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ABSTRACT

Multi-objective Optimization problems arise in many applications; hence, solving

them efficiently is important for decision makers. A common procedure to solve such

problems is to generate the exact set of Pareto efficient solutions. However, if the problem is

combinatorial, generating the exact set of Pareto efficient solutions can be challenging. This

dissertation is dedicated to Multi-objective Combinatorial Optimization problems and their

applications in system of systems architecting and railroad track inspection scheduling. In

particular, multi-objective system of systems architecting problems with system flexibility

and performance improvement funds have been investigated. Efficient solution methods are

proposed and evaluated for not only the system of systems architecting problems, but also a

generic multi-objective set covering problem. Additionally, a bi-objective track inspection

scheduling problem is introduced for an automated ultrasonic inspection vehicle. Exact

and approximation methods are discussed for this bi-objective track inspection scheduling

problem.
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SECTION

1. INTRODUCTION

It is common for a decision maker in the real world to face multiple and conflicting

objectives. For example, triple-bottom-line in decision science (Hall, 2011) can be viewed

as objective functions, which include cost or profit, environmental impacts, and societal

benefits. Decision-making problems under multiple and conflicting objectives can be

analyzed using multi-objective optimization (MOO) concepts and tools. This dissertation

broadens our knowledge of MOO by extending the use of the current concepts and tools

and developing new methods for solving MOO problems.

There exists a variety of approaches for solving MOO problems; one may reduce

the problem into a single objective problem (either by associating weights to the individual

objective functions or minimization of the maximum deviation from individual optimums)

or generate a set of alternative solutions for the decision maker. In this study, we focus

on generating Pareto efficient solutions for the problems of interest. A solution is Pareto

efficient when there does not exist another solution, which is better in terms of all of

the objective functions. Various definitions of efficiency and solutions methods of MOO

problems are presented in Ehrgott (2006). In addition, a review on solution methods can be

found in Gandibleux (2006) and Chinchuluun and Pardalos (2007).

An important class of MOO problems is Multi-objective Combinatorial Optimiza-

tion (MOCO) problems. MOCO problems find many applications in transportation, man-

ufacturing, scheduling, and systems engineering. Even the single-objective combinatorial

problems are typically hard to solve as they mostly fall into the class of NP-hard prob-

lems, for which there does not exist a known polynomial-time solution algorithm. MOCO

problems, therefore, are also hard to solve. Several solution methods exist for solving
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MOCO problems with specific settings. An interested reader is referred to Ulungu and

Teghem (1994), Ehrgott and Gandibleux (2000), and Ehrgott and Gandibleux (2002) for

reviews of the methods for solving MOCO problems. The dissertation studies MOCO with

a focus on multi-objective pure- and mixed-integer linear programming problems and their

applications in System of Systems (SoS) architecting and Track Inspection Scheduling.

SoS is a system, whose components are systems themselves (Maier, 1996). Capa-

bility based SoS architecting problem can be modeled as a Multi-objective Set Covering

(MOSC) problem with additional constraints. This problem requires to cover a set of

capabilities, which can be formulated as set covering constraints, and to connect the se-

lected systems, which can be formulated as additional constraints. Using the constraints

of the capability-based SoS architecting problem, the case of flexibility of systems in SoS

architecting is discussed in Paper I and a SoS architecting problem with both flexible and

inflexible systems is discussed in Paper II. Paper III discusses a generic MOSC problem

with a new exact decomposition scheme that decomposes the feasible region over a set of

hyperplanes, called sub-problems, and uses the efficient solutions of the sub-problems to

obtain the efficient solutions of the original problem.

Another SoS problem that is studied in this dissertation is SoS architecting in the

presence of funds. Assuming systems can improve their performances by receiving funds,

an architect needs to efficiently allocate funds to the selected system. The resulting model is

a Bi-objective Mixed-Integer Linear Programming (BOMILP) problem that is discussed in

Paper IV.AgenericBOMILPproblem is studied in PaperV,where an evolutionary algorithm

based on hyperplane decomposition approach is described to solve such a problem. This

decomposition approach separates the integral part of the feasible region over a set of

hyperplanes and retains the efficient solutions by combining the efficient solutions over the

separated regions of the feasible space.
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Finally, a bi-objective combinatorial optimization model is analyzed in Paper VI

for a track inspection scheduling problem. This model can be used to examine other

inspection scheduling problems related to infrastructure maintenance. An exact algorithm

and two heuristic algorithms are described for solving the bi-objective inspection scheduling

problem.
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2. LITERATURE REVIEW

Multi-objective Combinatorial Optimization (MOCO) problems find many appli-

cations in transportation, manufacturing, scheduling, and systems engineering. Variety of

solution methods is presented in the literature for solving these problems; interested readers

are referred to Ulungu and Teghem (1994), Ehrgott and Gandibleux (2000), and Ehrgott

and Gandibleux (2002) for reviews of the methods for solving MOCO problems. This dis-

sertation focuses on SoS architecting and track inspection scheduling problems and study

these problems as MOCO problems. A SoS is the collection of individual and independent

systems that are brought together for specific goals (DeLaurentis and Callaway, 2004; Gorod

et al., 2008; Klein and Vliet, 2013). The U.S. Department of Defense (DoD) definition of

SoS, which is adopted in this study as well, is capability based and SoS is defined as the

collection of systems, integrated to provide required capabilities (DoD, 2008). As noted

by Domercant and Mavris (2010), this capability based definition is reasonable as military

missions are recently more related to capabilities based planning.

A capability is defined as a skill for performing definite functions (DoD, 2008).

Intelligence, surveillance, reconnaissance, defense (air or missile), health, and communi-

cation skills are the general capabilities needed in military missions (Bergey et al., 2009;

Dahmann and Baldwin, 2008; DoD, 2008). Manthorpe (1996) lists a set of nine capabilities

identified for joint warfighting and Konur et al. (2014) note that specific search, radar, com-

mand and control, exploitation, and communication capabilities were required for targeting

Scud transporter erector launchers during Gulf War. The systems are the entities equipped

with such capabilities. Vehicles, softwares, and other systems such as aircrafts, fighters,

platforms equipped with weapons, sensors, communication tools and computers, and radars

are military systems (Dahmann and Baldwin, 2008; Konur et al., 2014; Manthorpe, 1996).

For instance, Owens (1996) gives a list of military systems.
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Papers I and II presented in this dissertation analyze SoS architecting with two types

of systems: inflexible and flexible. Flexibility of a system or a SoS architecture can be

described as the system’s or the SoS architecture’s ability to respond to changes (Gorod et al.,

2008; Ross et al., 2008; Saleh et al., 2001, 2009; Valerdi et al., 2008). Specifically, a system

is defined as inflexible when engineering design changes within the system are not possible.

An inflexible system will, therefore, have a set of fixed capabilities integrated within and it

will contribute to the SoS with those capabilities. On the other hand, it might be of benefit

to the SoS architect that a system, instead of providing all of its capabilities, collaborate

with the SoS architect and contribute to the SoS with a subset of its capabilities. Through

design changes, some of the capabilities available in a system can be disintegrated from the

system and the SoS architect can benefit from the reduction in cost and/or completion time

of the SoS (Dahmann and Baldwin, 2008). Such systems are referred to as flexible systems.

The flow of actions in the SoS architecting problem is as follows. Prior to physical

architecting of the SoS, a set of capabilities required for the SoS are defined considering the

mission goals and the systems that can provide these capabilities are specified (the set of the

systems with similar capabilities constitute a family of systems, (DoD, 2008)). During the

SoS architecting, the SoS architect selects the inflexible systems to be included in the SoS and

specifies the capabilities to be requested from the flexible systems. Then, the SoS architect

ensures the connectedness of the SoS by establishing communication interfaces among

the selected systems. Pernin et al. (2012) note that one can utilize three main objectives

in constructing SoS architectures: performance, schedule, and cost. Therefore, similar

to Konur et al. (2014) as well, it is assumed that the SoS architect constructs a capable

and connected SoS regarding three objectives: maximization of the total performance,

minimization of the completion time, and minimization of the total cost.

In Paper I, two SoS architecting problems are investigated: one with inflexible

systems and one with flexible systems. In both of these problems, the maximization

of the total performance and the minimization of the total cost are the objectives. In
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Paper II, a SoS architecting problem with both inflexible and flexible systems is analyzed.

Further, this problem considers three objectives (total performance maximization, total cost

minimization, and completion time minimization). The resulting optimization problem is

a multi-objective mixed integer linear programming model. To determine a set of Pareto

efficient SoS architectures, first an application of an exact method (Sylva and Crema, 2004)

for the problem is discussed and an evolutionary method for approximating the set of Pareto

efficient SoS architectures, i.e. Pareto front, is constructed. Then, a decomposition approach

that can use both the exact and the evolutionary methods for computational improvements

is proposed. In particular, the decomposition approach initially separates the problem of

interest into smaller sub-problems by fixing the summation of a set of binary variables (the

total number of the inflexible systems to be included in the SoS plus the total number of

capabilities requested from the flexible systems is fixed). After that, the decomposition

approach generates or approximates the Pareto fronts of these smaller sub-problems, and

then combines and evaluates these Pareto fronts to get the Pareto efficient SoS architectures.

The core of SoS architecture problem is the set covering constraints, i.e. the covering

of the capabilities that SoS requires. This observation leads to the exact solution methods

of the MOSC problems, in which, the findings in SoS architecture problem are generalized

to MOSC problems. Similar to SoS architecting problem with both flexible and inflexible

systems, a decomposition approach for solving MOSC problems is proposed in Paper III.

The decomposition approach, which is used in Konur et al. (2016) for solving a system of

systems architecting problem, works as follows. First, the problem is decomposed into a

set of sub-problems. Then, using an exact method proposed for MOCO problems, the exact

Pareto front of each sub-problem is generated. After that, the exact Pareto front of the main

problem is extracted using the Pareto fronts of the sub-problems.

A practical extension of the SoS architecting problems occurs when an architect has

funds available to assign to the systems, which is studied in Paper IV. It is considered that the

SoS architect can improve the performance of the capabilities that the selected systems can
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provide by allocating funds to them. A similar study of Konur and Dagli (2015) investigates

a related topic, where the systems negotiate with the SoS architect for fund allocation. In

particular, Konur and Dagli (2015) assume that the systems individually decide on how

to utilize the allocated funds for achieving maximum performance improvements in their

capabilities. Here, on the other hand, it is considered that the SoS architect directs how

the systems should use the allocated funds. Particularly, the SoS architect specifies how

much of the allocated fund should be utilized in the improvements of the capabilities that

a selected system can provide. The resulting architecting problem is a BOMILP model.

Specifically, the system selection decisions are binary while the fund allocation decisions

are continuous. First, an adaptive ε-constraint method is discussed as an exact method

for solving this model. Then, an evolutionary method is proposed and it is compared to

the adaptive ε-constraint method through a numerical study. Finally, a numerical study

demonstrates the benefits of fund allocation in the SoS architecting process.

Paper V studies generic BOMILP problems. BOMILP problems are typically

hard to solve exactly; hence, two approximation algorithms are proposed to solve them.

Several methods for solving BOMILP problems have been proposed to find the exact set

of Pareto efficient solutions. A variation of the branch-and-bound algorithm is proposed

in Belotti et al. (2013) and a generalization of the Dichotomic algorithm for BOMILP

problems is proposed in Boland et al. (2015a). Furthermore, one may find an iterative

method, another exact algorithm, in Soylu and Yildiz (2016). In this paper, the focus is

on approximating the set of Pareto efficient solutions; specifically, a two-stage evolutionary

algorithm is introduced and a decomposition approach is discussed, which uses the two-

stage evolutionary algorithm. The second stage of this algorithm that consists of the pivoting

operation that works on any Bi-objective Linear Problem.

Finally, a railroad track inspection problem in Paper VI is studied. Inspection of

tracks can improve the safety of railroad tracks, in which, track inspection is carried out

by automated inspection vehicles equipped with a technology (mostly ultrasonic but can be
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visual as well) that can detect defects due to track geometry or structure. Track failure is a

process that starts with initially undetectable cracks on the tracks, continues with the growth

of these cracks into detectable defects, and concludes with the maintenance if the defect is

detected or failure otherwise (Shang and Berenguer, 2014; Zhao et al., 2007). For the US

railroads, Federal Railroad Administration (FRA) regulates track inspections by setting the

inspection frequencies and interval between consecutive inspections for track stakeholders

(e.g., the states and railroad companies). A track inspection scheduling problem (TISP) is

formulated to address this regulation. This problem aims at finding an order of the track

inspections to maximize the safety improvements while minimizing the total inspection

time considering the required frequencies and interval restrictions between inspections over

a planning horizon. TISP is a bi-objective binary programming model for scheduling an

automated inspection vehicle’s inspections over a network of tracks. Due to the complexity

of the resulting model, an evolutionary heuristic method is developed to approximate a set

of Pareto efficient inspection schedules and quantitatively and qualitatively compare this

method to a naive greedy heuristic scheduler. A simpler version of this greedy scheduling

heuristic is proposed by the authors in an early version of this study, see, (Farhangi et al.,

2015).
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Abstract

System of Systems (SoS) architecting requires analyzing a set of individual but

interconnected systems simultaneously in order to build a communicating SoS, which can

provide the capabilities needed. In general, the systems can provide a set of capabilities

and the SoS architect needs to decide which systems to include in the SoS so that each

capability is provided by at least one system. In this case, the systems are inflexible, i.e.,

a selected system will contribute to the SoS with all the capabilities it can provide. On

the other hand, if SoS architect can incentivize systems to contribute specific capabilities

instead of all its capabilities, it might be possible to build a better SoS in terms of not only

one objective but all objectives considered. In this study, we compare SoS architecting with

inflexible and flexible systems and quantify the value of the flexibility of the systems for a

military application. Two evolutionary algorithms are constructed for the SoS architecting

with inflexible and flexible systems for the resulting multi-objective optimization problems.

These evolutionary algorithms output a set of Pareto efficient SoS’s for the architect. Upon
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comparing the Pareto fronts of inflexible and flexible models, we quantify the value of

systems’ flexibilities. It is demonstrated that SoS architecting with flexible systems can

improve performance while decreasing costs.

Keywords: System of Systems Architecting; System Flexibility; Evolutionary Methods

1. INTRODUCTION AND LITERATURE REVIEW

System of Systems (SoS) architecting findsmany applications in engineering, health,

transportation, and military systems. In SoS architecting, the architect should build a SoS

that is able to provide a set of capabilities. On the other hand, different capabilities can be

provided by different systems and the SoS architecting problem is, therefore, to determine

which systems should be included in the SoS to achieve a capable SoS (Klein and Vliet,

2013). However, in doing so, SoS architect should consider the distinct characteristics of

the systems as not every system can provide any capability at the same cost or performance

levels as well as he/she should guarantee communication among the systems included in

the SoS. A functioning SoS should include at least one system providing each capability

and at least one interface between any pair of systems included in the SoS.

In particular, this study focuses on a military application of SoS architecting spon-

sored by the U.S. Department of Defense. Many military strategy development projects can

be approached as SoS architecting problems (Manthorpe, 1996; Owens, 1996), and military

systems correspond to SoS (Bergey et al., 2009). In this study, a SoS architecture refers to a

military strategy for a mission that requires a set of capabilities and different military com-

ponents can provide and contribute to the mission with different capabilities. Nevertheless,

we consider two cases for the SoS architecting problem of interest. In the first case, the

systems are defined inflexible, i.e., a system announces the capabilities it can provide and if

included in the SoS, it will contribute to themissionwith all of the capabilities it can provide.

In the second case, the systems are defined flexible, i.e., a system announces the capabilities
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it can provide; however, different than the inflexible systems, the SoS architect can request

specific capabilities from the system and the system will contribute to the mission with the

capabilities requested among the capabilities it can provide. The main motivation of our

study is to quantify the benefits of having flexible systems instead of inflexible systems in

the SoS architecting process. We note that the flexibility in this content is not the flexibility

(robustness) of the SoS itself (Gorod et al., 2008) but the flexibility of the systems that will

contribute to the SoS.

In both cases, the SoS architect targets to have low cost-high performance SoS,which

is fully interconnected and able to provide all of the capabilities required for the mission.

We formulate a bi-objective optimization problem for SoS architecting with each type of

systems. Then, an evolutionary heuristic algorithm is developed for each of the bi-objective

models. We conduct a numerical study to compare SoS architecting with inflexible systems

to SoS architecting with flexible systems. Our observations indicate that the SoS architect

can build a better SoS with flexible systems. Therefore, the systems should be incentivized

to be flexible.

The rest of the paper is organized as follows. In Section 2, the mathematical

formulations are given. Section 3 explains the details of the algorithms proposed to solve

the SoS architecting problems. The results of a numerical study are discussed in Section 4.

Concluding remarks and future research directions are noted in Section 5.

2. PROBLEM FORMULATION

The SoS architect’s problem is to construct a SoS with minimum total costs and

maximum total performance. In this section, we formulate the SoS architecting problem

with two types of systems: inflexible and flexible. In case of inflexible systems, the systems,

who are selected by the SoS architect to be a part of the SoS, will contribute to the total

cost and the total performance of the SoS with all of the capabilities they can provide. On
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the other hand, in case of flexible systems, the SoS architect determines which capabilities

will be provided by which of the selected systems. The following definitions and notation

are used in the mathematical formulation of both cases.

Consider that n capabilities, indexed by i such that i ∈ I, I = {1, ..., n}, are required

for the SoS. There are m systems, indexed by j such that j ∈ J, J = {1, ...,m}, that can

provide some or all of the capabilities. In particular, let ai j = 1 if system j can provide

capability i, and ai j = 0 otherwise, and letA be the n×m-matrix of ai j values. Each system

has individual costs and performance levels in providing a specific capability. Let ci j and

pi j denote system j’s cost and performance level for providing capability i, respectively.

Furthermore, each distinct pair of systems included in the SoS architect should have an

interface between each other to achieve full connectivity. That is, no matter if the systems

are inflexible or flexible; the SoS architect should decide which interfaces to select along

with the systems selected. In both cases, one set of decision variables of the SoS architect

can, therefore, be defined as yrs = 1 if an interface is selected between systems r and s,

and yrs = 0 otherwise such that r, s ∈ J, and let Y be the m × m-matrix of yrs values. It

is assumed that a system can communicate with itself by default; hence, one should have

yii = 0, ∀ j ∈ J. We define hrs as the interface cost between systems r and s and, without

loss of generality, assume that hrs = hsr .

2.1. SoS Architecting with Inflexible Systems. In case of inflexible systems, the

SoS architect’s main decision is to determine which systems to select. Let Sj = 1 if system

j is included in the SoS architecture, and Sj = 0 otherwise, and let S be the m-vector of Sj

values. Note that given S, one can determine Y very easily. Particularly, it can be observed

that yrs + ysr = 1 if Sr + Ss = 2; and, yrs + ysr = 0 if Sr + Ss ≤ 1.
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The total cost of the SoS architect is the sum of the costs of the capabilities

provided by the systems and the costs of the interfaces, which reads as TC1(S,Y) =∑
i∈I

∑
j∈J Sjai jci j +

∑
r∈J

∑
s∈J hrsyrs. The total performance of the SoS architect is

TP1(S,Y) =
∑

i∈I
∑

j∈J Sjai j pi j . The SoS architect’s problem in case of inflexible sys-

tems (SoS − I) can then be formulated as follows:

SoS − I: min TC1(S,Y)

max TP1(S,Y)

s.t.
∑

j∈J Sjai j ≥ 1 ∀i ∈ I (1)

yrs + ysr ≥ Sr + Ss − 1 ∀r, s ∈ J (2)

Sj ∈ {0, 1} ∀ j ∈ J (3)

yrs ∈ {0, 1} ∀r, s ∈ J (4)

Constraints (1) guarantee that each capability is provided by at least one of the

systems selected. Constraints (2) assure that an interface is included between any distinct

pair of the selected systems. Note that if Sr +Ss = 2, constraints (4) imply that yrs+ ysr ≥ 1;

however, since an additional interface will only increase costs while not contributing to

the total performance, either yrs = 1 or ysr = 1 but not both yrs = yrs = 1 in a Pareto

efficient solution. Similarly, it can be argued that if Sr + Ss ≤ 1, then yrs = ysr = 0 in a

Pareto efficient solution. Constraints (3) and (4) give the binary definitions of the decision

variables.

2.2. SoS Architecting with Flexible Systems. In case of inflexible systems, the

SoS architect’s main decision is to determine which systems will be asked to provide which

capabilities. Let xi j = 1 if system j is requested to provide capability i, and xi j = 0

otherwise, and let X be the n × m-matrix of xi j values. Note that by definition of ai j , we

have xi j ≤ ai j . That is, the SoS architect will not request a capability from a system which

cannot provide that capability. A system is selected in the SoS architecture if it is asked

to provide at least one capability. Let Z j = 1 if
∑

i∈I xi j ≥ 1 and Z j = 0 otherwise, and

let Z be the m-vector of Z j values. That is, Z j is the binary variable indicating selection
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of system j. It should be remarked that Z and S are different. In particular, while S is the

decision variables vector in case of inflexible systems, Z is the auxiliary decision variables

vector, determined by X in case of flexible systems. Nonetheless, the relation between Y

and a given S is the same between Y and a given Z. That is, yrs + ysr = 1 if Zr + Zs = 2;

and, yrs + ysr = 0 if Zr + Zs ≤ 1.

The total cost of the SoS architect is the sum of the costs of the capabilities provided

by the systems and the costs of the interfaces, which reads asTC2(X,Y) =
∑

i∈I
∑

j∈J xi jci j+∑
r∈J

∑
s∈J hrsyrs. The total performance of the SoS architect isTP2(X,Y) =

∑
i∈I

∑
j∈J xi j pi j .

The SoS architect’s problem in case of flexible systems (SoS − F) can then be formulated

as follows:

SoS − F: min TC2(X,Y)

min TP2(X,Y)

s.t.
∑

j∈J ai j xi j ≥ 1 ∀i ∈ I (5)

yrs + ysr ≥ Zr + Zs − 1 ∀r, s ∈ J (6)

Z j ≤
∑

i∈I xi j ∀ j ∈ J (7)

Z j ≥
1
n
∑

i∈I xi j ∀ j ∈ J (8)

xi j ∈ {0, 1} ∀i ∈ I, j ∈ J (9)

Z j ∈ {0, 1} ∀ j ∈ J (10)

yrs ∈ {0, 1} ∀r, s ∈ J (11)

Constraints (5) and (6) are defined similar to constraints (1) and (2), respectively.

Constraints (7) and (8) guarantee that a system is selected in the SoS if at least one capability

is requested from it; and, not selected otherwise. Particularly, if
∑

i∈I xi j = 0 constraint (7)

indicates that Z j = 0 as Z j ∈ {0, 1}; and, if
∑

i∈I xi j > 0, then 0 < 1
n
∑

i∈I xi j ≤ 1; hence,

constraint (8) indicates that Z j = 1 as Z j ∈ {0, 1}. Constraints (9), (10), and (11) give the

binary definitions.
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3. SOLUTION ANALYSIS

Note that both SoS − I and SoS − F are binary-integer bi-objective optimization

problems. Two common methods for solving multi-objective optimization problems are

Pareto front generation (where the decision maker is provided with a set of solutions, among

which a solution is selected) and reduction to single-objective formulation (where different

weights are assigned to different objectives consider the decision maker’s preferences or

maximum deviation from the optimum solution of the individual objectives is minimized

and a solution is provided to the decision maker). In this study, we adopt the former method

and approximate the Pareto front (PF) of SoS − I and SoSF by generating a set of Pareto

efficient SoS’s for each case. To do so, due to the binary definitions of the decision variables,

we propose two evolutionary heuristic algorithms; one for SoS − I, denoted by EA-I and

one for SoS − F, denoted by EA-F.

Both of these algorithms consist of four main steps: (i) chromosome representation

and initialization, (ii) fitness evaluation, (iii) mutation, and (iv) termination. Basically, an

evolutionary algorithm works as follows. Given a set of solutions (chromosomes), i.e., a

population, the best chromosome(s) are selected, through fitness evaluation, to generate the

next population. The best chromosomes of a population constitute the parent chromosomes

of the next population. The next population is generated by mutating the parent chromo-

somes of the current population. These steps are repeated until certain termination criterion

is met. Steps (ii) and (iv) are common in both of the algorithms while steps (i) and (iii)

are different due to the distinct characteristics of SoS − I and SoS − F. We, therefore, first

explain the common steps (ii) and (iv), and then, steps (i) and (iii) for each algorithm.

3.1. Pareto Front Approximation and Termination. Let O denote a solution for

SoS − I or SoS − F and let (TC,TP) be the total cost and performance of O, respectively.

Note that O = (S,Y) and (TC,TP) = (TC1(S,Y),TP1(S,Y)) in SoS − I, and O = (X,Y)

and (TC,TP) = (TC2(X,Y),TP2(X,Y)) in SoS − F. Now suppose that a set of solutions R

is given and let Or be the r th solution in R such that (TCr,TPr) defines the total cost and
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performance ofOr . In fitness evaluation of EA-I and EA-F, the purpose is to select the best

chromosomes out of a given population, i.e., the parent chromosomes that will be used in

generating the next population. To do so, since both SoS − I or SoS − F are bi-objective

optimization problems, we focus on generating the Pareto efficient solutions out of a given

population. A solution is Pareto efficient if it is not Pareto dominated by another solution.

Unless (TCr,TPr) = (TCs,TPs), Or Pareto dominates Os if TCr ≤ TCs and TPr ≥ TPs.

This can be seen in Figure 1, where the objective value of seven solutions is shown in circles

and the dashed area shows the space that solutionOr dominates, includingOs. In Figure 2,

all Pareto efficient solutions among the seven solutions is shown with filled circles.

Figure 1. Value of solutions in the objec-
tive space

Figure 2. Value of Pareto efficient solu-
tions in the objective space

The following routine can be used to generate all of the Pareto efficient solutions,

denoted by PF(R) out of a given set of solutions R. Then, given a population R,PF(R) is

taken as the set of parent chromosomes for the next population. If PF(R) is not changing

over a pre-specified number of populations, defined as K , in EA-I and EA-F, algorithms are

terminated. The latest PF(R) is the set of solutions returned for the decision maker. Next,

the details of steps (i) and (ii) for each algorithm are explained.
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Routine for determining PF(R)

Step 1: Set t := 1

Step 2: While t ≤ |R| − 1

Step 3: Set w := t + 1

Step 4: While w ≤ |R|

Step 5: Unless (TCt,TPt) = (TCw,TPw)

Step 6: if TCt ≤ TCw and TPt ≥ TPw

Step 7: Set R := R − {Ow} and w := w − 1

Step 8: if TCt ≥ TCw and TPt ≤ TPw

Step 9: Set R := R − {Ot} and t := t − 1 and w := |R| + 1

Step 10: Set w := w + 1

Step 11: Set t : t + 1

Step 12: Return PF(R)

3.2. Evolutionary Algorithm for SoS-I. Recall that S is the binary decision vari-

ables vector in SoS − I. Therefore, the EA-I evolves with S. The details of the steps of

chromosome representation and initialization and mutation steps of EA-I are as follows.

• Chromosome Representation and Initialization: The chromosome is defined by S.

Initially, n × m feasible chromosomes are generated as the first population as fol-

lows. First, a binary m-vector L = [L1, L2, ..., Lm] is generated. For each i ∈ I, if∑
j∈J L jai j = 0, a system j such that ai j = 1 is randomly selected and we set L j = 1.

The final L is a feasible S.

• Mutation: Given a set of parent chromosomes, the next set of chromosomes consists

of the parent chromosomes and newly generated chromosomes through mutation.

Including the parent chromosomes within the next population guarantees that the

Pareto front is not worsening over populations. New chromosomes are generated

by applying a neighbor mutation on each gene of every parent chromosome. The
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neighbor mutation works as follows. Consider a parent chromosome S and a gene

l ≤ m. If Sl = 0, we set Sl = 1 and create a new feasible chromosome. If Sl = 1, to

avoid infeasibility, we set Sl = 0 if
∑

j∈J: j,l ai j Sj ≥ 1, ∀i ∈ I. One can generate at

most m new chromosomes out of a given parent chromosome.

3.3. Evolutionary Algorithm for SoS-F. Recall that X is the binary decision

variables vector in SoS − F. Therefore, the EA-F evolves with X. The details of the steps

of chromosome representation and initialization and mutation steps of EA-F are as follows.

• Chromosome Representation and Initialization: We adopt the binary matrix repre-

sentation of X as the chromosome. The j th column of X defines the j th gene of

the chromosome. Specifically, note that
∑

j∈J: j,l ai j xi j ≥ 1, ∀i ∈ I in a feasible X.

Therefore, for each capability i, we select a system j among the systems with ai j = 1

randomly and set xi j = 1. Repeating this process for each capability, a feasible X is

generated. There are two advantages of this chromosome representation: feasibility

of each chromosome is guaranteed and mutation operations, as will be explained, are

really simple to generate new chromosomes. We set the initial population size equal

to n × m.

• Mutation: Similar to EA-I, given a set of parent chromosomes, the next set of chro-

mosomes consists of the parent chromosomes and newly generated chromosomes

through mutation to have non-worsening Pareto fronts over populations. New chro-

mosomes are generated by applying two mutations on each gene of every parent

chromosome: adding request and dropping request. Consider a parent chromosome

X and a gene l ≤ m. Adding request is executed by randomly selecting a capability

i such that xil = 0 and ail = 1 then, we set xil = 1. Dropping request is executed

by randomly selecting a capability i such that xil = 1 and
∑

j∈J: j,l ai j xi j ≥ 1, ∀i ∈ I,

then we set xil = 0. One can generate at most 2m new chromosomes out of a given

parent chromosome.
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4. NUMERICAL STUDY

In this section, we conduct a numerical study to analyze the benefits of SoS archi-

tecting with flexible systems compared to SoS architecting with inflexible systems. To do

so, we first solve a given problem instance with EA-I and EA-F and generate two Pareto

fronts. Let PF I and PFF denote the Pareto fronts returned by EA-I and EA-F, respectively,

at termination (the same initial population number and termination criteria are used for

EA-I and EA-F). Then, we compare PF I and PFF by using the dominance relation between

these two Pareto fronts. Particularly, Pareto dominance between PF I and PFF is defined

as follows. Unless PF I ≡ PFF , PF I Pareto dominates PFF , if PF(PF I ∪ PFF) ≡ PF I ,

that is, PFF includes no solution that Pareto dominates any solution in PF I . Note that one

can use Routine given above to generate PF(PF I ∪ PFF).

For the numerical study, each combination of n ∈ {5, 10, 15} and n ∈ {5, 10, 15} is

considered as a problem size class. For each problem size class, we randomly generate 10

problem instances with the following problem parameters: ci j ∈ U[10, 50], pi j ∈ U[1, 10],

and hrs ∈ U[5, 10], where U[a, b] denotes the continuous uniform distribution with the

rangeU[a, b]. Moreover, given a problem instance, we randomly generate the binary matrix

A such that the problem instance is feasible.

