photonetics, Inc.; at present part of GN Nettest, Copenhagen, Denmark; www.gnnettest.com) 

developed a compact version, based on anodic bonding of a silicon membrane to the fiber tip and 

use of two wavelengths to monitor the interferometer [51,257]. The same technology was adapted 

by Sira, Ltd. (Kent, UK; www.siraeo.co.uk) to measure temperature and the refractive index [51]. 

Innovation also came from miniaturized forms, namely those using all-fused-silica designs and 

clean room microfabrication techniques [78,236,258].  

Recently, FBG sensors have also been proposed to assess pressure, namely in the nucleus 

pulposus (NP) of the IVD of the spine [19-20,59,259]. However, these apply only to ex vivo 

experiments. Thus, innovative solutions are mandatory for in vivo and clinical studies, namely to be 

integrated into specific diagnostic procedures of the spine (e.g., discometry) and surgical 

procedures (e.g., arthrodesis and arthroplasty). 

Considering the wide variety of pressure FOSs and their applications, a better framework can 

be obtained by looking at the specific pressure applications that have been developed. We expect 

to contribute to them in the following subsections. 

5.1 Intravascular and Intracardiac Pressure 

Among several experiments that started in the mid 1960s [32,39-40,44] the original work of 

Lekholm et al. [40] and Lindström [44] deserves to be highlighted. A sensor intended for in vivo 

blood pressure measurement with sensor heads of only 0.85 mm (unshielded) and 1.5 mm OD was 

proposed (figure 20). It consisted of an air-filled chamber covered by a 6 m pressure sensitive 

beryllium-copper membrane. As in similar works of that period [29,39], the guiding system was 

made of two independent OF bundles due to problems in light coupling. One bundle was used to 

guide the light from a gallium-arsenide LED source to the sensor head, the other to guide the 

reflected light into a photodetector [44]. First fabricated probes had a flat frequency response from 

static pressure to about 200 Hz [40], but it increased to 15 kHz in the following experiments [44]. 

Zero drift was observed under temperature variation from 20 °C to 37 °C, recovering the baseline 

after 40s [44]. The above sensor was also extensively described, covering the theoretical topics of 

fiber optics properties, membrane reflection, operation modes, number of fibers and their 

distribution, membrane mechanics, volume displacement, frequency dependence and limitations 

[44]. Error sources, sensitivity and miniaturization, failure and redundancy were also addressed 

[44]. Another interesting feature of the sensor was its low sensitivity to mechanical vibrations, 

shocks, and movements due to a light and stiff membrane. After successful tests on one dog and 

one human [40], clinical tests have followed [44]. 
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Figure 20 - Schematic drawing of the pressure sensor proposed by Lekholm and Lindströn [40] and 
Lindströn [44]. 

In the following years, similar sensors with vibrating membranes located at the tip [39,240-241] 

or at the side of a catheter have been proposed [260-261]. Side membranes contribute to reduce 

pressure artifacts due to tip collisions with the blood vessels or the ventricular walls (the so-called 

wall or piston effect) [210,261-262] and to avoid clot formation occurring for long periods of 

monitoring [260-261]. An earlier application of a pressure sensor incorporating a side membrane 

was proposed by Matsumoto et al. [261] (figure 21). Nevertheless, tip and side-hole configurations 

have been adopted up to today. In fact, the most important achievement in the following years was 

implementation of microfabrication techniques [263-267]. 

 

Figure 21 - Schematic drawing of the pressure and oxygen saturation sensor proposed by Matsumoto et 
al. [261]. A side membrane was used to sense pressure and a tip configuration for measurement of 

oxygen saturation. 
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The configuration proposed by Lekholm et al. [40] and Lindström [44] was also the basis for the 

development of Camino pressure sensors (San Diego, CA, USA). This transducer-tipped catheter 

consisted of a 1.35 mm OD tip enclosed in a saline-filled sheath (2.1 mm OD) with side holes 

(figure 22). A pressure sensitive diaphragm caused the mirror distance from the fiber tip to vary, 

changing the intensity of the reflected light. As will be seen, identical designs were also applied to 

measure intramuscular [232], intraarticular [268-271] and intracranial pressures [272]. These 

transducers are interrogated by the intensity modulation technique with dual-beam referencing, 

recommended for single use and should not be resterilized or reused [242]. They are also relatively 

large (1.35 mm OD) and require special handling because of potential for fiber breakage [243,245]. 

 

Figure 22 - Schematic drawing of earlier Camino sensors [232]. 

Several alternative configurations to the above sensors were presented, namely those based on 

the photo-elastic effect [273]. It was, however, the introduction of F-P sensors that made it possible 

to incorporate important features [256]. The LED-microshift sensor proposed by Saaski et al. [93] 

and  Wolthuis et al. [78] is a good example (figure 23). It consisted of a glass cube (300×300×275 

m) containing a thin F-P cavity (1.4-1.7 m depth; 200 m OD) covered by a pressure sensitive 

single crystal silicon diaphragm anodically bonded to the glass cube. A LED, with emission 

bandwidth of 60 nm, was used to interrogate the cavity operating within a single reflectance cycle. 

A dichroic ratio technique was applied to analyze the reflected light. A linear pressure working 

range from 250 to 1250 mmHg was achieved. Sensor’s resolution (1 mmHg) and accuracy  

(±1 mmHg) fulfilled AAMI medical standards. It was validated using a Millar micro-tip catheter and 

proposed for absolute pressure measurements of the left heart chamber and systemic arterial 

pressures. The system was also low cost and easy to fabricate [78]. Wolthuis et al. [274] also have 

proposed a dual function sensor system for simultaneous measurement of pressure and 

temperature. RJC Enterprises, LLC (Bothell, WA, USA) is commercializing these type of sensors, 
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namely for resellers. For example, the pressure sensor has been integrated in the intra-aortic 

balloon (IAB) catheter of Arrow International, Inc. (Teleflex Medical, Research Triangle Park, NC, 

USA) [275].  

 

Figure 23 - Schematic drawing of the pressure sensor proposed by Saaski et al. [93] and Wolthuis et al. 
[78]. 

Recently, another F-P sensor was successfully tested in vitro and proposed for continuous flow 

left ventricular assist devices (LVAD) [276]. The F-P cavity consisted of a biocompatible parylene 

diaphragm and a silicon mirror fabricated directly on the inlet shell of the LVAD device. Sensor 

sensitivity (1 mmHg achieved by fringe counting; less than 0.1 mmHg with interpolation), linear 

range (up to 100 mmHg) and response time (1 ms; limited by the response time of the optical 

detector and the self-resonance frequency of the parylene-C membrane) meet the requirements of 

LVAD pressure sensing systems [277]. Nevertheless, as mentioned, further improvements are 

mandatory for animal and human testing. In this case, however, authors have pointed the 

necessary steps to accomplish it [277]. 

Several companies, like FISO Technologies (Québec, Canada), Arrow International, Inc. and 

MAQUET Getinge Group (Rastatt, Germany), are providing F-P based sensors to monitor the 

arterial pressure during IAB pump therapy. FISO Technologies is recommending the FOP-MIV 

sensor (550 m OD) [278]. According to manufacturers’ specifications, it has a measurement range 

from -300 to 300 mmHg, an accuracy of 1.5 % (or ±1 mmHg) of full-scale output (FSO), a 

resolution better than 0.3 mmHg, a thermal effect sensitivity of −0.05% °C
-1

 and a zero drift thermal 

effect of -0.4 mmHg °C
-1

 [21]. It was also demonstrated that in situ pressure monitoring with these 

sensors is more accurate and safer than external pressure monitoring through fluid-filled catheters 

[79]. Yet, to our best knowledge, FOP-MIV has been used to measure the left ventricular pressure 

uniquely in animals [279]. Other applications of the same sensor, still with animals, included 

measurement of intracranial [280-281], intraocular [282] and intramedullary pressures [283]. An 
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human in vivo application was reported for deglutition analysis assessed by measurement of 

pharyngeal pressure [284]. Arrow international, Inc. commercializes the FiberOptix™ IAB Catheter, 

used in clinical practice to monitor arterial pressure [275,285]. MAQUET Getinge Group is 

commercializing two IAB catheters (Sensation Plus™ 8Fr. 50cc IAB Catheter and Sensation 7Fr. 

IAB Catheter), both allowing in vivo calibration and recalibration [286]. Unfortunately, we were 

unable to found further scientific or technical data (e.g., pressure range, accuracy, resolution, and 

response time) for the above sensors. 

Frequently, the F-P cavity is bonded to the OF tip [284,287]. Typically, with this type of extrinsic 

configuration the tip diameter is larger than that of the OF which may represent a limitation 

concerning further miniaturization. Yet, new approaches are contributing to enhance the potential 

of miniaturization offered by FOSs [258,288-291]. Totsu et al. [258,288] have presented a sensor of 

only 127 m OD to monitor pressure in the heart and aorta of a goat. The F-P cavity ( 2 m depth) 

was composed of two mirrors, a chromium half-mirror located at the tip of a multimode fiber (MMF) 

and an aluminum mirror in the head of the sensor. The head of the sensor was made of a thin 

silicon dioxide diaphragm with a mesa (to support the mirror) and a polyimide spacer that was 

bonded to the MMF. Cleanroom microfabrication techniques were applied to produce the probe, in 

particular plasma-enhanced chemical vapor deposition (PECVS), atmospheric pressure chemical 

vapor deposition (APCVD), evaporation in vacuum, spin-coating, and deep reactive-ion etching 

(RIE). The all system included a white light source, a fiber coupler and a spectrometer. White light 

interferometry was used to avoid error and noise caused by bending of the OF and fluctuation of 

the light source. Sensor exhibited a pressure working range from -100 to 400 mmHg and a 

resolution of 4 mmHg [258,288]. A slightly different vacuum sealed F-P cavity technique was 

proposed for temperature compensation [288].  

Cibula et al. [290-291] were also capable of presenting a similar but slightly smaller sensor (125 

µm OD). In this case the diaphragm was designed to be a part of the OF, because the bonding 

process used in the work of Totsu et al. [258,288] limited the temperature range and sensor long-

term stability [291]. The F-P cavity was created at the tip of the fiber by chemical etching. The 

diaphragm, made of polymer, was laid over the tip cavity by a “dip and evaporate” technique [290]. 

Several prototypes were presented with resolution of 10 Pa and pressures ranging from 0 to  

40 kPa and from 0 to 1200 kPa. An all-fused-silica design, based on the replacement of the 

polymer diaphragm by a silica one, was also proposed [289]. This approach changed resolution to 

300 Pa. 

The advantage of all-fused-silica fabrication techniques (e.g., splicing, cleaving, and wet 

etching) is their low-cost. However, mass production may be compromised due to a large number 

of production steps, including fusion splices, precision cleaves, and micrometer length adjustments 

of the spliced fiber segments [291]. Significant efforts are being made to reduce some of these 

critical and time-consuming steps. That is the case of time-controlled chemical etching which 

eliminates precision length adjustments of critical sensor constituents and improves sensor 
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sensitivity [291]. Future applications will certainly include biomechanical and biomedical 

applications. Meanwhile, FISO Technologies (Québec, Canada) has already claimed the smallest 

(125 μm OD) all-glass commercially available sensor (FOP-F125) for human body fluid pressure 

measurements [292-293]. Depending on the pressure range, the accuracy of the sensor varies 

from ±5 mmHg [−25 to +125 mmHg] to ±8 mmHg [−300 to +300 mmHg]. Its resolution is better 

than 0.4 mmHg. The sensitivity thermal effect is of 0.1% °C
-1

 and the zero thermal effect of 0.4 

mmHg °C
-1

. Proof pressure is of 600 mmHg and the operating temperature is between 10 ºC and 

50°C [293]. 

5.2 Intramuscular or Intracompartmental Pressure 

Intramuscular pressure (IMP) is defined as the hydrostatic fluid pressure within a muscle [294]. 

Its measurement is of particularly importance for diagnosis of acute and chronic (muscle) 

compartment syndromes [232,237-238]. IMP is directly correlated with the force output of the 

muscle [294-295]. Therefore, by measuring IMP, the contribution of an individual muscle group to 

the force measured over a joint can be assessed. 

Crenshaw et al. [232,238] were the first to use fiber optic transducer-tipped catheters (Camino 

Laboratories, San Diego, CA, USA) to measure IMP. The accuracy and reliability of the system 

were validated trough a comparison with a slit catheter [238]. Preliminary tests also indicated their 

ability to continuously measure pressures ranging from 0 to 250 mmHg for a three day period. 

Experiments were made in animal and human volunteers [238]. These sensors prove to be 

insensitive to hydrostatic artifacts caused by body movements and capable of long-term 

measurements ( 2.5h) without the necessity of flushing to maintain accuracy. Conversely, long-

term measurements were also associated with patient discomfort, probably due to the size and 

rigidity of the polyethylene sheath enclosing the sensor [238]. Even so, these sensors were 

extensively used for IMP measurements, such as for isometric and concentric exercises [238], to 

demonstrate that IMP varies with muscle depth [296], to study compartment syndrome following 

prolonged pelvic surgery [297], and to analyze muscles contribution during gait [237].  

To accomplish the requirements of miniaturization for minimally invasive procedures Kaufman 

et al. [236] proposed a new fiber optical microsensor with 360 m OD (Luna Innovations, 

Blacksburg, VA, USA). Previous diameter represents about 5 to 6 times the diameter of muscle 

fibers diameters (ranging from 57 to 73 m) [298]. The sensor consisted of an extrinsic F-P air 

cavity in-between a polished end fiber and a reflective membrane [236,299]. It was calibrated 

inside an air pressure chamber under slowly dynamic pressures ranging from 0 to 250 mmHg back 

to 0 mmHg, over a period of 120s. The output was compared with that of a reference sensor 

(Model PX5500, Omega Engineering Inc., Stanford, CT, USA; www.omega.com). Sensor’s 

accuracy, repeatability and linearity were better than 2% FSO, hysteresis of 4.5% FSO and 

sampling frequency of 66 Hz (10 Hz with 8 channels). Its accuracy was better than most of the 

fluid-filled systems (between 1 and 18%), but smaller than electronic transducer-tipped catheters 
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(0.2% accuracy) [300]. Despite that, the small diameter and immunity to EM fields prevailed [236]. 

Following functional characterization, sensor was evaluated for biocompatibility using ISO standard 

10993-6:2007 (Tests for Local Effects After Implantation) [301]. In vivo experiments took place to 

measure swine intra-myocardial pressure under calibration procedures resembling body 

physiological conditions [302]. In this case, a fluid pressure chamber was used to calibrate the 

sensor under sinusoidal pressure variation around a static pressure of 60 mmHg. Reproducibility 

was possible only with degassed water but unpredictable results were obtained with tap water. 

Calibration frequencies varied from 0.5 to 10 Hz and the output was compared with that of a 

reference sensor (Millar Instruments, Inc., Houston, TX, USA). Hysteresis was not significant. 

Sensor sensitivity was 8.78 mV mmHg
-1

 remaining flat at 6 Hz and presenting a slightly decrease 

from 6 to 10 Hz. A slightly lower sensitivity was registered at 23 ºC than at 37 ºC suggesting a 

possible, but smaller, temperature effect. A constant time delay of 0.13 s was also registered 

probably due to post-processing electronics. Phase delay was independent of temperature and 

increased linearly with frequency. Sensor also demonstrated excellent reproducibility during tests 

of two consecutive days [302].  

A second generation sensor (Luna Innovations, Blacksburg, Virginia) with smaller OD (250 to 

280 m), similar accuracy (1.45 ± 0.32%) and repeatability (1.5 ± 0.81%), but lower hysteresis 

(0.60% FSO) and higher sampling frequency (960 Hz, 240 Hz with four channels), was used to 

study IMP in anesthetized rabbits [303-304]. Fatigue effects have also been studied contributing to 

0.25% FSO after over 10,000 pressure cycles [287]. It was used to study IMP in anesthetized 

rabbits [304]. 

5.3 Intra-articular Pressure 

Intra-articular pressure (IAP) is associated with joint and capsule loading [305]. It is a complex 

function of volume, time, joint angle, joint history, pathology, fluid distribution, and muscle action 

[306]. In the first study using FOSs, IAP was monitored during continuous passive motion (CPM) of 

the knee joint, a common post-surgery therapeutic procedure [268]. The FOS system consisted of 

a pressure transducer-tipped catheter (Camino Laboratories, San Diego, CA, USA) similar to those 

intended for intravascular and IMP measurements. Similar sensors were used to measure IAP in 

cadaveric glenohumeral joints [269] and during in vivo studies of the elbow joint in patients 

suffering from cubital tunnel syndrome [270-271]. 

The potentialities of FBG for joint pressure mapping were explored by Mohanty et al. [27].  A 

FBG array was developed to map stresses across the tibio-femoral interface during total knee 

arthroplasty. The array was embedded into a stack of unidirectional fiber-reinforced composite 

(PMMA) and molded to adapt to the femur condyles surface. Embedding is important to enhance 

FBG sensitivity to transverse loading [27,56,200]. Each OF was composed of sampled chirped 

FBG sensors capable of detecting force magnitude and its application point. Ex vivo experiments 
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were carried out to sense prosthetic misalignments trough the analysis of contact stress distribution 

during knee flexion/extension [27].  

Dennison et al. [19-20,259] used minimally invasive FBG sensors to assess the pressure in the 

NP of the IVD. It was recognized that large diameters of previously used nonoptical sensors (e.g., 

1.5 mm OD) [307] could interfere with the normal behavior of the joint and induce degenerative 

effects [307-309]. Dennison’s first proposal consisted of a bare FBG sensor (125 m OD, 10 mm 

length, Bragg wavelength 1550 nm) that was left directly in contact with the NP [259]. After that, a 

configuration with increased spatial resolution and less affected by the inhomogeneity of the 

nucleus material was presented [19-20]. This new sensor was housed within a stainless steel 

hypodermic tube allowing only just the tip to sense the external pressure. The sensing area, with 

0.4 mm OD, consisted of exposed surfaces of silicone sealant (Dow Corning 3140 RTV, Midland, 

MI) and of the OF. Under pressure, the area was compressed inducing a shift in the Bragg 

wavelength. Sensor’s mean sensitivity to pressure was -2.7 ± 1.5 E
-5

 mV MPa
-1

. Data from ex vivo 

porcine compression tests suggested a linear relation between intradiscal pressure and 

compressive load (r
2 

= 0.97). A good agreement was obtained with SG sensors. Yet, the mean 

relative difference in disc response to load between the FBG sensors and the SG sensor was 

9.39% and ranged from 0.424 to 33.2% [20]. Dennison et al. [19] compared the sensor’s sensitivity 

obtained from strain-optic relationships used in finite element analysis (FEA) with that obtained 

from experimental results. FEA sensitivity was −23.9 pm MPa
-1

 (r
2
 = 1) and experimental sensitivity 

was −21.5 ± 0.07 pm MPa
-1

 (r
2
 = 0.99). Using experimental sensitivity as reference the relative 

difference between these sensitivities was 11.1% [19]. 

The above FBG sensors have not been tested in vivo and will require further efforts to be 

available as commercial plug-and-play devices. Meanwhile, F-P sensors from Samba Sensors 

(Västra Frölunda, Sweden) and Radi Medical Systems (Uppsala, Sweden) are already available to 

measure intradiscal pressure. Samba Preclin 360 transducer is a micromachined silicon sensor 

(photolithographic and wet etching techniques were applied) with 0.36 mm OD and a pressure 

range from -0.1 to 17 bar [310]. Depending on the pressure range its accuracy is of ±20 mbar and 

±2.5% of reading (from -0.1 to 10 bar) or ±20 mbar and ±3% of reading (from 10 to 17 bar) [310]. 

Temperature coefficient is less than 14 mbar ºC
-1

 for a temperature range between 20 ºC and  

45 ºC [310]. Additionally, it can be coated with radiopaque material to be used in X-ray studies 

[310]. Some studies reported the use of a similar version (420 m OD) in pigs [311-312], rabbits 

[313] and human cadaveric spines [314]. In the case of the Radi Medical Systems sensor, it was 

used to monitor intradiscal pressure in sedated pigs [315] and patients suffering from lumbar back 

pain [316]. With 0.55 mm OD this sensor exhibits a pressure range from 0 to 800 kPa, a combined 

nonlinearity and hysteresis of <0.5% FSO and a time response of less than 0.2 s [316]. Despite 

their small size, these sensors can still damage the IVD, namely those from small animals (e.g., 

rats). Meanwhile, Hsieh et al. [317] and Nesson et al. [18,318] were encouraged to overcome this 

limitation. They presented a low-coherence interferometric-based optical interrogation system with 
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a sensor probe of 366 μm OD. The glass tube F-P cavity (15.2 μm length) was composed of two 

mirrors, a biocompatible polymer-metal composite diaphragm and a well-cleaved end face of a 

SMF. It was fabricated by simple batch-fabrication methods without necessity of a cleanroom 

environment. The sensor exhibited a linear response to the applied pressure over the range of 0 to 

70 kPa, a sensitivity of 0.0206 μm kPa
-1

 and a resolution of 0.17 kPa. Despite being attractive for in 

vivo and clinical practice, due to its biocompatible diaphragm and small size, it was used only for in 

vitro measurements of rodent tail discs [18,317-319]. 

5.4 Intracranial Pressure 

Intracranial pressure (ICP) is the pressure inside the skull, namely in the brain tissue and the 

cerebrospinal fluid (CSF). Following the original works of Adson and Lillie [222], Guillaume and 

Janny [223] and Lundberg [226], continuous monitoring of ICP became a routine method in 

neurosurgery. Depending on the location of the sensor inside the skull the techniques to measure 

ICP may be classified as intraventricular, subdural/subarachnoid, or epidural technique [320]. The 

intraventricular catheter is placed directly at the ventricle and allows the most accurate ICP 

measurements [320]. However, this deep location in the brain also presents the highest risk of 

infection [249,321]. The subarachnoid catheter projects through the Dura into the subarachnoid 

space [320,322]. The epidural technique is the less invasive as it avoids introduction of the catheter 

through the brain parenchyma restricting the risk of infection to the extradural space [321]. 

Unfortunately, with this technique ICP results are usually overestimated making it not 

recommended for neurocritical care patients [323-324]. The technique is useful in patients requiring 

ICP monitoring for long periods (> 5 days) because in these patients the most important 

information is provided by analysis of the frequency and amplitude of slow ICP waves [324]. 

