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ABSTRACT

Stability in the numerical treatment of Volterra integral and 

integro-differential equations with emphasis on finite recurrence 

relat ions.
)

In the last two decades the theory of Volterra integral equations 

and of integro-differential equations has developed extensively. New 

classes of methods for the numerical solution of such equations have 

been developed and at the same time there have been advances in the 

qualitative theory of these equations. More frequent use is being 

made of Volterra equations to model various physical and biological 

phenomenon as new insight has occurred into the asymptotic behaviour 

of solutions. In consequence, there has emerged a need for reliable 

and efficient methods for the numerical treatment of such equations.

This thesis is concerned with an aspect of numerical solution 

of Volterra integral and integro-differential equations. In Chapters 

1 and 2 we are concerned with background material. We provide results 

on the classical theory of Volterra equations in Chapter 1 and on 

numerical methods in Chapter 2. The original material is contained 

in Chapters 3, 4 and 5. Here, stability results which involve the 

construction and analysis of finite-term recurrence relations are 

presented. The techniques relate to the treatment of Volterra 

integral and integro-differential equations. They permit the 

analysis of classical and 7-modified numerical methods.

The results presented should be viewed as a contribution 

towards an understanding of numerical stability for the methods
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considered. The area is one in which further work (subsequent to 

the present investigation and involving advanced techniques) has been 

performed and where open questions still remain.

The techniques which are employed in this thesis are applicable 

in other areas of numerical analysis and therefore have intrinsic 

interest .



CONTENTS

Page No

O

O

CHAPTER 1 Introduct ion 1
1.1 Preliminary remarks. 3
1.2 Classification of Abel-type and Volterra

integral equations. 5
1.3 Transformation of Equations into new forms. 9
1.4 Relations between integral equations and

ordinary differential equations. 12
1.5 Integro-differential equations. 14
1.6 Variation of constants formula. 16
1.7 The role of Laplace transforms. 21
1.8 Background material. 25
1.9 Topics in the theory of Volterra equations. 32

References. 54

CHAPTER 2 Methods for non-singular problems. 58

2.1 Preliminary remarks. 59
2.2 Quadrature methods. 59
2.3 Runge-Kutta type methods for Volterra equations. 73
2.4 Product Integration methods. 86
2.5 Bownds' method. 88
2.6 ^-modified methods. 90

References. 92

CHAPTER 3 Basic stability analysis of Runge-Kutta methods for
Volterra integral eouations of the second kind. 95

3.1 Introduction. 96
3.2 Preliminary remarks on stability. 97
3.3 Further remarks on structure. 108
3.4 Extended Runge-Kutta methods and stability

definitions. 113
3.5 Mixed Runge-Kutta methods with reducible rules. 128
3.6 Mixed quadrature - Runge-Kutta methods using

block reducible rules. 136
3.7 Extensions. 142

References. 145



Page No

GHAPJER 4 Basic Stability analysis of Runge-Kutta methods 
for Volterro integra-differential equations.

4.1
4.2

4.3

4.4

4.5
4.6

Numerical methods and stability.
Extended Runge-Kutta methods and stability 
définit ions.
Runge-Kutta/Mixed quadrature - Runge-Kutta 
methods.
Mixed quadrature - RK methods/mixed quadrature 
RK methods.
A-stability.
Extensions.
References.

148

149 

156 

165

172
176
177
178

O CHAPTER 5

5.1
5.2
5.3
5.4
5.5

On the construction of stability polynomials for
modified RK methods for Volterra integro-
different ial equations. 180

Introduction. 181
Stability of a recurrence. 181
A general class of methods. 185
Basic stability theory. 188
Summary. 198
References. 200

O



o

- 1 -  

CHAPTER 1
1.1 Preliminary Remarks

1.2 Classification of Abel-type and Volterra Integral Equations 

• 1.2.1 Equations of the first kind

1.2.2 Equations of the second kind

1.2.3 Equations of convolution type

1.3 Transformation of Equations into New Forms

1.3.1 Volterra equations of the first kind recast as Volterra 

equations of the second kind

1.3.2 Linear Abel equations of the first kind recast as Volterra 

equations of the second kind

1.3.3 Other integral equations which may be recast as Volterra 

equat ions

1.4 Relations between Integral Equations and Ordinary Differential

Equat i ons

1.5 Integro-differential Equations

1.5.1 As a member of the class of Volterra functional 

differential equations

1.5.2 Relations with Volterra equations of the second kind 

O  1-6 Variation of Constants Formula

1.6.1 Volterra integral equation of the second kind

1.6.2 The integro-differential equation

1.7 The.Role of Laplace Transforms

1.7.1 Integral equations of the second ki-nd and of convolution type

1.7.2 Relations with the resolvent

1.7.3 Integral equations of the first kind and of convolution 

type

1.8 Background Material

1.8.1 Function spaces

1.8.2 Linear operators



o

•2-

1.9 Topics in the Theory of Volterra Equations

1.9.1 Existence and uniqueness

1.9.2 Continuation of solutions

1.9.3 Periodic solutions

1.9.4 Stability

1.9.5 Stability criteria in terms of the resolvent or 

characteristics of the kernel

1.9.6 Convolution kernels re-visited

1.9.7 Asymptotic behaviour of solutions of integro-differential 

equat ions

1.9.8 The linearization of Volterra integral equations

O



o

o

1.1 Preliminary Remarks.

In this Chapter we give some background material. Asterisked 

sections are peripheral to our main theme.

One of the first evolutionary integral equations mentioned in 

mathematical literature appears to be due to N.H. Abel who generalised 

Christian Huygens' investigations of the isochronous pendulum. Abel 

started from a problem in mechanics which was to determine, in a vertical 

plane, the path along which a particle must be constrained to fall under 

constant vertical acceleration so that its time of fall shall always 

equal a prescribed function of the distance fallen. If the particle 

falls, without friction, from a given height h to y < h, then from

energy considerations we have ^m
. 2

ds
dt = mg(h - y) and

TTh-ryj = ^ 2g)T(h)
y=h

where T(h) is the time taken to fall through the distance h. 

Introducing the function u(y) where -ds/dy = u(y) we obtain Abel's 

equat ion

Huygens, in 1673, discovered the isochrone and tautochrone properties of 

the cycloid which were the solutions to his problem. Abel, by rather 

different investigations, published his solution (see §1.2 below) in 1826 

in Crelle's Journal.

In 1896, V. Volterra (1860-1940), one of the founders of the modern 

theory of integral equations, published his theory of Integral Equations 

using their solution as a problem of finding the inverses of certain 

integral operators; while in 1900 Ivor Fredholm made a contribution on 

integral equations which had great impact on the foundation and 

development of functional analysis.
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Abel equations occur frequently in the literature and are of great 

interest. For example, many are derived from problems in heat transfer 

and are related to solutions of certain parabolic equations.

However, it is in the last two decades that the theory of Volterra 

integral equations has developed extensively. This may be because such 

equations are now seen to result from specific problems and are no longer 

regarded as special cases of Fredholm equations. As an illustration of 

the wealth of recent literature assessed in the study of Volterra 

integral equations we may refer to Tsalyuk [51], who, in a survey 

covering 1966-1976, reviewed 515 papers, none having an applied

character, and, furthermore, he restricted his investigation to include 

only those which were reviewed in the Referativyni Zhurnal "Matematika". 

Equally, the applications of Volterra integral equations are numerous and 

varied in many areas of science. For example, the analysis of problems 

of industrial replacement is similar to that in population analysis with 

its related actuarial and genetic applications cf. Lotka [36],£S'7j 

Feller [25]. Furthermore, a recent monograph Brunner & 

van der Houwen [12], provides a "state of the art" in the numerical 

solution of such equations.

Concerning integral equations in general, Lonseth [35] has provided 

a useful survey of other applications of integral equations including 

problems in geophysics, hereditary phenomena in physics and biology, 

quantum mechanics, radiation, automatic control systems and communication 

theory. For further discussion of other sources and applications 

particularly of Volterra equations we may refer to Miller [41],

Noble [42], Saaty [47], Tricomi [50], Hethcote et al [28], Feller [25], 

Lotka [36], Diekman [22], Levin & Nobel [33], Davis [21], Bellman &

Cooke [7], Zemanian [57] and, most recently. Burton [13].

In the discussion which follows we shall describe an integral 

equation as a functional equation which involves integrals of an unknown
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function f(x). For our purposes we assume that f(x) is a real- or 

complex-valued function of a single variable x ; systems of equations 

can be considered if we extend the notation to vector-valued functions.

J-.rZ Classification of Abel-type and Volterra Integral Equations

The "kernel" H(x, y, v), to which we refer below, denotes a 

prescribed function which is assumed for simplicity to be continuous for 

- 5 < y < x + ô < X + ô  and |v| < co for some ô > O, X < oo.

Furthermore, g(x) denotes a prescribed function on [-Ô, X + 5].

The classical Abel equation, referred to in the introductory 

paragraph, is the equation

X f (y )(X _ yft dy - g(x), (O < a < 1), (1.1)

where a is given, and which may be called ill-posed. Under appropriate 

restrictions on g(x), it has the solution

fxn, \ sinoiTrd f(x) - — _  _
0

(cf. (1.68)). The case a = 0 is mentioned below.

1.2.1 Equations of the first kind.

Equation (1.1) may be generalised to produce a wide class of 

'equations of Abel type'. The generalised Abel equation of the first

kind, in which the solution f(x) is sought, is of the form

Q yP^A^ ^ g(x), (0 < a < 1, p = 1 or 2, given). (1.2)

The linear case of equation (1.2),

*x
0 ^xP'-^yP)&^ == g(x) , (0 < a < 1, p = 1 or 2, given) , (1.3)

where H(x, y , v) = K(x, y)v and K(x, y) is continuous at least for

0 < y < X, is also of interest. We refer to Anderssen and de Hoog [2]

for further comments.

If, in equation (1.2), a: = 0 and K(x, y , f) is a smooth kernel
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we obtain a genuine Volterra problem resulting in a Volterra equation of 

the first kind

■X
H(x, y, f(y))dy = g(x), x e [0, X], (1.4)

JO

where X may be taken arbitrarily large. A basic example of (1.4) is 
the equation

X
f(y)dy = g(x).

Jo

On differentiating, we obtain the solution f(x) = g'(x) provided g'(x) 

2) exists and g(0) = 0. From (1.4) with x = 0 we see g(0) = 0.

Thus, we see that the equation only has a solution if g(x) has special 

properties. This suggests that care must be taken lest the problem in 

solving (1.4) is 'improperly posed'.

1.2.2 Equations of the second kind.

The corresponding Abel and Volterra equations of the second kind. 

are respectively.

f()0 - Q ""(xP ^/yp)&^^ g(x),(0 < Oi<l, p = l or 2, given)

. (1.5)/ andand
fx

f()0 - H(x, y, f(y))dy = g(x), x e [0, X ] (1.6)
0

In many Volterra equations (1.6), when a = 0, it is found 

that, provided the kernel is sufficiently smooth, the smoothness of the 

solution f depends on the smoothness of g . It will be observed that 

the Abel equations (1.2), (1.3) and (1.5) exhibit weak singularities in 

the integrand. It is known that solutions of Abel equations frequently 

demonstrate bad behaviour near x = 0 even when g(x) is smooth and 

later we shall show that the solution f(x) of (1.5) may be expected 

to have a weak singularity despite g(x) being well behaved.
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Remark
Equations which arise from practical problems may have forms which 

differ slightly from those above. For example, Volterra equations 

of the second kind may be of the form

f(x) -
X

H(x, y, f(y))dy = g(x), x e [a, X] (1.7)
a

which is not apparently of the form of (1.6). However, we may use

(1.6), without loss of generality, as we now illustrate. Using a linear 

change of variables in (1.7) and taking <p(x) = f(x + a) we obtain

3  P(x) -
ra+x

H(x + a, y, f(y))dy = g(x + a)

rx
that is, p(x) - H(x + a, y + a, ^(y))dy = g(x + a), 0<x<X'=X-a.

0
(1 .8)

Equation (1.8), for the function y?(x), has the form of equation (1.7) 

with a = 0. Conversely, given p(x) as the solution of (1.8) we may 

show that f(x)- = <p(x - a) is the solution of (1.7). Thus, the constant 

a in (1.7) is usually taken to be zero and in the following work we 

shall take (1.6) to be our general non-linear Volterra integral equation 

of the second kind.

1.2.3 Equations of Convolution Type.

Special subclasses of integral equations occur often. The kernel 

H(x, y , f) is known as a convolution kernel if H(x, y, f) = h(x - y ; f) 

and non-linear Volterra integral equations of convolution type of the 

first and second kinds, are, respectively,

X
h(x - y; f(y))dy = g(x) (1.9)

0 
and

X
f(x) - h(x - y; f(y))dy = g(x). (1.10)

Jo

Equations (1.4) and (1.6) in which H(x, y, f) = K(x, y)f, give rise to

\
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fx
K(x, y)f(y)dy =g(x) (1.11)

0

and

f(x) - K(x, y)f(y)dy =g(x) (1.12)
0

where g(x) is termed the forcing function. (The term 'forcing function' 

is not always reserved for linear equations only.) Thus, any equations 

of the form

and

X
k(x - y)f(y)dy =g(x) (1.13)

0

fx
f(x) - k(x - y)f(y)dy + g(x) (1.14)

0
are both linear and of convolution type of the first and second kind, 

respect ively.

In our discussion of applications of Volterra integral equations we 

shall be particularly interested in (1.14) which gives rise to the 

[2) classic renewal equation. The forcing function g is always continuous

and the kernel k(x) is at least of class (and hopefully continuous)

on each finite sub-interval of [0,<»). Frequently, k(x) is non-negative 

or non-positive. Often g(x) ) 0 and g(x) may even be monotone non­

decreasing - cf Bellman & Cooke [7], Lotka [3,6], Feller [25].

We shall also be concerned with a special type of non-linear 

convolution equation in which the kernel H is such that

H(x, y, f)= k(x - y)<p(y, f) (1.15)
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1.3 Transformation of equations into new forms.

1.3.1 Volterra equations of first kind recast as equations of the second 

kind.

In general, solution of first kind equations is more difficult 

than solution of equations of the second kind. However, under certain 

conditions Volterra equations of the first kind may be transformed into 

equations of the second kind cf Baker [4], Tricomi [50]. We shall 

illustrate by considering linear equations. Consider the linear Volterra 

equation of the first kind

X
K(x, y)f(y)dy = g(x) (1.16)

Jo

where K(x, y), g(x) are continuously differentiable. We seek a 

continuous solution and require, therefore, that g(0) = 0.

Given that ^  K(x, y) = K%(x, y) is continuous for y < x and

X
%x(x, y)f(y)dy = g'(x).

0

that g'(x) is continuous', we obtain, on differentiating (1.16):

K(x, x)f(x) +

If K(x, x) 7̂ 0, then

O + L ,
where K,(x, y) = • Thus, we obtain a Volterra equation of

second kind.
g

If, on the other hand, ^  K(x, y) = Ky(x, y) is continuous for

y < X, we may write

F(x) = f(y)dy
0

which is a Volterra equation of the first kind for f(x), with solution 

f(x) = F'(x). A Volterra equation of the second kind may be derived for 

F(x) from (1.16) by using integration by parts for the left-hand term
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to obtain

fx
K(x, x)F(x) - Ky(x, y)F(y)dy = g(x)

Provided K(x, x) ^ 0 this results in

rx
F(x) - 0 = k ! ^

3
where Kgfx, y) =

Ky(x, y)
K(x, x)

The function f(x) is then obtained by differentiating the solution F(x) 

of this equation, Baker [4 , p.9],

— -3■  ̂•— Li near Abel equations of the first kind recast as Volterra

equations of the second kind.

Consider the linear Abel equation of the first kind

3

(1.17)

It may be shown that, provided K(x, x) and g(x) satisfy certain 

conditions, equation (1.17) yields a Volterra equation of the second kind

f(x) +
X
K#(x, y)f(y)dy = g#(x)

where

K#(x, y) - sin ax
X 1 - z

(cf. (1.7.3)) and

g#(x) = sin ax d 
X dx 0

g ( y ) ( x  - y)G-idy,

cf. Baker [4].
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1.3.3. Other integralequations which mav he recast as Volterp 

equations or as systems of Volterra equations 

We have noted that equations of the first kind may sometimes be 

transformed into equations of the second kind and that this is well 

known for equations of Volterra type, Tricomi [50]. Other integral 

equat ions

f(x) -

and

(x)

PO(x)

{<P̂  (x)

PO(x)

K(x, y)f(y)dy = g(x)

K(x, y)f(y)dy = g(x),

where fq(x) is continuous for i = 0, 1 and K(x, y) is continuous for 

Po(x) < y < Pi(x), are sometimes similar to Volterra equations. In

special circumstances, they may be recast as Volterra equations or as 

systems of Volterra equations. For example, consider the equation

f(x) -
X

-X
K(x, y)f(y)dy = g(x) (-œ < % < œ) (1.10)

Suppose that p(x)= f(x) for x > 0, p(x) = 0 for x < 0

and i/.(x) = f(-x) for x > 0, ^(x) = 0 for x < 0
Then, for x > 0,

p(x) -
fx

0
K(x, y)p(y)dy -

fx
K (x ,  - y ) ^ ( y ) d y  = g ( x )

and

i/'(x) + K(-x, -y)i/'(y)dy +
fx

0
K(-x, y)p(y)dy = g(-x)

This is a system of coupled Volterra equations in which, if we determine 

P(x) iZ'(x), we may set f(x) = p(x), x > 0 and

f(x) = ^(-x), X < 0.

Thus the foregoing remarks in §§1.3.1/2/3 illustrate that Volterra
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equations of the second kind are significant in the analysis of classical 

equations and justify the attention which we shall give later to equation

(1.6). The direct treatment of other types of equation discussed above 

presents additional interesting problems.

1.4 Relations between integral equations and ordinary differential 

equat i ons.

Many integral equations arise directly in the modelling of problems. 

However, they can also be deduced from differential equations. In these 

latter cases the integral equations are alternative formulations of 

problems whose initial mathematical formulation led to differential 

equations. Consider the initial value problem for a system of ordinary 

differential equations.

f'(x) - F(x, f(x)), X > 0, f(0) = fo (1.20)

On integration, this yields

rx
f(x) = F(y, f(y))dy + fo (1.21)

0 ~ ~ ~

which is a vector-valued form of (1.6). (See e.g. Tricomi [50], 

Miller [41], Corduneanu [18], Barucha-Reid [6].)

Having observed this relationship between integral equations and

(2) ordinary differential equations we may mention here other significant

results; see also Burton [13].

It is readily seen that the non-linear Volterra equation, with 

separable kernels, of the form

f(x) -

may be solved by writing

•X
2 X;(x)Yi(y f(y ))dy = g(x) (1.22)

0 i = i

N
f(x) = g(x) + 2 a|(x)X|(x) (1.23)

i=i
resulting in the functions aq(x) satisfying an initial value problem for 

a system of ordinary differential equations. Baker [4]. There also
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exists the possibility of a similar development for certain convolution 

equations; Golberg [27]. Furthermore, we observe that the second kind 

Volterra equation with polynomial convolution kernel 
S

k(x - y) = 2 Xg(x - y)Sf - may be reduced to a system ofs=0
differential equations; Amini et al [1].

Indeed, large classes of Volterra equations may be reduced to linear 

differential equations with constant coefficients, the asymptotic 

stability of which can be completely determined by the Routh-Hurwitz 

criteria. We shall return to this point later.

Another tool in (for example) the analysis of numerical methods for 

second kind Volterra equations is the imbedding of the integral equation 

in a differential equation containing a parameter; see Wolkenfelt, 

van der Houwen & Baker [55]. The definition of the kernel function 

H(x, y , f) of (1.6) is extended for y > x and we define

\Jy(t , X) = g(x) + H(x, y, f(y))dy, 0 < t < X, (1.24)
0

where f(x) satisfies the integral equation (1.6). 

Clearly,
f(x) = ^(x, x),

so that we may write (1.24) as

rt
l/'(t , x)= g(x) + H(x, y, y(y, y))dy. (1.25)

0
On differentiating (1.25) with respect to t we obtain the initial value 

problem (Pouzet [46])

^  ̂ (t, x) = H(x, t, \Jy(t , t)), O < t, X < X, (1.26)

1̂(0, x) = g(x) .

This latter equation (1.26) may be regarded as a partial differential

equation although,in the study of numerical methods, it has proved to be 

more convenient to treat it as an ordinary differential equation with x

as parameter and t the independent variable; see Wolkenfelt [53], [54];
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Wolkenfelt, van der Houwen & Baker [55].

We have commented earlier that in many cases integral equations are 

alternative formulations of problems which were initially modelled by 

systems of differential equations. Here, we indicate briefly a problem 

which may be formulated as a system of integral equations which, under 

certain circumstances, may have an alternative formulation as a system of 

ordinary differential equations. We refer to work of Hethcote & Tudor 

[29] who investigated models for endemic infectious diseases (i.e. 

diseases present for many years). They showed that those diseases for 

which infection confers permanent immunity may be modelled by a system 

of two non-linear Volterra integral equations of convolution type. For 

the non-cyclic SIR model (susceptible, infectious, removed) with vital 

dynamics (births and deaths) and immunization, the system reduces to a 

system of ordinary differential equations near the equilibrium point and
\

to a system of delay-differential equations elsewhere. Thus, if one is 

interested in the behaviour near equilibrium points, or in the 

minimization necessary to cause the disease to die out, or in how the 

equilibrium points change as the parameter values and immunization rates 

change, then the ordinary differential equation models are sufficient.

2^ The authors of [29] employ'Volterra equation theory to deduce stability

results, and the paper illustrates, inter alia, the close relationship 

between differential, delay-differential and integral equations.

1.5 Integro-Differential Equations

1.5.1 As a member of the class of Volterra functional differential 

equat i ons.

It is also our intention to consider an important type of Volterra 

equation, namely the Volterra integro-differential equation

f'(x) - C(x, f(x),

with prescribed initial condition

X
H(x, y, f(y))dy), x > 0 (1.27a)

0
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f(0) = fo (1.27b)

Equations of this type have practical interest and arose, for example, 

in the work of Levin & Nohel [33] on reactor dynamics and may be found 

in predator-prey systems cf. Brauer [10] , Cushing [20].

Equation (1.27) is a member of a class of equations called 

Volterra functional differential equations which have the form

f'(x) - G(x , f( )) (1.28)

in which the value of G(x, f( )) = G(x, f), at a point depends on x

and f(t) for 0 < t < x. This class also includes the delay- 

2^ differential equations and, indeed, equation (1.27) is sometimes

referred to as an infinite-de1 ay equation since, in general, f'(x)

depends on all past values of f(x). Thus, a number of papers on delay-

differential equations which deal with the general equation (1.28) may 

also apply to equation (1.27a).

1.5.2 Relations between Volterra equations of second kind and integro- 

different ial equations.

We may rewrite equation (1.27) to obtain the system

X
f\(x) = C(y, f,(y), f;(y))dy + f,

JO
3  (1,29)

f , ( x )  = H(x, y, f\(y))dy
0

which is a coupled pair of integral equations. Using vector notation
T^(x) = [f\(x), fg(x)] etc. we obtain the form

p(x) =
X

$(X S y)(s) )ds + p(0) (1.30)
Q ~ ~ -

Thus, the integro-differential equation is written as a special case of 

a Volterra equation of the second kind and, hence, techniques for the 

numerical solution of Volterra integral equations may also be adapted 

to treat the system (1.30). However, this may be a convenient
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arrangment rather than a practical one as a wider range of techniques 
may be obtained if each equation in (1.29) is treated separately.