Tables 1 and 2 show the average values over the 10 problem instances solved for

each problem size class of the quantitative and qualitative comparison of EA-I and EA-

F, respectively. Particularly, the quantitative comparison presents the number of Pareto

efficient solutions returned (|PF I | and |PFF |) and computational time in seconds (cpuI

and cpuF) at termination of the algorithms, the percentage of the problem instances where

|PF I | > |PFF |, |PF I | = |PFF |, and |PF I | < |PFF |. The qualitative comparison presents

the percentage of problem instances where PF I ≡ PFF (i.e., |PF I | = |PFF | and each

solution in one set has a matching solution in the other in terms of objective function values),

PF I ∼ PFF (i.e., neither PF I dominates PFF nor PFF dominates PF I), PF I � PFF (i.e.,

PF I dominates PFF), and PF I ≺ PFF (i.e., PFF dominates PF I).
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Table 1. Quantitative comparison of flexible v.s. inflexible systems

n m |PF I | cpuI |PFF | cpuF |PF I | > |PF I | = |PF I | <
|PFF | |PFF | |PFF |

5 8.2 0.009 18.5 0.248 0% 20% 80%
5 10 39.2 0.142 75.1 7.659 10% 0% 90%

15 115.6 1.839 109.9 18.821 60% 0% 40%
5 5.1 0.010 27.3 0.718 0% 0% 100%

10 10 55.1 0.216 151.5 42.092 0% 0% 100%
15 130.9 2.083 285.7 260.128 0% 0% 100%
5 5.2 0.014 50.4 2.026 0% 0% 100%

15 10 53.4 0.198 375.1 303.694 0% 0% 100%
15 148 2.874 544.1 1274.406 0% 0% 100%

Average 62.3 0.821 182.0 212.199 7.78% 2.22% 90.00%

Table 2. Qualitative comparison of flexible v.s. inflexible Systems

n m PF I ≡ PFF PF I ∼ PFF PF I � PFF PF I ≺ PFF

5 5 0% 80% 0% 20%
10 0% 100% 0% 0%
15 0% 100% 0% 0%

10 5 0% 10% 0% 90%
10 0% 100% 0% 0%
15 0% 100% 0% 0%

15 5 0% 20% 0% 80%
10 0% 100% 0% 0%
15 0% 100% 0% 0%

Average 0.00% 78.89% 0.00% 21.11%

We have the following observations based on Tables 1 and 2:

• As expected, EA-I requires less computational time than EA-F on average since the

search space of SoS − I (note that there are at most 2m binary S vectors) is smaller

that the search space of SoS − F (note that there are at most 2nm binary X matrices).

Due to the same reason, EA-F, nevertheless, returns more Pareto efficient solutions

on average. In particular, EA-I returns more solutions than EA-F for less than 8% of
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the problem instances while EA-F returns more solutions than EA-I for 90% of the

problem instances (both algorithms returned the same number of solutions for only

2.2% of the problem instances).

• In none of the problem instances, PF I was equal to PFF or PF I dominated PFF .

For 21.11% of the problem instances, PFF dominated PF I and for the remaining

78.89% of the problem instances none of the Pareto fronts dominated the other.

Based on these observations, one can conclude that flexibility of the systems is

beneficial as the SoS architect can consider more options to choose from (i.e., more Pareto

efficient solutions), each of which are not inferior compared to the options available in case

of inflexible systems. Furthermore, it is even possible that flexibility of the systems may

offer increased performance with lower costs or decreased costs with higher performance.

5. CONCLUSION AND FUTURE RESEARCH

In this study, we analyzed two cases for a SoS architecting problem: inflexible

systems and flexible systems. In case of inflexible systems, a system contributes to the SoS

with all of the capabilities it can provide. On the other hand, in case of flexible systems,

the SoS architect can request specific capabilities from a system among the capabilities it

can provided. Two bi-objective optimization models are formulated for SoS architecting

problem: one with inflexible systems and one with flexible systems. For each model,

we propose an evolutionary heuristic algorithm to determine a set of approximate Pareto

efficient SoS’s. A numerical study is conducted to compare two cases for SoS architecting

quantitatively as well as qualitatively. Based on quantitative comparison, one can conclude

that, with flexible systems, the SoS architect will have more options. Based on qualitative

comparison, one can conclude that the SoS architect can have options that improve both

objectives (i.e., reduce costs and increase performance). Therefore, we recommend that

the SoS architect should incentivize systems to be flexible. An immediate future research
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direction is to analyze different incentives to make systems flexible. For instance, the SoS

architect can allocate funds depending on the level of flexibility of the systems. Another

future research direction is to improve the evolutionary heuristics proposed. One can use

the Pareto efficient SoS’s returned after solving the SoS architecting problem with inflexible

systems as starting solutions within solving flexible systems.
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Abstract

System of Systems (SoS) architecting is the process of bringing together and con-

necting a set of systems so that the collection of the systems, i.e., the SoS is equipped with

a set of required capabilities. A system is defined as inflexible in case it contributes to

the SoS with all of the capabilities it can provide. On the other hand, a flexible system

can collaborate with the SoS architect in the capabilities it will provide. In this study, we

formulate and analyze a SoS architecting problem representing a military mission plan-

ning problem with inflexible and flexible systems as a multi-objective mixed-integer-linear

optimization model. We discuss applications of an exact and an evolutionary method for

generating and approximating the Pareto front of this model, respectively. Furthermore,

we propose a decomposition approach, which decomposes the problem into smaller sub-

problems by adding equality constraints, to improve both the exact and the evolutionary

methods. Results from a set of numerical studies suggest that the proposed decomposition

approach reduces the computational time for generating the exact Pareto front as well as it

reduces the computational time for approximating the Pareto front while not resulting in a

worse approximated Pareto front. The proposed decomposition approach can be easily used
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for different problems with different exact and heuristic methods; thus, it is a promising

tool to improve the computational time of solving multi-objective combinatorial problems.

Furthermore, a sample scenario is presented to illustrate the effects of system flexibility.

Keywords: System of systems; Flexibility; Multi-objective optimization

1. INTRODUCTION

In many industry, service, and defense enterprises, system engineering plays an

important role as it is able to simultaneously capture the different dynamics among the ele-

ments of the whole enterprise working towards common goals. A system can be considered

as the smallest element of the overall enterprise and it contributes to the enterprise with

its own individual components and unique capabilities. Kaplan (2006) notes that integra-

tion of many systems, their capabilities, and the cumulative abilities achieved from their

interoperability are crucial for gaining competitive advantage in large business and defense

projects. A System of Systems (SoS) is the collection of individual and independent systems

that are brought together for specific goals (DeLaurentis and Callaway, 2004; Gorod et al.,

2008; Klein and Vliet, 2013). SoS architecting administers appropriate integration of the

systems, ensures connection among the individual systems, and guarantees that the require-

ments are met overall. Many engineering, design, organizational, information, technology

management, and decision making models in manufacturing, health, energy, transportation,

logistics, and military can be represented as SoS architectures (Jamshidi, 2008, 2011). In

this study, we analyze a SoS architecting problem for a military application sponsored by

the U.S. Department of Defense (DoD).

Most of the projects undertaken by the DoD are SoS architecting problems (DoD,

2008). Not only defense projects, but also many strategy development projects for military

missions are SoS architecting problems (Manthorpe, 1996; Owens, 1996) and military

systems are integrated as SoS architectures (Bergey et al., 2009). DoD (2008) definition of
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SoS, which is adopted in this study as well, is capability based and SoS is defined as the

collection of systems integrated to provide required capabilities. As noted by Domercant

and Mavris (2010), this capability based definition is reasonable as military missions

are recently more related to capabilities based planning. Furthermore, Dahmann and

Baldwin (2008) highlight that independent control of the individual systems will not achieve

operational goals; hence, SoS architecting is crucial in defense projects. Owens (1996),

Manthorpe (1996), and Dahmann and Baldwin (2008) list examples of SoS architectures

in DoD. Specifically, Kaplan (2006) and Smith et al. (2011) both emphasize that the

missions (purposes) are the main drivers for architecting SoS for military projects. The SoS

architecting problem analyzed in this study requires providing a set of capabilities for the

specific military mission.

There are two main components of SoS: the capabilities, which are determined

based on the mission’s goals/targets, and the systems, who can contribute with specific

capabilities. The SoS architect is the agent constructing the SoS and the constructed SoS

should be capable, that is, it should be able to provide a set of precise capabilities. A

capability is defined as a skill for performing definite functions (DoD, 2008). Intelligence,

surveillance, reconnaissance, defense (air or missile), health, and communication skills

are the general capabilities needed in military missions (Bergey et al., 2009; Dahmann

and Baldwin, 2008; DoD, 2008). For instance, a capability can be the ability to track

moving targets (DoD, 2008). Manthorpe (1996) lists a set of nine capabilities identified

for joint warfighting and Konur et al. (2014) note that specific search, radar, command

and control, exploitation, and communication capabilities are required for targeting Scud

transporter erector launchers during Gulf War. The systems are the entities equipped

with such capabilities. Vehicles, softwares, and other systems such as aircrafts, fighters,

platforms equipped with weapons, sensors, communication tools and computers, and radars

are military systems (Dahmann and Baldwin, 2008; Konur et al., 2014; Manthorpe, 1996).

For instance, Owens (1996) gives a list of military systems.
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DoD must often combine military systems to perform mission goals (Kaplan, 2006)

and Owens (1996) notes that military systems are coming together as SoS architectures.

Different agents such as executive offices, principal staff assistants, staff boards, andmilitary

committees can take the role of the SoS architect and the SoS architect’s problem is then

to determine which systems with which capabilities should be included in the architecture

(Kaplan, 2006). While architecting the SoS, the SoS architect should take into account the

individual system properties and the communication among the systems contributing to the

SoS. Different systems can provision different capabilities with distinct costs, performance

levels, and schedules; and, the SoS architecture should consist of a set of systems such that

each capability is provided by at least one system, i.e., the SoS is capable. Furthermore,

the SoS architect should ensure that the systems are connected by enabling communica-

tion among the systems included in the SoS. Similar SoS architecting models have been

investigated in many military projects such as air defense (Maier, 1998; Sommerer et al.,

2012), ballistic missile defense (Ender et al., 2010; Garrett et al., 2011), navy carrier strike

(Adams andMeyers, 2011), and future combat systems (Pernin et al., 2012). This study uses

operations research tools to analyze SoS architecting problem with two types of systems:

inflexible and flexible.

In particular, flexibility can be associated with an individual system or the SoS itself.

Roughly, flexibility of a system or a SoS architecture can be described as the system’s or the

SoS architecture’s ability to respond to changes (Gorod et al., 2008; Ross et al., 2008; Saleh

et al., 2001, 2009; Valerdi et al., 2008). Specifically, a system is defined as inflexible when

engineering design changes within the system are not possible. An inflexible system will,

therefore, have a set of fixed capabilities integrated within and it will contribute to the SoS

with those capabilities. On the other hand, it might be of benefit to the SoS architect that

a system, instead of providing all of its capabilities, collaborate with the SoS architect and

contribute to the SoS with a subset of its capabilities. Through design changes, some of the

capabilities available in a system can be disintegrated from the system and the SoS architect
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can benefit from the reduction in cost and/or completion time of the SoS (Dahmann and

Baldwin, 2008). We refer to such systems as flexible systems. As noted by Kaplan (2006),

a flexible system can be guided by the SoS architect.

In this study, we first mathematically formulate a SoS architecting problem with

both inflexible and flexible systems as a multi-objective optimization problem. The flow

of actions in the SoS architecting problem is as follows. Prior to physical architecting of

the SoS, a set of capabilities required for the SoS are defined considering the mission goals

and the systems that can provide these capabilities are specified (the set of the systems

with similar capabilities constitute a family of systems, (DoD, 2008)). During the SoS

architecting, the SoS architect selects the inflexible systems to be included in the SoS and

specifies the capabilities to be requested from the flexible systems. Then, the SoS architect

ensures the connectedness of the SoS by establishing communication interfaces among

the selected systems. Pernin et al. (2012) note that one can utilize three main objectives

in constructing SoS architectures: performance, schedule, and cost. Therefore, similar

to Konur et al. (2014) as well, we assume that the SoS architect constructs a capable and

connected SoS regarding three objectives: maximization of total performance, minimization

of completion time, and minimization of total cost.

The resulting optimization problem is a multi-objective mixed-integer-linear pro-

gramming model. To determine a set of Pareto efficient SoS architectures, we first discuss

application of an exact method (Sylva and Crema, 2004) for the problem and construct an

evolutionary method for approximating the set of Pareto efficient SoS architectures, i.e.,

Pareto front. Then, we propose a decomposition approach that can use both the exact and the

evolutionary methods for computational improvements. In particular, the decomposition

approach initially separates the problem of interest into smaller sub-problems by fixing the

summation of a set of binary variables (the total number of the inflexible systems to be in-

cluded in the SoS plus the total number of capabilities requested from the flexible systems is

fixed). After that, the decomposition approach generates or approximates the Pareto fronts
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of these smaller sub-problems, and then combines and evaluates these Pareto fronts to get

the Pareto efficient SoS architectures. In this sense, the decomposition approach proposed in

this study is similar to the decomposition approaches analyzed for multi-objective complex

systems, which are based on variable fixing (see, e.g., Li and Haimes, 1987, Gardenghi

et al., 2011). Specifically, Gardenghi et al. (2011) note that a complex multi-objective

optimization problem can be decomposed into smaller sub-problems by fixing the values

of some of the decision variables; then one can generate the Pareto-efficient solutions for

the other variables. The overall Pareto front will be the set of Pareto efficient solutions

within the union of the Pareto fronts of the sub-problems. Similar to variable-fixing based

decomposition approach, we also get the overall Pareto front from the union of the Pareto

fronts of the sub-problems. Nevertheless, instead of fixing some of the variables to cre-

ate sub-problems, the sub-problems in this study are constructed by adding an equality

constraint to the original problem.

The details of the decomposition approach is given in Section 4. Principally, if

an exact method is used for the sub-problems, the decomposition approach is also an

exact method; on the other hand, if an approximation method is used, the decomposition

approach is also an approximation method. The main advantages of this decomposition

approach is that the single-objective optimization problems to be solved while generating

a sub-problem’s Pareto front are relatively easier to solve as they have smaller feasible

regions. Our numerical studies show that the decomposition approach with exact method

significantly improves the computational time required for generating the full Pareto front

over the exact method without decomposition even though it solves more optimization

problems to find points on the Pareto front. Similarly, our numerical studies show that the

decomposition approach with the evolutionary method not only improves the computational

time required for approximating a set of Pareto efficient points, but also can generate better

solutions compared to the evolutionary method without decomposition.
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In this study, our contributions are two-fold. First, we explicitly consider system

flexibility in a capability based military SoS architecting problem, provide a generic formu-

lation with joint availability of inflexible and flexible systems, and discuss solution methods.

Second, we propose a simple decomposition approach, which is not based on variable fix-

ing. The decomposition approach can be applied to many combinatorial problems. This

approach can also be used with other methods available for solving multi-objective com-

binatorial problems to improve the computational performance of the considered method.

Through a set of numerical studies, we demonstrate the improvements achieved for an exact

method and evolutionary method with the use of decomposition approach.

The rest of the paper is organized as follows. Next section gives a review of the

literature related to optimization based multi-objective SoS architecting problems and a

review of the exact methods used for multi-objective combinatorial optimization problems

with more than two objectives. In Section 3, the multi-objective optimization model is

formulated. Section 4 discusses the details of the exact and evolutionary methods and

explains the decomposition approach. In Section 5, a numerical study is conducted to

present the computational improvements due to the decomposition approach as well as

the efficiency of the evolutionary method. Also, a sample application is demonstrated.

Concluding remarks, summary of contributions and findings, and possible future research

directions are given in Section 6.

2. LITERATURE REVIEW

We note that operations research methods are used for many miliary/defense ap-

plications (see, e.g., Przemieniecki, 2000; Jaiswal, 1997). In this study, we analyze a

multi-objective mixed-integer-linear programming model for a military SoS architecting

problem with inflexible and flexible systems. It should be noted that optimization models

are used within many SoS design problems, specifically, focusing on SoS architecting prob-

lems. In particular, for decision-based problems, optimization models and their solutions
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are commonly used within the multi-disciplinary design optimization concept for gener-

ating SoS architectures. One may refer to Balling and Sobieszczanski-Sobieski (1996),

Sobieszczanski-Sobieski and Haftka (1997), and Sobieszczanski-Sobieski (2008) for an

overall view of multi-disciplinary design optimization concept in systems and system of

systems engineering problems. Our focus is specifically on optimization models investi-

gated for SoS architecture generation.

In the literature of SoS architecting, the models presented and the solution ap-

proaches used vary depending on the application, design stages considered, and the char-

acteristics of the systems. For instance, Han and DeLaurentis (2006) provide a network

theory based approach for SoS modeling and use heuristics to generate a network design

for SoS models. Similarly, Davendralingam and DeLaurentis (2013) recognize the network

structure of SoS and examine a robust network design optimization problem. Rovekamp

and DeLaurentis (2010) discuss a multi-objective optimization problem within the overall

SoS design problem for a space exploration architecture and adopt a weighted approach

to solve it. Davendralingam and DeLaurentis (2015) use a robust portfolio optimization

approach for SoS architecting. Wolf (2005) notes the use of multi-objective optimization

concept in SoS development. This study is most related to multi-objective SoS architecting

optimization models.

Particularly, the problem of interest in this study is similar to those presented in

Agarwal et al. (2014), Curry and Dagli (2015), Konur et al. (2014) and Konur et al. (2014).

Agarwal et al. (2014) analyze a SoS architecting problem by determining which systems

to select considering the SoS capability and system communication requirements. They

considermultiple objectives including robustness, performance, net-centricity, affordability,

and modularity, and assess the overall quality of SoS using a fuzzy assessor method, which

is similar to the well-known weighted approach; however, the weights are fuzzy numbers

rather than deterministic values. They propose genetic and particle swarm optimization

methods for the resulting multi-objective combinatorial optimization problem. Unlike
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Agarwal et al. (2014), Curry and Dagli (2015) do not use a weighted approach; instead,

they approximate the set of Pareto efficient SoS architectures using a genetic algorithm for

a multi-objective SoS architecting problem similar to the one presented in Agarwal et al.

(2014). Konur et al. (2014) also discuss a heuristic method to approximate the set of Pareto

efficient SoS architectures for a tri-objective SoS architecting problem. Nevertheless, in

addition to system selection decisions to establish the SoS, Konur et al. (2014) consider

incentive funding provided by the architect to the selected systems in order to help systems

improve the performance of their capabilities.

Agarwal et al. (2014), Curry and Dagli (2015), and Konur et al. (2014) all assume

that the systems are inflexible. As noted in Section 1, flexibility of systems can offer benefits

to the architect; therefore, Konur et al. (2014) recently model two distinct bi-objective SoS

architecting models: one with only inflexible systems and one with only flexible systems.

They discuss an evolutionary method for each model and compare the approximated Pareto

fronts. Similar to Konur et al. (2014), we consider inflexible and flexible systems; however,

we consider the SoS architecting model with joint availability of inflexible and flexible

systems. Furthermore, we account for the cost of disintegrating a capability from a flexible

system and consider three objectives. Therefore, both of the models presented in Konur

et al. (2014) are special cases of the model analyzed in this paper. We discuss exact and

evolutionary methods for the tri-objective SoS architecting problem with inflexible and

flexible systems.

The two common approaches adopted for solvingmulti-objective optimization mod-

els are reducing the multi-objective model into a single-objective model and generating (or

approximating) the set of Pareto efficient solutions (Marler and Arora, 2004). A multi-

objective model can be reduced to a single-objective model by associating weights to the

individual objective functions and creating a single objective function as the sum of the

weighted objective functions. Another approach for reduction to a single-objective model is

to minimize the maximum of the deviations of the objective functions from their own indi-
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vidual optimums. Nevertheless, reduction to a single-objective model assumes preferences

for the decision maker and returns a single solution based on these preferences. On the

other hand, generating a set of Pareto efficient solutions provides the decision maker with

alternative solutions, among which the decision maker can select one. The set of Pareto effi-

cient solutions is often referred to as the Pareto front. An exact method for a multi-objective

optimization model is able to generate all Pareto efficient solutions within the Pareto front.

On the other hand, approximation methods return a set of non-dominated solutions, which

are not guaranteed to be truly Pareto efficient. In this study, we discuss applications of exact

and evolutionary approximation methods for the SoS architecting problem of interest and

improve their computational performance with a decomposition approach.

In particular, the SoS architecting problem corresponds to a multi-objective mixed-

integer-linear programming model. In the literature, heuristic methods are often used

for approximating the Pareto fronts of multi-objective combinatorial problems due to the

complexity of such problems (see, e.g., Coello and Lamont, 2004). We also discuss

an evolutionary method for approximating the Pareto front. For both benchmarking the

evolutionary method and presenting a method to generate the full Pareto front, we discuss

application of an exact method as well. Exact methods have been recently developed for

generating the full Pareto fronts of mutli-objective combinatorial problems with more than

two objectives (development of exact methods for bi-objective combinatorial models was

earlier).

The main idea of the exact methods for solving multi-objective combinatorial prob-

lems with more than two objectives is to iteratively solve optimization problems to deter-

mine Pareto efficient points. As noted by Dachert and Klamroth (2015), multi-objective

optimization problems are commonly solved with sequential scalarizations, which are the

parametric single-objective optimization problems. For instance, the methods proposed by

Klein and Hannan (1982), Sylva and Crema (2004), Sylva and Crema (2007) and Lokman

and Koksalan (2013) sequentially solve single-objective optimization problems such that
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each optimization problem determines a non-dominated solution, which is then used within

the formulation of the next single-objective optimization problem to be solved. Laumanns

et al. (2006), Mavrotas (2009), Mavrotas and Florios (2013), and Florios and Mavrotas

(2014) develop methods, similar to the ε-constraint method proposed for bi-objective mod-

els, where single-objective optimization problems are recursively solved with constraints

on the objective functions of the original model. Based on the ε-constraint method, Ozlen

and Azizoglu (2009) and Kirlik and Sayin (2014) develop recursive and two-stage methods,

respectively, and Kirlik and Sayin (2014) demonstrate that their method is more efficient

than those proposed by Sylva and Crema (2004), Laumanns et al. (2006), and Ozlen and

Azizoglu (2009).

In a recent study, Dachert and Klamroth (2015) develop a method based on splitting

the objective function space for a tri-objective discrete optimization model. They show that

the number of single-objective models required to be solved is linear in the number of Pareto

efficient solutions, which has not been shown to be true for other exact methods. There are

also other exact methods to generate the full Pareto fronts of multi-objective combinatorial

problems with more than two objectives. Mavrotas and Diakoulaki (1998), Mavrotas and

Diakoulaki (2005), Vincent et al. (2013), and Jozefowiez et al. (2012) propose branch-and-

bound methods. Additional methods include two-phase approach (see, e.g., (Przybylski

et al., 2010b)), parallel partitioning method (see, e.g., (Dhaenens et al., 2010)), dynamic

programming (see, e.g., Bazgan et al., 2009), recursive method (see, e.g., Przybylski et al.,

2010a), reference point method (Alves and Climaco, 2000), L-Shape method (Boland et al.,

2015), and adaptive parametric scalarization (Dachert, 2014). We refer the reader to the

reviews of Ehrgott and Gandibleux (2000), Ehrgott and Gandibleux (2002), and Alves and

Climaco (2007) for further discussion. Also, a good overview of the exact methods is

recently presented by Dachert and Klamroth (2015).
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In this study, we do not propose a new exact method. Particularly, we adopt the

exact method of Sylva and Crema (2004) due to its simplistic implementation and the

mixed-integer formulation of the problem. We also construct an evolutionary method as

an approximation method. However, we discuss a simple decomposition approach for

computational improvements over both methods. As mentioned previously, decomposition

approaches based on variable fixing have been previously investigated (see, e.g., Gardenghi

et al., 2011). Different than those approaches, the decomposition approach discussed here

is based on separating the feasible region of the problem by adding equality constraints

(rather than fixing some variables as in the previous decomposition approaches or splitting

the objective space as in the most of the exact methods). As noted before, the idea

of the decomposition approach is to generate or approximate the Pareto fronts of sub-

problems, where the Pareto front of the original problem is included within the union

of the sub-problem Pareto fronts. Therefore, it should be noted that other recent exact

methods mentioned above as well as different approximation methods can also be used

within the decomposition approach for solving the sub-problems. Our numerical studies

show promising results that this decomposition approach can be used for computational

improvement. We pose the investigation of the decomposition approach integrated with

other exact and heuristic methods as future research directions.

3. SOS ARCHITECTING MODEL

Consider a SoS that requires n capabilities and let the capabilities be indexed by i

such that i ∈ I = {1, 2, . . . , n}. As noted previously, these capabilities are defined based on

the goals/targets of the military mission under consideration. The systems that are equipped

with the required capabilities and might be included in the SoS are identified using the

military inventories. Suppose that there are m systems that can provide the capabilities and

let the systems be indexed by j such that j ∈ J = {1, 2, . . . ,m}. In particular, each system
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can provide all or some of the capabilities required and let

ai j =


1 if system j can provide capability i,

0 otherwise,

and A be the n × m-matrix of ai j values. We assume that
∑

i∈I ai j ≥ 1 ∀ j ∈ J, that

is, a system which cannot provide any of the required capabilities is not considered in

the SoS architecting process. Furthermore, we assume that
∑

j∈J ai j ≥ 1 ∀i ∈ I, that

is, a capable SoS exists (otherwise, the SoS architecting problem is infeasible). The SoS

architect’s problem is to construct a capable and fully connected SoS with maximum total

performance, minimum completion time, and minimum total cost.

Capability: A SoS is defined to be capable when each capability is provided

by at least one system. We formulate the SoS architect’s problem with two types of

systems: inflexible and flexible. Let J1 ⊆ J and J2 ⊆ J denote the set of inflexible and

flexible systems, respectively, such that J1 ∩ J2 = ∅ and J1 ∪ J2 = J. Without loss of

generality, we assume that the first |J1 | systems are inflexible (i.e., system j is inflexible

for j ∈ {1, 2, . . . , |J1 |}) and the remaining systems are flexible (i.e., system j is flexible for

j ∈ {|J1 | + 1, |J1 | + 2, . . . , |J1 | + |J2 |}). Furthermore, we assume that any flexible system

j ∈ J2 satisfies
∑

i∈I ai j ≥ 2 (that is, if a system can provide only one capability, it is defined

as an inflexible system).

Inflexible systems, who are selected by the SoS architect to be a part of the SoS,

contribute to the SoS with all of the capabilities they can provide. That is, the systems (or

the system providers) are not collaborative and they cannot or are not willing to change the

engineering design of their systems. The SoS architect’s main decision for an inflexible

system is whether or not to include it within the SoS. Let

z1
j =


1 if inflexible system j ∈ J1 is selected by the SoS architect,

0 otherwise,



36

and let Z1 be the |J1 |-vector of z1
j values.

Unlike with inflexible systems, the SoS architect can guide flexible systems to

provide not necessarily all but some of the capabilities they can provide. That is, the

flexible system providers can modify their system designs as requested by the SoS architect.

Therefore, the SoS architect’s main decisions for a flexible system are the capabilities that

will be requested from it. Let

xi j =


1 if capability i is requested from system j ∈ J2,

0 otherwise,

and letX be the n×|J2 |-matrix of xi j values. Note that by definition of ai j , we have xi j ≤ ai j .

That is, the SoS architect will not request a capability from a flexible system which cannot

provide it.

Following the above discussion, the SoS is capable if
∑

j∈J1 z1
j ai j +

∑
j∈J2 xi jai j ≥

1, ∀i ∈ I . Recall thatZ1 defines the selected inflexible systems. A flexible system is selected

in the SoS architecture if it is asked to provide at least one capability. Let z2
j such that j ∈ J2

be defined as follows:

z2
j =


1 if

∑
i∈I xi j ≥ 1,

0 otherwise.

That is, z2
j is the binary variable indicating selection of a flexible system j ∈ J2

and let Z2 be the binary |J2 |-vector of z2
j values. It should be remarked that Z1 and Z2

are different in the sense that, while Z1 is the decision variables vector for the inflexible

systems, Z2 is the auxiliary decision variables vector, determined by X, for the flexible

systems.
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Connectedness: A SoS is considered fully connected when any system j1 ∈ J

included in the SoS is connected with any other system j2 ∈ J included in the SoS. The

SoS architect, therefore, should also decide on connecting the systems in the SoS. Let

y j1 j2 =


1 if there is a connection between systems j1 and j2, j1, j2 ∈ J,

0 otherwise.

We assume that system j2 is automatically connected to system j1 whenever system

j1 is connected to system j2, i.e., y j2 j1 = y j1 j2 . Therefore, to avoid symmetry, we define y j1 j2

∀ j1 ∈ J−{m} and ∀ j2 ∈ J such that j2 > j1. Therefore, SoS architect has m(m−1)/2 binary

decision variables for connections and let Y be the m(m− 1)/2-vector of y j1 j2 values. Then,

given Z1 and Z2, one can determine Y very easily. Particularly, let us define Z = [Z1,Z2]

as the binary m-vector identifying the selected systems (i.e., z j = 1 if system j ∈ J is in

the SoS and z j = 0 otherwise). It then can be remarked that y j1 j2 = 1 if z j1 + z j2 = 2; and,

y j1 j2 = 0 if z j1 + z j2 ≤ 1. In formulating the SoS architecting problem, we will include

constraints that will assure that the selected systems are connected. Furthermore, we discuss

the implications of this for communication costs below.

SoS Objectives: Kaplan (2006) notes that agility, performance, and cost are con-

sidered by DoD in creating the collection of systems. Therefore, maximization of the total

performance and minimizations of the completion time and total cost are used as the SoS

architect’s objectives (which are the objectives suggested by Pernin et al. (2012) and used

by Konur et al. (2014) for SoS architecting). Systems might have varying characteristics as

the system providers distinguish from each other in the engineering of their system designs,

the contractors they use for assembling their systems, the properties of the subsystems they

utilize, and the resources they use in their systems. We, therefore, assume that the individual

systems have different performance levels for providing the capabilities they can provide

due to these varying characteristics. Again, due to these varying characteristics and distinct
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performance levels, the cost and the integration time for a system to be able to provide a

specific capability can be different. Therefore, we assume that the systems have different

performance levels, charges, and completion times for providing capabilities.

Let pi j > 0 denote system j’s performance level for providing capability i and let P

denote the n×m-matrix of pi j values. The SoS’s performance for capability i can be defined

differently considering various architecting settings. For instance, if the performance of

a capability in the SoS is the maximum of the performance levels given by the selected

systems for providing that capability, the SoS’s performance for capability i can be defined

as max
{
max j∈J1{z jai j pi j},max j∈J2{xi j pi j}

}
. For the settings of this study, we assume

that the performance of a specific capability is the sum of this capability’s performance

levels provided by the systems included in the SoS. This assumption is reasonable as the

capabilities define military mission capacities such as attack power, search range, and

control, which can be quantified by associated metrics and increase cumulatively with each

system’s contribution towards the capabilities. The SoS’s performance for capability i as a

function of Z and X can then be defined as
∑

j∈J1 z jai j pi j +
∑

j∈J2 xi j pi j . At this point, we

further assume that performances of different capabilities are additive, therefore, the total

performance of the SoS as a function of Z and X reads

P(Z,X) =
∑
i∈I

∑
j∈J1

z jai j pi j +
∑
i∈I

∑
j∈J2

xi j pi j . (1)

As discussed by Konur et al. (2014), one can modify Equation (1) to capture the

cases where performance of different capabilities are of different importance to the SoS

architect. In such a case, a weighted approach can be used to modify Equation (1).

