1,185 research outputs found

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    Targeting the pedunculopontine nucleus in Parkinson’s disease: Time to go back to the drawing board

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147041/1/mds27540.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147041/2/mds27540_am.pd

    Pedunculopontine Nucleus Deep Brain Stimulation for Parkinsonian Disorders: A Case Series

    Get PDF
    BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been investigated for the treatment of levodopa-refractory gait dysfunction in parkinsonian disorders, with equivocal results so far. OBJECTIVES: To summarize the clinical outcomes of PPN-DBS-treated patients at our centre and elicit any patterns that may guide future research. MATERIALS AND METHODS: Pre- and post-operative objective overall motor and gait subsection scores as well as patient-reported outcomes were recorded for 6 PPN-DBS-treated patients, 3 with Parkinson’s disease (PD), and 3 with progressive supranuclear palsy (PSP). Electrodes were implanted unilaterally in the first 3 patients and bilaterally in the latter 3, using an MRI-guided MRI-verified technique. Stimulation was initiated at 20–30 Hz and optimized in an iterative manner. RESULTS: Unilaterally treated patients did not demonstrate significant improvements in gait questionnaires, UPDRS-III or PSPRS scores or their respective gait subsections. This contrasted with at least an initial response in bilaterally treated patients. Diurnal cycling of stimulation in a PD patient with habituation to the initial benefit reproduced substantial improvements in freezing of gait (FOG) 3 years post-operatively. Among the PSP patients, 1 with a parkinsonian subtype had a sustained improvement in FOG while another with Richardson syndrome (PSP-RS) did not benefit. CONCLUSIONS: PPN-DBS remains an investigational treatment for levodopa-refractory FOG. This series corroborates some previously reported findings: bilateral stimulation may be more effective than unilateral stimulation; the response in PSP patients may depend on the disease subtype; and diurnal cycling of stimulation to overcome habituation merits further investigation

    A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral

    Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches

    Get PDF
    In patients with Parkinson's disease, heterogeneous cholinergic system changes can occur in different brain regions. These changes correlate with a range of clinical features, both motor and non-motor, that are refractory to dopaminergic therapy, and can be conceptualised within a systems-level framework in which nodal deficits can produce circuit dysfunctions. The topographies of cholinergic changes overlap with neural circuitries involved in sleep and cognitive, motor, visuo-auditory perceptual, and autonomic functions. Cholinergic deficits within cognition network hubs predict cognitive deficits better than do total brain cholinergic changes. Postural instability and gait difficulties are associated with cholinergic system changes in thalamic, caudate, limbic, neocortical, and cerebellar nodes. Cholinergic system deficits can involve also peripheral organs. Hypercholinergic activity of mesopontine cholinergic neurons in people with isolated rapid eye movement (REM) sleep behaviour disorder, as well as in the hippocampi of cognitively normal patients with Parkinson's disease, suggests early compensation during the prodromal and early stages of Parkinson's disease. Novel pharmacological and neurostimulation approaches could target the cholinergic system to treat motor and non-motor features of Parkinson's disease

    The cellular diversity of the pedunculopontine nucleus: relevance to behavior in health and aspects of Parkinson's disease

    Get PDF
    The pedunculopontine nucleus (PPN) is a rostral brainstem structure that has extensive connections with basal ganglia nuclei and the thalamus. Through these the PPN contributes to neural circuits that effect cortical and hippocampal activity. The PPN also has descending connections to nuclei of the pontine and medullary reticular formations, deep cerebellar nuclei, and the spinal cord. Interest in the PPN has increased dramatically since it was first suggested to be a novel target for treating patients with Parkinson’s disease who are refractory to medication. However, application of frequency-specific electrical stimulation of the PPN has produced inconsistent results. A central reason for this is that the PPN is not a heterogeneous structure. In this article, we review current knowledge of the neurochemical identity and topographical distribution of neurons within the PPN of both humans and experimental animals, focusing on studies that used neuronally selective targeting strategies to ascertain how the neurochemical heterogeneity of the PPN relates to its diverse functions in relation to movement and cognitive processes. If the therapeutic potential of the PPN is to be realized, it is critical to understand the complex structure-function relationships that exist here
    corecore