15 research outputs found

    Multi-Level Route-Optimization Computer Application

    Get PDF
    This report provides a detailed analysis on how to optimize driving routes by creating a computer application. There are many different route-optimization issues that logistical companies consistently face, as well as many different solutions and algorithms. With technology on the rise, pick-up, delivery, and transportation services are become a huge part of our everyday lives. When optimizing routes, reducing transportation costs by minimizing travel distance is always ideal, but other factors must be considered such as arriving at a location before or after a certain time. Our objective is to optimize driving routes based on travel distance and priorities. We approached this project by using SQL as our main source of determining the route order based on the given distances and priorities of each destination in the projected route. We also used VBA as a tool to support the calculations and ASP.net to insert Javascript and HTML code, which allows us to visualize the Google Maps route once the order has been determined

    A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer

    Get PDF
    [EN] This research presents the group of green vehicle routing problems with environmental costs translated into money versus production of noise, pollution and fuel consumption. This research is focused on multi-objective green logistics optimization. Optimality criteria are environmental costs: minimization of amount of money paid as externality cost for noise, pollution and costs of fuel versus minimization of noise, pollution and fuel consumption themselves. Some mixed integer programming formulations of multi-criteria vehicle routing problems have been considered. Mathematical models were formulated under assumption of existence of asymmetric distance-based costs and use of homogeneous fleet. The exact solution methods are applied for finding optimal solutions. The software used to solve these models is the CPLEX solver with AMPL programming language. The researchers were able to use real data from a Spanish company of groceries. Problems deal with green logistics for routes crossing the Spanish regions of Navarre, Basque Country and La Rioja. Analyses of obtained results could help logistics managers to lead the initiative in area of green logistics by saving money paid for environmental costs as well as direct cost of fuel and minimization of pollution and noise.This work has been partially supported by the National Research Center (NCN), Poland (DEC-2013/11/B/ST8/04458), by AGH, and by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P and TRA2015-71883-REDT), and the Ibero-American Program for Science and Technology for Development (CYTED2014-515RT0489). Likewise, we want to acknowledge the support received by the CAN Foundation in Navarre, Spain (Grants CAN2014-3758 and CAN2015-70473)Sawik, B.; Faulin, J.; Pérez Bernabeu, E. (2017). A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer. Transportation Research Procedia. 22:305-313. https://doi.org/10.1016/j.trpro.2017.03.037S3053132

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF
    The VRP has been broadly developed with additional feature such as deliveries, selective pickups time windows. This paper presents the application of an open source spreadsheet solver in single depot routing problem. This study focuses on Fast Moving Consumer Goods (FMCG) Company as a case study. The objective of this research is to minimize the distance travel. This research begins by collecting data from a respective FMCG Company. An FMCG company based in Jakarta, Indonesia provides drinking water packaged in the gallon. This FMCG Company has two distributions characteristic. Head office distribution was used in this case study due to highest internally rejected by the company such as un-routed order, no visit, not enough time to visit and transportation issue. Based on computational results, overall solutions to delivered 214 gallons to 26 customers having total distance traveled 56.76 km, total driving time 2 hour and 49 minutes, the total driver working time 7 hours and 57 minutes. Total savings of distances traveled between current route and the proposed solutions using open source spreadsheet solver is 7.25 km. As a result, by using open source spreadsheet solver in single depot routing problem can be implemented in FMCG Company