Let di j > 0 denote the system j’s ready-time for providing capability i and let D

denote the n × m-matrix of di j values. The SoS’s completion time is defined as the earliest

time when all of the selected systems are ready with all of the capabilities they can provide.

In particular, when an inflexible system is included in the SoS, the system’s ready-time is
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the time when it is able to provide all of the capabilities it can provide. Considering the

definition of di j , ready-time of an inflexible system j ∈ J1 is equal to maxi∈I
{
z jai j di j

}
,

whereas ready-time for a flexible system j ∈ J2 is equal to maxi∈I{xi j di j}. Then, the

completion time (earliest ready-time) of the SoS as a function of Z and X can be defined as

D(Z,X) = max
i∈I

{
max
j∈J1

{
z jai j di j

}
,max

j∈J2

{
xi j di j

}}
. (2)

Note that Equation (2) is a non-linear function due tomax operators. Nevertheless, in

formulating the SoS architecting problem later, we will define a continuous variable to elim-

inate its non-linearity. This results in a mixed-integer-linear formulation as an alternative to

non-linear integer formulation of the SoS architect’s problem. In Equation (2), it is assumed

that a SoS is complete when all of the systems provide their capabilities. In different archi-

tecting settings, one can assume that a SoS is complete whenever there is at least one system

providing each capability, i.e., the SoS is capable. In such a case, capability i’s ready-time

by an inflexible system j ∈ J1 is equal to max
{
z jai j di j, (1 − ai j)M + (1 − z j)M

}
, where M

is a very large number (note that when z j = 0, or z j = 1 but ai j = 0, it means that inflexible

system j ∈ J1 takes a very long time to provide capability i, which practically implies that

system j ∈ J1 is not providing capability i). On the other hand, capability i’s ready-time by

a flexible system j ∈ J2 is xi j di j . Then, the earliest ready-time for capability i in the SoS is

equal to min
{
min j∈J1

{
max

{
z jai j di j, (1 − ai j)M + (1 − z j)M

}}
,min j∈J2

{
xi j di j

}}
. It then

follows that the earliest time when all of the required capabilities are ready in the SoS is

equal to:

maxi∈I
{
min

{
min j∈J1

{
max

{
z jai j di j, (1 − ai j)M + (1 − z j)M

}}
,min j∈J2

{
xi j di j

}}}
.

Let ci j > 0 denote the system j’s charge for providing capability i and let C denote

the n × m-matrix of ci j values. Since an inflexible system will provide all the capabilities

it can when it is selected, the total capability cost due to inflexible systems amounts to∑
i∈I

∑
j∈J1 z jai jci j . It can be similarly noticed that the total capability cost due to flexible
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systems is
∑

i∈I
∑

j∈J2 ci j xi j . Recall that unlike with the inflexible systems, the SoS architect

might request a flexible system not to provide a capability it can provide. In such a

case, the flexible system provider needs to disassemble the unrequested capabilities and

make engineering design changes in its system accordingly. This, of course, is a costly

process. Therefore, we assume that the SoS architect is subject to incentive charges ei j ≥ 0

for requesting a flexible system j not to provide capability i, which would be provided

otherwise, and let E be the n × |J2 | matrix of ei j values. Note that if ai j = 1, ci j > 0, and

ei j = 0, it means that flexible system j does not have capability i in its default setting but can

integrate it at a cost of ci j when requested. We assume that E < C. Then, the total incentive

cost due to a flexible system j ∈ J2, which is included in the SoS, is
∑

i∈I ei j(ai j − xi j). At

this point, we note that if system j ∈ J2 is not included in the SoS, i.e., xi j = 0 ∀i ∈ I, then

there should be no incentive costs. Therefore, we let z j
∑

i∈I ei jai j +
∑

i∈I(ci j − ei j)xi j as the

cost due to a flexible system j ∈ J2. Note that, if z j = 0, then no cost is due to system j,

and if z j = 1, incentive costs are paid only for the unrequested capabilities. Thus, total cost

due to inflexible systems is
∑

i∈I
∑

j∈J2 ei jai j z j +
∑

i∈I
∑

j∈J2(ci j − ei j)xi j .

In addition to capability and incentive costs, the SoS architect is subject to connection

costs among the systems of the SoS. The connection between two systems is achieved

through a communication interface, which has a cost for being integrated into the SoS.

Specifically, let h j1 j2 be the cost of establishing an interface from system j1 to system j2.

It is assumed that a system can communicate with itself, therefore, h j j = 0 ∀ j ∈ J, which

justifies omitting a decision variable on y j j . In the case two systems j1 and j2 > j1 of

the SoS are considered communicated when there are interfaces from system j1 to system

j2 and from system j2 to system j1, the cost of connecting systems j1 and j2 amounts

to b j1 j2 = h j1 j2 + h j2 j1 . On the other hand, if two systems j1 and j2 in the SoS are

considered communicated when there is an interface from system j1 to system j2 or an

interface from system j2 to system j1, the cost of connecting these two systems amounts

to b j1 j2 = min{h j1 j2, h j2 j1}. It should be remarked that, with the definition of y j1 j2 values,
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the interface costs are captured in both cases. Therefore, the total connection cost due to

communication interfaces is equal to
∑m−1

j1=1
∑m

j2= j1+1 h j1 j2 y j1 j2 . Then, the total cost of the

SoS as a function of Z, X, and Y reads

C(Z,X,Y) =
∑
i∈I

∑
j∈J1

z jai jci j +
∑
i∈I

∑
j∈J2

ei jai j z j +
∑
i∈I

∑
j∈J2

(ci j − ei j)xi j +

m−1∑
j1=1

m∑
j2= j1+1

h j1 j2 y j1 j2 .

(3)

SoS Model: Considering the capability and connectedness requirements along with

relations of the variables, the SoS architecting problem with inflexible and flexible systems

(P-SoS) can be formulated as follows:

P-SoS : max P(Z,X)

min T

min C(Z,X,Y)

s.t. T ≥ z jai j di j ∀ j ∈ J1, ∀i ∈ I, (4)

T ≥ xi j di j ∀ j ∈ J2, ∀i ∈ I, (5)∑
j∈J1 z jai j +

∑
j∈J2 xi jai j ≥ 1 ∀i ∈ I, (6)

y j1 j2 ≥ z j1 + z j2 − 1 ∀ j1 ∈ J − {m}, ∀ j2 > j1 ∈ J, (7)

y j1 j2 ≤ z j1 ∀ j1 ∈ J − {m}, ∀ j2 > j1 ∈ J, (8)

y j1 j2 ≤ z j2 ∀ j1 ∈ J − {m}, ∀ j2 > j1 ∈ J, (9)

xi j ≤ ai j ∀i ∈ I, j ∈ J2 (10)

z j ≤
∑

i∈I xi j ∀ j ∈ J2, (11)

z j ≥
1
n
∑

i∈I xi j ∀ j ∈ J2, (12)

xi j ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J2, (13)

z j ∈ {0, 1} ∀ j ∈ J, (14)

y j1 j2 ∈ {0, 1} ∀ j1 ∈ J − {m}, ∀ j2 > j1 ∈ J, (15)

where P(Z,X) andC(Z,X,Y) are defined in Equations (1) and (3), respectively. Considering

that the continuous variable T is minimized, constraints (4) and (5) assure that T = D(Z,X)

as defined in Equation (2). This, therefore, eliminates the need of including a non-linear
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function in one of the objectives of the SoS architecting problem; however, it introduces

a continuous variable into the model. Constraints (6) ensure that the SoS is capable.

Constraints (7)-(9) guarantee that there is a connection between any distinct pair of the

selected systems. Note that if z j1 + z j2 = 2, constraints (7) imply that y j1 j2 = 1; however,

if z j1 + z j2 ≤ 1, constraints (8) and/or (9) imply that y j1 j2 = 0. Constraints (10) restrict

the SoS architect to request only the capabilities a flexible system can provide. Constraints

(11) and (12) guarantee that a flexible system is selected in the SoS if at least one capability

is requested from it; and, not selected otherwise. Constraints (13), (14), and (15) give the

binary definitions of the decision variables.

P-SoS is amulti-objectivemixed-integer-linearmodelwith |J1 |+n|J2 |+ |J |(|J |−1)/2

binary (X, Y, and Z) and 1 continuous (T) decision variables, n(|J | + 1) constraints coming

from (4)-(6), 3|J |(|J | − 1)/2 constraints coming from (7)-(9), and (n + 2)|J2 | constraints

coming from (10)-(12). Note that if all of the systems are inflexible, i.e., J = J1 and J2 = ∅,

P-SoS has |J | + |J |(|J | − 1)/2 binary and 1 continuous decision variables with a total of

n(|J |+1)+3|J |(|J |−1)/2 constraints. On the other hand, if all of the systems are flexible, i.e.,

J = J2 and J1 = ∅, P-SoS has n|J |+ |J |(|J |−1)/2 binary and 1 continuous decision variables

with a total of n(|J | + 1) + 3|J |(|J | − 1)/2 + (n + 2)|J | constraints. Therefore, the larger

the number of flexible systems is, the more complex P-SoS is. We note that formulation of

these two special cases without incentive charges and completion time objective are given

in Konur et al. (2014).

P-SoS has similarities with a well-known combinatorial problem. Particularly, if

all systems are inflexible and there is no system connection requirements, then P-SoS is a

set covering problem where the subsets that can be included are defined by the capabilities

provided by the inflexible systems (see, e.g., (Jaszkiewicz, 2004)). Furthermore, models

similar to P-SoS can also be found in network topology design applications (see, e.g.,

Boorstyn and Frank, 1977; Glover et al., 1991; Kim and Gen, 1999; Girard et al., 2001;

Juttner et al., 2005). In particular, if the systems are considered as the source nodes of a
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network, P-SoS is the network topology design problem to locate source nodes so that one

can reach to a set of given sink nodes (capabilities) from at least one source node such

that the source nodes should have 1-to-1 connections (communication interfaces among the

systems), and some of the source nodes have fixed links to some sink nodes (capabilities

provided by the inflexible systems) and some of the source nodes have flexibility on the

links to some of the sink nodes (capabilities that can be provided by flexible systems). We

note that similarity of SoS architecting and network topology design problems is noted by

Han and DeLaurentis (2006) and Davendralingam and DeLaurentis (2013) as well.

In the next section, we discuss exact and heuristic methods to fully generate and

approximate a set of Pareto efficient SoS architectures, respectively, for P-SoS. Prior to

discussing the details of the methods, it should be noted that the exact Pareto front of

P-SoS is discrete since P-SoS can also be formulated as a non-linear integer model without

introducing T as done in the next section to simplify the notation. However, as the non-

linear formulation would require solving single-objective non-linear integer models if an

exact method is to be used, we use the mixed-integer-linear formulation provided above

within the numerical studies.

4. SOS ARCHITECTING ALGORITHMS

As noted in Section 2, reduction to a single-objective model and generation of

the Pareto front are the two common approaches adopted for multi-objective optimization

problems. To be able to provide a set of alternative SoS architectures to the architect, we

focus on generating the Pareto front of P-SoS, denoted by PF. To do so, we first discuss the

application of a well-known exact method (see Sylva and Crema, 2004), which iteratively

generates all Pareto efficient points on the Pareto front, and explain how to use it within a

decomposition approach. Then, we discuss the application of an evolutionary method to

approximate PF, and, similarly, discuss how to use it within the decomposition approach.
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Prior to giving the details of the exact and evolutionary methods, we first simplify

the notation used in the formulation of P-SoS. Note that given Z1 and X, one can determine

Z and Y. Furthermore, one can determine T using Equation (2). That is, Z1 and X are

sufficient to define a SoS and calculate its objective function values. Let F be the set of Z1

and X pairs that define a capable SoS. Now, let U = [Z1, (X1)t, (X2)t, . . . , (X|J2 |)t] be the

binary `-vector corresponding to Z1 and X, where Xl defines the lth column of X. Note

that ` = |J1 | + n|J2 |. Therefore, U defines a SoS and we simply say that U ∈ F if Z1

and X pair is in F. Furthermore, note that U ≤ Υ where Υ is a binary `-vector such that

Υ = [1[|J1 |], (A|J1 |+1)t, (A|J1 |+2)t, . . . , (A|J1+J2 |)t], 1[|J1 |] is a |J1 |-vector of 1’s, and Al defines

the lth column of A. Then, one can state P-SoS as follows:

P̂-SoS : max P(U)

min D(U)

min C(U)

s.t. U ∈ F .

Note that P̂-SoS is a nonlinear-integer model, whereas P-SoS is a mixed-integer-

linear model.

Definition 1 U is Pareto efficient if and only if @U ∈ F such that P(U) ≤ P(U), D(U) ≥

D(U), and C(U) ≥ C(U), where at least one of these inequalities are strict (Berube et al.,

2009).

Now, let PE(Φ) be the set of Pareto efficient points within the set of solutions Φ

(note that PE(F) = PF). Based on Definition 1, Routine 0 defined in the Appendix A.1 is

a simple iterative check procedure which can be used to generate the PE(Φ). We note that

similar routines are defined in the literature (see, e.g., (Konur and Golias, 2013), (Konur

et al., 2014)).

Observation 1 Let U(1) and U(2) be given such that U(1) ≤ U(2). Then, P(U(1)) ≤ P(U(2)),

D(U(1)) ≥ D(U(2)), and C(U(1)) ≥ C(U(2)).
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Observation 1 directly follows from Equations (1)-(3) and it indicates that Υ =

[Υ1,Υ2, . . . ,Υ`] defines a Pareto efficient point, i.e., Υ ∈ PF, as it has the maximum

performance.

Now, let U[k] = [u[k]1 , u[k]2 , . . . , u[k]
`
] define a solution such that

∑`
l=1 u[k]l = k and let

Fk ⊆ F be defined such that Fk = {U : U ∈ F,
∑`

l=1 ul = k}. That is, U[k] has exactly k

1’s and Fk is the set of such feasible solutions. Furthermore, let PFk be the set of Pareto

efficient points of P̂ − SoS − k, where

P̂ − SoS − k : max P(U)

min D(U)

min C(U)

s.t. U ∈ Fk .

Observation 2 PF ⊆
⋃kmax

k=kmin
PFk , where kmin = minU∈F{

∑`
l=1 ul} and kmax =

∑`
l=1Υl .

Note that for kmin ≤ k ≤ kmax , PFk , ∅ as there exists at least one feasible

solution for P̂ − SoS − k. Observation 2 then indicates that as long as one can generate

PFk for kmin ≤ k ≤ kmax , then PF = PE
(⋃kmax

k=kmin
PFk

)
. We refer to this approach,

where PFk is generated (or approximated) for each k such that kmin ≤ k ≤ kmax , and then,

PF = PE
(⋃kmax

k=kmin
PFk

)
using Routine 0, as the decomposition approach.

It should be noted that a similar discussion is given in Gardenghi et al. (2011)

(see Proposition 3.1). Basically, suppose that U is decomposed into two sets of variables

U = [U′,U′′]. Furthermore, let F′ = {U′ : ∃U′′, [U′,U′′] ∈ F} and, given U′, let PF′′(U′)

be the set of U′′’s of the Pareto efficient [U′,U′′] vectors. Then, Gardenghi et al. (2011)

show that PF = PE (
⋃

U′∈F ′ PF′′(U′)) (see, also Li and Haimes, 1987). In this study,

however, instead of decomposing the problem by fixing variables, we decompose the

problem by adding equality constraints. In particular, it follows from Observation 1 that

kmax =
∑`

l=1Υl and PFkmax = {Υ}. Furthermore, referring to P-SoS, one can determine

kmin by solvingmin{
∑

j∈J1 z j+
∑

i∈I
∑

j∈J2 xi j} subject to Equations (6), (10), (13), (14). Next,
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we discuss exact and evolutionary methods for P̂-SoS and how to modify these methods for

generating/approximating PFk so that they can be used within the decomposition approach

for generating/approximating PF.

4.1. Exact Methods. In this section, we first discuss the application of the exact

method introduced in Sylva and Crema (2004) for P̂-SoS, and then, integrate it within the

decomposition approach explained above. We note that other exact methods can also be

used for solving P̂-SoS as well as P̂ − SoS − k. For instance, by eliminating the continuous

variableT (either forcing it to be integer ormaking the problems non-linear integermodels)1,

one can apply the methods of Kirlik and Sayin (2014) and Dachert and Klamroth (2015).

However, to protect the generality of the models and the linearity of the objective functions,

and due to its simplistic implementation for mixed-integer models, we use Sylva and Crema

(2004) in this study (investigation of other methods is left as future research directions). In

particular, suppose that PF ⊆ PF is given such that PF = {U1,U2, . . . ,Ur}, r ≥ 1.

Observation 3 Given a set of Pareto efficient pointsPF ⊆ PF, wherePF = {U1,U2, . . . ,Ur},

PF = PF if and only if {U ∈ F : min{P(Uo) − P(U),D(U) − D(Uo),C(U) − C(Uo)} <

0 ∀Uo ∈ PF} = ∅.

Observation 3 is intuitive as it states that as long as there does not exist a solution

that is better in terms of at least one objective function, the current subset of Pareto efficient

points is the exact Pareto front (see, e.g., Sylva and Crema (2004) for a proof). Now, given

PF ⊆ PF, let us consider the following optimization problem:

ŜP : min V(U)

s.t. min{P(Uo) − P(U),D(U) − D(Uo),C(U) − C(Uo)} < 0 ∀Uo ∈ PF

U ∈ F .

It directly follows from Observation 3 that if ŜP is infeasible, then PF = PF. If ŜP

is feasible, let U∗ be its optimum solution.

1Note that forcing T to be integer is valid only if di j is integer ∀i ∈ I, j ∈ J.
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Observation 4 Given PF ⊂ PF, ifV(U) = −λpP(U)+λd D(U)+λcC(U) such that λp > 0,

λd > 0, and λc > 0, then U∗ ∈ PF.

Observation 4 implies that one can generate a Pareto efficient point by solving ŜP

with any values of λp > 0, λd > 0, and λc > 0 (see Sylva and Crema (2008) for a proof).

However, in its current form, ŜP is non-linear due to the min operator in the constraints. By

introducing three binary variables for each Uo ∈ PF, ŜP can be explicitly reformulated as

follows:

ŜP : min V(U) = −λpP(U) + λd D(U) + λcC(U)

s.t. P(U) ≥ (P(Uo) + ε)wo
p ∀Uo ∈ PF

D(U) ≤ (D(Uo) − ε)wo
d + Md(1 − wo

d) ∀Uo ∈ PF

C(U) ≤ (D(Uo) − ε)wo
c + Mc(1 − wo

c ) ∀Uo ∈ PF

wo
p + w

o
d + w

o
c ≥ 1 ∀Uo ∈ PF

wo
p ∈ {0, 1},wo

d ∈ {0, 1},w
o
c ∈ {0, 1} ∀Uo ∈ PF

U ∈ F,

where ε is a small positive number, Md and Mc are large positive numbers that bound D(U)

and C(U), respectively. It then follows that the following iterative procedure is an exact

method for determining PF (Sylva and Crema, 2004).

Exact method for determining the full PF (EM-1):

0: Set PF = {Υ}

1: Given PF, solve ŜP

2: If ŜP is infeasible, return PF = PF

3: Else, set PF := PF ∪ {U∗} and go to 1.

Next, we discuss how to use EM-1 within the decomposition approach. The mo-

tivation for using a decomposition approach, where an exact method is used for fully

determining each PFk , is that the optimization problems solved while generating the full

PFk can be simpler than the optimization problems solved while generating the full PF due
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to the additional constraint. In particular, when one tries to directly generate PF with EM-1

given that PF = {Υ} initially, the number of times ŜP is solved is equal to the number

of Pareto efficient points (including the one infeasible case). On the other hand, if one

first tries to generate each PFk with EM-1, ŜP − k, which is ŜP with the last constraint

replaced with U ∈ Fk , might be solved more than |PF | times based on Observation 2 as

|PF | ≤
∑kmax

k=kmin |PFk |. Nevertheless, ŜP − k can be solved in less computational time

compared to ŜP because it has significantly smaller feasible region. Therefore, one may

prefer to use EM-1 to generate each PFk , then determine PF considering Observation 2.

The following decomposition method, which is also an exact method, uses this concept.

Recall that PFkmax = {Υ} and EM-1 usedΥ as the initial set. Nevertheless, Υ is not feasible

for ŜP − k when k , kmax; thus, one needs to find an initial point in PFk in order to use

EM-1 for generating PFk . Such a solution can be determined by solving ŜP − k with one

of the objectives.

Exact decomposition method for determining the full PF (DM-1):

0: Given kmin and kmax , let Φ = {Υ}.

1: For k = kmin : kmax − 1

2: Determine PFk using modified EM-1 and set Φ := Φ ∪ PFk .

3: End

4: Return PF = PE(Φ) using Routine 0.

4.2. Evolutionary Methods. Evolutionary methods are successfully used for ap-

proximating a set of Pareto efficient solutions for multi-objective models with integer/binary

decision variables similar to P̂-SoS. To benchmarkwith the exactmethods, we next construct

an evolutionary method for approximating PF, and then, explain how to modify it to be

used for approximating PFk . The evolutionary method has the following four basic steps:

(i) chromosome representation and initialization, (ii) fitness evaluation, (iii) mutation, and

(iv) termination.
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(i) Chromosome Representation and Initialization: As aforementioned, U ∈ F de-

fines a capable SoS; therefore, we use U ≤ Υ as a chromosome. To initiate the evolutionary

method, we randomly generate α feasible U binary `-vectors as follows. We first randomly

generate a binary `-vector ξ and set ξr = 0 if ξr = 1 and Υr = 0 (considering the definition

of Υ, this assures that we do not request a capability from a flexible system that cannot

provide it). Then, we accept the modified ξ if it is feasible; otherwise, we repeatedly select

random r such that ξr = 0 and Υr = 1, and make ξr = 1 (i.e., we either add an inflexible

system or request an additional capability from a flexible system) until ξ ∈ F.

(ii) Fitness evaluation: Now suppose that a set of U vectors are given. Fitness

evaluation step evaluates the given solution set (population) in order to find the best solutions

(chromosomes). These best chromosomes of a population are the parent chromosomes and

they are used for generating the next population through mutation. We accept the Pareto

efficient points in the given solution set, which are determined using Routine 0, as the

parent chromosomes. We note that a fitness value can be associated with each chromosome

using a weighted average of the objective function values, and then, one can pick the best

chromosomes as the parent chromosomes using these fitness values. However, in this

case, since ordered chromosomes with respect to their fitness values will not guarantee a

dominance relation, it is possible to pick dominated chromosomes or omit non-dominated

chromosomes due to the threshold value to be specified. For instance, if one chooses the

select top 25% of the chromosomes with highest weighted fitness values, it is possible to

select a solution which is not Pareto efficient or exclude a Pareto efficient solution. To

avoid this, we therefore prefer to generate the Pareto efficient chromosomes in the current

population and use them as the parent chromosomes for generating the next population.

(iii) Mutation: Given a set of parent chromosomes, the next set of chromosomes

consists of the parent chromosomes and the newly generated chromosomes. Including the

parent chromosomes of the previous population within the current population ensures that

the sets of Pareto efficient points are not getting worse over populations. We first randomly
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generate a set of γ chromosomes as detailed in (i). Additional new chromosomes are

generated by executing the following three types of mutation on each parent chromosome

U.

Each execution of an add-mutation selects an entry r , such thatUr = 0 andΥr = 1, and

sets Ur = 1. Since U is feasible, the new chromosome generated after an execution

of add-mutation on an entry of a parent chromosome will also be feasible. A set of

new chromosomes are generated from each parent chromosome U by applying the

add-mutation one by one on each entry r of the parent chromosome such that Ur = 0

and Υr = 1.

Each execution of a drop-mutation selects an entry r such thatUr = 1 and setsUr = 0

if doing so does not violate feasibility. A set of new chromosomes are generated from

each parent chromosome U by applying the drop-mutation one by one on each entry

r such that Ur = 1 and setting Ur = 0 does not violate feasibility.

Each execution of a neighbor-mutation defines a new chromosome with the same

number of 1’s. In particular, neighbor-mutation works as follows. We define a

neighbor of U by U[φ,ϕ], where 1 ≤ φ ≤ `, 1 ≤ ϕ ≤ `, φ , ϕ, and Uφ = 1, Uϕ = 0,

andΥϕ = 1 such thatU[φ,ϕ]φ = 0 andU[φ,ϕ]ϕ = 1. That is, ifΥϕ = 1,U’s [φ, ϕ]-neighbor

has its φth entry equal to 0, which is 1 in U, but has its ϕth entry equal to 1, which

is 0 in U. Note that both U and U[φ,ϕ] will have the same number of 1’s. We only

consider the feasible neighbors of each parent chromosome as new.

After mutation operations are completed, we only consider the unique new chromosomes

that have not been included in the previous populations. This is due to fact that if a chro-

mosome has been previously evaluated and is not in the current set of parent chromosomes,

it means that it has already been Pareto dominated, so it will again be Pareto dominated at

least by one parent chromosome; thus, there is no need for re-evaluating it.
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(iv) Termination: As a termination criterion, we stop generating new populations if

the set of parent chromosomes remains the same for β consecutive populations, where β is

a pre-specified integer.

The evolutionary method, which generates an approximated PF, denoted by P̂F, is

stated next.

Evolutionary method for approximating PF (EM-2):

0: Generate a set of initial chromosomes Φ as detailed in (i). Let P̂F = ∅ and κ = 0.

1: Given Φ, determine PE(Φ) using Routine 0 as detailed in (ii).

2: If PE(Φ) = P̂F, set κ := κ + 1;

3: Else, set κ = 0 and P̂F = PE(Φ).

4: If κ ≤ β, generate Φ as detailed in (iii), set Φ := Φ ∪ Φ, and go to 1;

5: Else, return P̂F = PE(Φ).

Next, we discuss how to use EM-2 within the decomposition approach. The mo-

tivation for using a decomposition approach, where an evolutionary method is used for

approximating each PFk , is that the mutation and fitness evaluation steps executed while

approximating PFk can be simpler than the mutation and fitness evaluation steps executed

while approximating PF due to the additional constraint. Similar to DM-1, one needs to

approximate PFk for each kmin ≤ k ≤ kmax and we already know that PFkmax = {Υ}.

However, EM-2 should be modified to account for the additional constraint. In particular,

the initialization and the mutation steps should be changed to guarantee that the generated

chromosomes have k 1’s in them andwemodify steps (i) and (iii) of EM-2 for approximating

PFk as follows.

• For the initialization step, we can execute the add-mutation defined in step (iii) of

EM-2 on the solutions within PFk−1 for k ≥ kmin + 1. Since the solutions within

PFk−1 are feasible chromosomes with k − 1 1’s, executing the add-mutation will

generate feasible chromosomes with k 1’s. For k = kmin, however, an initial set of
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solutions should be generated since PFkmin−1 is not defined. When k = kmin, we

apply the neighbor-mutation on the solution with kmin 1’s (which is determined while

calculating the value of kmin) to generate the initial set of solutions for starting the

modified evolutionary method to approximate PFkmin .

• For the mutation step, we do not execute add- and drop-mutation operations as

they change the number of 1’s in a chromosome but we still use the random and

neighbor mutation operations. In particular, since neighbor mutation will not change

the number of 1’s in a chromosome, we use it on each parent chromosome without

modification. For random mutation, similar to step (i) of EM-2, we first randomly

generate α binary `-vectors but with less than k 1’s and add 1’s until there are k

1’s. Then we consider all of its feasible neighbors as additional chromosomes to the

population.

Since EM-2 is an approximation method, it then follows from Observation 2 that

the following decomposition method is also an approximation method.

Evolutionary decomposition method for approximating PF (DM-2):

0: Given kmin and kmax , let Φ = {Υ}

1: For k = kmin : kmax − 1

2: Determine P̂F
k
using modified EM-2 and set Φ := Φ ∪ P̂F

k

3: End

4: Return P̂F = PE(Φ) using Routine 0.

In the next section, we summarize the results of a set of numerical studies.
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5. NUMERICAL ANALYSES

In this section, we first provide a notional scenario and discuss the practical impli-

cations of the modeling approach presented in this study, where we note two observations

about the effects of system flexibility. After that, we quantitatively and qualitatively compare

the solution methods proposed for P-SoS through a set of numerical studies.

5.1. An Application. Here, we discuss a simple notional scenario where the model

presented in P-SoS is applicable and we naively demonstrate the practical implications of

system flexibility. In particular, we consider a Search and Rescue (SAR) mission planning

scenario with 8 capabilities and 6 systems as defined in Tables 1 and 2, respectively (this

scenario is a simplified version of the scenario discussed in Agarwal et al. (2014)). It should

be remarked that civilian ships and fishing vessels can be asked to join Search and Rescue

missions.

Table 1. Search and rescue required capability definitions

Category Capability Abbr. i
Search Electro-optic/infrared sensing EO/IR 1

Night Vision NV 2
Visual Search VS 3
Maritime Radar MR 4

Search and Rescue Radio-Frequency Direction Finder RFD 5
Rescue High-speed reach HSR 6

Survivor Removing SR 7
Medical Help MH 8

Note that matrix A can be built using Table 2. We assume that each system’s

performance in providing the capabilities it can provide are determined by experts using a

ranking between 1 and 5. We further assume that the capabilities are equally important;

hence, the total performance is accepted as the sum of performances of the capabilities

provided. Similarly, we assume that the time for each system being ready for a capability
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varies between 6 and 18 hours. Finally, the costs of the capabilities on each system are

assumed to be between $10K and $25K dollars (K = 103). Here, helicopter and cutter boat

are assumed to be the flexible systems. We assume that their ei j values are 0, meaning that

these systems currently do not have the capabilities but those capabilities can be integrated

to them at a cost of ci j . Finally, we assume that communication interface costs are identical

and equal to $2K for each communication interface. Using the ranges implied from the

above discussion, we randomly generate thematricesP,D, andC assuming discrete uniform

distributions with those ranges, and let H = 2 and E = 0.

Table 2. Search and rescue systems

Category System Abbr. j Type Capabilities
Air Aircraft AC 1 inflexible 2,3,5

Helicopter HC 2 flexible 1,2,3,5,6,7,8
Unmanned Aerial Vehicle UAV 3 inflexible 1,3

Sea Cutter Boat CB 4 flexible 2,3,4,5,6,7,8
Civilian Ship CS 5 inflexible 3,4,5,7,8
Fishing Vessel FV 6 inflexible 3,4,7,8

We generate the Pareto front for this problem instance under three scenarios: (1)

when all systems are assumed to be inflexible, (2) when only cutter boat is assumed to be

flexible, and (3) when both cutter boat and the helicopter are assumed to be flexible. Figure

1 illustrates the Pareto fronts for each scenario, where PF1, PF2, and PF3 define the Pareto

fronts for scenarios (1), (2), and (3), respectively.

