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1. Introduction

Besides fuel and waste distribution, one core application of multi-compartment vehicles (MCVs) is the
distribution of groceries, as they enable retailers to jointly transport products with different temperature
requirements, thus reducing the number of visits to a store. Grocery stores usually define preferable time
windows that depend on the temperature of products (for example, fresh products in the morning) to in-
dicate when deliveries should occur to better plan their in-store operations. Distribution planning there-
fore needs to take these preferences into consideration to obtain consistent delivery times. This work ex-
tends the research on multi-compartment vehicle routing problems (MCVRPs) by tackling a multi-period
setting with a product-oriented time window assignment. In this problem, a fleet of MCVs is used for
distribution and a unique time window for the delivery of each product segment to each store is de-
fined consistently throughout the planning horizon. An ALNS is proposed to solve the product-oriented
time window assignment for MCVRP. Daily and weekly operators are developed respectively focusing on
the improvement of routing aspects of the problem on each day and aligning the time window assign-
ment consistently throughout the planning horizon. The approach is tested on benchmark instances from
the literature to demonstrate its effectiveness. We also use direct information from retail practice and
enhance this with simulated data to further generalize our findings. The numerical experiments demon-
strate that planning consistent MCV distribution leads to better overall solutions than the ex-post time
window assignment of daily plans, facilitating more on-time deliveries.

a tactical decision problem for retailers as it defines master routes
for the daily routing.

This paper introduces a multi-compartment vehicle rout-
ing problem (MCVRP) for the assignment of product-oriented
time windows. The considered problem formulation with multi-
compartment vehicles (MCVs) can be found in grocery distribu-
tion (e.g., supply of stores with different temperature zones), waste
collection (e.g., glass waste) and fuel distribution (e.g., supply of
petrol stations) where repetitive delivery cycles are applied and
customers rely on consistent time windows. Our problem is moti-
vated by an application in grocery distribution where a high prod-
uct variety with particular temperature requirements needs to be
managed and an efficient supply chain is essential (Klingler, Hiib-
ner, & Kempcke, 2016). The corresponding routing problem states
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Products with similar characteristics and temperature require-
ments are usually denoted as product segments or simply seg-
ments in grocery distribution. In the past, only one product
segment could be transported within the same vehicle as the tem-
perature could only be set up at one level at a time. However,
MCVs have been developed for grocery transport in recent years.
These are able to split the loading area flexibly into compartments
with different temperatures whilst there is no loss in capacity as
the compartments are continuous in size. However, the joint trans-
portation of segments forces retailers to decide which segments
are (or are not) supplied jointly for each store. This explicitly im-
plies a higher variety of possible delivery times for the stores. For
example, ambient products can be delivered jointly with the fresh
products in the morning, instead of a separate delivery of ambient
products later during the day. This impacts store operations that
need to align their operations to the delivery schedule to make
sure their resources are available for unloading, replenishment and
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stocking, which impacts staff scheduling, backroom capacity man-
agement and on-shelf availability. This is especially significant as
store resources are scarce and shared by different activities. Addi-
tionally, stores need to manage the available inventory as shelf in-
ventory which is crucial for sales (see Hiibner & Schaal, 2017). The
definition of time windows helps to manage the on-hand invento-
ries at stores as the time until the next supply is known (Holzapfel,
Hiibner, Kuhn, & Sternbeck, 2016). The scheduling of deliveries
therefore needs to be defined according to the stores time win-
dow requirements (independent from joint or separate deliveries
across products). Delivery time windows have to be predefined and
fixed for a given period to efficiently coordinate store resources
during the day. This requires consistent delivery time windows for
each product segment throughout the planning horizon, ensuring
a smooth supply of the stores.

While current VRP literature usually assigns time windows
to customers (Spliet & Desaulniers, 2015; Spliet & Gabor, 2014),
a more specific product oriented assignment is required when
dealing with multiple products with distinct characteristics such
as grocery products. It is not sufficient to consider multiple de-
livery time windows per customer (Belhaiza, Hansen, & Laporte,
2014). Instead it is necessary to define which of the available
time windows each product will be assigned to, ensuring con-
sistent deliveries for a given planning horizon. In combination
with the transportation in MCVs, this raises the question of when
each product should be supplied, and whether the same time
window should be assigned to different products to enable joint
delivery. Our work addresses this special variant of periodic VRPs
with MCVs and a product-oriented time window assignment,
which is consistent throughout the planning horizon. To the best
of our knowledge, there is not yet an MCVRP that integrates the
consistent time window assignment in a multi-period setting. Con-
sequently, our main contributions are as follows. Firstly, a mixed
integer programming model defining the product-oriented time
window assignment for MCVRP (PTWA-MCVRP) is proposed. The
defined model enables a tactical planning of master routes for the
distribution in retailing. Secondly, an adaptive large neighborhood
search (ALNS) is designed to solve the problems characteristics
with specialized, innovative operators. Its effectiveness is tested
on both benchmark instances and simulated data informed by
retail practice. Thirdly, the effects of consistent deliveries and
product-oriented time windows with MCVRPs are analyzed.

The remainder of this paper is organized as follows.
Section 2 provides a detailed description of the problem and
its related literature. Section 3 describes the formulation of the
mathematical model. The ALNS algorithm developed is explained
in Section 4. Numerical experiments are carried out in Section 5.
Finally, our findings are summarized in Section 6.

2. Distribution process, requirements and related literature

In this section we first describe the overall distribution plan-
ning process for retailers before highlighting the implications of
using MCVs for transportation. Further, we analyze why grocery
retailers need to consider multiple periods and consistent deliv-
eries across product segments. This information has been collected
in joint projects with European retailers. This builds the founda-
tion of the literature review that follows and accounts for how the
areas of further research have been derived. The terms customers
and stores are used as equivalents in our context.

2.1. Description of the planning problem

Distribution of groceries. Grocery retailers need to simultaneously
manage four to five different temperatures (e.g., frozen, chilled and

ambient) across their logistics subsystems. The majority of prod-
ucts are distributed via an DC (Hiibner, Kuhn, & Sternbeck, 2013;
Martins, Amorim, & Almada-Lobo, 2017). The distinct products can
be allocated to the same DC, but separate warehouse zones at dif-
ferent temperatures are required to prevent spoilage. The same
reasoning applies to the transportation process, during which the
preferred temperature for each product needs to be maintained to
guarantee high product quality and to adhere to legal regulations.

Distribution with MCVs. Using MCVs poses some new challenges
for the planning as the joint distribution of segments influences
not only the transportation process but also the upstream and
downstream supply chain operations (Hiibner & Ostermeier, 2018).
On the one hand, different gates have to be approached by an MCV
to collect different segments from distinct DC temperature zones.
This leads to an increase in loading costs that depend on the num-
ber of segments assigned to a tour and therefore on the number
of compartments needed on each vehicle. On the other hand, sep-
arate deliveries with a single-compartment vehicle for each seg-
ment may be avoided, reducing the number of visits to a store and
total travel distance.

Application of product-oriented time windows for store operations.
Store replenishment usually takes place at certain time windows
during the day. These time windows depend for example on the
general replenishment policy of certain segments (e.g., fresh prod-
ucts need to be replenished before or on opening of the store),
availability of replenishers (e.g., external replenishers or part-time
workers may only be available at certain times or store employees
during low store traffic times) and further store requirements and
opportunities (e.g., the possibility of using the backroom for inter-
mediate storage). To enable smoother operations, plan capacity for
store operations and ensure appropriate store inventory levels, gro-
cery retailers rely on consistent product-oriented time windows.
These time windows ensure that each product segment will always
arrive during the same time window along the planning horizon
(i.e., the full week). In practice, retailers usually determine master
routes based on the demand of an average week as they require
consistent solutions for such routes regarding average weeks. These
routes can then be used as template for the daily planning with
only minor adjustments. Master routes are usually determined an-
nually or each second year. Furthermore, the definition of deliv-
ery days for each store (i.e., delivery patterns) mainly depends on
costs for store operations and only partially on costs for picking
and transportation. In decision models to define delivery patterns
(see e.g., Holzapfel et al., 2016; Taube & Minner, 2018), the tour
costs are usually approximated without defining the actual tours.
Yet, in retail practice, the delivery patterns can also be defined in
a precedent step of the actual routing (Kuhn & Sternbeck, 2013).
This means that the stores have defined days to order and receive
certain segments.

An example of the assignment of product-oriented time win-
dows for different store-segment pairs is depicted in Fig. 1. It il-
lustrates two examples of routing schedules, where time window
assignments are considered with and without consistent deliveries.
Accordingly, segment delivery patterns are provided on the left-
hand side of Fig. 1. For example, segment A (dark square) is deliv-
ered every day, while segment D (dotted square) is only delivered
on Mondays, Wednesdays and Fridays. Two possible solutions for
the time window assignment are presented. The schedule on the
left represents a solution where consistency is not taken into ac-
count, while the one on the right contains a consistent schedule.
In the first case, segments are delivered at different times of the
day over the week. In the second case, deliveries within the same
time bounds are guaranteed across the entire planning horizon. It
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Fig. 1. Illustrative example of routing schedules with and without consistent deliveries.

shows that segments A & B are supplied between 6 and 7 am ev-
ery day of the planning horizon. Likewise, deliveries for segments
C & D always take place between 8 and 9 am. Clearly, this schedule
enables stores to plan their resources according to the consistent
plan, allowing efficient processing of deliveries.

