428 research outputs found

    List of contents

    Get PDF
    Rev. iberoam. bioecon. cambio clim. Vol.1(1) 2015; 95-114Los cambios medioambientales globales hacen pensar en un aumento futuro de la aridez, por ello es necesario buscar alternativas que permitan un uso más eficiente del agua y reducir su consumo, teniendo en cuenta que es un recurso limitado. En la actualidad, aproximadamente el 59,7% del total de agua planificada para todos los usos en Cuba se utiliza en la agricultura, pero no más del 50% de esa agua se convierte directamente en productos agrícolas. El estudio de las funciones agua-rendimiento y su uso dentro de la planificación del agua para riego es una vía importante para trazar estrategias de manejo que contribuyan al incremento en la producción agrícola. Utilizando los datos de agua aplicada por riego y los rendimientos obtenidos en más de 100 experimentos de campo realizados fundamentalmente en suelo Ferralítico Rojo de la zona sur de La Habana y con ayuda de herramientas de análisis de regresión en este trabajo se estiman las funciones agua aplicada-rendimientos para algunos cultivos agrícolas y se analizan las posibles estrategias de optimización del riego a seguir en función de la disponibilidad de agua. Seleccionar una estrategia de máxima eficiencia del riego puede conducir a reducciones de agua a aplicar entre un 21,6 y 46,8%, incrementos de la productividad del agua entre 17 y 32% y de la relación beneficios/costo estimada de hasta un 3,4%. Lo anterior indica la importancia desde el punto de vista económico que puede llegar a alcanzar el uso de esta estrategia en condiciones de déficit hídrico. El conocimiento de las funciones agua aplicada por riego-rendimiento y el uso de la productividad del agua, resultan parámetros factibles de introducir como indicadores de eficiencia en el planeamiento del uso del agua en la agricultura, con lo cual es posible reducir los volúmenes de agua a aplicar y elevar la relación beneficio-costo actual.Rev. iberoam. bioecon. cambio clim. Vol.1(1) 2015; 95-11

    Numerical treatment of oscillary functional differential equations

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Journal of computational and applied mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of computational and applied mathematics, 234(2010), doi: 10.1016/j.cam.2010.01.035This preprint is concerned with oscillatory functional differential equations (that is, those equations where all the solutions oscillate) under a numerical approximation. Our interest is in the preservation of qualitative properties of solutions under a numerical discretisation. We give conditions under which an equation is oscillatory, and consider whether the discrete schemes derived using linear v-methods will also be oscillatory. We conclude with some general theor