First ICP measurements [272,325-326] resulted from the adaptation of the intravascular Camino 

sensor (Camino Laboratories, San Diego, CA, USA) originally proposed by Lekholm and Lindström 

[40] and Lindström [44]. Camino model 110-4B was considered to be accurate and reliable for ICP 

monitoring, presenting high-quality readings under laboratory and clinical conditions, a good 

correlation with SG sensors and fluid-filled systems, less drift and improved waveform resolution, 

insensitivity to hydrostatic artifacts and no flushing or infusion requirements [244-245,247,255,327-

328]. On the other hand, they also underwent extensive scrutiny leading to identification of several 

drawbacks and questioning their routine use, particularly in clinical practice. Transducer failures 

(e.g., breakage, cable kinking, probe dislocation, abnormal readings, etc) may range from 10% to 

25% [250]. In the study of Yablon et al. [245], 12% of sensors failures were caused by breakage of 

its components. Moreover, contamination of the probes is frequent and long term monitoring seems 

to be associated with higher rates of infection [249]. Yet, clinically significant infections were 

considered to be rare [249]. To minimize infections and zero drift of the transducer the 

manufacturer recommends placement of a new system under sterile conditions if monitoring is 

continued for more than five days [242]. Several studies have addressed the drift characteristics of 
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the transducer either in laboratory [247] and clinical practice [244,249-250]. Zero drift is an 

important feature because this type of transducers cannot be re-zeroed after implantation, meaning 

that cumulative significant errors may occur in long term monitoring [244,249]. Electrical calibration 

of external monitors is possible but it cannot correct for inherent zero drift of the catheter once it is 

implanted [250]. Manufacturers’ specifications for model 110-4B indicate a maximum zero drift 

during the first 24 hours from 0 to ±2 mmHg and less than ±1 mmHg per day on subsequent days 

[242]. Thus, a continuous five-day monitoring can introduce a maximum error of 6 mmHg. This is 

not satisfactory because normal values for ICP usually range from 7 to 15 mmHg in adults and 

from 3 to 7 mmHg in children [252]. Furthermore, values exceeding 20 mmHg require immediate 

treatment [329]. Laboratory tests have indicated the transducer complied with manufacturers’ zero 

drift specifications, while results from clinical practice have suggested zero drift can be greater than 

reference values. As an example, Crutchfield et al. [244] found a larger maximum daily drift of ±2.5 

mmHg, a lesser average daily drift of ±0.6 mmHg and an average drift over a 5-day period of ±2.1 

mmHg. Münch et al. [248] reported an average daily drift within reference values but after being 

removed from the patient it was 3.2 ± 17.2 mmHg for 50% of the probes. This value was 

normalized to the number of days of monitoring and decreased to only 6% [248]. Martinez-Manas 

et al. [249] reported only six of 56 implanted probes exhibited no zero drift while the other readings 

ranged from a minimum of -24 mmHg and a maximum of +35 mmHg. After comparing their results 

with manufacturer’s specifications, they conclude that 61% of the probes performed according to 

the expected values. It is interesting to note that no correlation was found between zero drift and 

the duration of monitoring [249-250]. Sensitivity to temperature remains a problem. A maximum of 

3 mmHg over a temperature range of 22 °C to 38 °C is reported by the manufacturer [242]. 

However, in the study of Czosnyka et al. [247] temperature drift was 0.3 mmHg °C
-1

 leading to a 

maximum of 4.8 mmHg for the same temperature range. 

The insertion method of 110-4B Camino transducer requires a drill hole through the skull of 2.71 

mm OD [242]. Thus, innovation with FOSs may arrive from smaller sensors and less invasive 

procedures. Some recommendations were provided to those interested in developing new sensors 

for this purpose. According to Mignani and Baldini [70], new sensors should meet a working range 

from -50 to 300 mmHg, a sensitivity of at least 0.1 mmHg, an accuracy of at least 1% and a flat 

frequency response up to 1 KHz. The American National Standards Institute (ANSI) for ICP 

monitoring, published by the AAMI [330-331], includes minimum performance requirements that 

are clearly less demanding than those of Mignano and Baldini [70]. In fact, AAMI requisites are a 

pressure range between 1 and 100 mmHg, an accuracy of ±2 mmHg in the range of 0 to 20 mmHg, 

and a maximum error of 10% in the range of 20 to 100 mmHg [330]. 

A good example of innovation effort was accomplished by Dennison and Wild [59]. They 

developed an FBG sensor with 200 m OD, a sensitivity of 58.7 pm MPa
-1

 and a sensing area of 

only 0.02 mm
2
. Calibration results have demonstrated its ability to measure pressure with ±2.7 

mmHg repeatability over a range of 105 mmHg. This FBG sensor was proposed for ICP and blood-
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pressure measurements but is far away from clinical applications because ex vivo and in vivo tests 

remain undone. 

It is interesting to note that commercially available FOSs are becoming competitive with each 

other. The Ventrix ICP monitoring catheter (Integra LifeSciences, Plainsboro, NJ, USA), the 

OPX100 transducer (InnerSpace, Tustin, CA, USA), the FOP-MIV (FISO Technologies, Québec, 

Canada) and the OPP-M series (OPP-M250 and OPP-M400; Opsens, Québec, Canada) pressure 

sensors are some possible candidates to compete with the most popular ICP Camino 110-4B 

transducer. The Ventrix ICP monitoring catheter and the Camino 110-4B are from the same 

company, but the F-P OPX100 transducer is not and claims for new features, such as in situ re-

zeroing and multimodal monitoring. In a comparative study the OPX-100 transducer presented a 

lower 24-hour zero drift and temperature drift than the Camino 110-4B transducer [247]. On the 

other hand, the OPX-100 exhibited a static error (<8 mmHg) higher than that of 110-4B  

(<0.3 mm Hg). Furthermore, its bandwidth is lower (20Hz) than that of 110-4B (33-120 Hz) [247] 

and it presents a high incidence (17%) of hematoma formation [332]. Few clinical data is available 

about this sensor and, to our best knowledge, it is no longer available. The FOP-MIV sensor is a 

versatile micro-optical mechanical system (MOMS) that can be used for many physiologic pressure 

measurements. It consists of a F-P vacuum cavity made of a micromachined silicon diaphragm 

membrane that is bonded on a cup-shaped glass base (550 m OD). The F-P cavity is connected 

to a MMF and interrogated with white light [79,280]. According to manufacturers’ specifications, 

FOP-MIV exhibits a measurement range from -300 to 300 mmHg, an accuracy equal to 1.5 % FSO 

(or ±1 mmHg), a resolution better than 0.3 mmHg, a thermal effect sensitivity of −0.05% °C
-1

 and a 

zero drift thermal effect of -0.4 mmHg °C
-1

 [21]. The sensor allows for absolute external pressure 

measurements because vacuum inside cavity prevents pressure errors caused by gas thermal 

expansion [79]. Manufacturing technologies derived from the semiconductor industry (e.g., 

photolithography processes and automated assembly) allow their production in large quantities for 

a competitive price [79]. For ICP measurements the FOP-MIV can be introduced into catheters with 

diameters smaller than 1.2 mm [79]. However, to our best knowledge, ICP measurements with the 

FOP-MIV were made only in rats [280-281]. Both OPP-M250 (0.25 mm OD) and OPP-M400  

(0.40 mm OD) have similar specifications (-50 to +300 mmHg pressure range; ±1 mmHg precision; 

0.2 mmHg accuracy; 4000 mmHg proof pressure; 10 to 50 °C operating temperature; 0% to 100% 

operating humidity range). They were specifically designed for physiological pressure 

measurements in preclinical environment and for OEM integration [333]. Besides ICP other 

possible applications of these F-P sensors include intra vascular blood pressure, urodynamic 

pressure, intra uterine pressure, intraocular pressure and IAB pump therapy [333]. Nevertheless, 

almost all applications need to be supported by scientific publications. 
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5.5 Other Pressure Applications 

Previously mentioned applications are probably the most common. Nevertheless, more 

contributions can be found concerning the use of FOSs to sense pressure in other sites of the 

human body, such as the trachea [334-335], the gastrointestinal tract [2,55,336], and the 

intravaginal [17], intraocular [282] and intramedullary spaces [283]. We will explore some of them in 

the following lines. 

Respiratory monitoring in pediatric or neonatal intensive care requires minimally invasive 

sensors for direct measurements of tracheal pressure. This was achieved for the first time using 

the Samba Resp. 420 transducer (Samba Sensors, Västra Frölunda, Sweden) [334-335]. This F-P 

sensor has an OD of 420 m contrasting with larger FOSs, such as the Camino XP400 (1mm OD) 

(Camino Laboratories, San Diego, CA, USA), that have been used only in adults patients [337]. 

Samba Resp. 420 transducer is also a certified CE class IIb Medical Device approved for use in 

human patients within the European Union [338]. It exhibits a measurement range from -50 to +350 

cmH2O, an accuracy of ±2.5 % of reading (between -50 cmH2O and +250 cmH2O) or ±4 % of 

reading (between +250 to +350 cmH2O), a temperature drift less than 0.2 cmH2O °C
-1

 (between 

20ºC and 45ºC) and a response time of 1.3 ms  [334,338]. 

The possibility of measuring peristalsis, i.e., the rhythmic contraction of smooth muscles through 

the digestive tract, can help diagnosis of several gastrointestinal motility disorders. While this is 

possible using manometric techniques, particularly high resolution solid-state and water-perfusion 

pressure sensors, the ability to present smaller, flexible and higher spatial resolution sensors 

remains a challenge. To give an example, an increase in the number of solid-state or water 

perfusion sensors into the same catheter is followed by increased complexity in signal processing, 

less flexibility and larger catheter diameter [2]. For that reason the number of sensors per catheter 

is limited to 36 for the solid-state technology and 20 for the water perfused technology [2]. Such 

limitations can be overcome by exploring the potentialities of real time WDM to interrogate several 

in-line FBG. In fact, this feature was accomplished by Arkwright et al. [55] using 32 in-line FBG 

sensors (written between 815 and 850 nm; 3 mm length; 10 mm spaced) to measure the pressure 

along the esophagus of a subject [2]. To sense pressure each FBG was fixed to a rigid metallic 

substrate and a flexible diaphragm. Afterwards, the multiplexed FBG array was inserted into a 

catheter of silicone rubber (3mm OD) which was sealed at one of the extremities and the other 

connected to the data acquisition system. The excellent and significant correlation (r ≥0.992) 

between the FBG based catheter and a reference solid-state catheter (Gaeltec, Dunvegan, 

Scotland; www.gaeltec.com) suggested one could substitute the other. Meanwhile, further studies 

have been published confirming FBG potentialities as multipoint or multiparameter sensors 

[336,339] and their ability to incorporate new features, such as the measurement of longitudinal 

and circumferential muscular activity in the gastrointestinal tract [336]. 
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An interesting example of the versatility and applicability of FBG sensors was given by Ferreira 

et al. [17] who proposed a complete system for dynamic evaluation of the women pelvic floor 

muscle strength. The lack of muscle action seems to play an important role in development of 

several pelvic dysfunctions, such as urinary incontinence and genital prolapses. The system 

consisted of a silicone ergonomic intravaginal probe (100 mm length and 25 mm OD) with two in-

line FBG sensors and an autonomous optoelectronic measurement unit. One FBG transduced 

radial muscle pressure into axial load, the other used for temperature referentiation. A mean 

sensitivity of 120 pm N
-1

 was calculated for a measurement range of 20 N. With temperature 

compensation, maximum estimated error (0.0075 N ºC
-1

) was considered negligible. Additionally, 

clinical trials were conducted in patients with pelvic floor disorders. Further improvements will 

include the substitution of silicone to eliminate some hysteretic behavior due to material’s 

viscoelasticity and reduction of cross-sensitivity to axial induced load, torsion and bending [17]. 

The possibility of using FOSs to construct pressure-mapping devices to be placed in-between 

the body parts and supporting surfaces (e.g., floor, seat, mattress, cushion and backrest) is an 

exciting opportunity to enlarge the spectrum of FOSs applications, namely in the fields of medicine 

and rehabilitation, sports, ergonomics, automotive industry, etc. However, to accomplish it FOS 

systems must compete with many recognized companies, such as Tekscan Inc. (South Boston, 

MA, USA; www.tekscan.com) and Novel GmbH (Munich, Germany; http://novel.de) that are 

offering powerful accurate electronic based systems at relatively low cost. Nevertheless, some 

limitations can be pointed to the technology mentioned above. Tekscan sensors are based in 

conductive elastomers, which may exhibit nonlinear response, hysteresis, and gradual voltage drift 

[340]. Novel uses capacitive-based transducers, which can be affected by electrical interference 

and suffer from low spatial resolution, drift, and high sensitivity to temperature [340]. Moreover, with 

both technologies only normal loads and pressures can be measured. Thus, a window of 

opportunity is open to FOSs capable of overcoming these limitations and introducing new features, 

namely the ability to measure normal and shear loads. A possible configuration was explored by 

Pleros et al. [12] by embedding multiplexed FBG arrays into PDMS silicon-polymer to built a 

pressure mat made of smaller scale blocks,  each block consisting of four FBG sensors distributed 

to form a 2×2 matrix array with a square sensing area of 400 mm
2
 and 25 mm thickness. Authors 

were also engaged in the FP7 project IASIS (Intelligent Adaptable Surface with Optical Fiber 

Sensing for Pressure-Tension Relief) that finished in 2011 [341]. IASIS project aimed at presenting 

intelligent rehabilitation systems based on multiplexed FBG arrays capable of sensing pressure in 

therapy beds or wheelchair seats and provide feedback information to prevent onset and evolution 

of pressure ulcers [342]. Same concept was extended to knee-socket interfaces to sense pressure 

in amputees [343-344]. 

The possibility of using FOSs to create smart systems and provide feedback about patient 

condition was also explored by Hao et al. [345]. Bed surface mounted FBG arrays were proposed 

to monitor several clinical signals, namely body pressure, respiratory rate, heart rate and body 
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temperature. Security alerts to prevent patients from maintaining prolonged static positions or 

falling out of the bed were also addressed. Sensor consisted of twelve in-line FBG sensors (5 mm 

length each) organized to form a 3×4 matrix array that was mounted beneath the mattress surface 

of the bed. To sense pressure, each FBG was previously embedded into an arc-shaped elastic 

bending beam (40 mm length, 0.625 mm thick and 2.2mm height) using uneven layers of carbon 

fiber reinforced plastic (CFRP). Calibration results suggested an excellent coefficient of 

determination (r
2
=0.9985) between the wavelength shift and the applied load. Sensitivity obtained 

from the linear regression equation of calibrated data was equal to 0.1121 nm N
-1

. Authors failed to 

present the algorithms used for pressure calculation. Vital signs, such as the respiratory rate and 

hearth rate, were assessed by signal processing techniques. Temperature sensor consisted of a 

FBG (10 mm length) isolated from strain by insertion into a glass/copper tube, which ends were 

encapsulated with a resin/epoxy system [345]. 

Pressure mats are often used in biomechanical studies, namely to analyze foot pressure 

distribution in static postures or dynamic activities, such as gait, jumping, running or load carrying. 

This assessment has particular importance in diabetic insensitive feet because excessive pressure 

can lead to their ulceration, necrosis and subsequent amputation [346]. The pedobarograph was 

probably the first device using optical techniques applied in clinical practice to study foot condition. 

The upper glass surface of a pedobarograph is covered with a thin opaque material, usually a 

plastic sheet, which in contact with the feet changes the refractive index [347-348]. This action 

leads to light attenuation in the glass plate, making  possible to obtain a footprint and to calculate 

the applied pressure by means of light intensity variation [349]. More recently, OF and FBG 

sensors were also introduced to sense foot pressure [56,350]. Multiplexed FBG arrays were 

positioned accordingly to the foot anatomy, embedded into uneven layers of carbon/epoxy 

laminates and cut into a shape of a footpad [350]. Calibration results suggested an excellent linear 

relationship (r=0.99927) between the applied perpendicular load and wavelength shift. Wavelength 

sensitivity to load and pressure was 5.44 pm N
-1

 and 700 pm MPa
-1

, respectively. A clinical 

experiment was conducted to evaluate pressure distribution under normal and abnormal standing 

[350].  

The study of Wang et al. [351] is of particular interest because it represents the first attempt to 

create in-shoe shear sensors. Instead of using a wavelength modulation design, sensor 

development was based on bend-loss technique. A 2×2 array of MMF, embedded into high-

compliance material and forming four orthogonal intersection points (each with a sensing area of 

100 mm
2
), was used as a basic sensing sheet. Under compressive loading, light attenuation 

caused by physical deformation of the fibers at the intersection points was used to calculate the x 

and y coordinates of the pressure point and the corresponding normal stress. To obtain shear 

stress two layers of the basic sensing sheet, placed between gel/polymeric shoe insole pads, were 

used. This way, the relative difference between the corresponding pressure points could be used to 

calculate the amount of shear. The entire system consisted of a LED source, an eight-element 
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photodetector array and a data-acquisition system (National Instrument 16-input, 500 kb s
-1

, 12-bit 

multifunction input/output data-acquisition card; Lab-VIEW software; and a laptop computer). 

Repeatable results were obtained under bench mechanical loading tests consisting of vertical 

forces up to 6.5 N and displacements of 6 mm, and shear forces up to 13.8N. The minimum 

detectable vertical and shear forces were 0.4 N and 2.2 N (at 60 pitch angle), respectively. To 

address some limitations of the previous configuration (e.g., low spatial resolution, consistent and 

accurate manufacturing of the sensor, cost and noise) a batch process to fabricate PDMS-based 

waveguide sensor, and a neural network technique to provide an accurate description of the force 

distribution, were proposed in further studies [340,352-353]. After successful bench tests, the same 

group has recently presented a full-scale foot pressure/shear sensor, capable of measuring normal 

forces ranging from 19.09 to 1000 kPa [354]. 
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6. Final Remarks 

The state of the art of FOSs intended for biomedical and biomechanics applications has been 

reviewed. Our approach to FOSs was made after introducing conventional sensors and pointing 

some of their limitations. FOSs seem particularly suitable for use in minimally invasive procedures, 

allowing precise and accurate point, multipoint or distributed measurements without necessity of 

increasing sensor’s dimensions and with easier instrumentation. Minimum dimensions are 

achieved when the OF itself is used as the sensing element, such as with FBG sensors and all-

fused-silica designs. Nevertheless, small dimensions are also related to mechanical fragility. FOSs 

without protective layers require special handling. They can be suitable for in vitro or ex vivo 

biomechanical experiments, but will fail during in vivo trials and clinical practice. Thus, use of 

biocompatible and sterilizable layers, both capable of maintaining the minimally invasive function 

and providing mechanical stability, is mandatory.  

FOS technology has about forty years of history and most underlying working principles are 

sufficiently mature to provide accurate solutions for sensing almost any physical and chemical 

quantity. Despite that, few companies are exploring FOSs potential and offering turnkey solutions 

for biomedical and biomechanical sensing. Even fewer, have supported their products with peer 

reviewed papers, standardized testing protocols or approvals from regulatory/standardization 

entities. These are, indeed, the greatest challenges for those wishing to develop FOSs for 

biomechanical and biomedical applications, especially for the medical market. 
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1. Introduction 

 

The process of developing or applying fiber optic sensors (FOSs) to measure a physical 

quantity of an object requires an extensive knowledge of both the sensor and the object. In the 

previous chapter a review effort was made to describe FOSs potentialities, configurations and 

applications in biomechanical and biomedical fields. This chapter seeks to describe the anatomical 

structures that have been the object of study during experimental work: the spinal motion segment 

(SMS) or the functional spinal unit (FSU) and, particularly, the intervertebral disc (IVD). 

The SMS consists of two adjacent vertebrae with the intervening IVD and ligaments intact. The 

most important reason to consider the SMS in the study of the IVD mechanical behavior is that it is 

defined as the functional unit of the spine. In other words, the whole spine is like a composition of 

several SMS, each of them with its own singularities, but all of them with the same anatomical and 

functional components. Thus, in a certain way, studying the biomechanics of the SMS is equivalent 

to study the whole spine. As an example, if a compressive load is applied to a single SMS the IVD 

will bulge, a typical behavior that will be observed in all SMS. Naturally, the validity of the 

extrapolation depends on the observed phenomenon or quantity under analysis. Therefore, if the 

range of motion (ROM) is studied for each SMS the differences will be noticeable, particularly 

between those belonging to distinct regions of the spine. For example, a SMS of the lumbar region 

has a limited axial rotation whereas a SMS of the cervical region does not.  

To better understand the SMS behavior, its limitations and potentialities, a generic description of 

the whole spine and of its main regions was included in the manuscript. Spine kinematics was also 

addressed because the main biomechanical differences between SMS are related to the degrees 

of freedom (DOF) and ROM each SMS is capable of offering. 

Along with the anatomical description of the main components of the SMS, some histological, 

physical and mechanical properties were also addressed. The guidelines for spinal testing have 

been described in order to contribute for a better framework of the experimental work and, 

particularly, to point out its limitations and contribute to further and improved approaches. All issues 

were addressed bearing in mind the human spines although experiments have been conducted 

with animal specimens. Considerations concerning comparison between animal and human 

specimens have been attended in the experimental part. 
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2. The Spine or Vertebral Column 

The spine or vertebral column (Columna Vertebralis, Spinal Columnis) is located at the center 

and posterior region of the trunk (figure 24). It is a complex multi-segment functional structure with 

an average length of 75 cm [355], made up of rigid (the vertebrae) and elastic elements (the IVD 

and the ligaments), that extends from the skull to the pelvis. The skull, the vertebral column and the 

thoracic cage form the axial skeleton. 

 

Figure 24 - Location of the spine in the human body [Adap.356]. 

The spine accomplishes several functions. The foremost is the protection of the spinal cord, the 

spinal nerves roots and meninges [355]. It also acts as a support structure of the upper body, being 

capable of transferring its weight and forces to the lower extremities trough the sacroiliac joints 

[355,357-358]. If the mass of both the upper arms, forearms and hands is calculated, the lumbar 

structures of spine have to support about 67.8% of body weight [359]. The trunk along with the 

neck and head accounts for about 57.8% of the total body weight [359]. The lower body also 

interacts with the spine trough the same sacroiliac joints. Therefore the ground reaction forces 

acting at the feet along with muscle forces, acting during standing or locomotion activities (e.g., 

walking, running and jumping), will also be transmitted to the spine trough the sacroiliac joints 

[307,360]. 
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Each subject has a unique spine which is modeled by genetic and environmental factors [361]. 

That is why normal spines can differ, particularly in dimension and shape, in the number of 

elements, composition, physical and mechanical properties [362-365]. There is however several 

common attributes that can be described. 

Spine vertebrae are stacked on top of each other forming four main regions: the cervical, 

thoracic, lumbar, and sacral-coccygeal regions (figure 25). 

 

Figure 25 – Vertebrae organization in the spine [Adap.356]. 

The first three regions of the spine (cervical, thoracic and lumbar) are movable and comprise a 

total of 24 vertebrae [356]. Cervical spine is located at the neck and consists of seven vertebrae 

(Vertebrae Cervicales), which are abbreviated C1 through C7 (figure 25). Thoracic spine is located 

beneath the cervical region, at chest level, and consists of twelve vertebrae (Vertebrae 

Thoracales), abbreviated T1 through T12 (figure 25). Lumbar spine is located at the low back 

region of the trunk and is made up of five vertebrae (Vertebrae Lumbales), abbreviated L1 through 

L5 (figure 25). 

