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Besides fuel and waste distribution, one core application of multi-compartment vehicles (MCVs) is the 

distribution of groceries, as they enable retailers to jointly transport products with different tem perature 

requirements, thus reducing the number of visits to a store. Grocery stores usually define preferable time 

windows that depend on the temperature of products (for example, fresh products in the morning) to in- 

dicate when deliveries should occur to better plan their in-store operations. Distribution planning there- 

fore needs to take these preferences into consideration to obtain consistent delivery times. This work ex- 

tends the research on multi-compartment vehicle routing problems (MCVRPs) by tackling a multi-period 

setting with a product-oriented time window assignment. In this problem, a fleet of MCVs is used for 

distribution and a unique time window for the delivery of each product segment to each store is de- 

fined consistently throughout the planning horizon. An ALNS is proposed to solve the product-oriented 

time window assignment for MCVRP. Daily and weekly operators are developed respectively focusing on 

the improvement of routing aspects of the problem on each day and aligning the time window assign- 

ment consistently throughout the planning horizon. The approach is tested on benchmark instances from 

the literature to demonstrate its effectiveness. We also use direct information from retail practice and 

enhance this with simulated data to further generalize our findings. The numerical experiments demon- 

strate that planning consistent MCV distribution leads to better overall solutions than the ex-post time 

window assignment of daily plans, facilitating more on-time deliveries. 
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. Introduction 

This paper introduces a multi-compartment vehicle rout-

ng problem (MCVRP) for the assignment of product-oriented

ime windows. The considered problem formulation with multi-

ompartment vehicles (MCVs) can be found in grocery distribu-

ion (e.g., supply of stores with different temperature zones), waste

ollection (e.g., glass waste) and fuel distribution (e.g., supply of

etrol stations) where repetitive delivery cycles are applied and

ustomers rely on consistent time windows. Our problem is moti-

ated by an application in grocery distribution where a high prod-

ct variety with particular temperature requirements needs to be

anaged and an efficient supply chain is essential ( Klingler, Hüb-

er, & Kempcke, 2016 ). The corresponding routing problem states
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 tactical decision problem for retailers as it defines master routes

or the daily routing. 

Products with similar characteristics and temperature require-

ents are usually denoted as product segments or simply seg-

ents in grocery distribution. In the past, only one product

egment could be transported within the same vehicle as the tem-

erature could only be set up at one level at a time. However,

CVs have been developed for grocery transport in recent years.

hese are able to split the loading area flexibly into compartments

ith different tem peratures whilst there is no loss in capacity as

he compartments are continuous in size. However, the joint trans-

ortation of segments forces retailers to decide which segments

re (or are not) supplied jointly for each store. This explicitly im-

lies a higher variety of possible delivery times for the stores. For

xample, ambient products can be delivered jointly with the fresh

roducts in the morning, instead of a separate delivery of ambient

roducts later during the day. This impacts store operations that

eed to align their operations to the delivery schedule to make

ure their resources are available for unloading, replenishment and
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stocking, which impacts staff scheduling, backroom capacity man-

agement and on-shelf availability. This is especially significant as

store resources are scarce and shared by different activities. Addi-

tionally, stores need to manage the available inventory as shelf in-

ventory which is crucial for sales (see Hübner & Schaal, 2017 ). The

definition of time windows helps to manage the on-hand invento-

ries at stores as the time until the next supply is known ( Holzapfel,

Hübner, Kuhn, & Sternbeck, 2016 ). The scheduling of deliveries

therefore needs to be defined according to the stores time win-

dow requirements (independent from joint or separate deliveries

across products). Delivery time windows have to be predefined and

fixed for a given period to efficiently coordinate store resources

during the day. This requires consistent delivery time windows for

each product segment throughout the planning horizon, ensuring

a smooth supply of the stores. 

While current VRP literature usually assigns time windows

to customers ( Spliet & Desaulniers, 2015; Spliet & Gabor, 2014 ),

a more specific product oriented assignment is required when

dealing with multiple products with distinct characteristics such

as grocery products. It is not sufficient to consider multiple de-

livery time windows per customer ( Belhaiza, Hansen, & Laporte,

2014 ). Instead it is necessary to define which of the available

time windows each product will be assigned to, ensuring con-

sistent deliveries for a given planning horizon. In combination

with the transportation in MCVs, this raises the question of when

each product should be supplied, and whether the same time

window should be assigned to different products to enable joint

delivery. Our work addresses this special variant of periodic VRPs

with MCVs and a product-oriented time window assignment,

which is consistent throughout the planning horizon. To the best

of our knowledge, there is not yet an MCVRP that integrates the

consistent time window assignment in a multi-period setting. Con-

sequently, our main contributions are as follows. Firstly, a mixed

integer programming model defining the product-oriented time

window assignment for MCVRP (PTWA-MCVRP) is proposed. The

defined model enables a tactical planning of master routes for the

distribution in retailing. Secondly, an adaptive large neighborhood

search (ALNS) is designed to solve the problems characteristics

with specialized, innovative operators. Its effectiveness is tested

on both benchmark instances and simulated data informed by

retail practice. Thirdly, the effects of consistent deliveries and

product-oriented time windows with MCVRPs are analyzed. 

The remainder of this paper is organized as follows.

Section 2 provides a detailed description of the problem and

its related literature. Section 3 describes the formulation of the

mathematical model. The ALNS algorithm developed is explained

in Section 4 . Numerical experiments are carried out in Section 5 .

Finally, our findings are summarized in Section 6 . 

2. Distribution process, requirements and related literature 

In this section we first describe the overall distribution plan-

ning process for retailers before highlighting the implications of

using MCVs for transportation. Further, we analyze why grocery

retailers need to consider multiple periods and consistent deliv-

eries across product segments. This information has been collected

in joint projects with European retailers. This builds the founda-

tion of the literature review that follows and accounts for how the

areas of further research have been derived. The terms customers

and stores are used as equivalents in our context. 

2.1. Description of the planning problem 

Distribution of groceries. Grocery retailers need to simultaneously

manage four to five different temperatures (e.g., frozen, chilled and
mbient) across their logistics subsystems. The majority of prod-

cts are distributed via an DC ( Hübner, Kuhn, & Sternbeck, 2013;

artins, Amorim, & Almada-Lobo, 2017 ). The distinct products can

e allocated to the same DC, but separate warehouse zones at dif-

erent temperatures are required to prevent spoilage. The same

easoning applies to the transportation process, during which the

referred temperature for each product needs to be maintained to

uarantee high product quality and to adhere to legal regulations. 

istribution with MCVs. Using MCVs poses some new challenges

or the planning as the joint distribution of segments influences

ot only the transportation process but also the upstream and

ownstream supply chain operations ( Hübner & Ostermeier, 2018 ).

n the one hand, different gates have to be approached by an MCV

o collect different segments from distinct DC temperature zones.

his leads to an increase in loading costs that depend on the num-

er of segments assigned to a tour and therefore on the number

f compartments needed on each vehicle. On the other hand, sep-

rate deliveries with a single-compartment vehicle for each seg-

ent may be avoided, reducing the number of visits to a store and

otal travel distance. 

pplication of product-oriented time windows for store operations.

tore replenishment usually takes place at certain time windows

uring the day. These time windows depend for example on the

eneral replenishment policy of certain segments (e.g., fresh prod-

cts need to be replenished before or on opening of the store),

vailability of replenishers (e.g., external replenishers or part-time

orkers may only be available at certain times or store employees

uring low store traffic times) and further store requirements and

pportunities (e.g., the possibility of using the backroom for inter-

ediate storage). To enable smoother operations, plan capacity for

tore operations and ensure appropriate store inventory levels, gro-

ery retailers rely on consistent product-oriented time windows.

hese time windows ensure that each product segment will always

rrive during the same time window along the planning horizon

i.e., the full week). In practice, retailers usually determine master

outes based on the demand of an average week as they require

onsistent solutions for such routes regarding average weeks. These

outes can then be used as template for the daily planning with

nly minor adjustments. Master routes are usually determined an-

ually or each second year. Furthermore, the definition of deliv-

ry days for each store (i.e., delivery patterns) mainly depends on

osts for store operations and only partially on costs for picking

nd transportation. In decision models to define delivery patterns

see e.g., Holzapfel et al., 2016; Taube & Minner, 2018 ), the tour

osts are usually approximated without defining the actual tours.

et, in retail practice, the delivery patterns can also be defined in

 precedent step of the actual routing ( Kuhn & Sternbeck, 2013 ).

his means that the stores have defined days to order and receive

ertain segments. 

An example of the assignment of product-oriented time win-

ows for different store-segment pairs is depicted in Fig. 1 . It il-

ustrates two examples of routing schedules, where time window

ssignments are considered with and without consistent deliveries.

ccordingly, segment delivery patterns are provided on the left-

and side of Fig. 1 . For example, segment A (dark square) is deliv-

red every day, while segment D (dotted square) is only delivered

n Mondays, Wednesdays and Fridays. Two possible solutions for

he time window assignment are presented. The schedule on the

eft represents a solution where consistency is not taken into ac-

ount, while the one on the right contains a consistent schedule.

n the first case, segments are delivered at different times of the

ay over the week. In the second case, deliveries within the same

ime bounds are guaranteed across the entire planning horizon. It
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Fig. 1. Illustrative example of routing schedules with and without consistent deliveries. 
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hows that segments A & B are supplied between 6 and 7 am ev-

ry day of the planning horizon. Likewise, deliveries for segments

 & D always take place between 8 and 9 am. Clearly, this schedule

nables stores to plan their resources according to the consistent

lan, allowing efficient processing of deliveries. 

Consequently, the aim of the PTWA-MCVRP is to determine an

ndividual time window for each segment that a store has ordered

nd to use this time window consistently for the complete plan-

ing horizon. Each segment is thereby considered independently of

ll other segments for the time window assignment. However, the

ame time window can be selected for different segments as stores

sually order more than one segment a day. This also means that

he joint delivery of multiple segments is possible if they are re-

uested on the same day. Yet, the requirement for consistent deliv-

ry times applies to all segments. Ultimately, the product-oriented

ime window is motivated to reduce the planning complexity for

tores and increase the stores satisfaction with its supplier as a re-

ult. Hereafter, we refer to a given segment of a store for which

 product-oriented time window has to be determined as store-

egment pair. 