On the other hand, just as differentiation of a Volterra equation

of the first kind can, under certain conditions, produce a Volterra

equation of the second kind so differentiation of (1.6), assuming

that f, g, H satisfy appropriate conditions, results in a form of

(1.27). Thus, assuming the necessary conditions are satisfied, on

differentiating (1.6) we obtain

f ' (x) - H(x, X, f(x)) -
X

H%(x, y, f(y))dy = g'(x),
0

where H%(x, y, f(y)) = H(x, y, f(y)).

On re-arranging, this results in a form of (1.27) as follows:

f'(x) = g'(x) + H(x, X, f(x)) +
rx

H%(x, y, f(y))dy.
0

1.6 Variation of Constants Formula.

In the study of stability and asymptotic behaviour of solutions of 

ordinary differential equations, use can be made of the variation-of- 

constants formulae. The effect of perturbations in (1.6) and (1.27) 

upon the solution f(x) is in theory obtainable by analysing variation- 

of-constants formulae; see Brunner [11]. However, the general 

varlation-of-constants theory for integral and integro-differential 

equations is not simple except in the case of particular kernels.

1.6.1 The Volterra integral equation of the second kind.

Consider the linear case of the Volterra equation of the second

kind

f(x) -
X
K(x, y)f(y)dy = g(x). (1.31a)

0
We may define R(x, y) the resolvent kernel, associated with tl 

kernel K(x, y), satisfying
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R(x, y) -
rx

y
K(x, u)R(u, y)du = K(x, y) (1.31b)

and express the solution of (1.31a) in terms of g as

f(x) = g(x) +
0
R(x, u)g(u)du. (1.31c)

This is, in essence, the variation-of-constants formula. Brunner [11]. 

To verify (1.31c) multiply (1.31a) on the left by R(x,u) and integrate 

from 0 to x:

O fX rX rU rX
R(x,u) f(u) du - R(x,u) K (u,y) f(y) dydu = R(x,u) g(u) du

0 0 0 0

Thus

fX rX rX rX
R(x,u) f(u) du -

0 0 ■
R(x,u) K(u,y) du f(y)dy =

y ^
R(x,u)g(u)du.(1 .32) 
0 \

3

Miller [40, p200] shows that

R(x,u) K(u,y)du =
J

K(x,u) R(u,y) du
y

and thus (1.31b) may be written

R(x,y) R(x,u) K(u,y) du = K(x,y) (1.33)

Hence (1.32), together with (1.33), yields

X
R(x,u) f(u) du
0

Thus

[R(x,y) - K(x,y)] f(y) dy = R(x,u) g(u) du
0

K(x,y) f(y)dy =
0

R(x,u) g (u) du
0

and together with (1.31a) yields (1.31c). The above manipulation is 

more transparent if we use operator notation (see §1.8.2).
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Further, the solution U(x,y) of the equation

U(x, y) = 1 + K(x, z)U(z, y)dz (1.34)

IS

U(x, y) = 1 + R(x, z)dz. (1.35)

O
We could define R(x, y) by

R(x, y) = -  (x , y)
3y

(1.36)

to show that the resolvent kernel R(x, y) is related to the function 

U(x, y), which is known as the differential resolvent. Now, from 

(1.31c) and (1.36) we have

rx
f(x) = g(x) (x, z)g(z)dz

O
On integrating by parts this yields

f(x) = U(x, O)g(O) +
X

0
U(x, y)g'(y)dy. (1.37)

Hence, to solve the integral equation (1.31a), either the function 

R(x, y) or U(x, y) would enable us to find f(x) using either 

(1.31c) or (1.37) respectively.

In classical texts the resolvent kernel is developed from the
00

Neumann series: R(x, y) = ^ KJ(x, y), where

Ki(x, y) K(x, z)k J i(x, y)dz. In the case when K(x, y) = k(x - y)
0
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O

is of convolution type then R(x, y) - r(x - y) is also of convolution 

type. When the kernel is constant that is, K(x, y) = K, then

r(x - y) -
X

K r(u - y)du = K.

Here, the variable y occurs in the equation only as a parameter, if the 

role of the parameter is supressed
X

r(x) - K r(u)du = K
0

where r(x - 0) = r (x) .

This is equivalent to a linear differential equation and it follows that 

r(x) = KeKx. The above formulae for the resolvent R(x, y) are also 

applicable to Abel equations of the second kind. They illustrate the 

important fact, alluded to in 1.2.2 that the solution of (1.5) may
\

be expected to have a weak form of singularity at x = 0 when g(x) is 

well-behaved.

1;6.2 The integro-differentiai equation.

Brauer [9] has developed an analogous variation-of-constants theory 

for the linear integro-differential equation

rx
f ' (x) = c(x)f(x) +

0 K#(x, s)f(s)ds, X ) 0, f(0) = fg (1.38)

which is equivalent to the integral equation of the form (1.31a) with 

g(x) E f^ and

rx
K(x, y) = c(y) + K^(u, y)du (1.39)

y

The equations, for the resolvent kernel R(x, y) and the differential 

resolvent U(x, y), are, respectively,

BR rx
33^(x, y) = c(x)R(x, y) + K#(x, u)R(u, y)du + K#(x, y), R(x,x) - c(x),

^.40)
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O

O

and

9U
93E

rx
(x, y) = c(x)U(x, y) + K*(x, z)U(z, y)dz, U(x, x) = 1. (1.41)

Their solutions R(x, y) and U(x,y) are given by (1.31b) and (1.35). 

Thus, the solution f(x) of (1.38) is given by

f ( x )  = fn +
0

R(x, y)fody = U(x, 0)fo . (1.42)

Hence, to solve the given integro-differential equation we need to solve 

(1.40) or (1.41) which may be worse than the given problem.

Turning to the non-linear systems of Volterra equations we find that 

the resolvent kernel can also be used to write some of the systems in a 

form which corresponds to the variation-of-constants formula for 

ordinary differential equations.

Consider the non-linear system
rx

f(x) = g(x) + K(x, s)[f(s) + k(s, f(s))]ds (1.43)
0

where k(x, y) represents "small terms" or terms of "higher order" in 

X. If the solution f(x) is assumed to be known then (1.43) can be 

written in the form

f(x) = G(x) + K(x, s)f(s)ds (1.44)

where

G(x) = g(x) + K(x, s)k(s, f(s))ds. (1.45)
0

From these latter equations it can be shown that the solution f(x) of 

(1.43) is given by

"X
f ( x )  = F (x) + R(x, s)k(s, f(s))ds (1.46)

0
where F(x) is the solution of the linear integral equation (1.31a)
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0

and R(x, y) is the resolvent kernel given by (1.31b). Now (1.46) is a 

nonlinear equation for f whose solution can be investigated via the 

natural iteration (say).

- F(x) + Jo R(X'S) k(s,fn(s))ds (1.47)

1.7 The role of Laplace Transforms.

1'7.1— Integra 1 equations of the second kind and of convolution type.

We return to a linear system of Volterra equations of convolution 

type having the form

f(x)-
rx

0
k(x - y)f(y)dy = g(x) (1 .48)

and we find a role for Laplace transforms Doetsch [23], Watson [52]. 

The Laplace transform of f where f: [0, co) ^ R is defined as

L(f) - F(x) = e xtf(t)dt. (1 .49)

0

We know that, under certain conditions,

rx

0
k(x - y)f(y)dy = L(k)L(f) (1 .50)

Hence, taking the Laplace transforms (assuming that they exist) of (1.48) 

we have

L(f) - L(k)L(f) = L(g)

and

L(f) = L(g) (1.51)1 - L(k)

Comparing (1.48) and (1.51) we see that our integral equation with an 

arbitrary convolution kernel k(x - y) has been transformed into the 

problem of inverting a Laplace transform, that is, find f(x) such that

e xsf(x)dx = F(s) =0 t - K{S) (1.52)
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0

For this last equation, provided suitable conditions exist [52], we have 

the inversion formula

f(x) = L-1[f(s)] = 2iri
cr+ioo

(7-100
eXSf(s)ds (1.53)

where a is greater than the real part of all the singularities of F(s) 

(cf Watson [52], Doetsch [23]).

1.7.2 Relations with the Resolvent.

If the resolvent of (1.48) is r(x - y) then

f(x) = g(x) + r(x - s)g(s)ds

Hence, L(f) = L(g) + L(r)L(g)

(1.54)

O

Thus, from (1.51) and (1.55)

L(r) = - 1 + h m  = - 1 + ^ L(k)
L(g) 1 - L(k) 1 - L(k)

Hence

= L "  [ r 4 % y ] (1.56)

1.7.3 Integral equations of first kind and of convolution type.

Consider the linear integral equation of the first kind and of 

convolution type

k(x - y)f(y)dy = g(x)

The immediate application of the Laplace transformation yields

/f(s)F(s) = C(s)

G(s)

(1.57)

that is. F(s) - K(s)

(1.58)

(1.59)

However, [K(s)]~'^ cannot be a Laplace transform as [K(s)] - 1 CO as
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s — > 00 and, without conditions on g, there are no results analogous to 

those of § 1 .7 .1 /2 .

Sometimes, as illustrated in §1 .3 .1 , the integral equation of 

the first kind can be converted into one of the second kind which can 

then be handled as in 1 .7 .1 . Thus, if k(x) and g(x) are continuously 

differentiable and k(0) o, by differentiation of (1 .5 7 ), we obtain an 

integral equation of the second kind

fx
k(0)f(x) + k'(x - y)f(y)dy = g'(x)

0

If, further, k(0) = k'(0) =  ..... = k^"^ (0) = 0, k"(0) 0 then, by

differentiating (1.57) n + 1 times, we obtain

rx
kn(0)f(x) + kn+1(x - y)f(y)dy = g"+i(x).

0
Again, this is an integral equation of the second kind.

However, this method fails if k(x) possesses no derivatives at 

X = 0. For example, k(x) = x"#, 0 < a < 1, is such a function. In 

these cases, the following method may lead to the desired result:

In place of the function f(x) we consider the function

rx
p(x) = f(s)ds. (1 .60)

0
Thus, L(p) = p(s) = i F(s)

and instead of (1.59) we find

If l/[sK(s)] is an L-transform then the inversion theorem will yield 

^(x) and f(x) is found by differentiation of p(x).

As an example we may consider the Abel integral equation

X

0
(x^-^y)^ ^ (0 < a < 1) (1.62)
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which is of importance in many branches of physics. From the definition 

of the gamma function

r(o =  ̂e %dx, Re r > 0 (1.63)
0

we may show that

L(x = E— y-g—  = K(s) provided o: < 1 (1.64)

Thus, from (1.61)

(1.65)

It is also well known that

,0!-l
L i(s 0̂) = p-̂--y provided a > 0. (1.66)

Hence, for 0 < a < 1, the original function corresponding to $(s) is

F(a)r(l-a) y^ Tg(x - y)dy. (1.67)
0

Since sin ax
r(a)F(l - a) X ' then

p(x) = sin ax rx
ya ig(x - y)dy (1.68)

If g(x) is differentiable and continuous for x = 0, on 

differentiating (1.68), we obtain (see §1.1)

f (x) = <p' (x) = sin ax
X g(0)xO-i +

X
ya-ig*(x - y)dy|. (1.69)

0 J
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*1.8 Background Material

We pause to introduce some background material which is relevant to

our later discussions. A more rigorous treatment may be found in

Cheney [15], Smithies [48], Cochran [16], Mikhlin [38]. The 

sophisticated reader may proceed directly to 51.9.

1.8.1 Function Spaces

Some of the ideas in functional analysis are valuable in the

theoretical and numerical solution of integral equations. Certain

basic ideas of such analysis are introduced here but a more advanced 

treatment may be found, for example, in Collatz [17].

(a) Normed linear space

The set C[a, b] of complex-valued functions which are continuous

on [a, b] form a linear space if, when and y?2 are members of

C[a, b], then

{ifl + p2)(x) = y?i(x) + p2(x)

and (a pq)(x) = a pq(x), a constant.

A norm of y?(x) denoted ll̂ (x)|| is required to have the properties

(i) lly)(x) II = 0 if and only if p(x) = 0,

(i i) lia p(x)ii = lai lly)(x)||,

(iii) \\{<pi + y52)(̂ )ll < ll̂ i(x)|| + lly)2(̂ )ll-

Thus, a linear space with a defined norm is referred to as a normed 

linear space.

Example 1.1

We illustrate the concepts above.

n 1
(a) R": llxll = llxllp = (J IX; |P) p ) 1.

1
p = 2 gives the Euclidean norm.

p = 00 gives the Maximum or Chebyshev norm llxllco = maxlxil.
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3

3

b
(b) Real-valued functions on [a, b] such that j |f(x)|^dx < œ,

a
b 1/

1 < p < 00 with Holder norm llfllp = lf(x)|Pdxj ||f|ioo = supif(x)
a

(b) Convergence

Consider a normed linear space, say C[a, b] with ll.li. When we

have a sequence of functions (p^(x)} (n = 0, 1, ...) and

||y?(x) - y)ĵ (x)|| 0 as n -> 00 we say that p^(x) converges in norm

to p(x). With the uniform norm ||y)(x)llco = sup lyj(x) I we speak of
a<x<b

uniform convergence and if the norm is II.II2 where
b 1

Il̂ (x)ll2 = [J l^/x)|2dxj , we speak of convergence in the mean. In 
a

addition, we say that ^^(x) converges relatively uniformly to 

(p(x) 6 [a, b] if there is some 'f'/x)'  ̂ which is usually square- 

integrable, such that

^(x) for a < X < b, where lim = 0.
n-)oo

(c) A metric defined on a function space

We obtain a metric d(y?2> <P2̂  on a function space when d

satisfies the following properties:

(i) d(pi, <p2) > 0; (ii) d(pi, ^2) = 0 ^i(x) = <P2M

(iii) <p2 ) = d(p2 PI); (iv) d(pi, pg) < d(p^,p2) + d(p2,p3).

The natural (or induced) metric' on a normed linear space is 

d(pi, P2) = Ilp2 (x) - p2 (x) II. When a metric d( , ) on a linear 

space satisfies (i)-(iv) we call the linear space a metric space.

(d) Cauchy sequence

A sequence {pĵ (x) ) in a space is a fundamental or Cauchy 

sequence if, given e > 0, there exists N(e) such that

d(pn, Pm) < for all n, m > N(e).

If d(p, p^) 0 as n -> 00, we say that Pn(x) converges to p(x).
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(e) Completeness

A space is said to be complete if every fundamental sequence 

converges to an element in the space. (A complete normed linear space 

is a Banach space.)

Example 1.2 (Cheney [15]) We illustrate the preceding concept.

Define llp(x)|| = sup |p(x)|
a<x<b

The induced metric for the space C[a, b] of continuous functions

is d(pi, p2) = sup Ipi(x) - p2(x)l. 
a<x<b

2) Then the space is complete and convergence with respect to the

induced metric is described as uniform convergence.

(f) Closed sets

Suppose that S is a subset of a normed linear space X with a 

norm II. II. S c x is closed if every convergent sequence in S has
\its 1imi t i n  S .

(g) Compactness

A subset S of a metric space X is said to be compact in X 

if every sequence of elements in S contains a subsequence which 

converges (with respect to the given metric) to an element of S. Thus, 

if S is closed and compact in X it is compact in itself.

Example 1.3 We illustrate compactness

Consider S to be the set of functions {y?(x)} which are' continuous 

and differentiable on [a, b] with ||y?(x) llgQ 1 and lly?* (x) IIqo ^ 1. Then

S is compact in C[a, b] , where the metric is that induced by II llco-

(h) Equi-continuity 

A set of functions S defined in [a, b] is said to be

equi-Cont inuous if, given e > 0, there exists a ô = ô(e) such

that for any X], , X2 e [a, b] satisfying I x^ - X21 < ô we have

if(x^) - f(x2)l < e for all f(x) e S.

0
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Example 1.4

S := {y?(x) : lly?' (x) llco < 1 ; 9? € cl[0, 1]} is equi-cont inuous in 

C[0,1].

1.8.2 Linear Operators

X and Y are linear spaces and T is an operator such that

T : X -> Y. T is called a linear operator if 

T (̂ 2 + <p2 ) = Ty?2 + T^2, for all ^1, ^2 ^

T(ap) = OLÏ<p, for all y? e X, a e R.

If X and Y are normed linear spaces, a linear operator T is

bounded if there is an M such that

||Ty)|| < Mllyjll, for all y? e X.

If we call the least value of M the norm of T then

llTŷll

Example 1.5

A bounded linear operator is continuous.

(Proof: T is bounded =#• Wl̂ pi - Ty32ll < llTll llyq̂ - (p2 \\ < e for all

ipi, <p2 , eX such that llŷi - ip2 \\ < .)

An operator is cont inuous if it maps every convergent sequence into 

a corresponding convergent sequence. A continuous operator which maps 

a normed space into a normed space S2 is said to be completely

cont inuous if the image of any completely bounded set B c is

compact in S2. It is sufficient, by linearity of T, to consider 

the 'unit ball' B of elements with norm < 1, B = {y»eX: ||y)|| <1). 

Linear Integral Operators

Associated with a kernel K(x, y) and an interval of integration 

[a, b] is a linear integral operator K which transforms a function

y> into a new function \J/ where i/' = Ky? and ̂(x) is defined
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ft
<P(k) -  J K(x, y)p(y)dy. 

a

We assume that K(x, y) is at least piecewise continuous and hence 

\p(x) exists if y>(x) is integrable: if the complex-valued K(x, y) 

is continuous on [a, b] then (Ky?) (x) € C[a, b] when <p(x) is

continuous. Then the integral operator K 'maps’ C[a, b] onto

itself and is linear as

K(o!iy>i + #2^2) (x) #l(Kpl)(x) + #2(Kp2)(x), for , «2 complex values

Suppose K(x, y) = 0 for y > x; then (taking a = 0, b = X) the

2) linear equation

f(x) - X K(x, y)f(y)dy = g(x) (0 < x < X) (1.70)
0

may be represented as

(I - XK)f = g. (1.71)

The determination of the resolvent, referred to in §1.6.1, may be 

regarded as analogous to finding the inverse of a matrix. Thus, if 

the solution of (1.70) is given by (see equation (1.31c))

f(x). = g(x) + X f R(x, u)g(u)du (1.72)
0

(R depends on X); this may also be represented in operator notation as

f = (I + XR)g; R = Rx. (1.73)

Hence, (I - XK)(I + XR) = I and we see that the inverse operator 

of I - XK is I + XR. Further, X / 0, R - K = XKR.

Thus R(x, z) - X K(x, y) R(y, z)dy = K(x, z) which corresponds 

to (1.31b). Just as one does not normally compute the inverse of 

a matrix to solve a system of linear equations, finding R(x, y) 

for any given x can be as difficult or more difficult, than 

finding f(x). However, knowledge of the qualitative behaviour of
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R can give valuable insight.

Ihe.Arzela-Ascoli Theorem 1.1 (Courant & Hilbert [19])

This states that a necessary and sufficient condition that a set 

of functions which are continuous on [a, b] should be compact on 

[a, b] (with uniform norm) is that the set should be (i) uniformly 

bounded and (ii) equi-continuous.

Example 1.6

The above theorem permits us to investigate whether or not an 

2^ integral operator is completely continuous on the space C[a, b].

Consider the operator K,

Ky)(x) = J K(x, y)p(y)dy, 
a

where H m  lK(x',y)-K(x" ,y) | dy ^ 0 as Ix'-x"re0 and 

fb
where sup J lK(x, y)idy < œ and ll(o(y)ll„ < 1. Write - K<p(x)

a<x<b a
and note that IlKlloo < , so that K is a bounded linear operator. Then

M \ ^ ( x ) l l o o  =  l l K y > ( x ) | l o o  <  I l K l l o o  l l y , ( x ) | | o o  <  i i K l i c o .

Thus {^/x)} are uniformly bounded.

^  For equi-continuity consider 0,e such that

nA(xi) -  xl̂ (x2 )\ =  ij K(xi, y)%(y)dy -  J K(x2, y)p(y)dyi
^ a

fb
< J |K(x 2, y) - K ( x 2, y)I lp(y)ldy

fb
< J lK(xi, y) - K(x2, y)ldy, given llp(x)ll„ < 1,

< € when \xi - X£I < ô. 

by the uniform continuity of K(x,y) on [a,b]2.

This holds uniformly for every xj, under consideration, thus {rp(x')} are 

equi-continuous. Hence by the Arzela-Ascoli Theorem ^^(x)^ are compact
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on [a. b] and it follows that the Integral operator K is completely 

continuous on C[a, b] . It is readily seen that when K(x,y)-0 for 

yxx, and K(x,y) is continuous for a<y<x<b,' the assumptions are satisfied 

so a continuous Volterra kernel defines a compact operator on C[a,b], 

Contraction Operators

Let (X, d) be a metric space and T; X X. The operator T 

is a contraction operator if there is an a e [0, 1) such that 
<p, \j/ e X imply

d[T(y?), T(^)] < a d(y5, \j/) .

Theorem 1.2 (Contraction Mapping Principled

Let (X, d) be a complete metric space and T; X X a 

continuous contraction operator. Then there is a unique y, e X 

with T(y) - (5. Furthermore if ^ t X and if is defined

inductively by - T(^^) and l̂ n+l " T((«•„) then the

unique fixed point. That is, the equation T(p) - ^ has one and 

only one solution.

Proof

Let yjQ e X and define a sequence {y?n} in X by 

- T(P0), n  - T(fi) - T2(po)...... (On - T(pn_l) - T"((o).

3  tbat {(On) is a Cauchy sequence, for m >n we have

d(ph' Pm) = d(THpQ, T̂ yjQ)

< a d(Tn-lpo, Tm-lpg)

< a" d(po,

< «"{d(PO. n )  + d(yi, % )  + ... + d(pm-n-l, Pm-n)}

< an{d(po, (0i)+ad((0Q, yq) + ... + nm-n-ld(po, (oj)}

= a^dCyjQ, y > i ) ( l  + a  + . . .  + ^ m -n - l^
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Since a < 1, the right hand side approaches zero as n co. Hence 

(fn) Is a Cauchy sequence and, because (X, d) is complete, it has 

a limit y? e X. T is continuous so

T(y)) = T(lim = lim T(yjĵ ) = lim ^^+1 = y? 
n->oo n-^ n-Ko

and y> is a fixed point.

To demonstrate uniqueness let T(p) = y, and T(^) =

Then d(p, = d(T(p), T(^)) < a d(p, and, as a < 1, d(p, i/') = 0
2) which implies that p

Various forms of fixed point theorem can be found in the literature 

For later purposes we shall use the following (see Collatz [17, p.357]) 

which differs from the foregoing result in some details:

Theorem 1.3 j.Schauder ' s fixed point thpo^pm)

Let S be a closed bounded convex set in a Banach space 

(X, II II) and let T be a completely continuous mapping of S

into itself. Then there exists at least one point <p e S such

that yj = T(y)). [Proof: see Collatz [17].]

2̂  1 .̂9 Topics in the Theory of Volterra Equations

In this section we consider, briefly, some of the questions 

regarding the behaviour of solutions of Volterra equations. Problems 

of particular interest concern questions of existence and uniqueness, 

boundedness, behaviour of solutions as the independent variable 

approaches infinity and existence of periodic solutions. The 

qualitative theory for integral equations has been developed less than 

the qualitative theory which exists for ordinary differential 

equations. In consequence, many of the problems outlined above are 

discussed in relation to integral equations which have special forms.

We shall frequently refer to a useful survey of problems in qualitative
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behaviour of solutions of Volterra equations which is to be found in 

Tsalyuk [51]. There is also a useful survey due to Nohel [44] which, 

although not exhaustive, deals with some equations which are of 

considerable mathematical interest and which originate from 

investigations in physics and engineering. More recently. Burton [13] 

has attempted to develop a systematic treatment of the theory of 

Volterra integral and iutegro—differential equations so that whenever 

possible it parallels the qualitative theory for ordinary differential 

equations.