In general vertebrae increase in size from above downward and the lumbar vertebrae are the 

largest segments of the movable part of the spine [356]. Thus, cervical vertebrae are smaller when 
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compared with thoracic vertebrae, and these are smaller than lumbar vertebrae. This geometry 

seems to be a structural adaptation to the increase of body weight from the head to the pelvis 

[366]. 

The last lumbar vertebra (L5) articulates with the sacral-coccygeal region which is located 

behind the pelvis (figure 25). The sacrum connects the spine to the pelvis and consists of five fused 

bones abbreviated S1 through S5 (figure 25). Immediately below the sacrum four fused additional 

bones represent the coccyx (figure 25). Vertebrae of the sacrum and coccyx are termed false or 

fixed and do not contribute for the movement of the spine [356]. 

The total number of vertebrae is sometimes increased by an additional vertebra in one region, 

or it may be diminished. This congenital malformation is rarely observed in cervical vertebrae 

[356,367]. However it is often related to the lumbosacral region where the 1
st
 sacral vertebra can 

develop as a lumbar vertebra (lumbarization), or the 5
th
 lumbar vertebra can be bilaterally fused 

with the sacrum (sacralization) [362,368-370]. These lumbosacral transitional vertebrae have a 

prevalence in the general population of 4% to 30% [370]. Lumbarization seems to be more frequent 

in males than females [362].  

Ligaments are responsible for stabilizing the spine and are capable of limiting and controlling 

the movements produced by muscle contraction [371]. The IVD is a fibrocartilaginous structure 

found between each adjacent vertebra of the spine [372]. As it occurs for ligaments the IVD also 

participates in the control of the spine movement. However, whereas the main function of most 

ligaments is to resist tensile forces generated during joint movement, the IVD function is to resist 

compressive loads acting as a load bearing element. As described for vertebrae they also seem to 

increase in size from above downward [373]. Both, the ligaments and the IVD will be described 

more deeply in a later section (see p.68).  

Spine curvatures have great importance on the maintenance of the upright posture and the 

efficacy of bipedal walking [374-377]. From behind, the normal spine appears to be straight (figure 

25).  However, viewed from the side the spine presents four normal curvatures either kyphotic or 

lordotic (figure 25). The kyphotic curve is concave anteriorly and convex posteriorly, while the 

lordotic curve is convex anteriorly and concave posteriorly. Cervical and lumbar regions present a 

lordotic curve, while thoracic and sacral-coccygeal exhibit a kyphotic one (figure 25). 

The IVD play an important role in the formation of the spinal curves. In the cervical and lumbar 

regions the discs, apart from the disc at the L4/L5 level, are slightly wedge-shaped and thicker 

ventrally, exhibiting an elliptical cross-sectional shape [367,373,378]. Cervical discs are entirely 

responsible for the formation of the cervical lordosis [367]. Lumbar discs are responsible for the 

lumbar lordosis in the upper part of the lumbar spine and for the formation of the lumbosacral angle 

[367]. In the thoracic region the discs are dorsally thicker but less wedge-shaped than those in the 

cervical and lumbar regions [373]. They present a more circular cross-sectional shape and seem to 

slightly contribute to the kyphotic curve [367,373]. 
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The degree of curvature of the regions of the spine is an important topic in postural evaluation. 

It can be measured using X-ray images and the standard Cobb method [379-381] or other 

alternative techniques [382-386]. For its assessment the subject should adopt a position similar to 

the anatomical position i.e., the body erect with feet slightly apart and palms facing forward. 

Observing the subject from the sagital plane the curvatures of the spine contribute to a normal 

standing posture in such a way that the line of gravity should pass through the mastoid process, 

just in front of the shoulder joint, through or just behind the hip joint, through the knee joint and just 

in front of the ankle joint [381,387]. 

It should be mentioned that precise measurements from radiographic images are difficult to 

obtain, particularly due to image distortion in central projection, off-center position, deviations from 

true sagital projection (introduced by axial rotation and lateral tilt of the spine) and lack of 

information such as the factor of radiographic magnification and the subject’s stature [388]. On the 

other hand the ideal conditions are difficult to accomplish in clinical context. 

In the sagital plane several Cobb angles can be measured, such as the cervical, thoracic, 

lumbar, sacral, lumbosacral and pelvic tilt [387]. The guidelines for their correct measurement are 

provided in table 2 [387]. 

Table 2 – Cobb angles measured in the sagital plane 

Angle Description 

Cervical Intersection between lines drawn parallel to the superior endplate of C1 and inferior endplate of C7 

Thoracic Intersection between lines drawn parallel to the superior endplate of T1 and inferior endplate of T12 

Lumbar Intersection between lines drawn parallel to the superior endplate of L1 and inferior endplate of L5. 

Sacral Intersection between lines drawn parallel to the superior endplate of S1 and horizontal 

Lumbosacral Intersection between lines drawn trough the geometric centers of the endplates of L5 and S1 

Pelvic tilt Intersection between lines drawn trough the promontory of the sacrum  and the anterior superior 
border of the pubic symphysis 

 

In the frontal plane the angle of scoliosis, which is an abnormal curvature of the spine, can also 

be measured using the classical Cobb method (table 3) or several other alternative methods 

[381,386,389-391]. These alternative methods represent an effort to measure the degree of 

scoliosis more accurately than the Cobb method, which cannot account for the influenced of 

vertebrae rotations. For that reason the Scoliosis Research Society has defined scoliosis as a 

lateral curvature of the spine greater than 10º as measured using the Cobb method (table 3) on a 

standing radiograph [392]. A Cobb angle of less than 10º is considered to be within the normal 

range [387]. Meanwhile, new techniques based on photogrammetry are being developed to avoid 

repeated exposure to radiation [393]. Scoliosis prevalence seems to be higher and more severe in 

adolescent females than males [394]. 
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Table 3 – Cobb angle measured in the frontal plane [392] 

Angle Description 

Scoliotic 

 

The apical vertebra is first identified (the most likely displaced and rotated vertebra with the least 
tilted endplate). Then end vertebrae above and below the curve are identified. The end vertebrae are 

the least displaced and rotated and have the maximally tilted endplate. A line is drawn along the 
superior endplate of the superior end vertebra and a second line drawn along the inferior endplate of 
the inferior end vertebra. If the endplates are indistinct the line may be drawn through the pedicles. 
The angle between these two lines (or the lines drawn perpendicular to them) is the Cobb angle. In 

S-shaped scoliosis where there are two contiguous curves the lower end vertebra of the upper curve 
will represent the upper end vertebra of the lower curve.  

 

The relationship among spine angles and the correct upright posture has not been clearly 

established [395-396]. It seems a broad range of combinations is possible to ensure a normal 

posture [377,387]. 

Spine kinematics is the geometric description of spinal movements. In such a view, the spine is 

considered flexible and capable of all kinds of anatomical and combined movements. In fact, each 

SMS has six DOF, three for translation and three for rotation. Thus, the spatial movement of the 

spine can be defined as the expression, or contribution of twenty-three synchronized SMS, each of 

them offering six DOF. Translation movements are in the order of the millimeter and more difficult 

to measure than rotational movements.  

Three anatomical planes are used to describe the major anatomical angular displacements, 

such as flexion/extension (the angular displacement parallel to the median/sagital plane), lateral 

bending (parallel to frontal plane), and axial internal/external rotation (parallel to transverse plane) 

[397]. Knowing the ROM for each angular displacement is critical for many activities. In fact, many 

studies and techniques have been published trying to report ROM normal values of the spine and 

of the SMS [398-406]. As an example, normal ROM for trunk flexion is between 110º and 140º, for 

lateral bending ROM between 75º and 85º and for axial rotation is about 90º [406]. However, in the 

case of trunk flexion it seems the ROM is not exclusively produced by the spine elements. For a 

certain degree of flexion (between 50 to 60º) the increase of flexion is produced by an anterior 

pelvic tilt [407-408].  

The most critical anatomical constraint that seems to affect the DOF and ROM of each SMS is 

the spatial orientation of the articular processes at different spinal levels [409-412]. The cervical 

spine is the most movable region of the spine. In this region (C3-C7), the facets angle of 45º to the 

transverse plane and 0º (parallel) to the frontal plane allows all three DOF for rotation 

(flexion/extension; lateral bending and axial rotation). The orientation of the thoracic facets (60° to 

the transverse plane and 20° to the frontal plane) gives no axial rotational restriction for each SMS. 

However the presence of the ribs prevents rotation making this region the least mobile of the spine. 

In the lumbar region (facets oriented 90° to the transverse plane and 45° to the frontal plane), 

flexion is the freest movement and lateral flexion, as well as axial rotation, is quite limited. While the 
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previous results are the most cited more recent studies have indicated they seem to present some 

inconsistencies [412]. 

The role of spinal complications is large. They can be caused by congenital malformations, 

trauma, degenerative disorders, inflammatory disorders, tumors, vascular disorders, postoperative 

disorders and metabolic disorders [369].  
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3. The Spinal Motion Segment: Its Anatomical, Histological and 
Mechanical Properties 

The SMS is considered the smallest functional unit representing the general mechanical 

behavior of a given region of the spine [413-414] (figure 26). It consists of two adjacent vertebrae 

with the intervening disc and ligaments intact [414-423]. Nevertheless, depending on the purpose 

of the study, the ligaments may not be included, the IVD may be replaced by an artificial disc or the 

vertebrae may be fused [424-426].  

 

Figure 26 - A 3D view of a spinal motion segment (SMS) and of the intervertebral disc (IVD). Ligaments 
are not represented. 

There are usually twenty-three complete SMS segments along the spine [371]. Details about 

the components of the SMS (vertebrae, IVD, the facet joints and the ligaments) will be provided in 

the following subsections. Emphasis will be given to their gross anatomy, some histological findings 

and biomechanical behavior. 

3.1 The Vertebrae 

Typical or true vertebrae have the same general structure, despite slight modifications due to 

their position and function [356]. With exception to the first two cervical vertebrae (C1 and C2) all 

other movable vertebrae share some common features that will be described. Slight but important 

characteristics in the vertebrae structure, responsible for their arrangement into the three movable 

regions, will not be attended. Moreover, the description of special attributes of some vertebrae 

(e.g., C6, C7, T1, T10, T11, T12 and L5) as well as the structure of highly modified vertebrae (e.g., 

C1 and C2) is also beyond the scope of this study. 
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All vertebrae comprise an anterior region and a posterior region. The first one is the vertebral 

body and the second one the vertebral or neural arch. These two regions enclose the vertebral 

foramen (figure 27). 

 

Figure 27 - A typical vertebra observed from different views. Left: perspective. Center: transversal view; 
right: sagital view. 

The human vertebra is made of bone. Bone has unique structural and mechanical properties. It 

is one of hardest structures of the body, it is highly vascularised and has an excellent self repair 

capacity being able to change its properties in response to mechanical demands [427]. 

Bone consists of cells (osteocytes) and an organic extracellular matrix. The matrix is composed 

of mineralized collagen fibers (≈95%) surrounded by gelatinous ground substance (≈5%) that 

works as a cementing substance between the layers of collagen fibers [407]. The high content of 

inorganic or mineral material is embedded in the collagen fibers. The composition of the inorganic 

material is an amorphous form of hydroxyapatite [427]. 

Due to the previous configuration bone tissue can be modeled as a two-phase or biphasic 

composite material, made of collagen and hydroxyapatite [407,427]. The collagen and ground 

substance represents one phase, the mineral and inorganic component the other [427]. A non 

biologic example of this kind of composite is fiberglass. The collagen fibers are capable to resist 

stretch but have little extensibility [407]. The minerals, mainly calcium and phosphate, give bone its 

consistency, hardness and rigidity [407]. In fact, the Young modulus of single-crystals of 

hydroxyapatite ranges between 54 and 79 GPa, a very stiff and strong material [428-429]. The 

Young modulus of bone may range between 16 and 22 GPa [430] which represents about 30% of 

that of single-crystals of hydroxyapatite. 

Water represents about 25% of the bone total weight: about 85% in the bone’s ground 

substance and the remaining 15% in canals and cavities that house bone cells [407]. 
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At the microscopic level the fundamental structure of cortical bone is the osteon (figure 28). The 

osteon is composed of a bone matrix organized in concentric series of layers surrounding a central 

canal (osteonic or Haversian canal) [407]. These layers, called lamellae, present small cavities 

(lacunae) at their boundaries, each containing one bone cell or osteocyte. 

  

Figure 28 – Schematic representation of the osteon, the bone matrix and the Haversian system 
[Adapt.356]. 

At the macroscopic level bone is composed of two types of osseous tissue: the cortical or 

compact tissue, and the cancellous, trabecular or spongy tissue (figure 29). 

 

Figure 29 – Midsagital cut view of a porcine vertebra. 
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Cortical tissue forms the cortex or the outer shell of the vertebra and has a supportive and 

protective function [431]. Cancellous bone is located inside the vertebra and is composed of thin 

plates, or trabeculae, in a loose mesh structure filled by red marrow [431]. Its function is mainly 

related to mineral homeostasis, but also supportive [431]. As mentioned, both tissues are arranged 

in concentric layers called lamellae (figure 28). However the main anatomic difference between 

cortical and cancellous tissues is that the last does not contain the haversian canals [427]. 

The distribution of cortical and cancellous bone varies greatly between individual bones [431]. 

For example, a typical vertebra consists of 62% cortical and 38% of cancellous bone while the ulna 

is 92% cortical and 8% cancellous [431]. 

Cortical bone is denser than cancellous bone. At the macroscopic level, cortical bone porosity, 

or apparent density, varies from 5% to 30% and in cancellous bone from 30% to more than 90% 

[407]. The porosity of cancellous bone gives it a large capacity of storing energy and resisting 

strain before failure [407]. Both cortical and cancellous bone densities may vary substantially, from 

1000 to 2000 kgm
-3

 [431-432] and from 300 to 1300 kgm
-3

 [431,433-434], respectively. In fact, 

cancellous bone can even be classified as a high density tissue if its density is equal or higher than 

1180 kgm
-3

 [434]. The higher density of cortical bone makes it stiffer than cancellous bone. Its 

stiffness is more than ten times greater than that of cancellous bone [435]. The yield strength of 

cortical bone is about 140 MPa, while for cancellous bone is approximately 5 MPa [431]. 

Nevertheless, while it is capable of withstanding greater stress its strain tolerance is lower [427]. Its 

plastic deformation for ultimate strength is about 1% while for cancellous bone it is about 22% 

[431]. In fact, cortical bone will fail if strain exceeds 2% and cancellous only after 75% [436].  

The mechanical properties of bone depend not only on bone density or composition, but also on 

bone structure (e.g., geometric shape, bond between fibers and matrix, and bonds at points of 

contact of the collagen fibers), sex, age, location of bone, load orientation, strain rate and specimen 

condition (e.g., wet or dry bone) [427]. 

The Young’s modulus is useful to quantify bone stiffness. While it should be measured in the 

linear portion of a stress/strain curve it was suggested that the elastic portion of the previous curve 

is not a straight line for cortical bone but it is slightly curved yielding somewhat during loading in the 

elastic region [437]. This is probably due to the collagen component of the bone, which has a 

tangent modulus of about 1.24 GPa  [427]. 

Due to its macro and microstructure bone exhibits an anisotropic behavior, with mechanical 

properties that vary according to load direction [427,437-439]. Its strength and stiffness seems to 

be higher in the longitudinal direction than the transverse direction and, particularly, in the 

directions of the applied loads [438]. It was sustained that bone yields under tension due to the 

failure (debonding) of osteons at the cement lines (the boundary of an osteon) [407]. 

To consider the extent of deformation of bone before failure it is important to classify it as a 

brittle or a ductile material. However, bone tissue seems to exhibit both properties depending on its 
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age and load rate. Mature bone is less ductile and higher loading speeds make the bone more 

brittle [407]. Dry bone also seems also to be more brittle than wet bone. It fails at a strain of 0.4% 

while wet bone fails at 1.2% [440]. The effect of strain rate seems to be especially significant [427]. 

Higher ultimate strength was obtained at higher strain rate [427]. In table 4 and table 5 the Young 

modulus along with other mechanical properties of vertebrae bones and of the endplates are 

presented. These values have been implemented in several FEA studies. 

Table 4 – Mechanical properties of vertebrae bones 

Material Properties References 

Cortical bone 

Exx = Eyy = 11.3 GPa ; Ezz = 22,0 GPa 

Gxy = 3.8 GPa ; Gyz = Gxz = 5.4 GPa 

xy = 0.484 ; yz = xz =0.203 

[439,441] 

 

E = 12 GPa ;  = 0.3 [415,418,426,442-444] 

Cancellous bone 

Exx = Eyy = 0.14 GPa ; Ezz = 0.2 GPa 

Gxy = Gyz = Gxz = 0.0483 GPa 

xy = 0.450 ; yz = xz = 0.315 

[439,441] 

 

E = 0.1 GPa ;  = 0.2 [415,424,426,443,445-447] 

Posterior bony elements 

E = 3.5 GPa;   = 0.25 [439,448] 

E = 3.0 GPa ;   = 0.3 [329,426] 

E: Young’s modulus; G: Shear modulus; Poisson’s ratio 

 

Table 5 - Mechanical properties of the endplates 

Material Properties References 

Bony endplates E = 4.0 to 12.0 GPa ;  = 0.3 [439] 

Outer portion: E = 12.0 GPa ;  = 0.3 

Intermediate portion: E = 6.0 GPa ;  = 0.3 

Center (inner) portion: E = 2.0 GPa ;  = 0.3 

[426,449] 

 

Cartilaginous endplates Isotropic: E=23.8 MPa; =0.4 [421,439,441] 

Endplates E=2.5 GPa; =0.3 (≈PMMA) [450] 

E: Young’s modulus; G: Shear modulus; Poisson’s ratio; PMMA: Polymethylmethacrylate 
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3.1.1 The Vertebral Body 

The vertebral body (corpus vertebrae) or centrum is the largest part of a vertebra and is located 

anteriorly (figure 30). 

The upper and lower surfaces of the body are approximately cylindrical in shape and present a 

cortical rim (epiphyseal ring) around their external contour (figure 30) [356].  

The anterior surface of the vertebral body is convex viewed from the transverse plane and 

concave in the sagital plane (figure 30). The posterior surface is moderately concave from the 

transverse plane and approximately flat in the sagital plane (figure 30). 

 

Figure 30 – The vertebral body of a vertebra is located anteriorly. 

The vertebral body is composed of cortical bone on the outside and cancellous bone on the 

inside (figure 29). Based on direct and CT observations it was suggested that the thickness of the 

cortical bone of the vertebral endplates (0.5 mm) is greater than that of the vertebral wall (0.35 

mm) [451]. 

3.1.2 The Vertebral Arch 

The vertebral arch is made up of paired pedicles, paired laminae and seven spinal processes 

(the spinous process, two pairs of articular processes, and two transverse processes) (figure 31). 
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Figure 31 – Components of the vertebral arch. 

The previous anatomical components can be described as follows [356]: 

 Pedicles (radices arci vertebrae) are two short and thick processes projected backward, 

one on either side, from the upper part of the body, at the junction of its posterior and 

lateral surfaces (figure 31). The concavities above and below the pedicles are named 

the vertebral notches forming the intervertebral foramina in the SMS. The intervertebral 

foramina gives passage to the spinal nerves and vessels (figure 32); 

 

Figure 32 – The intervertebral foramina is formed by the superior and inferior vertebral notches. 
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 Laminae are two large plates directed backward and medially from the pedicles to 

complete the vertebral arch and fuse at the spinous process (figure 31); 

 The four articular processes, two superior and two inferior, on either side of the 

vertebra, are also formed at the junction of the pedicles and laminae and possess 

articular surfaces (articular facets) that participate in the facet joints (zygapophyseal or 

apophyseal joints). The two superior articular processes project upward and face 

dorsally. The two inferior articular processes project downward and face ventrally (figure 

31). Their spatial orientation defines the DOF and ROM of each SMS and of the entire 

spine; 

 The two transverse processes (processus transversi) are formed at the junction of the 

pedicles and laminae, one on either side, between the superior and inferior articular 

processes and project laterally (figure 31); 

 The spinous process (processus spinosus) is the most posterior part of the vertebra 

having a central location and being directed backward and downward from the junction 

of the laminae (figure 31). 

3.1.3 The Endplates 

At the top and bottom of each vertebral body there is a thin cartilaginous plate, the endplates, 

sometimes regarded as part of the body sometimes as part of the IVD  [367]. The endplates form 

the junction between the vertebral body and the IVD and are made of two distinct components: the 

hyaline cartilage and the osseous component [452-453]. The endplates are responsible for the 

nutrition of the disc trough diffusion of fluids and nutrients since the blood vessels surrounding the 

disc disappear during the early phases of development [454]. Their thickness is about 0.35 mm in 

lumbar elements [451]. 

3.2 The Intervertebral Disc 

The IVD is a fibrocartilaginous structure found between adjacent vertebrae of the spine [372] 

(figure 33). It represents the anterior joint of the SMS, a symphysis cartilaginous joint [455]. It is the 

largest avascular and aneural structure in the body [456]. 

There are twenty-three IVD in the normal spine and they represent approximately 20 to 33% of 

the spine length above the sacrum [367,457-458]. On average IVD thickness is about 3.5 mm in 

the cervical region, 5 mm in the thoracic region, and 9 mm in the lumbar region [355,459]. In the 

lumbar region the discs are thicker than elsewhere and they account for 30 to 36 % of the height of 

the lumbar spine [367]. 
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Figure 33 – Schematic representation of the location of the intervertebral disc in the spinal motion 
segment. A picture of an ex vivo porcine intervertebral disc specimen is presented. 

Despite variations in geometry the structure of the IVD is almost the same for all discs of the 

spine. Basically, it has two main components, the nucleus pulposus (NP) and the annulus fibrosus 

(AF) (figure 34). Yet, at the top and bottom of each vertebral body there is a thin cartilaginous plate, 

the endplates, sometimes regarded as part of the vertebral body sometimes of the IVD [367]. 

 

Figure 34 – The intervertebral disc of a porcine specimen (transverse plane view). The annulus lamellae 
surrounding the softer nucleus pulposus are visible in the anterior portion of the disc. 

3.2.1 The Nucleus Pulposus 

The NP is defined as a semi-fluid, amorphous, highly hydrated and proteoglycan-rich region 

located in the center of the IVD and surrounded by the AF [19,452,460-461] (figure 34). It can also 
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be located in a somewhat eccentric position, slightly posterior, as it seems to occur for cervical and 

lumbar discs [462-464].  