Consequently, the aim of the PTWA-MCVRP is to determine an
individual time window for each segment that a store has ordered
and to use this time window consistently for the complete plan-
ning horizon. Each segment is thereby considered independently of
all other segments for the time window assignment. However, the
same time window can be selected for different segments as stores
usually order more than one segment a day. This also means that
the joint delivery of multiple segments is possible if they are re-
quested on the same day. Yet, the requirement for consistent deliv-
ery times applies to all segments. Ultimately, the product-oriented
time window is motivated to reduce the planning complexity for
stores and increase the stores satisfaction with its supplier as a re-
sult. Hereafter, we refer to a given segment of a store for which
a product-oriented time window has to be determined as store-
segment pair.

In retail practice, the assignment of product-oriented time win-
dows underlies some further requirements and rules. Time win-
dow restrictions are not strict and both early and late deliveries to
the stores are possible but undesirable, having a negative impact
on store operations. Usually, the delivered products are dispatched
to the sales area for replenishment and the excess is stored in
the backroom area for later replenishment. The backrooms are de-
signed to store just a portion of the deliveries, ensuring future re-
plenishment, and early deliveries can trigger storage problems at
this stage if the deliveries are not processed immediately upon ar-
rival, specially refrigerated products (Pires, Pratas, Liz, & Amorim,
2017). Late deliveries, however, lead to idle times of the person-
nel assigned to the receiving activity and might delay the replen-
ishment of shelves with the risk of causing stockouts. We note
that in-store operations yield the highest share of operational costs
within the internal supply chain of a retailer, accounting for up to
50% (see e.g., van Zelst, van Donselaar, van Woensel, Broekmeulen,
and Fransoo (2009) and Kuhn and Sternbeck (2013)).

2.2. Related literature

The PTWA-MCVRP deals with two main groups of decisions: (i)
routing decisions and (ii) consistent time window assignment deci-
sions. These decisions relate to three streams of VRP variants that
will be discussed below. Since the routing decisions are defined
taking MCVs into account, the PTWA-MCVRP clearly extends liter-
ature on MCVRPs. The time window assignment decisions derive

from an extension of the time window assignment vehicle rout-
ing problem (TWAVRP) and the consistent vehicle routing problem
(ConVRP).

Multi-compartment vehicle routing problems. MCVRP literature fo-
cuses mainly on its applications to fuel distribution (e.g., Avella,
Boccia, & Sforza, 2004; Coelho & Laporte, 2015; Cornillier, Boc-
tor, Laporte, & Renaud, 2008), waste collection (e.g., Henke, Sper-
anza, & Wadscher, 2015; Muyldermans & Pang, 2010; Reed, Yian-
nakou, & Evering, 2014) and food distribution (e.g., Chajakis &
Guignard, 2003; Hiibner & Ostermeier, 2018). Most of the works on
MCVRP assume that customers can only be served by one vehicle
(e.g., Abdulkader, Gajpal, & EIMekkawy, 2015; Chajakis & Guignard,
2003; Reed et al., 2014) and/or that the number of compartments
and their size are fixed (e.g., El Fallahi, Prins, & Calvo, 2008; Muyl-
dermans & Pang, 2010), which are too restrictive for our setting.
Derigs et al. (2011) are the first to consider flexible compart-
ment sizes with multiple deliveries to customers. This new fea-
ture creates a more general MCVRP by adding decisions on the
number and size of compartments to the problem. Henke et al.
(2015) tackle the MCVRP with discrete flexible compartments, in-
stead of continuous ones as in Derigs et al. (2011). The authors
allow the number of compartments to be smaller than the num-
ber of products to be collected and apply a variable neighbor-
hood search to the problem. Later, Koch, Henke, and Wadscher
(2016) propose a genetic algorithm for the same problem and
Henke, Speranza, and Wascher (2017) develop an exact method for
the problem (a branch-and-cut algorithm). Hiibner and Ostermeier
(2018) study the distribution of groceries with flexible MCVs, in-
corporating the operational costs of the loading and unloading pro-
cesses. The authors propose a large neighborhood search (LNS) to
solve the problem. Ostermeier and Hiibner (2018) present a vehicle
selection model for the MCVRPs that analyzes under which condi-
tions single- or multi-compartment vehicles are more efficient.
The MCVRP was also extended by some authors to incorporate
time window restrictions that consider fixed compartment sizes.
Kaabi and Jabeur (2015) describe an MCVRP where customer or-
ders are composed of different products with associated profits,
which are collected once the customer is visited within their time
window. The authors propose a hybrid approach combining a ge-
netic algorithm and an iterated local search to solve the problem.
Kabcome and Mouktonglang (2015) consider time windows as soft
constraints but set an upper bound for the violation of time win-
dows as hard constraint. The authors use a commercial software to
solve small instances exactly. Although both works consider time
window restrictions, they are incorporated as input parameters
rather than decision variables. A model and solution approach that
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integrates the MCVRP with time window assignment decisions has
not yet been analyzed in the literature, but has practical relevance
as described in above.

Time window assignment & consistent vehicle routing problems.
Spliet and Gabor (2014) introduced the first variant of the
TWAVRP. They define a problem where the assignment of time
windows to each customer is performed before the actual demand
is known. Afterwards, when the order is submitted, a vehicle
routing schedule is made to comply with the assigned time win-
dows. They assign time windows of prespecified width from a
set of endogenously known time windows. The authors develop
a branch-price-and-cut algorithm to find the optimal expected
traveling time. In a subsequent extension, Spliet and Desaulniers
(2015) consider the assignment of time windows from a pre-
defined set of time windows. They propose a branch-price-and-cut
algorithm and different column generation heuristics. Spliet, Dabia,
and van Woensel (2017) introduced time-dependent travel times
to the TWAVRP, focusing on predictable variations. The authors
develop a branch-price-and-cut algorithm, using an exact labeling
and a tabu search heuristic to solve the pricing problem. Jabali,
Leus, Van Woensel, and De Kok (2015) consider a similar problem,
in which travel times are stochastic but the demand is determinis-
tic. The goal is to define a single route plan that should be fixed for
all days of the year together with the time windows assignment.
The authors propose a tabu search algorithm to minimize the total
traveling costs and expected earliness and tardiness penalty costs,
assuming soft time windows. Feillet, Garaix, Lehuédé, Péton, and
Quadri (2014) present a bi-objective time-consistent VRP aimed at
minimizing - besides the total travel time - the maximum number
of time classes in which a customer is visited. The authors solve
the problem with an LNS. Subramanyam and Gounaris (2016) de-
velop an exact solution for the consistent traveling salesman
problem (ConTSP) aimed at identifying the minimum-cost set
of routes that a single vehicle should follow for a given period,
ensuring that the customers are visited at roughly the same time
of the day. Subramanyam and Gounaris (2017) extend the previous
work from an TSP to an VRP variant and show that each scenario
of the TWAVRP stochastic model can be reduced to an VRP variant
known as a consistent vehicle routing problem (ConVRP). The
authors adapted an exact algorithm for the ConVRP and solved the
TWAVRP benchmark instances.

The ConVRP is a multi-period problem proposed by Groér,
Golden, and Wasil (2009) that aims to design consistent routes
over a given planning horizon. Kovacs, Golden, Hartl, and Par-
ragh (2014a) describe three different types of consistent routing:
(i) arrival-time consistency, which ensures visits to customers at
roughly the same time of the day, (ii) person-oriented consis-
tency, which means that customers are visited by the same driver,
and (iii) delivery consistency, where customers receive roughly
the same quantity of goods. The arrival-time consistency require-
ment of the ConVRP is similar to an TWAVRP, as both problems
define an interval of time within which customers visits should
occur. Most of the literature on ConVRP focuses on arrival-time
and driver consistency. The first approaches solving the prob-
lem are based on template concepts, wherein template routes are
built considering the frequent customers, and afterwards a daily
plan is derived to include the remaining customers to be vis-
ited on each day (Groér et al, 2009; Kovacs, Parragh, & Hartl,
2014b; Tarantilis, Stavropoulou, & Repoussis, 2012). Groér et al.
(2009) propose a multi-start solution construction combined with
a Record-to-Record travel local search metaheuristic algorithm, and
Tarantilis et al. (2012) propose a tabu search algorithm. Kovacs
et al. (2014b) present an ALNS to solve the problem and analyze
the variant of allowing later departures from the depot. Sungur,
Ren, Ordéiiez, Dessouky, and Zhong (2010) also use the template

concept for the courier delivery problem with uncertainty, where
the problem is solved by a master and daily scheduler heuristic
(MADS).

Kovacs, Golden, Hartl, and Parragh (2015a) generalize the Con-
VRP, allowing the customer to be visited by a limited number
of drivers and penalizing the arrival-time variation in the ob-
jective function. The authors propose an LNS algorithm to solve
the problem. They found that both driver and arrival-time con-
sistency have a small impact on the fleet size. Kovacs, Parragh,
and Hartl (2015b) and Lian, Milburn, and Rardin (2016) study
the multi-objective ConVRP, where driver and arrival-time consis-
tency are considered as objectives, besides the traveling cost. Both
works analyze the trade-off between traveling costs and service
consistency, and develop a multi-directional local search (MDLS),
combined with an LNS to approximate a Pareto frontier. Kovacs
et al. (2015b) also propose two exact approaches based on the e-
constraint framework and state that, on average, it is possible to
achieve 70% better arrival-time consistency by increasing the trav-
eling costs by not more than 4%.