    Fractional model of cancer immunotherapy and its optimal control

    Get PDF
    Cancer is one of the most serious illnesses in all of the world. Although most of the cancer patients are treated with chemotherapy, radiotherapy and surgery, wide research is conducted related to experimental and theoretical immunology. In recent years, the research on cancer immunotherapy has led to major medical advances. Cancer immunotherapy refers to the stimulation of immune system to deal with cancer cells. In medical practice, it is mainly achieved by using effector cells such as activated T-cells and Interleukin-2 (IL-2), which is the main cytokine responsible for lymphocyte activation, growth and differentiation. A well-known mathematical model, named as Kirschner-Panetta (KP) model, represents richly the dynamics of the interaction between cancer cells, IL-2 and the effector cells. The dynamics of the KP model is described and the solution to which is approximated by using polynomial approximation based methods such as Adomian decomposition method and differential transform method. The rich nonlinearity of the KP model causes these approaches to become so complicated in order to deal with the representation of polynomial approximations. It is illustrated that the approximated polynomials are in good agreement with the solution obtained by common numerical approaches. In the KP model, the growth of the tumour cells can be expressed by a linear function or any limited-growth function such as logistic equation, in which the cancer population possesses an upper bound mentioned as carrying capacity. Effector cells and IL-2 construct two external sources of medical treatment to stimulate immune system to eradicate cancer cells. Since the main goal in immunotherapy is to remove the tumour cells with the least probable medication side effects, an advanced version of the model may include a time dependent external sources of medical treatment, meaning that the external sources of medical treatment could be considered as control functions of time and therefore the optimum use of medical sources can be evaluated in order to achieve the optimal measure of an objective function. With this sense of direction, two distinct strategies are explored. The first one is to only consider the external source of effector cells as the control function to formulate an optimal control problem. It is shown under which circumstances, the tumour is eliminated. The approach in the formulation of the optimal control is the Pontryagin maximum principal. Furthermore the optimal control problem will be dealt with using particle swarm optimization (PSO). It is shown that the obtained results are significantly better than those obtained by previous researchers. The second strategy is to formulate an optimal control problem by considering both the two external sources as the controls. To our knowledge, it is the first time to present a multiple therapeutic protocol for the KP model. Some MATLAB routines are develop to solve the optimal control problems based on Pontryagin maximum principal and also the PSO. As known, fractional differential equations are more appropriate to describe the persistent memory of physical phenomena. Thus, the fractional KP model is defined in the sense of Caputo differentiation operator. An effective method for numerical treatment of the model is described, namely Predictor-Corrector method of Adams-Bashforth-Moulton type. A robust MATLAB routine is coded based on the mentioned approach and the solution obtained will be compared with those of the classical KP model. The code is prepared in such a way to be able to deal with systems of fractional differential equations, in which each equation has its own fractional order (i.e. multi-order systems of fractional differential equations). The theorems for existence of solutions and the stability analysis of the fractional KP model are represented. In this regard, a frequently used method of solving fractional differential equations (FDEs) is described in details, namely multi-step generalized differential transform method (MSGDTM), then it is illustrated that the method neglects the persistent memory property and takes the incorrect approach in dealing with numerical solutions of FDEs and therefore it is unfit to be used in differential equations governed by fractional differentiation operators. The sigmoidal behavior of the solution to the logistic equation caused it to be one of the most versatile models in natural sciences and therefore the fractional logistic equation would be a relevant problem to be dealt with. Thus, a power series of Mittag-Leffer functions is introduced, the behaviour of which is in good agreement with the solution to fractional logistic equation (FLE), and then a fractional integro-differential equation is represented and proved to be satisfied with the power series of Mittag-Leffler function. The obtained fractional integro-differential equation is named as modified fractional differential equation (MFDL) and possesses a nonlinear additive term related to the solution of the logistic equation (LE). The method utilized in the thesis, may be appropriately applied to the analysis of solutions to nonlinear fractional differential equations of mathematical physics. Inverse problems to FDEs occur in many branches of science. Such problems have been investigated, for instance, in fractional diffusion equation and inverse boundary value problem for semi- linear fractional telegraph equation. The determination of the order of fractional differential equations is an issue, which has been analyzed and discussed in, for instance, fractional diffusion equations. Thus, fractional order estimation has been conducted for some classes of linear fractional differential equations, by introducing the relationship between the fractional order and the asymptotic behaviour of the solutions to linear fractional differential equations. Fractional optimal control problems, in which the system and (or) the objective function are described based on fractional derivatives, are much more complicated to be solved by using a robust and reliable numerical approach. Thus, a MATLAB routine is provided to solve the optimal control for fractional KP model and the obtained solutions are compared with those of classical KP model. It is shown that the results for fractional optimal control problems are better than classical optimal control problem in the sense of the amount of drug administration

    Self-regulated biological transportation structures with general entropy dissipations, part I: the 1D case

    Full text link
    We study self-regulating processes modeling biological transportation networks as presented in \cite{portaro2023}. In particular, we focus on the 1D setting for Dirichlet and Neumann boundary conditions. We prove an existence and uniqueness result under the assumption of positivity of the diffusivity DD. We explore systematically various scenarios and gain insights into the behavior of DD and its impact on the studied system. This involves analyzing the system with a signed measure distribution of sources and sinks. Finally, we perform several numerical tests in which the solution DD touches zero, confirming the previous hints of local existence in particular cases.Comment: 22 pages, 8 figure

    List of papers presented at the conference

    Get PDF

    Geometric Numerical Integration (hybrid meeting)

    Get PDF
    The topics of the workshop included interactions between geometric numerical integration and numerical partial differential equations; geometric aspects of stochastic differential equations; interaction with optimisation and machine learning; new applications of geometric integration in physics; problems of discrete geometry, integrability, and algebraic aspects

    Author Index Volume 231 (2009)

    Get PDF

    On new and improved semi-numerical techniques for solving nonlinear fluid flow problems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.Most real world phenomena is modeled by ordinary and/or partial differential equations. Most of these equations are highly nonlinear and exact solutions are not always possible. Exact solutions always give a good account of the physical nature of the phenomena modeled. However, existing analytical methods can only handle a limited range of these equations. Semi-numerical and numerical methods give approximate solutions where exact solutions are impossible to find. However, some common numerical methods give low accuracy and may lack stability. In general, the character and qualitative behaviour of the solutions may not always be fully revealed by numerical approximations, hence the need for improved semi-numerical methods that are accurate, computational efficient and robust. In this study we introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems. These techniques aim to combine the strengths of both analytical and numerical methods to produce efficient hybrid algorithms. In this work, the homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral methods are well known for their high levels of accuracy. The new spectral homotopy analysis method is further improved by using a more accurate initial approximation to accelerate convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral methods are used to solve the linearised equations. The new techniques were used to solve mathematical models in fluid dynamics. The thesis comprises of an introductory Chapter that gives an overview of common numerical methods currently in use. In Chapter 2 we give an overview of the methods used in this work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter 4 the methods were used to find solutions of the laminar heat transfer problem in a rotating disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and the classical von Kάrmάn equations for boundary layer flow induced by a rotating disk. In Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem due to a shrinking sheet with a chemical reaction, were solved using the new methods

    Master index to volumes 1–10

    Get PDF
    • …
    corecore