In retail practice, the assignment of product-oriented time win-

ows underlies some further requirements and rules. Time win-

ow restrictions are not strict and both early and late deliveries to

he stores are possible but undesirable, having a negative impact

n store operations. Usually, the delivered products are dispatched

o the sales area for replenishment and the excess is stored in

he backroom area for later replenishment. The backrooms are de-

igned to store just a portion of the deliveries, ensuring future re-

lenishment, and early deliveries can trigger storage problems at

his stage if the deliveries are not processed immediately upon ar-

ival, specially refrigerated products ( Pires, Pratas, Liz, & Amorim,

017 ). Late deliveries, however, lead to idle times of the person-

el assigned to the receiving activity and might delay the replen-

shment of shelves with the risk of causing stockouts. We note

hat in-store operations yield the highest share of operational costs

ithin the internal supply chain of a retailer, accounting for up to

0% (see e.g., van Zelst, van Donselaar, van Woensel, Broekmeulen,

nd Fransoo (2009) and Kuhn and Sternbeck (2013) ). 

.2. Related literature 

The PTWA-MCVRP deals with two main groups of decisions: (i)

outing decisions and (ii) consistent time window assignment deci-

ions. These decisions relate to three streams of VRP variants that

ill be discussed below. Since the routing decisions are defined

aking MCVs into account, the PTWA-MCVRP clearly extends liter-

ture on MCVRPs. The time window assignment decisions derive
rom an extension of the time window assignment vehicle rout-

ng problem (TWAVRP) and the consistent vehicle routing problem

ConVRP). 

ulti-compartment vehicle routing problems. MCVRP literature fo-

uses mainly on its applications to fuel distribution (e.g., Avella,

occia, & Sforza, 2004; Coelho & Laporte, 2015; Cornillier, Boc-

or, Laporte, & Renaud, 2008 ), waste collection (e.g., Henke, Sper-

nza, & Wäscher, 2015; Muyldermans & Pang, 2010; Reed, Yian-

akou, & Evering, 2014 ) and food distribution (e.g., Chajakis &

uignard, 2003; Hübner & Ostermeier, 2018 ). Most of the works on

CVRP assume that customers can only be served by one vehicle

e.g., Abdulkader, Gajpal, & ElMekkawy, 2015; Chajakis & Guignard,

003; Reed et al., 2014 ) and/or that the number of compartments

nd their size are fixed (e.g., El Fallahi, Prins, & Calvo, 2008; Muyl-

ermans & Pang, 2010 ), which are too restrictive for our setting. 

Derigs et al. (2011) are the first to consider flexible compart-

ent sizes with multiple deliveries to customers. This new fea-

ure creates a more general MCVRP by adding decisions on the

umber and size of compartments to the problem. Henke et al.

2015) tackle the MCVRP with discrete flexible compartments, in-

tead of continuous ones as in Derigs et al. (2011) . The authors

llow the number of compartments to be smaller than the num-

er of products to be collected and apply a variable neighbor-

ood search to the problem. Later, Koch, Henke, and Wäscher

2016) propose a genetic algorithm for the same problem and

enke, Speranza, and Wäscher (2017) develop an exact method for

he problem (a branch-and-cut algorithm). Hübner and Ostermeier

2018) study the distribution of groceries with flexible MCVs, in-

orporating the operational costs of the loading and unloading pro-

esses. The authors propose a large neighborhood search (LNS) to

olve the problem. Ostermeier and Hübner (2018) present a vehicle

election model for the MCVRPs that analyzes under which condi-

ions single- or multi-compartment vehicles are more efficient. 

The MCVRP was also extended by some authors to incorporate

ime window restrictions that consider fixed compartment sizes.

aabi and Jabeur (2015) describe an MCVRP where customer or-

ers are composed of different products with associated profits,

hich are collected once the customer is visited within their time

indow. The authors propose a hybrid approach combining a ge-

etic algorithm and an iterated local search to solve the problem.

abcome and Mouktonglang (2015) consider time windows as soft

onstraints but set an upper bound for the violation of time win-

ows as hard constraint. The authors use a commercial software to

olve small instances exactly. Although both works consider time

indow restrictions, they are incorporated as input parameters

ather than decision variables. A model and solution approach that
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integrates the MCVRP with time window assignment decisions has

not yet been analyzed in the literature, but has practical relevance

as described in above. 

Time window assignment & consistent vehicle routing problems.

Spliet and Gabor (2014) introduced the first variant of the

TWAVRP. They define a problem where the assignment of time

windows to each customer is performed before the actual demand

is known. Afterwards, when the order is submitted, a vehicle

routing schedule is made to comply with the assigned time win-

dows. They assign time windows of prespecified width from a

set of endogenously known time windows. The authors develop

a branch-price-and-cut algorithm to find the optimal expected

traveling time. In a subsequent extension, Spliet and Desaulniers

(2015) consider the assignment of time windows from a pre-

defined set of time windows. They propose a branch-price-and-cut

algorithm and different column generation heuristics. Spliet, Dabia,

and van Woensel (2017) introduced time-dependent travel times

to the TWAVRP, focusing on predictable variations. The authors

develop a branch-price-and-cut algorithm, using an exact labeling

and a tabu search heuristic to solve the pricing problem. Jabali,

Leus, Van Woensel, and De Kok (2015) consider a similar problem,

in which travel times are stochastic but the demand is determinis-

tic. The goal is to define a single route plan that should be fixed for

all days of the year together with the time windows assignment.

The authors propose a tabu search algorithm to minimize the total

traveling costs and expected earliness and tardiness penalty costs,

assuming soft time windows. Feillet, Garaix, Lehuédé, Péton, and

Quadri (2014) present a bi-objective time-consistent VRP aimed at

minimizing - besides the total travel time - the maximum number

of time classes in which a customer is visited. The authors solve

the problem with an LNS. Subramanyam and Gounaris (2016) de-

velop an exact solution for the consistent traveling salesman

problem (ConTSP) aimed at identifying the minimum-cost set

of routes that a single vehicle should follow for a given period,

ensuring that the customers are visited at roughly the same time

of the day. Subramanyam and Gounaris (2017) extend the previous

work from an TSP to an VRP variant and show that each scenario

of the TWAVRP stochastic model can be reduced to an VRP variant

known as a consistent vehicle routing problem (ConVRP). The

authors adapted an exact algorithm for the ConVRP and solved the

TWAVRP benchmark instances. 

The ConVRP is a multi-period problem proposed by Groër,

Golden, and Wasil (2009) that aims to design consistent routes

over a given planning horizon. Kovacs, Golden, Hartl, and Par-

ragh (2014a) describe three different types of consistent routing:

(i) arrival-time consistency, which ensures visits to customers at

roughly the same time of the day, (ii) person-oriented consis-

tency, which means that customers are visited by the same driver,

and (iii) delivery consistency, where customers receive roughly

the same quantity of goods. The arrival-time consistency require-

ment of the ConVRP is similar to an TWAVRP, as both problems

define an interval of time within which customers visits should

occur. Most of the literature on ConVRP focuses on arrival-time

and driver consistency. The first approaches solving the prob-

lem are based on template concepts, wherein template routes are

built considering the frequent customers, and afterwards a daily

plan is derived to include the remaining customers to be vis-

ited on each day ( Groër et al., 2009; Kovacs, Parragh, & Hartl,

2014b; Tarantilis, Stavropoulou, & Repoussis, 2012 ). Groër et al.

(2009) propose a multi-start solution construction combined with

a Record-to-Record travel local search metaheuristic algorithm, and

Tarantilis et al. (2012) propose a tabu search algorithm. Kovacs

et al. (2014b) present an ALNS to solve the problem and analyze

the variant of allowing later departures from the depot. Sungur,

Ren, Ordóñez, Dessouky, and Zhong (2010) also use the template
oncept for the courier delivery problem with uncertainty, where

he problem is solved by a master and daily scheduler heuristic

MADS). 

Kovacs, Golden, Hartl, and Parragh (2015a) generalize the Con-

RP, allowing the customer to be visited by a limited number

f drivers and penalizing the arrival-time variation in the ob-

ective function. The authors propose an LNS algorithm to solve

he problem. They found that both driver and arrival-time con-

istency have a small impact on the fleet size. Kovacs, Parragh,

nd Hartl (2015b) and Lian, Milburn, and Rardin (2016) study

he multi-objective ConVRP, where driver and arrival-time consis-

ency are considered as objectives, besides the traveling cost. Both

orks analyze the trade-off between traveling costs and service

onsistency, and develop a multi-directional local search (MDLS),

ombined with an LNS to approximate a Pareto frontier. Kovacs

t al. (2015b) also propose two exact approaches based on the ε-

onstraint framework and state that, on average, it is possible to

chieve 70% better arrival-time consistency by increasing the trav-

ling costs by not more than 4%. 

We will leverage the current literature in different ways. First

f all, we will propose an ALNS that uses daily operators based on

erigs et al. (2011) and Hübner and Ostermeier (2018) approaches

nd incorporates the operational features of the latter. Secondly,

e will use the concept of consistency regarding the time window

ssignment. A maximum width between arrivals will be defined as

or the ConVRP, but not all arrival times are preferable. This means

hat we need to define a set of time windows from where the as-

ignment is made in order to incorporate the stores preferred de-

ivery times. 