We will leverage the current literature in different ways. First
of all, we will propose an ALNS that uses daily operators based on
Derigs et al. (2011) and Hiibner and Ostermeier (2018) approaches
and incorporates the operational features of the latter. Secondly,
we will use the concept of consistency regarding the time window
assignment. A maximum width between arrivals will be defined as
for the ConVRP, but not all arrival times are preferable. This means
that we need to define a set of time windows from where the as-
signment is made in order to incorporate the stores preferred de-
livery times.

3. Problem definition and model formulation

The PTWA-MCVRP is defined on a complete undirected,
weighted graph G = (N,E), where N={0,1,...,n} is the set of
nodes and E = {(i, j) : i, j € N} is the set of edges. Node i = O rep-
resents the DC location. Each edge (i, j)eE is associated with a
traveling cost tc; and a traveling time tt;. It is assumed that all
traveling costs satisfy the triangle inequality and each tour starts
and ends at the DC. Due to fixed working shifts, retailers usu-
ally define an aspired departure time from the depot (e.g., 5am)
and maximum tour length (e.g., due to legal restrictions) for each
tour and we therefore assume that vehicles depart from the DC
at time zero and must return before time T, defined as the max-
imum tour duration. Waiting time between deliveries is not al-
lowed as in practice drivers start unloading as soon as they ar-
rive. A similar setting was also used by Kovacs et al. (2014b). Let
V be the set of vehicles available for transportation at the DC. The
number of vehicles available is assumed to be sufficiently large to
fulfill the demand of all stores and consists of identical vehicles
with a total capacity Q. As we consider MCVs, the loading area of
each vehicle can be split into a limited number of compartments
c. The number of compartments a vehicle may have active is in-
dicated by keK, with K= {1,...,c}. Due to the characteristics of
an MCVRP that have been explained, loading and unloading costs
are also decision-relevant costs in addition to the traveling costs.
In line with this, I, represents the loading cost of a vehicle depen-
dent on the number of k compartments used, and u indicates the
unloading cost of each stop (Hiibner & Ostermeier, 2018).

The DC is responsible for the distribution of products from
|S| segments for a given planning horizon consisting of |D| days,
where S is the set of segments and D the set of days. It is as-
sumed that the delivery pattern of each store for each segment
(days in which a delivery should be made (Holzapfel et al., 2016))
are known, as well as the quantities to be delivered. qg there-
fore defines the quantity of an order for segment s to be delivered
to store i< N\{0} on day d, and stg represents the corresponding



variable service time that depends on the delivery quantity. Addi-
tionally, a fixed service time sf is incurred each time a vehicle stops
at a store, which is independent of the delivery quantity. Note that
if day d does not belong to the delivery pattern of store i for seg-
ment s, g is set to 0.

Time windows are defined by the set TW = {1, ..., tw} and the
intervals [e;, ht], for every teTW, indicating the earliest (e;) and
latest (h;) delivery time of time window t. The assignment of time
windows will be made for each pair store-segment denoted as ((i,
s): ie N\{0}, s €S). Since not all time windows can be used for each
pair store-segment (e.g., fresh products need to be received early),
the subset TW;; c TW indicates which time windows can be used
for each pair (i, s). Since soft time windows are considered (see
Section 2), a negative impact of having earlier or later arrivals than
the time window assigned to a store have to be accounted. We fol-
low loannou, Kritikos, and Prastacos (2003) and the ConVRP litera-
ture and impose unitary costs A and f associated with one unit of
time that the delivery is too early or late.

The objective of the PTWA-MCVRP is to minimize the total
routing costs, considering traveling, loading and unloading costs,
as well as the penalties for earlier or later deliveries than planned,
while satisfying the stores orders. The problem combines a multi-
period VRP for consistent deliveries with an MCVRP. As a conse-
quence, it involves the following partial decisions that are made
simultaneously and define the uniqueness of the problem formula-
tion:

» Sequence of store visits, as in every VRP (this decision specifies
the order in which each vehicle should perform the delivery of
the orders assigned).

o Assignment of orders to tours/vehicles (this decision deter-
mines which segments are delivered simultaneously).

e Number and size of each compartment (this decision defines
the number of compartments on each vehicle, and how the ca-
pacity is divided between compartments).

o Assignment of product-oriented time windows to each store-
segment pair (this decision defines the arrival time of each seg-
ment at a store on each delivery day).

The first group of decisions is related to MCVRP. The last decision is
associated with the consistent assignment of time windows along
with penalty costs. We apply the following decision variables.

. b?jv =1 if vehicle v travels from location i to j on day d and
bd. =0 otherwise

ijv

#4 =1 if vehicle v transports segment s on day d and %% =0

otherwise

. Gl.‘siv =1 if segment s is delivered by vehicle v to store i on day
d and ¢ =0 otherwise

. rﬁk =1 if vehicle v has k active compartments on day d and
rd, =0 otherwise

* i = 1 if store-segment pair (i, s) is assigned to time window ¢t
and y;; = 0 otherwise

The continuous variables W?U denote the arrival time at store i by
vehicle v on day d and plf.’S the penalty cost incurred on day d by
the pair (i, s) in the event of early or late deliveries. Additionally,
the discrete auxiliary variables f¢ represent the number of store
stops performed by vehicle v on day d.

The PTWA-MCVRP can be formulated as follows:
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Objective function (1) minimizes the total routing costs, includ-
ing loading, traveling and unloading costs, plus the penalty costs
of performing deliveries outside the bounds of the time windows
assigned. The constraints of the problems can be aggregated into
two groups. Constraints (2)-(10) compose the first group, which is
related to the routing decisions of the MCVRP. Inequalities (2) and
(3) ensure that each route starts at the DC, and that a store has
only one predecessor and one successor on the route. Constraints
(4) guarantee that a store receives all segments that it requires
on each day. Constraints (5) ensure that store deliveries are only
performed by a vehicle that actually visits the store. The vehicles’
capacity is controlled by Constraints (6). Inequalities (7)-(9) de-
fine which segments are loaded on the vehicles and consequently
how many compartments will be used. Constraints (10) determine
the number of store stops each vehicle performs on a given day.
The remaining constraints compose the second group and refer to
the time window assignment. Constraints (11) ensure that only one
time window can be assigned to each pair store-segment. These
constraints ensure consistent deliveries and are hereafter denoted
as time window consistency constraint. The departures from the DC
at time zero are ensured by inequalities (12). The arrival times
to stores are set by Constraints (13)-(15), ensuring that waiting
time between deliveries is not allowed. Constraints (16) ensure
that the tours do not exceed the maximum duration established.
The penalty costs incurred by performing earlier or later deliveries
than the bounds of the time window assigned are determined by
Constraints (17) and (18). Note that the consistency requirement
imposed by (11) is a hard constraint of our problem, while the
time window satisfaction is hereby considered a soft constraint pe-
nalized in the objective function.

4. Solution approach

The main difficulty in solving the PTWA-MCVRP arises from the
multi-compartment choice and routing, and in particular from the
interrelation between the individual days of the planning horizon.
In the problem considered, this interrelation relates to the consis-
tent use of a unique time window for each customer-segment pair
throughout the planning horizon. We propose an ALNS framework
to cope with the characteristics of the problem regarding its two
main groups of decisions: the routing problem with MCVs and the
time window assignment.

ALNS algorithms are applied to different problem settings in
literature and have been shown to provide good results for distinct
VRP variants that are related to our setting, such as MCVRP (Derigs
et al., 2011), VRPTW (Ropke & Pisinger, 2006) and ConVRP (Kovacs
et al., 2014b). The ALNS framework was first introduced by Ropke
and Pisinger (2006). Its central idea is to sequentially improve
an initial solution by destroying and rebuilding parts of it. In
the VRP variants, the destroying phase uses a destroy operator
to remove a given number of requests from the routes, which
are afterwards reinserted according to an insertion operator in
the rebuilding phase. In an ALNS framework, several destroy and
insertion operators are available and selected during the search
procedure in an adaptive manner, depending on their performance
during the search.

The ALNS framework developed to solve the PTWA-MCVRP
combines daily and weekly operators to tackle the different prob-
lem decisions. The daily operators focus on a particular day and try
to improve the routing decisions of the problem. This group of op-
erators are usually proposed in the literature for VRPs. The weekly
operators are new operators designed according to the character-

Algorithm 1 ALNS scheme for the product-oriented time window
assignment for MCVRP.

1: generate a solution S > Section 4.1
2: Set Spege :=S

3: repeat

4:

select a destroy-repair heuristic pair (d, r) based on adaptive

weights (p4;) > Section 4.6

5: if d is a daily operator then > Sections 4.2-4.4
6: randomly select day t

7: generate solution S’ by applying (d,r) to S on day t

8: else > Sections 4.2-4.4
9: generate solution S’ by applying (d.r) to S

10: end if

11:  if S’ better than Sy, then > Section 4.5
12: Shest =S
13: S:=9

14: else if S’ complies with the acceptance criteria then
> Section 4.5

15: S:=9

16: end if

17: update performance of destroy-repair heuristic pair (d, r)
> Section 4.6

18: until maximum number of iterations is reached
19: return Spes

istics of the problem. They have a broader scope, analyzing all the
days at the same time, and aligning the time window assignment
decisions. These operators are designed for our specific problem
but can also be used to align other types of consistency (e.g., driver
consistency) across the complete planning horizon. We therefore
would like to note that the presented ALNS is capable of solv-
ing more general VRP variants such as time window assignment
VRPs and consistency VRPs. The pseudo-code of the ALNS frame-
work developed is shown in Algorithm 1. The general framework
is explained below, and the main features are detailed in the sub-
sequent subsections.