    Multi-Criteria Optimization for Fleet Size with Environmental Aspects

    Get PDF
    [EN] This research concerns multi-criteria vehicle routing problems. Mathematical models are formulated with mixed-integer programming. We consider maximization of capacity of truck vs. minimization of utilization of fuel, carbon emission and production of noise. The problems deal with green logistics for routes crossing the Western Pyrenees in Navarre, Basque Country and La Rioja, Spain. We consider heterogeneous fleet of trucks. Different types of trucks have not only different capacities, but also require different amounts of fuel for operations. Consequently, the amount of carbon emission and noise vary as well. Companies planning delivery routes must consider the trade-off between the financial and environmental aspects of transportation. Efficiency of delivery routes is impacted by truck size and the possibility of dividing long delivery routes into smaller ones. The results of computational experiments modeled after real data from a Spanish food distribution company are reported. Computational results based on formulated optimization models show some balance between fleet size, truck types, utilization of fuel, carbon emission and production of noise. As a result, the company could consider a mixture of trucks sizes and divided routes for smaller trucks. Analyses of obtained results could help logistics managers lead the initiative in environmental conservation by saving fuel and consequently minimizing pollution.This work has been partially supported by the National Research Center (NCN), Poland (DEC2013/11/B/ST8/04458), by AGH, and by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180- C3-P and TRA2015-71883-REDT), and the Ibero-American Program for Science and Technology for Development (CYTED2014-515RT0489). Likewise, we want to acknowledge the support received by the CAN Foundation in Navarre, Spain (Grants CAN2014-3758 and CAN2015-70473). The authors are grateful to anonymous reviewers for their comments.Sawik, B.; Faulin, J.; Pérez-Bernabeu, E. (2017). Multi-Criteria Optimization for Fleet Size with Environmental Aspects. Transportation Research Procedia. 27:61-68. https://doi.org/10.1016/j.trpro.2017.12.05661682

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF

    Service Consistency in Vehicle Routing

    Get PDF
    This thesis studies service consistency in the context of multi-period vehicle routing problems (VRP) in which customers require repeatable services over a planning horizon of multiple days. Two types of service consistency are considered, namely, driver consistency and time consistency. Driver consistency refers to using the fewest number of different drivers to perform all of the visits required by a customer over a planning horizon and time consistency refers to visiting a customer at roughly the same time on each day he/she needs service. First, the multi-objective consistent VRP is defined to explore the trade-offs between the objectives of travel cost minimization and service consistency maximization. An improved multi-objective optimization algorithm is proposed and the impact of improving service consistency on travel cost is evaluated on various benchmark instances taken from the literature to facilitate managerial decision making. Second, service consistency is introduced for the first time in the literature to the periodic vehicle routing problem (PVRP). In the PVRP, customers may require multiple visits over a planning horizon, and these visits must occur according to an allowable service pattern. A service pattern specifies the days on which the visits required by a customer are allowed to occur. A feasible service pattern must be determined for each customer before vehicle routes can be optimized on each day. Various multi-objective optimization approaches are implemented to evaluate their comparative competitiveness in solving this problem and to evaluate the impact of improving service consistency on the total travel cost. Third, a branch-and-price algorithm is developed to solve the consistent vehicle routing problem in which service consistency is enforced as a hard constraint. In this problem, the objective is to minimize the total travel cost. New constraints are devised to enhance the original mixed integer formulation of the problem. The improved formulation outperforms the original formulation regarding CPLEX solution times on all benchmark instances taken from the literature. The proposed branch-and-price algorithm is shown to be able to solve instances with more than fourteen customers more efficiently than either the existing mixed integer formulation or the one we propose in this paper

    Multi-objective combinatorial optimization problems in transportation and defense systems

    Get PDF
    Multi-objective Optimization problems arise in many applications; hence, solving them efficiently is important for decision makers. A common procedure to solve such problems is to generate the exact set of Pareto efficient solutions. However, if the problem is combinatorial, generating the exact set of Pareto efficient solutions can be challenging. This dissertation is dedicated to Multi-objective Combinatorial Optimization problems and their applications in system of systems architecting and railroad track inspection scheduling. In particular, multi-objective system of systems architecting problems with system flexibility and performance improvement funds have been investigated. Efficient solution methods are proposed and evaluated for not only the system of systems architecting problems, but also a generic multi-objective set covering problem. Additionally, a bi-objective track inspection scheduling problem is introduced for an automated ultrasonic inspection vehicle. Exact and approximation methods are discussed for this bi-objective track inspection scheduling problem --Abstract, page iii
    corecore