. Problem definition and model formulation 

The PTWA-MCVRP is defined on a complete undirected,

eighted graph G = ( N, E ) , where N = { 0 , 1 , . . . , n } is the set of

odes and E = { ( i, j ) : i, j ∈ N } is the set of edges. Node i = 0 rep-

esents the DC location. Each edge ( i , j ) ∈ E is associated with a

raveling cost tc ij and a traveling time tt ij . It is assumed that all

raveling costs satisfy the triangle inequality and each tour starts

nd ends at the DC. Due to fixed working shifts, retailers usu-

lly define an aspired departure time from the depot (e.g., 5am)

nd maximum tour length (e.g., due to legal restrictions) for each

our and we therefore assume that vehicles depart from the DC

t time zero and must return before time T , defined as the max-

mum tour duration. Waiting time between deliveries is not al-

owed as in practice drivers start unloading as soon as they ar-

ive. A similar setting was also used by Kovacs et al. (2014b) . Let

 be the set of vehicles available for transportation at the DC. The

umber of vehicles available is assumed to be sufficiently large to

ulfill the demand of all stores and consists of identical vehicles

ith a total capacity Q . As we consider MCVs, the loading area of

ach vehicle can be split into a limited number of compartments

 . The number of compartments a vehicle may have active is in-

icated by k ∈ K , with K = { 1 , . . . , c} . Due to the characteristics of

n MCVRP that have been explained, loading and unloading costs

re also decision-relevant costs in addition to the traveling costs.

n line with this, l k represents the loading cost of a vehicle depen-

ent on the number of k compartments used, and u indicates the

nloading cost of each stop ( Hübner & Ostermeier, 2018 ). 

The DC is responsible for the distribution of products from

 S | segments for a given planning horizon consisting of | D | days,

here S is the set of segments and D the set of days. It is as-

umed that the delivery pattern of each store for each segment

days in which a delivery should be made ( Holzapfel et al., 2016 ))

re known, as well as the quantities to be delivered. q d 
is 

there-

ore defines the quantity of an order for segment s to be delivered

o store i ∈ N \ {0} on day d , and st d 
is 

represents the corresponding
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ariable service time that depends on the delivery quantity. Addi-

ionally, a fixed service time sf is incurred each time a vehicle stops

t a store, which is independent of the delivery quantity. Note that

f day d does not belong to the delivery pattern of store i for seg-

ent s , q d 
is 

is set to 0. 

Time windows are defined by the set T W = { 1 , . . . , tw } and the

ntervals [ e t, h t ], for every t ∈ TW , indicating the earliest ( e t ) and

atest ( h t ) delivery time of time window t . The assignment of time

indows will be made for each pair store-segment denoted as (( i ,

 ): i ∈ N \ {0}, s ∈ S ). Since not all time windows can be used for each

air store-segment (e.g., fresh products need to be received early),

he subset T W is ⊂ T W indicates which time windows can be used

or each pair ( i , s ). Since soft time windows are considered (see

ection 2 ), a negative impact of having earlier or later arrivals than

he time window assigned to a store have to be accounted. We fol-

ow Ioannou, Kritikos, and Prastacos (2003) and the ConVRP litera-

ure and impose unitary costs λ and β associated with one unit of

ime that the delivery is too early or late. 

The objective of the PTWA-MCVRP is to minimize the total

outing costs, considering traveling, loading and unloading costs,

s well as the penalties for earlier or later deliveries than planned,

hile satisfying the stores orders. The problem combines a multi-

eriod VRP for consistent deliveries with an MCVRP. As a conse-

uence, it involves the following partial decisions that are made

imultaneously and define the uniqueness of the problem formula-

ion: 

• Sequence of store visits, as in every VRP (this decision specifies

the order in which each vehicle should perform the delivery of

the orders assigned). 
• Assignment of orders to tours/vehicles (this decision deter-

mines which segments are delivered simultaneously). 
• Number and size of each compartment (this decision defines

the number of compartments on each vehicle, and how the ca-

pacity is divided between compartments). 
• Assignment of product-oriented time windows to each store-

segment pair (this decision defines the arrival time of each seg-

ment at a store on each delivery day). 

he first group of decisions is related to MCVRP. The last decision is

ssociated with the consistent assignment of time windows along

ith penalty costs. We apply the following decision variables. 

• b d 
i jv = 1 if vehicle v travels from location i to j on day d and

b d 
i jv = 0 otherwise 

• ϑ 

d 
v s = 1 if vehicle v transports segment s on day d and ϑ 

d 
v s = 0

otherwise 
• θd 

is v = 1 if segment s is delivered by vehicle v to store i on day

d and θd 
is v = 0 otherwise 

• r d v k = 1 if vehicle v has k active compartments on day d and

r d v k = 0 otherwise 
• y ist = 1 if store-segment pair ( i , s ) is assigned to time window t

and y ist = 0 otherwise 

he continuous variables w 

d 
i v denote the arrival time at store i by

ehicle v on day d and p d 
is 

the penalty cost incurred on day d by

he pair ( i , s ) in the event of early or late deliveries. Additionally,

he discrete auxiliary variables f d v represent the number of store

tops performed by vehicle v on day d . 

The PTWA-MCVRP can be formulated as follows: 

Minimize 
∑
d∈ D 

∑
v ∈ V

[∑
k ∈ K 

l k · r d v k + 

∑
i ∈ N 

∑
j∈ N 

tc i j · b d i jv + u · f d v 

]

+ 

∑
d∈ D 

∑
i ∈ N\{ 0 } 

∑
s ∈ S 

p d is (1) 
ubject to ∑
j∈ N\{ 0 } 

b d 0 jv ≤ 1 v ∈ V, d ∈ D (2) 

∑
i ∈ N 

b d igv = 

∑
j∈ N 

b d g jv v ∈ V, g ∈ N, d ∈ D (3) 

∑
v ∈ V

θ d 
is v · M ≥ q d is i ∈ N\{ 0 } , s ∈ S, d ∈ D (4) 

∑
s ∈ S 

θ d 
js v ≤ | S| ∑

i ∈ N 
b d i jv v ∈ V, j ∈ N\{ 0 } , d ∈ D (5) 

∑
i ∈ N\{ 0 } 

∑
s ∈ S 

q d is · θ d 
is v ≤ Q v ∈ V, d ∈ D (6) 

∑
i ∈ N\{ 0 } 

θ d 
is v ≤ M · ϑ 

d 
v s v ∈ V, s ∈ S, d ∈ D (7) 

∑
s ∈ S 

ϑ 

d 
v s = 

∑
k ∈ K 

k · r d v k v ∈ V, d ∈ D, k ∈ K (8) 

∑
k ∈ K 

r d v k = 1 v ∈ V, d ∈ D (9) 

f d v ≥
∑
i ∈ N 

∑
j∈ N\{ 0 } 

b d i jv v ∈ V, d ∈ D (10) 

∑
t∈ T W is 

y ist = 1 i ∈ N\{ 0 } , s ∈ S (11) 

 

d 
0 v = 0 v ∈ V, d ∈ D (12) 

 

d 
i v ≤ M ·

∑
s ∈ S 

θ d 
is v v ∈ V, i ∈ N, d ∈ D (13) 

 

d 
i v + tt i j + s f + 

∑
s ∈ S 

θ d 
is v · st d is − M ·

(
1 − b d i jv 

)
≤ w 

d 
jv

v ∈ V, i ∈ N, j ∈ N\{ 0 } , d ∈ D (14) 

 

d 
i v + tt i j + s f + 

∑
s ∈ S 

θ d 
is v · st d is + M ·

(
1 − b d i jv 

)
≥ w 

d 
jv

v ∈ V, i ∈ N, j ∈ N\{ 0 } , d ∈ D (15) 

 

d 
i v + tt i 0 + s f + 

∑
s ∈ S 

θ d 
is v · st d is − w 

d 
0 v − M ·

(
1 − b d i 0 v 

)
≤ T 

v ∈ V, i ∈ N\{ 0 } , d ∈ D (16) 

p d is ≥
(( ∑

t∈ T W is 

y ist · e t 

)
− w 

d 
i v

)
· λ − M · (1 − θ d 

is v ) 

v ∈ V, i ∈ N, s ∈ S, d ∈ D (17) 

p d is ≥
(

w 

d 
i v −

∑
t∈ T W is 

y ist · h t 

)
· β − M ·

(
1 − θ d 

is v

)
 ∈ V, i ∈ N, s ∈ S, d ∈ D (18) 
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Algorithm 1 ALNS scheme for the product-oriented time window 

assignment for MCVRP. 

1: generate a solution S � Section 4.1 

2: set S best := S 

3: repeat 

4: select a destroy-repair heuristic pair ( d, r) based on adaptive 

weights ( ρdr ) � Section 4.6 

5: if d is a daily operator then � Sections 4.2–4.4 

6: randomly select day t 

7: generate solution S ′ by applying ( d, r) to S on day t 

8: else � Sections 4.2–4.4 

9: generate solution S ′ by applying ( d, r) to S 

10: end if 

11: if S ′ better than S best then � Section 4.5 

12: S best = S ′ 
13: S := S ′ 
14: else if S ′ complies with the acceptance criteria then 

� Section 4.5 

15: S := S ′ 
16: end if 

17: update performance of destroy-repair heuristic pair ( d, r) 

� Section 4.6 

18: until maximum number of iterations is reached 

19: return S best 

i  

d  

d  

b  

c  

w  

i  

V  

w  

i  

s

 

c  

o  

d  

f  

t

 

 

c  

P  

s  

t  

o  

t  

a  

r  

i  

t  

s  

d  

t  

s  

p  

g  

t  

e  

M

b d i jv , ϑ 

d 
v s , θ

d 
is v , r 

d 
v k , y ist ∈ { 0 , 1 }; v ∈ V, i, j ∈ N, s ∈ S, 

w 

d 
i v , p 

d 
is ≥ 0 ; f d v ∈ N d ∈ D, k ∈ K, t ∈ T W is (19)

Objective function (1) minimizes the total routing costs, includ-

ing loading, traveling and unloading costs, plus the penalty costs

of performing deliveries outside the bounds of the time windows

assigned. The constraints of the problems can be aggregated into

two groups. Constraints (2) –(10) compose the first group, which is

related to the routing decisions of the MCVRP. Inequalities (2) and

(3) ensure that each route starts at the DC, and that a store has

only one predecessor and one successor on the route. Constraints

(4) guarantee that a store receives all segments that it requires

on each day. Constraints (5) ensure that store deliveries are only

performed by a vehicle that actually visits the store. The vehicles’

capacity is controlled by Constraints (6) . Inequalities (7) –(9) de-

fine which segments are loaded on the vehicles and consequently

how many compartments will be used. Constraints (10) determine

the number of store stops each vehicle performs on a given day.