Although the problem formulation considers the time window
consistency as a hard constraint, this is relaxed at the beginning
of our solution approach. Actually, this constraint will be enforced
during the search by adding an inconsistency cost to the objective
function (f{S’)) as described in Eq. (20), creating a modified objec-
tive function (fz(5')), similar to Kovacs et al. (2014b).

fa(§") = f(S) + ¢ - inconPairs (20)

The inconsistency cost is set proportional to the number of
customer-segment pairs with an inconsistent delivery plan (incon-
Pairs), i.e., number of pairs with more than one time window as-
signed, and to the violation cost ¢. Parameter ¢ is initialized at
the beginning of the search and updated after a certain number
of iterations (¢ = exptiterations/8)y \ith § as control parameter for
the increase of ¢. Naturally, the value of ¢ and its increase has
a high impact on runtime and solution quality as it decides how
restrictive the search is concerning the consistency violation. An
increasing ¢ means that the more advanced we are in the search,
the more costly it is to violate the time window consistency con-
straint. The inconsistency cost was introduced to allow a more
diversified search for better routing options in the beginning of
the search procedure as otherwise the routing would be very re-
stricted. Please note that the inconsistency cost differs from the
penalty costs as it is a relaxation only used to guide the search al-
gorithm while the penalty costs for early/late deliveries are part of
the soft time window constraints (Constraints (17) and (18)). The
evaluation of our final solution is consequently based on the given
MIP with objective function (1) and Constraint (11).



Table 1
Overview of destroy operators.

Type Remove operators Repair operators
Daily Random, Shaw, worst Greedy, regret
Weekly  Product-based, worst time window, worst arrival

The algorithm starts with the generation of an initial solution
S (see Section 4.1). In each iteration, a destroy-repair heuristic pair
(d, r) is chosen by a roulette wheel selection, recurring to adap-
tive weights (see Section 4.6). The destroy operator can be selected
from the group of daily or weekly operators (see Section 4.2). The
removal step is followed by the reinsertion phase. The reinsertion
is performed by the selected repair operator and each order is
reinserted for the corresponding day on which the order is sched-
uled (see Section 4.3). After each remove and insertion, the arrival
times of the orders are updated and the time window assignments
are reset (see Section 4.4). We use six destroy operators and two
different repair operators (see Table 1).

If the new solution S’ meets the acceptance criteria, then it re-
places S. If it improves the best solution found so far, according to
the acceptance criteria, it replaces Sp.s (see Section 4.5).

4.1. Initial solution

The initial solution is generated by applying the savings heuris-
tics of Clarke and Wright (1964) to each individual day of the plan-
ning horizon. This approach starts by creating routes with single
orders and afterwards iteratively combines routes according to a
calculated saving in traveling distance, while satisfying the vehicles
capacity and maximum duration constraints. This heuristic is com-
monly used in different VRP problems, and was chosen because it
provides a fast solution with a reasonable traveling distance. With
the routes defined, the arrival times to each store are calculated
ex-post, assuming the departures from the DC at time zero of each
day. A time window is assigned afterwards to each individual or-
der based on its arrival time, guaranteeing on-time deliveries. Note
that at this stage the orders of each pair customer-segment can be
assigned to distinct time windows. The first solution generated is
therefore most probably not feasible with regard to the time win-
dow consistency constraint.

4.2. Destroy operators

In this solution approach, the destroy operators are separated
into daily and weekly operators. Each of the operators was devel-
oped and tested to address a special characteristic of the problem.
The daily destroy operators focus on a specific day of the plan-
ning horizon, and therefore focus on the routing decisions of the
problem. The weekly destroy operators are the unique feature of
our search procedure and were created to tackle the consistency
aspect of the PTWA-MCVRP, thus focusing on the time window as-
signment decisions. In contrast to the daily operators, they analyze
the entire planning horizon at once with the aim of aligning the
time window assignment for the customer-segment pairs.

4.2.1. Daily operators

The daily operators remove r orders for a given day from its
routes. The day selection is random, following a uniform distribu-
tion, but a day is set as “tabu” after its selection until all other days
have also been selected, independently of the quality of the solu-
tion generated. The number of removes r is chosen randomly from
the interval [x1 - Nggy, k32 - Nggy], where Ny, is the total number of
orders to be delivered on the specific day and «{, x, weights for
the lower/upper bound.
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The three daily destroy operators used are: random removal,
Shaw removal and worst removal. These operators were proposed
by Shaw (1997) and Ropke and Pisinger (2006) and are frequently
used in the ALNS for different VRP variants. The general idea of
each operator is given below.

The random removal operator randomly removes the orders
from the set of routes of the day selected (using a uniform dis-
tribution). The Shaw removal removes the orders based on a simi-
larity measure as denoted in Eq. (21). The similarity between two
orders (z, m) is calculated based on four terms: distance, order size,
arrival time and segment affiliation. These terms are weighted us-
ing the weights ¢, ¥, ¢ and w, respectively. The weights are used
to balance the importance of the different terms for the search and
therefore influence the solution quality. The terms with the high-
est impact should therefore be attributed with the highest weights.
d,m represents the distance between corresponding customers of
the orders, q(z) the order size, a(z) the arrival time and sz the
orders segment affiliation, i.e., s;m; = 1 if they are from same seg-
ment, 0 otherwise. The parameters dmgx, Qmax and amgx indicate
the maximum distance between two customers and the maximum
quantity and arrival time difference between any two orders across
all available orders. The smaller R, gets, the more similar the or-
ders are. In addition to the similarity measure, a randomization is
used according to Shaw (1997) to diversify the search and ensure
that not the most similar order is chosen. For this, a random num-
ber z<[0, 1) and a deterministic parameter A is used. Based on the
calculated similarity, the order that lies z* - 100 percent down the
similarity ranking is then chosen for removal.

Ron ::q).;ﬂﬂp. l9(2) — q(m)] te. @ —am)| o
max CImax amax
(21)

Finally, the worst removal removes the orders that seem to be in
a costly position in the solution. The cost of an order is the differ-
ence between the current solution cost and the solution cost if the
order was removed (not having any additional cost of not being
delivered). In this approach the solution cost is evaluated by the
modified objective function (f;). A randomized process controlled
by the parameter A is also integrated in this operator, similarly to
Shaw removal, to ensure that it is not always the order with the
worst cost that is removed.

4.2.2. Weekly operators

The weekly operators remove the orders of r customer-segment
pairs from all days of the planning horizon. The number of re-
movals r is chosen randomly from the interval [2,k3-n], where n
represents the number of customers and k3 the weight for the
upper bound. Since all the orders of the r pairs are removed, the
value of r has to be more restrictive than for the daily operators.
By way of example, if two pairs are chosen with five orders for
each pair throughout the planning horizon, this already results in
ten orders for removal.

New destroy operators are designed in this work to specifi-
cally address the assignment decisions of the PTWA-MCVRP. Three
weekly operators are developed: product-based removal, worst time
window removal, worst arrival removal. The product-based removal
is a variant of a random removal. The operator randomly selects r
pairs of customer-segments (using a uniform distribution) and re-
moves all orders of that pair from the solution, i.e., all orders of
a segment that a customer placed in the planning horizon are re-
moved. This operator diversifies the assignment of time windows.
The other two operators are variants of a worst removal and are
adaptations of the operators designed by Kovacs et al. (2015a).
The worst time window removal operator calculates the number of
time windows assigned to each customer-segment pair along the
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planning horizon and removes all the orders of the r pairs with
the highest number of assignments. The aim of this operator is to
reduce the number of time windows used for each pair and fa-
vor more consistent deliveries. The worst arrival removal consid-
ers the maximum arrival time difference between two orders of
a customer-segment pair. It identifies the r pairs with the highest
arrival time deviation and removes the two corresponding orders
of each pair. It also aims at reducing the number of time windows
but it is less disruptive since it does not remove all the orders from
the same pair customer-segment.

4.3. Repair operators

Once a destroy operator is applied and orders are removed, the
repair operator selected rebuilds the solution by reinserting the or-
ders into the routes of their delivery days. If the removals were
made by a daily removal operator, all the orders removed are from
the identical day and the repair operator only considers that spe-
cific day. Otherwise, for weekly removals, the repair operator will
focus on each day separately. From the list of days from which or-
ders have been removed, a day is selected at random and all the
orders of the corresponding day are reinserted according to the
repair operator chosen. The process is repeated until all days are
rebuilt.