1.9.1 Existence and Uniqueness

In this section we shall indicate elementary proofs of the existence 

and uniqueness of solutions of Volterra equations. We illustrate 

by using both iterative and fixed point methods cf. Wouk [56],

Thielman [49]. Additionally, for the linear equation, we may refer for 

example, to Cochran [16, pp.64 et seq.], Burton [13, pp.24-25].

However, before proceeding to the proof of the uniqueness of the 

solution of certain Volterra equations we pause to introduce a result 

which will facilitate the proof of the theorem. 

lemma (Cronwall's Inequality - cf. Burton [13, p.24])

Let f, g : [0, X] -> [G, oo) be continuous and let c be a 

non-negative number. If

f(x) < c + j g(y)f(y)dy, x e [0,X]

then

fX
f(x) < c exp{J g(y)dy), x e [0,X].
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X
Sfoof Suppose c > 0. Divide the given relation by c + f g(y)f(y)dy

0
and multiply by g(x) to obtain

^ x ) g W ------   ̂ g(x).

c +  g ( y ) f ( y ) d y  
0

Integration from 0 to x yields

r* fXCn{[c + I g(y)f(y)dy]/c) < | g(y)dy 
0 -̂0

Z) Hence, f(x) < c + j g(y)f(y)dy < c exp f g(y)dy.
0 -̂0

If c = 0; take the limit as c 0 through positive values.

Theorem 1.4

Consider the linear equation

f(x) = g(x) + K(x, y)f(y)dy, x e [0, X] (1.74)
0

in which g(x) and K(x, y) are continuous for 0 < y < x < X and

L = max IK(x, y)I, M = max lg(x)|, then there is one 
0<y<x(X 0<x<X

and only one solution f(x) of (1.74) on [0, X].

Proof

The procedure involves a sequence of functions (fn(x)} on 

[0, X] defined as Picard's successive approximations.

fo(x) = g(x)
(1.75)

fy+l(x) = g(x) + K(x, y)fy(y)dy, p > 0.
0

From (1.75) we have, by induction.

|fy+l(x) - fy(x)i - I [K(x, y)fp(y) - K(x, y)fp_i(y)]
0
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< lK(x, y)I Ify(y) - fy_i(y)|dy

< L Ifp(y) - fy_i(y)Idy

MLy+l^y+l
(r+1)! '

By comparison with the exponential series, we see that the form

a Cauchy sequence in the space of continuous functions on [0, X]. 

Thus, it follows from the Arzela-Ascoli Theorem that there exists a 

uniformly convergent subsequence and hence a continuous limit function

F(x), say, which is a solution of (1.74).

To see that F(x) is the only solution, suppose that there are 

two solutions, say F^(x) and F2(x) on an interval [0, X].

From (1.74)

F j ( x )  -  F2(x) =  J K(x, y){Fi(y) - F2(y)}dy

so that iFj(x) - F2(x)i < L lFj(y) - F2(y)ldy.
0

This relation is of the form

G(x) < c + L G(y)dy 
0

with c = 0. By Gronwall's inequality G(x) < c e^x = Q.

Hence F^(x) = F2(x).

Similar procedures to those presented above are applicable to 

general non-linear Volterra equations, Tricomi [50, pp.42 et seq.], 

Cochran [16, pp.68 et seq.], Nohel [43]. However, to illustrate the
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fixed point method we use the Contraction Mapping Principle to 

demonstrate the existence and uniqueness of the solution of certain 

non-linear Volterra equations; cf. Burton [13, pp.73-74].

Consider the general non-linear Volterra equation

X
f(x) = g(x) + [ H(x, y, f(y))dy. (1.76)

0 ~  ~

We recall from §1.5.2 that an integro-differential equation with

initial conditions can be put in the form (1.76). Our next theorem

Z) is similar to that given by Kershaw in Baker and Phillips [30], see

also Saaty [47].

Theorem 1.5

Let a*, b* and L be positive numbers and take some fixed 

ot e (0, 1). Suppose

(i) g is continuous on [0, a*],

(ii) H is continuous on B = {(x, y, f) : 0 < y < x < X and

Ilf - gll < b*},

(iii) H satisfies a Lipschitz condition with respect to 

f on B such that

llH(x, y, fi) - H(x, y, f2)ll < Lllfi - f2ll 

if (x, y, fi), (x, y, £2) e B.

If M = sup ||H(x, y, f)ii then there is a solution of (1.76) on
* ^  ex.

M ’ L
.[0, X] where X = min[a ,

Proof

Let S be the set of continuous functions from [0, X] R" 

with xp e S if

M’A - gllco := max ll̂ (x) - g(x)ii < b*.
0(x<X ~

S is a convex neighbourhood of g.
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Define a completely continuous operator T on S by

T(p)(x) = g(x) + H(x, y, \i'(y))dy.
~ 0 ~

Note that xj/ continuous implies T(^) continuous and that

MT(\{') - gll = max wT(\P)(x) - g(x)||
0<x<X

= max III H(x, y, \̂ (y))dy||
0<x<X O'"

< MX

( b*.

Hence T : S S, as required by Schauder's fixed point theorem.

To show that T is a contraction mapping, take xp and xj/ e S . Then

llT(y)) - T(xP)\\ = max || H(x, y, y?(y)dy - H(x, y, i/̂ (y)dy|| 
0<x<X 0 - ~ ~

< max I uH(x, y, p(y)) - H(x, y, ^(y))n dy
0<x<X O'"

X
< max L [ l|y,(y) - ^(y)wdy
0<x<X 0 ""

< X max L||y)(x) - (̂x)|| 
0(x<X

— XLlly) - xpWf̂

< 0L\\(£ - 0||co.

Thus, by the contraction mapping principle there is a unique function 

f e S with
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X

T(f)(x) - f(x) - g(x) + j H(x, y, f(y))dy.
0 ~

1.9.2 Continuation of Solutions

Theorem 1.5 gave us a local existence result for the general 

non-linear Volterra equation. Here we investigate how large the 

interval of existence can be made. We require the following 

definition:

Definition 1.1

Let g : [0, oo) (-M, oo) and for

B = {(x, y, w) : 0 < y < x < œ, w e R}

let H : B -̂ (-c»,oo). Let f(x) be a continuous solution of the scalar

equat ion

f(x) = g(x) + H(x, y,f(y))dy (1.77)

on • [0, A] with the property that if u(x) is any other solution,

then as long as u(x) exists and x < A we have u(x) < f(x). Then

f(x) is called the maxima I solution of (1.77).

Z) Of the many useful results which can be proved about maximal

solutions, the following (see Burton [13, p.83]) are of particular 

interest to us.

We observe that if g is continuous on [0, œ) and H v) is

continuous for 0 < y < x<= and all V e R Lt may be shown that

solutions of (1.77) that remain bounded are continuable to all of 

[0, oo) ; cf. Burton [13, p.80].

Theorem 1.6

Let the maximal solution f(x) of the scalar equation
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.X
f(x) = c+ j H(y, f(y))dy

exist on [0, A], where c is a constant and let H : [0, A] X R
A

be continuous and non-decreasing in when 0 < x < A. If u(x) 

is a continous scalar function on [0, A] satisfying

u(x) < uq + H(y, u(y))dy, ug < c 

Then u(x) < f(x) on [0,A].

2) following theorem requires Theorem 1.6 for its proof and

it is an extension of the classical result for ordinary differential 

equations known as the Conti-Wintner theorem.

Theorem 1.7

S • [0) 0°) R^ and H : B R^ be continuous where

where B - {x, y , w : 0 < y < x < «; w t Rn). Suppose that for

each X > 0 there is a constant K(X) > 0  and a continuous function 

Cl) : [0, oo) [1, (o) with Cl) non-decreasing, and
CO

llH(x, y, w)||„ < K(X)co(||wll„) if 0 < y < x < X and J
1 w(s)

If f(x) is a solution of

£(>̂ ) = g(x) + J H(x, y, f(y))dy

on any interval [0, a) then it is bounded and hence is continuable 
to [0, oo) .

(The proof may be found in Burton [13, p.83].)

Because f(x) is defined on [0, a), take X = a. Then

llf(x)llc«< llg(x)|leo+ llH(x, y, f(y)||^ dy
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M + fK(o!) cü(llf(y)iico)dy 
G

where llg(x)lico < M on [0, a] .

As w is monotone, l|f(x)llo3 is bounded (Theorem 1.6) by the 

maximal solution of

u(x) = M + K(a)cü(u(s) )ds ,

or equivalently of the initial value problem

u' = K(a)w(u), u(0) = M.

On separating the variables this yields

1̂' = K(a)x.

As f - ■ = 00, u(a) exists and is finite; hence f (a) is bounded.w(s)
Since a is arbitrary, f(x) is bounded, hence continuable.

Nohel in [44] has also proved a theorem which is an extension of 

the comparison technique for ordinary differential equations due to 

Conti and Wintner, where, for simplicity of presentation, he takes 

H(x, y , f) = k(x - y)p(y ,  f). For other applications of Nohel's 

Theorem we may refer to [43] and in [44] other deeper results on 

existence and boundedness are stated for some specific problems.

1.9.3 Periodic Solutions

Periodicity of solutions is a subject of interest which we shall 

not pursue except to give a flavour.

One such problem arising from the theory of super fluidity and 

developed by C.C. Lin is also discussed by Nohel [44]. The problem 

has also been studied by Levinson [34] and illustrates some properties 

of periodic solutions. Here, the heat equation, because of a
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complicated boundary initial value problem, leads to the integral 

equation

f(x) + g(x) dr X > 0 (1.78)

where g is a given periodic function.

The following results are due to Levinson [34].

Theorem 1.8

Let g(x) be continuous on 0 < x < co and satisfy a uniform 

2̂  Holder condition of exponent P > 0 on any finite interval. Let

&(y) be monotone increasing on -œ < y < œ, $(Q) = 0; let $ 

satisfy a local Lipschitz condition. Then (1.78) possesses a unique 

solution f(x) on (0, oo) .

Theorem 1.9

Let the hypothesis of Theorem 1.8 be satisfied and in addition 

let g(x) have period w and let max|g(x)| = M. Suppose there 

exists a positive monotone increasing function k(u) for u > 0 

such that

3 *(y2) - *(yi) > k(y2 - yi)

for y2 - yi > 0 and ly^i, lŷ i < 2M. Then there exists a 

continuous periodic function y?(x) of period w such that the 

solution f(x) of (1.78) satisfies

lim (f(x) + g(x) -<p(x)) = 0.
X-»oo

Moreover lf(x) + g(x)| < max|g(x)|.

This result establishes asymptotic periodicity.

1.9.4 Stability

Just as for differential equations we investigate different types
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of stability for Volterra integral equations. Essentially, we study

the sensitivity of f(x) to perturbations in the problem (say in

g(x)) in particular as x oo. For an introduction to this topic we 

refer to Tsalyuk [51]. However, there is a proliferation of terminology 

in the literature and the word 'stability' is used with varying 

interpretations. Thus, we state here a series of fundamental 

definitions. Furthermore, we confine our attention in this and 

subsequent sections in the introduction to 1 n A M  stability 

2  ̂ opposed to stability of a numerical scheme). Following the literature

we consider (abstract) Volterra equations of the second kind:

f(x) - J K(x,.y, f(y))dy = g(x), x > 0 (1.79)
a

where f, g : [0, oo) X, ((X, || ||) may be a Banach Space, but we are

concerned with the choices X = R or X = R^) and

K : [0, 00)2 X {f e X : iifii < r) -> X and K(x, y, f) = 0 for y > x.

Z) shall assume K(x, y, 0) e  0, and frequently take g(x) e  0,

to consider small non-zero perturbations in this g. In the 

definitions which follow let M q and N q be some subsets of the 

normed spaces of mappings of [0, oo) into X. (Most frequently, 

in the literature.

M q - BC([0, oo) Rn) = (f = f e C([0, oo) Rn) ; ||f n = sup ||f (x) ll<oo}
 ̂ 0<X<oo

and N q is a linear sub-space of C([0, oo) -> Ri^) . )
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Definition 1.2

The trivial solution (for g = 0) of (1.79) is said to be stable 

for a given a e [0, oo) if

(i) there exists ôg > 0 such that for any g e Ng, iigii < gg

(1.79) has a solution f e Mg ;

(ii) for any e >: 0 there exists 0(e, a) > 0 such that

g e Ng, iigii < 5 * iifii < e.

The trivial solution of (1.79) is said to be uniformly stable relative

to the parameter in (Ng, Mg) if in condition (ii) Ô can be chosen

2) independently of the parameter. In particular, the lower limit a is

such a parameter.

Définit ion 1.3

Assume that Pg  ̂Ng is a subset of some normed space. The

trivial solution of (1.79) is said to be asymptotically stable in

(Ng, Mg, Pg) if it is stable in (Ng, Mg) and there exists > 0

such that g e Pg, ||g|| < gn lim f(x) = 0.Pg  ̂ X -)oo

Depending on the choice of Ng and Pg, various forms of

uniform stability are possible. Assume, for example, that

“3 Po = Cg ([0, m) R") = {f e BC : lim f(x) =0}.
x-yx)

Definition 1.4

The trivial solution of (1.79) is uniformly asymptotically

stable in (BC, BC, Cg) if it is stable in (BC, BC) and if for

some ôg > 0 for any e > 0 and T  ̂a there exists g(e, T)

and Tx(e, T) such that for any g e Cg, satisfying ||g|| < <5g,Lg
llg(x)ll < Ô for X ) T, the solution of (1.79) satisfies the

inequality Ilf(x)|| < e for x ) T^.

For references to other types of stability which have been

studied see Tsalyuk [51]. We give here one further definition, that 

of strong stability, in the sense of Bownds and Cushing [8].
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Défini t ion 1.5

The trivial solution of (1.79) is called strongly stable on 

PO c C([0, œ) ^ RH) if for any e > 0 and a e [0, oo) there 

exists 0(e) > 0 such that from g e Pq and ||f(xf)|| < ô for 

some Xf > 0 there follows llf(x)li < e for all x > 0.

1.9.5 Stability criteria in terms of the resolvent or characteristics 

of the kernel

We here consider the linear equation

^  K(x, y ) f ( y ) d y  + g(x) (1.8O)

which we have already observed in (1.71) may be represented in 

operator theory as

(I - K)f = g.
It follows that (i) (1.80) is stable in (Nq , M q ) if and only if the 

operator (1 - K)  ̂ acts from Nq into Mq and is continuous and

(ii) (1.80) is asymptotically stable in (Nq , Mq, Pq) if (I - K)“l 

acts continuously from Nq into Mq and also (I - K)~^Pq is contained

in the set of functions which tend to zero for x oo.

We examine first the stability criteria which may be expressed 

in terms of the resolvent. For convenience, we recall that for 

g 6 C([0, oo) R^) the solution for f c C([0, oo) -> RD) and that

the kernel K admits a resolvent R(x, y) and a differential

resolvent U(x, y) (see §1.6.1) such that for the solutions of

(1.80) we have

and

f(x) = g(x) + f R(x, u)g(u)du (1.81)
0

f(x) = U(x, O)g(O) + J U(x, y)g'(y)dy (1.82)

where U(x, y) = 1 + j R(x, z)dz.
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To illustrate the sensitivity of f(x) to perturbations let us 

suppose, for example, that in (1.80) K(x, y) > M > 0 for 0 < y ̂  x 

and that g(x) is perturbed to a function g(x) + ôg(x) and that the 

corresponding solution changes from f(x) to f(x) + 6f(x) where

K(x, y) 5f(y)dy + 0g(x). (1.83)

Then

ôf(x) = ôg(x) + J R(x, u) 6g(u)du (1.84)

where R(x, y) is the resolvent given in (1.81) and which is also

deve loped from the Neumann Series R(x, y) = ^ %j(x, y) =

where K (x, y) J K(x, z)K^ (z, y)dz. It may be shown, by 

induction, that

« > "'I: : îsr’
and hence that R(x, y) ) Me^^*

Hence, from (1.84)

ôf(x) ) §g(x) + M f e^^^ ^^ôg(y)dy 
-̂0

when 0g(x) > 0. Thus ôf(x) has a possibly increasing component 

behaving like Me^* j e"^^0g(y)dy and (1.80) is susceptible to 

i11-conditioning.

One may express stability criteria in terms of the resolvent or 

in terms of criteria related to the characteristics of the kernel 

itself. Here, we list briefly two statements on stability which are 

true in terms of the resolvent; for others we refer to Tsalyuk [51].

1. Equation (1.80) is stable in (BC, EC) if and only if

sup ||R(x, y)l|dy < co. (1.85)
x>0 0
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2. Equation (1.80) is stable (or uniformly stable relative to a) in 
(R", BC) if and only if

sup ||U(X, 0)11 < CO , 
x^O

(or sup ||U(x, y)|| < «). ^  86)
x,y>0

We Mvce, that if the equation

lK(x, y)lf(y)dy + g(x), (1.87)

when lK(x, y)| is a matrix with elements | K ; j ( x ,  y)|, is stable

in (BC, BC) then so also is (1.80).

For kernels K(x, y)>0 the following statements concerning stability

may be made. These are examples of many others which may be found by 

reference to Tsalyuk [51].

1. For the stability of (1.80) in (BC, BC) it is necessary and

sufficient that

sup llK(x, y)l|dy < oo 
x)0 0

and that for some v the spectrum of the matrix

= lim lim sup | K (x, y)dy = 1 im sup f K^(x, y)dy
X->00 X-)00 X Y-jvyi v NV VX X^m X>X X

where K (x, y) is the r-th iterated kernel, should lie in the 
unit circle.

2. If equation (1.80) is stable in (BC, BC) then for any  ̂

the spectrum of the matrix

B,, = 1 im 1 im inf f K^(x, y)dy 
T->00 t-̂oo T

lies in the unit circle.

1.9.6 Convolution kernels revisited

Of special interest are the equations in which the kernel is
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convolution where the resolvent R(x, y) - r(x - y) and the stability
of

X
f(x) - k(x - y)p(f(y))dy =g(x) (1.88)

in (BC, BC) is equivalent to the requirement
00

lir(y)l|dy < oo. (1.89)

Equation (1.88) has been studied under various assumptions on k(x) , 

g(x) and p(x). The particular case where k(x) and g(x) are 

2) non-negative functions and p(x) = x gives rise to the renewal

equation which has attracted interest in many areas. We refer to 

the account of Bellman and Cooke [7], for example, for a review 

of 41 problems of historical interest related to the renewal equation. 

The existence of a solution f(x) of

- J k(x - y)f(y)dy = g(x) (1.90)

and of its stability can be deduced from a well known result of Paley 

and Wiener and its association with transform theory.

2) Theorem 1.10 (Paley and Wiener 1451)
00

If, in equation (1.90), J |k(t)|dt < oo, then a necessary and

sufficient condition in order that (1.89) is satisfied is that
00

L(k)(z) ^ 1 for Re z > 0 where L(k)(z) = f k(t) e~^^dt.
0

The relationship with stability follows from (1.31c):

fX
f(x) = g(x) + r(x - u)g(u)du 

0

and the observation that
CO

sup |f(x)| < sup lg(x)| (l + f ir(u)|du]. 
x>0 x)0 0
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Thus supif(x)| is finite when sup|g(x)| is finite j-hcd'-the-

condi t i ons of the Paley-Wiener theorem are satisfied.

The classical paper by Feller [25] in 1941 attempted to resolve 

some of the controversies and conjectures at that time and to 

correct some of the previously announced results. Feller did not use 

the result of Paley and Wiener as he argued that this result was too 

deep for the properties of k(x) and g(x) which concerned him. 

Feller's main objective was not to study the behaviour of f(x) as 

X 00 but to study the asymptotic behaviour of the mean value
* 1 X

^  f (x) = X f(x)dx. This was because, whilst it was generally

supposed that f(x) behaved like an exponential function or that

it approached in an oscillating manner a finite limit q (the latter
00

case should arise if J k(y)dy = 1 ) ,  it was possible to construct

specific examples in which f(x) did not behave in this manner.

Feller dealt with two particular applications of (1.88). The first 

in the theory of industrial replacement, formulated by Lotka, where

it is assumed that each individual dropping out is immediately
00

replaced by a new member of zero age. Here f k(y)dy = 1 where
0

k(y) represents a density of probability. The second formulation

is one in which f(x) measures the rate of female birth at time

X > 0. That is, if k(x) represents the reproduction rate at age

X then the average number of females born during (x, x+Ôx) from

a female of age x is k(x)ôx + 0(ôx). If ^(y) stands for the
*age distribution of the parent population at ' x = 0 then

g(x) = f %(y)k(x - y)dy 
0

measures the rate of production of females at time x by members 

of the parent population. Then if f(x) measures the rate of female

birth at x > 0 we arrive at the following:
^  Ike. I>a.r>e^nh la.-li'or7 to(yipr'iie.^S t^oHxe.r%  lo o m  k e ,- fo r .e -

tkot 5C -J. < o
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X ^
f(x) = g(x) + f(x - y)k(y)dy (1.91)

This time k is not a probability density function and

k(y)dy = 1  is a non-negative number measuring the tendency of 

the population to increase or decrease.

We state without proof two of the results of Feller on asymptotic 

properties of (1.91).

Theorem 1.11
00

Assume k(x) > 0, g(x) > 0 and suppose that f k(y)dy = a,
0

g(y)dy = b where a and b are finite.
0 X
(i) In order that f*(x) - - f f(y)dy C as x ^ where C

-̂0
is a positive constant, it is necessary and sufficient that a = 1

00

and that J yk(y)dy = m, a finite number. In this case C = b/m.
0 00

(ii) If a < 1, then f f(x)dx = -=— -—  .
0 1 - a CO

Next we deal with the important special case when | k(y)dy = 1.

Theorem 1.12
00

Let I k(y)dy - 1, f g(y)dy = b < oo. Suppose there is an

integer n > 2  such that = f x k(x)dy, (k = 1, 2, ..., n),
0

are finite and that the functions k(x), xk(x), ..., x" k(x) are 

of bounded total variation over (0, oo). Suppose also that 

lim x" ^g(x) = 0 and 1 im x^  ̂J g(s)ds = 0.
x-^ X->00 X

Then lim f(x)i—  and lim x" ^ff(x) - — 1 = 0.
X-400 x-̂  oO

1.9.7 Asymptotic behaviour of solutions of in'teero-di fferent ial 

equat i ons

In his review, because of the length restriction on his survey, 

Tsalyuk [51] does not refer to papers on Volterra integro-differential 

equations. The equation

f ' (x) = a(x - y)p(f(y))dy (0 < x < oo) (1.92)
0

^  7^ft. fn4e-̂ râ f o/\ -fAc. Aclmo/ StJe o~Ç Cl'9^) /T
/MofA Aorn 0.^46-^ i l~ o  ^ j ">o%
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may, of course, be converted into the Volterra Integral equation
X

(1.88) by integration in which k(*-3) - j a(a-3)du and g(x) = f(0) .

However, integro-differential equations of the form (1.92) are

frequently best studied directly rather than as conversions to the

form (1.88). The equation (1.92) arises in nuclear reactor dynamics 

under hypotheses:

(i) a(x) e C[0, oo) , (-1) a^^^ (x) ) 0 (0 < x < co; s = 0, 1, 2, 3),

(ii) p(x) e C(-oo, oo), xp(x) > 0  (% / 0)

and has been studied extensively, particularly by Levin and Nobel.