As can be seen from Figure 1, PF3 is the largest Pareto front such that |PF3 | = 97,

then comes PF2 such that |PF2 | = 75, and PF1 is the smallest Pareto front such that

|PF1 | = 15. This result is expected because any feasible solution under scenario (1)

corresponds to a feasible solution under scenarios (2) and (3), and any feasible solution

under scenario (2) corresponds to a feasible solution under scenario (3). Furthermore,
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it can be observed that the Pareto fronts share solutions and we have |PF1 ∩ PF2 | = 9,

|PF1 ∩ PF3 | = 8, |PF2 ∩ PF3 | = 44, and |PF1 ∩ PF2 ∩ PF3 | = 8. In particular, this result

can be generalized as noted in the next observation.
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Figure 1. Pareto fronts of SAR for three different scenarios

Observation 5 Given A, P, D, C, E, and H for a problem, consider the following two

scenarios for this problem: scenario 1 has J1 and J2 as the inflexible and flexible systems,

respectively, and scenario 2 has J1 − J0 and J2 + J0 as the inflexible and flexible systems,

respectively, such that J0 ⊆ J1 and J0 , ∅. Let PF1 and PF2 denote the Pareto fronts of

scenarios 1 and 2, respectively. Then, |PF1 ∩ PF2 | ≥ 1.

Indeed, for both of the two scenarios defined in Observation 5, Υ is in the Pareto

front as implied by Observation 1 and Υ for both scenarios will have the same performance,

completion time, and cost; therefore, both Pareto fronts share the point corresponding to

their solutions defined by Υ. Now, let us define dominance relation between two Pareto

fronts as follows.
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Definition 2 If PF1 , PF2, PF2 Pareto dominates PF1, denoted as PF2 � PF1, if

PFU = PF2, where PFU = PE(PF1 ⋃
PF2). That is, PF1 includes no solution that

Pareto dominates any solution in PF2.

One can observe from Figure 1 that PF3 � PF2 � PF1. This follows from the

fact that for any Pareto front solution in PF1, there is a corresponding feasible solution in

scenario 2, and this solution is either in PF2 or it is dominated by another solution, which

would also dominate the solution in PF1. The similar discussion follows for scenarios 2

and 3. This can be generalized as noted in the next observation.

Observation 6 Consider the two scenarios defined in Observation 5 for a given problem

instance. Then, PF2 � PF1.

Observation 6 suggests that enabling flexibility for an inflexible system will result

in better options for the decision maker. The methods provided in this study can be used

for generating and/or approximating the Pareto fronts, and then, comparing them. Next, we

compare the solution methods through a set of numerical studies.

5.2. Comparison of the Methods. In this section, we first compare EM-1, DM-

1, EM-2, and DM-2 quantitatively for small problem instances. Since both EM-1 and

DM-1 are exact methods, we do not compare them qualitatively; however, we evaluate the

qualitative performance of EM-2 and DM-2 using the exact set of Pareto efficient solutions

generated by EM-1 and DM-1. We further compare EM-2 and DM-2 for relatively larger

problem instances. In our comparison we denote PFE and PFS as the set of Pareto efficient

solutions returned byEM-1 andDM-1, respectively, and P̂F
E
and P̂F

S
as the set of solutions

returned by EM-2 and DM-2, respectively. The details of problem instance generation, the

settings of the methods, and the coding of the methods are explained in Appendix A.2, and

the tables are presented in Appendix A.3.

Quantitative statistics considered for allmethods are the number of solutions returned

(|PFE | and |PFS | for EM-1 and DM-1, respectively, and |P̂F
E
| and |P̂F

S
| for EM-2 and

DM-2, respectively) and the computational time in seconds (cpu). Additional quantitative
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statistics considered for EM-1 andDM-1 are the total number feasible optimization problems

solved (opt .#) and the number of infeasible optimization problems tried to be solved (in f .#).

Additional quantitative statistics considered for EM-2 and DM-2 are the total number

of populations evaluated (pop.#) and the average number of chromosomes evaluated per

population (avg.size). TableA.1 summarizes the averages of these statistics over 10 problem

instances solved within each of the 27 combinations of n ∈ {3, 4, 5}, |J1 | ∈ {3, 4, 5}, and

|J2 | ∈ {3, 4, 5}. Table A.1 also notes the number of decision variables in P-SoS denoted by

L such that L = |J1 |+n|J2 |+ |J |(|J | −1)/2+1, which includes the one continuous variable.

We note that PF = PFE = PFS as both EM-1 and DM-1 are exact methods.

Furthermore, EM-1 solves |PF | − 1 number of feasible optimization problems and tries

to solve one infeasible optimization problem since Υ is initially given. Additionally, as

expected, all methods tend to require more computational time and return more solutions

as L increases. Based on Table A.1, we have the following observations (all numbers are

rounded to the nearest integer).

• EM-1 vs. DM-1: Since both methods return the same set of Pareto efficient solutions,

our focus is comparing their other quantitative statistics. In particular, first, one can

note that DM-1 solves more optimization problems (feasible plus infeasible) than

EM-1 does. On average over all the problem instances solved, DM-1 solves almost

3 times more optimization problems. Nevertheless, overall average computational

time of DM-1 is much less than the computational time of EM-1. While EM-1

takes around 680 seconds to solve a problem on average, DM-1 takes 78 seconds on

average. This suggests that the proposed decomposition approach keeps its promises.

Particularly, DM-1 solves more optimization problems (due to the fact that it finds

all Pareto efficient solutions to the sub-problems P̂ − SoS − k, some of which can

be non-Pareto efficient for P̂ − SoS) but requires less computational time since the

optimization problems solved are relatively easier due to the additional restriction

included in the sub-problems.
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• EM-2 vs. DM-2: Bothmethods generate an approximation of the set of Pareto efficient

solutions. On average, the numbers of solutions returned by each method are very

close. Particularly, we cannot observe a pattern indicating that EM-2 generates more

solutions than DM-2 does or vice versa. On the other hand, one can note that the total

number of populations evaluated is greater in DM-2 while the average population size

is smaller. The computational time of DM-2 is less than half of the computational

time of EM-2 on average (and this is observed almost for each instance). Thus, it

implies that the decomposition approach improves the computational time while not

reducing the number of solutions returned even when an evolutionary method is used

for the sub-problems.

• EM/DM-1 vs. EM/DM-2: When the exact methods EM-1 and DM-1 are compared to

the evolutionary methods EM-2 and DM-2, one might observe that the exact methods

return more solutions on average. Actually, this is observed in most of the problem

instances (only in 9 problem instances solved over all 270 instances, EM-2 and DM-2

returned more solutions; this could be due to the fact that when they cannot find

one or more of the actual Pareto efficient solutions, EM-2 and DM-2 can return some

solutions thatwould have been dominated by those Pareto efficient solutions). In terms

of computational time, as expected, evolutionary methods are more efficient, with or

without the decomposition approach. In particular, EM-2 significantly requires less

time than EM-1 (8 seconds vs. 680 seconds on average) and DM-2 requires less time

than DM-1 (3 seconds vs. 78 seconds on average).

As both EM-2 and DM-2 approximate the set of Pareto efficient solutions, we next

compare the quality of the approximated sets. To do so, we compare P̂F
E
and P̂F

S
to

PF based on two statistics: the percentage of the returned solutions which are indeed

Pareto efficient, denoted by %(P̂F ∩ PF) = 100%× |P̂F ∩ PF |/|P̂F |, and the generational

distance between PF and P̂F, denoted by GD, such that GD =
√∑

U∈P̂F d2
u/|P̂F |, where

du is defined as the normalized Euclidean distance from a solution U ∈ P̂F to the closest
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solution in PF (one may refer to Kovacs et al. (2015) for further discussion on these

statistics, and since the objective functions of P-SoS have different metrics, we take the

normalized distance between two solutions such that the objective function values of the

solution in PF are used for normalization). Basically, the higher the percentage of shared

solutions and lower the generational distance are, the better the approximation is. In

addition, we compare the percentage of P̂F
E
solutions that are shared with P̂F

S
, denoted

by %(P̂F
E
∩ P̂F

S
) = 100% × |P̂F

E
∩ P̂F

S
|/|P̂F

E
|, and the percentage of P̂F

S
solutions

that are shared with P̂F
E
, denoted by %(P̂F

S
∩ P̂F

E
) = 100%× |P̂F

S
∩ P̂F

E
|/|P̂F

S
|. Table

A.2 summarizes the averages of these statistics over the 10 problem instances solved within

each of the 27 combinations of n ∈ {3, 4, 5}, |J1 | ∈ {3, 4, 5}, and |J2 | ∈ {3, 4, 5} along with

L. We have the following observations based on Table A.2.

• Compared with the exact set of Pareto efficient solutions, the percentages of solutions

generated by EM-2 and DM-2 that are indeed Pareto efficient are high for the problem

instances solved. On average, approximately 98% of the solutions returned by both

methods are indeed Pareto efficient and there is no pattern indicating that one method

findsmore actual Pareto efficient solutions than the other does. Therefore, based on the

percentages of the solutions that are indeed Pareto efficient, utilizing decomposition

method does not decrease quality of the solutions while it improves the computational

performance for the problem instances solved.

• Comparing the generational distance between the exact set of Pareto efficient solu-

tions and the approximated set of Pareto efficient solutions, it can be observed that

the average generational distance of P̂F
E
to PF (4.647 × 10−4) and the average gen-

erational distance of P̂F
S
to PF (4.408 × 10−4) are very close. Therefore, in terms

of generational distance, we cannot conclude that one method is strictly superior than

the other over the problem instances solved.
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• Finally, one can notice that over %96 of the solutions within P̂F
E
are also within

P̂F
S
and, similarly, over %96 of the solutions within P̂F

S
are also within P̂F

E
on

average. This suggests that majority of the solutions returned by EM-2 and DM-2 are

the same for the problem instances solved.

Next, we quantitatively and qualitatively compare EM-2 and DM-2 for relatively

larger problem sizes, for which the exact Pareto fronts are not known. Particularly, we

solve 10 problem instances with EM-2 and DM-2 from each of the 27 combinations of

n ∈ {5, 6, 7}, |J1 | ∈ {5, 6, 7}, and |J2 | ∈ {5, 6, 7}. For quantitative comparison, similar

to Table A.1, we compare |P̂F |, pop.#, avg.size, and cpu. In addition, we compare the

percentages of the solutions they share with each other, i.e., %(P̂F
E
∩ P̂F

S
) (the percentage

of P̂F
E
solutions that are in P̂F

S
) and %(P̂F

S
∩ P̂F

E
) (the percentage of P̂F

S
solutions

that are in P̂F
E
). Table A.3 summarizes the averages of these statistics over 10 problem

instances solved within each of the 27 combinations of n ∈ {5, 6, 7}, |J1 | ∈ {5, 6, 7}, and

|J2 | ∈ {5, 6, 7}. We have the following observations based on Table A.3.

• Similar to the observations based on Table A.1, one can observe that EM-2 evaluates

fewer but larger populations on average and both methods return close number of

solutions (DM-2); however, DM-2 requires less computational time on average (987

seconds vs. 566 seconds).

• The percentages of the solutions that are commonwithin the returned solution sets are

close on average (both share almost 77% of each others’ solutions on average). One

can note from Table A.1 that as L increases, however, these percentages decrease.

Based on the above discussion, even though they return close number of solutions

(withDM-2 requiring less computational time on average), the difference between the sets of

solutions returned by EM-2 and DM-2 increases as the problem size gets larger. Therefore,

a qualitative comparison is needed. We assume that the exact PF cannot be practically

enumerated for larger problem sizes, we therefore qualitatively compare P̂F
E
and P̂F

S
to
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the Pareto efficient solutions within their unions. That is, we compare P̂F
E
and P̂F

S
to

P̂E = PE(P̂F
E
∪ P̂F

S
). For qualitative comparison with P̂E , we investigate the percentage

of the P̂F solutions that are in P̂E , denoted by %(P̂F ∩ P̂E) = 100% × |P̂F ∩ P̂E |/|P̂F |,

and the generational distance between P̂E and P̂F, denoted by ĜD, for each method. Note

that P̂E consists of three types of solutions: the ones coming from both P̂F
E
and P̂F

S

(type-1), the ones coming only from P̂F
E
(type-2), and the ones coming only from P̂F

S

(type-3). For qualitative comparison, we calculate the percentages of type-1, type-2, and

type-3 solutions within P̂E , denoted by %P̂E
1
, %P̂E

2
, and %P̂E

3
, respectively. Note that

%P̂E
1
= 100%× |P̂E ∩ P̂F

E
∩ P̂F

S
|/|P̂E |, %P̂E

2
= 100%× |P̂E ∩ P̂F

E
|/|P̂E | −%P̂E

1
,

and %P̂E
3
= 100% × |P̂E ∩ P̂F

S
|/|P̂E | −%P̂E

1
. Table A.4 summarizes the averages of

these statistics over the 10 problem instances solved within each of the 27 combinations of

n ∈ {5, 6, 7}, |J1 | ∈ {5, 6, 7}, and |J2 | ∈ {5, 6, 7}. We have the following observations based

on Table A.4.

• On average, the percentage of P̂F
S
solutions that are in P̂E is higher than the

percentage of P̂F
E
solutions that are in P̂E (95% vs 84%). Furthermore, one can

observe that as the problem size gets larger, while this percentage does not show a

decreasing pattern for P̂F
S
, it is decreasing for P̂F

E
. This suggests that more of the

P̂F
E
solutions are being dominated by the P̂F

S
solutions as problem size becomes

larger. The same observation is true for the generational distance. In particular,

it can be observed that the generational distance of P̂F
E
to P̂E is higher than the

generational distance of P̂F
S
to P̂E . Furthermore, as the problem size gets larger,

this distance follows an increasing pattern for EM-2 while it does not follow a strictly

increasing or decreasing pattern for DM-2.

• When the percentages of the solution types within P̂E are compared, one can note

that 75% of the P̂E solutions are coming from both P̂F
E
and P̂F

S
on average. On

the other hand, while only 7% of the P̂E solutions are coming only from P̂F
E
, 18%
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of the P̂E solutions are coming only from P̂F
S
on average. Furthermore, one can

observe that percentages of type 1 and type 2 solutions tend to decrease while the

percentage of type 3 solutions tend to increase as the problem size gets larger.

The observations based on Tables A.3 and A.4 can be summarized as follows. As the

problem size gets larger, DM-2 is able to find more solutions that are not dominated by the

solutions found by EM-2 (or similarly, more of the solutions found by EM-2 are dominated

by the solutions found by DM-2 as the problem size gets larger). This suggests that DM-2

is able to return better solutions on average. The reason for this can be that DM-2 might

be evaluating more chromosomes (one can notice that average value of pop.# × avg.size

is higher for DM-2 and the difference of these values between DM-2 and EM-2 increases

as the problem size gets larger). Furthermore, DM-2 manages to achieve these in less

computational time. Therefore, based on our numerical analyses, we recommend DM-2

as an approximation method since it qualitatively performs the same with EM-2 for small

problem sizes and better than EM-2 for relatively larger problem sizes in less computational

times.

6. CONCLUSIONS AND FUTURE RESEARCH

System of Systems (SoS) architecting finds many practical applications, especially,

in defense and military projects. Sponsored by US Department of Defense for a military

application, this study uses operations research tools to formulate and propose efficient

solution methods for a SoS architecting problem with different system types. In particular,

a tri-objective mixed-integer-linear programming model is presented for a SoS architecting

problem with inflexible and flexible systems. We discuss application of an exact method

to generate the full Pareto front of this problem. Furthermore, due to complexity of the

problem, we also construct an evolutionary method to approximate the Pareto front. In
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addition, a decomposition approach is proposed to improve the computational performance

of the exact method and both computational and qualitative performance of the evolutionary

method.

We demonstrate the application of the model presented with a simple scenario. This

scenario shows the benefits of having flexible systems. In particular, as expected, when

more systems become flexible, the SoS architecting problem will have better solutions on

the Pareto front. Through a set of numerical studies, we compare the solution methods

discussed. It is observed that the decomposition approach, when it uses the exact method

discussed, effectively reduces the computational time required to generate the full Pareto

front. This suggests that the decomposition approach can be used with other exact methods

for reducing the time required to generate the full Pareto front of a multi-objective com-

binatorial optimization problem. Furthermore, the same numerical studies illustrate that

the decomposition approach also reduces the time to approximate a Pareto front while the

approximated Pareto front is not worsening. Through another set of numerical studies with

relatively larger problem instances, it is observed that the decomposition approach using the

evolutionary method is able to return better solutions than the pure evolutionary method in

less computational time. This suggests that the decomposition approach can also be used

with other approximation methods to improve the quality of the solutions returned as well

as the computational time required for approximation.

One of the contributions of this study is to model a SoS architecting problem with

the availability of both inflexible and flexible systems and provide solution tools for the

corresponding model. The resulting model is a multi-objective combinatorial problem.

Another contribution of this study is to propose a decomposition approach that is not based

on variable fixing. The decomposition approach examined can use other exact or heuristic

solution methods available for solving multi-objective combinatorial problems. When

applicable, the decomposition approach can be adopted as an improvement procedure over

the methods proposed for solving multi-objective combinatorial problems. One of the



64

future research direction is, therefore, to examine how the decomposition approach can

be used with other exact or approximation methods for different combinatorial problems.

For instance, investigating the recent exact methods such as the ones presented by Kirlik

and Sayin (2014) and Dachert and Klamroth (2015) with decomposition is an interesting

future research direction. Other future research directions include analyses of different SoS

architecting problems with flexibility considerations, such as stochastic SoS architecting,

SoS architectingwith dynamic systems, and SoS architectingwith decision-making systems.

For instance, a SoS architecting problem with systems competing based on their incentive

charges for being flexible is a relevant future research problem.
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Abstract

Multiobjective optimization problems arise in many applications; hence, solving

them efficiently is important for decision makers. A common procedure to solve such

problems is to generate the exact Pareto front. However, if the problem is combinatorial,

generating the exact Pareto fronts can be challenging. In this study, we focus on a mul-

tiobjective set covering problem and propose a decomposition method for generating its

exact Pareto front. Particularly, the decomposition method first divides the problem into

a set of sub-problems; then, generates the exact Pareto fronts of these sub-problems; and

finally uses the sub-problem Pareto fronts to acquire the frontier of the original problem.

We used the well-known Sequential Generation method to generate the exact Pareto fronts

of the sub-problems. A numerical study demonstrates that decomposition method reduces

the computational time required for generating the exact Pareto front compared to the direct

application of the Sequential Generation method. This suggests that decomposition method

is a promising approach for improving the computational time of other exact methods.

Keywords: Multi-objective Optimization; Decision Making; Set Covering Problem; Se-

quential Generation
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1. INTRODUCTION AND LITERATURE REVIEW

Multi-objective Optimization (MOO) problems arise in many areas of study due

the their ability to successfully capture different and possibly conflicting goals of decision

makers. To solve MOO problems, one may reduce the problem into a single objective

problem (either by associating weights to the individual objective functions or minimization

of the maximum deviation from individual optimums) or generate a set of alternative

solutions for the decision maker. In this study, we focus on generating alternative solutions,

particularly, Pareto efficient solutions for the problem of interest. A solution is Pareto

efficient when there does not exist another solution, which is better in terms of all of the

objective functions.

An important class of MOO problems is Multi-objective Combinatorial Optimiza-

tion (MOCO) problems. MOCO problems find many applications in transportation, manu-

facturing, scheduling, and systems engineering. Interested readers can find recent reviews

on MOCO problems and related solution approaches in Ehrgott and Gandibleux (2000) and

Ehrgott and Gandibleux (2002). In this study, we analyze a Multi-objective Set Covering

problem, which is a MOCO problem. Multi-objective Set Covering (MOSC) problem has

applications in airline crew scheduling (Jaszkiewicz, 2004; Upmanyu and Saxena, 2015)

and mass transit scheduling (Upmanyu and Saxena, 2015). The MOSC under consideration

has more than two objective functions.

In particular, the MOSC can be defined as follows. Suppose that there are m items

indexed by i ∈ {1, ...,m}. There are n ≤ 2m−1 subsets of the items indexed by j ∈ {1, ...n}.

A subset is defined by the items it includes. Let

ai j =


1 if item i is included in subset j,

0 otherwise,

and A be the m × n-matrix of ai j values. In this study, we assume that the decision maker
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has p > 2 objectives indexed by k such that k ∈ {1, 2, . . . , p}. Let us define ck j as the

objective function coefficient of subset j for objective function k, ck as the 1 × n-vector of

ck j values, and let C = [c1; c2; . . . ; cp] denote the p× n-matrix of ck j values (i.e, ck defines

the k th row ofC). The problem is then to determine which of the subsets should be selected

such that each item is included within at least one subset. Let

x j =


1 if subset j is selected,

0 otherwise,

and x be the n × 1-vector of x j values. Then, the MOSC problem takes the form of P

(Yelbay et al., 2015):

P: min Cx

s.t. Ax ≥ 1m

x ∈ {0, 1}n

where 1m is a m × 1-vector of 1’s. In P, the objectives are minimization of the individual

objective functions defined by C. The first set of constraints ensures that each item is

included within at least one subset. The second set of constraints is the binary definition of

the decision variables vector x.

As the set covering problem is one of the well-known NP-hard problems, MOSC

problems are also NP-hard and; therefore, one needs efficient methods to solve such prob-

lems. Solving P requires generating the exact set of Pareto efficient solutions, i.e., the

Pareto front. We note that one can use one of the many heuristic methods available in the

literature to approximate the Pareto front of MOCO problems. However, in this study, our

goal is to generate the exact Pareto front. Different methods exist in the literature that can

be used to solve MOCO problems; hence, these method can be used to solve P as well.

The ε–constraint method (Laumanns et al., 2006), augmented version of the ε–constraint

method (Mavrotas, 2009), two-phase method (Przybylski et al., 2010), Parallel Partitioning
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Method (Dhaenens et al., 2010), and reference point method (Alves and Climaco, 2000)

are among the exact methods proposed for solving MOCO problems. Although some of

these exact methods has been modified and/or used for solving MOSC problems (Florios

and Mavrotas, 2014; Lust and Tuyttens, 2013; Prins et al., 2006), this study proposes a new

approach, which can utilize different exact methods proposed for MOCO problems.

Particularly, we propose a decomposition approach for a specific class of problems

in the form of P. The decomposition approach, which is used in Konur et al. (2016) for

solving a system of systems architecting problem, works as follows. First, the problem is

decomposed into a set of sub-problems. Then, we generate the exact Pareto front of each

sub-problem using an exact method proposed for MOCO problems. After that, the exact

Pareto front of the main problem is extracted using the Pareto fronts of the sub-problems.

The rationale behind this decomposition approach is mainly two-fold.

• First of all, the exact methods require solving single-objective combinatorial prob-

lems to determine a Pareto efficient solution. Therefore, making these single-objective

problems easier can improve the computational time. The decomposition method re-

quires generating Pareto efficient solutions for the decomposed sub-problems, which

have significantly smaller feasible regions than the feasible region of the main prob-

lem. Therefore, solving the single-objective problems for generating a Pareto efficient

solution of a decomposed sub-problem is relatively easier than solving the single-

objective problem for generating a Pareto efficient solution of the main problem.

• Secondly, the single-objective combinatorial problems that need to be solved become

more difficult to solve after generating each Pareto efficient solution as most of the

exact methods need to iteratively assure that a different Pareto efficient solution is

generated. This, in turn, addsmore variables and/or constraints to the single-objective

combinatorial problem to be solved at each iteration and; therefore, increases the

computational time especially when the Pareto front is large. The decomposed
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problems with the decomposition approach might tend to have smaller Pareto fronts;

therefore, generating all of the Pareto efficient solutions of a sub-problem is relatively

easier than generating all of the Pareto efficient solutions of the main problem.

We note that, although the decomposition approach has the above advantages in

solving single-objective combinatorial problems, it might require solving more single-

objective combinatorial problems as one needs to generate all of the Pareto efficient solutions

for all decomposed problems, some of which will not be Pareto efficient for the main

problem. However, we observe in our numerical studies that even if the decomposition

approach requires solving more single-objective combinatorial problems, it improves the

computational time compared to an exact method.

Specifically, through a numerical study, we demonstrate the computational efficiency

of the decomposition approach compared to the exact method introduced by Sylva and

Crema (2004), which is referred to as Sequential Generation (SeqGen) method throughout

the paper, for a MOSC problem with three objective functions, two of which are to be

minimized and one is to be maximized. SeqGen method iteratively solves single-objective

combinatorial problems until the exact Pareto front is generated for a combinatorial problem

with p objectives. At each iteration, for the latest Pareto efficient solution that has been

generated, p new binary variables and p + 1 constraints are added to assure a new Pareto

efficient solution is generated. When a new Pareto efficient solution cannot be generated,

the method is terminated (see Sylva and Crema (2004, 2007) for the details).

This study’s contribution is to use a new approach, that can utilize different exact

methods, for a MOSC problem. We believe that the decomposition approach can be used

for other MOSC as well as MOCO problems. The next section summarizes the SeqGen

method of Sylva and Crema (2004) and explains the details of the decomposition approach.

Section 3 discusses the numerical analysis of decomposition approach and compares it to
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the SeqGen method. Section 4 demonstrates the complexity and the performance of the

decomposition approach. A summary of the findings and a set of future research directions

are given in Section 5.

2. SOLUTION ANALYSIS

In previous section, the general theme of SeqGen method was discussed. Recall

that SeqGen method generates the exact Pareto front of problem P. The decomposition

approach, which uses the SeqGen method within, also generates the exact Pareto front. Let

PF denote the Pareto front of P. In this section, we first summarize the iterations of the

SeqGen method, and then, explain the details of the decomposition approach.

2.1. Sequential Generation Method. Suppose that a set of Pareto efficient solu-

tions for problem P, denoted by S ⊆ PF, is given such that S = {x1, x2, . . . , x`}. By

definition, compared to any solution xh ∈ S, a solution x can be Pareto efficient if it

is better in terms of at least one of its objective functions. Therefore, x < PF unless

min{Cxh − Cx} < 0 ∀xh ∈ S. Furthermore, a Pareto efficient solution should be an opti-

mum solution of a single-objective optimization problem with the objective function being

equal to the weighted sum of the individual objective functions. In particular, let λk > 0 be

a weight for the k thobjective function and λ be the p × 1-vector of λk values.

Now, given a set of Pareto efficient solutions S = {x1, x2, . . . , x`} such that S ⊆ PF,

let us define

yk
h =


1 if ckx < ckxh,

0 otherwise.

As noted above, x < PF unless
∑p

k=1 y
k
h ≥ 1 ∀xh ∈ S. Furthermore, let x(S), if exists, be

the optimum solution of the following single-objective optimization problem:
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P-S: min λtCx

s.t. Ax ≥ 1m

ckx ≤ (ckxh − ε)yk
h + Mk(1 − yk

h) ∀xh ∈ S, ∀k = {1, 2, . . . , p}∑p
k=1 y

k
h ≥ 1 ∀xh ∈ S

yk
h ∈ {0, 1} ∀xh ∈ S, ∀k = {1, 2, . . . , p}

x ∈ {0, 1}n

where ε is a small number and Mk is a large number for objective function k. Note that the

objective function of P-S is the weighted sum of the objective functions of P. Similar to P,

the first set of constraints ensures that each item is included within at least one subset and

the last set of constraints is the binary definition of x. The second and the third constraint

sets guarantee that any feasible solution to P-S is not Pareto inferior compared to the Pareto

efficient solutions within S because any feasible solution of P-S, if one exists, is better in

terms of at least one objective function value.

Given S ⊆ PF, if P-S is infeasible, then one can show that PF = S; hence, the

exact Pareto front of problem P is known. Otherwise, one can show that x(S) ∈ PF, i.e.,

the optimum solution of P-S generates a new Pareto efficient solution for problem P. To

illustrate the process, we proceed with an example. Suppose we have two objectives with

the cost coefficients c1 = (1, 2) and c2 = (1, 0) and the feasible region F in Figure 1. For

λt = (1, 0), one can see that the point (x1, x2) = (0, 0) is the optimum solution; hence, it

is efficient. Given this point, we define S = {(0, 0)} and problem P-S is demonstrated by

adding the following set of constraints:

{c1x ≤ −y1
1 +M1(1− y1

1), c
2x ≤ −y2

1 +M2(1− y2
1), y

1
1 + y

2
1 ≥ 1}, where M1 = 5 and M2 = 3.

For y1
1 = 1 and y2

1 = 0, Figure 2 shows the new feasible region that is infeasible. In what

follows, the algorithmic description of the SeqGen method is stated.
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SeqGen method for P (Sylva and Crema, 2004):

Step 0: Given A, C, and λ > 0, set S = ∅

Step 1: Given S, solve P-S

Step 2: If P-S is infeasible, stop and set PF = S

Step 3: Else, update S = S
⋃
{x(S)} and go to Step 1.

Figure 1. Feasible space F of an integer
problem

Figure 2. Feasible space F = ∅ for y1
1 =

1, y2
1 = 0

2.2. Decomposition Approach. The main issues with SeqGen method is that as

S gets bigger, solving P-S becomes more challenging as the number of binary variables

increases by p and the number of constraints increases by p + 1. The main motivation

for separating problem P into subproblems is to decrease the complexity of solving the

single-objective problems in the form of P-S. To do so, we decompose P as follows. Note

that a solution x can have at most n 1’s; therefore
∑n

j=1 x j ≤ n. Let rmax = n. Furthermore,

let us define rmin = min{
∑n

j=1 x j : Ax ≥ 1m, x ∈ [0, 1]n}, that is, rmin defines the minimum

number of 1’s a feasible solution of problem P must have. Therefore, for any feasible x,

rmin ≤
∑n

j=1 x j ≤ rmax . Next, let us define the r th sub-problem, P-r , for rmin ≤ r ≤ rmax as

follows:

P-r: min Cx

s.t. Ax ≥ 1m∑n
j=1 x j = r

x ∈ {0, 1}n
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Note that P-r is problem P with the additional restriction that exactly r subsets of

the items should be selected. That is, P-r is also a MOCO problem. Let PFr be the exact

Pareto front of P-r .

Proposition 1 PF ⊆
⋃rmax

r=rmin
PFr .

Proof: Suppose that x is feasible for P-r . If x < PFr , it then follows by definition that

x < PF. Therefore, PF ⊆
⋃rmax

r=rmin
PFr . �

Proposition 1 suggests that if one can generate PFr ∀r ∈ [rmin, rmax], then PF will

be the set of Pareto efficient solutions within the unions of PFr’s. Let PE(T) be the Pareto

efficient solutions within the set of solutions T . Then, the overall algorithmic description

of the decomposition approach is as stated below:

Decomposition approach for P:

Step 0: Given A, C, rmin, and rmax , set r = rmin and T = ∅

Step 1: Given r ,

Step 2: If r ≤ rmax; determine PFr ,

Update T = T
⋃

PFr , set r = r + 1, and go to Step 1

Step 3: Else, stop and go to Step 4

Step 4: Return PF = PE(T).