Following most of the VRP literature that uses ALNS, two inser-
tion heuristics are applied as repair operators: greedy insertion and
regret insertions. These operators are based on Ropke and Pisinger
(2006). The greedy insertion operator calculates the cheapest feasi-
ble position for reinsertion for each order removed, and the order
with the lowest cost increase is selected to be inserted. The pro-
cess is repeated until all orders are inserted. The regret insertion
operators improve the greedy insertion by analyzing not just the
best option for each order but the kth best, whereas k can have
different values. This procedure integrates ahead information and
calculates the regret of postponing an insertion. Let AJ denote the
change in the objective value for inserting order z at its best fea-
sible position on the jth cheapest route. The regret value is calcu-
lated according to Eq. (22) for all the orders removed. The order z
with the highest regret value is selected to be inserted at its best
feasible position. In each insertion, the regret value is recalculated
for the set of orders remaining on the removal list until all orders
are inserted.

k
regretf 1=y (A{Z -4A;) (22)
=2

4.4. Update of arrival times and time windows assignments

Since waiting time between deliveries is not allowed, every re-
move or insertion in a route impacts the arrival time of the suc-
cessive orders and thus times need to be updated. All routes start
at the DC at time 0 and therefore the arrival time of each order is
calculated by consecutively adding the travel times between the
customers visited (tt;) and their corresponding service time. As
previously mentioned, the service time at a customer has a vari-
able component proportional to the size of the orders delivered
(stg) and a fixed component per stop (sf, see also Section 2). Note
that a customer can receive more than one order across different
segments. In this case, the same arrival time is set for the corre-
sponding customer orders and the service time at the customer is
the total variable service time of the distinct orders plus the fixed
service time.

Once the arrival times are updated, the new arrival time of an
order might lie outside the bounds of the assigned time window.
However, since the problem considers time window bounds as soft
constraints, the solution is still feasible, but it yields a penalty cost

for the deviation from the time window. The approach has flexi-
bility to decide whether to change the time window assigned to
the order, avoiding penalty costs which could cause inconsistent
assignment, or to accept the penalty costs, maintaining the consis-
tent assignment. It is therefore necessary to evaluate whether the
time window assignment should be altered or maintained in order
to achieve the minimal cost assignment, i.e., the best option be-
tween accepting a penalty cost or an additional inconsistency cost.
Note that during the search, the time window assignment will be
more restrictive as the constraint violation cost ¢ increases.

The time window assignment update procedure is performed
for each order separately, after the arrival time is determined. We
define as currentcys: the current penalty and inconsistency cost in-
duced by the pair customer-segment, disregarding the order being
analyzed. This means we calculate the penalty and inconsistency
costs for all orders of the customer-segment pair without the or-
der that is currently under consideration. When deciding on the
new time window assignment for the order being analyzed, there
are two possible situations, as previously mentioned:

o Update only the time window assignment of the order being
analyzed, maintaining the previous assignment of the remain-
ing orders of the pair. This decision means that the total assign-
ment cost of the pair customer-segment is calculated by adding
the penalty and inconsistency costs associated with the time
window assignment for the new order to the currentcs. The
total cost of this situation is denoted as singleUpdatec,s;, corre-
sponding to a single assignment update.

Update the assignment of all the orders from the pair customer-
segment to the same time window, ensuring consistent deliver-
ies throughout the planning horizon. This decision ensures the
avoidance of any inconsistency cost (i.e., zero cost, as only one
time window is assigned to the pair). The total assignment cost
of the pair therefore comprises only the penalty costs that all
the orders incur due to the new time window assigned. The
total cost of this situation is denoted as groupUpdatecos:, and a
new assignment is performed for the group of orders.

During the procedure, both costs singleUpdatess; and
groupUpdatec,s; are calculated for each of the time windows
available for the pair customer-segment (TW), and the cheapest
assignment of all is chosen. The penalty cost that an order incurs
is calculated by comparing the order arrival time with the bounds
of the time window assigned. If the arrival time lies outside the
time window bounds it causes a penalty cost proportional to the
deviation. The inconsistency cost of updating the time window
of a single order is determined by checking whether the time
window assigned is already used by one of the other orders of
the pair. The inconsistency cost is increased proportional to the
current constraint violation cost (¢) if the time window has not
been used. We would like to note that the updating process is very
time consuming and is also used to check each potential insertion
position in the repair phase, therefore showing a high impact
on the computational times. However, this updating process is
required in our problem to align consistency of time windows
across the planning horizon and as such represents one of the
main features that characterizes our approach.

4.5. Acceptance criteria

The solution approach proposed uses a simulated annealing
framework to evaluate and accept the solutions generated. A new
solution S’ is accepted as Sy, if it improves the best solution. Oth-
erwise, it is compared against the incumbent solution S by means
of the probability e~Ua)=fa()/f The parameter f denotes the cur-
rent temperature. It is initialized at the beginning of the search
such that a n% worse solution is accepted with a 50% probability
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Table 2

Overview of numerical tests.
Section Purpose Data sets
521 Compare solution quality of our ALNS to TALNS of Kovacs et al. (2014b) ConVRP
522 Analyze operators application frequency ConVRP, retail data
523 Analyze algorithm performance ConVRP, retail data
531 Evaluate impact of consistent deliveries Retail data
53.2 Evaluate impact of product-oriented time window assignment Retail data

and is decreased in every iteration with a cooling rate y (f=f- y).
Solutions are compared regarding the modified objective function
fa, allowing infeasible solutions to be accepted during the search.
The ALNS algorithm stops after a given number of iterations.

4.6. Selection of a destroy-repair heuristic pair (d, r)

The pairwise selection of the destroy-repair heuristic pair is ap-
plied in each iteration and based on a roulette wheel selection
principle, as proposed in Ropke and Pisinger (2006). The probabil-
ity &4, of a pair (d, r) being chosen is given by Eq. (23), where py,
denotes the weight of the heuristic pair (Kovacs, Parragh, Doerner,
& Hartl, 2012).

Ldr
by = ——————
' Zl’i:] Z?/':] Pdrr
The weights pg, are set to 1 at the beginning of the procedure,
and updated dynamically during the search. Each pair (d, r) is as-
sociated with a score W, that is updated each time the heuristic
pair is applied according to the following criteria:

(23)

e U, + oy, if the heuristic pair generates a new best solution;

o W, + 0y, if the heuristic pair generates a solution that has not
been visited before, and is accepted as the new incumbent so-
lution S.

As in Ropke and Pisinger (2006), the scores are initialized to
zero and updated at each iteration according to the previous cri-
teria. After a certain number of iterations, the weights pg are up-
dated according to the recursive Eq. (24) and the scores are reset
to zero for the next round.

lI"L'lr (24)

Par = (1 —W)Pdr‘f'am

The parameter « is a reaction factor that controls how the
weights are influenced by past and recent performances. In this
way, it guides the search by controlling how sensitive the operator
choice reacts to changes during the search.

5. Numerical experiments

Numerical experiments examine the effectiveness of the solu-
tion approach and the impact of the model extensions proposed.
First, the performance of the ALNS is analyzed in Section 5.2,
where solutions from related problem formulations from the lit-
erature are compared and an analysis of the operators execution
is performed. Further analyses concerning the impact of our new
model for grocery distribution are then presented in Section 5.3.

Table 2 provides an overview of the tests performed. The data
sets used for these tests are described in Section 5.1.

The computational results presented in this section were ob-
tained on a 3.60 gigahertz PC with a 16 gigabytes memory. The al-
gorithm was implemented in C++ and run 10 times per instance in
all the tests performed, stopping after 60,000 iterations. The con-
straint violation cost ({) and operators weights p4. were updated
every 100 iterations. Three regret insertion operators were used

with ke {2, 3, 4}. The remaining search parameters used are spec-
ified in Table 3. It provides an overview of the used parameters
plus values, their function and how the used values were defined.
The choice of parameters influences both search quality and
runtime. In particular, the k-parameters show a high impact on
both aspects as they control the number of removals dependent on
the instance size. High values correspond to longer computational
times, however they are required to guarantee a good solution
quality. In this way we tuned the newly introduced x5 parameter
(see Appendix B). Further, § is responsible for the calibration of ¢,
which is a key parameter of our algorithm. It dictates the violation
cost and thereby influences the inconsistency cost and the search
for consistent solutions. We therefore applied intensive studies to
tune § to fit our specific problem formulation (see Appendix A).

5.1. Overview of the data sets tested

In a first analysis, our problem and solution approach are com-
pared to another VRP variant that considers consistent deliveries
over multiple periods. This comparison is made to benchmark
results provided by Kovacs et al. (2014b) for the ConVRP. It was
chosen as it considers an identical approach with a departure
time of zero at the DC. The other following analyses address our
specific problem characteristics and are therefore performed on
data based on grocery distribution. The data sets used in both
cases are described in the following and summarized in Table 5.

5.1.1. ConVRP data set

To assess the effectiveness of our approach, we compare our so-
lutions with ConVRP literature. These benchmark data do not deal
with MCVRPs and hence are only a special case of our problem.
The data sets used as benchmark were proposed by Groér et al.
(2009) and Kovacs et al. (2014b), which were based on Christofides
and Eilon (1969) instances for VRP considering a visit frequency of
70% (Groér et al., 2009), as well as 50% and 90% (Kovacs et al.,
2014b). The visit frequency indicates the likelihood of a customer
placing an order for each day in the planning horizon.

As our paper deals with a real-life problem in grocery distri-
bution, we focus on the set of instances within the ConVRP data
sets that consider a given maximum duration for tours and pro-
vided service times. In line with this, we tested nine instances with
50-100 customers to compare the results to the ones achieved
by Kovacs et al. (2014b) with their template ALNS (TALNS, see
Section 5.2.1).