In earlier work they studied the asymptotic behaviour of (1.92) 

in the case when p(x) = x. Their situation was different from that 

considered by Feller as the functions corresponding to k(x) and 

g(x) in (1.90) were not integrable over (0, co) nor were they 

non-negative. In fact, to investigate asymptotic properties. Levin 

and Nohel used a Tauberian theorem for Laplace transforms. However, 

such methods do not lend themselves to non-linear problems. Levin 

and Nohel have also studied (1.92) in the non-linear case; in the 

reactor problem p(x) = e^ - 1. Levin [31] has established the 

following result.

2) Theorem 1.13

Let (i) and (ii) be satisfied. Then given any Tq there exists 

a solution f = u(x) , u(0) = Tq on 0 < x < oo. Moreover there

exists a constant K = K(Tq ) such that

lu^j^x)! < K (j - 0, -1, 2; 0 < X <  »).

If also a(x) ^ ag then

lim u(j)(x) = 0  (j = 0, 1, 2).
X->oo

Nohel [44] comments that, in the case p(x) = e^ - 1, ^(%)

satisfies (ii), a(x) not only satisfies (i) but also satisfies
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> 0  (0 < X < 00, s == 0, 1, . . . )

i.e. a(x) is completely monotonie on [0, co) .

We note that when the linearity assumption p(x) = x is dropped 

then Levin [32] has obtained a non-linear generalization of the 

Paley-Wiener Theorem. Another non-linear generalization of the same 

theorem due to Miller [40] will be referred to in the following 

section.

Many other problems which lead to integro-differential equations 

may be found in Nohel [44] where an extensive bibliography is 

2) provided.

1.9.8 The Linearization of Volterra Integral Equations

A further gap in the theory of Volterra integral equations has 

been investigated by Miller [40] who has developed a theory of 

linearization of Volterra integral equations which is an analogue, 

of a theory of asymptotic stability of differential equations.

For the non-linear differential equation

y' = Cy + O(iyi) (1.93)

it is well known that the asymptotic stability of the linear 

2) system x ’ = Cx implies the local asymptotic stability of the

trivial solution of (1.93). Now, we consider the system of 

equat ions

f(x) - g(x) + j a(x-y)p(f(y))dy x > 0 (1.94)

where- f, g, p are n-vectors, a(x) is an n X n matrix and

p(0) =0. If g is "small" this system is often replaced by the

more easily analysed linear system

y(x) = g(x) + a(x - s)Jy(s)ds (1.95)
0
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where J is the Jacobian matrix ^'(0) = (9^i(0)/9fj).

Nohel [44] drew attention to a gap in the theory of Volterra

integral equations indicating that, except in the case when solutions

of (1.95) decay exponentially, it had not been possible to show that

solutions of the linear system (1.95) approximate those of (1,94).

(Nohel observes that certain problems in reactor dynamics give rise

to, the situation where solutions need not decay exponentially.)

Miller [40] has produced such a theory of linearization of (1.94) under
0̂ 1 I of ^

very general assumptions on a(x), J.^Ahe method produced consists of

replacing the local non-linear problem (1.94) by the linear equation 

(1.95) and using the linear equation for its resolvent. These 

latter equations may be studied, for example, by transform techniques. 

For (1.94), the following assumptions are made:

(i) a e L'(0, x) for each x > 0; (ii) g(x) e C[0, co) ;

(iii) ^(x) e C'(Rn), ^(0) = 0; (iv) the Jacobian matrix J is

non-singular; (v) |r(x)| 6 L'(0, =) for all x > 0, where r(x) 

is the resolvent kernel of

X
y(x) - g(x) + J a(x - s)y(s)ds (1.95')

2) Miller has derived the following general stability results:

Theorem 1.14

Given that assumptions (i)-(v) are satisfied there exists eg > 0

and 81 > 0 such that when the solution y(x) of (1.95') satisfies

lly ll̂ < eg the solution f(x) of (1.94) exists for all x > 0 and 
ll;-f ll^< e i . (hU') e  o o ) U h . l [ g  =- 5up o ^ L - < o o j y

Theorem 1.15

Given that assumptions (i)-(v) hold and eg, ei are given by 

Theorem 1.14 above then if lly ,11̂ < eg and y(x) -^0 as x -> co 

then f(x) -> 0 as x co.
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With the additional assumption that a e L'(0, oo), Miller [40] 

has produced the following non-linear generalization of the Paley- 

Wiener Theorem to which we have previously referred.

Theorem 1.16
CO

Suppose that (i)-(iv) hold; det(I - f exp(-st)a(t)dt) / 0
= 0 6

for Re s ) 0 and S2 : ^2(1 + J ir(s)ids) < where is

the constant given in Theorem 1. Ilf-. If ugug < 2̂ and g(t) 0

as t -> 0 then f(x) 0.

In subsequent sections in [40], Miller studies applications of 

2̂  ths theory to integro-differential equations and, in particular,

to the reactor problem. However, the final theorem of [40] is 

neither stronger nor weaker than the results of Levin and Nohel 

in [33] although it produces a result which is local while the 

results of [33] are global.
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CHAPTER 2

2.1. Preliminary Remarks

In this chapter we study methods for the numerical solution of linear 

and non-linear Volterra equations of the second kind and linear Volterra 

equations of the first kind. The first half of the chapter is largely 

devoted to a description of numerical methods, with examples; whilst the 

remainder of the chapter consists of a theoretical investigation of such 

methods. The techniques for Volterra equations may be divided, roughly, 

irito quadrature methods, classical Runge-Kutta methods and modifications 

of these. The ("Pouzet")-Runge-Kutta methods themselves may be varied 

as an extension of quadrature methods, as one-step methods which are 

modifications of their counterparts in ordinary differential equations 

and as extensions of piecewise-polynomial collocation methods,

2.2 Quadrature Methods

First, we consider numerical methods for Volterra equations of the 

second kind:

rX
f(x) - H(x,y,f(y))dy = g(x), x > 0 (2.1)

where g and H are prescribed and satisfy convenient smoothness 

assumptions; we seek f. Associated with the methods is a discretization 

parameter h.

All methods considered are convergent as h -> 0 under a general set 

of conditions on H(x,y,v) and g(x) but it is known that not all 

methods are suitable in practice.

Various methods for the numerical solution of (2.1) upon a "mesh"

{t j } may be derived by setting x = 7; in (2.1) and discretizing. Thus, 

if for convenience, we choose a fixed step length h > 0 and set 

x =  Tj = ih in (2.1) we obtain
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f ih
f(ih) - H(ih,y,f(y))dy = g(ih) (2.2)

We define a set of quadrature rules

rîh i
Q : p(ih,y)dy = h p(ih,kh) (h > 0, i=l,2,3,...) .

(2.3)
We set =0, k > i. On applying the rules Q to equation (2.2),

we set p(ih,y) = H(ih,y ,f(y)). The resulting equations yield a 

quadrature method for (2.1).

^  Definition 2.1

A quadrature method for (2.1) defined by the rules (2.3) consists 

of determining values fj \  i = 1,2,3,... such that

i
- h Wik H(ih,kh,fk) = g(ih), i == 1,2,3,... (2.4)

where f^ i = f (Q) = g(0) .

The equations (2.4) may be solved for i = 1,2,3___ in turn to yield

the approximate values f; = f(ih), i = 1,2,3,... . For each i there 

is a non-linear equation in fj to be solved by an iterative technique.

2̂  (The equations are linear if H is linear in f or if cO| j = 0.) We

may take, as the iterative technique, the method

f<>')(ih) - h Uii H(ih,ih,f(>'-l)(ih)) - g; (2.5)

where

i—1 _
Si = g(ih) + h I cojR H( ih,kh, f (kh) ) and k=0

f(0)(ih) is predicted by the use of a formula similar to (2.4) in which 

the weights (say) are chosen with w(9) = 0. It is computationally

efficient in the computation of terms like g| if = w- . for
•J

j 0,1,....,..^k(i), where k(i) is close to i. Iteration (2.5) converges 

for h sufficiently small provided H(x,x,v) satisfies a Lipschitz
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condition in v, uniformly for 0 < x < X. The method (2.4) is called a 

(step-by-step) direct— quadrature method. A rigorous discussion of such 

methods including their properties and convergence behaviour may be 

found in Baker [2].

Rules Q may be chosen in a number of ways:

Example 2.1 (Nevanlinna [28]).

"Nevanlinna" rules are described as follows:

k -  0, 1, 2, 3,

^ik 1 - 0, 1, 1, 1,

The array of weights has the appearance

i-1. i 

1 ,  e

3

1-0 0

1-0 1 0

1-0 1 1 0

1-0 1 1 1 0

1-0 1 1 1 1 0

where k runs across the columns from k = 0 and i runs down the rows from 

i = 1.

The repeated trapezium rule is given by d — the (explicit) Euler rule 

and the (implicit) backward Euler rule correspond to 0 = 0  and 0 = 1  

respectively. Partitioning lines have a significance discussed later. 

Example 2.2 ("Gregory" rules)

Details of these may be found in Baker [2]. We illustrate with two 

examples.

k=0 1 2 3 4 .... i-4 i-3 i-2 i-1 i

5 13
12(a) «ik 12 

(i > 2) with a special case if i = 2.

13 _5
12 12
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(b) Wik 23
24

23
24

(i > 4) with a special case if i = 3.

In practice, the Gregory rules cannot be used until i is sufficiently 

large and, thus, there is a need for a 'starting procedure'.

(a) Consider the Gregory scheme of order 3, supplemented by 

0)10 = “11 = then the array of weights has the appearance:

3

3

0

5 14 5
12 12 12

5 13 13 5
12 12 12 12

5 13 -1 13 5
12 12 1 12 12

5 13 "1 13 5
12 12 1 1 12 12

5 13 1 13 5
12 12 1 1 12 12

5
12

13
12 1 1 1 1 13

12
5
12

second scheme suppl ement ed by “10 = oiii = i

1 4
“20 = “22 = 3 » “21 = 3 > the array of weights has the appearance
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3

9 9 
8 8

3
8

7 11 
6 12

7
6

3
8

7 23 
6 24

23
24

7
6

3
8

7 23 
6 24 1 23

24
7
6

7. 23 
6 24 1 1 23

24

3

Example 2.3 ('Kobayasi' rules [22])

These are based upon the repetition of a basic rule. (Baker [2]). 

Again, we i11ustr&N,with two examples:

(a) Simpson's rule (repeated) with the trapezium rule as an 'end' 

rule where necessary:

For i  ̂1 we have two cases, i = 2j (even), i = 2j+l (odd):

k = 0 1 2 2j-l 2j 2J+1
1 4 2 4 1W2j,k 3 3 3 3 3 (even)

W2j+l,k 5
4
3

2
3 3 (3+2) i (odd),

(b) Simpson's rule (repeated) with the trapezium rule as a 'starting'
rule where necessary

For i  ̂1 we have two cases, i = 2j (even), i = 2j+l (odd).
k = 0 1 2 2j-l 2j 2j+l

1 4 2 4 1W2j,k 3 3 3 3 3 (even)

W2j+l,k 5 (5+5) 4
3

2 4
3 3 i (odd).
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When the weights = “11 = i are used to supplement either of the

above, the arrays of weights have the appearance:

(a)

1
3

(j+j)

(5+5)

(b)

(2+3)
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Other variations may be made by composing rules from the repeated mid­

point rule, trapezium rule, Simpson's or g rules; Baker & Keech [3].

Properties of quadrature methods which are derived by discretizing, 

using the quadrature rules Q (2.3), derive from the structure of the 

weights Wik- It has been noted elsewhere (Baker, Makroglou & Short [4]), 

that the infinite array of weights {tJjkl > from the rules Q which have 

been constructed above, have the feature that I“ik̂  is lower triangular 

and can be partitioned as follows:

wi

Wp

Wp_l %»

Wq Wq Wq Vli

( 2 . 6 )

W2 ... Wp

where the weights of a set of starting formulae are represented 

by the elements of W^; Wq, W^,..., Wp are each of a fixed order 

q, say, and Wp is lower triangular. Typically (apart from initial 

rows) the rows of T repeat in blocks, in the cases illustrated.

For the Gregory rules illustrated in Example 2.2 the value of q is 1 

but otherwise this array gives a typical example of (2.6).

Example 2.4

The 'Kobayasi' weights of Example 2.3(a), corresponding to the 

repeated Simpson's rule and the trapezium rule, are such that, in the 

array, P = 1. q -  2. wl = [°  ° ] , Wq - V 3 j
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We may also consider numerical methods for the Volterra equation 

of the first kind

H(x,y,f(y))dy = g(x), 0 < x < X (2.7)

Use of the rules Q produces a system of equations 

i
h i o)ik H(ih,kh,fk) = g(ih), i=l,2,3, . . . ,N; Nh = x (2.8) k=0

We have indicated, previously, that the Volterra equation of the first 

kind (2.7) may be ill-posed and that, in consequence, difficulties may 

be expected when solving such equations numerically. Thus, quadrature 

rules Q, defined in (2.3) which yield convergent methods for second 

kind equations may not generate convergent quadrature methods for first 

kind equations. We observe that the system of equations (2.8) is 

different in character from the system (2.4). In general, if wjq ^ 0, 

we require, in addition to (2.8) an equation determining f (0) . /-f

^CL^O(i =1,2,..., N) then (2.8) is a system of N equations in (N+1) 

unknowns and cannot be solved. It is also possible to produce a 

numerical scheme, by an appropriate choice of weights, which does not 

rely on all the equations in system (2.8).

Example 2.5.

Consider the repeated mid-point rule for even values of i, i = 2j', 

with weights

k = 0 1 2 3 4 .... i - 1 ,  i = 2j
(2.9)

o)2j,k 0 2 0 2   2 0

where i is odd (i = 2j+l) the mid-point rules must be supplemented 

by another rule. For convenience, we use the trapezium rule as an 

'end* correction:

k = 0 1 2 3 4 i-2 i-1 i=2j+l
(2 .10)

« 2 j + l , k  0 2 0 2 2 i i
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The solution of (2.4) hy this 'Kohayasi' rule requires the use of the 
weights in hoth (2.9) and (2.10). Whereas, from systems of equations 
using only the weights in (2.9), it is possible to compute f(h) ,

f(3h), f(5h)... in step-hy-step fashion. The system of equations (2.8) 
with i = 2s becomes

 ̂ 2hH(2sh,(2s-l)h,f((2s-l)h)) = g(2sh) - 2h I H(2sh,(2k-l)h,f((2k-l)h))
k=l

since W 2 s 0 = o^2s ,1 = ---- = “ 2s, 2s = 0 and we observe that a starting

value f(0) is not required here.

Z) Now we turn our attention to the linear case where H(x,y,f(y)) =

k(x,y)f(y) and (2.7) becomes

fX
Jq k(x,y)f(y)dy = g(x), 0 < x < X. (2.11)

If K(x,y) is continuous for 0 < y < x < X then, setting x = 0

in (2.11), we see that if there is a continuous solution f(x) then

g(0) = 0. In §1.3 we observed that, provided ^  (x,y) = K%(x,y)
is continuous for y < x and g'(x) is continuous, we obtain

K(x,x) f(x) + K%(x,y) f(y)dy = g'(x). (2.12)

^  Thus, if K(x,x) Z 0 we can endeavour to solve, numerically, the

equivalent equation of the second kind

+ Jq Kl(x,y) f(y)dy = gq(x).

Where Kp(x,y) -  gp(x) = ^  and f(0) _  .

If K(x,x) vanishes everywhere in 0 < x < X then (2.12) reduces to

the form (2.11) and the process of attempting to find an equation of

the second kind can be repeated. This process would eventually succeed 
9 r

^^9^^ K(X'y)]y=x ^ ° 0 < X < X and some r. In practice,

there may be some difficulty in evaluating the derivatives required and 

the technique may in any case be of little help if r is large.
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Numerical methods for the Volterra integro-differential equation 

(1.27a,b) may be derived by applying methods for ordinary differential 

equations to (1.27a,b) in which the integral term is replaced by 

numerical quadrature. Such methods have been discussed by Linz[24], 

Brunner & Lambert [IS] and Tavernini[32]. In addition, in §1.5.2, we 

have shown that the integro-differential equation may be written as a 

coupled pair of integral equations (1.29). Thus, techniques for the 

numerical solution of integral equations may be adapted to treat the 

system (1.29). Additional details may be found in Baker[1]. These two 

approaches to the development of numerical methods for integro- 

differential equations are not mutually exclusive. See, for example, 

the further comment below in §2.2.1.

2.2.1 Reducible Quadrature Methods.

If, in equation (2.1), H is independent of x and g is constant 

then (2.1) has the form

f(x) = fo + H(y,f(y))dy (2.13)

This is equivalent to the initial value problem

f'(x) - H(x,f(x)), f(0) = fo (2.14)

Thus, the numerical method (2.4) could be regarded as a technique for

solving (2.14) albeit an unconventional one. This insight suggests 

that we should investigate under what conditions a numerical method 

for (2.13) may be regarded as a direct method for solving (2.14). We 

shall see that the requirement is that the quadrature weights shall 

display a particular structure.

Example 2.6.

The repeated trapezium rule has weights such that wjo = “ii = i 

and = 1 for k = 1 (1) i-1. We apply this rule as a direct

quadrature method to (2.13) to obtain



)

— 69 —

i
fi = fo + h WikH(kh,fk) (2.15)

Differencing successive equations (2.15), and using the structure of the

quadrature weights uq+i % = ^ik ^ = 0(1)i-1, yields

fi+1 = fi + ^ [H(ih,fi) + H((i+l)h, fi+i)] (2.16)

We observe that (2.16) is the trapezium rule applied directly to (2.14).

We denote by

m m
p(li) := I 0!i/ini-i, a(ii) := I 0i^m-i (2.17)

1=0 i=0

the first and second characteristic polynomials of a consistent zero- 

stable linear m-step multistep method (p,a) for 2.14 (Lambert [23]), 

and we ask under what conditions equations of the form (2.15) reduce 

to the following equations

m _ m
- h g;H ((n-i)h, f^.j) (2.18)1=U 1=U

which result from the application of the (p,a) method to (2.14)

From (2.15) and (2.18) we obtain, for some n  ̂ng,

^ ~ m m n-i _
i=0 - iSo ^ |Eo j£o (2.19)

1  On writing = 0 for i < k, (2.19) can be expressed as

m _ m m
iïo - i£o ]Eo j^O "(jh'fj) (2.20)

from which we derive

m ~ m m
i ï o  -  i E o  " i f o  +  ^  j E o  i E o  “ i “ " - i ' . j  (2-21)

Thus, allowing for a variation in starting procedures, the equivalence

of (2.15) and (2.18) is preserved if the weights of the rules Q in

(2.3) are (p,(r)-reducible as follows:
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Definltion 2.2

Assume (p,cr) defines a zero-stable consistent linear multistep 

formula. The rules Q are (p,c)-reducible if and only if for some 

no > 0

«Ô Wn-2,j = 0n-j (n > "o) (2.22)

where j = 0 for k < j, and ag, Pq = 0 for Q. / {0,1,..., m} .

The Gregory rules (Baker [2], Baker & Keech [3]) reduce to 

Adams-Moulton multistep formulae; other reducible rules can be generated 

from (p,cr) (see Wolkenfelt [33], [37] and Matthys [26]).

Example 2.7

The repeated trapezium rule discussed in Example 2.6 with 

^io = =1. k == 1 (1) i-1, is such that cxq = -oti = 1,

00 = 01 = 2, m = 1.
Returning briefly to our earlier comment in §2.2 on numerical 

methods for integro-differential equations we observe that a linear 

multi-step method applied to (1.27a,b) with the integral terms 

discretized by the quadrature rules Q may be equivalent to a 

quadrature method applied to (1.29).

2.2.2. Cyclically Reducible Rules

Rules such as the repeated mid-point rule and repeated mid-point 

with trapezium rules of Example 2.5 and the 'Kobayasi' rules of Example

2.3 are not reducible to linear multi-step methods but to q-cyclic 

linear multi-step methods (Stetter [31]) in which characteristic 

polynomials are defined:

™ ai”) g™-*, - I Hi”) p™-' (2,23)
i=0  ̂ i=0

for V = 0,1....  q-1. Thus, we arrive at the following:
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Definition 2.3

3

The rules Q are  ̂ -cyclically reducible if and only

if for some ng > 0 and n^ > 0

Q̂. ^n-l2, j 0n-j ^ > ng; v e {0,1,..., q-1} (2.24)2>0 " " "'j
where f = {n-n^} mod q.

Example 2.8

Consider the weights in Example 2.3 (a) (Repeated Simpson rule

with the trapezium rule as an 'end' correction). The rules which they

produce may reduce to more than one set of 2-cyclic formulae (Baker &

WiIkinson [7]).

We may define = 0^^) = 0 a(0) _ _Q,jO) = % ;

^ q;(1) = _ q;(1)=1;
 ̂ 0 1

0^1) = 0^1) = i; ^(^) = (S(̂ ) = 0 otherwise 

Alternat ively,

Ĉ O) . _ 0̂ 0) _ 1; 0̂ 0) . p(0) _ 1. 0 0̂) _ 4.

O! = -ajl) = 1; 0^1) == 0^1) = g ; '' ) = 0 otherwise.

2.2.3 Construction of quadrature weights

We observe that we may select a linear multistep method for (2.14) 

and then determine the weights of the quadrature rules for a

numerical method for (2.13).

From (2.22) it can be shown that (see Wolkenfelt [38]) the weights 

W^ j may be arranged in a matrix of the form

Q =

^0,0 ............... Wo,m-l

^m-1,0 ............  ^m-1,m-1
wi_m 0

^m,0 ............  ^m,m-l ^m,m Tm ^n

: (2.27)
^n,0 ............  ^n ,m -l ^n,m ............... ^n ,n

in which W^ j = for n-j ^0, j > m.
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The entries in correspond to the weights of the starting quadrature
1rules; the weights in Tĵ  usually relate to the entries of Wĵ ; the 

weights in form a semi-circulant matrix i.e. a matrix of the form

3

fin =

Wo
wi Wo
0)2 wi

' W2

o)n

0)Q

0)1

0)Q

(2.28)

where the sequence (Wn^n-O satisfies

«0 WQ 

aQtJi+aiùJo

=  00 
=  01

(2.29a)

Q!0ù3î +O!lüJm-l + m
and

aoo)̂ +Oiio)̂ _l + + am^b-m “ n > m+1 (2.29b)

Thus, for the construction of. the quadrature weights Q from

multistep methods we may, given W^, generate the first m columns of T^

by means of (2.22) and the sequence by means of (2.29).

Most of the commonly used quadrature rules display a further 

structure which is of great importance and which may make the process 

of generating more convenient.

Definition 2.4 (a)

The weights j in (2.3) are said to have an (exact) repetition

factor r if r is the smallest positive integer such that

^n+r,j == ^n,j al 1 n > nQ and Ji < j < n-j2 (2.30)

where nQ, and J2 are independent of n.

A method (2.4) is said to have repetition factor r if the associated
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weights have a repetition factor r. The definition of the

repetition factor r was orginally given by Lmz.6.(̂ For Examples 2.1, 2.3a 

and 2.6 the repetition factor is unity, whilst for example 2.3b it is two

Wolkenfelt [35] has derived the more general notion of the asymptotic 

repetition factor as follows:

Definition 2.4(b)

The weights in (2.3) are said to have an asymptotic repetition

factor r if r is the smallest positive integer such that

lim (Wn+r,j - Wn,j) = 0 for all j, < j < n-j2 (2.31)
n-^

We shall refer again to the concept of repetition factor in 

discussing numerical stability of direct quadrature methods (Wolkenfelt 

[35]) and of methods derived by imbedding techniques; see Wolkenfelt, 

van der Houwen & Baker [39].