To generate PFr of P-r , one can use the SeqGen method. Particularly, given a

set of Pareto efficient solutions for P-r , Sr ⊆ PFr , one will solve problem P-r with the

additional constraint
∑n

j=1 x j = r , denoted as P-r-Sr . Furthermore, PE(T) can be extracted

from T using an iterative method as stated below (similar methods are also discussed in the

literature, e.g. Konur et al. (2014)).
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Determining PE(T) from T

Step 0: Given C and T = {x1, x2, . . . , xu}, set PE(T) = T and f = 1

Step 1: While f ≤ u − 1

Step 2: Set g = f + 1

Step 3: While f ≤ u

Step 4: If Cx f , Cxg and Cx f ≤ Cxg,

Update PE(T) = PE(t)\{xg} and set g = g − 1

Step 5: If Cx f , Cxg and Cx f ≥ Cxg,

Update PE(T) = PE(t)\{x f }, set g = u and f = f − 1

Step 6: Set g = g + 1

Step 7: Set f = f + 1

Step 8: Return PE(T).

Next, we present a set of numerical studies where we compare the decomposition

approach, which uses SeqGen for the subproblems, with the SeqGen method.

3. NUMERICAL ANALYSIS

Note that both the SeqGen and the decomposition approach using SeqGen are

exact methods. In this section, we compare their computational efficiency. To do so, we

assume that the set covering problem under consideration has three objectives, i.e., p = 3.

Furthermore, to have conflicting objective functions, we assume that c1 ≤ 0 and c1 , 0,

c2 ≥ 0 and c2 , 0, and c3 ≥ 0 and c3 , 0, i.e., while the second and third objectives are

indeed minimization, the first objective is maximization.

For the numerical comparison, we consider 9 problem classes, each of which cor-

responds to a combination of n = {10, 11, 12} and m = {6, 8, 10}. For each problem class,

10 problem instances are randomly generated as follows. For a problem instance, we first

generate the objective function coefficients as random integers uniformly distributed within



81

range [1, 1000]. Then, we generate the m × n matrix of ai j values, i.e., A, for the problem

instance such that the problem instance is feasible. To do so, we randomly generate n

distinct binary m × 1-vectors. If A1n ≥ 1m, A is feasible; otherwise, we repeatedly select a

random element of A, which is equal to 0, and update A by making it 1, if it does not create

duplicate columns of A, until A1n ≥ 1m.

Each problem instance is solved via SeqGen method and the decomposition method

using SeqGen. Both methods are coded in MATLAB 2014a and executed on a personal

computer with 3GHz dual-core processor and 16GB RAM. For solving the single-objective

binary models (P-S’s for SeqGen and P-r-Sr’s for the decomposition method), the binary

solver of IBM-ILOG’s CPLEX is used. For each method, we record the computational

time (in seconds), denoted as cpu, the number of single-objective optimization problems

solved, denoted as opt − no. Furthermore, since both methods return the exact Pareto front

for problem P, we record |PF | as well. For each problem class, Table 1 summarizes the

average of these values over the 10 problem instances solved within that class.

Table 1. Numerical comparison of SeqGen and decomposition algorithms for tri-objective
MOSC problems

Problem Class SeqGen Decomposition
n m |PF | opt − no cpu opt − no cpu
10 6 56.4 57.4 2.78 105.2 0.018

8 80.1 81.1 6.127 145.5 0.033
10 77.4 78.4 6.035 151.5 0.035

11 6 111.7 112.7 15.343 219.9 0.076
8 80.7 81.7 6.224 158.2 0.036
10 116.1 117.1 19.323 202.4 0.074

12 6 118.7 119.7 16.385 216.8 0.078
8 127.7 128.7 23.787 252.7 0.1
10 123 124 25.79 272.8 0.105

Average 99.1 100.1 13.533 191.7 0.062
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It can be observed from Table 1 that decomposition approach solves more single-

objective problems. Particular, while SeqGen solves around 100 binary models on average,

decomposition approach solves almost two times of this number on average. Nevertheless,

decomposition approach requires significantly less computational times. Specifically, while

it takes decomposition approach 0.062 seconds on average, SeqGen requires over 13 seconds

on average. These suggest that, even if decomposition approach solvesmore single-objective

binary models, it manages the return the same exact Pareto front within less computational

time compared to direct application of SeqGen for problem P.

4. PERFORMANCE OF THE DECOMPOSITION APPROACH

In this section, we study the performance of the decomposition approach, when num-

ber of objective functions increases. For this purpose, a complexity analysis is conducted

and a numerical analysis demonstrates the findings.

4.1. Complexity of SeqGen With and Without the Decomposition Approach.

Set Covering problems are NP − hard which means the complexity of solution procedure

for these problems is sub-exponential on the number of decision variables, at best. This

complexity can be shown by O(a f (n)) (or simply O(an)), where a > 1 and f (n) is a function

of decision variables (Woeginger, 2003). The complexity of MOSC problems depends

not only on the number of decision variables, but also the size of Pareto front. This is a

general case in Multi-objective optimization since the search is utilized in the frontier space

rather than the feasible region. Searching in the frontier space is motivated by the argument

that the number of objectives is usually much smaller than the number of variables, so

handling search will be easier on the frontier space (Benson and Sun, 2002; Boland et al.,

2015). This is, indeed, the dominating paradigm in Multi-objective (Mixed) Integer Linear

programming.
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Proposition 2 Assuming p, n are large enough, SeqGen algorithm is faster when applying

decomposition approach, if the following inequality holds:

max
r
{|PFr |} < |PF | −

loga n
p

. (1)

proof: The SeqGen algorithm solves a single objective problem iteratively and at each

iteration it adds p new variable to the problem. Hence, one can derive the complexity of the

algorithm as follows: CSeqGen = O(an+an+p+...+an+|PF |p) ≈ O(an+p|PF |). Applying the de-

composition procedure (Sep), we get the following results assuming n and p are large enough

to dominate the polynomial components: CSep = O(
∑rmax

r=rmin
an+|PFr |p + n2) ≈ O((rmax −

rmin)an+p max{|PFr |}) ≈ O(nan+p max{|PFr |}). Now, we want to study the conditions in which

CSep becomes smaller than CSeqGen: CSep < CSeqGen ⇒ O(nan+p max{|PFr |}) < O(an+p|PF |).

If we apply loga to both sides and factorizing an component: O(na
n+p max

r
{|PFr |}

) <

O(an+p|PF |) ⇒ O(loga n + p max
r
{|PFr |}) < O(p|PF |) ⇒ max

r
{|PFr |} < |PF | − loga n

p .

This proposition shows that the performance of using decomposition approach only

relates to the relative sizes of PFr and PF and the number of objectives.

Proposition 3 The inequality 1 is more relaxed than stated.

Description: When we apply decomposition approach to SeqGen algorithm, we solve

problem P-r instead of P. Problem P-r is a version of P that is restricted to the hyperplane

1T
n x = r; hence, the number of integer points within the new feasible region reduces which

can potentially lead to lower (or much lower) complexity in the solution process. This means

that the actual complexity of SeqGen algorithm while employing decomposition approach

is smaller than O(nan+p max{|PFr |}), let’s say it is O(nbn+p max{|PFr |}) where 1 < b < a. This

smaller complexity will make the inequality 1 more relaxed.

Observation 7 The previous experiments we performed show that hyperplanes in the form

of αT x = β, when β is not binary, may speed up the solution process. Similar results can

be seen in (Kovacs et al., 2015).
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Corollary 1 If proposition 2 holds true, then the performance of SeqGen with Decomposi-

tion approach improves as the number of objectives increases.

proof: If proposition 2 holds true, i.e. max
r
{|PFr |} < |PF | − loga n

p , then if we increase p

for a given n, the component loga n
p will decrease and consequently, the upper bound on the

size of Pareto front of subproblems will be more relaxed. This concludes the proof.

Later in the numerical analysis section, the correctness of this corollary has been

confirmed. In addition, these propositions and corollary are applicable to many Multi-

objective combinatorial problems.

4.2. Numerical Analysis. In this section, we investigate the improvement in Seq-

Gen algorithm while employing decomposition approach. Particularly, we investigate the

effect of increasing the number of objectives and study the speed of algorithm. The inves-

tigation is set up by generating the cost coefficients as random integers within the interval

[1, 1000]. One objective is maximization and the rests are minimizations. To generate the

matrix of constraints, A, all subsets of U = {1, ...,m} is generated and n set among them is

selected as the columns of A. If any element of universal set is not covered by the columns

of A, we select a column randomly and change the zero in corresponding row equal to 1,

until all elements of universal set is covered.

Five problem instances are generated based on the above description for any com-

bination of p ∈ {3, 5, 7, 9}, n ∈ {5, 6, 7}, and m ∈ {3, 4}. We set one objective function

as a maximization objective to preserve the confliction between objective functions. The

setting and the notation of this numerical analysis is similar to section 3 in addition to the

column "Magnitude" which shows the magnitude of the improvement in the computational

time when we incorporate decomposition approach. Table B.1 summarizes the average of

numerical results over all instances. This numerical analysis shows that when the number

of objectives increases from 3 to 5 and further to 9, the computational time improves from

41.9 times for p = 3, to 67.5 times (p = 5), 72.2 times (p = 7), and 132.5 times (p = 9). In

addition, for a fixed value of n and m, if one increases the number of objectives (p), then
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the computational time improves. For example, when n = 6 and m = 4 the improvement in

cpu is 57.8 times for p = 3; it is 88.3 times for p = 5; it is 201.1 times for p = 7 and it is

248.8 times for p = 9. The same pattern can be seen for any other combination of n and m

in this table. These results conform with the corollary 1.

Furthermore, Table B.2 shows another set of numerical analysis. The setting of the

numerical analysis is similar to the Table B.1 with an additional notation Per which shows

the percentage of instances that Decomposition method outperform the SeqGen algorithm.

Here, however, for a given n and m, an instance is generated when p ∈ {3, 5, 7}. The results

indicates that when p increases (n and m are unchanged), the improvement in computational

time (Magnitude) increases, as well. For example, when n = 5 and m = 3 and p increases

from 3 to 5 and further to 7, the magnitude of the improvement in the computational time

improves from 35.5 to 71.1 and further to 118.3, respectively. This is true for any given

n and m, when p increases. These results also confirm with the corollary 1, in which,

the decomposition approach performs better in higher number of objectives compared to

SeqGen algorithm.

The analysis in Tables B.1 and B.2 holds when one objective is maximization

(Strict confliction between objectives). If we select all the objectives are minimization

and no information about their confliction is given, the magnitude of the improvement in

the computational time diminishes. Moreover, Decomposition approach perform poorly

compare to the SeqGen algorithm, in some instances. Table B.3 captures this situation. The

numerical setting for this table is similar to the previous tables, except that all the objectives

are minimization without prior information in regard to their confliction. Based on this

table, the magnitude of the improvement in the computational time is much less than Table

B.2, where objective functions are conflicting. More interestingly, for the combination

n = 6,m = 4, p = 3, in one instance, the SeqGen approach outperforms the decomposition
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approach, although in the average of all instances of this combination, decomposition is still

5.8 times faster. Similar patterns can be observed in combinations n = 7,m = 3, p = 5 and

n = 7,m = 4, p = 3. This leads to the following observation and conclude the paper:

Observation 8 Applying Decomposition approach to the SeqGen may not improve the

computational time, if the objective functions are not conflicting.

5. CONCLUSION AND FUTURE RESEARCH

In this study, we investigate a Tri-objective set covering problem with one maxi-

mization and two minimization objectives. After providing a generic formulation, we have

discussed the application of a well-known exact method for multi-objective combinatorial

problems for the set covering problem. Then, we have explained a decomposition approach,

which uses this exact method for solving a set of decomposed problems. The motivation

for the decomposition approach is to reduce the time required in solving single-objective

combinatorial optimization problems, which are needed to be iteratively solved to generate

Pareto efficient solutions. Upon a numerical comparison, it is observed that decomposition

approach, which is also an exact method, reduces the computational time significantly even

if it requires solving more single-objective combinatorial optimization problems. This is

because the single-objective problems solved for decomposed subproblems under decom-

position approach are relatively easier to solve compared to the single-objective problems

solved with direct application of an exact method. We then show that the performance of

decomposition approach improves when the number of the objective functions increases.

Another interesting observation is that the decomposition approach may not outperform

SeqGen, if the objective functions are not strictly conflicting (all minimizations). These

suggest that decomposition approach is a promising method to reduce the computational

time of an exact method to determine the full Pareto front of specific multi-objective
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combinatorial optimization problems. Future research directions include different ways of

separating a problem, comparison of different exactmethods using decomposition approach,

and investigation of different problem classes and structures.
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Abstract

A System of Systems architecting problem aims to determine a selection of systems,

which is capable of providing a set of desired capabilities. A SoS architect usually has

multiple objectives in generating efficient architectures such as minimization of the total

cost and maximization the overall performance of the SoS. This study formulates a bi-

objective SoS architecting problem with these two objectives. Here, we consider that,

by allocating funds to the systems, the SoS architect can improve the performance of the

capabilities the systems can provide. The resulting architecting problem is a bi-objective

mixed-integer linear programming model. Specifically, the system selection decisions are

binary while the fund allocation decisions are continuous. We first discuss the application

of the adaptive epsilon-constraint method as an exact method for solving this model. Then,

we propose an evolutionary method and compare its performance with the exact method.

Finally, a numerical study demonstrates the benefits of fund allocation in the SoS architecting

process.

Keywords: System of Systems; Multiobjective optimization; Performance Improvement
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1. INTRODUCTION AND LITERATURE REVIEW

The system of systems (SoS) is a system, whose components are systems themselves

(Maier, 1996). SoS needs a set of capabilities and these capabilities come from systems that

form the SoS (Agarwal et al., 2015). It is worthmentioning the variety of applications of SoS

in military, engineering, healthcare, and transportation (Jamshidi, 2008a,b, 2011). During

the construction of a SoS, the architect typically accounts for multiple objectives such as

the minimization of the total cost for constructing the SoS and maximization of the overall

performance of the constructed SoS (Konur and Dagli, 2015). This study assumes that the

cost minimization and performance maximization are the SoS architect’s objectives and

accordingly formulates a biobjective SoS architecting problem. Here, we consider that the

SoS architect can improve the performance of the capabilities that the selected systems can

provide by allocating funds to them. A similar study of Konur and Dagli (2015) investigates

a related topic, where the systems negotiate with the SoS architect for fund allocation. In

particular, Konur and Dagli (2015) assume that the systems individually decide on how

to utilize the allocated funds for achieving maximum performance improvements in their

capabilities. Here, on the other hand, we consider that the SoS architect directs how the

systems should use the allocated funds. Specifically, the SoS architect specifies how much

of the allocated fund should be utilized in the improvements of the capabilities that a selected

system can provide.

Note that it is possible to increase the overall performance of the SoS by allocating

more funds to the systems; however, this will also increase the total cost of the SoS. We

define the overall SoS performance as the sum of the performances of the capabilities

provided by the selected systems. The total cost of the SoS is defined as the sum of the fixed

capability costs charged by the systems, the funds allocated to the systems, and the cost

of interfaces used to assure connectivity of the SoS architecture. The problem of interest

in this study can be defined as follows: Which systems should be selected and how much

funds should be allocated to each capability of the selected systems in order to minimize
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the total cost and maximize the overall performance of the SoS guaranteeing that the SoS

is capable and connected? In Section 2, we give the formulation of this problem. Section

3 explains the solution analysis. The numerical studies are summarized in Section 4 and

Section 5 concludes the paper.

2. PROBLEM FORMULATION

The SoS architecting problem is to find a subset of them available systems to provide

the entire set of n capabilities such that the resulting SoS is connected and it shows high

performance and low cost. In addition, a total fund amount of F is available to assign

to the selected systems in order to improve their performances in providing capabilities.

Therefore, in addition to which systems to select, SoS architect should also decide how to

allocate this total fund among the selected systems. Particularly, let capabilities be indexed

by i such that i ∈ I, where I = {1, ..., n}, and systems indexed by j such that j ∈ J, where

J = {1, ...,m}. Let us define x j = 1 if system j is included in the SoS and x j = 0 otherwise,

and let X be the m-vector of x j’s. For SoS connectivity, a variable yqp is defined such that

yqp = 1 if both systems p and q are included in the SoS, i.e. xp = 1 and xq = 1, and yqp = 0

otherwise. Let Y be the m × m-matrix of yqp values. For fund allocation decisions, we

define continuous variables fi j ≥ 0 as the amount of funds that is being allocated to system

j to improve its performance in providing capability i. Let F be the n × m-matrix of fi j

values.

A system can provide some or all of the capabilities required by the SoS. Let ai j = 1

if system j can provide capability i and ai j = 0 otherwise, and A be the n × m-matrix

of ai j values. Moreover, we defineci j and pi j as the cost and the performance (without

any additional improvement spending) of system j in providing capability i, respectively.

Furthermore, to assure connectivity, interfaces should be used between any pair of selected

systems. Let hqp be the cost of connecting system p to system q with an interface. In

this study, similar to Konur and Dagli (2015), we assume that the performance of systems
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in providing capabilities can be improved linearly by the fund allocations. Specifically,

let ∆pi j = αi j fi j be the increase over pi j by allocating fi j amount of funds to system j’s

capability i, where αi j defines the rate of improvement in the performance of system j in

providing capability i. Since, there should be a natural upper bound on the maximum

performance achievable, we also define f̄i j’s as the upper bound for the amount of funds

that can be allocated to system j to improve capability i.

Based on the above discussion, the SoS problem of interest (P-SoS) can be formu-

lated as follows:

P-SoS: max TP(X,F) =
∑

i∈I
∑

j∈J ai j pi j x j +
∑

i∈I
∑

j∈J αi j fi j

min TC(X,Y,F) =
∑

i∈I
∑

j∈J ai jci j x j +
∑

p∈J
∑

q∈J hpqypq +
∑

i∈I
∑

j∈J fi j

s.t.
∑

j∈J Sjai j ≥ 1 ∀i ∈ I (1)

ypq + yqp ≥ xp + xq − 1 ∀p, q ∈ J, q > p (2)∑
i∈I fi j ≤ Fx j ∀ j ∈ J (3)∑
i∈I

∑
j∈J fi j ≤ F (4)

0 ≤ fi j ≤ ai j f̄i j ∀i ∈ I, ∀ j ∈ J (5)

x j ∈ {0, 1} ∀ j ∈ J (6)

yqp ∈ {0, 1} ∀p, q ∈ J, q > p (7)

The first objective is the maximization of the total performance TP(X,F), where the

first part is the total performance of the included systems in providing their capabilities and

the last part is the total improvement in performances after the allocation of funds. Linear

summation of the individual performances of systems, as the first part of this objective

function, is rather a simplistic approach to capture the performance of SoS. In real world

application, this part of the objective can be replaced by a weighted sum of individual

performances given that the weights that are known beforehand by the decision maker.
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The second objective function is the minimization of the total cost TC(X,Y,F),

where the first part is the total cost of the selected systems in providing their capabilities, the

second part is the cost of interfaces, and the last part is the total allocated funds. Constraints

(1) guarantee that at least one system provides each capability. These constraints are

covering constraints, which make P-SoS a NP-hard problem. Constraints (2) ensure that

every pair of selected systems in the SoS are connected. Since this set of constraints are

symmetric, in which ypq + yqp ≥ xp + xq − 1 and yqp + ypq ≥ xq + xp − 1 are equivalent, we

only consider the first set by index relation q > p. Constraints (3) assure that if system j is

selected, the total allocated fund to this system cannot exceed the maximum funds available;

if it is not selected, we do not allocate any fund to it. Constraint (4) guarantees that the total

allocated funds is less than the available fund. Constraints (5) define non-negativity and

upper bound for fi j ; if ai j = 1, the upper bound is f̄i j , otherwise the upper bound is zero,

which makes fi j = 0. Constraints (6) and (7) define the rest of variables as binary variables.

3. SOLUTION ANALYSIS

The problem P-SoS is a biobjective mixed integer linear programming problem and

due to the covering constraints (1), even the single objective case is NP-hard. To solve such

a problem, one may reduce the two objectives into a single one by using a weighted sum

approach or it is possible to find a solution that is at the lowest distance to the optimum of

each objective (Konur et al., 2014). In this work, however, our aim is to approximate the set

of Pareto efficient solutions. A solution S = [X,Y,F] is a Pareto efficient solution for P-SoS

if and only if there exists no other solution S′ = [X′,Y′,F′] such that TP(X′,F′) ≥ TP(X,F)

and TC(X′,Y′,F′) ≤ TC(X,Y,F) with at least one of the inequalities being strict. Due to

complexity of the problem, we next develop an evolutionary algorithm that approximates

a set of Pareto efficient solutions in two stages. At the first stage, the method generates a

feasible SoS, i.e., X̂, and generates Y = Ŷ based on X̂ considering the connections between
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any pairs of systems that are presented in X̂. At the second stage, Pareto efficient fund

allocations F for the given SoS (X̂, Ŷ) are generated by solving the following biobjective

linear programming problem:

P-SoSX̂: max ˆTP(F) =
∑

i∈I
∑

j∈J αi j fi j

min ˆTC(F) =
∑

i∈I
∑

j∈J fi j

s.t. Eqs. (3)-(5)

The problem P-SoSX̂ is the direct result of P-SoS, when X = X̂ and Y = Ŷ. The

objective functions of this problem are shown with ˆTP(F) as the total performance and

ˆTC(F) as the total cost, which both are a function of F. It will be discussed later that

the efficient solutions to this problem provide a trade-off for fund allocation to systems

considering both objectives of this problem. The basic steps of the two-stage evolutionary

algorithm are similar to the other works in the literature (Konur et al., 2014, 2016), which

are explained next.

Chromosome representation and initialization: We define the vector X as the chro-

mosome. To generate a feasible chromosome, we randomly generate a binary vector of

size m and check if all capabilities are provided. If a capability is missing, we select a

non-selected system which can provide the missing capability (replace 0 by 1). Using this

approach, we generate n0 chromosomes as the initial population.

Chromosome evaluation and finding vectors Y and F: Given a feasible X̂, vector

Ŷ is generated by considering the connections between any two pairs of systems that are

selected in X̂. However, to compute vector F, problem P-SoSX̂ should be solved. An

example set of solutions for this problem is shown in Figure 1 as continuous lines. To

solve this problem, we use the adaptive ε-constraint method (Laumanns et al., 2006), which

solves the problem min{ ˆTC(F): ˆTP(F) ≥ ε, (3) − (5)} for increasing values of ε . This

way, for a given chromosome X, we generate N number of Pareto efficient fund vectors,

namely F1, F2, ..., FN and get the set of solutions {(X,Y,F1), ..., (X,Y,FN )} for P-SoS. For

N = 4, these solutions are shown as stars in Figure 2. Once these solutions are generated
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for each chromosome in the population, the evaluation step determines the set of Pareto

efficient solutions by pairwise comparison of all such solutions. The unique chromosomes

generating at least one Pareto efficient are accepted as the parent chromosomes for the next

population.

Figure 1. Pareto efficient solutions of the
problem P-SoSX̂

Figure 2. Four Pareto efficient solutions
of the problem P-SoSX̂

Mutation: Given a set of parent chromosomes, we perform adding, dropping, and

swapping mutations. For the adding mutation, we consider each 0 in a given vector X and

we replace it with 1 to generate a new chromosome. If there are n0 of 0’s in a chromosome,

adding mutation will generate n0 new feasible chromosomes. For the dropping mutation,

we consider each 1 in the vector X and we drop make it 0. If the resulting chromosome

is still feasible, we accept it. For swapping mutation, we find all 0’s and 1’s. We swap

any pair of 0’s and 1’s and if the resulting vector is feasible, we accept it. In addition to

these mutation operators, we randomly generate n1 new feasible solutions using the process

described in step (1).

Termination: The algorithm will stop if the parent chromosomes do not change for

n2 consecutive iterations.
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To verify the performance of the above evolutionary algorithm, we compute a subset

of the set of efficient solutions forP-SoS using the adaptive ε-constraintmethod. Themethod

is a variation of the adaptive ε-constraint method of Laumanns et al. (2006). the adaptive

ε-constraint version of P-SoS, i.e. SoS− ε , is created by adding objective TP in constraints.

SoS − ε : max ˆTC(X,Y,F)

s.t. ˆTC(X,F) ≥ ε

Eqs. (1)-(7)

By varying ε values within the bounds of objective TP and updating it based on the

latest evaluation of this function, we can find a subset of Pareto efficient solutions. That

is, different than increasing ε with equal steps as in the classical ε-constraint method, we

increase it based on the latest solution. The reason for this as follows. Since, this problem is

a mixed-integer model, the bound on TP is not necessarily tight. Therefore, by considering

the TP of the latest solution, we avoid solving unnecessary mixed-integer models.

4. NUMERICAL ANALYSIS

In this section, we perform two sets of numerical study. First, we compare the

adaptive ε-constraint method with the evolutionary method we presented in the previous

section. Second, we use the evolutionary algorithm to investigate the effects of allocating

funds in the SoS architecture. The analysis is performed mainly on the integer part of

solutions, i.e. vector X. The rationale behind the decision is straight forward as one can

generate Y and F very easy for a given X, as discussed in the step (2) of the evolutionary

algorithm.

4.1. Comparison of theAlgorithms. To compare the adaptive ε-constraintmethod

with the evolutionary method, we consider 9 problem classes corresponding to each com-

bination of n ∈ {3, 6, 9} and m ∈ {3, 6, 9}. For each class, 10 instances are randomly

generated, in total 90 instances, and the averages of the results over these 10 problem in-

stances are considered. All 90 instances are solved by both algorithms. For every instance,
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parameters are randomly generated as ci j ∈ UI[20, 40], pi j ∈ UI[20, 40], hpq ∈ UI[1, 5],

f̄i j ∈ UI[5, 10], andαi j ∈ UI[1, 4], whereUI[a, b] is a uniform discrete distribution between

a and b. For this study, we assumed that the total available fund is equal to the summation of

the maximum individual funds that we can assign to each system, i.e. F =
∑

i∈I
∑

j∈J ai j f̄i j

as we do not allocate funds to a system to improve a capability that it originally cannot pro-

vide. Finally, we generated matrix A as a binary random matrix of size n ×m. Then, every

row of the matrix is checked to see if there is a system that can provide the corresponding

capability. If not, we randomly select a system to provide that capability. Furthermore, the

settings of evolutionary algorithm are n0 = n, n1 = n, and n2 = n.

Table 1. Comparison of the exact and approximated algorithms

n m |Xe | |Xa | % Xa ∈ Xe cpue cpua #pop |pop|
3 3.3 3.3 100% 0.71 0.05 3.8 9.91

3 6 15.7 20.7 95.59% 2.68 0.39 5.2 54.99
9 27.9 48.6 93.75% 4.87 2.46 7 228.25
3 2.3 2.3 100% 0.74 0.05 3.2 7.98

6 6 13.7 19.4 97.22% 4.28 0.32 4.7 43.22
9 33.3 57.7 94.87% 11.86 2.66 6.1 249.42
3 1.5 1.5 100% 0.58 0.08 3 5.43

9 6 9.7 11.9 98.75% 5.67 0.20 4.1 25.25
9 32.3 62 94.79% 20.37 2.76 5.7 251.61

Mean 15.52 25.27 97.22% 5.75 0.99 4.76 97.34

Table 1 summarizes the results of comparison between the algorithms. We only

compared the number of unique integer parts, i.e. vector X that we refer to as the Unique

Integer Part (UIP), in the final set of returned solutions by the algorithms. Superscripts e

and a are used to address adaptive ε-constraints and evolutionary algorithm, respectively.

In this table, |X | is the number of unique integer parts (NUIP) of the set of solutions and cpu

records the computational time in seconds. In addition, #pop and |pop| show the number of

evaluated populations and the average size of the population of the evolutionary algorithm,

respectively. The results show that in average 97.22% of NUIP of the solutions returned by
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the evolutionary algorithm are indeed integer parts of the Pareto efficient solutions returned

by the adaptive Ïţ-constraint method. Furthermore, evolutionary algorithm requires less

computational time on average. These confirm the quality of evolutionary algorithm.

4.2. Analysis on Funds. In this section, we investigate the case of a SoS archi-

tecting with funds and the case of SoS architecting without fund allocations. Setting of

the numerical analysis for this part is very similar to Section 4.1, except the size of prob-

lem instances is increased. Here, we consider every combination of n ∈ {4, 8, 12} and

m ∈ {4, 8, 12}. The notation is as follows: superscripts n and f refer to the no-funding

case and the funding case, respectively. The notations for |X |, cpu, #pop, and |pop| are

similar to the previous subsection. In addition, the following tables have a column for |XU |,

which is the NUIP that we get by combining all the non-dominated solutions of the two

cases. We refer to XU as the Union of Unique Integer Parts (Union-UIP) and its size as the

Union-NUIP.

Table 2 summarizes the quantitative comparison of non-funding SoS versus funding

SoS, while Table 3 demonstrates the qualitative comparison. The following observations

are based on these tables:

• On average, SoS architecting without funds generates less Pareto efficient SoS archi-

tectures compared to the SoS architecting with fund allocations (see Table 2 for |Xn |

vs. |X f |). This is because, some of the SoS architectures may be dominated unless

improvements are achieved by fund allocations. Also, as expected, evolutionary algo-

rithm evaluates more SoS architectures in case of fund allocations are allowed, which

also is the reason for higher computational time (see Table 2 for |popn | vs. |pop f |).

• In all of the 90 problem instances, 100% of UIP returned by SoS with funds appear

within Union-UIP, while this percentage for SoS without funds is 75%. That is, some

of the Pareto efficient SoS architectures returned by SoS architecting without funds

are dominated by Pareto efficient SoS architectures enhanced with funds returned by

SoS architecting with funds. In addition, NUIP that is shared between SoS with and
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without funds and Union-UIP is 71% of the NUIP of the Union-UIP. Finally, 99.94%

of NUIP of the Union-UIP comes from SoS with funds, while this percentage for SoS

without funds is 71.85% in average.

These observations show that SoS architecting with funds can improve both objectives

of SoS architecting and it is recommended to allocate funds to systems to improve their

performances.