5.1.2. Simulated data sets based on retail settings

Further data settings are based on direct information from
a major European retailer. Loading and unloading costs have
been derived following the insights from a preceding study by
Hiibner and Ostermeier (2018). The loading costs are presented in
Table 4 and depend on the number of compartments per vehicle.
Unloading costs accrue with every customer stop and are set to
2.20 currency units (CU). The transportation costs are based on the
travel distance between any two locations i and j, i, j € N. All exper-
iments assume a vehicle capacity of 33 transportation units (TU).
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Table 3

Search parameters setting.
Parameter Function/Use Value Tuning/Origin
§ Calibration of violation cost ¢ 300 Own experiments (see Appendix A)
K1 Lower bound for removals (daily) 0.1 Pisinger and Ropke (2007) and Kovacs et al. (2015a)
K2 Upper bound for removals (daily) 04 Pisinger and Ropke (2007) and Kovacs et al. (2015a)
K3 Upper bound for removals (weekly) 0.1 Own experiments (see Appendix B)
1] Weight Shaw removal 0.28 Derigs et al. (2011) and Hiibner and Ostermeier (2018)
v Weight Shaw removal 0.16 Derigs et al. (2011) and Hiibner and Ostermeier (2018)
17 Weight Shaw removal 0.28 Derigs et al. (2011) and Hiibner and Ostermeier (2018)
w Weight Shaw removal 0.28 Derigs et al. (2011) and Hiibner and Ostermeier (2018)
A Shaw/Worst parameter 4 Derigs et al. (2011) and Hiibner and Ostermeier (2018)
o Update of score Wy, 33 Ropke and Pisinger (2006)
o, Update of score W, 13 Ropke and Pisinger (2006)
o Reaction factor pg, 0.1 Ropke and Pisinger (2006)
n Definition of starting temperature 0.05 Ropke and Pisinger (2006)
Yy Simulated annealing cooling rate 0.99975 Ropke and Pisinger (2006)

Table 4
Applied costs for loading MCV.

# Compartments 1 2 3 4

Loading (CU/shipping gate)  2.70 5.57 8.27 10.97

Further, early or late deliveries are penalized at 0.17 CU per minute,
covering the representative labor cost of a store employee.

To further generalize our findings, we simulated 20 different
instances with varying order and demand patterns'. The demand
for each segment maps the representative order structure of the
case company. The order structure has a visit frequency of about
70% (similar to that proposed by Groér et al., 2009). If a store is
flagged up to be visited on a given day, it will place orders for all
four available segments. Each instance comprises a planning hori-
zon of seven delivery days and 50 stores served from a given DC.
The individual order size for each segment is randomly chosen be-
tween a given minimum and maximum order quantity. The order
quantity ranges between one and five TUs for the first segment
and between one and ten TUs for the second segment. Further-
more, to map segments with a higher sales volume, segment 3
ranges between 5 and 20 TUs and finally segment 4 ranges be-
tween 10 and 25 TUs. The distance information is based on the
VRP instances by Christofides and Eilon (1969). Note that the ve-
hicle capacity in Christofides and Eilon (1969) is far higher than in
our case example. However, if the distance data of Christofides and
Eilon (1969) are multiplied by four to increase the travel distances
(and keep the same density), one obtains comparable route lengths
for grocery settings. All the settings of the generated instances are
deduced from data provided by our partner from retail.

1 The generated instances can be found on http://www.vrp-rep.org/.

Table 5
Overview of data sets.

Table 5 summarizes the considered data sets for our tests and
their characteristics.

5.2. Algorithm performance

In the following sections, we analyze the solution quality by
comparing the results for the ConVRP benchmark instances, the
application frequency of the ALNS operators proposed and the
computational performance of the solution approach. The appli-
cation frequency indicates if an operator was frequently called or
not by the algorithm, regardless of the solution impact. Its value is
calculated by dividing the number of times it was called by the
number of iterations performed. In combination with the ALNS
function (i.e., performance dependent weighing of operators) this
enables insights on the use of each operator by the algorithm, as a
frequently used operator corresponds to good scores and therefore
a good performance.

5.2.1. Comparison of results with ConVRP benchmark instances
Instances modification. In contrast to our algorithm the TALNS does
not consider the complete week for planning (i.e., no weekly oper-
ators) but constructs template routes for frequent customers and
completes the daily planning afterwards. The total travel time plus
service times (TT) for each instance are the comparison metric. Fur-
ther, the problem addressed by Kovacs et al. (2014b) is a ConVRP
that considers i) driver consistency and ii) arrival-time consistency.
Their goal is to minimize traveling time while satisfying the two
consistencies, i.e., to approach each customer using the same driver
every day with a maximum arrival-time deviation (l;nqx) smaller
than a pre-defined width L. These two aspects are not considered
in our problem formulation and therefore the following modifica-
tions had to be applied to enable a fair comparison of both solu-
tion approaches.

Data family, application(s) Main characteristics

Comment

Planning horizon: 5 days
ConVRP,

Comparison to TALNS (5.2.1),
Operators analysis (5.2.2)

Segments: 1

Number of instances: 9

Planning horizon: 7 days
Visit frequency: 70%
Customers/Orders: 50/200
Segments: 4

Retail,

Operators analysis (5.2.2),
Impact of consistent deliveries (5.3.1),

Impact of product-oriented TW (5.3.2)  Number of instances: 20

Visit frequencies: 50, 70 and 90% -
Customers/Orders: 50, 75 and 100

One order per customer
One product

Instances with comparable setting by Kovacs et al. (2014b)

Multiple orders per customer

Four incompatible product

segments

Simulated data based on retail information
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Results of comparison to TALNS best solution by Kovacs et al. (2014b).

# Customers Visit frequency (%) TALNS Best ALNS Avg ALNS Best Gap (%) Avg Gap (%)
50 50 2827 2865 2868 14 1.5
70 4051 4050 4056 0.0 0.1
90 4761 4762 4795 0.0 0.7
75 50 4702 4713 4792 0.2 19
70 6786 6791 6880 0.1 14
90 7749 7742 7881 -0.1 17
100 50 5349 5367 5416 0.3 13
70 7209 7224 7298 0.2 12
90 8745 8755 8840 0.1 11

Average - - -

- 0.3 1.2

i) Driver consistency is integrated in our approach like the time
window consistency constraint. This means that we relax the driver
consistency constraint of Kovacs et al. (2014b) and introduce driver
inconsistency costs by adding a violation cost to the modified ob-
jective function (fg(S')) if multiple drivers (i.e., assignment to dif-
ferent tours) are used for the same customer. These costs are in-
creased during the search, as explained in Section 4 for the time
window consistency to enforce the driver consistency.

ii) Arrival-time consistency (Imax) is treated in the following way.
The best Inqx found for each instance by Kovacs et al. (2014b) is
used as an input to define the width of our set of time windows.
In this way we guarantee the arrival-time consistency achieved by
Kovacs et al. (2014b) and can treat it like time window consistency
during the search. Following this approach, the earliest time win-
dow given starts at time 0 with an Iqx width and, from there, new
time windows are available with a shift of one time-unit. Since
Kovacs et al. (2014b) perform a set of tests with different lengths
(L) for each instance, which result in distinct lqx, our comparison
is made considering the lngx achieved for the tests with a maxi-
mum arrival time bound denoted as Ly. This limit is defined by the
authors by running their algorithm without bounding the arrival
time differences. Further, to ensure deliveries take place within the
given time windows and thus adhere to l;.x, We need to consider
time windows as a hard constraint and therefore set the penalty
costs for early/late deliveries to a very large number. Lastly, as only
traveling times in test data are considered, loading and unloading
costs are set to 0.

Comparison results. The numerical experiments confirm the abil-
ity of our algorithm to solve related problems effectively. Table 6
shows the TALNS solution and our ALNS best and average solu-
tions, together with the corresponding gaps to our approach (Best
Gap and Avg Gap, respectively).

In all tests, the solution approach was able produce consistent
solutions in terms of driver and time windows, i.e., both driver
and time window consistency constraints were satisfied. The re-
sults show that the proposed ALNS reaches solutions close to the
TALNS, with the Best Gap close to 0%. The best solution reached by
the ALNS was 1.4% worse only for the instance with 50 customers
and a visit frequency of 50%. Additionally, for the remaining in-
stances the average gap lies below 1.5% for most instances. These
results demonstrate that our solution approach is able to find a
consistent solution with a good traveling time. Please note that our
approach was not developed to focus on driver consistency as in
Kovacs et al. (2014b). Nevertheless, our algorithm provides promis-
ing results for this conVRP variant even if some further adaptions
offer additional opportunities for future research.

5.2.2. ALNS operators analysis

Since we propose a new problem and developed an ALNS solu-
tion approach, an analysis of the operators considered is presented.
We propose weekly destroy operators that are adjusted from the

literature to cope with our problem characteristics. In this section,
we compare the application frequency (AF) of each operator, i.e.,
the proportion of iterations each operator is called. This compari-
son is made for the runs with the ConVRP and the retail data sets.

Figs. 2 and 3 present the application frequency (AF) of the de-
stroy operators (see Section 4.2) for both data sets; Figs. 4 and
5 present the same information, but for the repair operators (see
Section 4.3).

When running our solution approach for the ConVRP data sets,
results indicate that all the operators proposed are called during
the search, with the daily operators having a share of 70%. Nev-
ertheless, each of the weekly operators is also called around 10%
of the times, with the product-based removal operator being the
most called one due to the diversification that it allows.