2^3— Runge-Kutta-Tvpe Methods for Volterra equations

Methods of Runge-Kutta-type for the Volterra equation of the 

second kind

X
0^ f(x) - H(x,y,f(y))dy = g(x), x ^

are various analogues of the methods of Runge-Kutta-type for the solution 

of initial-value problems in ordinary differential equations of the form 

f ~ F(x,f(x)). Two approaches in the development of these methods 

are those of Pouzet [30] and Beltyukov [8]. Pouzet derives his formula 

for use with integral equations from corresponding Runge-Kutta methods 

for ordinary differential equations and, therefore, the values 0 and A 

(see below) are available from these latter methods. Beltyukov uses a 

more direct approach, extended by Brunner, Hairer, Norsett [12].

2.3.1. Classical Extended Runge-Kutta Methods

The approach of Pouzet is illustrated in the following way.
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A classical Runge-Kutta method for an ordinary differential equation 

of the form

f'(x) = F(x,f(x)), X > 0, f(0) = fo

may be defined by a tableau of the form

(2.32)

[21 A] =

'p-1

^00

^10

*01

*11

* 0 , P -1

Al,p-1

*0p

*lp

(2.33)

^p-1,0 *p-l,l • • • *p-l,p-l *p-l,p

ip,0 *p,l ^p,p-l *pp

It is sometimes convenient to write bg for Ap g.

and the formulae

^n+1 ^n ^ *pskg s ^
(n)

(n)
(2.34)

Kj. - hF(nh+2j.h, fĵ +I *rs^^^^) (r=0 ,1, . . . , p) ,s s

s. ^0 = fo­
in general, summations over s are for s = 0,1, ...,p. (For an

explicit method A^^ = 0 if r > s ,  so the summation can the be 

regarded as running for s =0,1...,r-1 in the second equation of (2.34).) 

If F(x,f(x)) = Xf(x) and fĵ -> 0 as n -» <» when Re(X) < 0 the 

method is called A-stable. For details and related terminology, see 

Lambert [23]. An alternative formula may be achieved if we define

fn,r - fn + % Ars%(") , (2.35)s s
where we note that

fn-l,p “ fn ~ f(nh). (2.36)

Thus, the Runge-Kutta method may be defined by the formulae

fn,r - fn-l,p + h ^ ArsF(nh + O^h, f^^), (r - 0,1, ■ • • , p) (2. 37) 

in which we take fp.r defined in (2.35) to be an approximation
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to f(nh + 2j.h) and f-l,p 0̂- *s the rows of the tableau (2.33)

may be regarded as defining a family of rules

r^rh ^I p(y)dy = I: Ars p(2gh), (r-0,l,...p) (2.38)U s=0

we see that (2.37) may be regarded as a discretization of

rnh+2^h
f(nh + 2j.h) = f(nh) + F(y,f(y))dy. (2.39)

nh
We have observed that linear multi-step rules in methods

for ordinary differential equations are related to quadrature methods

2̂  for integral equations. Hence, it is natural to ask whether Runge-Kutta

methods for ordinary differential equations have an association with

methods for integral equations.

Summing (2.37) over n we obtain 
n-1

fn r ~ f0 ^ 1 ^^ *psf(kb+2gh,f^ g)) + h Z Aj-gF(nh+2gh, f g )  ,k=0 s s

(r = 0,1,...p) (2.40)

which we may regard as a discretization of the integral equation

f(x) - r  F(y,f(y))dy - Fq . (2,41)

For the general Volterra equation of the second kind 

f(x) - H(x,y,f(y))dy = g(x)

we obtain
n-1

fn r ^ h Z Z ApgH(nh+2j.h,kh+2gh, fĵ g) + hZ Aj.gH(nh+2j.h,nh+2gh, fĵ  g)
' k=0 s ^ ’ s '

+ g(nh+2j.h) , (r = 0,1, . . . ,p) (2.42)

We may regard this approach as one in which we consider the integral 

on [0,nh] and on [nh,nh+2j.h] separately. For the discretization over 

the first interval [0,nh] the n-times repeated version of (2.37) with 

r = p provides the first term on the right-hand side of (2.42), the rule 

(2.37) with appropriate r provides the second sum in (2.42).
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This method for integral equations, using as it does the Runge-Kutta 

tableau for ordinary differential equations, is defined to be the 

(classical) extended Runge-Kutta method.

Example 2.9

An analogue of the fourth order Runge-Kutta method for ordinary 

differential equations is given by choosing p = 4 and the tableau

0
i
i 0 i
1 0 0 1

1 1 1 11 6 3 3 6

where values omitted from the tableau are zero.

The approach of Beltyukov [8] is frequently discussed in relation 

to the Volterra equation in its canonical form, namely,

p(x) = j C(x,y,p(y))dy (2.43)

The objective is to devise an approximate value ^(h), where 

99(h) = p(h) + 0(hP), by a direct approach displaying the basic philosophy 

of Runge-Kutta methods in the process. By direct differentiation of 

(2.43) and a Taylor series approximation Beltyukov develops formulae of

the type (Baker [2, p. 862])

p(h) = Z ApgKg (2.44)
s ^

Kp = hC(o!j-h, 2j.h, ZAj-gKg). (r = 0,1,..., p-1)
s

which are linked to an augmented Runge-Kutta tableau [a|2|A].

Example 2.10 (Baker [2, p.864])

In the case p = 3 a system of 13 equations in 12 unknowns is obtained 

for the determination of the parameters ot, 6, A. One solution is given 

by the tableau
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r o :  I 6

3

- ] =
1 . 0 0 0 0 ' 0

. i i 0 0 0
1 • V3 2/9 V9 0 0

1 . 1 k 0 V4 0

2.3.2. Mixed Quadrature - Runge-Kutta Methods.

Cons i der

f(x) - H(x,y,f(y))dy = g(x), x > 0

We may derive

(2.45)

fX rnh
f(x+nh) - H(x+nh,y+nh,f(y+nh))dy - H(x+nh,y,f(y))dy = g(x+nh). 

■̂0 -̂0
(2.46)

With
fĵ (x) : = f (x+nh) ,

gn(x): = H(x+nh,y,f(y))dy + g(x+nh) (2.47)

we may write (2.46) as

fn(x) - gn(^) ^ Jq H(x+nh, y+nh, f%(y))dy (2.48)

in which the problem of approximating f((n+l)h) becomes that of
•kapproximating fĵ (h) .

Following the Pouzet approach, we set r = p in (2.42) and obtain the 

formula for discretizing (2.48) when g^(x) is approximated as follows:

—k n-1gn(x) = h I I ApgH(x+nh, kh+2gh, fĵ  g) + g(x+nh) 
k=0 s '

Alternatively, following the Beltyukov approach (which involves the 

treatment of (2.43)), we compare (2.48) with (2.43) and see that we may 

set

9?(x) = fn(x) - gn(x) and C(x,y,v) = H(x+nh,y+nh,v+g*(y)).
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Hence, we may use (2.44) as a numerical method for an approximate 

solution of (2.45) provided an approximation for g*(x) can'be found. 

Beltyukov mentions the Gregory formulae as a possibility.

We have noted that Pouzet and Beltyukov offer alternative approxi­

mations to the terra gn(x). The family of quadrature rules 

fUh n
Jq P(y)dy - h Wnk p(kh), (n=l,2,...; h > 0) (2.49)

provides an alternative approach to extended methods of Pouzet in

approximating over the interval [0,nh]. This yields the mixed-ouadraturA 

-Runge-Kutta methods for Volterra equations of the second kind, of the 

3 form

n
fn.r - h H(nh+Orh, kh, ffc-l.p) + h E ArsH(nh+8r.h,nh+9sh, g)

(2.50)
where -  S C n h ^ W . ( r  =  0,l,...p)
Note: The scheme proposed by Beltyukov for approximating g*(x) is

a slight variation of this mixed quadrature R-K method.

—  ̂' Extended and Mixed Runge-Kutta Methods as extensions of the

Quadrature Methods

Hairer [15] has considered the derivation of R-K Methods for Volterra 

^ equations as starting formulae with auxiliary discretizations of the

lag term. In [15], he has presented the theory of extended R-K Methods 

for Volterra equations in a compact form, first stating a convergence 

theorem then constructing some R-K Methods whose stability is also 

investigated.

However, it is of interest to note that the quadrature methods of 

§2.2 and the extended and mixed R-K methods of §§2.3.1-2.3.2 

respectively could be incorporated into a general analysis in which we 

view these methods as extensions of the quadrature methods. To achieve 

this we need to re-index the variables. We write

fj = f(Tj) = fir where tj = ih + 6^h, r = 0 ,1 ,... p (2.51)
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successively for i = 0,1,2,... with j = i (p+l)+r+l, tq = 0

and fo = fQ. We note that i = [(j-l)/p+l], r = (j-1) mod(p+l), where

[x] denotes the integer part of x.

Thus, classical R-K formulae of the form (2.42) for the

discretization of the Volterra equation of the second kind produce 

formulae of the type

^ ^jk H(Tj, Tk' ^k) + g(rj), j = 1,2,3,...k^O

in which the extended R-K method is regarded as the extension of a 

quadrature method where the 'weights' are denoted

(2.52)

^jk = Ojk(*) 
fA

and Ojk(A) =
pt 0 < k < i(p+l),

i(P+l) < k < (i+l)(p+l) (2.53)

0 otherwise, 

where t = (k-l)mod(p+l), r e (j-1) mod (p+1)

For the mixed-quadrature - R-K methods of the form (2.50) we have 

formulae of the type (2.52) in which the 'weights' are denoted

^jk = ^jk[Q> A]

and

^jktQ> *] =

O)im>

r̂t '

k = m(p+l), m < i

i(p+l) < k < (i+l)(p+l), (2.54)

.0 otherwise;

r, t being defined as for (2.53), i being [j-l]/(p+l).

Finally, the quadrature methods (2.4) fit into the framework (2.52) 

in which we set

^jk = Ojk(Q) = Wjk, Tj = jh. (2.55)

The preceding framework is sometimes convenient although high-order 

accuracy now appears as a superconvergence phenomenon which may be 

difficult to prove.
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 ̂ — gpnie variants of extended Runge-Kutta and Mixed Quadrature - 

Runge-Kutta Methods.

Qne variant of the procedures already described in §2.3.3 is what 

we shall call here the "economized version". In the case when 2q = 0 

either of the schemes already described yield = ih

(since 2p = 1). Thus, effectively, we have two approximations at the 

point ih. We may achieve some apparent economy of effort if we modify 

the methods described by setting f(ih) = fi(p+i) = fi(p+i)+i rather 

than compute the new value. In the case of extended methods with 2q = 0

and Aqi- = 0  (r = 0 ,1 ,... p) (such as an explicit method) the original 

method is already an economized version.

A further class of methods arises on replacing [Apg, Apj,... AppjT

in the R-K tableau (2.33) by b - [bQ,bi,... bp.j,bp]T where bT a

row of quadrature weights associated with abscissae 6q,... « For

example, the row bT may be a row of another R-K method associated 
with the same points Sq .«1. ■ ■ • «p of the R-K tableau (2.33). Such a

method is proposed by Pouzet [30]. The 'weights' (2.53) are then denoted 

^jk = Ojk (b,A)

and fljk {b,A} =

bt, 0 < k < i(p+l),

Art, i(p+l) < k < (i+l)(p+l), (2.56)

iQ otherwise; t = (k-l)mod(p+l).

We observe that methods of Beltyukov type (Baker [2]) reduce to 

economised mixed methods when the kernel C(x,y,f(y)) is independent of
X.

2.3.5 Structure

We noted in §2.2 that a feature of the rules fi(Q) was that the 

infinite array {W|k) is lower triangular and can be partitioned 

into a form given by (2.6).

In the extended R-K method the weights Ojk{b,A) in (2.56) have the
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B B where B =

B B

rii
1

iJ

bT

(2.57)

With the obvious parallel in structure of the quadrature rules we are 

prompted to give the following definition.

Definition 2.5

A block-lower triangular array of weights is block-reducible

or {Ag, Bg}M -reducible if it may be partitioned into square sub-matrices 

of order q, namely.

(fijk) =

Vo,o

VO,0 Vg 1 Vj2,C

Vg+1,0 V^+1,1 ............  Vg+i g Vg+i g+ i

(2.58)

such that, for some ng,
m

(2.59)

where Ay = By = 0 for v / {0,1,2,... m) and g = 0 if 2 > n

We usually ask that I Ag e = 0 where e = [1,1,.. 1]^ g R9.
2=0 _ ^ _

If Ag = I, Aq = - I, Ag = 0 otherwise the rules are called simply

block-reducible.

When Ojk = Ojk(Q), q = 1 and Ag = ag, Bg = |3g with V^ g = w^g 

the rules are (p,w) - reducible and we see that (2.59) correspond to 

generalisations of (2.22) in Definition 2.2.
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3

A subset of the block-reducible rules are those for which (2.58) 

assumes a special form. Thus, the weights in the extended R-K methods 

and in the quadrature methods as well as in the mixed-quadrature - R-K 

methods can be partitioned (Baker & Wilkinson [7, eq.(2.9)] as shown 

in (2.60) (or a similar form indicated by (2.6)):

w
W" Wp

w Wg Wi Wp

w Wo Wo .. .. Wg Wi W 2  ....... Wp

w Wg Wg ..,. . Wg Wo Wi ...... Wp

W", w may be rectangul ar or square).

Wt
(2 . 60)

The array in (2.60) corresponds to (2.59), where in (2.59), we have 

taken Vg g = W, 2  ̂ng; Vg j = Wp_g^j for j > 1, and where 

Wp+r^;0 Vv/_.-p for r ̂  0. Such rules are simply block-reducible.

Example 2.11

When the weights have the structure (2.60), define Ag = I and 

*1 = - I and Ag = 0 otherwise; m = P. Then Bg = Wp,
m- Wp_2 - Wp, ... Bp = Wg - W]̂ and Z Ag = 0 .

- ~ 2=0 -

Example 2.12

Consider the extended R-K methods (A) of (2.53). They may

be derived from (2.60) in which we take P = 1, W^ = A and Wg = W 

which is the matrix each of whose rows is the last row of A. To

derive Ojk {b,A} in (2.56) take P = 1, Wj = A and Wg = B in

(2.60), where each of the rows of B is b^.



-83-
Example 2.13

Consider the Kobayasi quadrature rules of Example (2.3a). In (2.60) 

take P = 1 and

3

1/3 4/^ ■2/3 4/3- 1/3 0 '
w = , Wg = Ŵ  =

■ V 3 4/3. .2/3 4/3. s /s  1/2.

If the quadrature rules Q are cyclically reducible (cf. Definition 

2.3), then fijk(Q) are block reducible with

*0

q-1 a(q-l)q-2

3

Al

#(0)
q

0^1)

a(q-i)q

and so on and likewise for Bg, B^ .... (Stetter [31, p.218]).

Example 2.14

Consider the weights in Example (2.3a) which have also provided 

the weights for Example (2.8). They can be partitioned as (2.60) and 

treated as in Example (2.13). Alternatively, we may define 

A g = B g = 0  if 2 > 1 and

r 1 0- 0 -1-j 1/3 0 - -1/6 5/g.
*0 = , *1 = , Bo = , B^ =

[-1 1. .0 OJ ~ . 1/2 1/2 . 0 0 .
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so that AqÏO + Ag Wj = Eg. Yet again, another formulation

leads to

■ 1 0- -1 O' 1/3 0 ' 1/3 4/^
Ag = , *1 = , Bg = , Bi =

.-1 1. .0 0. ■ 1/2 1/2. 0 0 .

3

Each formulation corresponds to a recognisable 2-cyclic method.

If the rules Q are (p,(j)-reducible or cyclically reducible 

then the weights fijk[Q,A] are block reducible.

Example 2.15

Consider the mixed quadrature R-K method employing the repeated
Atrapezium rule and the R-K tableau —
1

Rjk(Q,A) may be partitioned

0
1 0 The array

3
0 1

0 i 0
0 1 0

0 i i 0
0 i 1 0

i 0 1 0 i i 0
i 0 1 0 i 1 0

& 0 1 0 1 0 & ■i 0
i 0 1 0 1 0 i 1 0

in which Wq - [g p, Wi - [g p  , Wg - °]

We may take Ag = [J =

2.3.6. Non-singular Volterra equations of the first kind - Revisited. 

We turn our attention, once again to the linear equation

j K(x,y)f(y)dy = g(x). (2.61)

We have already discussed in §1,3.1 and §2.2 the conditions under which
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the equation of the first kind may be recast as an equation of the second 

kind. Indeed, it is tempting to adapt our quadrature methods for 

Volterra equations of the second kind to deal with equations of tl^ 

first kind. However, it is our purpose here to refer to the work of 

de Hoog & Weiss [17] whose methods generally give high-order accuracy 

under reasonable assumptions. Weiss chooses 0  ̂ < 6i 6^ = 1

and constructs interpolating quadrature formulae using values of the 

integrand evaluated at Oo,6§,.,.., of the form

f ̂r E
Jg Aj.g p(Og) (r = 0,1.... p) (2.62)

On discretizing (2.61) with x = ih + 2^h we may obtain

K(fj,fk)fk = 8(fj) (2.63)

where j - i(p+l) + r + 1, tj = ih + 2j.h and in which fiĵ CA)

are the weights given in (2.53) and A is the matrix of coefficients

of (2.33). The summation work does not extend beyond k = (i+1) (p+1).

In the case when Og = 0 it is sufficient to set r = 0,1,..., p-1

and the equation corresponding to i = r = 0 is replaced by the special

starting value fg — . When Oq > 0  no such starting value is
) required.

We observe that in (2.63) values of K(x,y) for y>x are required.c/ûc.5 n o f  v a . n i s h  -Çe>̂  s > o )

Thus, a modified method is constructed of the form: 

0<̂ <i(p+l)h"jk(A)K(Tj,Tk)fk +

h Z 
s=0 *ps K ( T j ,  ih+2j.2gh) t (^r^s)fi (p+l)+t+l = g ( r j )

(2.64)
The second term on the left of (2.64) arises from the use of the 

quadrature rule

f ̂r P
Jg (f(y)dy = «rAps^(»r«s)

/Ae ues 0 -^ o/e, ^  c a n  lam -P o a  h l n U
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obtained from (2.62) by a change of variables.

The values f(ih+«rOsh) are obtained by polynomial interpolation

to the values f(ih+«,.h), r - 0,1.2.... p using the interpolation
polynomial

^p.t(^) = {G-0s)/(0t-9g)l.
s=0

Equations (2.63) and (2.64) may be solved as block-by-block methods 

he values f^(p+l)+r+l' (i* 0,1,2,..., p) simultaneously. Other

block-by-block methods typified, for example, by those of Linz may be 

found in the literature (Baker [2, §6.7]) where we note that the 

different methods of defining H(x,y,f(y)) when y > x yield the 

differing versions of these block methods.

 Product Integration Methods

The methods described in §§2.2 and 2.3 are inadequate for Abel 

equations. We mention these only briefly since we shall not discuss 

Abel equations in the remainder of the thesis. Product integration 

techniques which may be employed for such equations may also be 

developed for kernels of Volterra equations which can be decomposed into 

products of weakly-singular and well-balanced kernels. Thus, we refer 

general equations of the form

fX
Jq H i(x ,y )H 2 ( x , y , f ( y ) ) d y  = g(x) (2.65)

rX

-  Jo H i ( x ,y )H 2 ( x , y , f ( y ) ) d y  -  g(x) (2.66)

where H2(x,y,f(y)) is smooth. The forms assumed by Hi<x,y) (which 

is required to vanish for y > x) include K(x-y), where K(t) is 

permitted to be continuous, or weakly singular (e.g. K(t)= 1/t^,

0 < a < 1). When Hi(x,y) = 1  (y < x) we have the Volterra equations 

considered earlier. With ^(x,y)= (x,y ,f(y)), the integrands in (2 .6 5 ) -

(2.66) have the form H,(x,y)^(x,y).
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We may construct "generalised quadrature" rules

fX
Jq Hi(x,y)p(x,y)dy I v^Cx) p(x,kh), x e {ih} (2.67)

which are exact when p(x,y) is a polynomial of a certain degree in y, 

or when p(x,y) is piecewise-polynomial in y and x e {ih}. In 

particular, the approximation may be constructed to be exact (a) if 

P(x,y ) is linear in y in each interval kh < y < (k+l)h, (k = 

0,1,2,...), (b) if y?(x,y) is quadrat i c in y in each 

interval 2kh < x < (2k+2)h, (k = 0,1,2,...) and so on.

Approximating p(ih,y) by a piecewise polynomial y/ih,y) agreeing 

with p(ih,y) for y e {kbl^^g and integrating (x,y)^(x,y) over 

[0,x] we may choose {?%(!&)} so that

E Pk(x) p(x,kh) = j Hi(x,y)p(x,y)dy, x e {ih} (2.68)

Firstly we pause to sound a note of caution. In solving a Volterra 

equation numerically we are concerned to examine whether or not the long 

time behaviour of the discretized equation reflects that of the 

original. In other words, we are interested in the concepts of 

convergence and stability (see later). Clearly, it cannot be expected 

that it would be possible to provide a general answer which would cover 

the whole class of integral equations. We should also be aware of the 

work of Lubich [25], for example. His approach limits consideration 

to methods which are (using the classical stability concepts of 

ordinary differential equations) strongly stable, A-stable and 

A(a)-stable and to the class of problems for which these properties 

are maintained. Papers published by Nevanlinna [27], [28] and [29] 

adopt a similar approach.



2.5 Bownds' method

Bownds' method [9], for the treatment of (2.1) is based upon the 

approximation of H(x,y,f(y)) in (2.1) by a finite sum

5 Xr(x) Yr(y,f(y)).r=l

(The latter is a finitely separable kernel approximating H.) If we 

consider the equation

f(x) - Jq Z %r(x)Yr(y,f(y))dy = g(x), (2.6?)

when the sum is a finite one, we find that the equation (2.6%) can 

be reduced to the solution of an initial-value problem of a system of 

differential equations. Indeed, from (2.6%)

f(x) = g(x) + Z aj.(x)Xj-(x) (2.70)
r

where

ar(x) = Jq Yr(y,f(y))dy,

that is

or

a/(x) = Yr(x,f(x))

a'(x) = Yj.(x,g(x) + Z ag(x)Xg(x)). (2.70
s

We have aj.(0) = 0. Solution of the system of differential equations 

(2.7/») provides f(x) from (2.7d). Thus, Bownds advocates the 

construction of appropriate finitely-separable approximations to H 

and the solution of (2.7/) by automatic methods for initial-value 

problems. It may be noted that the application of a {p,cr) linear 

multistep method to (2.7 /,) with a fixed step h is (if g=0) equivalent 

to the use of a certain {p,o')-reducible quadrature rule to (2.6^) in 

the quadrature method whilst similar parallels hold for a Runge-Kutta 

method applied to (2.77) and the extended R-K method applied to (2.6^)
^hiS A ^  /r}ûl/ccx.4ĉ  fAe- five (kyio-/tjg/s 7-0/̂

'fo/' â ol,-ê s. 9oc.l̂  o.s <7"
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The benefit in Bownds' technique [10], [11] arises from the ability 

to use automatic routines for (2.70 which may have variable order and 

variable step. The choice of approximation to H(x,y,f) is a 

critical aspect of Bownds' approach.

The method proposed by Bownds can be specialized in order to 

treat convolution equations, in which H(x,y,f) = k(x-y)H*(y,f(y)), 

this kernel being approximated by one which is implicitly of the form 

Z Xj.(x-y)i'H*(y, f (y) ) , via an approximat ion to k(z) in terms of a 

finite weighted sum of shifted Chebyshev polynomials. (Golberg [14]

) shows how the Volterra equation of the second kind can be reduced to a

system of differential equations when H(x,y,f) = Zorkr(x-y)H*(y,f(y)) 

provided that the functions kj-(z) satisfy a system of differential 

equations

k/(z) = Zarskg(z),

so that the use of Chebyshev polynomials in Bownds' method is not an 

essential feature of the technique.)