The remaining constraints compose the second group and refer to

the time window assignment. Constraints (11) ensure that only one

time window can be assigned to each pair store-segment. These

constraints ensure consistent deliveries and are hereafter denoted

as time window consistency constraint . The departures from the DC

at time zero are ensured by inequalities (12) . The arrival times

to stores are set by Constraints (13) –(15) , ensuring that waiting

time between deliveries is not allowed. Constraints (16) ensure

that the tours do not exceed the maximum duration established.

The penalty costs incurred by performing earlier or later deliveries

than the bounds of the time window assigned are determined by

Constraints (17) and (18) . Note that the consistency requirement

imposed by (11) is a hard constraint of our problem, while the

time window satisfaction is hereby considered a soft constraint pe-

nalized in the objective function. 

4. Solution approach 

The main difficulty in solving the PTWA-MCVRP arises from the

multi-compartment choice and routing, and in particular from the

interrelation between the individual days of the planning horizon.

In the problem considered, this interrelation relates to the consis-

tent use of a unique time window for each customer-segment pair

throughout the planning horizon. We propose an ALNS framework

to cope with the characteristics of the problem regarding its two

main groups of decisions: the routing problem with MCVs and the

time window assignment. 

ALNS algorithms are applied to different problem settings in

literature and have been shown to provide good results for distinct

VRP variants that are related to our setting, such as MCVRP ( Derigs

et al., 2011 ), VRPTW ( Ropke & Pisinger, 2006 ) and ConVRP ( Kovacs

et al., 2014b ). The ALNS framework was first introduced by Ropke

and Pisinger (2006) . Its central idea is to sequentially improve

an initial solution by destroying and rebuilding parts of it. In

the VRP variants, the destroying phase uses a destroy operator

to remove a given number of requests from the routes, which

are afterwards reinserted according to an insertion operator in

the rebuilding phase. In an ALNS framework, several destroy and

insertion operators are available and selected during the search

procedure in an adaptive manner, depending on their performance

during the search. 

The ALNS framework developed to solve the PTWA-MCVRP

combines daily and weekly operators to tackle the different prob-

lem decisions. The daily operators focus on a particular day and try

to improve the routing decisions of the problem. This group of op-

erators are usually proposed in the literature for VRPs. The weekly

operators are new operators designed according to the character-
stics of the problem. They have a broader scope, analyzing all the

ays at the same time, and aligning the time window assignment

ecisions. These operators are designed for our specific problem

ut can also be used to align other types of consistency (e.g., driver

onsistency) across the complete planning horizon. We therefore

ould like to note that the presented ALNS is capable of solv-

ng more general VRP variants such as time window assignment

RPs and consistency VRPs. The pseudo-code of the ALNS frame-

ork developed is shown in Algorithm 1 . The general framework

s explained below, and the main features are detailed in the sub-

equent subsections. 

Although the problem formulation considers the time window

onsistency as a hard constraint, this is relaxed at the beginning

f our solution approach. Actually, this constraint will be enforced

uring the search by adding an inconsistency cost to the objective

unction ( f ( S ′ )) as described in Eq. (20) , creating a modified objec-

ive function ( f a ( S 
′ )), similar to Kovacs et al. (2014b) . 

f a (S ′ ) = f (S ′ ) + ζ · inconP airs (20)

The inconsistency cost is set proportional to the number of

ustomer-segment pairs with an inconsistent delivery plan ( incon-

airs ), i.e., number of pairs with more than one time window as-

igned, and to the violation cost ζ . Parameter ζ is initialized at

he beginning of the search and updated after a certain number

f iterations ( ζ = exp 

(iterations/δ) ), with δ as control parameter for

he increase of ζ . Naturally, the value of ζ and its increase has

 high impact on runtime and solution quality as it decides how

estrictive the search is concerning the consistency violation. An

ncreasing ζ means that the more advanced we are in the search,

he more costly it is to violate the time window consistency con-

traint . The inconsistency cost was introduced to allow a more

iversified search for better routing options in the beginning of

he search procedure as otherwise the routing would be very re-

tricted. Please note that the inconsistency cost differs from the

enalty costs as it is a relaxation only used to guide the search al-

orithm while the penalty costs for early/late deliveries are part of

he soft time window constraints (Constraints (17) and (18) ). The

valuation of our final solution is consequently based on the given

IP with objective function (1) and Constraint (11) . 
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Table 1 

Overview of destroy operators. 

Type Remove operators Repair operators 

Daily Random, Shaw, worst Greedy, regret 

Weekly Product-based, worst time window, worst arrival 
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The algorithm starts with the generation of an initial solution

 (see Section 4.1 ). In each iteration, a destroy-repair heuristic pair

 d , r ) is chosen by a roulette wheel selection, recurring to adap-

ive weights (see Section 4.6 ). The destroy operator can be selected

rom the group of daily or weekly operators (see Section 4.2 ). The

emoval step is followed by the reinsertion phase. The reinsertion

s performed by the selected repair operator and each order is

einserted for the corresponding day on which the order is sched-

led (see Section 4.3 ). After each remove and insertion, the arrival

imes of the orders are updated and the time window assignments

re reset (see Section 4.4 ). We use six destroy operators and two

ifferent repair operators (see Table 1 ). 

If the new solution S ′ meets the acceptance criteria, then it re-

laces S . If it improves the best solution found so far, according to

he acceptance criteria, it replaces S best (see Section 4.5 ). 

.1. Initial solution 

The initial solution is generated by applying the savings heuris-

ics of Clarke and Wright (1964) to each individual day of the plan-

ing horizon. This approach starts by creating routes with single

rders and afterwards iteratively combines routes according to a

alculated saving in traveling distance, while satisfying the vehicles

apacity and maximum duration constraints. This heuristic is com-

only used in different VRP problems, and was chosen because it

rovides a fast solution with a reasonable traveling distance. With

he routes defined, the arrival times to each store are calculated

x-post, assuming the departures from the DC at time zero of each

ay. A time window is assigned afterwards to each individual or-

er based on its arrival time, guaranteeing on-time deliveries. Note

hat at this stage the orders of each pair customer-segment can be

ssigned to distinct time windows. The first solution generated is

herefore most probably not feasible with regard to the time win-

ow consistency constraint . 

.2. Destroy operators 

In this solution approach, the destroy operators are separated

nto daily and weekly operators. Each of the operators was devel-

ped and tested to address a special characteristic of the problem.

he daily destroy operators focus on a specific day of the plan-

ing horizon, and therefore focus on the routing decisions of the

roblem. The weekly destroy operators are the unique feature of

ur search procedure and were created to tackle the consistency

spect of the PTWA-MCVRP, thus focusing on the time window as-

ignment decisions. In contrast to the daily operators, they analyze

he entire planning horizon at once with the aim of aligning the

ime window assignment for the customer-segment pairs. 

.2.1. Daily operators 

The daily operators remove r orders for a given day from its

outes. The day selection is random, following a uniform distribu-

ion, but a day is set as “tabu” after its selection until all other days

ave also been selected, independently of the quality of the solu-

ion generated. The number of removes r is chosen randomly from

he interval [ κ1 · N day , κ2 · N day ], where N day is the total number of

rders to be delivered on the specific day and κ1 , κ2 weights for

he lower/upper bound. 
The three daily destroy operators used are: random removal ,

haw removal and worst removal . These operators were proposed

y Shaw (1997) and Ropke and Pisinger (2006) and are frequently

sed in the ALNS for different VRP variants. The general idea of

ach operator is given below. 

The random removal operator randomly removes the orders

rom the set of routes of the day selected (using a uniform dis-

ribution). The Shaw removal removes the orders based on a simi-

arity measure as denoted in Eq. (21) . The similarity between two

rders ( z , m ) is calculated based on four terms: distance, order size,

rrival time and segment affiliation. These terms are weighted us-

ng the weights φ, ψ , ϕ and ω, respectively. The weights are used

o balance the importance of the different terms for the search and

herefore influence the solution quality. The terms with the high-

st impact should therefore be attributed with the highest weights.

 zm 

represents the distance between corresponding customers of

he orders, q ( z ) the order size, a ( z ) the arrival time and s zm 

the

rders segment affiliation, i.e., s zm 

= 1 if they are from same seg-

ent, 0 otherwise. The parameters d max , q max and a max indicate

he maximum distance between two customers and the maximum

uantity and arrival time difference between any two orders across

ll available orders. The smaller R zm 

gets, the more similar the or-

ers are. In addition to the similarity measure, a randomization is

sed according to Shaw (1997) to diversify the search and ensure

hat not the most similar order is chosen. For this, a random num-

er z ∈ [0, 1) and a deterministic parameter λ is used. Based on the

alculated similarity, the order that lies z λ · 100 percent down the

imilarity ranking is then chosen for removal. 

 zm 

:= φ · d zm 

d max 
+ ψ · | q (z) − q (m ) |

q max 
+ ϕ · | a (z) − a (m ) |

a max 
+ ω · s zm 

(21) 

Finally, the worst removal removes the orders that seem to be in

 costly position in the solution. The cost of an order is the differ-

nce between the current solution cost and the solution cost if the

rder was removed (not having any additional cost of not being

elivered). In this approach the solution cost is evaluated by the

odified objective function ( f a ). A randomized process controlled

y the parameter λ is also integrated in this operator, similarly to

haw removal, to ensure that it is not always the order with the

orst cost that is removed. 

.2.2. Weekly operators 

The weekly operators remove the orders of r customer-segment

airs from all days of the planning horizon. The number of re-

ovals r is chosen randomly from the interval [2, κ3 · n ], where n

epresents the number of customers and κ3 the weight for the

pper bound. Since all the orders of the r pairs are removed, the

alue of r has to be more restrictive than for the daily operators.

y way of example, if two pairs are chosen with five orders for

ach pair throughout the planning horizon, this already results in

en orders for removal. 