The application frequency of these operators changes when
the solution approach is used for the representative retail prob-
lem. Daily and weekly operators share an application frequency
of 49%/51%, respectively. The results also indicate that the random
and Shaw removals maintain an application frequency of around
20%, with an increase in calls for the product-based removal opera-
tor. The worst removal and worst arrival removal are called around
7% of the times across the tested instances. The weekly operators
included in our solution approach clearly help the search for the
PTWA-MCVRP.

Fig. 4 shows that for the ConVRP data set the four repair op-
erators are similarly used by the ALNS, which is not the case for
the retail data set. For the last, the greedy insertion operator has a
much smaller application frequency than the remaining operators.
Furthermore, the regret insertion with k = 2 seems to be the oper-
ator contributing the most, with an average application frequency
of 40% (see Fig. 5).

5.2.3. Computational performance

Overall, we can confirm that the ALNS proposed is able to pro-
vide stable solutions for the PTWA-MCVRP due to a low variation
in solution quality. The variation coefficient (standard deviation/
mean) was calculated over all test instances (10 runs per instance)
within the given data sets. As a result, the average variation co-
efficient for our ALNS is 0.012 for the ConVRP data set and 0.003
for the retail data set. Furthermore, the solution approach is able
to reach good quality solutions, improving the first feasible solu-
tion reached (respecting the formulation provided in Section 3) by
an average around 16% (with minimums of 13% and maximums
of 18% improvement, see Appendix D). The required computational
time to solve practice-informed instances amounts to an average of
one and a half hours. Since we consider a tactical planning prob-
lem, this constitutes an acceptable runtime effort. Nevertheless,
we experimented with different iteration limits but found that a
lower number of iterations leads to a decrease in solution qual-
ity. Additionally, a higher iteration limit increases the runtime sig-
nificantly but does not have a real effect on solution quality (see
Appendix C).
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Fig. 2. Application frequency (AF) of destroy operators for ConVRP data sets.

Fig. 3. Application frequency (AF) of destroy operators for retail data sets.

Fig. 4. Application frequency (AF) of repair operators for ConVRP data sets.

Fig. 5. Application frequency (AF) of repair operators for retail data sets.

The runtime required to solve the ConVRP instances is more
variable, increasing proportional to the number of customers and
visiting frequency. For the instances with 50 and 75 customers
the runtime ranges from one hour for 50% visit frequency to four
hours for 90% visit frequency. The computational effort for the 100
customer instances ranges from four to twenty hours. The data
sets from the ConVRP require more time to solve because a much
higher number of time windows need to be analyzed during the
search. As the number of customers and time windows available
increase, the update of arrival times and time windows assignment
procedure (see Section 4.4) runtime increases. The check and up-
date procedures of the arrival times and time windows assignment
are responsible for the major part of computational time.

5.3. Impact analysis of time window assignment in grocery
distribution

We further analyze the impact of introducing consistent de-
liveries and product-oriented time window assignment. We base
our analysis on the retail data set. We start with the simplest case
of introducing time windows assignment within the MCVRP with
all time windows available and analyze the impact of consistent
deliveries. Afterwards, the complexity is gradually increased by

restricting the set of time windows for each pair customer-
segment. In this way we can analyze the different characteristics
of the problem.

5.3.1. Analysis of consistent time window deliveries

In this analysis we evaluate the impact of performing a con-
sistent delivery planning, i.e., delivering each segment to stores
within a unique time window assigned. We therefore compare
our solution approach to a planning approach without consistency
and an ex-post assignment of consistent time windows. In this
experiment, a set of eight time windows with a one-hour width
is considered, with the full set of time windows available to all
customer-segment pairs. Two tests are performed for the compar-
ison of each instance: (1) the ALNS is run for each day individu-
ally, considering only the daily operators with no time restrictions,
and (2) the full ALNS is run for the complete planning horizon. The
first test only attempts to minimize the routing costs, including the
loading, traveling and unloading costs and does not consider con-
sistent time windows. Dependent on the resulting arrival times of
the orders, a time window is assigned (ex-post) to each customer-
segment pair to enforce consistency. The corresponding time win-
dows are chosen to minimize the penalty costs for early or late de-
liveries. The total cost in this scenario is calculated by summing up
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Fig. 6. Cost decrease of a solution generated by a consistent delivery planning compared to an unrestricted planning solution.

Table 7

Average percentage of orders delivered “X” minutes earlier or later than the time window

assigned bounds.

Interval of time (X in minutes)

Unrestricted planning (%)

Consistent planning (%)

0 69
0-10 9
10-30 1
30-60 5
60-120 3
120-240 3
> 240 2

84
8

O = = N O

the routing costs of each day plus the penalty cost per customer-
segment pair that arises to the ex-post assignment of consistent
time windows. This first test is named unrestricted planning and
is based on common practice. The second test aims at minimiz-
ing routing and penalty costs while ensuring consistent deliveries.
The final solution provides a consistent time window assignment
and therefore the test is referred to as consistent delivery planning.
The improvement in total cost for the consistent delivery planning
compared to the unrestricted planning is presented in Fig. 6 (im-
provements are indicated in negative %-values). Three cost scenar-
ios are shown, namely the improvement in best, average and worst
solution found in each test, for each instance. All tests provided
solutions with a consistent time window assignment, i.e, for each
customer-segment pair only one time window was assigned for the
complete planning horizon.

The results show that consistent delivery planning enables bet-
ter overall solutions than the unrestricted planning just focused on
the routing. The best solution of the consistent planning is able
to improve the unrestricted best solution by around 0.7%. Further-
more, the solutions generated with consistent planning are always
better than unrestricted planning, with the cost deviation of the
worst solution having an average improvement of 0.5%.

Although consistent planning provides solutions with better
overall cost, the cost deviation between the two types of plan-
ning is low (below 1%). However, the solutions are very different.
The routing cost of the consistent planning is between 1.1% and
1.7% higher than that for unrestricted planning, which is compen-
sated by a 68% to 76% improvement of overall penalty costs. A
further analysis of the delivery time of each order for both plans
shows that consistent planning originates more on-time deliveries.
Table 7 presents the average percentage of orders delivered “X”
minutes outside the bounds of the assigned time window for both
plans.

From the results of Table 7, we see that the consistent planning
reduces the amount of deliveries performed outside the bounds of
the time window and the amount of time deviation. While the
unrestricted planning comprises 7% of the orders delivered with

a deviation of at least one hour, the consistent planning reduces
this percentage to 3%. Furthermore, note that the time deviations
from the time window bounds are penalized in the overall cost of
the solution by 0.17 CU per minute, covering the working cost of a
store employee. However, the costs can be much higher for some
of the deliveries in practice as for example spoilage and stockouts
can occur additional to compensation payments for the violation
of delivery times.

5.3.2. Analysis of product-oriented time window assignment

We further analyze the impact of defining a product-oriented
time window assignment. In the previous tests, all pairs customer-
segment had the full set of time windows available for assignment.
However, in practice the stores might prefer to receive some seg-
ments in a more restricted set of time windows, as described in
Section 2. We therefore tested three different scenarios:

1st scenario (Fresh TW):. Only a limited number of time windows
can be used for one of the segments (representing the fresh prod-
ucts), with the full time window set available for the remaining
segments. As the fresh products usually have to be delivered at the
beginning of the day, and we assume departures at time 0, the set
of time windows available for the fresh segment is set to the three
earliest from the overall set.

2nd and 3rd scenarios:. Other segments might have additional re-
strictions in different stores, depending on their operations. We
therefore used two random sets of time windows for the remain-
ing segments. In the second scenario, named Random TW (4-8),
the number and time windows available are randomly selected be-
tween four and eight for each customer-segment pair. For the third
scenario (Random TW (4)), the number of time windows available
is fixed to four, and the time windows are randomly selected. In
both scenarios, the set of time windows available for the fresh seg-
ment is the same as in the first scenario (Fresh TW).

The solutions obtained for the three scenarios are compared
with the solutions from the consistent delivery planning with all
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Fig. 7. Cost differences for solutions generated by a consistent delivery planning with distinct sets of time windows available compared to the solution with the full set

available.

Table 8

Percentage of orders “X” minutes earlier or later than the time window assigned in each scenario.

Interval of time (X in minutes) Unrestricted All TW Fresh TW Random TW (4-8) Random TW (4)
0 69% 84% 82% 72% 65%

0-10 9% 8% 9% 10% 10%

10-30 1% 6% 6% 1% 12%

30-60 5% 2% 2% 5% 8%

60-120 3% 1% 1% 2% 4%

120-240 3% 1% 1% 1% 1%

> 240 2% 0% 0% 0% 0%

Avg # TW per customer 132 132 142 192 222

time windows available (obtained in Section 5.3.1). The results are
presented in Fig. 7 (improvements are indicated in negative %-
values). Once again, the best, average and worst solutions achieved
by each of the tests for each instance are compared.

The results show that the more restrictive the set of time win-
dows available for each pair customer-segment is, the higher are
overall costs of the solution. The costs therefore increase from the
Fresh TW to the third scenario (Random(4)). The deviations be-
tween the best, average and worst solutions of each scenario are
very similar. Analyzing the cost deviation of the best solutions for
each scenario, we see that the Fresh TW scenario originates a small
increase in costs (below 1%) in the solution cost compared with
the full time window set available. This deviation reaches higher
levels when all segments have random time windows available for
assignment.