Table 2. Quantitative comparison of funding vs. non-funding

n m |XU | |Xn | |X f | cpun cpu f #popn #pop f |popn | |pop f |

4 5.1 4.9 5.1 0.04 0.07 3.70 3.80 5.62 13.94
4 8 37.2 35.5 37.2 0.72 1.30 6.00 6.00 50.60 141.10

12 88.5 80.4 88.4 4.73 13.07 7.60 7.50 264.38 1017.98
4 4.2 4.1 4.2 0.05 0.06 3.20 3.30 5.46 9.47

8 8 44.5 39.8 44.5 0.79 1.45 5.60 5.70 52.00 129.93
12 128.4 101.4 128.4 6.30 21.30 7.30 7.00 319.09 1197.38
4 2.4 2.4 2.4 0.04 0.04 3.10 3.10 3.13 7.49

12 8 45 43.6 45 0.86 1.46 5.40 5.30 55.59 132.17
12 141.9 138.3 141.5 8.53 25.25 7.20 6.60 349.37 1226.51

Mean 55.24 50.04 55.19 2.45 7.11 5.46 5.37 122.80 430.66

Table 3. Qualitative comparison of funding vs. non-funding

n m |Xn∩XU |

|Xn |

|X f∩XU |

|X f |

|Xn∩XU |

|XU |

|X f∩XU |

|XU |

|Xn∩X f∩XU |

|XU |

4 96.25% 100% 94.17% 100% 94.17%
4 8 72.71% 100% 71.93% 100% 71.93%

12 52.64% 100% 47.87% 99.87% 47.74%
4 96.33% 100% 96.25% 100% 96.25%

8 8 74.20% 100% 66.79% 100% 66.79%
12 57.88% 100% 46.63% 100% 46.63%
4 100% 100% 100% 100% 100%

12 8 72.44% 100% 70.53% 100% 70.53%
12 53.87% 100% 52.45% 99.57% 52.02%

Mean 75.15% 100% 71.85% 99.94% 71.78%
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5. CONCLUSION AND FUTURE RESEARCH

This study investigates a SoS architecting problem, which allows allocating funds

to the systems for performance improvements. The problem is formulated as a biobjective

mixed integer linear programming model. An evolutionary method for Pareto front approx-

imation is proposed and the quality of algorithm is compared to the ε-constraint method.

Through the comparison, the quality of evolutionary algorithm is confirmed. The next

section of the numerical study demonstrates that by fund allocation, better solutions can be

achieved that can improve both objectives.
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Abstract

In this study, we analyze solution methods for approximating the Pareto front of

bi-objective mixed-integer linear programming problems. First of all, we discuss a two-

stage evolutionary algorithm. Given the values for the integer variables, the second stage of

the two-stage evolution algorithm generates the values for the continuous variables of the

corresponding Pareto efficient solutions. Then, the corresponding Pareto efficient solutions

of integer variables are compared in the first-stage of the two-stage evolutionary algorithm

to determine the Pareto efficient integer solutions. These stages are repeated within an

evolutionary heuristic structure to approximate the Pareto front. Secondly, we propose a

decomposition approach to separate the integral part of the feasible region of the problem.

The decomposition approach separates the problem into sub-problems, each of which has

an additional constraint, and approximates the Pareto fronts of the sub-problems using the

two-stage evolutionary algorithm discussed. Then, using the sub-problem Pareto fronts,

the Pareto front of the main problem is approximated. A numerical study is conducted to

compare two-stage evolutionary algorithm with decomposition approach, which uses the

two-stage evolutionary algorithm.

Keywords: Bi-objective Mixed-Integer Linear Programming; Decomposition; Pivoting
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1. INTRODUCTION AND LITERATURE REVIEW

Multi-objective Optimization (MOO) represents a class of optimization problems

that deals with multiple and, generally conflicting, objectives. In this study, we focus on

a class of bi-objective mixed-Integer linear programming (BOMILP) problems. BOMILP

problems, or generally Multi-objective mixed-Integer linear programming problems, find

many application in decision science, e.g. System of systems architecting problems

(Farhangi et al., 2016a) and any mixed and multi-objective problem that may arise in

practice. This class of problems are generally hard to solve exactly; hence, we propose two

approximation algorithms to solve them. An optimization problem is a BOMILP problem

when there are two objectives and the decision variables consist of both discrete and con-

tinuous variables. The formal statement of a BOMILP problem can be stated as follows

when integer variables are binary:

P: min z1 = cI x + cCy

min z2 = fI x + fCy

s.t. Ax + Ry ≤ b

x ∈ {0, 1}nI

y ≥ 0

where nI is the number of discrete variables, nC is the number of continuous variables, x

is the nI-vector of binary variables, y is the nC-vector of continuous variables, C = [cI, cC]

is the vector of the cost coefficients for the first objective function, F = [ fI, fC] is the

vector of the cost coefficients for the second objective function, A is the m × nI-matrix

of constraint coefficients associated with the discrete variables, R is the m × nC-matrix of

constraint coefficients associated with the continuous variables, and b is the m-vector of

non-negative right-hand-sides. A common approach to solve MOO problems is to generate

or approximate the set of Pareto efficient solutions. A feasible solution is Pareto efficient
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if there does not exist another feasible solution that is at least better in the terms of all

objectives and strictly better in terms of at least one of the objectives. A formal definition

for Pareto efficiency is stated next.

Definition 3 Solution X = (x, y) ∈ X is Pareto efficient if @X̄ ∈ X such that CX̄ ≤ CX

and CX̄ , CX , where X = {(x, y) : Ax + Ry ≤ b, x ∈ {0, 1}nI , y ≥ 0} is the set of feasible

solutions of P.

Several methods for solving BOMILP problems have been proposed to find the exact

set of Pareto efficient solutions. A variation of the branch-and-bound algorithm is proposed

in Belotti et al. (2013) and a generalization of the Dichotomic algorithm for BOMILP

problems is proposed in Boland et al. (2015) (dichotomic algorithm for a Bi-objective

transportation problem is described in Aneja and Nair (1979)). Furthermore, one may find

an iterative method, another exact algorithm, in Soylu and Yildiz (2016). In this paper, we

focus on approximating the set of Pareto efficient solutions for problem P. Specifically, we

propose a two-stage evolutionary algorithm and discuss a decomposition approach, which

uses the two-stage evolutionary algorithm. The second stage of this algorithm that consists

of the pivoting operation that works on any Bi-objective Linear Problem. This operation

first used for a bi-objective Multi-Commodity Minimum Cost Flow problem in Moradi

et al. (2015). One of the contribution of this paper is the use of this operation for any

bi-objective linear problem. In addition, the degeneracy of a given basis is the common

draw back for solving Bi-objective Linear Problems that is hinted in this paper. Moreover,

the decomposition scheme for BOMILP problems is another contribution of this paper. The

rest of the paper is organized as follows. In Section 2, the two-stage evolutionary algorithm

and the decomposition approach are explained. Section 3 discusses the results of a set of

preliminary numerical analyses. Section 4 gives the concluding remarks and a summary of

the findings.
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2. SOLUTION METHODS

In this section, two algorithms are introduced to approximate the set of Pareto

efficient solutions. The first algorithm is a two-stage evolutionary algorithm. First stage

generates a random integer vector of size nI . Given this integer vector, the second stage finds

the value(s) of the continuous variables. These stages are incorporated into an evolutionary

algorithm. The second algorithm decomposes the integer parts of the problem further, i.e.,

the integral part of the feasible region is decomposed using a set of hyperplanes. Every

decomposed problemmakes a sub-problem and we use the proposed two-stage evolutionary

algorithm on each sub-problem. Then, using the sub-problem Pareto efficient solutions, the

efficient solutions of the main problem are approximated. The details of the algorithms are

explained next.

2.1. Two-Stage Evolutionary Algorithm. This algorithm is called two-stage evo-

lutionary algorithm, because it consists of two main stages. The first stage starts with

generating a feasible integer solution x̂ such that x̂ ∈ X within an evolutionary process.

Given x̂, problem P reduces to the following bi-objective linear programming (BOLP)

problem:

Px̂: min z1 = cCy

min z2 = fCy

s.t. Ry ≤ b − Ax̂

y ≥ 0.

The second stage of the algorithm finds solutions of problem Px̂ . Since the variables

of this problem are continuous, the Pareto front of this problemwill be connected and piece-

wise convex Isermann (1977). Figure 1 illustrates a sample Pareto front for Px̂ with four

extreme efficient points, which are shown in squares. To generate this Pareto front, one may

use several solution methods that solve BOLP problems. Some of these solution methods

are: (1) the scalarization method based on Theorem 1 in Isermann (1977), (2) Dichotomic

algorithm in Aneja and Nair (1979), (3) Multi-objective Simplex method in Evans and
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Steuer (1973), and (4) ε-constraint method in Farhangi et al. (2016a). In this study, we

use a variation of the Multi-objective Simplex method, specific for BOLP problems, that is

introduced in Moradi et al. (2015). The advantage of this method is that it can return the

extreme efficient solutions of Px̂ considerably faster than the other three methods mentioned

above. However, it has a drawback when the problem has degeneracy. Here, we disregard

the degenerate cases as will be explained later. Given x̂, we solve the following problem

using regular simplex algorithm:

P1
x̂: min z1 = cCy

s.t. Ry ≤ b − Ax̂

y ≥ 0.

Given the set of the basic and non-basic variables of the current solution of P1
x̂ in the

simplex table, one may perform pivoting operations to extract the next efficient solutions.

Since adjacent extreme efficient solutions are connected for any BOLP, i.e. their linear

combination is also efficient, we can define a particular pivoting operation to generate these

points and retrieve the Pareto front. This pivoting operation differs from the regular simplex

pivoting in defining the entering variable.

Proposition 4 Entering Variable Rule: Given the index set of a current solution of P1
x̂ , the

index of the entering variable will be k, where

k = arg max
{���� z2

j− fj
z1
j−cj

���� : z2
j − f j < 0, z1

j − c j > 0, j ∈ N
}
, and N is the set of indices for the

non-basic variables of the current base (Moradi et al., 2015).

The concept behind this operation can be seen in Figure 2, which shows that we

select an entering variable that can give the lowest slope (slopes are negative) as shown

in circle. Note that among all three candidates, the point x1 satisfies the Definition 3, as

the line that connects x̂ to x1 partially dominates the lines that connect x̂ to the rest of the

points. Solving problem P1
x̂ and performing simplex operations using the new rule for the

entering variable (based on Proposition 4), one can find the entire set of extreme efficient
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solutions (Moradi et al., 2015). This method has a drawback, which is the degeneracy of a

given base. In that case, we may get trapped in a cycle. One can stop the algorithm when

the degeneracy is detected to prevent this cycle. Doing so, however, makes the algorithm

an approximation algorithm, rather than an exact algorithm.

Figure 1. Pareto front of a bi-objective
linear problem

Figure 2. Adjacent efficient solutions in
a bi-objective linear problem

The evolutionary algorithm (EA) in this paper consists of the following steps for a

bi-objective mixed-integer linear programming problem:

Step 1. Initialization: A vector x ∈ {0, 1}nI represents a chromosome for problem

P. Since the elements of the right-hand-sides vector are all non-negative, solution x̂ = 0nI is

a feasible solution (since we have (0nI , 0nC ) ∈ X). Given solution x̂ = 0nI , we incrementally

add 1’s to the random positions that are zeros to find a new solution. Using the new solution,

we continue this process until an arbitrary number of feasible solutions are created. In this

study, we always find at most nI feasible solutions. Once a new solution is created, say

x̄, we accept it if Ax̄ ≤ b. This is rather a heuristic rule for finding solutions. The exact

feasibility check of a solution is to solve the following problem:

P f eas
x̄ : min 0y

s.t. Ry ≤ b − Ax̄

y ≥ 0.



109

If problem P f eas
x̄ returns a solution, it means that x̄ is feasible; otherwise it is infeasible.

The initial population consists of the solutions that are created in this step.

Step 2. Evaluation and Selection: Given a feasible solution x̂, the problem P1
x̂ will

be solved to get the first efficient solution. Then, applying the Entering Variable Rule given

in the Proposition 4, the set of efficient solutions for the problem Px̂ can be generated. Let’s

assume using this method, q solutions, e.g. y1,...,yq are generated. Then the set of efficient

solutions for x̂ will be {(x̂, y1), ..., (x̂, yq)} and they can be easily used to evaluate their

objective function values. After all the chromosomes in the entire population are evaluated

by the preceding process, we apply a simple procedure to find the non-dominated solutions.

The process for finding the non-dominated solutions is similar to the Routine 0 in Konur

et al. (2016). After this process is completed, we select the unique integer parts as parents

for the next population.

Step 3. Mutation: Given a parent chromosome, x, we mutate it using three heuristic

rules; namely, adding, dropping, and swapping. The adding mutation finds zeros in x, i.e.

it finds Ja = { j : x( j) = 0}. Then, for a given j ∈ Ja it makes x( j) = 1. We accept

this new solution if it is feasible. We can create at most |Ja | new feasible solutions, using

adding mutation. The dropping mutation finds ones in x, i.e. it finds Jd = { j : x( j) = 1}.

Then, for a given j ∈ Jd it makes x( j) = 0 and we accept this new solution if it is feasible.

We can create at most |Jd | new feasible solutions, using dropping mutation. The swapping

mutation finds two sets Ja = {i : x(i) = 0} and Jd = { j : x( j) = 1}. Then, for a given i ∈ Ja

and j ∈ Jd we create a new solution such that x(i) = 1 and x( j) = 0 and if it is feasible we

accept it. Using the swapping mutation, we can generate at most |Ja | × |Jd | solutions. We

apply these operations to the all parent chromosomes to create children. In addition, we

randomly generate nI new solutions and add them to the children to increase the diversity

in the population. The next population consists of the current parent chromosomes and the

newly created children.
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Step 4. Termination: Steps 2 and 3 will be repeated until the parent chromosomes

do not change. Since we perform the complete neighborhood search to create children in

step 3, we stop the algorithm after one observation of the unchanged parents.

2.2. Two-Stage Evolutionary Algorithm via Decomposition. Two-stage Evolu-

tionary algorithm in the previous subsection separates the feasible region to the integer and

continuous variables. Here, we decompose the integral variables further, using a set of hy-

perplanes that covers the integral part of the feasible region. This decomposition approach

first appeared in Konur et al. (2016) and Farhangi et al. (2016b). Since x ∈ {0, 1}nI , we

can find the range of the number of 1’s in an efficient solution by solving the following two

problems; kmin = min{eT x : (x, y) ∈ X}, kmax = max{eT x : (x, y) ∈ X}, where e is a m-

vector of 1’s. Therefore, for any feasible x for problem P, one can write kmin ≤ eT x ≤ kmax .

Now, we define P − k for every k ∈ {kmin, ..., kmax} as follows:

P − k: min z1 = cI x + cCy

min z2 = fI x + fCy

s.t. Ax + Ry ≤ b

eT x = k

x ∈ {0, 1}nI

y ≥ 0

where one can immediately notice that every solution of problem P can be achieved by a

specific k value in problem P − k. Hence, the set of efficient solutions of P is a subset of

the union of the efficient solutions of all subproblems P − k. That is, if PE is the integer

parts of the Pareto efficient solutions of problem P and PE k is the integer parts of the Pareto

efficient solutions of subproblem P, we have the following proposition.

Proposition 5 PE ⊆
⋃kmax

k=kmin
PE k .
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Proof: Assume x ∈ PE , i.e. it is efficient, and x <
⋃kmax

k=kmin
PE k . We know that there must

exist a r such that eT x = r; hence, x should be in PEr , otherwise it means there is another

solution that dominates x in PEr , which is against the assumption that x ∈ PE .

Proposition 5 suggests that we can apply any solution method to the subproblems.

Moreover, the union of the efficient solutions of the subproblems contains the Pareto efficient

solutions of problem P. This argument motivates a decomposition scheme for the two-stage

evolutionary algorithm. The decomposition algorithm is as follows (the algorithm is similar

to those in Farhangi et al. (2016b); Konur et al. (2016)):

Decomposition approach for P:

Step 0: Set k = kmin and E = ∅

Step 1: Given k,

Step 2: If k ≤ kmax;

determine PE k by solving problem P − k,

update E = E
⋃

PE k , set k = k + 1, and go to Step 1

Step 3: Else, stop and go to Step 4

Step 4: Determine PE from E (Routine 0 in Konur et al. (2016)).

For solving problem P − k, one cannot directly use the two-stage evolutionary

algorithm, because we have to conserve the value of k throughout the evolutionary process.

For this purpose, we modified the two-stage evolutionary algorithm as follows:

Modified Two-stage Evolutionary Algorithm for solving problem P − k:

Step 0: Given k, and PE k

Step 1: Find initial population by using adding mutation on PE k ,

We only accept the resulting feasible solutions of adding mutation,

Step 2: Determine Parents using Routine 0 in Konur et al. (2016),

Step 3: If Parents does not change, go to Step 4.

Else, mutate Parents, using swapping mutation, go to Step 2,

Step 4: Set PE k+1 :=Parents and return it.
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In the next section, we perform a numerical analysis to compare these two solution

approaches: two-stage evolutionary algorithm and the decomposition approach, which uses

the two-stage evolutionary algorithm for the decomposed subproblems.

3. NUMERICAL ANALYSIS

To compare the two-stage evolutionary algorithm and the decomposition procedure,

9 problem classes are considered. Each class corresponds to a combination of nI ∈

{5, 10, 15} and nC ∈ {5, 10, 15}. For each class, 5 problem instances randomly generated;

that is, we solve 45 instances in total and each instance is solved twice: once with the

two-stage evolutionary algorithm and once with the decomposition procedure. Coefficients

of the first objective, cI, cC , are randomly generated assuming uniform distribution with

interval [−20, 20]. The coefficients of the second objective, fI, fC , are randomly generated

assuming uniform distribution with interval [−10, 10]. The coefficients of the constraints

are randomly generated from interval [−1, 21] and the elements of the right-hand-sides

vector are set as 1
3 |[A, R]e|, where e is a (nI + nC)-vector of 1’s. All procedures are coded

in MATLAB 2016a and run on a personal computer with 1.6GHz core i3 and 4GB RAM.

The results of numerical analysis are summarized in Table 1. In this table, |PE | is

the number of Pareto efficient solutions returned, |pop| is the average size of populations

per iteration, #iter is the number of populations that are evaluated (the number of iterations),

and CPU is the computational time of the algorithms. As this table shows, the difference

in the computational time is not very significant. In average, the two-stage evolutionary

algorithm takes 14.56 seconds to complete, while it is less than 13.29 seconds for the de-

composition procedure. The two-stage evolutionary algorithm returns slightly less number

of efficient solutions even though it evaluates more solutions on average. One advantage of

the decomposition method is that it evaluates more populations in less computational time.
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In summary, these results does not show significant improvement in the compu-

tational times. One of the reasons for this is the randomness of chromosome generation

process. One may add more criteria of accepting or rejecting a chromosome. One may

also consider to implement a heuristic version of an exact method and then study the com-

putational time. Specifically, as noted in Konur et al. (2016) and Farhangi et al. (2016b)

for pure integer models, the decomposition approach can improve the computational time

when one needs to solve integer models to generate efficient solutions. The exact methods

for multi-objective pure as well as mixed integer models require solving single-objective

integer and mixed-integer models. The decomposition approach reduces the search space

of these single objective models. Therefore, it reduces the time of solving the single-

objective models. As a result, even though the decomposition approach might require

solving more single-objective models, the overall computational time can be improved by

the decomposition approach as the solution time for the single-objective models is reduced.

Table 1. Comparison of the heuristic Algorithm and decomposition

Evolutionary Algorithm Decomposition
nI nC |PE | |pop| #iter CPU |PE | |pop| #iter CPU
5 5 3.5 24.50 3.5 1.9844 3.5 8.97 7.5 1.8828

10 6 40.35 4.25 3.5742 6 12.97 7.5 2.6289
15 5.6 35.47 3.4 2.5844 4.8 10.88 6.4 2.1531

10 5 7 107.27 5.2 11.2094 7 44.70 9.2 9.4344
10 7.4 109.75 4.8 10.5688 7.4 47.16 10.2 10.6281
15 6.8 112.54 5.6 12.8656 7 54.45 8.8 11.4000

15 5 12.2 348.79 6.8 46.5250 13.6 159.69 13.4 45.8750
10 7.4 175.03 6.2 21.7875 7.2 88.87 10.4 19.9250
15 6.6 172.07 6 20.7875 6.4 74.55 9.4 15.6688

Average 6.9 143.87 5.1 14.6541 7.0 64.86 9.2 13.2885
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4. CONCLUSION AND FUTURE RESEARCH

In this study, two algorithms are proposed to approximate the Pareto efficient solu-

tions of a bi-objective mixed-integer linear programming problem. The first algorithm is a

two-stage evolutionary algorithm. The second algorithm decomposes the problem over the

integer variables and solves the sub-problems by approximating their Pareto fronts using

the two-stage evolutionary algorithm discussed. A numerical study compared the two-stage

evolutionary algorithm to the decomposition approach. While the results do not show

significant improvement in the computational time, it is discussed that the decomposition

approach evaluated more solutions and returned slightly more solutions. One future direc-

tion is to consider the implementation of an exact method and then study the computational

time of this exact method to the decomposition approach, which uses this exact method for

the subproblems.

ACKNOWLEDGMENTS

This work is partially supported by the US Department of Defense through the

Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004. SERC

is a federally funded University Affiliated Research Center managed by Stevens Institute of

Technology.

REFERENCES

Aneja, Y. P. and Nair, K. P. (1979). Bicriteria transportation problem. Management
Science, 25(1):73–78.

Belotti, P., Soylu, B., and Wiecek, M. (2013). A branch-and-bound algorithm for biobjec-
tive mixed-integer programs. Optimization Online.

Boland, N., Charkhgard, H., and Savelsbergh, M. (2015). A criterion space search al-
gorithm for biobjective mixed integer programming: The triangle splitting method. IN-
FORMS Journal on Computing, 27(4):597–618.



115

Evans, J. and Steuer, R. (1973). A revised simplex method for linear multiple objective
programs. Mathematical Programming, 5(1):4–72.

Farhangi, H., Konur, D., and Dagli, C. (2016a). Multiobjective system of systems archi-
tecting with performance improvement funds. In Procedia Computer Science, volume 95,
pages 119–125.

Farhangi, H., Konur, D., and Dagli, C. H. (2016b). A separation method for solving
multiobjective set covering problem. In Yang, H., Kong, Z., and Sarder, M., editors,
Proceedings of the 2016 IISE.

Isermann, H. (1977). The enumeration of the set of all efficient solutions for a linear
multiple objective program. Journal of the Operational Research Society, 28(3):711–725.

Konur, D., Farhangi, H., and Dagli, C. (2016). A multi-objective military system of
systems architecting problemwith inflexible and flexible systems: formulation and solution
methods. OR spectrum, 38(4):967–1006.

Moradi, S., Raith, A., and Ehrgott, M. (2015). A bi-objective column generation algorithm
for the multi-commodity minimum cost flow problem. European Journal of Operational
Research, 244(2):369–378.

Soylu, B. and Yildiz, G. (2016). An exact algorithm for biobjective mixed integer linear
programming problems. Computers & Operations Research, 72:204–213.



116

VI. TRACK INSPECTION SCHEDULINGWITH TIME AND SAFETY
CONSIDERATIONS

Hadi Farhangi, Dincer Konur, Suzanna Long, Ruwen Qin, Jennifer Harper

Engineering Management and Systems Engineering Department

Missouri University of Science and Technology

Rolla, Missouri 65409

Email: hfrhc@mst.edu

Abstract

Track inspection is very important to maintain safety of the railroad transportation.

In particular, automated ultrasonic inspection is one of the most common inspection meth-

ods used to monitor the health of the rail tracks. Automated ultrasonic inspection is carried

out by vehicles equipped with technology capable of ultrasonic track inspection. Schedul-

ing an automated inspection vehicle is, therefore, crucial to optimize the safety benefits

achieved from inspection. In this study, we introduce a multi-objective track inspection

scheduling problem for an automated ultrasonic inspection vehicle. In particular, a bi-

objective optimization model is introduced where the safety benefits achieved through track

inspection is maximized and the time required for completing the scheduled inspections is

minimized. Due to the complexity of this optimization model, we propose an evolutionary

scheduling heuristic. Upon comparing the evolutionary scheduling heuristic to a naive

greedy scheduling method through a numerical study, we conclude that the evolutionary

scheduling heuristic outperforms the greedy scheduling heuristic. Furthermore, we note

that considering two objectives for track inspection policy planning leads to inspection

policies with higher safety benefits per unit inspection time.

Keywords: Track inspection; scheduling policy; multi-objective optimization; heuristics
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1. INTRODUCTION AND LITERATURE REVIEW

Railroad tracks constitute one of themost important assets of states aswell as railroad

companies. For instance, Amtrak, the national rail operator in the US, serves its passengers

on a network of more than 33,000 track kilometers (Amtrak, 2016). Furthermore, rail, after

trucking, is the second most common mode used for freight transportation in the US and

Europe. US Department of Transportation, Federal Railroad Administration (FRA) notes

that the US freight railroad network expands on 140,000 track miles (FRA, 2016b) and

Bureau of Transportation Statistics (BTS) notes that almost 10% of the total freight weight

is transported by rail in 2013 (BTS, 2016). Similarly, in the European Union, the whole

railroad network consists of almost 86,000 track miles (Eurostat, 2015) and more than 18%

of the total freight weight in 2012 was transported by rail (Eurostat, 2014). Safety and

operability of rail tracks are therefore crucial for a secure and efficient public and freight

transportation on the railroad networks.

Although there is a decreasing trend in the number of accidents on the US railroads

due to federal safety programs such as rail safety inspections (see, e.g., FRA, 2016c) or

private companies’ investments on infrastructures as noted by the (Association of American

Railroads, 2016), safety of the railroads should be continuously maintained and improved.

Unfortunately, there were over 10,000 accidents/incidents on the US railroads in 2015 and

over 6,000 accidents/incidents during the first half of 2016 (FRA, 2016a). Furthermore,

excluding human-factors, the major cause of train accidents is tracks (FRA, 2016a). There

are twomain safety improvement operations on railroad tracks: inspection andmaintenance.

It is therefore important to efficiently plan and implement track inspection and maintenance

policies. In this study, we analyze a track inspection scheduling considering the safety

importance and the time of track inspections.

In particular, to improve the railroad safety and avoid high maintenance costs,

scheduled inspections must be performed on rail tracks, soil, and bridges. The Automated

Track Inspection Program of the FRA ensures frequent monitoring of the health of the
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tracks on the railroads. Specifically, track inspection is carried out by automated inspection

vehicles equipped with technology (mostly ultrasonic but can be visual as well) that can

detect defects due to track geometry or structure. Track failure is a process that starts

with initially undetectable cracks on the tracks, continues with the growth of these cracks

into detectable defects, and concludes with maintenance if the defect is detected or failure

otherwise (Shang and Berenguer, 2014; Zhao et al., 2007). As noted before, the track

failures is the most common structural cause of train accidents; thus, efficient scheduling

of track inspections, which aim to detect track defects before they lead to failures (Vatn and

Svee, 2002), is essential for improving safety and reducing maintenance costs.

We note that there is a body of literature that focuses on planning track inspection

requirements such as the frequency of inspections and interval between inspections. For

instance, Vatn and Svee (2002) and Lyngby et al. (2008) develop risk-based approaches in

order to determine the ultrasonic inspection frequencies for rail tracks considering inspection

as well as maintenance costs. Podofillinia et al. (2006) analyze a multi-objective Markov

model for determining inspection requirements considering economic and safety aspects.

They use a genetic algorithm to solve the resulting inspection planning problem. Jeong

and Gordon (2009) develop a Monte Carlo risk assessment model to compare different

inspection strategies. Shang and Berenguer (2014) and Andrews et al. (2014) study the

effects of different inspection frequencies on safety andmaintenance related costs using Petri

net models. In a recent study, Liu et al. (2014) find optimum interval between consecutive

ultrasonic inspections of tracks by employing a probabilistic model that minimizes the total

number of track failures.

For the US railroads, FRA regulates track inspections by setting the inspection

frequencies and interval between consecutive inspections for track stakeholders (e.g., the

states and railroad companies) considering different railroad classes. Specifically, for

different railroad classes, the number of required inspections within a given period are

specified and consecutive inspections of a track should be performed within a time interval.
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One may refer to FRA (2015) for an overview of these track inspection requirements.

Furthermore, Class I railroads set their inspection plans considering the FRA requirements.

In this study, we, therefore, assume that the inspection requirements are given and our focus

is to determine a scheduling order for an automated inspection vehicle that will comply with

these requirements. We refer to this problem as the track inspection scheduling problem

(TISP).

TISP aims at finding an order of the track inspections to maximize the safety im-

provements while minimizing the total inspection time considering the required frequencies

and interval restrictions between inspections over a planning horizon. TISP is a bi-objective

optimization problem for scheduling the track inspections. It should be noted that various

optimization models have been analyzed for railroad operations. Related to safety, main-

tenance planning operations are widely studied using optimization tools. We refer the

reader to Budai-Balke (2009), Liden (2014), Liden (2015), and Liden (2016) for reviews

of the studies that analyze railroad maintenance operations using optimization tools. These

models generally focus on scheduling teams for preventive or prescribed maintenance activ-

ities on a railroad network considering operational constraints, such as maintenance team

characteristics and train traffic, and cost, time, and safety objectives. Similar maintenance

planning problems have been analyzed for scheduling preventive and/or prescribed main-

tenance activities for road pavements. Typically, pavement maintenance studies utilize

an index such as present-serviceability-index (see, e.g., Abaza and Ashur, 1999; Chikezie

et al., 2013; Meneses and Ferreira, 2013; Pilson et al., 1999; Yu et al., 2015) and pavement-

condition-index (see, e.g., Butt et al., 1994; Chikezie et al., 2013; Hicks et al., 1999; Tjan

and Pitaloka, 2005) to calculate the long-term cost savings and/or safety benefits of preven-

tive maintenance activities (see, e.g., Abaza and Ashur, 1999; Chikezie et al., 2013; Fwa

et al., 2000, 1994; Meneses and Ferreira, 2013; Yu et al., 2015).
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Similar to the maintenance planning problems, TISP is a scheduling problem; how-

ever, it differs from maintenance planning problems in terms of the objectives and restric-

tions considered. In TISP, inspection requirements are given by a set of regulations and the

focus is on completing these requirements within a planning horizon. One of the objectives

is to minimize the time required to complete the regulated inspections and another objective

is to maximize the potential safety benefits, especially from extra inspections that can be

conducted, if possible. Therefore, we do not directly consider long-term costs and safety

benefits, as is done in maintenance planning problems. On the other hand, we consider

inspection requirements such as the number of inspections required within the planning

horizon and the time window between consecutive inspections, which are regulated based

on safety considerations. While TISP is also a scheduling problem, there is a limited number

of studies that utilize optimization tools for its analysis.

To the best knowledge of the authors, Lannez et al. (2015) and Peng et al. (2013)

are the only studies that purely focus on track inspection scheduling. Lannez et al. (2015)

present an arc-routing problem for scheduling different inspection vehicles to different

shifts over a planning horizon to execute a given set of inspections. They assume that

each shift for a vehicle should start and end at the same node, which is defined as a refill

node, due to operational constraints. In Lannez et al. (2015), the objective is to minimize

the total distance traveled by the vehicles during the track inspections and they propose

Bender’s decomposition and column and cut generation heuristic methods for the problem.

Similarly, Peng et al. (2013) analyze a scheduling problem for periodic inspections. They

formulate a vehicle routing problem to determine which inspection tasks will be executed

by the inspection teams. Each team is assigned to a route on the railroad network. Due to

the complexity of the problem, Peng et al. (2013) develop heuristic methods to solve the

inspection scheduling problem.