The NP occupies a significant volume of the IVD. In the case of lumbar specimens, on average, 

it represents 43% of the disc volume [462] and 60% of the cross-sectional area of lumbar discs 

[465]. In cervical IVD the NP seems to occupy a smaller area since its diameter represents on 

average about 38% of the disc diameter [463].  

The NP consists of a dense and random three dimensional (3D) network of collagen fibers 

enmeshed in an extracellular matrix rich in proteoglycans and water [466-469]. Thus, the main 

components of the NP are water, proteoglycans and collagen. 

Between 80% of the NP weight is due to water molecules [467]. Water content varies with age 

[467,470], health state [471] and the loads applied to the spine [472-473]. It also suffers diurnal 

changes loosing water during the active day and recovering it during the resting night. Lumbar 

discs, for example, lose and regain approximately 20% of water every day [474] and most of the 

loss occurs during the first hour of the morning [475]. Interestingly a permanent loss of 20% of 

water seems to occur with aging [467]. Water loss can be simulated in vitro submitting the IVD to a 

compressive load of 150N during a period of two to six hours [463,476]. It was confirmed that a 

reduction of about 0.50 mm in the height of a cervical SMS under a compressive load of 150N 

corresponds to a loss of 10% in the height of the IVD [463]. 

Proteoglycans contribute to about 50% of the NP dry weight [456]. They present a core protein 

to which glicosaminoglycans (GAG), or mucopolysaccharides, are linked [452,454,466]. These 

GAG are heteropolysaccharides with highly negatively charged molecules that are capable of 

absorbing sodium and water (the NP hydrophilic property) [454]. This protein polysaccharide 

complex is often called a mucoprotein gel [466] and is responsible for the hydrostatic and viscous 

nature of the IVD [469].  

Collagen accounts for about 15 to 20% of the dry weight of the NP [456]. Predominant collagen 

is of type II while type I collagen seems to be absent [372]. Spherical chondrocyte-like cells that 

synthesize the type II collagen and similar to those seen in articular cartilage are also present in the 

NP [477-480]. Collagen type II is thought to resist compressive load [478]. 

In the mechanical view the NP is considered to be incompressible [421,426,439,481-482] or a 

pure Newtonian fluid with a bulk modulus [443]. It seems to exhibit an isotropic and hydrostatic 

behavior [421,439,463], well designed to act as a cushion, increasing the intradiscal pressure 

linearly under compressive load [259,465,478,483]. 

In the anatomic position the IVD is already submitted to a continuous pressure caused by the 

weight of the body above the disc level and the residual muscle tension or tonus. This pressure is 

measured in the NP and seems to depend on the applied load relative to disc area. Both 

parameters increase in the cephalocaudal direction, particularly from one region to another, 
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suggesting the increase in disc area compensates the increase in load. Moreover, IVD stresses 

seem to be inversely proportional to disc size [463] suggesting the increase in area is the most 

relevant factor and contributes effectively to a reduction of pressure. In fact, the pressures in the 

cervical discs seem to be higher than those in lumbar discs [483]. In the cervical region of 

cadaveric specimens, the corresponding average pressure (from C2-C3 to C7-T1) in neutral 

position was about 1.09 MPa for a load of 200N representing the combined effects of head weight 

and muscle tension [463]. Higher loads lead to higher pressures as observed in the study of 

Cripton et al. [483]. In this study pressure increased linearly with compressive loading up to 800N, 

while depending on the disc level. At the maximum load of 800N disc pressure was about 2.4 MPa 

for C4-C5 level and 3.5 MPa for C3-C4 level [483]. In the lumbar discs, in vivo studies reported a 

disc pressure of 0.5 MPa at the level L4-L5, with the subject in the anatomical reference position 

[307,484]. The same pressure was observed for a compressive load of 500N [485]. For 

compressive loads of 800N lumbar disc pressures did not exceeded 1 MPa [486]. In FEA lumbar 

pressures usually do not exceed 2 MP [421,482]. As a “gross” rule it was proposed that a load of 1 

kN leads to a pressure of 1.0 MPa in lumbar IVD and 3.75 MPa in cervical IVD [483]. Finally, in the 

thoracic region the in vivo average pressures found in upright standing for the upper region (T6-T7 

and T7-T10) and lower region (T9-T10 and T10-T11) were of 1.01 and 0.86 MPa, respectively 

[487]. 

In table 6 some physical and mechanical properties of the NP that have been implemented in 

FEA studies of lumbar discs are presented. 

Table 6 – Mechanical properties of the nucleus pulposus  

Properties Reference 

Isotropic, incompressible, hyperelastic Mooney-Rivlin formulation. 

C1 = 0.12 ; C2 = 0.03 ;  = 0.4999 

[439] 

Incompressible, fluid-filled cavity 

 = 1.0 E
-6
 kg/mm

3
 

[421] 

E = 0.1 MPa ;  = 0.499 [329,418,426,442,446-447] 

K = 2.5 MPa [443] 

E: Young’s modulus; C1 and C2: material constants; K: bulk modulus; : Poisson’s ratio; : density 

3.2.2 The Annulus Fibrosus 

The AF is a solid elastic ring that forms the main mass of the disc and encloses the NP [452]. It 

attaches above and below to the central portions of the endplates, to the cortical ring and to the 

sides of the vertebral bodies [460]. Its peripheral portion also fuses to the anterior and posterior 

longitudinal ligaments, making them inseparable [460]. 
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Water is the main component of the AF and represents on average 70% of the AF weight 

[467,488]. Collagen fibers represent about 65 to 70% of the dry weight of the AF [456]. 

Proteoglycans account for about 10 to 20% of the dry weight of the AF [456]. 

For mechanical and modeling purposes the AF can be considered as a composite material with 

a homogeneous ground substance (matrix) reinforced by a collagen fiber network.  

The homogeneous ground substance or matrix (mesenchyme) fills the space between the 

collagen fibers and is described as an amorphous proteoglycan-rich gel [461].  

The collagen fiber network was observed for the first time in 1932 by Beedle [489] and it is 

made of lamellae, a series of discontinuous concentric layers [460,490] that may range between 10 

to 25 [372,490-491]. Some layers can merge into each other [492-493]. The posterior AF seems to 

present fewer distinct lamellae, and subsequently a greater number of incomplete lamellae as 

compared to the anterior AF [493]. 

Intra and inter-lamellar matrices of ground substance can be distinguished [469]. The intra-

lamellar matrix is the connective tissue found between parallel collagen fibers. It functions to keep 

collagen fibers tightly bound together. The inter-lamellar matrix is comprised of similar components 

but is located between adjacent layers of the annulus, and helps to prevent delamination between 

these layers. 

The relative volume content of the collagen fibers with respect to the surrounding ground 

substance may vary. An average value of 19% was proposed [415,426,446]. However it may vary 

accordingly to the fibers location, for example, from 23% at the outer layer to 5% at the inner fiber 

layer [441]. 

Within each lamella the collagen fibers are arranged parallel to each other, making 

approximately a 30º angle to the transverse plane [461,490-491,494]. In consecutive lamellae 

slope orientation alternates from positive (counterclockwise) to negative (clockwise) [490]. 

Nevertheless, this slope seems to vary according to the region of interest as it was observed for the 

outer AF fibers, varying from 23º anteriorly to 47º posteriorly [495-496].  

The highly orientated and layered structure of the collagen fibers of the AF suggests that its 

behavior is nonlinear and anisotropic [443]. Thus, for FEA purposes it is usually modeled as an 

anisotropic material with hyper elastic properties [421,443,497]. These hyper elastic properties are 

probably due to the elastic fibers that run parallel to type I collagen fibers in the intralamellar space 

and have a less isotropic arrangement in the interlamellar space [461]. These fibers are 

responsible for the resilience and low strain stiffness of the AF, complementing the role of collagen 

fibers [461]. Their density in lumbar disc is significantly higher in the posterolateral region than the 

anterolateral one as well as in the outer regions, rather than the inner regions of the AF [461].  

Equally, the morphology of the collagen fibers seems to vary according to the region of interest. 

The inner AF is more similar to the NP in its composition, presenting more type II collagen than 
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type I [372,477-478,480]. At the extreme portions of the outer AF only type I collagen seems to 

exist [461]. The thickness of each lamella in the inner annulus is approximately 300 µm while it is of 

approximately 130 µm in the outer [490-491]. 

The outer AF is composed primarily of collagen type I, which is more elastic than type II 

[372,467,491] and gives the AF the ability to deform and restrain the NP content when the IVD is 

loaded. These loads can occur parallel, perpendicular or circumferentially to the collagen fibers 

[498-499] affecting the mechanical properties of single or multiple layers of the AF. Collagen type I 

is considered to resist tensile rather than compressive forces [478]. Type I collagen is synthesized 

by the fibrochondrocyte-like disc cells. These cells are elongated and fusiform, with long processes 

radiating from the cell bodies and parallel to the collagen fibers, and are thought to act as 

mechanoreceptors [477,480].  

Maximal physiologic circumferential strains observed along the outer AF are about 4% in 

compression or torsion, and about 6% when in flexion or extension [500]. A FEA study suggested 

the maximal strains of the AF are about 10 and 20% during symmetric and non-symmetric lifting 

activities, respectively [501]. They seem to be higher in the innermost AF layer at the posterolateral 

location [501]. 

The Young’s modulus and tensile strength seem to be higher in the direction parallel to the 

collagen fibers [502]. In the case of single lamella specimens the Young’s modulus ranged from 28 

to 78 MPa [495]. It was of 0.22 MPa when load was applied perpendicular to the collagen fibers 

[495]. Failure stress was also calculated for single lamella of lumbar discs and results suggested a 

dependence on their location on the AF [498]. In the AF anterior outer portion the results were of 

10.3 ± 8.4 MPa and higher than those observed for the anterior inner portion (3.6 ± 2.0 MPa) [498]. 

Those of the posterior outer portion (5.6 ± 3.2 MPa) were slightly lower than the observed for the 

posterior inner portion (5.8 ± 2.9 MPa). Nevertheless, adjacent single lamellae seem to have 

similar tensile strength, suggesting local uniformity in the AF mechanical behavior [498]. 

The collagen fibers are also capable of changing their orientation with tension forces [469]. 

During axial compression and circumferential tension the fibers become closer to horizontal [503-

504]. During flexion the anterior fibers also become closer to the horizontal but the posterior fibers 

become closer to vertical [503-504]. Under torsion the fibers in every second layer become slack 

and their angle closer to the vertical, while the fibers in the alternating layers become more tense 

and horizontal [503]. 

The contribution of inter-lamellar cohesion to the strength of the outer lamellae seems to be low 

[505-506]. In fact if stretched perpendicularly to the direction of the fibers, the adjacent lamellae are 

easily pulled apart [505-506]. This delamination phenomenon was proposed to explain the 

mechanism of herniation progression [507] in which the NP squeezes through the AF pushing 

through weak inter-lamellar bonds rather than rupturing the AF fibers [469]. 
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Shear mechanical properties of human lumbar annulus were also analyzed. Results suggested 

that, in thin transverse slices of the anterior AF, shear modulus increase with strain rates and 

decreases with strain magnitude [508]. It was also observed that shear modulus was higher in the 

axial than in the circumferential direction; the outer higher than the inner [506]. 

In table 7 some mechanical properties of the AF that have been implemented in FEA studies 

are presented. 

Table 7 – Mechanical properties of the annulus fibrosus 

Material Properties References 

Ground 
substance 

(ground matrix) 

isotropic, incompressible,  

hyperelastic Mooney-Rivlin formulation.  

C1 = 0.18 ; C2 = 0.045 ;  = 0.45 

[439] 

Isotropic. 

E = 4.0 MPa ;  = 0.4 
[421] 

E = 4.2 MPa ;  = 0.45 [329,415,418,426,442,446-447] 

Collagen fibers nonlinear function obtained from stress strain curve [439,448] 

Isotropic, no compression  

E = 45 MPa 
[421] 

nonlinear behavior 

Outermost fiber layers E = 550 MPa ;  = 0.3 

Intermediate fiber layers E = 485 MPa ;  = 0.3 

Intermediate fiber layers E = 420 MPa ;  = 0.3 

Innermost fiber layers E = 360 MPa ;  = 0.3 

[329,426,442,509] 

E: Young’s modulus; C1 and C2: material constants; : Poisson’s ratio 

3.3 The Facet Joints 

The articular processes of adjacent vertebrae create a joint which is called the facet joint 

(zygapophyseal or apophyseal joints) (figure 35). There is a facet joint on each side of the SMS, 

typically behind the spinal nerves as they emerge from the central spinal canal. The surfaces of the 

facet joint are capped with cartilage and the joint is contained in a capsule lined by synovium. 
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Figure 35 – Location of the facet joints. 

The facet joints are gliding synovial joints and contribute to support the weight above them and 

to control movement between individual vertebrae of the spine [455]. In fact, these joints are 

capable of accomplishing two important functions: give kinematic constraints to the movement of 

the SMS and to withstand the loads applied to the SMS [409].  

The two facet joints together with the IVD form the SMS joint complex. Usually, abnormalities of 

any one of the three affects the other two [510]. However, it is also possible that degenerative 

changes in the disc may reach a marked degree without severe changes in the facet joints or vice-

versa [510]. 

In several studies the facet cartilage was assumed to be multilinear elastic in compression 

[439,446]. The facet joints can be modeled as planar surfaces interacting with a frictionless 

exponential pressure-over-closure relationship reflecting frictionless nonlinear contact properties 

[417,426,446,511-512]. In the case of compressive forces, the facet joints seem to be capable of 

sustaining up to approximately 30% of the load, particularly when the spine is in hyperextension 

[513]. 

3.4 The Ligaments 

The ligaments of the spine can be classified as multisegmental or intersegmental. 

Multisegmental ligaments run along the entire spine and intersegmental are attached between the 

spinal processes of adjacent vertebrae. The major ligaments of the spine are distinguished as 

follows [460] (figure 36): 
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 The anterior longitudinal ligament (ALL): a multisegmental vertical band of fibrous 

tissue. It has uniform width and is very strong, being firmly attached to the whole 

anterior and medial surface of each vertebral body; 

 The posterior longitudinal ligament (PLL): a multisegmental vertical band of fibrous 

tissue, which is attached to the IVD and to the superior and inferior margins of the 

vertebral bodies; 

 Supraspinous ligament (SSL): a multisegmental ligament that runs on top of spinous 

process from the cervical region to the sacrum; 

 Interspinous ligament (ISL): an intersegmental ligament connecting the spinous 

processes of adjacent vertebrae, namely, the inferior edge of the superior spinous 

process to the superior edge of the inferior spinous process; 

 Ligamentum flavum (LF): an intersegmental ligament connecting the laminae of 

adjacent vertebrae; 

 Intertransverse ligament (ITL): an intersegmental ligament connecting the transverse 

processes of adjacent vertebrae; 

 Capsular ligament (CL): an intersegmental ligament which is part of the articular 

capsule of the facets joint. 

 

Figure 36 – Partial mid-sagital cut view of multisegmental and intersegmental ligaments of the spine 
[356]. 
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In table 8 some geometric properties of the spinal ligaments of a lumbar SMS are presented. 

Table 8 – Geometric properties of spinal ligaments at the spinal motion segment level 

 ALL PLL LF ISL SSL CL ITL References 

Length (mm) 10 10 16.5 14.25 13 4.8 4.8 [426] 

Cross-sectional area (mm2) 63.7 20 40 30 40 30 30 [418,442,447] 

ALL: anterior longitudinal ligament; PLL: posterior longitudinal ligament; LF: ligamentum flavum; ISL: interspinous ligament; 
SSL: Supraspinous ligament; ITL: intertransverse ligament; CL: capsular ligament. 

 

A natural ligament exhibits strong nonlinear load/deformation behavior [481]. 

In table 9 some mechanical properties of the spinal ligaments that have been implemented in 

FEA studies are presented 

Table 9 – Mechanical properties of spinal ligaments 

Ligament properties ALL PLL LF ITL CL ISL SSL References 

Small strain Young’s 
modulus (MPa) 

7.8 10 15 10 7.5 8 10 [418,442,447] 

Young Modulus (MPa) Isotropic E = 6 to12 [418,421,442,514] 

Transition strain (%) 12 11 6.2 25 25 20 14  

Large strain Young’s 
modulus (MPa) 

20 50 19 33 33 15 12 [418,442,447] 

Max. failure load (N) 510 384 340 284 284 130 200 [481] 

ALL: anterior longitudinal ligament; PLL: posterior longitudinal ligament; LF: ligament flavum; ISL: inter spinous 
ligament; SSL: supra spinous ligament ITL: intertransverse ligament; CL: Capsular Ligament;  
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4. Guidelines for Testing 

Some standardization exists concerning the study of the spine. The majority of standards have 

been published by ISO and the American Society for Testing and Materials (ASTM International)
 
to 

regulate the design and implantation of spinal implants or prostheses and ensure good implantation 

results. Spinal implants are foreign bodies which are used to replace degenerated spinal 

components functioning below an acceptable level, for example a degenerated and painful IVD. 

Nevertheless, whenever applicable or possible, the same standards can be followed or adapted to 

perform experimental studies with other purposes. In fact, the best and effective way to compare 

results from different sources is to apply the same standardized test protocols. 

The ISO category that regulates spinal implants has the International Classification for 

Standards (ICS) number 11.040.40. These standards have been published by the ISO Technical 

Committee (TC) 150, named “Implants for surgery”, which was created in 1971. The Deutsches 

Institut für Normung (DIN) is the TC150 secretariat. Presently, ISO TC150 is formed by seven 

subcommittees (SC) and three working groups (WG). The complete reference where spinal 

implants standards can be found is the ISO TC150/SC5. This reference can be found in the ISO 

catalogue along with other important standards related with the process of testing medical devices. 

Among them, emphasis should be given to those published by ISO TC 108/SC 4 (Mechanical 

vibration, shock and condition monitoring: Human exposure to mechanical vibration and shock), 

TC76 (Transfusion, infusion and injection equipment for medical and pharmaceutical use), TC84 

(Devices for administration of medicinal products and intravascular catheters), TC121 (Anaesthetic 

and respiratory equipment), TC135 (Non-destructive testing), TC159 (Ergonomics), TC168 

(Prosthetics and orthotics), TC170 (Surgical instruments), TC194 (Biological evaluation of medical 

devices), TC209 (Cleanrooms and associated controlled environments), TC210 (Quality 

management and corresponding general aspects of medical devices), and TC212 (Clinical 

laboratory testing and in vitro diagnostic testing systems). 

The ASTM Committee F04 (Medical and surgical materials and devices), particularly the 

subcommittee 025 are the appropriate ones to find standards concerning spinal implants and 

prostheses. Besides F04.025 subcommittee, significant information can be also found in standards 

published by subcommittees, F04.11 (Polymeric materials), F04.12 (Metallurgical materials), 

F04.13 (Ceramic materials), F04.15 (Material test methods), F04.16 (Biocompatibility test 

methods), F04.21 (Osteosynthesis),  F04.22 (Arthroplasty), F04.41 [Classification and terminology 

for tissue engineered medical products (TEMPs)], F04.42 (Biomaterials and biomolecules for 

TEMPs), F04.43 (Cells and tissue engineered constructs for TEMPs) F04.44 (Assessment for 

TEMPs), and F04.97 (Editorial and terminology). 

The papers published by Panjabi et al. [515-517], Ashman et al. [518], Adams [519-520], Wilke 

et al. [414,521-524], and Goel et al. [525] are also among the most valuable resources addressing 

spinal testing protocols. 
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Usually, a complete set of standards for testing implantable spinal devices includes the topics of 

biocompatibility, materials requirements, mechanical testing, FEA, in vivo animal testing, and 

clinical trials [525]. For the purpose of the present work the topics of mechanical testing and in vivo 

animal testing are the most relevant and will be addressed
7
. 

The mechanical testing of SMS requires ex vivo specimens and loading machines. These 

experiments are of major important in the case of spinal implants since they represent the step 

before in vivo animal testing and clinical trials. They are also important to test new sensors and 

surgical techniques, or to validate the results obtained from FEA studies. 

4.1 Ex Vivo and In Vivo Specimen 

Ideally, healthy human cadaveric and fresh specimens are preferred. In the fresh state 

specimens should be tested few hours after death and dissection [526-527]. Formalin-fixed 

specimens have their biomechanical properties affected and are not recommended for 

biomechanical and clinical testing [521,528-529]. Degenerated and osteoporotic spines as well as 

those with significant injury or tumors should not be used as well, particularly for testing spinal 

implants [414]. Nevertheless, several recommendations exist to implant spinal devices in 

osteoporotic spines [530-532]. The quality of the IVD and bone should be assessed from 

quantitative measures obtained with CT, MRI or other methods [414,533]. Several factors can 

affect the vertebral bone density such as race, age, sex, menopause, nutrition and physical 

exercise [534-538]. 

More than one specimen has to be tested to allow statistical analysis, particularly for 

repeatability and reproducibility. In the case of spinal implants six specimens are recommended 

[414], and groups should be formed accordingly to sex, age, cause of death, bone mineral density 

and length [414,525]. 

Specimens should be sealed in double or triple plastic bags. If it is not possible to test them 

fresh, they have to be stored frozen at -20 to -30 °C and thawed out several hours before testing 

[259,414,539-540]. Freezing and thawing out at room temperature seems to have little effect on the 

biomechanical behavior of the bone and soft tissues [515,541-543]. Even so, the time spent in the 

thawed condition at room temperature should be reported, because the properties of the 

specimens after twenty hours will begin to change [414,419]. Moreover, freezing seems to modify 

the ultimate compressive load of the SMS and its creep behavior [544-545]. Tests should be 

performed between 20° and 30 °C [414]. Higher temperatures can accelerate the cellular autolytic 

process and compromise the biomechanical properties of the specimen [414].  

Mechanical tests on soft tissues are usually performed with the specimen immersed in a 

physiological solution at constant temperature. In some studies the SMS specimen was kept in a 

                                                           
7
 A more complete description of spinal implants, standards and testing protocols can be obtained from the report of Intelligent and Bio-

inspired Products: Spinal implants and Prostheses (see Academic Work, p.7). 
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Ringer’s solution
8
 before and during the tests [546]. Nevertheless full immersion of the specimen 

can introduce artifacts during mechanical testing [419,547-549]. Swelling can either be reversed or 

prevented by axial compression in the physiologic range or with iso-osmotic solutions [547-548].  

Specimens also need to be protected against drying. A 100% humidity chamber should be used 

for that purpose [414]. Alternatively, dehydration can also be prevented wrapping the specimens 

loosely in plastic, a food-packaging wrap or in gauze tissue moistened with saline [414,540]. 

Spraying the specimen intermittently with 0.9% saline further assures its moist condition [414] and 

has a negligible effect on the mechanical behavior of the specimen [419]. Hydrophilic samples 

should be pre-soaked prior to testing and then the initial weights should be recorded accordingly. 