A further analysis of the two cost contributions (routing and
penalty), indicates that the routing cost is very similar between
all scenarios, with an average deviation of below 0.4%, pointing to
the penalty cost as the main driver for the cost increase. Similarly
to the previous section, Table 8 presents the average percentage
of orders delivered “X” minutes outside bounds of the time win-
dow assigned for each scenario. The results from the previous un-
restricted planning and consistent delivery planning analysis are
also presented for comparison. The average number of time win-
dows assigned per customer are presented for all scenarios in the
bottom line.

The results show a reduction of on-time deliveries from the
consistent scenario with all time windows available to the more
restricted scenarios. We can see that when all time windows are
available for all customer-segment pairs, the best solutions try to
assign the same time window to the full range of products, hav-
ing an average of 1.32 time windows assigned to each customer

in both the unrestricted and consistent planning scenarios. As the
scenarios constrain the time window set, the average number of
time windows assigned per customer increases. This would lead to
separate deliveries, which would increase the routing costs. How-
ever, it seems that by reducing the on-time deliveries, we maintain
similar routing costs, leading to better overall costs.

6. Conclusion

This work extends the research on MCVRPs by addressing a
multi-period setting with a product-oriented time window assign-
ment. The resulting PTWA-MCVRP was studied for the grocery dis-
tribution application, which has particular characteristics due to
the multiple products it distributes with distinct temperature re-
quirements and the fact that it considers the impact of delivery
plans on store operations. Notwithstanding, the proposed model
and solution approach can also be transferred to other industries
where MCVs and repetitive delivery cycles are applied (e.g., weekly
glass waste collection, regular supply of petrol stations). The aim of
the PTWA-MCVRP is to define a unique time window that should
be used consistently throughout the planning horizon for each type
of product of a store, taking into account the possibility of deliv-
ering the full product range jointly or separated with the use of
MCVs. However, in practice the time windows are not hard con-
straints, and therefore deliveries outside the time window bounds
are possible in practice with a negative impact for in-store opera-
tions. The objective of the problem proposed is thus to minimize
the routing costs inherent in the use of MCVs and the penalty costs
related to missing the time windows assigned.

An ALNS framework was designed to cope with the charac-
teristics of the PTWA-MCVRP, combining daily and weekly opera-
tors to address the different problem decisions. The daily operators



focus on a particular day and improve the routing, while the
weekly operators have a broader scope, aligning the time window
assignment decisions across all days. The algorithm was tested
on benchmark instances for the ConVRP, which is closely re-
lated to our problem due to the arrival time consistency con-
straint, and generated instances based on a grocery distribution
problem. We demonstrated that our solution approach provides
very good results for the benchmark instances (ConVRP by Kovacs
et al., 2014b) even though it was not developed to solve their
given problem specifics. Furthermore, an analysis of the applica-
tion frequency of the algorithmic operators showed that the intro-
duced weekly operators effectively complement the ALNS frame-
work with daily operators. They are frequently used during the
search and were developed to allow a higher diversification for the
PTWA-MCVRP.

An impact analysis of time window assignment in grocery dis-
tribution was also conducted. At a first stage, we showed that per-
forming consistent delivery planning provides better overall solu-
tions than unrestricted planning, just focused on the routing costs.
Although the deviation cost achieved between both planning sce-
narios was small (0.7% average improvement), it was shown that
there was a significant difference in the percentage of orders deliv-
ered outside the time window bounds, which could lead to higher
costs due to spoilage, stockouts and fines. Finally, the implication
of using a product-oriented time window assignment was analyzed
by restricting the number of time windows available for assign-
ment to the different products. We concluded that if all products
have the same time windows available, most of the stores will
receive the full range of products within the same time window.
Therefore, as we restrict the set of time windows, the number of
time windows used per customer increases, as well as the overall
solution cost. This last effect is originated by the increase in the
percentage of orders delivered outside the time window bounds,
indicating that it is less costly to miss the time window than to
change the routing.

Regarding the design of the algorithm proposed, we would like
to emphasize that the newly introduced weekly operators were
specifically designed to address the time window assignment deci-
sions for repetitive deliveries throughout a period. Therefore, they
can be used to solve VRP with time window assignment, even
without the multi-compartment feature. This means that the gen-
eral problem of MCVRP can be relaxed to the special case of single-
compartment VRP and capacitated VRP. Further, it is able to solve
other ConVRP variants, although it could require additional adap-
tations and algorithmic testing dependent on the specific problem
setting (e.g., the consideration of driver consistency) to increase
the efficiency in such settings. Further extensions of this work can
be made by considering lower and upper bounds for violation of
the time windows to prevent excessive penalties, as proposed by
[oannou et al. (2003). These bounds can be defined per customer
and product, differentiating the cases that would not be so affected
by the situation. For instance, stores with small backrooms or at
high traffic locations would require more on-time deliveries than
others. We assumed departures from DCs at time zero as these are
typical in the retail context, and therefore a logical extension is
to consider different departure times for the vehicles, as already
considered by Kovacs et al. (2015b) for ConVRP. Additionally, con-
siderations regarding the capacity of DC docks and fleet size could
be included. Not all vehicles can depart at the same time due to
loading dock capacity restrictions. Moreover, fleet size is depen-
dent on the number of simultaneous deliveries, so having different
departure times allows for a smaller fleet. The development of an
exact approach, such as a branch-and-price, would also be a future
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research direction in order to achieve near optimal solutions for
comparison and evaluate ALNS performance in greater detail.

A related extension of our work that mainly aims to solve the
basic problem, is to further investigate different operators within
the ALNS or even other algorithms to improve the computational
efficiency and effectiveness.
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Appendix A. Algorithm tuning for §

Table A1l
Average deviation reached across all instances by changing &.

Avg. deviation'
§ =150 vs. § = 300

Avg. deviation'
Avg. § = 300 vs. § = 600

Best solutions reached 0.02% —0.01%
Average solutions reached  0.00% -0.01%
Average runtime -1.02% 5.62%

1 The average deviation shows the change in runtimes and solutions of increasing
§ from 150 (300) to 300 (600); Example: the avg. runtime decreases by 1.02% if §
increases from 150 to 300.

Appendix B. Algorithm tuning for «3

Table B1
Average deviation reached across all instances by changing «s.

Avg. deviation’ Avg. deviation’ Avg. deviation?

K3 = 5% Vvs. k3 = 10% vs K3 = 20% vs

k3 = 10% k3 = 20% K3 = 30%
Best solutions reached 0.08% 0.02% —0.06%
Average solutions reached 0.06% 0.08% -0.11%
Average runtime —2.22% 1.60% 12.53%

2 The average deviation shows the change in runtimes and solutions of increasing
k3 from 5 (10/20) to 10 (20/30); Example: the avg. runtime decreases by 2.22% if
k3 increases from 5 to 10.
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Appendix C. Algorithm tuning for iteration limits
Table C1

Impact of the number of iterations on the solution quality (best cost) and runtime (average).

Maximum number of iterations (limit)

Instance 30000 60000 90000
Solution Runtime (in hour)  Solution  Runtime (in hour)  Solution = Runtime (in hour)

Retail 1 66070 0.60 65554 1.28 65394 214
Retail 2 71681 0.66 70800 1.40 70614 222
Retail 3 66055 0.62 65442 142 65300 214
Retail 4 68499 0.71 67791 1.54 67712 2.48
Retail 5 68366 0.67 67601 1.52 67430 2.48
Retail 6 66867 0.66 66370 135 66314 212
Retail 7 70718 0.70 70081 1.52 69978 2.44
Retail 8 70321 0.81 69646 1.60 69506 2.67
Retail 9 68019 0.69 67473 1.56 67340 2.36
Retail 10 69193 0.67 68534 148 68205 2.23
Retail 11 69411 0.79 68679 1.58 68476 2.74
Retail 12 68452 0.64 67711 1.34 67577 214
Retail 13 69626 0.68 68983 144 68866 2.29
Retail 14 68430 0.65 67766 1.40 67640 2.23
Retail 15 68684 0.71 68138 1.60 68048 2.34
Retail 16 70658 0.65 69902 143 69802 2.24
Retail 17 72084 0.68 71374 154 71280 2.54
Retail 18 68967 0.63 68492 1.37 68458 2.28
Retail 19 68177 0.70 67666 1.42 67509 2.22
Retail 20 69076 0.72 68443 159 68385 2.53
Avg. delta® - - —645.4 0.79 -130.6 0.87
Avg. deltain % - - -0.9% 115.7% -0.2% 59.4%

3 The average delta shows the absolute solution difference across all instances between the given limit and the cor-
responding lower limit (i.e.,, 30000 vs. 60000 and 60000 vs. 90000); Example: the runtime increases 0.79 hours (on

average) if the limit increases from 30000 to 60000.

Appendix D. Solution improvement during search compared to
initial feasible solution

Table D1

Average solution improvement after initial feasible

solution.
Instance Average improvement (%) (10 runs)
Retail 1 16.0
Retail 2 15.3
Retail 3 15.6
Retail 4 15.5
Retail 5 15.5
Retail 6 15.2
Retail 7 15.6
Retail 8 15.9
Retail 9 15.8
Retail 10  15.6
Retail 11 16.2
Retail 12 15.9
Retail 13 15.5
Retail 14 15.8
Retail 15 16.3
Retail 16  15.2
Retail 17 15.8
Retail 18 15.6
Retail 19 15.3
Retail 20  15.9
Average 15.7
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