121

The settings of the inspection scheduling problem of interest in this study has

similarities with those in Lannez et al. (2015) and Peng et al. (2013). As noted before and

considered in Lannez et al. (2015) and Peng et al. (2013) as well, tracks should be inspected

periodically. Therefore, a given track segment (or simply a track) should be inspected for a

predetermined number of times over a given planning horizon. This frequency requirements

indicate an interval (a time-window) for the next inspection of a track. Peng et al. (2013)

include constraints that assure a track’s next inspection is within a given period of time

after its latest inspection. In particular, they impose upper limits on the time between two

consecutive inspections of a track. Similarly, from a safety point of view, this upper limit on

the time between consecutive inspections of a track is needed and we also account for this

upper limit in our formulation. In addition, what should be of concern is the time elapsed

after a track’s inspection until its next inspection. If sufficient time is not allowed between

consecutive inspections, the next inspection can be redundant as the track’s status would

not significantly change within a short time period. Therefore, we also include lower limit

constraints on the interval between two consecutive inspections of a track.

Furthermore, we do not set hard constraints on the inspection frequencies. We

define inspection requirements as the minimum number of inspections required over a

planning horizon. That is, the decision maker can choose to execute more but not fewer

inspections than required over a planning horizon. The rationale behind this is the additional

safety benefits of more inspections. As inspections are repeated over a time, the schedule

defined for a planning horizon will be repeated in the next planning horizons; hence,

more inspections in a planning horizon implies increased safety over time. The objectives

considered in the above inspection scheduling studies are related to the total time of the

inspections. Nevertheless, the main purpose of inspection scheduling is to increase safety;

therefore, we consider two objectives for inspection scheduling over a given planning

horizon: maximization of safety benefits and minimization of total time of the inspections.

The length of the planning horizon already restricts the total inspection time; hence, one
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might consider that the minimization of the total inspection time over the planning horizon

is unnecessary as the total safety within the planning horizon is maximized. However, the

planning horizon defines an upper bound on the length of a schedule to be repeated; hence,

minimization of the total inspection times for a given total inspection safety implies higher

safety per unit time. This is observed in our numerical studies that are documented in

Section 4.

TISP is a bi-objective binary programming model for scheduling an automated

inspection vehicle’s inspections over a network of tracks. We do not restrict the vehicle

to travel only on the tracks as the vehicle can traverse from one track in one part of the

railroad network to another track in another part of the network. Therefore, instead of

taking a vehicle-arc routing approach, we define sequencing variables for the inspection

vehicle. This allows any track in the railroad network to be the next inspected track.

Due to complexity of the resulting model, we develop an evolutionary heuristic method to

approximate a set of Pareto efficient inspection schedules and quantitatively and qualitatively

compare this method to a naive greedy heuristic scheduler (a simpler version of this greedy

scheduling heuristic is proposed by the authors in an early version of this study, see,

(Farhangi et al., 2015). Our numerical studies imply that the evolutionary heuristic method

can find more Pareto efficient inspection schedules and the set of these inspection schedules

is mostly superior compared to the set of the inspection schedules returned by the greedy

scheduling heuristic. This suggests that using the evolutionary scheduling heuristic for track

inspection scheduling planning can increase the total safety benefits while decreasing the

total inspection times.

In addition, we define a quality ratio as a performance metric for an inspection

schedule. In particular, quality ratio of an inspection schedule is the ratio of its total

safety to total time. It is observed that the average safety ratio of the Pareto efficient

schedules determined by the evolutionary algorithm is better than the average safety ratio of

the schedules determined by the greedy scheduling heuristic. Furthermore, the maximum
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quality ratio achieved by the evolutionary scheduling heuristic is higher than the maximum

quality ratio achieved by the greedy scheduling heuristic. This implies that, compared to

the greedy scheduling heuristic, the evolutionary scheduling heuristic not only finds Pareto

superior inspection schedules in terms of total safety importance and total time but also

returns inspection schedules with higher quality ratios. Through our numerical analysis,

we also observe that considering safety and time objectives for track inspection schedule

can improve the quality ratio of the inspection schedules. In particular, with both of the

scheduling heuristics, it is observed that the inspection schedule with the maximum quality

ratio is neither the total safetymaximizing or the total timeminimizing inspection schedules.

This suggests that, by regarding two objectives, the inspection planner can increase total

inspection safety benefits (decrease total inspection time) while increasing total inspection

time (decreasing total inspection safety benefits) but not decreasing the safety benefits

achieved per unit inspection time.

The contributions of our study are as follows. First, we provide mathematical

formulation for track inspection schedule considering practical aspects of inspections as

well as safety and time dimensions of an inspection order. Second, we propose an efficient

method for inspection scheduling that outperform a simple greedy scheduling method. The

model formulated and the solution method proposed can be easily modified for different

settings. Finally, we note that considering two objectives for planning inspection scheduling

policies enable increased safety benefits per unit time. The rest of this paper is organized

as follows. Section 2 explains the settings of the model and provides its mathematical

formulation. In Section 3, we first detail the steps of the greedy heuristic scheduler and then,

develop an evolutionary heuristic method for finding Pareto efficient inspection schedules.

Section 4 summarizes the results of a set of numerical studies. A summary of the findings

along with future research directions are noted in Section 5.
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2. TRACK INSPECTION SCHEDULING PROBLEM

Consider a network of railroad tracks and suppose that the tracks are segmented

such that there are n track segments on the network. Hereafter, we refer to each track

segment as track for simplicity and let the tracks be indexed by i such that i ∈ I where

I = {1, . . . , n}. Suppose that these tracks need to be inspected over an inspection planning

horizon of H time units. As tracks might have different lengths and different speed limits for

the automated inspection vehicle, we let ti denote the time required for a single inspection

of track i.

As noted before, we assume that the required number of inspections for each track

is given and let Li denote the minimum number of times track i has to be inspected over

H time units. Notice that the inspection planner might choose to execute more inspections

on tracks during the planning horizon to increase overall safety benefits. Furthermore,

inspection of different tracks might be of different importance in terms of safety. For

instance, inspection of tracks with passenger traffic or hazardous material traffic can be

considered as more important compared to the inspection of tracks with non-hazardous

freight traffic. Therefore, we define wi as the importance weight for inspecting track i such

that a higher wi value implies higher inspection importance or higher safety benefit achieved

by inspecting track i. In addition, one can use hazard rates (see, e.g., Shyr and Ben-Akiva,

1996), expected number of defects on the track, and a serviceability index defined similar

to those in pavement maintenance studies (see, e.g., Hicks et al., 1999; Yu et al., 2015).

A track inspection schedule determines the sequence of tracks to be inspected by

the automated inspection vehicle over the inspection planning horizon. As our focus is on

scheduling the automated inspection vehicle, we do not restrict the travel of the inspection

vehicle only on the railroad network. That is, the inspection vehicle can travel from any

track in one part of the railroad network to any other track in another part of the network.

Therefore, we define di j as the time to travel from track i to track j. Note that dii is

practically zero; hence, in order to complete the minimum required inspections on a track,
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the inspection vehicle would consecutively inspect the same track to avoid unnecessary

travel times and minimize the total time required for completing the inspections. However,

this is problematic as the purpose of inspections is to determine any potential defects in all

tracks. If no defect detected at an inspection of a track, the next inspection on the same track

should be after a period of time. This period of time allows a level of traffic on the track

and aging of the track. We, therefore, define τL
i as the minimum time required between two

consecutive inspections of track i. In addition, the time until the next inspection should not

too long so as to avoid possible defects leading to track failures, and thus, we define τU
i as

the maximum time allowed between two consecutive inspections of track i. That is, right

after inspecting track i, its next inspection should be within [τL
i , τ

U
i ].

To define an inspection schedule, it is sufficient to determine the tracks inspected

at each inspection. Note that the inspection vehicle can complete at most m inspections

such that m = dH/min
i∈I
{ti}e and let the inspections be indexed by k such that k ∈ K where

K = {1, . . . ,m}. Then, we define

yk
i =


1 if track i is inspected at the k th inspection,

0 otherwise,

and let Y be the n ×m-array of yk
i values. Note that at most one inspection can be executed

at each possible inspection; thus, a feasible schedule should satisfy
∑n

i=1 y
k
i ≤ 1, ∀k ∈ K .

Furthermore, each track should be inspected a minimum of times; hence, we should have∑m
k=1 y

k
i ≥ Li, ∀i ∈ I.

The objectives of the inspection planner are the minimization of the time required

to execute inspections (total time) and the maximization of the total importance weight of

the inspections (total weight). Given Y, the total weight can be easily defined as

TW(Y) =
m∑

k=1

n∑
i=1

wiy
k
i . (1)
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The total time includes the inspection times and the travel times between tracks.

One can easily note that the time spent inspecting the tracks amounts to
∑m

k=1
∑n

i=1 tiyk
i time

units. To capture the travel times, we define auxiliary order variables zk
i j such that

zk
i j =


1 if track j is inspected right after track i’s inspection at the k th inspection,

0 otherwise,

and let Z be the n × n × m-array of zk
i j values. Assuming that an inspection schedule ends

when the last track in the schedule is inspected, the time spent traveling among the tracks

amounts to
∑m−1

k=1
∑n

i=1
∑n

j=1 di j zk
i j time units. The total time then amounts to

TT(Y,Z) =
m∑

k=1

n∑
i=1

tiyk
i +

m−1∑
k=1

n∑
i=1

n∑
j=1

di j zk
i j . (2)

The first component of Equation (2) defines the total time of the executed inspections

and the second component is the total time spent by the inspection vehicle traveling among

the tracks. Since the planning horizon is H time units, a schedule within the planning

horizon should have
∑m

k=1
∑n

i=1 tiyk
i +

∑m−1
k=1

∑n
i=1

∑n
j=1 di j zk

i j ≤ H.

Note that the start time of the k th inspection is equal to sk =
∑k−1

p=1
∑n

i=1 tiy
p
i +∑k−1

p=1
∑n

i=1
∑n

j=1 di j z
p
i j . Now, suppose that track i is consecutively inspected at the k th and

(k + r)th inspections such that r ≥ 1. That is, yk
i = yk+r

i = 1 and yk+b
i = 0 ∀ 1 ≤ b ≤ r − 1.

Then, in a feasible inspection schedule, one should have sk+r − sk ≥ τ
L
i and sk+r − sk ≤ τ

U
i

due to the minimum time required and the maximum time allowed between two consecutive

inspections of track i, respectively. Let us define

xkr
i =


1 if

∑k+r−1
p=k+1 y

p
i ≥ 1,

0 otherwise,
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and let X be the n × m(m−1)
2 -array of xkr

i values. That is, if yk
i = yk+r

i = 1 and yr+b
i = 0

∀ 1 ≤ b ≤ r − 1, one should have xkr
i = 0, which further means that one should have

τL
i ≤ sk+r − sk ≤ τU

i . On the other hand, if yk
i = yk+r

i = 1 and yr+b
i = 1 for some

1 ≤ b ≤ r − 1, then xkr
i = 1, so one should not restrict sk+r − sk to be within [τL

i , τ
U
i ].

To assure these for any consecutive inspections of any track, we include constraints in the

TISP, for which we present the mathematical formulation next. Let M be a positive real

valued large number.

min TT(Y,Z) =
∑m

k=1
∑n

i=1 tiyk
i +

∑m−1
k=1

∑n
i=1

∑n
j=1 di j zk

i j

max TW(Y) =
∑m

k=1
∑n

i=1 wiy
k
i

s.t.
∑m

k=1
∑n

i=1 tiyk
i +

∑m−1
k=1

∑n
i=1

∑n
j=1 di j zk

i j ≤ H (3)∑m
k=1 y

k
i ≥ Li ∀i ∈ I (4)∑n

i=1 y
k
i ≤ 1 ∀k ∈ {1, ...,m} (5)

zk
i j ≤ yk

i ∀i, j ∈ I;∀k ∈ {1, ...,m − 1} (6)

zk
i j ≤ yk+1

j ∀i, j ∈ I;∀k ∈ {1, ...,m − 1} (7)

zk
i j ≥ yk

i + yk+1
j − 1 ∀i, j ∈ I;∀k ∈ {1, ...,m − 1} (8)∑m

p=k+1
∑n

i=1 y
p
i ≤ M

∑n
i=1 y

k
i ∀k ∈ {1, ...,m − 1} (9)∑k+r−1

p=k
∑n

i=1 tiy
p
i +

∑k+r−1
p=k

∑n
i=1

∑n
j=1 di j z

p
i j ≥ τ

L
i + M(yk

i + yk+r
i − xkr

i − 2)

∀i ∈ I;∀k ∈ {1, ...,m − 1};∀r ∈ {1, ...,m − k} (10)∑k+r−1
p=k

∑n
i=1 tiy

p
i +

∑k+r−1
p=k

∑n
i=1

∑n
j=1 di j z

p
i j ≤ τ

U
i − M(yk

i + yk+r
i − xkr

i − 2)

∀i ∈ I;∀k ∈ {1, ...,m − 1};∀r ∈ {1, ...,m − k} (11)

r xkr
i ≥

∑k+r−1
p=k+1 y

p
i ∀i ∈ I;∀k ∈ {1, ...,m − 1};∀r ∈ {1, ...,m − k} (12)

xkr
i ≤

∑k+r−1
p=k+1 y

p
i ∀i ∈ I;∀k ∈ {1, ...,m − 1};∀r ∈ {1, ...,m − k} (13)

yk
i ∈ {0, 1} ∀i ∈ I;∀k ∈ {1, ...,m} (14)

zk
i j ∈ {0, 1} ∀i ∈ I;∀ j ∈ I;∀k ∈ {1, ...,m − 1} (15)

xkr
i ∈ {0, 1} ∀i ∈ I;∀k ∈ {1, ...,m − 1};∀r ∈ {1, ...,m − k} (16)
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As noted before, the objectives of TISP are maximization of the total weight and

minimization of the total time of the inspections. Constraint (3) ensures that the total in-

spection time (including traveling times) does not exceed the planning horizon. Constraints

(4) guarantee that the minimum number of required inspections are executed on the tracks.

Constraints (5) enforce that at most one inspection is executed at each inspection. Con-

straints (6)-(8) define the auxiliary order variables in terms of the track inspection variables.

In particular, if yk
i = yk+1

j = 1, track j is inspected at the (k+1)st inspection right after track

i is inspected at the k th inspection; hence, zk
i j = 1 by constraints (8). On the other hand, if

yk
i + yk+1

j ≤ 1, either constraints (6) or (7) imply that zk
i j = 0. Constraints (9) imply that all

empty inspections should be at the end of the schedule (i.e., there is no empty inspection

between track inspections). Constraints (10) assure that the time between any consecutive

inspections of a track is greater than or equal to the minimum time required between the con-

secutive inspections of the track. In particular,
∑k+r−1

p=k
∑n

i=1 tiy
p
i +

∑k+r−1
p=k

∑n
i=1

∑n
j=1 di j z

p
i j

is the elapsed time between the start times of the k th and (k + r)th inspections for any

r ≤ m − k. Therefore, if yk
i = yk+r

i = 1 and xkr
i = 0, i.e., track i is consecutively inspected

at k th and (k + r)th inspections (and not inspected in between), constraint (10) implies that

sk+r − sk ≥ τ
L
i as yk

i + yk+r
i − xkr

i − 2 = 0. On the other hand, if yk
i + yk+r

i ≤ 1, constraint

(10) implies that sk+r − sk ≥ −M , i.e., it is redundant as sk+r − sk ≥ 0 by definition.

Constraints (11) are defined similarly to guarantee that the time between any consecutive

inspections of a track does not exceed the maximum time allowed between the consecutive

inspections of the track. Constraints (12) and (13) assure that xkr
i = 1 if yp

i = 1 for some

p ∈ {k + 1, ..., k + r − 1} and xkr
i = 0 otherwise, respectively. Finally, constraints (14)-(16)

are the binary definitions of the decision variables.

It should be remarked that TISP is a bi-objective binary programming problem.

Even the single objective case of TISP is NP-hard. In particular, the special case of TISP

when TW(Y) is to be maximized subject to constraints (3) and (14) such that di j = 0
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∀i ∈ I, ∀ j ∈ I is the 0-1 knapsack problem. Therefore, in the next section, we adopt

heuristic approaches to solve the bi-objective TISP. The notation used in this section is

summarized in Appendix C.1. Additional notation will be defined as needed.

3. TRACK INSPECTION SCHEDULING METHODS

Solution approaches proposed for multi-objective optimization problems are dif-

ferent than those studied for single-objective optimization problems. The decision maker

ideally seeks the optimum solution in single-objective optimization problems; however, a

solution can be optimum with respect to one objective and sub-optimal with respect to

another objective in multi-objective optimization problems. While one of the common

approaches adopted for solving multi-objective optimization problems is to represent the

problem as a single-objective optimization problem through methods such as normalized

weighted method or minimization of the maximum deviation, this approach provides the

decision maker with a single solution by pre-modeling the decision maker’s preferences.

The other common approach, Pareto front generation, on the other hand, returns a set of effi-

cient solutions, among which the decision maker can select considering his/her preferences.

In this study, we use the later approach.

In particular, Pareto front of a multi-objective optimization problem consists of

all of the Pareto efficient solutions. For TISP, an inspection schedule is Pareto efficient

unless there exists another inspection schedule with higher total weight and lower total

time. That is, a feasible inspection schedule (Y′,Z′) is Pareto efficient if there does not

exist another feasible inspection schedule (Y′′,Z′′) such that TW(Y′,Z′) ≤ TW(Y′′,Z′′) and

TT(Y′,Z′) ≥ TT(Y′′,Z′′) with one of the inequalities being strict. We use this definition

(see also (Przybylski et al., 2010)) in finding the Pareto efficient schedules for TISP.

As noted previously, even with a single objective, TISP is NP-hard; therefore,

generating the exact set of Pareto efficient solutions, i.e., the Pareto front, is computationally

challenging. In particular, as TISP is a bi-objective model, one can use the well-known
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adaptive ε-constraint method (see Laumanns et al., 2006) to generate the exact Pareto front

for TISP. The adaptive ε-constraint method is a modification of the classical ε-constraint

method, where one of the objective functions is included in the constraints with an upper

bound and the resulting single-objective model is solved iteratively with decreasing upper

bounds. In the adaptive ε-constraint method, the decrease in the upper bounds is adaptively

controlled so as to avoid solving single-objective models that will return the same solution

due to the integrality of the variables. In Appendix C.2, we give the outline of the adaptive

ε-constraint method for TISP and the results of a set of preliminary numerical analyses.

Particularly, even for very small railroad networks (i.e., small n), TISP becomes a large scale

binary model as the number of variables becomes very large (specifically due inspection

and sequencing variables) as well as the number of constraints; and thus, the adaptive

ε-constraint method requires long computational times. Therefore, in what follows, we

develop heuristic methods to approximate the Pareto front for TISP.

First, we discuss a modification of a naive greedy heuristic method, proposed by the

authors for an earlier version of the TISP (see Farhangi et al., 2015), that creates feasible

inspection schedules while accounting for the total time or the total weight of the schedules.

Second, we propose an evolutionary heuristic method. Both of these heuristic methods

need to determine the Pareto efficient solutions within a given set of solutions. Particularly,

let Ω be a set of feasible inspection schedules. Then, one can determine the set of Pareto

efficient inspection schedules within Ω, denoted as PE(Ω), by comparing these schedules

based on the definition of Pareto efficiency. Given Ω, Routine 0, described in Appendix

C.3, details a method to determine PE(Ω) (similar methods are discussed in the literature,

see, e.g., Konur et al., 2014, 2016; Konur and Golias, 2013). Furthermore, both of these

heuristic methods discussed for TISP adopt a constructive approach for finding feasible

inspection schedules. Therefore, prior to explaining the details of the heuristics, we define

the structures that are used in both of the heuristics.
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First of all, note that given Y, Z and X can be determined easily. Therefore, it

is sufficient to know which track is being inspected at which inspection to determine the

inspection schedule. This implies that an inspection schedule can be defined by an integer

m-vector, v = [v1, v2, . . . , vm] such that vk ∈ {0}
⋃

I ∀k ∈ K where vk defines the inspected

track at the k th inspection and vk = 0 implies that an inspection is not executed on any track

at the k th inspection. A constructive approach generates a schedule v by determining v1

first, then v2, then v3 and so on. At an intermediate point of an incomplete schedule, say

after the r th inspection such that r ≤ m−1, the track to be inspected at the (r+1)st inspection

should be determined considering its feasibility. Furthermore, the feasibility of the whole

schedule should be considered. For instance, the next track to be inspected cannot be one

of the tracks of which latest inspection started less than τL
i time units ago (i.e., constraints

(10) should be satisfied). Furthermore, a feasible inspection schedule should guarantee that

the total inspection time is not exceeding the planning horizon (i.e., constraint (3) should

be satisfied), at least Li inspections are executed on track i (i.e., constraints (4) should be

satisfied), and the time between inspections of track i should not exceed τU
i time units (i.e.,

constraints (11) should be satisfied). Therefore, to construct a feasible schedule by adding

the next track to be inspected, one needs to keep record of and dynamically update the total

time spent after each inspection, the start time of the latest inspection and the possible start

time as the next track to be inspected for each track, and the number of remaining required

inspections. In particular, we define the following parameters:

STr : the total time spent as soon as the r th inspection is completed,

βi
r : the start time of track i’s latest inspection as soon as the r th inspection is completed,

αi
r : the start time of the (r + 1)st inspection if track i is inspected right after the r th

inspection,

γi
r : the number of remaining required inspections on track i as soon as the r th

inspection is completed.
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One can note that STr =
∑r

k=1 tvk +
∑r−1

k=1 dvkvk+1 and STr+1 = STr + dvrvr+1 + tvr+1 for

r ≤ m − 1. In a feasible inspection schedule v, one should have STm ≤ H. Also, it can be

noticed that αi
r = STr + dvr i. Now let us define

F0
r = {i ∈ I : γi

r ≥ 1, αi
r − β

i
r > τU

i } ∪ {i ∈ I : γi
r ≥ 1, STr + dvr i + ti ≤ H}: (17)

Observe that if F0
r , ∅, then the current partial schedule with the r th inspection

completed will not make a feasible schedule because there are tracks with remaining

inspections such that they should have been inspected earlier or their required next inspection

cannot be completed with the planning horizon. On the other hand, if F0
r = ∅, one can

continue to complete inspections and construct a feasible schedule. Particularly, when

F0
r = ∅, the next track to be inspected can be one of the tracks for which the lower and

upper time limits between its consecutive inspections are satisfied and its inspection can be

completed within the planning horizon. That is, track i can be inspected next as long as

αi
r − β

i
r ≥ τ

L
i and αi

r − β
i
r ≤ τ

U
i , i.e., its inspection can be completed within its time window,

and STr + dvr i + ti ≤ H, i.e., its inspection can be completed within the planning horizon.

Now, let us define the set of tracks with remaining inspections that can be inspected as the

next track after completion of the r th inspection as

F1
r = {i ∈ I : γi

r ≥ 1, αi
r − β

i
r ≥ τ

L
i , α

i
r − β

i
r ≤ τ

U
i , STr + dvr i + ti ≤ H}: (18)

Note that having F1
r = ∅ does not necessarily imply that there is not any possible

track to be inspected as the next one, i.e., the current partial schedule is not necessarily

infeasible. Particular, one can inspect a track, of which inspections are completed, and then

continue constructing the schedule. Therefore, if F1
r = ∅, a track from F2

r can be selected

for the next inspection such that

F2
r = {i ∈ I : αi

r − β
i
r ≥ τ

L
i , α

i
r − β

i
r ≤ τ

U
i , STr + dvr i + ti ≤ H}: (19)

It can be noticed that if F1
r ∪ F2

r = ∅, the current partial schedule with the r th

inspection completed will not make a feasible schedule; hence, construction should be

terminated.
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Given that tracks i and j, i , j, are indeed inspected at the r th and (r + 1)st

inspections, respectively, then we have βi
r = β

i
r+1 = STr − ti, β j

r+1 = α
j
r , and STr+1 = α

j
r + t j .

Furthermore, γi
r+1 = max{0, γi

r − 1} if vr+1 = i and γi
r+1 = γi

r otherwise. We use these

relations to update F0
r , F1

r , and F2
r after each inspection while constructing v. At some

point, if F0
r , ∅ or F1

r ∪ F2
r = ∅, the construction of the schedule, which started with v1, is

terminated. Otherwise, a constructive approach adds tracks to be inspected until F3
r = ∅,

where F3
r = {i ∈ I : γi

r ≥ 1}, i.e., the set of tracks with remaining inspections. In particular,

suppose that an incomplete schedule with r ≤ m completed inspections is given such that

F0
r = ∅. A constructive approach first tries to select the next track to be inspected from

the set of feasible tracks with remaining required inspections, i.e., F1
r . If F1

r = ∅, it tries

to select the next track from F2
r . If both F1

r = ∅ and F2
r = ∅, construction is terminated.

Routine 1 given in Appendix C.3 provides the algorithmic description of a constructive

approach given the initial track to be inspected. Note that, at termination of Routine 1, it is

possible that the total number of inspections completed is less than m; hence, the remaining

inspections are scheduled to be on track 0. That is, any feasible inspection schedule will

have consecutive non-zeros up to an inspection, say k ≤ m and consecutive zeros after that

inspection, i.e., a feasible inspection schedule will be v = [v1, v2, . . . , vk, 0, 0, . . . , 0] where

vi , 0 for i ≤ k and vi = 0 for k + 1 ≤ i ≤ m.

In selecting the next track to be inspected from the set of tracks within F1
r or F2

r , a

selection rule needs to be defined to use the constructive approach detailed in Routine 1.

In the greedy scheduling heuristic, we define three selection rules and, in the evolutionary

scheduling heuristic, we define one additional rule and use the rules defined for the greedy

scheduling heuristic. Next, we discuss the details of the greedy and evolutionary scheduling

heuristics.

3.1. Greedy Scheduling Heuristic. Greedy scheduling heuristic is a very simple

method that can be used to generate a set of inspection schedules: it first generates a set

of inspection schedules with the constructive approach (Routine 1) using three different
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selection rules and then, the set of Pareto efficient solutions among these schedules are

determined and returned to the decisionmaker (using Routine 0). The three greedy selection

rules to determine the next track to be inspected within the constructive approach are

urgency-based, weight-based, and time-based selection rules.

In particular, given a set of alternative tracks that can be potentially inspected right

after the k th inspection, denoted by Fk , the urgency-based rule considers the time a track’s

next inspection should be completed before to determine vk+1. As defined below, the

urgency-based selection rule returns the track with the minimum time left for completing

the next inspection:

Urgency-based Rule: vk+1 = arg min{βi
r + τ

U
i : i ∈ Fk}.

The purpose of urgency-based rule is to assure, as much as possible, that track

inspection time windows are respected. The weight-based selection rule considers the

importance weights of these tracks to determine vk+1. As defined below, the weight-based

selection rule returns the track with the maximum importance weight:

Weight-based Rule: vk+1 = arg max{wi : i ∈ Fk}.

The time-based selection rule, on the other hand, considers the total spent time if the

selected track is inspected to determine vk+1. As defined below, the time-based selection

rule returns the track with the minimum total time after the (k + 1)st inspection is complete:

Time-based Rule: vk+1 = arg min{αi
k + ti : i ∈ Fk}.

Greedy scheduling heuristic first executes Routine 1 using all of the selection rules

defined above with each track i ∈ I as the initially inspected track. This generates at most 3n

feasible inspection schedules. Then, Routine 0 is executed to determine the Pareto efficient

inspection schedules among the feasible inspection schedules generated. Algorithm 1

describes the steps of the greedy scheduling heuristic.
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Algorithm 1: Greedy Scheduling Heuristic

0: Given wi, Li, ti, τL
i , τ

U
i ∀i ∈ I; di j ∀i, j ∈ I, and H. Set Ω = ∅.

1: For i = 1 : n

2: Execute Routine 1 given v1 = i with Urgency-based rule,

and if v , 0, set Ω = Ω
⋃
{v}

3: Execute Routine 1 given v1 = i with Weight-based rule,

and if v , 0, set Ω = Ω
⋃
{v}

4: Execute Routine 1 given v1 = i with Time-based rule,

and if v , 0, set Ω = Ω
⋃
{v}

5: End

6: Execute Routine 0 with Ω and return PE(Ω).

3.2. Evolutionary Scheduling Heuristic. Evolutionary heuristic methods have

been successfully utilized in solving complex optimization problems with single- as well

as multi-objective optimization problems (see, e.g., Zitzler et al., 2004). Since TISP is

a bi-objective binary programming problem, evolutionary heuristic methods can be used

as effective solution methods because a solution for TISP can be easily represented as a

chromosome and a chromosome can be easily evaluated. In particular, majority of the

evolutionary heuristic methods have the following main steps: chromosome representation

and initialization, fitness evaluation and termination, and mutation. We next describe the

details of these steps for the evolutionary heuristic method proposed for TISP.

Chromosome Representation and Initialization: Recall that TISP has three sets of

binary variables: Y, X and Z. As noted before, given Y, X and Z can be calculated

easily. Furthermore, as aforementioned, Y can be represented as an integer m-vector,

v = [v1, v2, . . . , vm] such that vk ∈ {0}
⋃

I ∀k ∈ K where vk defines the inspected track

at the k th inspection and vk = 0 implies that an inspection is not executed on any track at

the k th inspection. Therefore, we use this integer representation of an inspection schedule



136

as the chromosome definition for the evolutionary scheduling heuristic. Chromosomes A

and B shown below illustrate two sample inspection schedules for a TISP with |I | = 4 and

|K | = 8.

Chromosome A : 1 3 4 2 1 4 3 0

Chromosome B : 4 2 3 1 4 0 0 0

Given a feasible chromosome v, one can determine Y and Z and calculate TW(Y) and

TT(Y,Z).

To initiate the evolutionary scheduling heuristic, an initial population of Υ feasi-

ble chromosomes is randomly generated. Note that a chromosome, by definition, satisfies

constraints (5)-(9) and (12)-(16) of TISP. Therefore, for randomly generating a feasible

chromosome v, we consider constraints (3)-(4) and (10)-(11) within the constructive ap-

proach defined in Routine 1. In particular, instead of using urgency-based, weight-based,

or time-based selection rules, the next track to be inspected is selected randomly from Fk ,

the set of alternative tracks that can be potentially inspected right after the k th inspection,

as follows:

Randomized Rule: vk+1 = random{Fk},

where random{E} operator randomly selects an element from set E . Routine 1 is executed

given v1 = random{I} with randomized rule until Υ number of non-zero v vectors (i.e.,

feasible chromosomes) are generated.

Fitness Evaluation and Termination: Suppose that the k th population of feasible

chromosomes, denoted by Λk , is known and let TW ps and TT ps denote the total weight and

time of vps, the sth chromosome in the k th population, such that s ≤ |Λk |. The purpose

of fitness evaluation is to select the best chromosomes in the current population. Due to

multi-objective nature of TISP, we evaluate the fitness of the chromosomes considering both

objectives. In particular, the Pareto efficient chromosomes within the current population

are accepted as the best chromosomes. To determine the Pareto efficient chromosomes of



137

Λk , one can execute Routine 0 and generate PE(Λk). PE(Λk) is then used as the set of

parent chromosomes for generating the next population of chromosomes through mutation

operations. At this point, it should be noted that the next population is defined as the

union of the parent chromosomes and the newly generated chromosomes through mutation.

Including the parent chromosomes of the current population within the next population

guarantees that the set of Pareto efficient solutions of the next population is not worse than

the set of Pareto efficient solutions of the current population.