We mention Bounds' techniques because it indicates a 

connection between general Volterra problems and ordinary

f f®t‘ent i al equations which is exploited in certain approaches to 

the analysis of numerical stability [Wolkenfelt 3/f ].
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2.6 y-Modified Methods.

In this section we shall consider the y-modified mixed-quadrature ■ 

Runge-Kutta methods proposed by van der Houwen [19] (see also [18]) 

with the aim of improving stability behaviour. The motivation for the 

modified mixed methods arose from the observation that frequently 

A-stable R-K tableau employed in mixed quadrature R-K methods gave 

rise to methods which were not A-stable when applied to the integrated 

forms of a differential equation (2.41). (For the present,

A-stability in the sense used by Lambert [23] suffices.) Thus, the 

^ purpose of deriving the modified mixed methods is to restore

A—stability when the R-K tableau is A-stable. A slight loss of order 

of accuracy is the penalty for the increased stability.

We recall the discretization of (2.45), with x e {Tj], to produce 

formulae of the type (2.52) in which the weights Ojk[Q,A] of (2.54) 

are employed. When r = p, rj = ih + e^h = (i+l)h and fi(i+l)(p+i),k

are given in terms of and Ap g, s = 0,1....  p-1.

From (2.45), we obtain

)
(i+l)(p+l) 

fj - h k:o "jkH(rj,Tk,fk) + g(Tj), j - 1,2,3,... 

Replacing i by i-1 and taking r = p

(2.81)

?i(p+l) - h f)i(p+l),k H(ih,xk,fk) + g(ih) (2.82)

Then the modified methods are defined by the formulae (obtained by 

subtracting X equation (2.82) from equation (2.81))

fj^^ - 8(’-j) + h Qj k H(7j.Tk,fi'''') + (2.83)

['v'l — [^] i(p+i) ~r<vi
î = fi(p+l) - h ^i(p+l),k H(ih'fk'fk ) " g(ih) (2.84)

in which a parameterizing vector is selected such that

1 = [70,71.... 7p]T, 0 < Yr < 1. (2.85)
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We note that provides an 'estimate' of the accuracy of the

method at the end of the i-th step and is based upon previous computed 
T'y]values fk » k — 0,1, . . . , i(p+1). Thus, from (2.83), we may regard

the estimate at the end of the i-th step as influencing the (i+l)-th
step.

If we consider the choice H(x,y,v) = Xv in (2.83) with 
T7 = [1,1,...,1] it foilows that

We see that the y-modified method with = 1 (r = 0,1,..., p) 

reduces, when applied to the equation

f(x) = g(x) + X J* f(y)dy,

to the extended R-K method for this equation. In particular, we

observe the A-stability of the modified method with = \ when the 

R-K tableau is A-stable.

For further discussion of stability considerations which may 

motivate the ^-Modified Runge-Kutta methods and related developments 

we may refer to van der Houwen, Wolkenfelt & Baker [21], [39], 

Wolkenfelt [36] and van der Houwen & te Riele [20]. Some insight on 

the convergence of the methods may also be found in 

van der Houwen [19] and van der Houwen, Wolkenfelt & Baker [21].
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CHAPTER 3

— --— stability analysis of Runge-Kutta methods for Volterra

integral equations of the second kind

3.1 Introduction

3.2 Preliminary remarks on stability

3.2.1 Stability of the continuous problem

3.2.2 Stability of the numerical method

3.2.3 Numerical stability for small h

3.2.4 Numerical stability for fixed h

3.2.5 Further contributions to the stability theory for fixed h

3.2.6 Concluding remarks.

3.3 Further remarks on structure

3.3.1 Recurrence relations

3.3.2 Partitioning - Further remarks on the structure of weights

3.4 Extended Runge-Kutta methods and stability definitions

3.4.1 Extended R-K methods

3.4.2 Stability definitions

3.4.3 Additional definitions 

2) 3.4.4 Ful1-step stability

3.4.5 Block stability

3.4.6 Modified extended methods.

3.5 Mixed Runge-Kutta methods with reducible rules.

3.5.1 Full-step stability

3.5.2 Block stability

3.5.3 Economized versions

3.6 Mixed quadrature-Runge-Kutta methods using block-reducible rules.

3.6.1 Block stability

3.6.2 Ful1-step stability

3.7 Extensions.
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3. Basic stability analysis of Runge-Kutta methods for Volterra 

integral equations of the second kind.

3.1 Introduction

Our main pupose in this chapter is to reveal the application and 

analysis of certain stability definitions applied to Runge-Kutta 

methods for a second kind Volterra integral equation of a simple 

form, now generally described in the literature as the "basic 

test equation". Thus we have two prerequisites; To discuss the class 

2) of 'test' equations which might be used and to introduce stability

definitions and examine their application when applied to a certain 

class of methods.

In §3.2 we have some preliminary remarks on stability with an 

attempt to place on a firm foundation our choice of 'basic test 

equation'. The results of our investigations form the basis of this 

work although there have been some subsequent developments [18] 

which will also be briefly discussed. Nevertheless, we shall seek to 

confirm that the analysis of our chosen 'basic test equation' provides 

a necessary foundation on which to develop a theory for more involved 

test equations where the complexity of the analysis can obscure the 

insight. The results for our basic test equation not only lead to 

genuine understanding but have stimulated the production of new methods.

In §3.3 we summarise some important results in the study of 

recurrence relations and elaborate on some relevant remarks on the 

structure of quadrature weights.

In §3.4 we introduce some of the stability definitions which we 

intend using in subsequent sections. The relevance of these definitions 

is examined in connection with Runge-Kutta methods for the second kind 

Volterra integral equations. Some of our results obtained for our 

test equation mirror results already well known when Runge-Kutta



-97-
methods are used for the numerical solution of initial value problems 

of ordinary differential equations.

In §3.5 and §3.6 we introduce an analysis of the mixed Runge-Kutta 

methods with reducible and block-reducible quadrature rules. We find 

that the structure^of the methods used^results in recurrence relations 

and stability polynomials which permit certain stability results to be 

stated for our 'basic test equation'.

3.2 Preliminary Remarks on Stability 

2) The aim of this section is to motivate discussions in subsequent

sections in this chapter.

We consider the Volterra integral equation of the second kind

f(x) = g(x)+
X

H(x,y, f(y))dy, (x > 0) (3.1)
0

When solving such an equation numerically we wish to know whether the 

behaviour of the disert ized equation, as x oo, reflects that of the 

original integral equation (3.1). For example, will the numerical 

solution converge to zero or remain bounded if the exact solution does?

3  The study of stability can be related to the qualitative behaviour

of solutions.

In our discussions of stability, consideration will be restricted 

to the linear version of (3.1)

f(x) = g(x) + X
X
K(x,y) f(y)dy, (x > 0) (3.2)
0

The earliest stability studies in the numerical treatment of such 

equations ([4], [7]) have been concerned with the performance of 

methods applied to an equation which has become generally known in the 

literature as the 'basic test equation'
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f(x) -X
X

f(y)dy = g(x). (3.3)
0

(It reduces to f'(x) = X f(x) + g'(x), f(0) = g(0).) This test 

equation is open to some objections because of its simplicity and the 

fact that certain typical features of Volterra integral equations are 

not present. We shall see that attempts have been made to search for 

other more realistic problems. Nevertheless, we shall argue that 

stability conditions for methods applied to (3.3) provide initial 

2̂  criteria against which the versatility of methods may be judged.

Thus methods exhibiting poor stability properties on (3.3) are unlikely 

to do well on more difficult problems. Further, the stability study 

of methods for (3.3) provides insight into a structure which is valuable 

for the study of more general equations ([6], [29]).

3.2.1 Stability of the continuous problem

The study of stability of the solution of the integral equation 

(3.1) is concerned with the sensitivity of f(x) to perturbations 

in the problem. For an introduction to this topic we refer to 

2) Tsalyuk [26]. Particular attention has been given to the effect on

f(x) of a perturbation 5g(x) in g(x) as x -> œ and various 

stability definitions have been given arising from the restrictions 

on the class of perturbations ôg(x) to various normed linear spaces

(See, for example, Bownds and Cushing [9].)

For the linear version (3.2), progress in the stability analysis 

can be made by analysing the resolvent or differential resolvent. We

recall from §1.9.5 the familar results

f(x) = g(x) + X
X
Rx(x,y)8(y)dy (3.4)

0
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D

where R\(x,y)
X
K(x,z) R\(z,y)dz + K(x,y) (3.5)

0

(The resolvent kernel may be developed from the Neumann series:

R\(x,y) = K(x,y) + X K%(x,y) + X k3(x,y).... where

r r  r-1(x,y) — K(x,z)K (z,^)dz^ In practice, it is difficult to derive
■ 0

properties of the resolvent kernel for an arbitrary kernel K(x,y).

Even assuming the linearity of K it cannot be expected that there 

will be a general solution to the problem of stability. Hence, one 

tries to investigate stability problems for special classes of equations 

where one hopes to gain insight under simplifying assumptions on the 

nature of the kernel.

Several papers have been published in which the essence of the 

approach turns out to be analysis of a numerical method for ordinary 

differential equations to which the integral equation is more or less 

equivalent when the same numerical method is used and certain types of 

kernel functions are involved. Thus, Baker and Keech [7] and 

Van der Houwen [14], respectively, have produced stability results 

2) for particular classes of methods and kernel functions varying from

simple linear functions such as H(x,y,f) = af and H(x,y,f) = (ax+b)f, 

a and b constant to rather more general separable kernels of the 

form

H(x,y,f) = % Xi(x)Y;(y,f), (3.6)
1=1

(cf. Baker [6] and Van der Houwen & Wolkenfelt [15]). Particular 

examples of kernels of the form (3.6) such as the polynomial 

convolution kernel

K(x,y) = K(x-y) = % XrCx-y)^ (3 ?)r=0
and
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k(x,y) - Xq + Xi(x) + Xi(y) (3.8)

have also been studied in Amini and Baker [1] and Amini, Baker, 

Van der Houwen & Wolkenfelt [2]. The assumption of the form of 

polynomial convolution kernel (3.7) in (3.1) produces equations

f(x) = g(x) + R
Zn ^r(x-y)rf(y)dy (3.9)

0 r-0

which permit a reduction of (3.1) to a system of ordinary differential 

equations and the analogue of stability results for differential 

equations can be established for (3.1). Results for (3.3) can also 

2^ be deduced from those of (3.9).

3.2.2 Stability of the numerical method

If, in (3.2), g(x) is perturbed by a small amount 5g(x), 

then the resulting change 5f(x) in f(x) may be obtained from 

(3.4) by

ôf(x) = ôg(x) + X Rx(x,y) ag(y)dy. (3.10)
0

When direct quadrature methods are applied to (3.2) we obtain the 

quadrature equations (see (2.4))

- i
fi = g(ih) + h coij K(ih, kh)\, i = 1,2,3... (3.11)

and the stability analysis involves the study of the effect of 

perturbations 5g^ in g(nh) (n = 0,1,....) on the resulting changes 

ôfĵ  in f^ when

^fn = ^8n + y Wnj K (nh,jh)5f, (3.12)j=0

The perturbation ôfĵ  depends on all previous perturbations 

Gfj, j = 0(l)n-l. Miller [19] has given a theory of finite 

recurrence equations, in which a perturbation 5f^ depends on a 

finite number of perturbations ^^n-l >••••> ̂ "̂n-k this theory may
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provide Insight into the more general problem of (3.12) when the 

kernel and quadrature weights satisfy suitable conditions.

Two approaches to the stability analysis may be found in the 

literature. These are described in the following sections.

3.2.3 Numerical stability for small h

Numerical stability "for small h", in the sense of Linz [17] 

and Noble [22] requires the perturbation sensitivity of the numerical 

method to be "roughly equivalent" to the perturbation sensitivity 

^  of the original problem. The approach of Linz and Noble is based on

the asymptotic expansion of the global discretization error. Before 

pursuing this direction it may be helpful to state here their 

respective stability definitions.

Definition 3.1 (Linz [17])

A step-by-step method for (3.1) is numerically stable if the 

error growth is roughly equivalent to that of the solution of the 

variational equation of (3.1). If there exist some equations for 

which the error grows much faster then the solution of the 

^  variational equation of (3.1) then the method must be considered

numerically unstable.

Definition 3.2 (Noble [22])

A step-by-step method for solving a Volterra integral equation 

is said to be unstable if the error in the computed solution has 

dominant spurious components introduced by the numerical scheme.

The meaning of the term "spurious" will be remarked upon later.

Now we turn our attention to the analysis of the global 

discretization error. Considering a (p,cr) - reducible quadrature 

method of order p (defined in §2.2-1) the asymptotic expansion of the
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global discretization error e(x^) = - f(x^) may be shown to

have the form

e(%n) = hP y III e(/)(x) + 0(hP+l), (3.13)
1=1

where = 1, P2,...,Pg are the essential zeros of p, that is,

are of modulus 1. ei/)(x) satisfies

Gp^)(x) - gp')(x) +

^  and K(x,y) = ^  H(x,y,f(y)).

X
K(x,y) e/ 4 y ) d y  (3.14)

0

The quantities -/i are the growth parameters (Henrici [12, p237]) 

defined as

7i = f(Pi)/Pi p'(Pi), i = l,2,...,s

The functions gp (x) are related to the errors in the starting value; 

and to local quadrature errors.

Note that if in (3.1) g(x) is perturbed by a small amount 

ôg(x) then f(x) changes by a small amount gf(x) where, with 

X(x,y) = ^  H(x, y

0f(x) <5g(x) + K(x,y)ôf(y)dy
0

which is of the form (3.2) with X=1.

Accordingly, we have (3.10) with X=1.
(1)The component ep (x) associated with y-̂ = 1 is the principal error 

component which mimics the effect of an analytical perturbation. The

remaining components e^^^x)....e^^\x) associated with 72»____ »7s

are the "spurious" error components. Clearly, if |e^^^(x)| »  |e^^\x) 

for some i (2<i<s) then, in the sense of Linz and Noble, the 

method is numerically unstable.
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The advantage of the approach based on the asymptotic expansion 

of the global discretization error is that it is applicable to general 

equations (3.2) without additional constraints on the kernel K and 

the function g; the values of the growth parameters are clearly 

crucial for numerical stability. To reinforce this latter point we 

consider the basic test equation

f(x) - g(x) + X 

whose solution is given by

f(y)dy. (3.15)

f(x) = g(x) + X exp (X (x-y)) g(y) dy (3.16)
0

Suppose there is a value y; ^ 1 for some i ^ 1. Then, from (3.14)

Pand (3.16) there is an associated spurious error component e^^\x)

given by

Gp^)(x) - gp^)(x) + 7i X
0

exp (7i X(x-y))g(i)(y)dy. (3.17)

The problem (3.15), whose solution is (3.16), is well-conditioned 

with respect to bounded perturbations of g if Re X < 0. However, 

we observe from (3.17) that if ^ 1 (i^l) and Re(7; X) > 0

then the global error has a spurious component ep^^(x) which is 

exponentially increasing. Furthermore, in his thesis Linz [17] 

conjectured that quadrature methods using rules with repetition 

factor one (see Definition 2.î (a)) tend to be numerically stable, 

whilst those with repetition factor greater than one tend to be 

numerically unstable. This was a useful premise to stimulate further 

analysis and Wolkenfelt [28] has investigated this conjecture. First 

of si 1 he shows that the natural interpretation of Linz's conjecture
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is too strong by providing, in the following theorem, a more 

quantitative definition of the numerical stability concept.

Theorem 3.1 Wolkenfelt [28, p.114]

A reducible quadrature method of the form (3.11) is numerically 

stable (for small h) (in the sense of Linz and Noble) if each

essential zero of p has a growth parameter equal to one; the

method is weakly stable (for small h) (or numerically unstable in 

the terminology of Linz and Noble) if there exists at least one 

essential zero of p whose growth parameter is different from one.

Secondly, Wolkenfelt has demonstrated that methods with an 

asymptotic repetition factor of one are always numerically stable in 

the sense of Linz and Noble but that methods with an exact or 

asymptotic factor greater than one can also be numerically stable. 

Example 3.1(a)

An example of a numerically stable method which has an exact 

repetition factor of two is obtained by taking p(/x) = ^2-1 and 

a(fi) = /x2+l. (The growth parameters associated with the essential 

zeros = 1 and pL2 = -1 are both equal to one.)

2) Example 3.1 Cb) (Wolkenfelt [28])

Consider the (p,cr) - reducible quadrature method with 

P(P-) = (/̂ “̂1)(M ~ g) 3.nd (t(ii) = (p^-2/3^ + 1). The weights have an 

asymptotic repetition factor of 2 (since the essential zeros of p 

satisfy /̂2 = 1) and the method is numerically stable as the growth 

parameters associated with the essential zeros of p are both 

equal to one.

However, the disadvantage of this stability analysis is its 

asymptotic nature (as h -> 0) and therefore the conclusions drawn 

may not hold for particular values of h. We need to gain greater 

insight into an appropriate choice of h by considering regions of
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stability and a class of test equations.

3.2.4 Numerical stability for fixed h

We have already indicated that in order to obtain insight into the 

general stability problem (3.12), special cases of (3.2) have been 

considered in the literature. In §3.2 and §3.2.1 we cited some of the 

special cases of K(x,y) which may be considered, the most simple case 

arising from the choice of K(x,y) =1, X e C yielding the 'basic 

test equation' (cf. Baker and Keech [7])

2) f(x) = g(x) + X f(y)dy. (3.18)
0

However, we cannot assume that a method which is suitable for our 

rather special test equation (3.3) is suitable for more complicated 

equations. To this end attempts have been made to provide a firmer 

foundation to the stability analysis based on (3.3) by considering 

more general kernel functions. Earlier we remarked that 

Van der Houwen [14] considered kernel functions of the form

H(x,y,f) = (a+bx)f, a and b constant. (3.19)

2) Baker [6] and Van der Houwen & Wolkenfelt [15] considered the class

of finitely decomposable kernels of the form

H(x,y,f) = % Xi(X)Yi(y,f). (3.20)
1=0

The relevance of (3.19) may also be disputed as the equation can be 

reduced to a second order differential equation. However the form of 

stability analysis for (3.19) provided understanding when dealing with 

kernel functions of the form (3.20). In [15] Van der Houwen and 

Wolkenfelt compare the stability conditions derived for kernels of 

the form H = Xf with those derived for (3.20) and conclude that the 

first class of kernel functions gives a rough indication of the
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stability behaviour of the numerical scheme. Hence (3.3) may be 

considered as a first sieve for the selection of an appropriate scheme 

for the solution of Volterra integral equations of the second kind.

Other contributions of the stability theory for fixed h exist, 

which vary in the class of methods considered and in the special case 

of (3.2) adopted as a test equation. For a brief survey of some of 

these approaches we may refer to Amini, Baker, Van der Houwen and 

Wolkenfelt [2]. Since our earlier investigations, but prior to 

recording them here, there have been several new approaches to stability 

analysis which we shall discuss briefly in the following section.

2• 3— Further—contributions to the stability theory for fixed h .

Lubich [18] has observed that, in applications, one often 

encounters convolution equations of the form

f(x) = g(x) +
X

k(x-y)p(y,f(y))dy, x > 0 (3.21)
0

In this subsequent stability analysis he considers the linear case 

where p(y,f(y)) = f(^ ) and makes use of the Paley and Wiener 

theorem (Theorem 1.10) which provides a result on the asymptotic 

stability of Volterra integral equations of convolution type. The 

theorem is repeated here for convenience.

Theorem 3.2 (Paley and Wiener [24])

Consider the equation

f(x).
X

k(x-y) f(y)dy = g(x), x > 0 (3.22)
0

where the kernel k(x) belongs to L (0,oo) . Then we have 

f(x) -> 0 whenever g(x) 0 (x oo)

if and only if
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e wxk(x)dx 7̂ 1 for Re w > 0. (3.23)
0

Lubich investigated the asymptotic bahaviour of the numerical 

solutions obtained by applying linear multi step methods with a 

fixed step size h to the following class of Volterra integral equation

f(x) = g(x) + X
X

k(x-y)f(y)dy (x>0) (3.24)
0

where Re X < 0 and the continuous kernel k(x) e l ’ (0, co) with
- X  CO ^
J  {k(nh)l E 6 is positive definite. That is, for all n > 1,0

n
J k(%j - (m) Zj %m > 0 for any choice of real numbers

El,'",Sn complex numbers k(x) is extended to the

negative real axis by k(x) = k(-x). By Bochner's theorem this is 

equivalent to (3.23). Examples of positive definite functions are 

convex non-negative, non increasing functions on [0,w), cosx and 

oxp(-x2). By the use of the Paley and Wiener theorem, it can be 

demonstrated that positive definite kernels form "the largest class 

of linear convolution kernels" such that

-p(x) -4 0 (is bounded) whenever g(x) -^0 (is bounded) 

for all X with Re X < 0.

For initial value problems in ordinary differential equations, 

a method is called A-stable if the left half-plane Re z < 0 is 

contained in the stability region for the basic equation. Lubich has 

shown that, in the application of an A-stable linear multistep method 

to an integral equation with positive definite kernel, the stability 

region of the linear multistep method is not preserved. However, 

in general, A(#)-stability (that is, where the stability region 

contains the sector arg z e (r-a, r+a) with a e (0, V 2) does 

carry over to a restricted class of integral equations (3.2-4) where the
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continuous L kernel k(x) is completely monotonie. That is,

(-1)® k^(x) ) 0 for s = 0,1,2, .... and x ) 0, where 

kS(x) represents the sth derivative of k(x).

In addition to Lubich's work Nevanlinna [20], [21] has also

considered test equations with non-separable kernels. However,

Nevanlinna's papers and that of Lubich deal only with multistep 

methods. In [11] Hairer and Lubich show to what extent the results 

of [18] can be adapted for extended Runge-Kutta methods when applied 

to selected convolution equations with positive definite L'kernels.

3.2.6 Concluding remarks

We remain convinced that the development of the stability analysis 

for (3.3) is useful and relevant. We accept that there are limitations 

to the use of (3.3) as a test equation and these have been cited in 

Baker [4] and repeated elsewhere. To overcome some of these limitations 

more general test equations can be, and have been, mentioned in earlier 

sub-sections in this chapter. Nevertheless, the stability analysis of

the simple test equation gives genuine insight into the structure and

complexity of the analysis arising from more general test equations.

2) Indeed, it now seems to be generally accepted that suitability of

a method for the test equation (3.3) is a necessary (but not sufficient) 

requirement for an all purpose method.

3.3 Further Remarks on Structure

In this section we refer to two prerequisites which will be 

useful in subsequent sections. The first refers to the type of 

recurrence relations which arise; the second deals with the special 

structure of the quadrature weights which will also be exploited.

3.3.1 Recurrence Relations

When determining stability regions of numerical methods for initial 

value problems in ordinary differential equations one considers the
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effect of applying the numerical scheme to the test equation:

frequently f'(x) = X f(x), X real or complex. Thus Lambert [16]

illustrates that a (p,cr) linear multistep method associated with the

polynomials p(z) = ^ p^-i and a(z) == | iSj for this
i=0 i=0

particular test equation gives the formulae

.Z_ (<̂i fn+i =0, n = 0,1,2, . . . (3.25)
1= 0

where we seek f^ f(rh), given suitable starting values fQ,.