Extrapolations from experiments with ex vivo or even in vivo animal specimens to human 

purposes may be controversial [414,516,525]. In fact, there are substantial anatomical differences 

between humans and animal specimens that may compromise the validity of the results [550]. Most 

reliable data is obtained when tests are performed directly on living subjects or on human 

cadaveric specimens [414,551]. Even so, a cadaveric model will not accurately represent the 

response of the spine or the SMS to loading in vivo [551]. For example, the muscle forces are 

usually neglected because muscles are dissected from the specimen. Nevertheless, animal 

specimens must not be underestimated. In the case of spinal implants, for example, ex vivo and in 

vivo animal experiments are mandatory before clinical trials. Some animal specimens such as the 

calf and sheep are considered to be valid for specific purposes, such as for ROM measurements, 

study of the stabilization capacity of spinal implants, and disc hydration [414,522,524,550,552-553]. 

Furthermore, in the case of spinal implants, there is a strong basis to compare the output data of 

new implants to those that were tested before and approved for human use [414]. The use of other 

animal species should also not be neglected. It has have been useful to test new approaches, 

methodologies and techniques with potential to be explored in veterinary or human applications 

[20,552]. Still, in such cases and taking the ideas just presented into account, the results should not 

be extrapolated to human purposes, particularly if no human data is available.  

Major risk concerning use of cadaveric specimens is infection (AIDS, hepatitis and others) [414]. 

In vivo animal testing is performed to assess the structure, function, histology, and the 

biomechanics of the device in situ, a final and decisive step before clinical trials [525]. Use of 

comparable surgical techniques and approaches as in humans is strongly recommended [525]. 

Animal welfare requirements are standardized (ISO 10993-2:2006). 

Several species have been used, from rats to rabbits, sheep [524,554], goats, dogs [555], pigs 

and baboons [525,556]. The sheep and the baboon are often used for the cervical and lumbar 

regions, respectively, and to evaluate interbody devices [525,554]. Smaller primates can be used to 

                                                           
8
 Introduced by Sidney Ringer in 1882. The solution contributes for tissue preservation and contains sodium chloride (6 g), potassium chloride 

(0.075 g), calcium chloride (0.1 g), and sodium bicarbonate(0.1 g), in the concentrations in which they occur in body fluids. If sodium lactate is 
used instead of sodium bicarbonate, the mixture is called lactated Ringer’s solution. 
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approximate load modes, but larger primates, such as baboons, are required to simulate both load 

magnitude and direction [525]. 

Animals are particularly suitable to evaluate both implant and implant-tissue interface behavior, 

such as resorption (for instance with polylactic acid and/or polyglycolic acid devices), static 

compressive strength, wear, cracking, and deterioration [525]. The interface may be investigated 

for subsidence (endplate deterioration), fixation (migration of the device), ingrowth (into 

osteoconductive coatings), and possible wear debris effects on neural elements and surrounding 

tissues [525]. 

In most animal studies, a systemic analysis is also commonly performed, including the 

histopathologic response in local and systemic tissues to device material and possibly wear debris 

generated in non-failure and failure modes [525]. Pathologic assessment for all tissues should 

include but not be limited to comments on the architecture of the tissues and the presence of wear 

debris, as well as any signs of foreign-body giant-cell and/or granuloma inflammatory reactions, 

degenerative changes, or autolysis [525]. For motion preservation devices, the segmental stiffness 

properties through the normal ROM may be investigated [525]. 

Limitations of animal studies, as was already mentioned for ex vivo research, include 

dissimilarities between human and animal spines with respect to the spinal loads, spinal motions, 

anatomy, and the difficulties in adjusting a spinal device (or sensor) to properly fit the animal spine 

[525]. 

4.2 Spine Wear Simulators 

A loading device or a spine loading simulator is a special test apparatus in which spinal 

specimens can be mounted and tested under defined loading conditions [414]. These simulators 

are mandatory to characterize the in vitro or ex vivo mechanical behavior (e.g., wear) of new spinal 

devices and compare them with those clinically accepted [557-558]. They have been designed to 

replicate the static and dynamic loading conditions, motion patterns and lubrication/physiologic 

conditions that are observed in vivo. To accomplish the previous purpose, a spine loading simulator 

should fulfill ISO standards, namely the ISO 18192-1 (Loading and displacement parameters for 

wear testing and corresponding environmental conditions for tests) [414,557-558]. Some general 

guidelines of ISO 18192-1 include: 

 Test specimens from all spine regions; 

 Test single SMS, multiple SMS and entire spines; 

 Allow the specimen to move freely in all six DOF; 

 Apply all the six loading components separately, in both directions, and without 

manipulation; 

 Provide all loading combinations; 
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 Allow application of loads in a continuously or in stepwise mode. 

ISO 18192-1 also defines the loading and motion profiles for cervical and lumbar SMS as well 

as the lubrication requisites. In table 10 these parameters are compared to the ASTM F2423-05 

(Standard guide for functional, kinematic, and wear assessment of total disc prostheses) [559]. 

Table 10 – Comparison between ISO 1892-1 and ASTM F2423-05 

Test parameters ISO 1892-1 ASTM F2423-05 

Loading profile Cervical Lumbar Cervical Lumbar 

Load limit (N) 50-150 600-2000 100 1200 

Frequency (Hz) 1.0 2.0       2.0 

Tolerance (%)                           ±5      ±5 

Motion profile     

Flexion/extension (FE) ±7.5º +6.0º/-3.0º ±7.5º ±7.5º 

Lateral bending (LB) ±6.0º ±2.0º ±6.0º ±6.0º 

Axial rotation (AR) ±4.0º ±2.0º ±6.0º ±3.0º 

Phase angles LB phased by 90° from FE; AR and LB phased 
by 180° 

User defined 

Frequency (Hz) 1.0 ±0.1 (up to 2.0) 2.0 2.0 

Tolerance ± 0.5° at the peaks ± 0.5° at the peaks 

Lubrication     

Temperature 37±2 °C 37±3 °C 

Protein additives Sodium Azide or other anti-bacterial/antimycotic and  

ethylenediaminetetraacetic acid (EDTA) 

Protein concentration 30g/l 20g/l 

PH monitoring optional Not mentioned 

Fluid collection 0.5 million cycles 1.0 million cycles 

 

Regardless of the loading protocol that can be used, a “free-end model” approach is 

recommended in the construction of spine simulators [557]. In this approach loads are applied to 

the cranial vertebra, while the caudal vertebra is fixed and reacts to the forces. A six-component 

load cell is fixed into the base of the loading machine to measure the net reaction forces applied to 

the caudal vertebra [414]. Thus, fixing the specimen to the holder of the spinal loading simulator is 

a critical step. The caudal vertebra should also have an orientation approximating that in situ and 

matching the global coordinate system of the test apparatus [414]. If compression loads are the 

only to be applied, depending on the SMS that is used, it may be necessary to partially cut the 
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cranial and caudal vertebral bodies to maintain them parallel and ensure one DOF in load 

application [138]. Both, the cranial and caudal segments, should be potted in a suitable polymeric 

or low-melting-point alloy, such as PMMA [414,557]. Anchoring the specimen in the potting medium 

may be improved with screws set partly into the specimen and several thread-pitches and the 

screw head jutting into the potting [138,414]. 

Wilke et al. [414] have also presented a set of procedures to accomplish during testing of spinal 

implants: 

 The project title and number; 

 Specimen data, including sex, age, weight, cause of death; 

 Preparation methods; 

 Test series order; 

 Moment and distraction magnitudes for screws, clamps, and hooks; 

 Test apparatus drawings and functional description; 

 Preconditioning of specimens; 

 Environmental conditions (temperature, humidity); 

 Control parameters (loading magnitude and speed); 

 Test duration. 

These procedures can be followed or adapted to many other experiments and will contribute for 

the reproducibility of the results and better data comparison. To follow the previous guidelines 

seems a relatively easy task if research centers possess a well-designed spinal loading simulator. 

Nevertheless, those commercially available are quite expensive (their price may exceed 

€250,000.00) and for that reason many research centers have to customize their loading simulators 

and protocols, which may difficult data comparison [560-561]. 

Some of the current commercially available spine simulators are (figure 37): 

 the PROSIM Hip & Spine Implant Wear Simulator (Simulation Solutions Ltd, UK; 

www.prosim.co.uk); 

 the Bionix Spine Wear Simulator (MTS, MN, USA; www.mts.com); 

 the EndoLab® Spine Simulator (EndoLab Mechanical Engineering GmbH, Thansau, 

Deutschland; www.endolab.org); 

 AMTI simulators (AMTI, MA, USA; www.amti.biz), such as the ADL Hip Simulator, ADL 

Force 5, and the VIVO
TM

 simulator; 

 the BioPuls
TM

 Multi-axial Spine Testing System (Instron, MA, USA; www.instron.us); 
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 Bose simulators (Bose Corporation ElectroForce Systems Group, MN, USA; 

http://worldwide.bose.com/electroforce), such as the multi-axial Kinematic Spine 

Simulator, the ElectroForce Spinal Disc Fatigue/Wear system, and the Multi-specimen 

ElectroForce® BioDynamic® test instrument. 

 

Figure 37 - Spine simulators [Adap. 562,563-569]. 

A comparative description of some of these simulators is listed in table 11. 
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Table 11 – Comparison of basic features of some loading simulators* 

Features/Simulator PROSIM Bionix EndoLab ADL Hip Simulator ADL Force5 VIVO Bose* 

Test wear/ Load-soak stations 6/2 6/2 6/2 6+6/-- 1/-- 1/--  

Max. axial load (kN) 

Max. axial Displacement (mm) 

Up to 5 

-- 

4  

+12.7/-3.2 

5 

-- 

4.5 

±25 

±4.5 

±25 

±4.5 

-- 

±5.6 

±50 

Max. flexion/extension: 

ROM (º) 

Torque (Nm) 

 

±60° 

-- 

 

±10° 

15 

 

30°/25° 

-- 

 

±55° 

20 

 

±100º 

45 

 

±100º 

-- 

 

120º/-60º 

±15 

Max. lateral bending: 

ROM (º) 

Torque (Nm) 

 

±20° 

-- 

 

±10° 

15 

 

20°/15° 

-- 

 

±20° 

20 

 

-- 

-- 

 

±30º 

-- 

 

±60º 

± 15 

Max. int./ext. rotation: 

ROM (º) 

Torque (Nm) 

 

±30° 

-- 

 

±7.5°  

10  

 

9°/9° 

-- 

 

±20° 

8 

 

±100º 

45 

 

±40º 

-- 

 

±50º 

0.074 

Max. ant./post  

Load (N)  

Displacement (mm) 

 

-- 

-- 

 

zero to fully locked 

±4.5 

 

-- 

±20 

 

-- 

-- 

 

±4500 

25 

 

-- 

±25 

 

±1000 

±50 

Max. left/right 

Load (N) 

Displacement (mm) 

 

-- 

-- 

 

zero to fully locked 

±4.5 

 

-- 

±20 

 

 

 

-- 

-- 

 

-- 

±25 

 

±1000 

±50 

ISO standards 

 

ASTM standards 

18192-1 

 

-- 

18192 

 

F2624 

18192-1 

 

-- 

12189 

18192-1 

F1717-04 

F2423-05 

12189  

18192-1 

F1717-04 

F2423-05 

16402 

18192-1 

F2790-10 

F2694-07 

-- 

 

-- 

References [562,570-572] [573-577] [576,578-581] [576] [568] [569] [582] 

* BioPuls and other Bose simulators were not described due to lack of information
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4.3 Load Protocol 

Precondition loads and the load protocol are among the most critical issues in spine testing 

since both can affect the mechanical behavior of the specimen [583-586].  

Translational and rotational preloads in clinically relevant loading modes may simulate the effect 

of spinal muscles [525]. In the lumbar region, a preload of 400 N (about 60% of the body weight 

above L3-L4 disc level of an average person) with a maximum of 1000 N is recommended to test 

spinal implants [525]. For the cervical region the preload may range from 50 to 100 N (about one or 

two times the weight of the head) [525]. In both cases a progressive increase of compressive load 

should be used [586].  

Loading precycles should also be applied in the three primary test directions, in both positive 

and negative directions, to minimize the viscoelastic behavior of the specimen and ensure 

reproducibility [414]. The first two cycles of at least three cycles shall be used as precycles [414]. In 

fact, the load displacement behavior of the first two cycles can be clearly distinguished, while the 

difference between the 2
nd

 and 3
rd

 cycles is considerably reduced [414]. The 3
rd

 cycle in many 

cases is nearly identical to all subsequent cycles [414]. For this reason the 3
rd

 cycle is usually 

recommended for analysis [414,525]. If this is not the case the cycles should be repeated until a 

reproducible result is achieved [414]. In any case, the rate of loading and the number of 

preconditioning cycles should be reported [414]. 

There is however some controversy considering the application of preloads. Their effect on the 

results seems to be dependent on its location with respect to the segment center of rotation  

producing satisfactory results only in flexion and extension [586]. Others have concluded that the 

quality of the measured data with and without preloads is similar [525]. Thus, tests without preload 

may also be acceptable for comparative evaluation of spinal instrumentation. 

Loads can be applied using two basic protocols, the displacement control or stiffness protocol 

and the load control or flexibility protocol [525]. In the first a known displacement is applied at the 

free end of the specimen and the resulting loads and motions across various segments are 

quantified. In the second, motion is measured in response to a known load.  

As previously mentioned the reaction loads and moments are usually measured at the caudal 

end of the specimen [414]. Their directions have also been normalized [414,525,587]. 

Spinal simulators can present several possible combinations. In the case of EndoLab 

simulators, for example, motions are applied in the caudal end and loads are applied in the cranial 

end [559]. In the case of Bionix simulators, flexion/extension and lateral bending motions are 

applied in the cranial end while the axial load and the axial rotation is applied in the caudal end of 

the station [559]. 



The Spinal Motion Segment: A Review 

Guidelines for Testing 

94 

 

Loads should be applied within the elastic range of the specimens [414]. As a general rule the 

load should be at least as high as that needed to achieve the normal ROM for the given specimens 

[414].  

Loading protocols may vary according to the region of the spine and the condition of the 

specimen [414]. Standard loading is defined as the three pure moments (flexion/extension, axial 

rotation, and lateral bending) without preload [414]. Moments of ±7.5 Nm [414] or ranging from 6 to 

10 Nm [525] have been suggested for the lumbar region. For the thoracic region ±5 Nm [414]. For 

the cervical region of ±1 Nm at C1-2 levels and of ±2.5 Nm from C2 to C7 [414], or ranging from 

1.5 to 3 Nm [525]. If osteoporotic spines are tested the magnitude of the corresponding moments 

should be reduced by one-half [414]. All spine simulators that have been described meet or exceed 

these recommendations. 

Moments should be applied in a quasistatic manner with three load-unload cycles and data 

recorded on the 3
rd

 load cycle [525]. Hybrid protocols (ISO/AWI 13077-1) intended to measure the 

effects of the spinal implant in the adjacent levels were also proposed [516,588-589]. The idea 

underlying hybrid approach is to produce an overall rotation of the implant model equal to the intact 

case [588]. 

Load combinations are recommended because they are capable of simulating in vivo condition. 

All combinations should be reported as well as the strategies used to apply them [414]. 

The loading rate seems to affect the stiffness of the specimen and should be controlled [419]. 

Moments of ±7.5Nm over the range of 0.6 to 5.1 °s
-1

 are recommended [419]. Much slower rates 

may introduce creep effects and much faster rates may amplify the effect of the mechanical system 

inertia [414]. If loading is applied stepwise, the time between load stepping and motion 

measurement at each interval should be reported [414]. 
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5. Final Remarks 

The SMS is the functional unit of the spine and it usually represents the general mechanical 

behavior of a given region of the spine. Its comprehension requires a global understanding of the 

spine, its regions, major anatomical components and curvatures. In the present review, special 

emphasis was given to the vertebrae and the intervertebral discs, focusing on their anatomical 

structure, histological and biomechanical properties. The guidelines for testing the SMS were also 

addressed. These guidelines are usually part of ISO or ASTM standards and should be followed 

because they represent an effective way to compare results from different sources. They also 

represent a strong contribute for those research centers interested in spine research, allowing them 

to understand their present limitations and define future investment and research lines. 
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Study 1 – Using Conventional Sensors to Assess 
Intervertebral Disc Bulging 9

                                                           
9
 Roriz P, Ramos A, Frazão O, Santos J, Simões J Não linearidade e anisotropia do anel fibroso do disco intervertebral submetido a 

compressão. In: I Simpósio de Biomecânica e Performance Humana, Universidade Fernando Pessoa, Porto, March, 25-6 2011. 
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1. Introduction 

A wide variety of strain gauges (SG) have been used to assess strain in body tissues, mostly in 

bone [117-125]. In fact, they are considered the gold standard measuring bone strain [26,120,590-

592].  

Technically, the surface for bonding a SG should be chemically clean (i.e., free of oil, greases, 

organic contaminants and soluble chemical residues), water proof and sufficiently rough [592]. 

Whereas this is relatively easy to perform with cadaveric bone [590] it seems more difficult to 

accomplish in soft tissues due to their high water content (between 65% to 80%) and strong elastic 

behavior [105,593]. Thus it may be hypothesized that in such kind of tissues the risk of debonding 

or faulty adhesion is increased and it can lead to underestimation or erroneous readings of strain 

[592].  Nevertheless, to our best knowledge, few studies have reported the use of SG glued directly 

to soft tissues [216]. Alternatively, SG can be fixed to special frames (buckles) which, in turn, are 

attached to the soft tissue [134,164-165]. Ravary et al. [105] provided an excellent review of these 

and other transducers that have been used to sense strain and force in soft tissues. The major 

problem of buckle transducers is their large dimensions restricting their use to large structures, 

such as the Achilles tendon, the anterior cruciate ligament or the patellar tendon [105,134].  For 

example, the dimensions of the implantable E-form buckle transducer may range between 95 mm 

and 3420 mm, for animal [105] or human [180] applications, respectively.  

The purpose of the present study was to demonstrate that SG can be successfully glued to the 

outer surface of the intervertebral disc (IVD) and provide readings of strain under compressive 

loads. 

The IVD is a fibrocartilaginous structure found between adjacent movable vertebrae of the 

spine. It acts as a load bearing structure preventing the vertebrae from contacting each other and 

protecting the nerve roots that irradiate from the spinal cord.  

In the mechanical view the IVD deforms under compressive load while the majority of soft 

tissues, such as tendons and ligaments, deform under tension loads. To accomplish this load 

bearing function the IVD has two main anatomical structures: the nucleus pulposus (NP) and the 

annulus fibrosus (AF). The NP is a semi-fluid (gelatinous) region located in the inside of the IVD. It 

consists of a three dimensional network of collagen fibers (mainly type II), enmeshed in a 

mucoprotein gel composed of water and proteoglycans [466-469]. Under compression it exhibits an 

incompressible [421,426,439,481-482] and isotropic [421,439] behavior. Thus, it acts as a cushion, 

increasing the intradiscal pressure under compression [259,465,478]. The AF encloses the NP like 

a solid elastic ring [452]. It is composed of a homogeneous ground substance (the matrix or 

mesenchyme) reinforced by a collagen fiber network. This network is arranged in a series of 

discontinuous concentric layers called lamellae [460,492]. The highly orientated and layered 

structure of the lamellae [481,491-492,494] along with the AF elastic content (mainly collagen type 

I) [372,467,491] suggests a nonlinear and anisotropic behavior [421,443,497,506,594-597]. In the 
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mechanical view the AF seems particularly well adapted to resist tensile forces resulting from the 

loads encountered during compression and torsion of the spine [478,598].  

Loads acting on the spine are usually followed by an increase in the NP pressure, a bulging 

action of the AF and a decrease of IVD height [496]. These actions will result in the increase of the 

strain, particularly in the outer portions of the AF and excessive load can contribute to disc 

disruption, degeneration and pain [599-600]. Thus, studying these actions seems an important 

topic. 
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2. Material and Methods 

One healthy disc of an ex vivo male porcine (weight: 9.2 kgf; age: 1.½ months) dorsal SMS was 

obtained by dissection, instrumented with SG and tested under compression using a mechanical 

testing machine. 

2.1 Specimen 

The SMS consisted of two adjacent vertebrae with the intervening disc and ligaments intact 

(muscles removed). The anterior longitudinal ligament was partially removed to allow SG 

placement on the anterior (ventral) surface of the IVD. When removing soft tissues it is important 

not to damage the IVD, mostly during the excision of the anterior longitudinal ligament which is 

firmly attached to the whole anterior and medial surface of the vertebral bodies. The whole process 

took about two hours. After dissection the SMS was stored in a sealed polyethylene bag, frozen to 

approximately −20°C for less than one week, and allowed to complete thaw at laboratory room 

temperature (25°C) before testing. Freezing and thawing should not significantly affect specimen 

physical properties [515,551].  To prevent dehydration the SMS was wrapped in tissue moistened 

with saline. The bone and disc status were confirmed by means of X-ray, visual inspection and 

manipulation, before and after the experiment. 

2.2 Specimen Holder Apparatus 

A built-for-purpose stainless steel specimen holder, consisting of two plates with drilled metallic 

rings for screw attachment, was used to fix and align the SMS with the compression machine 

(figure 38). 

 

Figure 38 - Top view of the specimen holder (removed the top plate and vertical jigs). 
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The cranial and caudal vertebral bodies of the SMS were partially cut, attached with screws and 

cemented to the plates and metal rings of the specimen holder. Bone cement also contributed to 

fulfill gaps and to allow a better distribution of stress during compression. Additionally, four vertical 

jigs were used to guide vertical motion and maintain the plates parallel to each other. The most 

critical issue concerning this procedure is the working time of bone cement (about 5 to 8 minutes 

after mixing). The whole process took about one hour. 

2.3 Strain Gauge Bonding 

Three previously soldered linear SGs (HBM 1-LY11-3/120) with a measuring grid of 3 X 1.4 mm 

and a grid carrier of 8.5 X 4.5 mm were bonded directly to the AF surface with a low viscosity 

cyanoacrylate adhesive (HBM Z70, Darmstadt, Germany) (figure 39). 

 

Figure 39 - Anterior view of the functional spinal unit and strain gauges bonded to the annulus fibrosus of 
the intervertebral disc. 

Two SGs (labeled as “left” and “right”) were glued to the anterolateral wall of the AF in order to 

measure circumferential strain (figure 39). One SG (labeled as “front”) was glued to the anterior 

wall of the AF in order to measure axial strain (figure 39).  