New destroy operators are designed in this work to specifi-

ally address the assignment decisions of the PTWA-MCVRP. Three

eekly operators are developed: product-based removal , worst time

indow removal , worst arrival removal . The product-based removal

s a variant of a random removal. The operator randomly selects r

airs of customer-segments (using a uniform distribution) and re-

oves all orders of that pair from the solution, i.e., all orders of

 segment that a customer placed in the planning horizon are re-

oved. This operator diversifies the assignment of time windows.

he other two operators are variants of a worst removal and are

daptations of the operators designed by Kovacs et al. (2015a) .

he worst time window removal operator calculates the number of

ime windows assigned to each customer-segment pair along the
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planning horizon and removes all the orders of the r pairs with

the highest number of assignments. The aim of this operator is to

reduce the number of time windows used for each pair and fa-

vor more consistent deliveries. The worst arrival removal consid-

ers the maximum arrival time difference between two orders of

a customer-segment pair. It identifies the r pairs with the highest

arrival time deviation and removes the two corresponding orders

of each pair. It also aims at reducing the number of time windows

but it is less disruptive since it does not remove all the orders from

the same pair customer-segment. 

4.3. Repair operators 

Once a destroy operator is applied and orders are removed, the

repair operator selected rebuilds the solution by reinserting the or-

ders into the routes of their delivery days. If the removals were

made by a daily removal operator, all the orders removed are from

the identical day and the repair operator only considers that spe-

cific day. Otherwise, for weekly removals, the repair operator will

focus on each day separately. From the list of days from which or-

ders have been removed, a day is selected at random and all the

orders of the corresponding day are reinserted according to the

repair operator chosen. The process is repeated until all days are

rebuilt. 

Following most of the VRP literature that uses ALNS, two inser-

tion heuristics are applied as repair operators: greedy insertion and

regret insertions. These operators are based on Ropke and Pisinger

(2006) . The greedy insertion operator calculates the cheapest feasi-

ble position for reinsertion for each order removed, and the order

with the lowest cost increase is selected to be inserted. The pro-

cess is repeated until all orders are inserted. The regret insertion

operators improve the greedy insertion by analyzing not just the

best option for each order but the k th best, whereas k can have

different values. This procedure integrates ahead information and

calculates the regret of postponing an insertion. Let � j 
z denote the

change in the objective value for inserting order z at its best fea-

sible position on the j th cheapest route. The regret value is calcu-

lated according to Eq. (22) for all the orders removed. The order z

with the highest regret value is selected to be inserted at its best

feasible position. In each insertion, the regret value is recalculated

for the set of orders remaining on the removal list until all orders

are inserted. 

r egr et z k := 

k ∑
j=2 

(
� j 

z − �1 
z 

)
(22)

4.4. Update of arrival times and time windows assignments 

Since waiting time between deliveries is not allowed, every re-

move or insertion in a route impacts the arrival time of the suc-

cessive orders and thus times need to be updated. All routes start

at the DC at time 0 and therefore the arrival time of each order is

calculated by consecutively adding the travel times between the

customers visited ( tt ij ) and their corresponding service time. As

previously mentioned, the service time at a customer has a vari-

able component proportional to the size of the orders delivered

( st d 
is 

) and a fixed component per stop ( sf , see also Section 2 ). Note

that a customer can receive more than one order across different

segments. In this case, the same arrival time is set for the corre-

sponding customer orders and the service time at the customer is

the total variable service time of the distinct orders plus the fixed

service time. 

Once the arrival times are updated, the new arrival time of an

order might lie outside the bounds of the assigned time window.

However, since the problem considers time window bounds as soft

constraints, the solution is still feasible, but it yields a penalty cost
or the deviation from the time window. The approach has flexi-

ility to decide whether to change the time window assigned to

he order, avoiding penalty costs which could cause inconsistent

ssignment, or to accept the penalty costs, maintaining the consis-

ent assignment. It is therefore necessary to evaluate whether the

ime window assignment should be altered or maintained in order

o achieve the minimal cost assignment, i.e., the best option be-

ween accepting a penalty cost or an additional inconsistency cost.

ote that during the search, the time window assignment will be

ore restrictive as the constraint violation cost ζ increases. 

The time window assignment update procedure is performed

or each order separately, after the arrival time is determined. We

efine as current cost the current penalty and inconsistency cost in-

uced by the pair customer-segment, disregarding the order being

nalyzed. This means we calculate the penalty and inconsistency

osts for all orders of the customer-segment pair without the or-

er that is currently under consideration. When deciding on the

ew time window assignment for the order being analyzed, there

re two possible situations, as previously mentioned: 

• Update only the time window assignment of the order being

analyzed, maintaining the previous assignment of the remain-

ing orders of the pair. This decision means that the total assign-

ment cost of the pair customer-segment is calculated by adding

the penalty and inconsistency costs associated with the time

window assignment for the new order to the current cost . The

total cost of this situation is denoted as singleUpdate cost , corre-

sponding to a single assignment update. 
• Update the assignment of all the orders from the pair customer-

segment to the same time window, ensuring consistent deliver-

ies throughout the planning horizon. This decision ensures the

avoidance of any inconsistency cost (i.e., zero cost, as only one

time window is assigned to the pair). The total assignment cost

of the pair therefore comprises only the penalty costs that all

the orders incur due to the new time window assigned. The

total cost of this situation is denoted as groupUpdate cost , and a

new assignment is performed for the group of orders. 

During the procedure, both costs singleUpdate cost and

roupUpdate cost are calculated for each of the time windows

vailable for the pair customer-segment ( TW is ), and the cheapest

ssignment of all is chosen. The penalty cost that an order incurs

s calculated by comparing the order arrival time with the bounds

f the time window assigned. If the arrival time lies outside the

ime window bounds it causes a penalty cost proportional to the

eviation. The inconsistency cost of updating the time window

f a single order is determined by checking whether the time

indow assigned is already used by one of the other orders of

he pair. The inconsistency cost is increased proportional to the

urrent constraint violation cost ( ζ ) if the time window has not

een used. We would like to note that the updating process is very

ime consuming and is also used to check each potential insertion

osition in the repair phase, therefore showing a high impact

n the computational times. However, this updating process is

equired in our problem to align consistency of time windows

cross the planning horizon and as such represents one of the

ain features that characterizes our approach. 

.5. Acceptance criteria 

The solution approach proposed uses a simulated annealing

ramework to evaluate and accept the solutions generated. A new

olution S ′ is accepted as S best if it improves the best solution. Oth-

rwise, it is compared against the incumbent solution S by means

f the probability e −( f a (S ′ ) − f a (S)) / ̂ t . The parameter ˆ t denotes the cur-

ent temperature. It is initialized at the beginning of the search

uch that a η% worse solution is accepted with a 50% probability



                                                                                                             901 

Table 2 

Overview of numerical tests. 

Section Purpose Data sets 

5.2.1 Compare solution quality of our ALNS to TALNS of Kovacs et al. (2014b) ConVRP 

5.2.2 Analyze operators application frequency ConVRP, retail data 

5.2.3 Analyze algorithm performance ConVRP, retail data 

5.3.1 Evaluate impact of consistent deliveries Retail data 

5.3.2 Evaluate impact of product-oriented time window assignment Retail data 
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nd is decreased in every iteration with a cooling rate γ ( ̂ t = ̂

 t · γ ).

olutions are compared regarding the modified objective function

 a , allowing infeasible solutions to be accepted during the search.

he ALNS algorithm stops after a given number of iterations. 

.6. Selection of a destroy-repair heuristic pair (d, r) 

The pairwise selection of the destroy-repair heuristic pair is ap-

lied in each iteration and based on a roulette wheel selection

rinciple, as proposed in Ropke and Pisinger (2006) . The probabil-

ty �dr of a pair ( d , r ) being chosen is given by Eq. (23) , where ρdr 

enotes the weight of the heuristic pair ( Kovacs, Parragh, Doerner,

 Hartl, 2012 ). 

dr := 

ρdr ∑n d 
d ′ =1 

∑n r 
r ′ =1 ρd ′ r ′ 

(23) 

The weights ρdr are set to 1 at the beginning of the procedure,

nd updated dynamically during the search. Each pair ( d , r ) is as-

ociated with a score �dr that is updated each time the heuristic

air is applied according to the following criteria: 

• �dr + σ1 , if the heuristic pair generates a new best solution; 
• �dr + σ2 , if the heuristic pair generates a solution that has not

been visited before, and is accepted as the new incumbent so-

lution S . 

As in Ropke and Pisinger (2006) , the scores are initialized to

ero and updated at each iteration according to the previous cri-

eria. After a certain number of iterations, the weights ρdr are up-

ated according to the recursive Eq. (24) and the scores are reset

o zero for the next round. 

dr := (1 − α) ρdr + α
�dr 

max (1 , �dr ) 
(24) 

The parameter α is a reaction factor that controls how the

eights are influenced by past and recent performances. In this

ay, it guides the search by controlling how sensitive the operator

hoice reacts to changes during the search. 

. Numerical experiments 

Numerical experiments examine the effectiveness of the solu-

ion approach and the impact of the model extensions proposed.

irst, the performance of the ALNS is analyzed in Section 5.2 ,

here solutions from related problem formulations from the lit-

rature are compared and an analysis of the operators execution

s performed. Further analyses concerning the impact of our new

odel for grocery distribution are then presented in Section 5.3 . 

Table 2 provides an overview of the tests performed. The data

ets used for these tests are described in Section 5.1 . 

The computational results presented in this section were ob-

ained on a 3.60 gigahertz PC with a 16 gigabytes memory. The al-

orithm was implemented in C++ and run 10 times per instance in

ll the tests performed, stopping after 60,0 0 0 iterations. The con-

traint violation cost ( ζ ) and operators weights ρdr were updated

very 100 iterations. Three regret insertion operators were used
ith k ∈ {2, 3, 4}. The remaining search parameters used are spec-

fied in Table 3 . It provides an overview of the used parameters

lus values, their function and how the used values were defined. 

The choice of parameters influences both search quality and

untime. In particular, the κ-parameters show a high impact on

oth aspects as they control the number of removals dependent on

he instance size. High values correspond to longer computational

imes, however they are required to guarantee a good solution

uality. In this way we tuned the newly introduced κ3 parameter

see Appendix B ). Further, δ is responsible for the calibration of ζ ,

hich is a key parameter of our algorithm. It dictates the violation

ost and thereby influences the inconsistency cost and the search

or consistent solutions. We therefore applied intensive studies to

une δ to fit our specific problem formulation (see Appendix A ). 