If <̂ k “ ^h^k ^  ̂ and 7j = (oij -Xh )/(o:]̂ -Xh/3j|̂ ) then (3.25) may be 

written in the form (of. Baker & Keech [7])

fn+k " 7k-l 7k-2 70 fn+k-1
1 0 0

= 0 1 0

. ^n+1. . fn .

- 0 0 1 0-

(3.26)

3 These recurrence relations may be expressed as

^k+1 = M^k where = [ fn+k-1 > • • • ̂ n] (3.27)

and M is a fixed square matrix, independent of k. The usual

stability criterion in terms of the zeros of p(z)-Xho-(z) imposes
. k—1

a requirement that the zeros of {z^ - ^ 7iZ ) (equivalently, the
i=0

eigenvalues of M) liein^onthe unit disc. We return to this point later 

Here, we are concerned to illustrate how we shall gain insight 

into relevant aspects of error propagation when developing the 

stability analysis of numerical schemes applied to integral equations.
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We recall that, when extended or mixed R-K methods are used for 

the discretization of Volterra Integral Equations of the second kind, 

formulae of type (2.52) are produced where the 'weights' are denoted by

(2.53) or (2.54) respectively. In addition, the quadrature methods 

of (2.4) fit into the framework (2.52) where the weights are given by 

(2.55). For convenience we reproduce the formulae of type (2.52) 

here:

fj - h X  fijk H(t j , Tk, ?k) + g(7j), j - 1,2,3,... (3.28)

2) Due to the simple form of our 'basic test equation' (3.3), when

differencing procedures are applied to(3.28), under certain conditions 

such as the structure in the weights recurrence relations will

be yielded of the form

= M + 7k, k = 0,1,2,... (3.29)

where = M(Xh) and 4>q = 7 is given. The components of the 

vectors will be successive values of fj the approximations to

f(jh). Stability definitions given in later sections are introduced 

in order to permit the study of relationship between the solution of 

2 (3.29) and the solution of a perturbed recurrence

*k+l - Ü 5k + Tk + >  (3.30)

(where the term stems from the introduction of rounding error or

truncation error). Clearly, if = 3^-$^ we have + 0̂ ,

so that the study of error propagation (the behaviour of the sequence 

in response to (6%)) is in effect the study of the behaviour

of the solution of equations of the form (3.29). For further

elaboration we refer to Baker [4].

3.3.2 Partitioning - Further Remarks on the structure of weights

Here we make some additional observations on the weights (A)
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defined in (2.53) for the classical extended R-K formulae and of the 

weights [Q,jA] defined in (2.54) for the mixed quadrature R-K

method. Later, we shall find it helpful to refer to the following 

structures. The array of values fijk (̂ ) which are defined in (2.53) 

as

3

'Pt

Tt '

0 < k < i(p+l)
i(p+l) < k < (i+l)(p+l)
otherwise

where t e (k-1) mod (p+1), r = (j-1) mod (p+1), 

may be represented in partitioned form given below:

(3.31)

3

fljk(A) - ;

0
0* A

0
0
0
. T■> eap A/V' V*
0
0
0

T Tea ea AP _^p

Ô

• • •

(3.32)

•
Û
0 T T T Tea ea ea,. ea A^^p ^ s.
0
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where A = [Aj-g] is of order p+1; a = e A (the last row of A)X/ ^P -V/
where eQ, ei,...,ep are the successive columns of the identity

Tmatrix of order p+1, and e = ^0 tÊl ®p* (The matrix ea^

has all rows equal to the last row of jA.)

In the mixed quadrature method, whose weights are defined in 

(2.54) as

3 ^jk [Q,

0)im»

Tt >
0

k = m(p+l), m < i 

i(p+l) < k < (i+l)(p+l)

otherwise

(3.33)

r,t being defined as for (3.31), i being [(j-l)/(p+l)], the 

partitioning assumes the form;

0)iOe

Wi+l,Oe

“ilEp

“i+1,lEp

Ü)

Wi+l,2^p

••• Wiigp

Wi+l,i+l^p
(3.34)

where the matrix Ep is defined as

3
E = ée . -y p ^ ̂  p

With this notation, A = ea can be written E A. (3.35)

We observe that the in (3.34) frequently have a. structure which

has been outlined in (2.6) as follows:

fijk(Q)
w Wq . Wi W2 *

w Wo • • • Wo Wl W2
3 - 1 3

w
w /

W q • , . ^ 0 Wq W-| • • • 3 - 2 3 - 1 3
(3.36)
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)

)

where Wp is lower triangular, the partitioning being into square 

submatrices of the same order q. Example 2.4 provides such an 

illustration. Furthermore, from §2.3.5, we recall that the structure 

(3.36) provides an example of a more general structure where the 

weights for y ) 0 can be partitioned as:

52,0 52,1
52+1,0 ''.2+1,1

ve,c-i

52+1,5-1 52+1,2 Vfi+l,C+1 

(3.37)

Here, the submatrices are all of order q and relations

m
5  AeVn+l-C,,, - (3.38a)

are satisfied (for all n sufficiently large) with

~v " 5" “ 5. if ^ (0,1,2, ... ,m) . (3.38b)

The matrices Ag, are fixed matrices of order q and at least one

of the matrices is required to be non-zero. An additional and

natural requirement is the condition

m
elo 3t-S. (3.38c)

where je — [1, 1,...,1]T ig the sum of the columns of the identity 

matrix of order q.

When the relations (3.38a,b,c) are satisfied the weights are block 

reducible and §2.3.5 contains illustrative examples. Further 

elaboration may be found in Amini, Baker & Wilkinson [3].

3.4 Extended Runge-Kutta methods and stability definitions

The earliest stability studies in the numerical treatment of 

Volterra equations of the second kind [4,7] have been concerned, with 

the performance of methods of applied to the basic test equation
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3

f(x) - X
X

f(y)dy = g(x). (3.39)
0

Stability conditions for methods applied to (3.39) provide initial 

criteria against which the versatility of methods may be judged.

Further, the stability study of methods for (3.39) provides insight 

into a structure which is valuable for the study of more general 

equations [6, 29]. We believe that for a class of problems the 

stability properties of methods applied to equations of the form 

(3.39) provide practical guidance but do not pursue here the question 

of the scope of this class of problems.

We shall include various stability definitions as the discussion 

proceeds.

3.4.1 Extended R-K Methods

Classical extended methods were defined by (2.52) which for 

convenience, is reproduced in (3.28). The rules (2.3j*)are defined by

(2.53) in terms of the Runge-Kutta array (2.33) and are reproduced 

in (3.31) or the partitioned form (3.32). We now consider the stability 

of the extended methods applied to (3.39) where H(x,y, f(y)) = Xf(y). 

Equations (3.28) become

fi = Xh y j = 1,2,3.... (3.40)
k)0

The approximate values fj obtained from the extended method define 

vectors , V̂2 ’ ^3 > • • • where

Pi+1 = [fi(p+l)+l' fi(p+l)+2' ••• f(i+l)(p+l)]^ = 0,1,2,...), (3.41)

(See also [5]) .

By virtue of (3.31) with j = i(p+l) + r +1 and r = 0 we obtain 

from (3.40) the equation

fi(p+l)+l = [(Apo fi+...+App fp+i) + (Apo f(p+l)+(-'̂ '-+App f2(p+l)) + '-'
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••-+(ApO f(1-1)(p+l)+l+-•-+^pp fi(p+l)]^

+ Xh[Aoo fl(p+l)+l +...+ App f(i+i)(p+i)] + g(?i(p+l)+l)
(3.42)

Using (3.32) (the partitioned form of (3.31)) together with (3.41), the 

equation (3.42) may be written as

~ p 1 p
fi(p+l)+l = kh a Z + kh a pq+i + g(fi(p+l)+l) (3.43)XV Jr  J.'V' rXX

T Twhere, we recall, a == e A, the last row of A.P"L/

For further values of r = 1,2,...p in (3.40) the following equations 

are produced

— p i pfi(p+l)+2 = kh a^ Z jOk + kh a^ ^i+i + g(Ti(p+l)+2)

(3.44)

~ T i pf(i+l)(p+l) = kh a 9 ip̂  + Xh a Pi+i + g(?(i+l)(p+l))

Combining equations (3.43) and (3.44) we obtain

T i(^-XhA)yji+i -Xh ea t = Si+1> i = 0,1,2,-------- (3.45)^ k=l —'
T

Here gf+i = [s(ri(p+l)+l), g(fi(p+l)+2), .... g(^(i+1)(p+1))]

We pause to observe that equation (3.45) forms the basis of our 

studies.

Recall that

TEp = ee

T Talso E A = e a  and e e = 1.px/ 'Â'-V'P ,̂ p -y
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Applying Ep to (3.45) for i = 1,2,3,... yields the equation

<Pi -kh e a^ 2 PR = Ep gj (3.46)
^ '^r^P K*==l''  AX 'X-

Subtracting (3.46) from (3.45) yields

(I-XhA)pq+l - Eppi = gi+i - Epg; (3.47)

From (2.51), f(ri(p+l)) = fi(p+l) = f(ih), j = i(p+l)+r+l, r = 0,1,...p

and we observe that Ê y?. can be written f(ih)e. The matrix

I - XhA is invertible if we exclude at most p+1 exceptional values 

of Xh for which the method fails; with this exclusion we find

ŷ i+l = (̂Xh)y)j + y i+i (3.48)

where

N(Xh) = d(Xh)e^ (3.49)

with

d(Xh) = (I — XhA)~”̂ e^ (3.50)

and

^i+l = (I^- khj^"l(gj+2 - ) - (3.51)

We note that, here, the matrix N(Xh) is of rank one.

Equation (3.48) is of the form

<Èi+l = M + »M+i , M E M(Xh), (3.52)

which (as noted earlier) is commonplace in the matrix analysis of 

numerical stability of, for example, ordinary differential 

equations. Equation (3.52) has interest in its own right (Hahn 

[10, p47], Miller [19]). We observe that (3.52) may be a scalar 

relation. The stability analysis which follows is devoted to the 

analysis of relations which can be put into the form (3.52).
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Example 3.2(a)

Consider the conventional R-K tableau

we find j(Xh) = [(l-^Xh)-l, (l+^Xh)(1-^Xh)]T 

and ^  (Xh) = [[ Q  I ^ 6Ah)J. r ,

3.4.2 Stability Definitions

We now turn to the provision of stability definitions for the 

analysis of (3.52).

Definition 3.3(a)

A recurrence of the form (3.52) is said to be (block-) stable in

1be norm I I I I if the subordinate norm of the amplification matrix

M satisfies ||M|| < 1, and the stability is strict (the method is

"contract ive") if llMi| < L < 1.

The above definition requires a choice of norm. We can introduce 

new definitions which rely on the location of eigenvalues of H.

First note that a matrix is said to be of class M [23] if and only 

if its eigenvalues having largest modulus are semi-simple. (An 

eigenvalue g is semi-simple if the number of linearly independent 

eigenvectors corresponding to p is equal to the algebraic 

multiplicity of jx) .

Definition 3.3(b)

An arbitrary square matrix will be called strictly stable if 

p(M) < 1 where p(J4) is the spectral radius. A matrix M will be 

called stable if and only if either it is strictly stable ox it is 

of class M and p(M) = 1, (c.f. [27, p.265]).
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The stability of a recurrence relation will be related to the 

stability of its amplification matrix

Observe that the spectral radius p(M) < I |M,I I of the amplification

matrix M satisfies p(M) < 1  if and only if there exists some

subordinate norm with ||M|| < 1. Suppose now that M is class M

(a rank-one matrix is of class M); then p(^) = 1  if and only if there

exists a subordinate norm with IlMll = 1. Observe that since 

M = jM(Xh) in our applications, the subordinate norm in the latter 

statement will depend on Xh.

Remark

We pause to emphasise how the study of stability of the solution

of the integral equation (3.1) is mirrored by studying the effects of

perturbations on recurrence relations of the form (3.52). For the 

basic test equation (3.3) we know that a constant change 5 in g(x) 

results in a change e(x) = ôexp(Xx) in f(x). If and only if 

Re(X) < 0, e(x) is bounded and (3.3) is stable; if and only if 

Re (X) < 0, 1im e(x) = 0 and (3.3) is asymptotically stable,x-yx)

Definition 3.4 Equation (3.3) is stable if Re(X) < 0 and

~y asymptotically stable if Re(X) < 0.

On the other hand, when equations (3.28) are applied to (3.3)

we obtain (3.40) and we seek the effect of perturbations in the

values of gj on the values fj. Structure in the weights fîjk

enables us to derive a finite term recurrence relation of the form

(3.52) where the components of the vectors jDj are successive

values of fj. A perturbation e in «Jq results in perturbations

M^e in $k and the recurrence for the vectors is damped if and only

if 1 im I I = 0. For any subordinate matrix norm,
k-^ ^

1 im = p(M) . Thus the method is damped if p(M) < 1. However,
k-4<x) r-̂

if p(M) = 1 and also M is of class M then the perturbations are
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bounded.

Applying definitions 3.3 we have the following result.

Theorem 3.3

For given Xh, the matrix J^(Xh) is stable, and the recurrence

(3.48) is block-stable in some norm, if and only if 
Tp(N(Xh)) = Ie d(Xh)I < 1. The recurence (3.48) is block-stable in the

i2co-norm if and only if ||N^Xh)||# = iid(Xh)lloo < 1 and is block-stable

in the O^-norm if and only if I IN(Af)) | 11 = I | d^ h) I I % < 1.

Proof. The proof is straightforward.

3.4.3 Additional Definitions

We shall need some additional definitions later.

It frequently happens that recurrence relations occurring in practice

have the form [7] 

m
aim X0(kh)%n+l-2 = Tn+1. det[XQ (Xh)] Z 0. (3.53)j2=0 ̂

(The vectors and matrices in this relation may reduce to scalars.)

We obtain a relation of the form (3.52) on setting

and

M(Xh)

-X^Xi ■x5\x 2 - X o V

(3.54)

where Xq = X#(Xh). The recurrence relation will therefore be 

called stable when the recurrence for the vectors (̂ ’n) is stable
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Definit!on 3.5

A recurrence (3.53) will be called (strictly) stable if and only 

if the matrix (3.54) is (strictly) stable.

To assist in detecting whether the matrix M(Xh) is of class M 

(and the nature of its eigenvalues) we observe the following result. 

Lemma 3.1

Suppose that z = [zj, zl\...,z^l^ and M(Xh)z = uz; then

z = ' " 'fT] where
■X m3 (3.55)

and conversely. Thus an eigenvalue of M(Xh) is semi-simple

(that is, the corresponding Jordan block is diagonal) if and only if 

ji is a semi-simple zero of the "auxiliary polynomial" 

det X^(Xh)^^' in the sense that exactly i> linearly independent

^  satisfy (^2o = 0 where r is the multiplicity of

H as a root of the auxiliary polynomial.

When the matrices X q reduce to scalars it can be seen that a

multiple root cannot be semi-simple. In this case M(Xh) is of

class M if and only if the roots of largest modulus of the

auxiliary polynomial are simple.

The introduction of the spectral radius of the matrix lA of

(3.54) may be considered somewhat artificial in a discussion of the

stability of (3.53). To clarify, we observe that if the vectors

%Q, ^ ^ . are defined by (3.53) and perturbations

are made in the "starting vectors" %Q %m-l'

then the resultant changes --- in Xm+1 satisfy the
mhomogeneous version of (3.53), that is > = 0 for
j2=0

n = m,m+l  The choice ^  (r - 0,1,... ,m-l) where p. is

3
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an eigenvalue of M and where z = fjU.™  ̂f ^ i g the
^

corresponding eigenvector, yields $  ̂= ^^^(r = m,m+l,...). Thus

p(M) = max|p.| gives real insight into the possible growth of

perturbations in Xj. (r ) m) resulting from certain perturbations

in the "starting vectors" Xq , . . . . We return to a similar

aspect of our theory at the end of §3.4.4.

Since stability of recurrence relations is related to the location

of zeros of det [ 2 Xg(Xh)^^"^j we recall the followingLj2=o /w J
définit ions.

Definition 3.6

A polynomial is said to be a von Neumann polynomial if its zeros 

lie in or on the closed unit-disk centred on the origin, and its zeros 

of modulus unity are semi-simple. A polynomial is Schur if it is a 

von Neumann polynomial with no zeros of modulus unity.

3.4.4 Full-step stability

Whilst analysis of (3.48) is sufficient for internal stability 

(see later, §3.4.5) we can in the present case obtain a scalar 

recurrence as follows. From (3.48) we find, on using (3.49) and 

3  (3.50),

3

3i+i - " fp.vi+1

Tor, since e = f(ih).

f((i+l)h) = ^^Xh)f(ih) + vp+1 (3.56)

T , Te.-v/Pwhere yu-(Xh) = e*d(Xh), and = e" ,̂ i+l ' Here

a = /x(Xh) = e (I-XhA) ^e, (3.57)

and since ue = e N (Xh), /x is the eigenvalue of N(Xh) which does /̂ p ^p

not vanish identically. The scalar recurrence (3.56) is stable if and



-122-

3

3

only if I /XI < 1, that is p(N(Xh)) < 1.

Definition 3.7

A Runge-Kutta method defined by (3.28) and (3.31) displays 

ful1-step stability (when applied to a given test equation) if and 

only if there exists a stable recurrence between vectors where 

components are the values f(ih) = fj(p+i), i > ng.

Remark: The relation between values f(ih) may be of the form

(3.53) where the components of the vectors \'Q are values f(ih).

In view of the above, we state the following result.

Theorem 3.4

The extended Runge-Kutta method applied to (3.39) displays 

ful1-step stability if and only if N(Xh) is stable, that is, 

if and only if |/x(Xh)| < 1 where /x(Xh) is defined by (3.57).

The analysis of extended methods follows similar lines to the 

analysis of Runge-Kutta methods for f (x) = Xf(x). The notion of 

block-stabi1ity discussed below, provides a tool for the analysis of 

concepts of internal stability (cf. [13]).

Observe that /x(Xh), expressed here as an inner-product
Te d(Xh), can be expressed as a ratio of determinants. We see that 

^  P-̂

det [/a( I-XhA)-ee^l is a polynomial of degree p+1 in /x with 

non-zero root /x and we find

/X = det

1-XhAoo -khAoi

-XhA10

-XhApO

1-XhA11

-XhApi

l-XhAp_2^p_i 1

—XhA - 1
P,P-1

-det[I-XhA]
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on examining the coefficient of the polynomial, for example. (For 

"economized versions" referred to in §2.3.4, with 

^Or ^ r = 0 ,  l,...,p the order can be reduced by one.)

3.4.5 Block stability

With the analysis now developed we can consider a discussion 

of A-stability.

Definitions 3.8

THe region of (block) stability, in some norm, of a recurrence

(3.52), where M =^(Xh), is the region of values of Xh e C such 

that I iM(Xh)I I < 1, in the subordinate matrix norm. The region of 

strict stability is the region of values Xh 6 C for which 

I ll^(Xh)I I < 1. A recurrence (3.52) is A-stable. in a certain norm, 

if its region of strict stability includes the region -co < Re(Xh) < 0.

A matrix Jĥ (Xh) will be said to be A-cont ract i ve if p(M(Xh)) < 1 

whenever -oo < Re(Xh) < 0. Strict stability of (3.52) is analogous 

to (asymptotic) stability of (3.39).

We state, without proof, the following result.

Theorem 3.5

^  Let the Runge-Kutta tableau (2.33) define a method for an

initial-value problem in ordinary differential equations, and 

let the latter method be applied to the equation f'(x) = Xf(x), f(0) 

given. Then the approximate solution values define vectors satisfying 

a relation of the form (3.48) with an appropriate choice of vector 

^i+1- The region of stability of the method is identical to the region 

of stability of the extended Runge-Kutta method applied to

f(x) - X T(y)dy = g(x). (See Stetter [25, ppl31, 174] and observe 
0

Tthat e^^Xh) in the "growth function" of [25] assuming (2.33) 

is a conventional R-K array). In particular if the Runge-Kutta
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method is A-stable the recurrence (S.ifS) is A-stable and the matrix 

N(Xh) is A-contractive.

The following example serves, inter alia, to show that requesting 

stability (of (3.48)) in a prescribed norm may be too severe.

Example 3.2(b)

Given the conventional R-K tableau of Example 3.2(a)

O

1 0

We know that d(Xh) = [(1-^Xh)"^, (1+^Xh) (l-^Xh)“  ̂ and 

p(Xh) = (l+iXh)(l-aXh)-l.

N(Xh)

Thus, llN(Xh)irco= 1 I d(Xh) Mco = niax| 1 (l-^Xh)“l I , 1 (1+^Xh) (l-^Xh) I j

< 1 for all Re(X) < 0 for all h

and ||N(Xh)lM = ||d(Xh)lli = (l(l-^Xh)“ l̂ + 1(1+^Xh)(1-^Xh) ^ Ij.
■V .%/ I •*

> 1  if 0 > Xh > -1 and X c R.

0 (l-iXh)-l 0 d(Xh)
0 (l+aXh)(l-iXh)-l

if hXeR = {(#,0):# < 0 & a

The recurrence (3.53) is A-stable, and the recurrence (3.48) is 

A-stable in the uniform norm. Moreover (3.48) is strictly block-stable
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in the uniform norm when Re(Xh) < 0. In the ii ||̂  norm this 

feature is lost and Xh = 0 is not in the region of block stability. 

Example 3.3

Consider the Runge-Kutta tableau for an A-stable semi-explicit 

method of order two [16, p.244].

0
1 1 
2 2

1 1
2 2

^  We find d(Xh) = [1, (1+iXh)(1-^Xh)"1, (l+^Xh)(l-^Xh)]T and

^ (Xh) = (1+^Xh)(1-^Xh). Thus, the extended R-K method displays

ful 1-step stability since |/i(Xh)l < 1 when -oo < Re(Xh) < 0.

I l N ( X h ) l l i  =  1 + 2 |‘(l+iX)(l-iXh)-l|

I l^(Xh) I Ico = max{ 1, I (1+^Xh) (1-^Xh) I ) .

When -00 < Re(Xh) < 0 I iN(Xh) 11^ = 1 and we have block stability

but not strict stability in the u n i f o r m  n o r m .  In the I I l i^

norm block-stability does not exist. Once again, we stress that the

choice of norm is significant in discussing stability and regions of

^  stability.

Remark The final observation of the preceding example shows that

the choice of norm is significant in discussing stability and regions

of stability and it also affects the practical relevance of the

theory. In the present case it is easily argued that ^(Xh) is the

significant factor affecting stability, first in respect of its role

in ful1-step stability but also from the following reasoning. We

suppose that ^R+l = N(Xh)$k. + 7k+l that 0Q is perturbed by the

addition of ^q . The consequent change in is {I^(Xh))^$0 and

I l S k ' l m  < I I ( N ( X h )  } k i  1^1 l̂ Ql 1^ < { 1 iN(Xh) I Ico. The l a t t e r

Tinequality loses much however. With N(Xh) = d(Xh)e , we find
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fN(Xh)}k _ . Thus, ||(N^Xh)}k|| = |^(Xh) |k-l | |N(Xhl I ,

and ll^hll < ll&Qll if the latter factor is bounded by unity for

some norm. In the more general case of a relation (3.5T2), in which

the amplification matrix has no special structure, we may appeal to the

definition p(M(Xh)) = lim | | ( M ( X h ) ) k | | l / k  which is valid for any
k+co ^

subordinate norm. Thus, given e > 0 there exists a corresponding 

integer k(e) such that, for k  > k ( e ) ,  ll{M(Xh)}^ll < {p(M(Xh)) + e}̂ .

3.4.6 Modified extended methods

As noted earlier, in §2.3.4 variants of the extended methods
T Tj with ea of (3.32) replaced by eb may be found in the literature.