Initially the bonding area was marked, cleaned and degreased with alcohol. Then the area was 

slightly roughened with a dental tungsten carbide abrasive bur and cleaned again with alcohol. A 

polyurethane-based transparent dressing for wounds (Opsite spray, Smith & Nephew, London) was 

applied for waterproofing of the surface. Finally, the cyanoacrylate adhesive was applied and the 

SG oriented to the desired measurement position on the AF surface, and pushed using thumb 

pressure over a Teflon foil for 1 minute.  The whole process took less than one hour. 
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2.4 Testing Loading Machine 

A customized loading machine was used to apply a uniaxial compressive load to the specimen. 

It consisted of a servo-pneumatic system having a double effect pneumatic cylinder (Festo 

CRDNGS-80-200-PPV-A), a servo-valve (Festo MPYE-5-1/8-HF-010-B), an optical linear scale 

(Fagor SV- B220), and a load cell (AEP TC4) with 10 kN capacity and 0.1% resolution of that value 

[601] (figure 40).  All the control, monitor and data acquisition software were implemented using 

LabVIEW 8.0. The interface and the connection between the software and instrumentation devices 

were made using a hardware platform (National Instruments PAC CompactRIO). A more detailed 

description can be found elsewhere [601-602]. 

 

Figure 40 – A view of the complete setup. A detail of the specimen in situ is provided. 

2.5 Load Protocol 

A preload of 5N was slowly applied and maintained during testing to ensure permanent contact 

and alignment between the specimen holder and the loading machine. It also contributed to 

minimize zero shifts and allow more stable initial strain readings [26]. After this, two pre-

conditioning cycles were performed before data acquisition and a set of six repeated cycles was 

collected for analysis.  

A quasi-static compression load protocol was applied for each cycle. It consisted of a load part 

ranging from 0 to 200N and an unload part from 200 to 0N.  Load step was of 25N. Each load was 

held constant for a period of 30s and load transition time was set to be linear for a period of 0.5s 

(figure 41). 
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Figure 41 - Schematic representation of a load cycle. 

The load protocol, including previous alignment of the sample with the loading machine and SG 

calibration, took less than two hours. 

2.6 Statistical Procedures 

Related Samples Wilcoxon Signed Rank Test was applied to evaluate significant differences 

between trials (p≤0.05). To express strain measurements variability under repeated conditions 

(multiple trials or loading cycles) the standard variation (SD) and the coefficient of variation (CV) 

were calculated. The SD gives an idea of the variability at each point of the loading cycle (for each 

applied load) and the CV is a relative variability measure that can be used to “summarize SD” 

information over the whole cycle [603]. It is calculated as the ratio between the average standard 

deviation (SD) and the average mean (X) of the loading cycle (equation 1) 
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Equation 1 – Coefficient of variation     .     is the average standard deviation at step   of the loading 

cycle and   
  is the mean at step   of the loading cycle. N is the number of steps. 
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3. Results and Discussion 

One healthy disc was submitted to compression in order to measure strain in different locations 

of the AF. No signs of disc failure or tears, fissures, protrusions or prolapses were observed during 

and after the experiment. Moreover, no signs of debonding or faulty adhesion of the SG where 

detected during and after the experiment.  

Circumferential strain is plotted in figure 42 and figure 43 for the right and left SGs, respectively. 

Axial strain, measured by the frontal SG, is plotted in figure 44.  

 

Figure 42 - Circumferential strain on the right side of the outer annulus fibrosus under compressive load. 
Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. 
The adjusted coefficient of determination (r

2
) was calculated 
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Figure 43 - Circumferential strain on the left side of the outer annulus fibrosus under compressive load. 
Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. 
The adjusted coefficient of determination (r

2
) was calculated 

  

Figure 44 - Axial strain of the outer annulus fibrosus under compressive load. Average results of the six 
loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of 
determination (r

2
) was calculated 
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Circumferential and axial strain increased during loading and decreased for unloading, 

suggesting that the AF collagen fibers were able to resist the tensile forces induced by the bulging 

action of the IVD [491,496]. Nevertheless, significant differences (p0.05) were found between the 

load and unload counterparts. The average of these differences was smaller for the right SG          

(-2.86±2.51 ; p=0.017) than it was for the left one (-11.59±6.18 ; p=0.012) and front SGs         

(-20.77±15.27 ; p=0.017). A similar behavior was observed in other studies suggesting the 

presence of hysteresis [138,597,604]. 

Hysteresis seems to be more evident in the case of axial strain. Nevertheless, its magnitude 

may not represent a pure physiologic behavior of the AF. In fact, disc height (5.6 ± 0.4 mm) 

seemed adequate to accommodate the SG grid carrier of 3mm height. However, as can be 

observed in figure 45, the measuring grid and the grid carrier (8.5 mm height) of the “front” SG 

stayed in contact with the adjacent caudal vertebra. Thus, this incorrect positioning may have 

affected the results of axial strain to some extent. 

 

Figure 45 - The measuring grid and the grid carrier of the “front” strain gauge are contacting the caudal 
vertebra. 

In fact, the difficulties in getting precise and reproducible SG placement in spinal structures are 

probably a major source of error in spinal studies [605]. Thus, future studies will benefit from 

smaller SG, particularly to measure axial strain. Furthermore, in the present study, the excision of 

the anterior longitudinal ligament should have also affected the output of axial strain. As can be 

seen from figure 45 it led the front SG to occupy a slight concave position, explaining the negative 

axial strain values that were observed for loads ranging from 0 to approximately 75N (figure 44). 

Disc recovery is an important topic in spine biomechanics and SGs can contribute to study it. 

Strain values for unload were significantly higher (p<0.05) than those observed for loading (figure 

42 to 44), suggesting the elastic components of the AF were not capable of completing recovery 

during unloading. The difference was small but it was an expected behavior because the IVD 

seems to need a resting period to recover to a normal pre-load state after compression [606-607].  

Another interesting behavior is the nonlinearity of the AF [540] and SGs were able to detect it 

(figure 42 to 44). Present results suggest that the local stiffness of the outer AF increases with load, 



Using Conventional Sensors to Assess Intervertebral Disc Bulging 

Results and Discussion 

 

110 

 

confirming the load bearing function of the IVD [540,597]. To express the nonlinear behavior of the 

AF, polynomial 2
nd

 order fitting equations were presented, and peak loads as well as maximum 

strain values were estimated for circumferential strain. Peak loads (normalized to body weight (BW) 

and averaged for load and unload) for the right and left SG were of 3.25BW and 3.19BW, 

respectively. The corresponding mean maximum strains values were of 466  and 478  for the 

right and left side, respectively. These values could represent a physiologic limit beyond which 

plastic deformation may occur. Nevertheless, these are point values and the mechanical behavior 

of the entire AF depends on several other parameters, such as tensile properties of the lamellae, 

fibers orientation, and the regional variation of these quantities [495]. 

Another observed feature of the AF was a symmetrical behavior under compression. In fact, 

and despite regional variations of the AF and slight differences in SG placement and orientation, no 

significant differences (p>0.05) were found between the load and unload counterparts of the right 

and left SG.  Knowing that the AF behaves asymmetrically when submitted to eccentric loads 

[496,540,605], the present results also confirm that the disc was submitted only to axial load. 

The anisotropic behavior of the AF was assessed comparing the results of circumferential to 

axial strains. Despite the errors that have probably influenced axial strain results, it can be 

observed that the magnitude of axial strain (figure 44) was significantly lower than that of 

circumferential strain (figure 42 and figure 43) suggesting that the AF exhibits an anisotropic 

behavior (figure 46). 

 

Figure 46 – Comparison between circumferential (mean of left and right) and axial strain. 
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controversial data comparison. For example, Ebara et al. [499] demonstrated that the tensile 

behavior of the AF is dependent on the compositional and structural variations in the IVD. 

Controversial results in the literature regarding axial and circumferential strain were detected by 

Heuer et al. [496]. In an effort to summarize them a mean maximal axial and circumferential strain 

of approximately 20% was proposed [496]. In the present study mean circumferential and axial 

strain were of 0.05% and 0.008%, respectively, both for a load of 200N. These results should not 

be compared to the previous ones because maximal loads were not applied and different 

techniques have been used. A better comparison can be made with the study of Shah et al. [540] 

where a similar technique was used. In this study strain results for a load of 200N vary between 

0.1% and 0.4%. However they have been obtained for the posterolateral region of the AF which is 

considered to admit higher strain than the anterolateral regions. Additionally, it should take into 

account that strain was measured relatively to an arbitrarily defined zero strain of the tissue [593] 

which, in the present study, was defined after positioning the specimen holder into the mechanical 

testing machine and the application of the two pre-conditioning cycles. 

The technique of bonding SGs directly to the tissue is interesting because it provides direct 

measurements of strain [105]. However it is invasive and can produce undesirable effects, such as 

inflammatory responses and modification of normal tissue behavior. To minimize inflammatory 

responses and allow in vivo applications SGs should be encapsulated along with use of FDA 

approved non-toxic bonding agents, such as PMMA [26,120]. Even so, the effect of cleaning and 

bonding on the histological and mechanical properties of the tissue requires further investigation. In 

general, adhesives should be capable of firmly attaching the SG to the tissue and compliant 

enough to deform along with it. The research on bone adhesives [26,120,608] is more advanced 

than it is for soft tissues [609]. In the present study the low viscosity cyanoacrylate worked well for 

loads that did not exceed 200 N. Nevertheless, it could fail for higher loads and it cannot be applied 

in vivo since its biocompatibility has not been studied. Meanwhile, other adhesives such as PMMA 

and topical skin closure adhesives (e.g., 2-octyl cyanoacrylate) are FDA approved and can be 

explored in future studies. For example, PMMA and isobutyl 2-cyanoacrylate monomer have been 

used in vivo with bone [592].  

Finally, SGs are point sensors meaning that only the strain at the attachment site can be 

measured. To get a representative strain map of the whole tissue larger sensors or more sensors 

need to be used. A wider transducer will be in contact with a greater portion of heterogeneous soft 

tissue fibers and the discriminative power in strain variation may be lost. Use of more sensors will 

probably lead to better outputs but at the expense of increased complexity and undesirable effects 

on the tissue. Micro-SGs are already available and can be explored to avoid SG contact with the 

vertebrae and eliminate potential sources of error. Naturally, other techniques, such as finite 

element analysis (FEA) [421,439,497,596,610-613], non-contacting laser or imaging techniques 

[500,613-615], and fiber optic sensors [26,105,138] can also be explored to map strain. 
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4. Final Remarks 

In the present study an attempt was made to glue SGs directly to the annulus surface of the IVD 

and measure strain under compressive loads. The bonding area was previously marked, slightly 

roughened, cleaned and degreased with alcohol. A polyurethane-based transparent dressing for 

wounds was applied for waterproofing of the surface. Then, SGs were glued directly to the annulus 

surface with cyanoacrylate adhesive. A good adhesion was obtained with this procedure and SGs 

were able to confirm some properties of IVD behavior, such as hysteresis, nonlinearity and 

anisotropy. The output data seems adequate to demonstrate a potential application of SGs. 

Nevertheless, the technique can only be considered effective after studying the local effects of the 

procedures on the annulus fibers and its reproducibility using more specimens. 
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1. Introduction 

There is strong evidence that immobilization, repetitive and high mechanical loading are 

environmental risk factors associated with IVD degeneration [616]. Preventing disc degeneration is 

an important issue because it represents gross structural disruption and it is irreversible [600]. 

Such disruption is more closely related to pain than to any other feature of ageing discs [600]. 

Measuring biomechanical parameters of the IVD such as displacement, strain, stress and pressure 

should contribute for better comprehension of its mechanical response to external applied forces. 

Nachemson, in 1959, was the first to measure pressure in ex vivo human discs using a needle 

connected to an external mechano-electrical pressure transducer [465]. Nachemson et al. 

[227,617-618] also carried out, during the 1960s and 1970s, in vivo measurements of disc 

pressures for several body postures and tasks. Since that time needle-mounted SG sensors have 

been used to measure intradiscal pressure [307,483,619-623]. However the above sensors may 

interfere with the natural disc mechanics, particularly when studying small SMSs due to their rigidity 

and diameters over the millimeter order [20,309,483]. 

Advances using OFs as sensors may represent an important contribution to development of 

minimally invasive techniques for biomedical and biomechanical applications. Particularly, FBG 

sensors seem to be more appropriate for biomechanical applications than conventional resistive, 

piezoelectric or other solid state sensing technologies. These sensors have diameters of the order 

of 10
-6 

m and present considerable flexibility to adapt to complex surfaces allowing bending within 

the host structure to radii of 10mm [259]. FOS, in general, also present several additional 

advantages compared to conventional sensors such as: less weight; immunity to EM interference 

and RF interference making them suitable for use in magnetic resonance studies; biocompatibility, 

because fibers are made of silicate glass; higher temperature and pressure capability; the ability to 

be embedded into polymer or composite materials and used with instruments requiring sterilization; 

resistance to water and corrosive environments [23]. Nevertheless their relatively low strain 

sensitivity and signal artifacts caused by transverse loading may constitute a problem in the 

analysis and interpretation of tissue strain data [624]. 

Conventional sensors are mostly used to measure stress or strain at the body external surfaces 

to which they must adhere. Inner body measurements, as in the case of the IVD, require the sensor 

to be implanted in the needle. However, in the case of FBG sensors, as it was suggested by 

Dennison et al. [259], needles can be used for guiding the OF leaving the sensor in situ and 

making measurement less invasive. 

In this study we addressed the possibility of using a needle only for guiding the sensor into the 

disc. The work of Nesson et al. [18] was the first successful demonstration of using a needle only 

for FOS guiding and positioning. In our study the needle was completely removed and the sensor 

let in situ to measure radial strain of the AF of a porcine disc submitted to axial compression. In 

fact, axial compressive loads contribute to reduce disc height, increase intradiscal pressure and 
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make the outer annulus to expand horizontally (disc bulging) beyond the edges of the disc space. 

This bulging action can interfere with the surrounding tissues, assuming particular interest when 

normal physiologic limits are exceeded such as the case of disc herniation. 
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2. Material and Methods 

2.1 Specimen 

An ex vivo porcine dorsal SMS was tested. An SMS consists of two vertebral bodies connected 

by an IVD, facet joints and ligaments. In this study the surrounding soft tissues were carefully 

removed to guarantee preservation of disc, facet joints and spinal ligaments. After dissection the 

specimen was stored in a plastic sealed bag and frozen (-20 ºC). For instrumentation and testing 

the specimen was allowed to complete thaw inside the plastic bag to laboratory room temperature 

(25 ºC). 

2.2 Specimen Holder Apparatus 

A built-for-purpose stainless steel specimen holder, consisting of two plates with drilled metallic 

rings for screw attachment, was used to fix and align the SMS with the compression machine 

(figure 47). 

 

Figure 47 - Top view of the specimen holder (removed the top plate and vertical jigs). 

The cranial and caudal vertebral bodies of the SMS were partially cut, attached with screws and 

cemented to the plates and metal rings of the specimen holder. Bone cement also contributed to 

fulfill gaps and to allow a better distribution of stress during compression. Additionally, four vertical 

jigs were used to guide vertical motion and maintain the plates parallel to each other. The most 

critical issue concerning this procedure is the working time of bone cement (about 5 to 8 minutes 

after mixing). The whole process took about an hour. 
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2.3 Fiber Bragg Grating Sensor 

The FBG used in this study was recorded by illuminating a photosensitive fiber optic (Fibercore 

single mode PS1250/1500; ID 31007/B-00CK; Attenuation 1550 nm: 10 dB/km; Cut-off wavelength 

1234 nm; Cladding diameter 124.2 m; Mode field diameter 8.9 m; Numerical aperture: 0.14; 

Operating wavelength 1550nm) with UV radiation from an interferometric setup (Spectra-physics 

LASER model: 2045-15; Serial number: 118-E20007) [625]. The estimated length of the grating 

was 2 mm.  

The FBG sensor was implanted along the mediolateral (transverse) axis of the IVD. A 25-gauge 

hypodermic needle (0.5 mm OD, 87 mm length) was used to guide the sensor through the disc and 

removed after positioning the FBG in the center of the IVD (figure 48).  

 

Figure 48 – Ventral view of the spinal motion segment. A needle was used to perforate the intervertebral 
disc from side to side and guide the sensor into the center of the disc. 

For correct positioning of the sensor the mediolateral disc diameter was measured with a caliper 

(resolution: 1/20 mm) and marked in the OF so that the FBG would stay in the middle of the IVD, 

where the NP is expected to be. Then, the OF was glued with cyanoacrylate adhesive to one side 

of the AF, slightly pre-tensioned and bonded to the opposite side of the AF (figure 49; figure 50). 

Additionally, small plastic tubes were used to increase the bonding area and prevent the OF from 

sliding. 

 

Figure 49 – Ventral view of the optical fiber inserted into the intervertebral disc. Small cylindrical plastic 
tubes and cyanoacrylate adhesive were used to attach the optical fiber to the disc surface. 
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Figure 50 – Schematic representation of the fiber Bragg grating sensor inside the intervertebral disc. 

This setup allowed the disc to bulge under axial compressive force and the OF elongate in the 

radial direction causing a shift in the Bragg wavelength. A portable FBG interrogator (Sensing 

Interrogator SM 125, Micron Optics, Atlanta, GA, USA; www.micronoptics.com) was used to read 

the wavelength variations. The resolution of the system was in the order of 10
-12

 m. Wavelength 

was converted to microstrain applying the conversion factor of 1.2 pm 
-1

.  

2.4 Testing Loading Machine 

A customized loading machine was used to apply a uniaxial compressive load to the specimen. 

It consisted of a servo-pneumatic system having a double effect pneumatic cylinder (Festo 

CRDNGS-80-200-PPV-A), a servo-valve (Festo MPYE-5-1/8-HF-010-B), an optical linear scale 

(Fagor SV- B220), and a load cell (AEP TC4) with 10 kN capacity and 0.1% resolution of that value 

[601] (figure 40).  All the control, monitor and load data acquisition software were implemented 

using LabVIEW 8.0. The interface and the connection between the software and instrumentation 

devices were made using a hardware platform (National Instruments PAC CompactRIO). A more 

detailed description can be found elsewhere [601-602]. 
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2.5 Load Protocol 

A preload of 5N was slowly applied and maintained during testing to ensure permanent contact 

and alignment between the specimen holder and the loading machine. It also contributed to 

minimize zero shifts and allowed more stable initial strain readings [26]. After this, two pre-

conditioning cycles were performed before data acquisition and a set of four repeated cycles was 

collected for analysis. 

A quasi-static compression load protocol was applied for each cycle. It consisted of a load part 

(UP) ranging from 0 to 150N and an unload part (DW) ranging from 150 to 0N.  Load step was of 

25N. Each load was held constant for a period of 60s and load transition time was set to be linear 

for a period of 0.5 s (figure 51). 

 

Figure 51 - Schematic representation of a load cycle. 

The load protocol, including previous alignment of the sample with the loading machine and SG 

calibration, took less than two hours. 

2.6 Statistical Procedures 

Related Samples Wilcoxon Signed Rank Test was applied to evaluate significant differences 

between trials (p≤0.05). To express strain measurements variability under repeated conditions 

(multiple trials or loading cycles) the standard variation (SD) and the coefficient of variation (CV) 

were calculated. The SD gives an idea of the variability at each point of the loading cycle (for each 

applied load) and the CV is a relative variability measure that can be used to “summarize SD” 

information over the whole cycle [603]. It is calculated as the ratio between the average standard 

deviation (SD) and the average mean (X) of the loading cycle (see equation 1,p.106 ). 
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3. Results and Discussion 

The IVD had an average mediolateral diameter of 33.45 ± 0.01 mm. Each load was applied for 

60 seconds and data acquisition time was, on average, 24 ± 5 s.  

Radial strain increased during loading and decreased during unloading, suggesting that the AF 

collagen fibers were able to resist the tensile forces induced by the bulging action of the IVD 

[491,496] (figure 52). 

 

Figure 52 – Radial strain of the outer annulus fibrosus under compressive load. Average results of the 
four loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient 
of determination (r

2
) was calculated. 

Significant differences (p0.05) were found between the load and the unload counterparts 

suggesting hysteresis of the AF. The average of the differences was calculated (-48.94±35.38  

and it seems to be higher than the differences observed for circumferential and axial strain in the 

previous study.  

Strain values for unload were significantly higher (p<0.05) than those observed for loading, 

suggesting that the elastic components of the AF were not capable of complete recovery during 

unloading. Thus, load application time as well as the recovery time may be important variables in 

this type of experiments. In the present study each load was maintained for about 60 seconds and 

there was no recovery time between load steps and between loading cycles. In fact, as suggested 

in the previous study, the IVD seems to need a resting period to recover to a normal pre-load state 

after compression [606-607]. 
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The magnitude of radial strain was also higher than the ones observed for circumferential strain 

(figure 42 and figure 43) and axial strain (figure 44). Radial strain obtained for a maximal applied 

load of 150 N was 3.16 times greater than circumferential strain and 17.01 times greater than axial 

strain. These results reinforce the anisotropic behavior of the AF but more research seems 

mandatory to confirm the extent and the differences in strain values. Furthermore, it should be 

mentioned the OF is stiffer than the IVD and will resist to bulging of the disc suggesting that the 

radial strain force could also be measured. Thus, the technique may not be suitable for 

measurement of physiologic strain and more indicative of the radial force exerted by the AF. 

The nonlinear behavior of the AF suggested that radial stiffness increased with load and 

confirmed disc ability to act as a load bearing structure [540,597]. To express the nonlinear 

behavior of the AF, polynomial 2
nd

 order fitting equations were presented, and peak loads as well 

as maximum strain values were estimated for radial strain. Peak loads (normalized to BW) for the 

load and unload counterparts were of 3.25BW and 2.19BW, respectively. The corresponding mean 

maximum strains values were of 1258  and 1001  for the load and unload counterparts, 

respectively. These values could represent a physiologic limit beyond which plastic deformation 

may occur. Nevertheless, these are point values and the mechanical behavior of the entire AF 

depends on several other parameters, such as tensile properties of the lamellae, fibers orientation, 

and the regional variation of these quantities [495]. 

Similar concerns about results comparison and the bonding technique that were discussed in 

the previous study should be taken into account.  On the other hand, compared to SGs, FBG can 

be easily multiplexed allowing multipoint measurements without increasing the dimensions of the 

sensor and the complexity of the acquisition system. In the near future these potentialities are 

expected to be explored. 
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4. Final Remarks 

In the present study a FBG was used to measure radial strain of the AF under compressive 

loading. A needle was used only to guide the sensor into the NP. After removing the needle the 

FBG was pre-tensioned and the OF fixed to the outer AF surface. Under the previous configuration 

the FBG was able to measure radial strain resulting from the bulging action of the IVD. Results 

suggested that the disc exhibits some hysteresis and a nonlinear behavior. Radial strains were 

compared to circumferential and axial strains that were obtained with SGs and suggested that the 

disc also exhibits an anisotropic behavior. 
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1. Introduction 

The loading conditions of the spine and particularly of the IVD are of great importance in several 

fields such as orthopedics, physiotherapy, biomechanics, ergonomics and sports. Explaining it is 

the evidence that repetitive and high mechanical loading can lead to disc degeneration [626-627]. 