The evolutionary scheduling heuristic terminates when there is no improvement

over a consecutive number of populations. In particular, if PE(Λk+o) = PE(Λk+o+1) for

o = {0, 1, 2, . . . ,O}, then the algorithm terminates as there is no improvement over the next

O populations starting from the k th population. To count the non-improving consecutive

population, one can define c and increase it by 1 if PE(Λk+o) = PE(Λk+o+1) and set c = 0

if PE(Λk+o) , PE(Λk+o+1).

Mutation: Mutation operations are used to generate a diverse set of inspection

schedules using the best inspection schedules of the previous population. As noted before,

parent chromosomes are the Pareto efficient chromosomes of the previous population. These

parent chromosomes are mutated to generate new chromosomes. A common mutation

operation used in evolutionary methods is cross-over, where two selected chromosomes are

mutated by replacing parts from each other. In the evolutionary scheduling heuristic, we do

not use cross-over operations due to feasibility considerations (after each cross-over, one

needs to check the feasibility of the new chromosomes with respect to constraints (3)-(4) and

(10)-(11)). A new chromosome generated through a random mutation, which manipulates

a randomly selected part of the chromosome, should also be checked for feasibility with

respect to constraints (3)-(4) and (10)-(11). Therefore, we define our ownmutation operation

to avoid feasibility checks.
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In particular, the mutation operation works as follows. Given a parent chromosome,

we first partition the chromosome into δ parts. From each part, a gene (inspection) is

randomly selected. The segment of the parent chromosome up to this selected inspection is

kept the same. Then, starting from this inspection, three new chromosomes are attempted

to be constructed using Routine 1 once with the each of the selection rules defined for the

greedy scheduling method (urgency-, weight-, and time-based selection rules). Note that at

most 3δ new chromosomes can be generated with one parent chromosome.

Starting with an initial population, the evolutionary scheduling heuristic applies

fitness evaluation and generate new population through mutations until the termination

criteria is satisfied. Algorithm 2 summarizes the steps of the evolutionary scheduling

heuristic.

Algorithm 2: Evolutionary Scheduling Heuristic

0: Given wi, Li, ti, τL
i , τ

U
i ∀i ∈ I; di j ∀i, j ∈ I, H, Υ, δ, and O.

1: Set k = 1 and c = 0. Generate Υ feasible chromosomes as Λk using Routine 1 with

v1 = random{I} and randomized rule. Determine PE(Λk) using Routine 0

2: While c ≤ O

3: Using PE(Λk), generate new chromosomes with mutation, M k

4: Let Λk+1 = PE(Λk)
⋃

M k and determine PE(Λk+1) using Routine 0

5: If PE(Λk) ≡ PE(Λk+1), set c = c + 1; else, set c = 0

6: End

7: Return PE(Λk+1).

4. TRACK INSPECTION SCHEDULING ANALYSIS

In this section, we present the results of a set of numerical studies. In particular, our

focus is on the quantitative and qualitative comparison of the two track inspection schedul-

ing methods proposed to approximate the Pareto front of TISP: greedy and evolutionary
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scheduling heuristics. Let PF1 and PF2 denote the set of solutions returned by Algorithm 1

(greedy scheduling heuristic) and Algorithm 2 (evolutionary scheduling heuristic), respec-

tively. In our analysis, we quantitatively and qualitatively compare PF1 and PF2. Prior

to presenting the details of each comparative analysis, we first explain the settings of the

numerical analyses.

For a given n, ten problem instances are generated randomly, where the problem

parameters are wi ∼ U[1, 10], ti ∼ U[2, 6], di j ∼ U[1, 6], and Li ∼ U[1, 3] ∀i ∈ I (possible

metrics for these values are noted in the notation table in Appendix C.1), where U[a, b]

denotes a uniform distribution with range [a, b] (Li is generated as an integer value). To

be able to accurately compare greedy and evolutionary scheduling heuristics, we define

the planning horizon H =
∑n

i=1 Li

(
ti +max

j
{di j, ∀ j , i, j ∈ I}

)
and the time windows as

τL
i =

H
2Li

, τU
i =

3H
2Li

. Our preliminary numerical experiments showed that m = 3
∑n

i=1 Li is

an appropriate value for the maximum number of inspections that might be completed. For

Algorithm 2, we set Υ = n, δ = dn/10e, and O = 5. All of the routines and algorithms

discussed are implemented in Matlab 2014 and executed in a personal computer with 4GB

RAM and 2.53 GHz CPU. Finally, the time limit for any algorithm is set to 30,000 seconds

excluding the completion of the last iteration.

4.1. Quantitative Analysis. In quantitative analysis, we compare Algorithms 1 and

2 in terms of the average number of iterations executed until termination (p), computational

time in seconds (cpu), and the number of Pareto efficient inspection schedules returned

(|PF |). Note thatAlgorithm1 has one iteration, i.e., it evaluates one population of inspection

schedules and the size of this population is equal to at most 3n. On the other hand,

Algorithm 2 continues iterations until the stopping criteria is satisfied. These statistics are

summarized in Table 1 over all the 10 problem instances solved for each problem class.

We also demonstrate the percentage of the problem instances where |PF1 | ≥ |PF2 | and

|PF1 | < |PF2 | for each n.
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It can be observed from Table 1 that the evolutionary scheduling heuristic generates

more inspection schedules than the greedy scheduling heuristic and, as a result, it requires

more computational time. Particularly, on average, while the evolutionary scheduling

heuristic manages to return 271 Pareto efficient inspection schedules around 24148 seconds,

the greedy scheduling heuristic returns 22.8 Pareto efficient inspection schedules around

11948 seconds. Furthermore, in all of the problem instances solved, the evolutionary

scheduling heuristic returns more Pareto efficient solutions. Nevertheless, comparing the

number of Pareto efficient solutions returned by each heuristic does not indicate that one

method should be preferred over the other in terms of solution quality. Therefore, we next

conduct qualitative analysis.

Table 1. Quantitative comparison of the inspection scheduling methods

Algorithm 1 Algorithm 2 Comparison
%|PF1 | %|PF1 |

n p |PF1 | cpu p |PF2 | cpu ≥ |PF2 | < |PF2 |

100 1 33.5 27.2 150 160.6 1629.6 0 % 100 %
200 1 37.5 728.4 241.4 371.8 25980.6 0 % 100 %
300 1 10.5 7927.4 66.3 299.1 30436.1 0 % 100 %
400 1 28.6 20989.9 42.3 301.6 30810.2 0 % 100 %
500 1 3.7 30071.5 26.5 221.9 31883.6 0 % 100 %
Avg. 1 22.8 11948.9 105.3 271 24148.1 0 % 100 %

4.2. Qualitative Analysis. Both Algorithms 1 and 2 return a set of inspection

schedules, among which the decision maker should select one. To qualitatively compare

the set of Pareto efficient inspection schedules returned by the greedy and evolutionary

heuristics, we first investigate the dominance relation between the two Pareto fronts, PF1

and PF2. In particular, a set of solutions, say P1, Pareto dominates another set of solutions,

say P2, if every solution in P2 is Pareto dominated by at least one solution in P1. This

implies that the Pareto dominance relation between two sets of solutions can be determined

by finding the Pareto efficient solutions within the union set of these two sets. The following
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statement gives a formal definition for Pareto dominance between PF1 and PF2:

Pareto front PF1 Pareto dominates PF2, denoted as PF1 � PF2, if PF1 , PF2 and

PE(PF1 ⋃
PF2) = PF1.

Note that PE(PF1 ⋃
PF2) can be determined using Routine 0. Therefore, for

comparing PF1 and PF2, we determine the percentage of the problem instances where

PF1 � PF2, PF2 � PF1, and PF1 ≶ PF2 (neither PF1 nor PF2 Pareto dominates the

other). Furthermore, we also examine the percentage of the inspection schedules from PF1

and PF2 that are in PF3 = PE(PF1 ⋃
PF2), denoted as % PF1 ∈ PF3 and % PF2 ∈ PF3,

respectively. Table 2 provides the average of these over all the 10 problem instances solved

with each n.

Table 2. Qualitative comparison of the inspection scheduling methods

Pareto Dominance Pareto Front Union
PF1 � PF2 � PF1 ≶ %PF1 %PF2

n PF2 PF1 PF2 |PF3 | ∈ PF3 ∈ PF3

100 0 % 90 % 10 % 160.7 0.3 % 100 %
200 0 % 70 % 30 % 370.7 3.4 % 99.5 %
300 0 % 30 % 70 % 297.2 20.2 % 98.9 %
400 0 % 40 % 60 % 298.4 21.9 % 96.6 %
500 0 % 80 % 20 % 220.3 13.3 % 98.9 %
Avg. 0 % 62 % 38 % 269.5 11.8 % 98.8 %

We have the following observations from Table 2. In none of the problem instances

solved, PF1 Pareto dominated PF2, whereas PF2 Pareto dominated PF1 over 62% of the

problem instances solved on average (for 38% of the problem instances neither PF1 nor

PF2 Pareto dominated the other). Furthermore, when we compare the percentage of the

inspection schedules from PF1 and PF2 that are in PF3, one can observe that PF3 mostly

consists of the inspection schedules coming from PF2 (over 98% on average). Recalling
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the observations on Table 1, these together imply that Algorithm 2 not only evaluates and

returns more Pareto efficient inspection schedules, but also it provides better inspection

schedules compared to Algorithm 1 on average.

Other than considering the Pareto front dominance and union of the Pareto fronts

returned by the scheduling heuristics, we also analyze the average quality of the inspection

schedules within the Pareto fronts. In particular, for each inspection schedule (Y,Z), we

define a quality ratio, q(Y,Z), as the ratio of its total inspection weight to its total inspection

time. That is,

q(Y,Z) = TW(Y)
TT(Y,Z) . (3)

Note that q(Y,Z) defines the inspection importance achieved per unit inspection

time with inspection schedule (Y,Z). Therefore, the higher q(Y,Z) value is, the inspection

schedule is better. Furthermore, Equation (3) can be used by the decision maker while mak-

ing a selection among a set of Pareto efficient inspection schedules. Therefore, comparing

q(Y,Z) values might indicate a preference for a scheduling method over another one.

To do so, we first calculate the mean of the q(Y,Z) values over all the inspection

schedules in a given Pareto front as the quality of a Pareto front for a given problem instance.

That is, quality of PFb is Qb =
∑
(Y,Z)∈PFb q(Y,Z)/|PFb | for b = 1, 2, where b = 1 defines

Algorithm 1 and b = 2 defines Algorithm 2. We also determine the inspection schedule

with the maximum q(Y,Z) over all the inspection schedules in PFb, denoted as qb
∗ for

b = 1, 2 such that qb
∗ = max{q(Y,Z) : (Y,Z) ∈ PFb}, and the percentage of problem

instances where Q1 < Q2 and q1
∗ < q2

∗ . Table 3 summarizes the averages of these values

over all 10 problem instances solved for each n. Furthermore, we document the averages of

the quality ratios of the inspection schedules with the maximum total weight and minimum

total time in each Pareto front, denoted as qb
TW and qb

TT , respectively, for b = 1, 2.

The following observations are due to Table 3. The average quality of PF2 is higher

than the average quality of PF1 (Q2 = 1.01 vs. Q1 = 0.92 on average) and Q2 > Q1 in 82%

of the problem instances solved. Furthermore, the average of the maximum quality achieved
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in PF2 is higher than the average of the maximum quality achieved in PF1 (q2
∗ = 1.02 vs.

q1
∗ = 0.80 on average) and q2

∗ > q1
∗ in 84% of the problem instances solved. These

suggest that the evolutionary scheduling heuristic returns Pareto fronts with higher quality

on average and the maximum quality ratio inspection schedule found by the evolutionary

scheduling heuristic has higher quality ratio than the maximum quality ratio inspection

schedule found by the greedy scheduling heuristic. Additionally, when we compare average

q1
TW to average q2

TW and average q1
TT to average q2

TT , it can be noticed that the average qualities

of the inspection schedules with the maximum total weight returned by the evolutionary

scheduling heuristic are higher than the average qualities of the inspection schedules with the

maximum total weight returned by the greedy scheduling heuristic and the average qualities

of the inspection schedules with the minimum total time returned by the evolutionary

scheduling heuristic are very close to the average qualities of the inspection schedules with

the minimum total time returned by the greedy scheduling heuristic. These suggest that,

even if the decision maker considers a single objective (total weight maximization or total

time minimization), the evolutionary heuristic can find inspection schedules with higher or

close quality ratio.

Table 3. Quality ratio comparison of the inspection scheduling methods

Algorithm 1 Algorithm 2 Comparison
%Q1 %q1

∗

n q1
∗ q1

TW q1
TT Q1 q2

∗ q2
TW q2

TT Q2 < Q2 < q2
∗

100 1.01 0.99 0.99 0.99 1.02 1.01 0.95 1.01 100 % 100 %
200 1.04 1.00 1.03 1.01 1.05 1.01 0.95 1.03 80 % 100 %
300 0.95 0.77 0.95 0.84 0.98 0.92 0.89 0.97 100 % 60 %
400 0.97 0.94 0.96 0.96 1.03 0.98 0.95 1.01 40 % 70 %
500 0.80 0.77 0.79 0.79 1.03 0.96 0.93 1.01 90 % 90 %

Average 0.95 0.89 0.94 0.92 1.02 0.98 0.93 1.01 82 % 84 %

An important observation in Table 3 is the following. In both of the inspection

scheduling methods, the average quality ratio of the inspection schedule with maximum

quality ratio is higher than the average quality ratios of the inspection schedules with
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maximum total weight and minimum total time for each n. That is, considering two

objectives for TISP leads to inspection schedules that achieve higher inspection importance

per unit inspection time.

In Figure 1, we illustrate the Pareto fronts returned by each scheduling method and

show the inspection schedule with the highest quality ratio on the Pareto fronts; and, we

demonstrate the quality ratios for each solution in the Pareto fronts for the first problem

instance for each n. It can be seen that the inspection schedules with the maximum quality

ratios are placed within the interiors of the Pareto fronts not on the extremes of the Pareto

fronts (the bottom extreme is the inspection schedule with minimum total time and the

top extreme is the inspection schedule with maximum total weight). These indicate that

the decision maker can find inspection schedules that increase the safety benefits achieved

per unit time by determining a set of Pareto efficient inspection schedules considering

total weight maximization and total time minimization objectives instead of finding the

inspection schedules that maximize the total weight of minimize the total time.

5. CONCLUSIONS AND FUTURE RESEARCH

This study analyzes a track inspection scheduling with safety and time considera-

tions. In particular, a bi-objective optimization model is formulated for the track inspection

scheduling problem, where the total inspection safety benefits is maximized while the total

inspection time is minimized. Due to complexity of the resulting optimization model, an

evolutionary scheduling heuristic is proposed and compared to a modified greedy schedul-

ing heuristic through a set of numerical studies. Our results indicate that the evolutionary

scheduling heuristic outperforms the greedy scheduling heuristic not only quantitatively but

also qualitatively.

One of the important results gained from this study is the following: accounting

for safety benefits of inspections along with inspection times might lead to inspection

schedules that achieve higher safety benefits per unit inspection time. In particular, it is
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(a) n = 100: PF1 and Q1 vs. PFF
2 and Q2 (b) n = 100: q1(Y,Z) and q1

∗ vs. q2(Y,Z) and q2
∗

(c) n = 200: PF1 and Q1 vs. PFF
2 and Q2 (d) n = 200: q1(Y,Z) and q1

∗ vs. q2(Y,Z) and q2
∗

(e) n = 300: PF1 and Q1 vs. PFF
2 and Q2 (f) n = 300: q1(Y,Z) and q1

∗ vs. q2(Y,Z) and q2
∗

(g) n = 400: PF1 and Q1 vs. PFF
2 and Q2 (h) n = 400: q1(Y,Z) and q1

∗ vs. q2(Y,Z) and q2
∗

(i) n = 500: PF1 and Q1 vs. PFF
2 and Q2 (j) n = 500: q1(Y,Z) and q1

∗ vs. q2(Y,Z) and q2
∗

Figure 1. Instance of Pareto fronts and quality ratios n ∈ {100, 200, 300, 400, 500}
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observed that neither the inspection schedule minimizing the total time nor the inspection

schedule maximizing the total safety benefits will necessarily be the inspection schedule

maximizing the safety benefits per unit inspection time. That is, the resources for track

inspection (which is time in this study but could also have been budget) are utilized better

by formulating the track inspection scheduling as a multi-objective optimization problem.

An immediate future research direction is to extend the TISP formulation to the

case with multiple inspection vehicles. The formulation approach and the solution methods

discussed in this study can be utilized for analyzing TISP with multiple inspection vehicles.

Furthermore, while we have considered two objectives in our formulation, one might

consider more objectives such as cost minimization. An important future research area is

to integrate inspection planning, i.e., determining the inspection requirements, (see, e.g.,

Andrews et al., 2014; Jeong and Gordon, 2009; Liu et al., 2014; Podofillinia et al., 2006;

Shang and Berenguer, 2014) integrated with inspection scheduling. Similarly, inspection

scheduling and maintenance planning can be investigated in an integrated manner.
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SECTION

3. SUMMARY AND CONCLUSIONS

This dissertation analyzes MOCO problems and their solutions methods to investi-

gate practical problems in SoS architecting and railroad track inspection scheduling. The

solution approaches adopted generate and/or approximate the set of Pareto efficient solutions

for the problems of interest. Specifically, four SoS architecting problems are investigated:

(i) SoS architecting with inflexible systems and (ii) SoS architecting with flexible systems

in Paper I; (iii) SoS architecting with both inflexible and flexible systems in Paper II; and

(iv) SoS architecting with inflexible systems and performance improvement funds in Pa-

per IV. Furthermore, these analyses led to an examination of generic MOCO problems.

Specifically, efficient decomposition solution methods are discussed for a generic MOSC

problem in Paper III and for a generic BOMILP in Paper V. Finally, bi-objective track in-

spection scheduling problem is introduced and an exact and two heuristic solution methods

are described for the problem.
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DETERMINING PARETO EFFICIENT SOLUTIONS IN A GIVEN SET

Let Po, Do, and Co denote the objective function values of a given solution Uo in

a set of solutions Φ such that 1 ≤ o ≤ |Φ|. The following algorithm determines the set of

Pareto efficient solutions within Φ, denoted by PE(Φ).

Routine 0: Determining PE(Φ)

1: Set t = 1

2: While t ≤ |Φ| − 1

3: Set w = t + 1

4: While w ≤ |Φ|

5: If (Pt,Dt,Ct) , (Pw,Dw,Cw), Pt ≥ Pw, Dt ≤ Dw, and Ct ≤ Cw

6: Set Φ := Φ\{Uw} and w = w − 1

7: If (Pt,Dt,Ct) , (Pw,Dw,Cw), Pt ≤ Pw, Dt ≥ Dw, and Ct ≥ Cw

8: Set Φ := Φ\{Ut}, w = |Φ|, and t = t − 1

9: Set w = w + 1

10: Set t = t + 1

11: Return PE(Φ) = Φ.

DETAILS OF THE NUMERICAL STUDIES

Given n, |J1 |, and |J2 |, we randomly generate 10 problem instances where each

problem instance is generated as follows. First, we generate an n×(|J1 |+ |J2 |)-matrix where

each entry is uniformly distributed between 0 and 1, and then, we round the entries to the

nearest integer and construct a binary n × (|J1 | + |J2 |)-matrix (that is, an entry is 1 with

probability 0.5 and 0 with probability 0.5). After that, we check if there is at least one 1

in each row. If there is at least one 1 in each row, it is accepted as a feasible A for the

problem instance because it means that there is at least one system that can provide each
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capability; otherwise, for those rows without a 1, we randomly select a column and make

the entry of that row in the randomly selected column equal to 1. After that, we generate

P, C, D, E, and H matrices such that pi j ∼ U[10, 20], di j ∼ U[5, 10], ci j ∼ U[20, 40], and

h j1 j1 ∼ U[1, 5], where U[a, b] denotes a continuous uniform distribution with the range

[a, b]. Without loss of generality, we round P, C, D, E, andH to the nearest integers (given

that these parameters are not in the constraints except D and D is only in the constraints that

define the completion time of a SoS, this generalization does not change the model).

In the evolutionary methods, we randomly generate α = n chromosomes initially,

we randomly generate γ = n chromosomes to be added to each population, and set β = n

as the termination criterion. Furthermore, in the exact methods, we set ε = 1 as C, D, E,

and H are integers. We set Mc and Md equal to the total cost and total time of the solution

defined by Υ, respectively (see Observation 1).

All of the methods are coded inMatlab 2014a (8.3.0.352) and executed on a personal

computer with 3GHz dual-core processor and 16GB RAM. For solving the mixed-integer-

linear problems in the form of ŜP, we use the mixed-integer-linear solver of IBM-ILOG’s

CPLEX version 12.6.1.

TABLES
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TABLES

Table B.1. Numerical comparison of SeqGen and decomposition for p ∈ {3, 5, 7, 9}

SeqGen Decomposition
p n m |PE | cpu opt − no cpu opt − no magnitude
3 5 3 12.4 0.1247 13.4 0.0032 24 ×41.9

4 13.8 0.1513 14.8 0.0029 24 ×48.9
6 3 18.6 0.2562 19.6 0.0043 35 ×60.6

4 19.2 0.2562 20.2 0.0044 33 ×57.8
7 3 37.0 1.0352 38.0 0.0133 60.2 ×71.5

4 30.4 0.7933 31.4 0.0089 46.8 ×82.8
Average 21.9 0.4362 22.9 0.0062 37.2 ×60.6

5 5 3 16.0 0.2946 17.0 0.0045 28.6 ×67.5
4 11.0 0.1170 12.0 0.0028 19.8 ×41.4

6 3 28.4 0.8597 29.4 0.0081 48.6 ×107.3
4 24.4 0.5874 25.4 0.0065 40.2 ×88.3

7 3 61.6 5.3739 62.6 0.0357 104 ×141.6
4 43.6 2.7068 44.6 0.0197 75.6 ×126.9

Average 30.8 1.6566 31.8 0.0129 52.8 ×95.5
7 5 3 13.0 0.2327 14.0 0.0035 23.8 ×72.2

4 16.4 0.3338 17.4 0.0035 26 ×89.8
6 3 41.4 2.6365 42.4 0.0141 58 ×187.2

4 39.4 2.7491 40.4 0.0128 54.8 ×201.1
7 3 81.2 16.3374 82.2 0.0553 121.4 ×279.1

4 61.0 12.3971 62.0 0.0371 103.6 ×259.6
Average 42.1 5.7811 43.1 0.0211 64.6 ×181.5

9 5 3 18.0 0.5566 19.0 0.0046 29.4 ×132.5
4 13.2 0.3293 14.2 0.0029 21.2 ×103.3

6 3 38.2 3.8648 39.2 0.0128 59.4 ×277.8
4 35.8 3.2718 36.8 0.0111 54.2 ×248.8

7 3 73.8 23.9767 74.8 0.0475 121.6 ×511.5
4 63.2 15.3717 64.2 0.0363 106.6 ×403.4

Average 40.4 7.8952 41.4 0.0192 65.4 ×279.5
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Table B.2. Performance of decomposition for p ∈ {3, 5, 7} and one maximization objective

SeqGen Decomposition
n m p |PE | cpu opt − no cpu opt − no magnitude
5 3 3 10.8 0.1014 11.8 0.0035 21.2 35.5

5 18.8 0.2841 19.8 0.0040 29.2 71.1
7 22 0.5979 23.0 0.0050 32.4 118.3

4 3 9.2 0.1214 10.2 0.0021 17.8 50.0
5 12.8 0.1467 13.8 0.0026 22.0 52.7
7 14.4 0.2588 15.4 0.0030 24.4 83.4

6 3 3 22.2 0.2982 23.2 0.0059 43.4 51.6
5 30 0.8465 31.0 0.0089 51.8 93.8
7 36 1.9466 37.0 0.0115 56.8 153.6

4 3 17.4 0.2410 18.4 0.0040 31.4 54.1
5 29.6 0.9312 30.6 0.0092 49.0 92.2
7 35.6 2.4508 36.6 0.0125 53.4 169.4

7 3 3 31.8 0.7893 32.8 0.0100 56.6 73.7
5 50.8 3.3609 51.8 0.0226 81.0 135.0
7 59.4 7.7452 60.4 0.0317 95.8 220.4

4 3 35.6 0.9520 36.6 0.0129 56.4 62.8
5 56.4 3.8404 57.4 0.0273 81.6 129.9
7 64.4 8.9542 65.4 0.0350 92.2 236.3
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Table B.3. Performance of decomposition for p ∈ {3, 5, 7} and all minimization objectives

SeqGen Decomposition
n m p |PE | cpu opt − no cpu opt − no Magnitude Per
5 3 3 2.2 0.0147 3.2 0.0025 23.8 5.8 100%

5 2.6 0.0102 3.6 0.0025 28.0 4.0 100%
7 3.4 0.0224 4.4 0.0019 32.2 11.6 100%

4 3 2.0 0.0104 3.0 0.0016 20.2 6.5 100%
5 3.4 0.0217 4.4 0.0022 26.6 9.8 100%
7 3.6 0.0256 4.6 0.0019 28.0 13.7 100%

6 3 3 2.6 0.0117 3.6 0.0017 34.0 6.8 100%
5 3.6 0.0194 4.6 0.0021 44.8 9.3 100%
7 4.6 0.0486 5.6 0.0023 54.8 20.7 100%

4 3 3.2 0.0263 4.2 0.0046 35.4 5.8 80%
5 4.2 0.0406 5.2 0.0021 40.8 19.2 100%
7 4.6 0.1074 5.6 0.0029 49.0 36.9 100%

7 3 3 2.8 0.0096 3.8 0.0024 47.0 4.0 100%
5 3.4 0.0164 4.4 0.0031 80.0 5.3 80%
7 4.6 0.0415 5.6 0.0064 104.0 6.5 100%

4 3 3.6 0.0196 4.6 0.0040 51.8 4.9 80%
5 6.0 0.0609 7.0 0.0030 75.6 20.0 100%
7 6.0 0.1071 7.0 0.0041 95.8 26.0 100%
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NOTATION

Sets and Indexes

I : the set of tracks, I = {1, 2, . . . , n}

i, j : indexes used for tracks, i, j ∈ I

K : the set of inspections, K = {1, 2, . . . ,m},

where is the maximum number of available inspections

k, r : indexes used for inspections, k, r ∈ K

Input Parameters

H : the length of the planning horizon (time units)

Li : minimum number of inspections required for track i (integer)

wi : inspection importance of track i (scalar)

ti : time required to inspect track i (time units)

τL
i : the minimum time required between consecutive inspections of track i

τU
i : the maximum time allowes between consecutive inspections of track i

di j : travel time from track i to track j (time units)

Variables

yik : 1 if track i is inspected at inspection k, 0 otherwise

zi j k : 1 if track j is inspected after track i at inspection k, 0 otherwise

xkr
i : 1 if track i is inspected at inspections k and r , 0 otherwise
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ADAPTIVE ε-CONSTRAINT METHOD FOR TISP

The adaptive ε-constraint method of Laumanns et al. (2006) is an exact method

to generate the Pareto front of TISP. It is a simple modification of the well-known ε-

constraint method. In particular, let F denote the set of inspection schedules that satisfy

the constraints (3)-(16), i.e., F is the set of feasible inspection schedules. Furthermore,

for notational simplicity, let S denote an inspection schedule. Then, TISP can be stated as

follows:

P :


min TT(S)

max TW(S)

s.t. S ∈ F

Now let STT = min{TT(S) : S ∈ F } and STW = max{TW(S) : S ∈ F }. It is well known that

if S is efficient, then TT(STT ) ≤ TT(S) ≤ TT(STW ) and TW(STT ) ≤ TW(S) ≤ TW(STW ).

Then, the ε-constraint method iteratively solves

P − δ :


min TT(S)

s.t. TW(S) ≥ δ

S ∈ F

by starting with δ = TW(STT ) and increase it by ε . Since TISP is a discrete problem, one

needs to change δ adaptively, instead of increasing it by ε at each iteration, to avoid solving

problems in the form of P − δ that would return the same solution. In particular, let Sδ be

the solution of P − δ. Then, the next δ value will be TW(Sδ) + ε instead of δ + ε . These

iterations are repeated until TW(Sδ) + ε ≥ TW(STW ). (One may refer to Laumanns et al.

(2006) and Konur et al. (2016)). In Table C.1 shows the average results over 10 problem

instances solved for each n ∈ {3,4,5} with the adaptive ε-constraint method where ε = 1

(to assure any solution is not missed). IBM ILOG’s (12.6.1) CPLEX algorithm is used to
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solve the binary linear programming models corresponding to P − δ. As can be seen from

the table, the computational time increases very fast with problem size and even for these

small size instances, the computational time is large.

Table C.1. Adaptive ε-constraint method for TISP

ε-constraint
n |PF | CPU (Seconds)
3 2.7500 8.3
4 3.6667 51.1
5 4.8000 1405.6

Average 3.7389 488.3

SCHEDULING HEURISTICS ROUTINES

Routine 0: Determining PE(Ω) given Ω , ∅

0: Let πa = (Y,Z) be the ath schedule in Ω and

(TTa,TWa) denote its total time and weight.

1: Set a = 1

2: While a ≤ |Ω| − 1

3: Set b = a + 1

4: While b ≤ |Ω|

5: If (TTa,TWa) , (TT b,TWb), TWa ≥ TWb, and TTa ≤ TT b

6: Set Ω = Ω − {πb} and b = b − 1

7: If (TTa,TWa) , (TT b,TWb), TWa ≤ TWb, and TTa ≥ TT b

8: Set Ω = Ω − {Ωa}, b = |Ω|, and a = a − 1

9: Set b = b + 1

10: End

11: Set a = a + 1

12: End

13: Return PE(Ω) = Ω.
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Routine 1: Inspection schedule construction given v1

0: Set k = 1, STk = tv1 , βi
k = −∞ ∀i ∈ I\{vk},

βv1
k = 0, γi

k = Li ∀i ∈ I\{vk}, and γv1
k = Lv1 − 1

1: Calculate αi
k = STk + dvk i ∀i ∈ I and determine F0

k , F1
k , F2

k , and F3
k

2: If F3
k = ∅, stop and return v = [v1, v2, . . . , vk]; else, go to 3.

3: If F0
k , ∅, stop and return v = 0; else, go to 4.

4: If F1
k ∪ F2

k = ∅, stop and return v = 0; else go to 5.

5: If F1
k , ∅, set Fk = F1

k ; else, set Fk = F2
k .

6: Determine vk+1 from Fk using a selection rule

7: Update STk+1 = α
vk+1
k + tvk+1 , βi

k+1 = β
i
k ∀i ∈ I\{vk+1}, βvk+1

k = αvk+1
k

8: Update γi
k+1 = γ

i
k ∀i ∈ I\{vk+1}, and γvk+1

k+1 = max{0, γvk+1
k − 1}, set k = k + 1

9: Calculate αi
k = STk + dvk i ∀i ∈ I and determine F0

k , F1
k , F2

k , and F3
k

10: Go to 2.
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