.1. Overview of the data sets tested 

In a first analysis, our problem and solution approach are com-

ared to another VRP variant that considers consistent deliveries

ver multiple periods. This comparison is made to benchmark

esults provided by Kovacs et al. (2014b) for the ConVRP. It was

hosen as it considers an identical approach with a departure

ime of zero at the DC. The other following analyses address our

pecific problem characteristics and are therefore performed on

ata based on grocery distribution. The data sets used in both

ases are described in the following and summarized in Table 5 . 

.1.1. ConVRP data set 

To assess the effectiveness of our approach, we compare our so-

utions with ConVRP literature. These benchmark data do not deal

ith MCVRPs and hence are only a special case of our problem.

he data sets used as benchmark were proposed by Groër et al.

2009) and Kovacs et al. (2014b) , which were based on Christofides

nd Eilon (1969) instances for VRP considering a visit frequency of

0% ( Groër et al., 2009 ), as well as 50% and 90% ( Kovacs et al.,

014b ). The visit frequency indicates the likelihood of a customer

lacing an order for each day in the planning horizon. 

As our paper deals with a real-life problem in grocery distri-

ution, we focus on the set of instances within the ConVRP data

ets that consider a given maximum duration for tours and pro-

ided service times. In line with this, we tested nine instances with

0–100 customers to compare the results to the ones achieved

y Kovacs et al. (2014b) with their template ALNS (TALNS, see

ection 5.2.1 ). 

.1.2. Simulated data sets based on retail settings 

Further data settings are based on direct information from

 major European retailer. Loading and unloading costs have

een derived following the insights from a preceding study by

übner and Ostermeier (2018) . The loading costs are presented in

able 4 and depend on the number of compartments per vehicle.

nloading costs accrue with every customer stop and are set to

.20 currency units (CU). The transportation costs are based on the

ravel distance between any two locations i and j , i , j ∈ N . All exper-

ments assume a vehicle capacity of 33 transportation units (TU).
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Table 3 

Search parameters setting. 

Parameter Function/Use Value Tuning/Origin 

δ Calibration of violation cost ζ 300 Own experiments (see Appendix A ) 

κ1 Lower bound for removals (daily) 0.1 Pisinger and Ropke (2007) and Kovacs et al. (2015a) 

κ2 Upper bound for removals (daily) 0.4 Pisinger and Ropke (2007) and Kovacs et al. (2015a) 

κ3 Upper bound for removals (weekly) 0.1 Own experiments (see Appendix B ) 

φ Weight Shaw removal 0.28 Derigs et al. (2011) and Hübner and Ostermeier (2018) 

ψ Weight Shaw removal 0.16 Derigs et al. (2011) and Hübner and Ostermeier (2018) 

ϕ Weight Shaw removal 0.28 Derigs et al. (2011) and Hübner and Ostermeier (2018) 

ω Weight Shaw removal 0.28 Derigs et al. (2011) and Hübner and Ostermeier (2018) 

λ Shaw/Worst parameter 4 Derigs et al. (2011) and Hübner and Ostermeier (2018) 

σ 1 Update of score �dr 33 Ropke and Pisinger (2006) 

σ 2 Update of score �dr 13 Ropke and Pisinger (2006) 

α Reaction factor ρdr 0.1 Ropke and Pisinger (2006) 

η Definition of starting temperature 0.05 Ropke and Pisinger (2006) 

γ Simulated annealing cooling rate 0.99975 Ropke and Pisinger (2006) 

Table 4 

Applied costs for loading MCV. 

# Compartments 1 2 3 4 

Loading (CU/shipping gate) 2.70 5.57 8.27 10.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

5

 

c  

a  

c  

c  

n  

c  

n  

f  

e  

f  

a

5

I  

n  

a  

c  

s  

t  

t  

T  

c  

e  

t  
Further, early or late deliveries are penalized at 0.17 CU per minute,

covering the representative labor cost of a store employee. 

To further generalize our findings, we simulated 20 different

instances with varying order and demand patterns 1 . The demand

for each segment maps the representative order structure of the

case company. The order structure has a visit frequency of about

70% (similar to that proposed by Groër et al., 2009 ). If a store is

flagged up to be visited on a given day, it will place orders for all

four available segments. Each instance comprises a planning hori-

zon of seven delivery days and 50 stores served from a given DC.

The individual order size for each segment is randomly chosen be-

tween a given minimum and maximum order quantity. The order

quantity ranges between one and five TUs for the first segment

and between one and ten TUs for the second segment. Further-

more, to map segments with a higher sales volume, segment 3

ranges between 5 and 20 TUs and finally segment 4 ranges be-

tween 10 and 25 TUs. The distance information is based on the

VRP instances by Christofides and Eilon (1969) . Note that the ve-

hicle capacity in Christofides and Eilon (1969) is far higher than in

our case example. However, if the distance data of Christofides and

Eilon (1969) are multiplied by four to increase the travel distances

(and keep the same density), one obtains comparable route lengths

for grocery settings. All the settings of the generated instances are

deduced from data provided by our partner from retail. 
1 The generated instances can be found on http://www.vrp-rep.org/ . 

i  

t  

t

Table 5 

Overview of data sets. 

Data family, application(s) Main characteristics 

Planning horizon: 5 days 

ConVRP , Visit frequencies: 50, 70 and 90

Customers/Orders: 50, 75 and 1

Comparison to TALNS (5.2.1) , Segments: 1 

Operators analysis (5.2.2) 

Number of instances: 9 

Planning horizon: 7 days 

Retail , Visit frequency: 70% 

Customers/Orders: 50/200 

Operators analysis (5.2.2) , Segments: 4 

Impact of consistent deliveries (5.3.1) , 

Impact of product-oriented TW (5.3.2) Number of instances: 20 
Table 5 summarizes the considered data sets for our tests and

heir characteristics. 

.2. Algorithm performance 

In the following sections, we analyze the solution quality by

omparing the results for the ConVRP benchmark instances, the

pplication frequency of the ALNS operators proposed and the

omputational performance of the solution approach. The appli-

ation frequency indicates if an operator was frequently called or

ot by the algorithm, regardless of the solution impact. Its value is

alculated by dividing the number of times it was called by the

umber of iterations performed. In combination with the ALNS

unction (i.e., performance dependent weighing of operators) this

nables insights on the use of each operator by the algorithm, as a

requently used operator corresponds to good scores and therefore

 good performance. 

.2.1. Comparison of results with ConVRP benchmark instances 

nstances modification. In contrast to our algorithm the TALNS does

ot consider the complete week for planning (i.e., no weekly oper-

tors) but constructs template routes for frequent customers and

ompletes the daily planning afterwards. The total travel time plus

ervice times ( TT ) for each instance are the comparison metric. Fur-

her, the problem addressed by Kovacs et al. (2014b) is a ConVRP

hat considers i) driver consistency and ii) arrival-time consistency.

heir goal is to minimize traveling time while satisfying the two

onsistencies, i.e., to approach each customer using the same driver

very day with a maximum arrival-time deviation ( l max ) smaller

han a pre-defined width L . These two aspects are not considered

n our problem formulation and therefore the following modifica-

ions had to be applied to enable a fair comparison of both solu-

ion approaches. 
Comment 

–

% –

00 One order per customer 

One product 

Instances with comparable setting by Kovacs et al. (2014b) 

–

–

Multiple orders per customer 

Four incompatible product 

segments 

Simulated data based on retail information 

http://www.vrp-rep.org/
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Table 6 

Results of comparison to TALNS best solution by Kovacs et al. (2014b) . 

# Customers Visit frequency (%) TALNS Best ALNS Avg ALNS Best Gap (%) Avg Gap (%) 

50 50 2827 2865 2868 1.4 1.5 

70 4051 4050 4056 0.0 0.1 

90 4761 4762 4795 0.0 0.7 

75 50 4702 4713 4792 0.2 1.9 

70 6786 6791 6880 0.1 1.4 

90 7749 7742 7881 −0.1 1.7 

100 50 5349 5367 5416 0.3 1.3 

70 7209 7224 7298 0.2 1.2 

90 8745 8755 8840 0.1 1.1 

Average – – – – 0.3 1.2 
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i) Driver consistency is integrated in our approach like the time

indow consistency constraint . This means that we relax the driver

onsistency constraint of Kovacs et al. (2014b) and introduce driver

nconsistency costs by adding a violation cost to the modified ob-

ective function ( f a ( S 
′ )) if multiple drivers (i.e., assignment to dif-

erent tours) are used for the same customer. These costs are in-

reased during the search, as explained in Section 4 for the time

indow consistency to enforce the driver consistency. 

ii) Arrival-time consistency (l max ) is treated in the following way.

he best l max found for each instance by Kovacs et al. (2014b) is

sed as an input to define the width of our set of time windows.

n this way we guarantee the arrival-time consistency achieved by

ovacs et al. (2014b) and can treat it like time window consistency

uring the search. Following this approach, the earliest time win-

ow given starts at time 0 with an l max width and, from there, new

ime windows are available with a shift of one time-unit. Since

ovacs et al. (2014b) perform a set of tests with different lengths

 L ) for each instance, which result in distinct l max , our comparison

s made considering the l max achieved for the tests with a maxi-

um arrival time bound denoted as L 1 . This limit is defined by the

uthors by running their algorithm without bounding the arrival

ime differences. Further, to ensure deliveries take place within the

iven time windows and thus adhere to l max , we need to consider

ime windows as a hard constraint and therefore set the penalty

osts for early/late deliveries to a very large number. Lastly, as only

raveling times in test data are considered, loading and unloading

osts are set to 0. 

omparison results. The numerical experiments confirm the abil-

ty of our algorithm to solve related problems effectively. Table 6

hows the TALNS solution and our ALNS best and average solu-

ions, together with the corresponding gaps to our approach (Best

ap and Avg Gap, respectively). 