Disc degeneration represents gross structural disruption and it is irreversible. Such disruption is 

more closely related to pain than to any other feature of ageing discs, and it is most common in the 

lower lumbar human spine [628-630]. Thus, studying the loading conditions of spine and the IVD 

could contribute to understand the mechanisms underlying its normal or deleterious response to 

load. In such a field, assessing intradiscal pressures has special relevance due to the association 

between high pressures and disc degeneration [600,631-634]. 

Intradiscal pressure data from Nachemson studies formed the basis of the current knowledge 

about the in vivo loading conditions of the spine [539]. In 1959, Nachemson was the first to 

measure ex vivo intradiscal pressure in human discs [465]. Nachemson et al. [227,617-618] also 

carried out, during the 1960s and 1970s, in vivo measurements of intradiscal pressures for several 

body postures and tasks, which became a reference in the field. Since that time few in vivo studies 

have been published [487,620,635-636]. A possible explanation for it lies on sensor geometry, 

particularly large diameters (over 1 mm) that could interfere with the natural disc behavior and lead 

to disc degeneration [20,308-309,483]. On the other hand, relatively few pressure data is available 

which hampers the use of numerical models predicting intradiscal pressure [307]. Even so, several 

models have been used [514,610,637-638], despite general agreement on further in vivo data that 

could validate them and contribute for more accurate predictions [635]. Moreover, intradiscal 

pressures can integrate some clinical diagnostic procedures as in the case of discography that can 

be used when diagnostic from MRI is inconclusive [639-642]. 

Using minimally invasive sensors such as FOS could represent a good alternative to 

conventional sensors in measuring intradiscal pressure. This possibility was explored by Dennison 

et al. [19-20,259] who proposed a needle housed FBG sensor. Sensor OD was 0.4 mm and it was 

used to measure intradiscal pressures in cadaveric specimens. A commercial solution was 

available from Samba Sensors (Västra Frölunda, Sweden). These sensors, with 430 m OD and a 

protective coating of 0.7 mm diameter were used to measure intradiscal pressure in pigs [311-312], 

rabbits [313] and human cadaveric spines [314].  Another commercial solution is available from 

Radi Medical Systems (Uppsala, Sweden). This intensity modulated sensor has an OD of 0.55 mm 

and was used to monitor intradiscal pressure in sedated pigs [315] and patients suffering from 

lumbar back pain [316]. A smaller FOS was also proposed by Hsieh et al. [317] and Nesson et al. 

[18,318]. It consisted of a F-P sensor with a sensor probe of 366 μm OD. To our best knowledge it 

was used for in vitro measurements of rodent tail discs [18,317-319]. Meanwhile, a Samba sensor 

(Samba Preclin 360 HP) with only 360 m OD was available for intradiscal pressure measurements 

but, to our best knowledge it was not tested ex vivo or in vivo.  
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The purpose of the present study was to measure intradiscal pressure in the 5
th
 lumbar IVD of 

an anesthetized sheep using a Samba Preclin 360 HP sensor. 
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2. Material and Methods 

2.1 Fiber Optic Sensor  

An ultra-miniature fiber optic high pressure sensor (Samba Preclin 360 HP, Västra Frölunda, 

Sweden) was used to measure the pressure in the NP of a lumbar IVD of an anesthetized sheep 

(figure 53). The sensor consisted of a silicon sensing head with 360 m OD mounted on an optical 

MMF with 400 m OD. The sensor head and the MMF were coated with a radiopaque material 

(about 15 cm long) which allowed knowing the position of the sensor inside the body trough X-ray 

or fluoroscopic images. 

 

Figure 53 – The Samba Preclin 360 HP sensor (Serial nº.A2-1532). The sensor head (a Fabry-Pérot 
cavity) and the MMF were coated with a radiopaque material which allowed knowing the position of the 
sensor inside the body. A view of the sensor’s packaging is presented on the right. 

Samba sensor was handled in accordance to the manufacturer's instructions which are 

summarized in table 12 [643].  
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Table 12 – Handling and cleaning instructions applied to Samba sensor. 

Handling instructions Cleaning instructions 

Do not touch the transducer tip. Only allow contact of the 
transducer tip with the measurement object. 

Immediately submerge the transducer tip in cold distilled 
and de-ionized water after removing the transducer from the 

object (in vivo use). Keep it submerged until cleaning. 

Shield the optical connectors with the protective caps when 
not in use. 

Place the transducer tip in enzyme cleaner mixture and 
soak it for 10 to 20 minutes. CIDEZYME® Enzymatic 

Detergent Solution (Johnson & Johnson, Medical Inc, NJ, 
USA) was used in the present study 

Magnetic stirring is recommended (not followed) 

Always use the protective tube to shield the transducer tip 
when not in use. 

Rinse the transducer tip afterwards in distilled and de-
ionized water. 

Do not use tweezers or clamps with sharp edges. Disinfect the transducer with 70% alcohol. 

Do not use clamps with exaggerated clomp pressure.  

Do not bend the transducer more than the recommended 
minimum radius of 10 mm. 

 

 

Prior to ex vivo and in vivo experiments, the CIDEZYME® Enzymatic Detergent Solution 

(Johnson & Johnson, Medical Inc.) was used to clean the sensor. This solution is often used to 

clean medical instruments and endoscopes prior to sterilization or high level disinfection. The 

sensor was left at room temperature for about 10 minutes in a solution of 4% Cidezyme in water 

and rinsed afterwards in distilled and de-ionized water. 

2.2 Interrogation Unit 

Samba sensors are calibrated from factory to eliminate the need of customer’s calibration. The 

calibration data is stored on a small erasable programmable read only memory (EPROM) 

positioned on the connector and is read automatically at start up. Nevertheless, to read EPROM 

data a manufacturers’ control unit is required (figure 54). These units (Samba 201/202 control unit) 

are compact, portable (hand-held), battery operated and capable of temporary data storage and 

transmission to a computer. Nevertheless they are also expensive. 
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Figure 54 – Samba 201/202 control unit [310]. 

To overcome the previous constraint, a purpose-built control unit was used to interrogate the 

Samba sensor by means of available electrical and optical components at INESC-Porto facilities  

The INESC-Porto interrogation unit consisted of several electrical and optical components that 

were housed in a stainless steel chassis; an optical power meter; and a portable computer (PC) 

(figure 55). 

 

Figure 55 – The interrogation unit developed at INESC-Porto that was used for acquisition of pressure 
data in the nucleus pulposus of a lumbar intervertebral disc of an anesthetized sheep. 

The components that were housed in the stainless steel chassis were arranged in two floors. 

Electrical components were housed on the 1
st
 floor and consisted of a power supply 

(Traco®Power; Model: TXL 050-05S; Input: 100-240 VAC, 1.6 Amax. / 47-63 Hz; Output: 50W 

max., 5 VDC / 10.0 A) and a current and temperature controller (SuperLum, Ltd.; lmin. = 90mA; 

lmax. = 230 mA; S/N: PLT 60488) of a superluminescent diode (SLD) (figure 56). Optical 

components were housed on the 2
nd

 floor and consisted of a SLD (SuperLum, Ltd.; SLD-561-DIL-

3-SM; S/N: 60488) connected to an optical coupler/splitter (Newport F-CPL–M22855, 850 nm 
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07022509) that provided the external connections to an optical power meter (Hewlett Packard 

8153A Light Wave Multimeter) and the Samba sensor (figure 56). The coupler is for 850 nm and 

the light source emits at 1300nm. Despite this discrepancy between the only available components 

it was assumed the performance is acceptable to 1300 nm. 

 

Figure 56 – Detail on the electrical and optical components of the interrogation system. The external 
connections to the sensor and the optical power meter were identified. 

The basic functioning of the interrogation unit can be depicted in figure 57.  

 

Figure 57 – Schematic representation of the connections between the optical components of INESC-
Porto interrogation unit.  



Measurement of Intradiscal Pressure in Sheep under General Anesthesia 

Material and Methods 

133 

 

As can be observed from the previous figure, the power of the incoming light of the SLD was 

split 50/50 at the optical coupler/splitter. Splitting allowed using part of the light as the signal of 

reference and the remaining light to interrogate the sensor. The optical power of the light source 

was used as the signal of reference (at approximately 1310 nm) in order to account for source 

power fluctuations that could affect the readings of the sensor. The remaining light was used to 

interrogate the Samba sensor. At the sensor head (a F-P cavity - figure 8), part of the incoming 

light is back reflected to the coupler/splitter and its power measured by the optical power meter. 

The optical power meter allows for readings of the above individual signals (in W or dB) and of the 

output signal                                  (figure 58). The sampling rate was 17 Hz. 

 

Figure 58 – The optical power meter (HP8153A) that was used for readings of the optical power of the 
source (reference) and sensor signals. 

A GPIB-USB (Prologix, LLC, WA, USA) controller was used to allow communication between a 

PC and the optical power meter. Concomitantly, two LabVIEW routines were implemented to 

control data acquisition during calibration of the sensor and pressure experiments. These routines 

were described in the following sections. 

2.3 Sensor Calibration and Data Acquisition 

It was not possible to use the calibration data from the factory of the Samba sensor because a 

purpose-built interrogation unit was designed. Therefore, a new calibration protocol was 

implemented to express pressure as a function of the output signal. 

Along with the new interrogation unit that was used to calibrate the Samba sensor, a purpose-

built pressure device was also constructed (figure 59). 
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Figure 59 – The pressure device used to calibrate the Samba sensor. 

The main components of the pressure device consisted of an acrylic compartment and a 

syringe, both filled with distilled water; a screw connected to the syringe plunger and used for 

pressure adjustment (figure 59). A manometer intended for medical applications (WIKA 111 series; 

EN 837-1, WIKA Instrument Corporation incorporated, GA, USA) with a pressure range from -1 to 

15 bar and accuracy class of 1.6 was used for pressure readings (figure 59). On both sides of the 

acrylic piece a bolt and nut with passing holes were used to provide insertion of the sensor into the 

acrylic compartment where the pressure was measured (figure 59). The sensor was guided 

through the holes by means of a hypodermic needle that was removed after correct positioning of 

the sensor (see detail on figure 60). To seal the passing holes a septum of silicone (similar to those 

used with injectable drugs) located in between the bolt and nut was used (figure 59). The basic 

functioning of the pressure device was to manually rotate the screw pushing the water inside the 

syringe into the acrylic compartment. This action increases the pressure and the torque in the 

opposite direction and decreases the pressure. 

The complete setup that was used in sensor calibration is presented in figure 60. 

 

Figure 60 – The complete setup used in sensor calibration. A detail on the location of sensor insertion is 
presented. 
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In order to facilitate sensor calibration and to avoid errors in readings from the optical power 

meter display, a semiautomatic calibration process was implemented trough a LabVIEW routine. In 

figure 61, a flowchart of the routine is presented. 

 

Figure 61 – Flowchart of the LabView routine used for calibration of the sensor. 

The pressure interval that was used in sensor calibration varied from 0 to 14 bar (1.4 MPa) 

which is in the range of intradiscal pressures [307]. A calibration step of 0.5 bar (0.05 MPa), 

depending on the pressure gauge resolution, was defined. After initializing the LabVIEW routine it 

goes through the previously defined pressure values asking the user to manually adjust the 

pressure at each calibration step. An array of optical power values for each step was stored (n=10) 

allowing calculation of the optical power average and the corresponding standard deviation. In 

order to detect hysteresis in the measuring system three increasing and decreasing pressure 

cycles were performed. Values were exported to OriginPro 8.5 allowing plotting of the calibration 
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curves, fitting the data and calculating linear and quadratic calibration coefficients. The function 

with the highest     was selected for pressure acquisition. These coefficients were used in another 

LabVIEW routine to read the pressure during in vivo experiments (figure 62).  

 

Figure 62 - Flowchart of the LabView routine used for read pressure data during in vivo experiments. 

The user only has to control the start, pause and save acquisition buttons. During acquisition 

the LabVIEW routine also plots pressure values providing some feedback to the user about the 

acquisition process. Output data was saved in a text file and exported to OriginPro 8.5 for 

subsequent analysis. 

The maximum error introduced by hysteresis of the sensor was calculated as a percentage of 

the maximum pressure used during calibration (14.0 bar). Maximum sensor drift during a 

measurement period of 30 minutes was also calculated for pressures of 0.0 bar, 7.0 bar and 14.0 

bar. 



Measurement of Intradiscal Pressure in Sheep under General Anesthesia 

Material and Methods 

137 

 

2.4 Ex Vivo Experiments 

Ex vivo experiments were conducted by a skilled veterinary prior to in vivo testing at the 

facilities of the Veterinary Hospital of the University of Évora. These experiments were useful to 

decide about the most appropriate in vivo surgical approach and to test the whole system and 

sensor performance under more harsh and realistic conditions. 

After practicing several surgical approaches on an adult sheep cadaver it was decided to apply 

a percutaneous approach under fluoroscopic control (Digital C-Arm - ZEN 2090 Pro, Genoray 

America Inc., CA, USA) for measurement of in vivo pressures. This minimally invasive procedure 

requires a needle puncture on the skin instead of using an open ventral approach where inner 

organs and tissues have to be exposed.  

A dorsolateral transforaminal approach into the center of the NP, similar to that used in 

discography and percutaneous nucleotomy, was followed [307,644]. After positioning a standard 

11-gauge biopsy Jamshidi needle (cannula with 3.0 mm OD and 2.3 mm ID) in the intervertebral 

space the stylet of the needle was taken out and substituted by a 2.0 mm Kirschner-wire to make a 

deeper hole into the NP and prepare the disc for sensor implantation (figure 63). At this stage the 

Samba sensor was not used to prevent it from breaking. 

 

Figure 63 – The standard 11- gauge biopsy Jamshidi needle used to implant the Samba sensor into the 
nucleus pulposus of the intervertebral disc, the stylet and the 2.0 mm Kirschner-wire. 

To test the acquisition system and sensor performance a simpler methodology was used. The 

IVDs of a cadaveric lumbar spine of a sheep were exposed. The AF was punctured ventrolateraly 

and a 20-gauge hypodermic needle was guided by haptic sensing into the NP (figure 64). Then the 
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sensor was guided into the NP through the lumen of the needle. The needle was then removed 

from the fiber optic cable holding the sensor in situ. 

 

Figure 64 – Insertion of the Samba sensor into the needle lumen. 

To prevent sensor displacement inside the NP the cable of the sensor was sutured to the 

surrounding soft tissues (figure 65). 

 

Figure 65 – Location of the suture to prevent slippage of the sensor. 

In the previous conditions, several spinal maneuvers were performed by the veterinary trying to 

simulate the three major anatomical movements of the spine, namely flexion/extension, lateral 

flexion and axial rotation (figure 66). These maneuvers aimed at measuring intradiscal pressure in 
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the position of maximum ROM, although without controlling the magnitude of the applied force and 

the ROM. 

 

Figure 66 – An example of the conditions under which the spinal maneuvers were accomplished. 

Sensor location in the intervertebral space was confirmed by X-ray imaging (figure 67). 

 

Figure 67 – An example of an X-ray used to confirm Samba sensor position into the intervertebral space. 
Ventral and lateral X-ray images were taken to confirm sensor location in the anterior and sagital planes. 
In the present example the sensor seems to occupy a central but slightly posterior position. 
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2.5 In Vivo Experiments 

The study was performed at the facilities of the Veterinary Hospital of the University of Évora. It 

was authorized by competent national authorities and conducted according to the guidelines for 

animal care of the Federation of Laboratory Animal Science Association (FELASA) [645-646]. 

The Samba sensor was implanted in the 5
th
 lumbar intervertebral disc (IVD) of a 4-year-old 

female merino ewe with 45 kgf body-weight, under general anesthesia. The following major 

procedures were adopted: 

 The lumbar region was sheared before taking the animal to the operating room and it 

was pre-medicated with atropine (0.7 mg kg
-1

), xylazine (0.1 mgkg
-1

) and butorphanol 

(0.01mg kg
-1

); 

 At the operating room, holding the animal in the standing position, anesthesia was 

induced with thiopental sodium 5% (5 mg kg
-1

) by intravenous injection (figure 68). Then 

the animal was moved to a radiolucent table and maintained in a lateral right 

recumbence position (figure 68); 

 

Figure 68 – Animal preparation at the operating room. After anesthesia the animal was moved to a 
radiolucent table and maintained in a lateral right recumbence position. 

 Endotracheal intubation was performed and the anesthesia was maintained through 

isoflurane (2-3%) in oxygen with spontaneous ventilation, under control of vital 

parameters (heart rate and respiratory rate) (figure 69); 
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Figure 69 – The anesthesia was maintained through isoflurane (2-3%) in oxygen with spontaneous 
ventilation and vital parameters were controlled. 

 The lumbar region was prepared for needle puncture with a povidone-iodine solution in 

70% ethanol (figure 70); 

 

Figure 70 – The lumbar region was prepared a solution of povidone-iodine in 70% ethanol. 

 A standard 11- gauge biopsy Jamshidi needle (figure 63) was inserted percutaneously 

in the dorsolateral intervertebral disc space (figure 71) under fluoroscopic control (figure 

72); 
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Figure 71 – Insertion of the standard 11-gauge biopsy Jamshidi needle percutaneously in the dorsolateral 
intervertebral disc space. 

 

Figure 72 - Fluoroscopic control of needle position. 

 Then the stylet point was taken out and substituted by a 2.0 mm Kirschner-wire to 

penetrate into the NP. Leaving the cannulae in that position, the K-wire was substituted 

by the Samba sensor and data collection started (figure 73); 
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Figure 73 – Implantation of the Samba sensor into the nucleus pulposus of the intervertebral disc. 

 After waking up from surgery the animal was conducted to the recovery room (figure 

74); 

 

Figure 74 – The animal going to recovery. 

 The height of the disc was estimated by calculating the height of the corresponding 

intervertebral space using fluoroscopic images. The open source ImageJ 1.46r program 

(National Institutes of Health, USA) was used for calculations. 
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3. Results and Discussion 

3.1 Calibration 

The pressure interval that was used in sensor calibration varied from 0 to 14 bar (1.4 MPa) and 

the calibration step was of 0.5 bar (0.05 MPa). In order to detect hysteresis in the measuring 

system three pressure cycles were performed, each including an increasing and decreasing 

pressure part. As can be seen from figure 75 the average values for all increasing and all 

decreasing parts are similar suggesting a small but significant (p≤0.05) hysteresis effect.  

 

Figure 75 – Average values of increasing and decreasing parts of the three pressure cycles performed 
during calibration of the Samba sensor. A detail on the average of the differences between increasing and 
decreasing values at each step of calibration is shown. Y-error bars represent one standard deviation. 

To analyze the extent of hysteresis the differences between increasing and decreasing values 

were calculated for each step of calibration. The average of these differences was (7.241± 

3.620)10
-5

 (figure 75). With exception of the difference calculated for 0 bar the remaining 

differences were positive suggesting slightly lower values during pressure decreasing. Maximum 

hysteresis was 0.46%. 

Despite the previous differences the calibration coefficients were calculated for the complete 

cycles. The average values of the three calibration cycles are presented in figure 76. 
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Figure 76 - Average values of the three pressure cycles performed during calibration of the Samba 
sensor. A detail on the average of the differences between consecutive steps of calibration was shown. Y-
error bars represent one standard deviation. 

The differences between consecutive steps of calibration (0.5 bar) were calculated for the 

above data. On average these differences were of (5.754±0.472)10
-4

 (figure 76). The mean 

standard deviation of each step of calibration was 2.022±0.262)10
-4

 which represents about 35% 

of the average difference between consecutive steps of calibration. 

The purpose of the calibration procedure was to convert variations in signal/reference signal 

into variations of pressure. For that purpose linear and quadratic fitting functions were applied to 

pressure versus signal/reference plots and the corresponding coefficients were used with a 

LabVIEW routine to automatically calculate pressure values during experimental measurements. In 

figure 76 the linear and quadratic regression models obtained are presented.  

Both fitting equations can explain more than 99% of the dependent variable. Nevertheless, the 

adjusted coefficient of determination (adj.r
2
) was slightly higher for quadratic fitting, justifying the 

use of the quadratic coefficients for experimental procedures providing the pressures were in the 

range of calibration pressures. 

Maximum sensor drift during a measurement period of 30 minutes for pressures of 0.0 bar, 7.0 

bar and 14.0 bar was of ±0.002 bar. 
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3.2 Ex Vivo Experiments 

Ex vivo experiments were performed to decide about the most appropriate surgical approach 

technique, to test the whole system under more realistic conditions and to test sensor performance.  

Sensor performance was evaluated on a cadaveric lumbar spine of a sheep. The sensor was 

inserted into the NP of an IVD using a ventrolateral approach (figure 64). 

A 20-gauge hypodermic needle was used to puncture the AF and guide the sensor into the NP. 

An experienced veterinarian is capable of feeling the sensor in situ. The initial resistance posed by 

the denser AF to needle penetration is followed by a sensation of a decrease in resistance 

suggesting the needle’s bevel is in the NP. Even so, sensor location in the intervertebral space was 

confirmed with X-ray imaging (figure 67). 

It should be mentioned that before using the previous needle, some needle catheters have been 

tested in an attempt to guide the sensor into the NP (figure 65). Nevertheless, the majority of these 

attempts failed because the AF pressure acting along the catheter was enough to squeeze the 

lumen preventing the sensor from entering. In these cases it was decided not to force sensor 

entrance because it could break the sensor head. The high pressures derived of the contact of the 

sensor head with the catheter walls are plotted in figure 77. 

 

Figure 77 –Pressures measured during sensor insertion into the catheter lumen, while contacting the 
squeezed lumen and during its removal (raw data). 

The use of needles or more rigid catheters to guide a sensor into the NP seems mandatory 

[20,307]. However, in the case of the Samba sensor when the needle was removed it had to 

remain suspended on the sensor cable during the measurements (figure 60, figure 65).  
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The previous observation could be an important limitation, particularly for in vivo measurements 

and requires further reflection. It was not possible to remove the needle trough the opposite 

extremity of the Samba sensor due to the presence of the optical connector (figure 53). Therefore, 

future initiatives, with commercial or purpose-built sensors, could considerer splicing the OFs of the 

connector and sensor only after sensor implantation and needle removal. However this procedure 

will probably require an in situ calibration, which could be a problem, and will certainly delay data 

acquisition.  

An easier and simpler procedure could be fixing the needle to the skin using a standard medical 

adhesive tape. However to do it effectively requires control on the fiber optical cable length and, 

particularly, its diameter. For example, the diameter of the larger protective layer of the Samba 

sensor was about 2 mm, starting approximately 15 cm away from the sensor tip (figure 53). 

Therefore, imagining a needle with less than 2 mm ID and 75 mm long
14

, it could not be retracted 

away from the site of needle puncture more than 7.5 cm. In in vivo studies it would not be possible 

removing the needle from the body completely. To accomplish it a needle with a larger bore (>2mm 

ID) has to be used. In fact, the previous strategy had to be followed in the present in vivo study.  

Consequently, the corresponding needle punctures will be more invasive and could develop a 

deleterious effect on disc properties and on its normal mechanical behavior [647-649].  

Future developments should be capable to designing sensors with uniform and minimum 

diameters along the fiber length, preferably equal to the diameter of the sensing tip. This way a 

minimally invasive needle could be completely removed or kept fixed to the skin at a safer distance 

from the sensor tip.  

Another interesting alternative is to keep the sensor within the needle during pressure 

measurements. This strategy would be very useful to protect the sensor head from physical 

damage. To maintain the procedure minimally invasive the needle should be as small as possible, 

preferably with an ID similar to that of the sensor head. To prevent the intradiscal fluid from 

escaping trough the lumen it should be sealed with a biocompatible polymer. 

Ex vivo experiments were also useful to confirm that under spinal maneuvers the increase of 

intradiscal pressure causes the sensor tip to shift outwards. This behavior was described in a 

previous study using a nonoptical and larger sensor [307]. To prevent the sensor from sliding the 

sensor cable was sutured to the adjacent soft tissues (figure 65). Nevertheless, because the suture 

was far away from the AF the previous procedure was more effective preventing inadvertent 

movements on the cable than sliding of the sensor head. On the other hand, it was too risky to 

suture the bare fiber (black part of the sensor cable in figure 65) nearest the AF, because it was 

more fragile and could break.  

                                                           
14

 The length of typical spinal needles, used for spinal anesthesia or lumbar puncture, varies between 30 mm and 150 mm and their internal 
diameters between 0.35 mm and 1.27 mm.  
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The experiments were conducted under the previous conditions, but future alternatives, keeping 

in mind in vivo experiments, were discussed. The most effective procedure is probably bonding the 

sensor cable at the site of needle puncture and making it to adhere to the AF. Current topical skin 

closure adhesives could be tested. Furthermore, these adhesives also seem also to offer many 

advantages over traditional wound closure devices [650-651]. Additionally, other bonding agents, 

such as PMMA and isobutyl 2-cyanoacrylate monomer, which are FDA approved adhesives for 

bone tissue, could also be tested [592,652]. 

Pressure data resulting from repeated spinal maneuvers, such as flexion/extension (figure 78), 

lateral bending (figure 79) and axial rotation (figure 80) was plotted for analysis. 

 

Figure 78 – Pressure raw data resulting from flexion/extension maneuvers. 

 

Figure 79 – Pressure raw data resulting from lateral flexion maneuvers. 
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Figure 80 – Pressure raw data resulting from axial rotation maneuvers. 

The previous maneuvers were performed by an experienced veterinarian aiming at measuring 

the pressure in the position of maximum ROM, although without controlling the magnitude of the 

external force applied to maintain that position and specimen angular displacement or ROM. In 

such conditions the Samba sensor was able to register pressure variations during repetitions of the 

same maneuver that are responsible for an increase in pressure [653]. Nevertheless, pressure 

amplitude and pressure pattern varied substantially in the same maneuver and between different 

maneuvers. Some possible explanations could be no control on the force produced by the 

veterinary, the difficulty felt by the veterinary in performing the maneuvers, changes in the position 

of the sensor head induced by pressure and the necessity of repositioning the sensor from one 

maneuver to another. Whereas the pressure in the NP is considered to be hydrostatic, changing 

the location of the sensor should not affect pressure readings unless it migrates to the AF. Thus, a 

possible migration of the sensor head to the AF could not be neglected, particularly during 

extension and lateral flexion maneuvers which have more irregular pressure patterns. 

This type of ex vivo experiments demonstrates the importance of testing sensors in relatively 

harsh conditions capable of replicating in vivo scenarios. It was confirmed that sensor was capable 

to detect and measure pressure variations for several spinal maneuvers. Naturally, controlling force 

production and range of motion or using standardized protocols (e.g., those associated with use of 

spine simulators) could provide a more comprehensive view on data.  

3.3 In Vivo Experiments 

The percutaneous approach under fluoroscopic control that was followed in the present study 

was similar to the approach used in human discography and percutaneous nucleotomy 

[307,644,654]. It seems the adequate technique for animal experiments and to ensure a transition 

to human in vivo applications. Moreover, compared to an “open” approach, where inner organs and 

tissues are exposed, the technique is less invasive. In fact, in the present study the animal was 
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able to recover and released to its natural environment in less than four hours. The complete 

operation from the beginning to the end of anesthesia lasted for about two hours.   

A standard 11-gauge biopsy Jamshidi needle (3.0 mm OD and 2.3 mm ID) was used during 

percutaneous approach. The stylet of the needle was taken out and substituted by a 2.0 mm 

Kirschner-wire to create a passage into the NP and prepare the disc for implantation of the 360 m 

OD sensing head. The previous dimensions of the needle were required because it was planned to 

collect the needle along the OF cable with 2 mm diameter. Nevertheless, it seems mandatory to 

discuss possible effects of the above procedures on disc properties.  

It is well described that needle puncture can cause AF damage and alter the mechanical 

properties of the NP [647-649]. These effects seem to be more evident if the relative needle size 

(the ratio of the needle diameter to disc height) exceeds 40% [648]. In the present study disc height 

was estimated to be about 3.5mm. The ratio of the Jamshidi needle diameter to disc height was 

about 85.7% suggesting the fibers of the AF could be damaged by needle puncture. On the other 

hand, the ratio of the Kirschner-wire to disc height was about 57.1% suggesting a possible 

depressurization of the NP [648].  

It is important to retain that pressure outcomes can be influenced by the previous effects and 

the way to minimize them is to reduce needle dimensions. However, in the present situation, it was 

not possible because it would require reducing the diameter of the fiber optic cable (see figure 53, 

p.129). Prior to in vivo experiments an attempt was made to acquire a modified Samba sensor, 

particularly with an optical cable with smaller diameter. Even so, it was not possible because the 

company (Samba Sensors) was acquired by FISO Technologies, Inc., a wholly owned subsidiary of 

Nova Metrix LLC (MA, USA) and sensors became unavailable. Moreover, to our best knowledge 

the market is not offering similar sensors, particularly for the same pressure range. 

Solving the previous geometric constrain will result in a less invasive procedure and it will be 

possible to take full advantage of the micrometer dimensions of the sensor. Alternatively the same 

sensor could be housed within a typical spinal needle (e.g., those used for anesthesia or lumbar 

puncture). Typical diameters of spinal needles range between 0.42 mm (27G) and 1.2 mm (18G). 

Pressure results obtained in the 5
th
 lumbar IVD with the animal in a lateral right recumbence 

position under general anesthesia are presented in figure 81. 
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Figure 81 – Intradiscal pressure pattern in the 5
th

 lumbar disc. Results were obtained with the animal in a 
lateral right recumbence position under general anesthesia. Average pressure and time were detailed as 
well as maximum and minimum pressures. 

As can be seen in figure 81 a periodic pressure pattern was obtained during measurements. On 

average, the signal periodicity was 2.81 ± 0.12 s (time peak to peak), which corresponds to 

approximately 21.3 ± 0.12 pressure cycles per minute. The previous rate was similar to the 

respiratory rate under spontaneous ventilation which, on average, for the complete surgery, was 

15.4 breaths per minute and during measurements about 20.5 breaths per minute. The hearth 

rate during the surgery was, on average, 85.5 beats per minute (bpm) and could also influence 

the periodicity of the observed pattern. 

The effect of breathing in intradiscal pressure was also reported by Sato et al. [484] in lumbar 

discs (L4-L5) of human subjects and in lumbar discs of pigs [311-312,315]. Sato et al. [484], also 

found that the wave pattern was synchronized with the number of respirations with the subject in 

the prone position and existed slightly or disappeared in the standing and the sitting body positions.  

The effect of breathing on the intradiscal pressure of porcine lumbar discs (L1-L2) was studied 

in more detail by Keller et al. [653,655]. The respiratory rate and breathing volume were controlled 

with a ventilator. Typical respiratory rates in sheep under general anesthesia could range between 

12 an 27 breaths per minute [656-657]. Authors concluded that breathing had a significant effect on 

the intradiscal pressure, which seems to decrease with respiratory rate (breathing volume was left 

constant) and increase (1 to 2.5%) with breathing volume (keeping the respiratory rate constant) 

[653].  
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In the present study the anesthesia was maintained through isoflurane (2-3%) in oxygen with 

spontaneous ventilation. Thus it was not possible to control the respiration rate and the breathing 

volume in order to measure their influence on the variation of the intradiscal pressure. This could 

be an interesting issue for future research. In fact, it has been suggested that breathing can play an 

important role in the nutrition of the IVD [653,658]. The disc is the largest avascular tissue in the 

body and nutrients reach its cells by diffusing from blood vessels of the vertebral body through the 

cartilage endplate into the disc matrix under diffusion and osmotic gradients [659-660]. Therefore, 

the intradiscal pressure variation induced by breathing could help to pace the rate of diffusion and 

osmosis. On the other hand, high kinematic stresses (e.g., maximum ROM) and loads rise 

intradiscal pressures to levels that could result in impaired nutrition of the IVD [660]. 

In the present study pressure fluctuations ranged between 2.31 bar and 3.45 bar, with a 

maximum amplitude of 1.14 bar. The average pressure was 2.78 ± 0.28 bar (figure 81). 

The previous values seem to be higher than those observed in other studies. In the study of 

Keller et al. [653] the average resting intradiscal pressure in lumbar porcine specimens was found 

to be 0.357 ± 0.060 bar. An average value of 0.81 ± 0.05 bar was found in another study with 

porcine lumbar discs [315]. In the study of Höejer et al. [311] a similar Samba sensor (430 m OD) 

was used to measure intradiscal pressures in anesthetized pigs and minimum registered resting 

pressures were of 0.7 bar. The amplitude of breathing pressure fluctuations was less than 0.2 bar 

[311]. In the study of Sato et al. [484] the intradiscal pressure in the prone and lateral lying 

positions of human subjects was of 0.91 ± 0.27 bar and 1.51 ± 0.53 bar, respectively. These values 

were similar to those found by Wilke et al. [307] for L4-L5 lumbar discs of subjects in the lying 

supine (1.0 bar), lying on the side (1.2 bar) and lying prone (1.1 bar) positions.  

On the other hand, higher values than those observed in the present study were registered by 

Nachemson et al. [227] in human subjects. In the reclining position pressures varied from 1.4 to 8.3 

bar (mean, 5.4 ± 1.8 bar) [227]. Guehring et al. [313] implanted a similar Samba sensor (OD not 

specified) in rabbits and physiologic pressures ranged between 2.2 and 4.2 bar (mean 3.6 bar). 

Finally, in thoracic discs of human subjects, which have the same kyphotic curvature as the 

lumbar spine of a sheep, intradiscal pressure values were closer to those found in the present 

study, ranging between 2.0 ± 0.3 bar (T9–T10, T10–T11) and 2.9 ± 0.4 bar (T6–T7, T7–T8) for the 

lying prone position; and between 3.0 ± 0.3 bar (T9–T10, T10–T11) and 3.4 ± 0.5 bar (T6–T7, T7–

T8) for the lying on side position [487]. More recently, a similar Samba sensor (360 m OD) was 

used in the study of Hebelka et al. [312] and the median baseline pressures that were registered 

for sedated pigs were of 2.0 bar (range, 1.2 to 3.1 bar). The breathing effect on intradiscal pressure 

was registered but the corresponding amplitude was not reported. Even so, observing published 

plotted data on pressure amplitude due to breathing seems to be lower than the amplitude 

observed in the present study.  
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Previous studies suggest a marked dispersion in the intradiscal pressure values at rest. These 

values appear to vary with the species and within species. The sensor may have some influence 

on the results, given its geometry and working principle, for example. Still, the results of the present 

study seem to overestimate the values of intradiscal pressure and particularly the amplitude of 

pressure fluctuations due to breathing. These values seem also to contradict a possible 

depressurization of the NP due to a large needle puncture. In fact, further research using FOS to 

better understand these phenomena seems essential.  

The major disadvantage of FOSs is perhaps their fragility. In fact, in another attempt to measure 

sensor repeatability it broke (figure 82).  

 

Figure 82 – Sensor failure occurred during removal of the sensor from the 5th lumbar intervertebral disc. 
On top a picture of the broken sensor. 

A sensor of this type costs more than € 1,000 and despite the robustness demonstrated during 

calibration, ex vivo and in vivo experiments, the risk of failure can compromise their acquisition to 

carry out these experiences on a routine basis. Thus, the possibility of starting developing similar 

sensors for biomedical and biomechanical applications at INESC-Porto facilities represented an 

interesting opportunity and led us to the next study. 
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4. Final Remarks 

 

In this study the possibility of using FOS to perform in vivo studies and measure intradiscal 

pressures was explored. A similar surgical protocol to the one used in humans was applied. This 

approach is strongly recommended if human applications are pursued [525].  

Using smaller needles and/or modifying sensor geometry seem mandatory to minimize 

disruption of the AF and NP and preserve the minimally invasive potential of FOSs.  

Studying strategies to increase FOSs robustness without compromising their micrometric 

dimensions also seems also a critical issue, because it will reduce the risk of adverse reactions, 

ensure sensor durability and diminish the cost per sensor. Probably, further improvements will 

require sensor encapsulation using special needles or catheters. 

The interrogation unit that was developed also requires further improvement. It should be small 

to allow manual handling and portability. Wireless data transmission should also be considered. In 

such a way it could be possible to perform dynamic studies, such as locomotion studies, and 

collect data for longer periods without having either the human or the animal anesthetized. 

Finally, further research seems mandatory to produce clinical relevant information. 
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1. Introduction 

The main purpose of this study was to present ongoing research at INESC Porto aiming to 

explore FOS configurations for temperature, strain, force and pressure measurements intended for 

biomedical and biomechanical applications. The most common working principles applied to FOSs 

for biomedical and biomechanical applications are based on intensity, phase and wavelength 

modulation, the latter associated with the operation of FBGs.  

Wavelength modulation is typically achieved through use of FBG sensors which are probably 

the simplest and most interesting type of FOSs, particularly for temperature and strain 

measurements. In fact, the majority of studies that have been conducted by Portuguese and 

Brazilian research groups in the field of biomedical engineering and biomechanics focused on the 

use of FBGs. Some major research topics included the study of dental implants and supporting 

tissues [140-141]; monitoring the curing process of dental resin cements [144] and of bone 

cements [103,146,661]; studying the possibility of osseointegration of optical fibre and FBGs [662]; 

and their use in orthopedic devices [147]. More recently, an FBG was used to monitor radial strain 

of the IVD under axial compression [138]. 

Intensity and phase modulation configurations are not so exploited by these research groups. 

Among them, interferometric based sensors, namely those based on the F-P configuration seem 

very attractive for biomechanical and biomedical applications. F-P interferometer sensors were 

introduced in the early 1980s and solved many drawbacks of intensity modulated sensors. Instead 

of measuring a change in light intensity, these sensors aim at phase differences in the light beams. 

Their most common configuration includes a small-size sensing element bonded to the tip of the 

fiber. This element is an optical cavity formed by two parallel reflecting surfaces where multiple 

reflections occur (figure 8). One of the reflecting surfaces is a diaphragm that changes the optical 

cavity depth (i.e., the distance between mirrors) under the action of the measurand and, 

consequently, the characteristics of the signal that reaches the photodetector. Compared to 

intensity modulated schemes and FBG sensors, F-P interferometers are capable of achieving high 

sensitivities and resolutions, but at the expense of relatively complex interrogation/detection 

techniques [47]. 

The present study is focused on the proof of concept of two F-P based sensors that have been 

developed for pressure measurements of fluids. The prototypes were tested in a purpose-built 

pressure chamber and with further optimization they could be used to measure the pressures of 

specific biological fluids. 
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2. Material and Methods 

2.1 High-pressure Fabry-Pérot sensor 

Sensor 1 consisted of a high-pressure F-P sensor with an optical cavity formed by the reflecting 

surfaces of the tips of two single mode fibers (Corning SMF-28
TM

 Single-Mode Optical Fiber, NY, 

USA) facing each other (figure 83).  

 

Figure 83 - Schematic drawing of a high-pressure Fabry-Pérot (F-P) prototype. 

The acrylate coating of the OFs was mechanically stripped. Then, the OF was cleaved with a 

high precision cleaver (Sumitomo FC-6RS, Sumitomo Electric, Japan) (figure 84) in order to get a 

clear cross section reflecting tip surface. The quality of cleaving was inspected using an optical 

microscope. 

  

Figure 84 – An image of the cleaver that was used to cleave the fiber tips. 
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Each OF was rigidly encapsulated (using a cyanoacrylate adhesive) inside a single bore of a 

borosilicate glass ferrule (ID 127±3m, OD 1.8mm±0.005mm, unit length 5.7mm; CM Scientific 

LTd., Product ID: Ferrule-SB127/1.8/5.7BORO) (figure 83). 

To create an optical cavity, the previous set was aligned using an alignment sleeve (ID 

1815m±10m, OD 2780m±30m, length 6mm±0.1mm; CM Scientific Ltd., Product ID: 

TQNC18152780/6) (figure 83).  

The ferrule connected to the light source was rigidly fixed to the sleeve with cyanoacrylate 

adhesive. After proper connections to a broadband source, an optical circulator and an optical 

spectrum analyzer (ADVANTEST Q8384), the output spectrum (optical power versus wavelength) 

was adjusted by controlling the distance between the reflecting surfaces of the two fibers (optical 

cavity length). Then, the other ferrule was glued to the sleeve with a silicone polymer (Silastic 

Medical Adhesive Silicone, Type A, Dow Corning) and allowed to move in order to sense the 

applied pressure. Under pressure, the optical cavity length changes and, consequently, the phase 

of the spectrum. The maximum outer diameter of the sensor was 2.78mm. 

2.2 Low-pressure Fabry-Pérot Sensor 

Sensor 2 consisted of low-pressure F-P sensor prototype with an optical cavity provided by a 

PCF (OD 125.5 m, hollow core diameter 44.4 m; Institute of Photonic Technology, Jena, 

Germany) and the reflecting surfaces of a single mode fiber (Corning SMF-28
TM

 Single-Mode 

Optical Fiber, NY, USA) at one end, and a biocompatible silicone polymer (Silastic Medical 

Adhesive Silicone, Type A, Dow Corning) at the other end (figure 85). 

 

Figure 85 - Schematic drawing of a low-pressure Fabry-Pérot (F-P) prototype. 

Both coatings of the OF and the PCF were mechanically stripped. Then, both tips were cleaved 

with a high precision cleaver (Sumitomo FC-6RS, Sumitomo Electric, Japan) (figure 84) in order to 

get a clear cross section. The quality of cleaving was inspected using an optical microscope. 
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The two tips were carefully fused using an Arc Fusion Splicer (Fujikura FSM-60S Arc Fusion 

Splicer) (figure 86). Manual alignment functions of the Arc Fusion Splicer program were used. 

  

Figure 86 – An image of the result of splicing the single mode fiber to the photonic crystal fiber using the 
Arc Fusion Splicer. 

A polymer (Silastic Medical Adhesive Silicone, Type A, Dow Corning) was applied to the 

cleaved tip at the opposite end of the PCF. Under pressure a silicone membrane deflection occurs 

varying the optical cavity length and a phase change is observed. Sensor was interrogated using a 

broadband source, a circulator and an optical spectrum analyzer (ADVANTEST Q8384). 

2.3 Pressure Chamber 

For the proof of concept pressure measurements were made in the purpose-built pressure 

device that has previously been described (figure 59, p.134). Sensors were tested in distilled water. 
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3. Results and Discussion 

Average results for five consecutive pressure cycles are presented for sensor 1 and 2 in figure 

87 and figure 88, respectively.  

 

Figure 87 - Wavelength shift of sensor 1 under pressure. 

 

Figure 88 - Wavelength shift of sensor 2 under pressure. 
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Results from sensor 1 are in the range of intradiscal pressures [307]. With further 

miniaturization (below 1 mm is desirable), sensor encapsulation (e.g., catheter or a spinal needle) 

and use of a biocompatible resin to fix the non movable part of the sensor, these type of sensors 

can be explored to sense these pressures either ex vivo or in vivo. Sensor output depended on the 

quality and alignment of the reflecting surfaces, the length of the optical cavity, adhesives type and 

their application. 

Results from sensor 2 are in the range of intracranial pressures [252]. With optimization of 

sensor performance (namely reduction of sensor variability) and its encapsulation it can also be 

explored to sense these pressures either ex vivo or in vivo. Sensor output depends on the quality 

of splices, PCF length and silicone application. 
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4. Final Remarks 

For the proof of concept, two possible configurations intended for pressure measurement have 

been presented. These sensors can be fabricated and tested in our facilities. Nevertheless to get 

precise and accurate measurements fabrication techniques should be optimized, especially if 

biomechanical and biomedical testing is pursued. 
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The present work represents an effort to better understand the mechanical behavior of the spine 

and, particularly, of the spinal motion segment and the intervening disc. Simultaneously, it also 

allowed to deepen the knowledge of fiber optic sensors and explore their potential beyond the 

bench tests, especially in cadaveric specimens and in vivo. 

The two previous topics were explored in the review of literature. The state of the art concerning 

fiber optic sensors has been reviewed comprehensively looking at their major working principles 

and focusing on biomechanical and biomedical applications. In vivo applications were highlighted 

as well as the physical quantities of temperature, strain, force and pressure. Addressing the spinal 

motion segment, anatomical, histological and mechanical properties allowed a deep knowledge on 

the structure that would be explored in the experimental part. Moreover, the literature review 

launched the foundations for a systematic study in the field and offered the possibility of defining 

and exploring several research lines and projects in the near future. 

The experimental part reflects author’s efforts to perform research not only on an autonomous 

basis but also in partnership, benefiting from and collaborating with several research teams, from 

mechanics to physics and medicine. The author has no doubt that the quality of research depends 

on multidisciplinary teams and the path to knowledge and innovation is often drawn along border 

lines.  

Experimental work is also an unfinished task. Thus the author expects to continue spine 

research depending on research projects funding, human resources and the willing to accomplish 

them. The main objectives for the near future are: 

Creating a research group/network on spine biomechanics and the conditions to apply 

standards in spinal testing; 

To develop a fiber optic sensor prototype for in vivo intradiscal pressure measurements. 

 

Finally the author must admit that if it has not been possible to go further, all responsibility lies 

on him and his limitations. Still, he continues to dream about the uncertainty and the unknown, 

always living with the pleasure the smallest of discoveries can provide. 
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