In all tests, the solution approach was able produce consistent

olutions in terms of driver and time windows, i.e., both driver

nd time window consistency constraints were satisfied. The re-

ults show that the proposed ALNS reaches solutions close to the

ALNS, with the Best Gap close to 0%. The best solution reached by

he ALNS was 1.4% worse only for the instance with 50 customers

nd a visit frequency of 50%. Additionally, for the remaining in-

tances the average gap lies below 1.5% for most instances. These

esults demonstrate that our solution approach is able to find a

onsistent solution with a good traveling time. Please note that our

pproach was not developed to focus on driver consistency as in

ovacs et al. (2014b) . Nevertheless, our algorithm provides promis-

ng results for this conVRP variant even if some further adaptions

ffer additional opportunities for future research. 

.2.2. ALNS operators analysis 

Since we propose a new problem and developed an ALNS solu-

ion approach, an analysis of the operators considered is presented.

e propose weekly destroy operators that are adjusted from the
iterature to cope with our problem characteristics. In this section,

e compare the application frequency (AF) of each operator, i.e.,

he proportion of iterations each operator is called. This compari-

on is made for the runs with the ConVRP and the retail data sets.

Figs. 2 and 3 present the application frequency (AF) of the de-

troy operators (see Section 4.2 ) for both data sets; Figs. 4 and

 present the same information, but for the repair operators (see

ection 4.3 ). 

When running our solution approach for the ConVRP data sets,

esults indicate that all the operators proposed are called during

he search, with the daily operators having a share of 70%. Nev-

rtheless, each of the weekly operators is also called around 10%

f the times, with the product-based removal operator being the

ost called one due to the diversification that it allows. 

The application frequency of these operators changes when

he solution approach is used for the representative retail prob-

em. Daily and weekly operators share an application frequency

f 49%/51%, respectively. The results also indicate that the random

nd Shaw removals maintain an application frequency of around

0%, with an increase in calls for the product-based removal opera-

or. The worst removal and worst arrival removal are called around

% of the times across the tested instances. The weekly operators

ncluded in our solution approach clearly help the search for the

TWA-MCVRP. 

Fig. 4 shows that for the ConVRP data set the four repair op-

rators are similarly used by the ALNS, which is not the case for

he retail data set. For the last, the greedy insertion operator has a

uch smaller application frequency than the remaining operators.

urthermore, the regret insertion with k = 2 seems to be the oper-

tor contributing the most, with an average application frequency

f 40% (see Fig. 5 ). 

.2.3. Computational performance 

Overall, we can confirm that the ALNS proposed is able to pro-

ide stable solutions for the PTWA-MCVRP due to a low variation

n solution quality. The variation coefficient (standard deviation/

ean) was calculated over all test instances (10 runs per instance)

ithin the given data sets. As a result, the average variation co-

fficient for our ALNS is 0.012 for the ConVRP data set and 0.003

or the retail data set. Furthermore, the solution approach is able

o reach good quality solutions, improving the first feasible solu-

ion reached (respecting the formulation provided in Section 3 ) by

n average around 16% (with minimums of 13% and maximums

f 18% improvement, see Appendix D ). The required computational

ime to solve practice-informed instances amounts to an average of

ne and a half hours. Since we consider a tactical planning prob-

em, this constitutes an acceptable runtime effort. Nevertheless,

e experimented with different iteration limits but found that a

ower number of iterations leads to a decrease in solution qual-

ty. Additionally, a higher iteration limit increases the runtime sig-

ificantly but does not have a real effect on solution quality (see

ppendix C ). 
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Fig. 2. Application frequency (AF) of destroy operators for ConVRP data sets. 

Fig. 3. Application frequency (AF) of destroy operators for retail data sets. 

Fig. 4. Application frequency (AF) of repair operators for ConVRP data sets. 

Fig. 5. Application frequency (AF) of repair operators for retail data sets. 
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The runtime required to solve the ConVRP instances is more

variable, increasing proportional to the number of customers and

visiting frequency. For the instances with 50 and 75 customers

the runtime ranges from one hour for 50% visit frequency to four

hours for 90% visit frequency. The computational effort for the 100

customer instances ranges from four to twenty hours. The data

sets from the ConVRP require more time to solve because a much

higher number of time windows need to be analyzed during the

search. As the number of customers and time windows available

increase, the update of arrival times and time windows assignment

procedure (see Section 4.4 ) runtime increases. The check and up-

date procedures of the arrival times and time windows assignment

are responsible for the major part of computational time. 

5.3. Impact analysis of time window assignment in grocery 

distribution 

We further analyze the impact of introducing consistent de-

liveries and product-oriented time window assignment. We base

our analysis on the retail data set. We start with the simplest case

of introducing time windows assignment within the MCVRP with

all time windows available and analyze the impact of consistent

deliveries. Afterwards, the complexity is gradually increased by
estricting the set of time windows for each pair customer-

egment. In this way we can analyze the different characteristics

f the problem. 

.3.1. Analysis of consistent time window deliveries 

In this analysis we evaluate the impact of performing a con-

istent delivery planning, i.e., delivering each segment to stores

ithin a unique time window assigned. We therefore compare

ur solution approach to a planning approach without consistency

nd an ex-post assignment of consistent time windows. In this

xperiment, a set of eight time windows with a one-hour width

s considered, with the full set of time windows available to all

ustomer-segment pairs. Two tests are performed for the compar-

son of each instance: (1) the ALNS is run for each day individu-

lly, considering only the daily operators with no time restrictions,

nd (2) the full ALNS is run for the complete planning horizon. The

rst test only attempts to minimize the routing costs, including the

oading, traveling and unloading costs and does not consider con-

istent time windows. Dependent on the resulting arrival times of

he orders, a time window is assigned (ex-post) to each customer-

egment pair to enforce consistency. The corresponding time win-

ows are chosen to minimize the penalty costs for early or late de-

iveries. The total cost in this scenario is calculated by summing up
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Fig. 6. Cost decrease of a solution generated by a consistent delivery planning compared to an unrestricted planning solution. 

Table 7 

Average percentage of orders delivered “X” minutes earlier or later than the time window 

assigned bounds. 

Interval of time (X in minutes) Unrestricted planning (%) Consistent planning (%) 

0 69 84 

0–10 9 8 

10–30 11 6 

30–60 5 2 

60–120 3 1 

120–240 3 1 

> 240 2 0 
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he routing costs of each day plus the penalty cost per customer-

egment pair that arises to the ex-post assignment of consistent

ime windows. This first test is named unrestricted planning and

s based on common practice. The second test aims at minimiz-

ng routing and penalty costs while ensuring consistent deliveries.

he final solution provides a consistent time window assignment

nd therefore the test is referred to as consistent delivery planning .

he improvement in total cost for the consistent delivery planning

ompared to the unrestricted planning is presented in Fig. 6 (im-

rovements are indicated in negative %-values). Three cost scenar-

os are shown, namely the improvement in best, average and worst

olution found in each test, for each instance. All tests provided

olutions with a consistent time window assignment, i.e, for each

ustomer-segment pair only one time window was assigned for the

omplete planning horizon. 

The results show that consistent delivery planning enables bet-

er overall solutions than the unrestricted planning just focused on

he routing. The best solution of the consistent planning is able

o improve the unrestricted best solution by around 0.7%. Further-

ore, the solutions generated with consistent planning are always

etter than unrestricted planning, with the cost deviation of the

orst solution having an average improvement of 0.5%. 

Although consistent planning provides solutions with better

verall cost, the cost deviation between the two types of plan-

ing is low (below 1%). However, the solutions are very different.

he routing cost of the consistent planning is between 1.1% and

.7% higher than that for unrestricted planning, which is compen-

ated by a 68% to 76% improvement of overall penalty costs. A

urther analysis of the delivery time of each order for both plans

hows that consistent planning originates more on-time deliveries.

able 7 presents the average percentage of orders delivered “X”

inutes outside the bounds of the assigned time window for both

lans. 

From the results of Table 7 , we see that the consistent planning

educes the amount of deliveries performed outside the bounds of

he time window and the amount of time deviation. While the

nrestricted planning comprises 7% of the orders delivered with
 w  
 deviation of at least one hour, the consistent planning reduces

his percentage to 3%. Furthermore, note that the time deviations

rom the time window bounds are penalized in the overall cost of

he solution by 0.17 CU per minute, covering the working cost of a

tore employee. However, the costs can be much higher for some

f the deliveries in practice as for example spoilage and stockouts

an occur additional to compensation payments for the violation

f delivery times. 

.3.2. Analysis of product-oriented time window assignment 

We further analyze the impact of defining a product-oriented

ime window assignment. In the previous tests, all pairs customer-

egment had the full set of time windows available for assignment.

owever, in practice the stores might prefer to receive some seg-

ents in a more restricted set of time windows, as described in

ection 2 . We therefore tested three different scenarios: 

st scenario (Fresh TW):. Only a limited number of time windows

an be used for one of the segments (representing the fresh prod-

cts), with the full time window set available for the remaining

egments. As the fresh products usually have to be delivered at the

eginning of the day, and we assume departures at time 0, the set

f time windows available for the fresh segment is set to the three

arliest from the overall set. 

nd and 3rd scenarios:. Other segments might have additional re-

trictions in different stores, depending on their operations. We

herefore used two random sets of time windows for the remain-

ng segments. In the second scenario, named Random TW (4–8) ,

he number and time windows available are randomly selected be-

ween four and eight for each customer-segment pair. For the third

cenario ( Random TW (4) ), the number of time windows available

s fixed to four, and the time windows are randomly selected. In

oth scenarios, the set of time windows available for the fresh seg-

ent is the same as in the first scenario ( Fresh TW ). 

The solutions obtained for the three scenarios are compared

ith the solutions from the consistent delivery planning with all
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Fig. 7. Cost differences for solutions generated by a consistent delivery planning with distinct sets of time windows available compared to the solution with the full set 

available. 

Table 8 

Percentage of orders “X” minutes earlier or later than the time window assigned in each scenario. 

Interval of time (X in minutes) Unrestricted All TW Fresh TW Random TW (4–8) Random TW (4) 

0 69% 84% 82% 72% 65% 

0–10 9% 8% 9% 10% 10% 

10–30 11% 6% 6% 11% 12% 

30–60 5% 2% 2% 5% 8% 

60–120 3% 1% 1% 2% 4% 

120–240 3% 1% 1% 1% 1% 

> 240 2% 0% 0% 0% 0% 

Avg # TW per customer 1.32 1.32 1.42 1.92 2.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

s  

t  

s  

e  

s

6

 

m  

m  

t  

t  

q  

p  

a  

w  

g  

t  

b  

o  

e  

M  

s  

a  

t  

t  

r

 

t  
time windows available (obtained in Section 5.3.1 ). The results are

presented in Fig. 7 (improvements are indicated in negative %-

values). Once again, the best, average and worst solutions achieved

by each of the tests for each instance are compared. 

The results show that the more restrictive the set of time win-

dows available for each pair customer-segment is, the higher are

overall costs of the solution. The costs therefore increase from the

Fresh TW to the third scenario (Random(4)). The deviations be-

tween the best, average and worst solutions of each scenario are

very similar. Analyzing the cost deviation of the best solutions for

each scenario, we see that the Fresh TW scenario originates a small

increase in costs (below 1%) in the solution cost compared with

the full time window set available. This deviation reaches higher

levels when all segments have random time windows available for

assignment. 

A further analysis of the two cost contributions (routing and

penalty), indicates that the routing cost is very similar between

all scenarios, with an average deviation of below 0.4%, pointing to

the penalty cost as the main driver for the cost increase. Similarly

to the previous section, Table 8 presents the average percentage

of orders delivered “X” minutes outside bounds of the time win-

dow assigned for each scenario. The results from the previous un-

restricted planning and consistent delivery planning analysis are

also presented for comparison. The average number of time win-

dows assigned per customer are presented for all scenarios in the

bottom line. 

The results show a reduction of on-time deliveries from the

consistent scenario with all time windows available to the more

restricted scenarios. We can see that when all time windows are

available for all customer-segment pairs, the best solutions try to

assign the same time window to the full range of products, hav-

ing an average of 1.32 time windows assigned to each customer
 t  
n both the unrestricted and consistent planning scenarios. As the

cenarios constrain the time window set, the average number of

ime windows assigned per customer increases. This would lead to

eparate deliveries, which would increase the routing costs. How-

ver, it seems that by reducing the on-time deliveries, we maintain

imilar routing costs, leading to better overall costs. 

. Conclusion 

This work extends the research on MCVRPs by addressing a

ulti-period setting with a product-oriented time window assign-

ent. The resulting PTWA-MCVRP was studied for the grocery dis-

ribution application, which has particular characteristics due to

he multiple products it distributes with distinct temperature re-

uirements and the fact that it considers the impact of delivery

lans on store operations. Notwithstanding, the proposed model

nd solution approach can also be transferred to other industries

here MCVs and repetitive delivery cycles are applied (e.g., weekly

lass waste collection, regular supply of petrol stations). The aim of

he PTWA-MCVRP is to define a unique time window that should

e used consistently throughout the planning horizon for each type

f product of a store, taking into account the possibility of deliv-

ring the full product range jointly or separated with the use of

CVs. However, in practice the time windows are not hard con-

traints, and therefore deliveries outside the time window bounds

re possible in practice with a negative impact for in-store opera-

ions. The objective of the problem proposed is thus to minimize

he routing costs inherent in the use of MCVs and the penalty costs

elated to missing the time windows assigned. 

An ALNS framework was designed to cope with the charac-

eristics of the PTWA-MCVRP, combining daily and weekly opera-

ors to address the different problem decisions. The daily operators
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ocus on a particular day and improve the routing, while the

eekly operators have a broader scope, aligning the time window

ssignment decisions across all days. The algorithm was tested

n benchmark instances for the ConVRP, which is closely re-

ated to our problem due to the arrival time consistency con-

traint, and generated instances based on a grocery distribution

roblem. We demonstrated that our solution approach provides

ery good results for the benchmark instances (ConVRP by Kovacs

t al., 2014b ) even though it was not developed to solve their

iven problem specifics. Furthermore, an analysis of the applica-

ion frequency of the algorithmic operators showed that the intro-

uced weekly operators effectively complement the ALNS frame-

ork with daily operators. They are frequently used during the

earch and were developed to allow a higher diversification for the

TWA-MCVRP. 

An impact analysis of time window assignment in grocery dis-

ribution was also conducted. At a first stage, we showed that per-

orming consistent delivery planning provides better overall solu-

ions than unrestricted planning, just focused on the routing costs.

lthough the deviation cost achieved between both planning sce-

arios was small (0.7% average improvement), it was shown that

here was a significant difference in the percentage of orders deliv-

red outside the time window bounds, which could lead to higher

osts due to spoilage, stockouts and fines. Finally, the implication

f using a product-oriented time window assignment was analyzed

y restricting the number of time windows available for assign-

ent to the different products. We concluded that if all products

ave the same time windows available, most of the stores will

eceive the full range of products within the same time window.

herefore, as we restrict the set of time windows, the number of

ime windows used per customer increases, as well as the overall

olution cost. This last effect is originated by the increase in the

ercentage of orders delivered outside the time window bounds,

ndicating that it is less costly to miss the time window than to

hange the routing. 

Regarding the design of the algorithm proposed, we would like

o emphasize that the newly introduced weekly operators were

pecifically designed to address the time window assignment deci-

ions for repetitive deliveries throughout a period. Therefore, they

an be used to solve VRP with time window assignment, even

ithout the multi-compartment feature. This means that the gen-

ral problem of MCVRP can be relaxed to the special case of single-

ompartment VRP and capacitated VRP. Further, it is able to solve

ther ConVRP variants, although it could require additional adap-

ations and algorithmic testing dependent on the specific problem

etting (e.g., the consideration of driver consistency) to increase

he efficiency in such settings. Further extensions of this work can

e made by considering lower and upper bounds for violation of

he time windows to prevent excessive penalties, as proposed by

oannou et al. (2003) . These bounds can be defined per customer

nd product, differentiating the cases that would not be so affected

y the situation. For instance, stores with small backrooms or at

igh traffic locations would require more on-time deliveries than

thers. We assumed departures from DCs at time zero as these are

ypical in the retail context, and therefore a logical extension is

o consider different departure times for the vehicles, as already

onsidered by Kovacs et al. (2015b) for ConVRP. Additionally, con-

iderations regarding the capacity of DC docks and fleet size could

e included. Not all vehicles can depart at the same time due to

oading dock capacity restrictions. Moreover, fleet size is depen-

ent on the number of simultaneous deliveries, so having different

eparture times allows for a smaller fleet. The development of an

xact approach, such as a branch-and-price, would also be a future
esearch direction in order to achieve near optimal solutions for

omparison and evaluate ALNS performance in greater detail. 

A related extension of our work that mainly aims to solve the

asic problem, is to further investigate different operators within

he ALNS or even other algorithms to improve the computational

fficiency and effectiveness. 
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ppendix A. Algorithm tuning for δ

able A1 

verage deviation reached across all instances by changing δ. 

Avg. deviation 1 Avg. deviation 1 

δ = 150 vs. δ = 300 Avg. δ = 300 vs. δ = 600 

Best solutions reached 0.02% −0.01% 

Average solutions reached 0.00% −0.01% 

Average runtime −1.02% 5.62% 

1 The average deviation shows the change in runtimes and solutions of increasing

from 150 (300) to 300 (600); Example: the avg. runtime decreases by 1.02% if δ

ncreases from 150 to 300. 

ppendix B. Algorithm tuning for κ3 

able B1 

verage deviation reached across all instances by changing κ3 . 

Avg. deviation 2 Avg. deviation 2 Avg. deviation 2 

κ3 = 5% vs. 

κ3 = 10% 

κ3 = 10% vs 

κ3 = 20% 

κ3 = 20% vs 

κ3 = 30% 

Best solutions reached 0.08% 0.02% −0.06% 

Average solutions reached 0.06% 0.08% −0.11% 

Average runtime −2.22% 1.60% 12.53% 

2 The average deviation shows the change in runtimes and solutions of increasing

3 from 5 (10/20) to 10 (20/30); Example: the avg. runtime decreases by 2.22% if

3 increases from 5 to 10. 

https://doi.org/10.13039/501100008530
https://doi.org/10.13039/501100001871
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Appendix C. Algorithm tuning for iteration limits 

Table C1 

Impact of the number of iterations on the solution quality

Maximum number of iterations (limi

Instance 30 0 0 0 60 0

Solution Runtime (in hour) Sol

Retail 1 66070 0.60 655

Retail 2 71681 0.66 708

Retail 3 66055 0.62 654

Retail 4 6 84 99 0.71 677

Retail 5 68366 0.67 676

Retail 6 66867 0.66 663

Retail 7 70718 0.70 700

Retail 8 70321 0.81 696

Retail 9 68019 0.69 674

Retail 10 69193 0.67 685

Retail 11 69411 0.79 686

Retail 12 68452 0.64 677

Retail 13 69626 0.68 689

Retail 14 68430 0.65 677

Retail 15 6 86 84 0.71 681

Retail 16 70658 0.65 699

Retail 17 72084 0.68 713

Retail 18 68967 0.63 6 84

Retail 19 68177 0.70 676

Retail 20 69076 0.72 684

Avg. delta 3 – – −6

Avg. delta in % – – −0

3 The average delta shows the absolute solution differe

responding lower limit (i.e., 30 0 0 0 vs. 60 0 0 0 and 60 0 0

average) if the limit increases from 30 0 0 0 to 60 0 0 0. 

Appendix D. Solution improvement during search compared to 

initial feasible solution 

Table D1 

Average solution improvement after initial feasible 

solution. 

Instance Average improvement (%) (10 runs) 

Retail 1 16.0 

Retail 2 15.3 

Retail 3 15.6 

Retail 4 15.5 

Retail 5 15.5 

Retail 6 15.2 

Retail 7 15.6 

Retail 8 15.9 

Retail 9 15.8 

Retail 10 15.6 

Retail 11 16.2 

Retail 12 15.9 

Retail 13 15.5 

Retail 14 15.8 

Retail 15 16.3 

Retail 16 15.2 

Retail 17 15.8 

Retail 18 15.6 

Retail 19 15.3 

Retail 20 15.9 

Average 15.7 
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