For this method (3.45) is replaced by

(I-XhA)v>i+i - Xh e ^  ,7 <p\ = gj+i (3.58)

and the result analogous to (3.47) is

(I-XhA)pi+i = {Ep+Xh^(^-a^) + gi+i-j^gi (3.59)

Equation (3.59) assumes the form (3.52) with an amplification matrix

N*(Xh) = d(Xh)fe^(I-XhA) + Xhb^l ,^  -.✓pj

on applying (I-XhA)  ̂ and writing a = e A. The matrix N*(Xh).w- .V p ~'P'̂  ~-
is of rank one and its non-trivial eigenvalue is expressible as

^  nrp^(Xh) = 1  + Xh b (I-XhA)“ ê. (3.60)P 'x/

T TWhen b 7̂ a it is more difficult to derive the exact analogue of the
■̂ p ^p

scalar relation (3.56).

Paul Wolkenfelt has observed that we may proceed in the following

way.

Equation (3.58) becomes, on applying e^^I - X h A ) ,

T T,^ * ' “le Xh b^ Y ̂  + e"̂ ( I-XhA) “Ig,* .-i (3.61)e v̂ i+1 = e (I-XhA)“-l-e Xh b V 99 ; + e (I-XhA) -l-gi+i -p ^p j=l^ -̂ P
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T ~or, since e^ = f(ih),

fi+1 = /i(Xh) Xh J  99j + e’J'wi+i (3.62)j=l V

where ^\+i = ( ^ - X h A ) . (3.63)

We observe that, on using (3.58),

ip^jSi fJ - jîî fj) a fp jiJ fj + Sp 5i-

(3.64)

Thus, b^ y pu = ri + Xh b^ (I-XhA)-l el b^ p,; + b^W;.j=i ri I- ^p ^ -3 -p j^i -p J
(3.65)

On applying /x(Xh)Xh we obtain

T i  ̂ T i-1 T^(Xh) Xh b ^ pu = v̂r(Xh)/i(Xh) Xh b 2 ^1 + /t(Xh)Xhb W| .^P j=l "̂ P j=l -wP-W-
(3.66)

From (3.62) , and using (3.66) ,

fi+l - - 4*(>'h) pi - e^Wi] + n(Xh) Xh b^W;. (3.67)/%/ P 'V' •'̂P 'W' -~-"P “W
Thus ,

? i + l  = /2*(Xh) fj + [e^Wi+i-^*(Xh) e^ W| + /x(Xh)Xh b^W;l. (3.68)

Theorem 3.6

The recurrence (3.59) associated with the modified extended method 

2) is block-stable in some norm (depending on Xh) if and only if

T%*(Xh) E 1 + Xh b (I-XhA)-leP •V' ■'V'
lies in or on the unit circle centered on the origin.

Example 3.4

Consider the third-order Runge-Kutta tableau

0 0 0 0 0

1
3

1
3 0 0 0

2
3 0 2

3 0 0

1 1
4 0 3

4 0
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T ri 3 3 11with which we may associate ^  -, -, gj . We find

jd(Xh) = [l, 1 + 2^h, 1 + ^Xh + gX^h^, 1 + Xh + gX^h^, + gX^h^J .

 ̂ n 1  ̂ 1Then /t(Xh) = 1 + Xh + ^X^h^ + gX^h^, ju.*(Xh) = 1 + Xh + ^k^h^ +

^  X^h^ + ^  X^h^. In the | | I | ̂ norm and the I | i Iqo norm block

stability exists as there is a region of values Xh e C such that
/Î3

l/A*(Xh)| < 1. (ip^(Xh)l = 1 when Xh = 0, -4, -3/2 (1 ± i V 3 ) j 
^ x C A ^ ) - — l ho.s i+ Ce>nrtp(€.x roofs • fle.̂ ien o~f s4ctb(///y i\

We note that the result implies a lower-order accuracy in the modified 

method. (Consider exp(Xh)-^(Xh) . ) The modified method in this 

example requires more effort per step than the extended method.

3.5 Mixed Runge-Kutta methods with reducible rules

Amongst the class of mixed Runge-Kutta methods are those employing 

reducible quadrature rules Q (2.3) satisfying (2.22). Before 

proceeding with the analysis of such methods it is useful to recall 

that the stability polynomial for a linear multi-step method applied to 

f (x) = Xf(x) is p(̂ )-Xh(j(/i) . If we suppose that the rules Q are 

(P,ct) - reducible where p,a are defined by (2.17) then a simple 

calculation shows that the "basic test equation" (3.39)̂ />esuî mj /o the 

particular form of (3.40) under consideration, yields, using (2.22), 

m m m
i o# f((n-#)h) = Xh 2 (3q f((n-#)h) + ^ g((n-#)h), n > ng.
i2=0 i2=0 i2=0

(3.69)

This is a finite term recurrence with stability polynomial 

p(p3 -Xhcr(̂ ).

Returning to the mixed Runge-Kutta methods we observe that the 

structure of the equations for approximate values is derived from 

(3.33) and we obtain from (3.40) the scalar equations

fi(p+l)+l = kh[wiO ^0 + ^il fp+l+....... +Wii fi(p+l)] +
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+ Xh[Aoo fi(p+l)+l + Aoi fi(p+i)+2+.....+Aop f(i+l)(p+l)] + g(Ti(p+l)+l)

fi(p+l)+2 = fo + ^il fp+l+........ +Wii fi(p+i)] +

+ Xh[Aio fi(p+i)+i + All fi(p+l)+2+.....+Alp f(i+l)(p+l)] + g(fi(p+l)+2)

2) f(i+l)(p+l) = fo + ^il fp+l+....... +Wii fi(p+i)] +

+ Xh[ApO fi(p+l)+i + Api fi(p+i)+2+  +App f(i+i)(p+i)] +

8(f(i+l)(p+l)) (3.70)

We define ŷ i, 9̂2, ^3... by (3.41) and set p̂Q = g(0) e.
T
'V

Then, with Ep = ee , we have

(j-XhAJfj+i - Xh J  WixEppk “ gi+1- (3.71)K=U ^
It follows that, when (^-XhA)“l exists 

-N Pi+1 - Xh % w;kN(Xh)pk - 71+1 (3.72)'w k=0
where

Ti+1 = (I->^hA)“fgj+l and N(Xh) 

is defined by (3.49).

With the aid of (2.22) we find on setting i = n -Q. in (3.72), 

multiplying by and summing over Q.

m m ^
Pn+1-4 - kh 2. 02 N(Xh)pn-2 = 7n+l > (3.73)

m
where 7n+i - I o%7n+l-g-^  2=U ^

Since this type of argument is repeatedly used below, we pause 

to clarify it. In deducing (3.73) we obtain from (3.72) the result
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mm m n-j2
I Q̂̂ n+l-Q y ŒQ I Wn_2,k ^ (̂ h)pk = “l2Tn+l-i2Q=0

The argument is more clearly seen on writing w^k = 0 for k > i 

so that the second term on the left is

m n
XhN(Xh) J  ag y “n-C.k?’k " XhN(Xh) V I % agWn_g,k)Pk-2=0 k)0 "A/ k)0 2=0

3

On using (2.22) we obtain
m

Xh N(Xh) y 0n-kPk = N(Xh) y /?2̂ n-2 kTO 2=0 ^

As in the analysis leading of §3.4.3 the relation (3.73) can 

be expressed as

^n+1 #0l Xh "PoN(Xh) PiN{Xh) ... PmN(kh)" ^n

^n I Pn-1

_̂ n+l -m_ I I 0 .<Pn-m

3
Writing fn+1 - («’n+1 . 3 ....

+ [7n+l. 0’̂ .....(3.74)

. <P̂  îfn+1-m] relation (3.74) may be

expressed in the form

i/'n+l = + Tn+i~ -U- ^
where the amplification matrix M e M(Xh) here has as its eigenvalues 

the roots of the auxiliary equation

det Xh0#N(Xh))pP = 0. (3.75)

We shall strengthen the following result later.
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Theorem 3.5

The recurrence (3.73) is stable if the roots of (3.75) lie in or

on the closed unit disk centered on the origin, and those of modulus

unity are semi-simple, that is, if det [/a p*(/x) - Xh(r*(/i)N(Xh)] is a

a von Neumann polynomial.

3.5.1 Full-step stability

We turn now to the consideration of full-step stability for the 

mixed method considered above.

Taking inner-products with ep in (3.73) yields, with

N(Xh) = d(Xh)e^ as in (3.49), the result ^

V T S t m T
glo - gio “«tp2n+i-«-

Thus

m m
agf((n+l-2)h) - Xhp(Xh) 02f((n-2)h) = 2^+1 (3.7?)

where 5^+1 denotes the right-hand term in (3.76), and 

P(kh) as in (3.57). Writing = [f ( (n+l)./ĵ ,
iT

^  f(nh),...,f((n+l-m)h)J we may express (3.77) in the form (3.52)

where the characteristic polynomial of the amplification matrix is
m (W2P - Xhp/Xh)Pgl^m-2 (3.78)2=0

We have established the following result.

Theorem 3.6

Let p*(/t) = y #2^^"^' = 2 02^^~^ and let the rules2=0 2=0
(2.3) be reducible to the linear multistep method whose first and 

second characteristic polynomials are p*(pj, Then the mixed

Runge-Kutta method displays full-step stability if and only if

pp*(p) - Xh p/Xh) (p) (3.79)
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is a von Neumann polynomial. The stability is strict if (3.7ÿ) is 

Schur.

Theorem 3.7 prompts re-examination of (3.75) to relate it to (3.79) 

under standard assumptions [25, pp.188, 206].

3.5.2 Block Stability

From the relation (3.75) we can establish the following results 

which are a consequence of the two previous theorems.

Theorem 3.7

Suppose the conditions of Theorem 3.6 prevail and in addition 

2̂  p*(/x) is a von Neumann polynomial with p̂ '(l) = 0. Then (3.73) is

block-stable if and only if the method exhibits full-step stability, 

Proof. The value is a root of (3.75) if and only if, for some

f 7̂ we have

Xh Œ*(^') N (Xh) f = p/p^(^')f.
rJ /vx

If p* and (T* have no common factors either fi' = 0 and 

N(Xh) f ^  or (T*(0) = 0

NKXh)f = (3.80)

where

L̂* ~ (3.81)

For (3.80) to be satisfied, (p^, f) must be an eigenpair of

N(Xh) and hence either = 0, whence p^(p/) = 0 or = p/Xh)

whence must be a zero of the polynomial (3.79) which occurs in

the statement of Theorem 3.6.

If /t' is a root of (3.79) then is necessarily a multiple 

of d(Xh) and pi' is semi-simple only if it is simple. (If /t' is 

a zero of p*(^) then f is any vector in a p-dimensional subspace 

of vectors annihilated by N(Xh). We expect to find p^(p/) = 0,

for some pi' with |/t' | = 1  and if pi' is a zero of (3.79) then there

exist two linearly independent vectors f corresponding to this value.)
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Example 3.5

Consider the mixed Runge-Kutta method employing the repeated 

trapezium rule (Example 2.7) and the Runge-Kutta tableau 

which yields p(Xh) = (l+&Xh)/(l-&Xh) (see Example 3.2). The 

polynomials o'*(/i) are determined by the coefficients given

in Example 2.7 and the polynomial (3.75) is

/̂ (/t-1) - iXh(l+^Xh) (1-^Xh) (/i+1) .

The zeros of this polynomial are
Xh l+2^h

.J - - 2-' - YZïkh '

The method exhibits full-step stability if and only if Re(Xh) < 0 

and IXhI < 2.

In view of the preceding example we may state the following 

theorem, which is of some significance.

Theorem 3.8

A mixed method based on an A-stable reducible quadrature rule 

and an A-stable Runge-Kutta tableau need not exhibit full-step 

A-stability.

3.5.3 Economized versions

The previous theorem is disturbing when A-stability is a desirable 

feature, since mixed quadrature - Runge-Kutta methods consume less 

effort than their extended counterparts. However, the mixed methods 

can sometimes be modified to obtain full step A-stability. We consider 

only the "economized version" of the, mixed method, applicable where 

6q = 0, and recall from §2.3.4 f(ih) = fi(p+i) = fi(p+l)+l, 

that is,

^p ^i ^ ̂ O^i+1 (3.82)

The first of the scalar equations in (3.70), using (3.82), may be 

written in vector form as
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3

)

(3.83)

Subtracting (3.83) from (3.71) we obtain

0-XhA)^l+l - Xh W{k(e-eo)eTpk " + [kîoto'^+l

where

Â - [ I - e e b A .  (3.84)

In consequence,

^i+1 “ ,2^ Wik[N*(Xh)-NQ(Xh)]pk = N (Xh)p; + Yi+1 (3.85)
1
y
k=0 ^  -v3̂ -w-O

where
 ̂ TN.(Xh) = [I - XhA]-le e

^ nr N*(Xh) =[I - XhA]-lee

and 7i+l =  ̂ ^Ji+1 ‘ ^hus

m m
.i.wa (v̂ n+l-2 - No(Xh)pn-&) - _Ê_02[N*(Xh)-No(Xh)]pn-22=U ''z ^  ^  2=0 ^

m
= .2. 02Yn+2-l' (3.86)V u ^

If we consider full-step stability we have, on taking the inner 

products of (3.86) with j^, the result 
m
2 o#(f((n+l-2)h) - po(kh)f((n-4)h))2=0

m
-Xh 2 02(^+(Xh)-pQ(Xh)]f((n-2)h)2=0
m T

- g%0

where, in the notation of (3.84)
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/io(Xh) = IjgQ

and (3.88)
nr ^/i*(Xh) = 6p[ I-XhA]

We deduce the following result.

Theorem 3.9

Suppose that in the economized mixed method, the quadrature rules

(2.3) are (p*,o^)-reducible. Then the method applied to (3.39)

2) displays full-step stability if and only if

(p-po(Xh))p*(p3 - Xh(p^(Xh)-po(Xh)]Œ*(p)

is a von Neumann polynomial, and the stability is strict if and only if 

it is Schur.

Example 3.6

Consider the economized version of the method in Example 3.5,

3
A = 0 0 

1 0 (I-XhA) •1 _
1 0
Xh 1

p,Q = Xh, /i* = 1+Xh, p*(^3 = /̂ -l, O''' (p) = (̂/x+1).

We are interested in the polynomial

(fi-Xh) (^-1) - 2^ (P'+l)

that is,

,2.

Denoting its zeros by jii and jU2, l̂i = exp(Xh) + 0(h3) and

/X2 = -^ exp(-Xh) + 0(h3). The economized method exhibits full-step

stability if and only if Re(Xh) < 0 and |Xh1 < 1.

Unfortunately, it is not always true that economized methods 

have increased regions of stability.



)

-136-

3.6 Mixed quadrature Runge-Kutta methods using block-reducible rules.

Now, we consider the stability of mixed Runge-Kutta rules in 

which the quadrature rules are block-reducible in the sense of 

Definition 2.5. Thus we suppose that the weights (wjj) of the 

quadrature rules employed in the mixed method can be partitioned into 

square matrices of order q represented in (2.8) such that for fixed
m

certain conditions (3.38) which are here repeated for convenience.

matrices [a ,̂ Bjgl (defining V#: = 0 if j > 2) they satisfyL-̂V" A/ J Û=C\

m
X  A#Vn+i_2 y = , n > no > 02=0

where Ay = By = 0̂ foi"  ̂ / {0,1,2, m)

and y An e = 0 where e = [1,1, 1]̂  ̂ e RH (3.89)
6=0 ^

Relations (3.89) correspond to generalisations of (2.22). We assume 

with little loss, that uq = uq = 0.

3.6.1 Block Stabi11 tv

(For convenience, below, A^+i = B̂_|_2 = 0.)

We require some additional notation and we set, for 2 = 0,1,...,m+1,

Bjg = B|2_2 3^ + Bg J (3.90)
Ax- A/

where, in partitioned form,

J = [ £2 . ̂ 2 > • • • » ̂ q-1 > > (3.91a)■Ax' AX' Ax̂ ^

J# - [0, 0 .....0, eol . (3.91b)

and £Q,£^,...,£g_2 are the successive columns of the identity matrix

of order q. (We continue to write I for the identity of order 

p+1.) Recall the definition of /t(Xh) in (3.57). The principal result 

of this section may now be stated.

Theorem 3.10

Suppose the mixed-Runge-Kutta method employs block-reducible
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quadrature formulae satisfying Definition 2.5, and suppose the 

matrices B#(2 = 0,1,...,m+1) to be defined by (3.90). Then the 

method displays full-step stability if and only if

m+1 n > 1 -Idet [ 2  {A q - Xhp(Xh)Bg}^m-2+l]

is a von Neumann polynomial; the stability is strict if and only if

the polynomial is Schur.

We apply the theorem to an example later but now undertake a proof

of the theorem. The partitioning of the weights (uqj) into

submatrices V<; satisfying (3.89) is not ideal for our discussion.J

We wish to 'exclude' the weights ojjq before partitioning. We 

therefore define matrices Vjj by prescribing the columns

VijGq-l = V; j+i6Q (3.92)

for j =0,1,2,...,

where V;: = 0 if j > i. Thus,

- b J  (3.93)

2) Since is lower triangular the matrix Vj j is strictly lower

triangular.

We shall employ the notation for a Kronecker (direct) product 

between matrices.

Definition 3.9

Let A, B be square matrices of order m, n respectively.

Then A @ B^ is a matrix of order mn whose (r,s)-th submatrix is 

Aj-gB, where A^g is the entry in the r-th row, s-th column of A. 

Remark

For future use we state the following result:

[A ® B] [C 0 D] = AC ® BD. (3.94)
   AX A/ A' \X
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We set, for k = 0,1,2,...,

- E^kq+1' Jkq+2'''' '^(k+l)q] (k = 0,1,2,...), (3.95)

where 99j is defined by (3.41). Equations (3.71) can be re-written 

as
kq

(I-XhA)^kq+l - ^2  ̂Wkq>2 = Skq+1 + Wkq,oEp^.

On reflection (see Example 3.7 below) we find that the scalar 

equations defining the method applied to (3.39) can be arranged in 

the form

[Iq @&-^hA)]pk - 2^ Rki ® Ep]^j = Tk(^h) (3.96)A/ J =0 f\̂  A-'

where the components of Yk(^k) have the form g(Ty) + Xh Wy Qg(0), 

since f(0) = g(0).

Using the result (3.94), we note that 

[Iq 0 (I-XhA)-l] [Vkj ® Ep] = Vkj 0 (I-XhA)-ÏEp = Vki 0 N(Xh).
/Vx -vx 'V'' iVx x\^ "\xX A   ■'A-x'

Multiplying (3.96) by Iq 0 (I-XhA)"!, yields

^k 2 [Vkj 0 N(Xh)]^j = Fk(Xh) (3.97)

-V where Fk(Xh) = (Ip 0 (I -XhA)“!)7k(^k).

By virtue of the relations (3 .89) ,  (3.90) and (3.93) we find

m+1
. (3.98)

where B; = 0 if j / (0,1,...,m+1).

It follows that, if we multiply (3.97) by ^  and sum over Q we

find

m+1 m+1  ̂ m+1
2  ̂ (Ajg 0 I)pn+l-2 - .1. Eg 0 N(Xh)pn+2_2 = 2_ (̂ 2 ® O  i"n+l-2-2=0 ''A---------- 2 =  0   'A.' 2 =  0 -A- X\_

(3.99)

The auxiliary polynomial for this relation, which allows a study of
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internal stability, is

fin+1  ̂ *
det 2 (A# 0 I - XhBg ® N(Xh))pm+l-2 (3.100)'■l)r=n '-V' .A., 'A- J

3.6.2 Full step stability

Analysis of (3.100) provides criteria for block-stability, but 

for an analysis of full-step stability we proceed as follows. 

Multiplying (3.99) by Iq ® Ep yields

m+1  ̂ m+1  ̂ m+1
2 0 Ep)pn+l-2 - jgZn ® (EpN(Xh))pn+i_g = 2 (^2 ® Ep)Tp+2-2K = U ^ 'V- /V ^  AX Q — 0 -A-

(3.101)
TWe observe that E„ = ee and hence 

E N(Xh) = ee^d(Xh)e^

= p^Xh)Ep

so that (3.101) reduces to

m+1 " " m+1 " " m+1
eio ® ^)^n+l-2 - g2o ® Ep)j^n+l-2 = g2^(A6 ® Ep)En+l-2

(3.102)

2) Let us define

- [f((kq+l)h), f((kq+2)h),...,f((k+l)qh)]T
Twhere f((kq+r)h) is of course _9p^q+r - Then (3.102) states no 

more and no less than

m+1 _ " m+1" _ m+1
X  A2$n+i_g-Xhp(Xh) 2_B6*n+l-2 = j  A^Tn+l-C (3.103)2=0 —  2=0"--  2=0-A- -w

for appropriate vectors jq derived from Eg. The stability of

(3.103) governs the full-step stability of the method.

Example 3.7

Consider the mixed method based on the quadrature weights 

discussed in Examples 2.4 and 2.14 and the Runge-Kutta tableau
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discussed in Example 3.2. The tableau of coefficients in (3.28)

assumes the form which we partition as shown, the diagonal blocks of 

order two being the matrix A.

The dotted partitioning corresponds to partitioning for the vectors 

, 9?2 ' *1̂3 » • • • with the conventions of (3.41) (f(0) being known),

whilst the unbroken partitioning corresponds to determination of 

^1 > ^2 ' V̂3 > • • • defined by (3.95).

The coefficients of the system of equations (3.97) are obtained as
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and so on and a direct approach via differencing allows a stability 

analysis. For full-step stability the result may be obtained directly 

by substitution in the determinantal expression given in Theorem 3.10. 

From Example 2.14 we know that we may take m = 1,

^1 = -1 0 ' Aq = 1 o' , %  = rl 4] 
3 3 ’ Sp ̂ [5 °1. 0 0. -1 1- 0 0. ■2 2-

which yields A2 = 0, A^ = A^, Aq = Aq and

Bi = 4 li
3 3
0 iJ

From Example 3.2 we know that ft = /̂ (Xh) = (1 + ±Xh)/(l - ^Xh) 

By Theorem 3.10 we require the characteristic polynomial

4,- ii(l + X̂h/t) 

■(1 + fp-

1 '' 1  ̂- - gXh^

[jp -̂ Xh/t/x
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we

we

fPifP - (1 + 6" \ + I \hfi + 1 x2h2/^2)
to be a von Neumann polynomial. Denoting its zeros by fii, ^2> /̂3. Â4 

find n  = n  - 0, /13 =: l\hfi + g\2h2^2 = 1 + 2\hp (and, indeed

find /i4 = exp (2 Xh) + 0(h3) as might be expected), on substituting 

the value of ft. If = /̂4 we must check for semi-simplicity.

We may remark that the block—reducible method considered here is 

actually equivalent to a two-cyclic linear multistep method.

3.7 Extens i ons

^ The preceding analysis based on the structure of Runge-Kutta

methods, has resulted in recurrence relations and stability polynomials 

which permit stability results for the "basic" test equation (3.3).

H^re, we indicate possible extensions to the analysis.

Our discussion has entailed the derivation of recurrence relations 

(3.29) of the form ^k+1 = M 0^ + 7k+l> where M depends on Xh.'V' ^

and is independent of k and the components of are the values

of the approximate solutions. A stability condition, resulting in 

definitions of "absolute" stability, is the requirement that p(M) < 1,

^ where p(M) denotes the spectral radius, and that if p(^ = 1 then

^  must be of class M. Alternatively, we may ask that l|M(Xh)|| < 1 

in some preselected norm. The remarks of Stetter [25, Section 3.5.5] 

can be parallelled here, and one may seek regions in the Xh-plane, 

wherein p(M) < p , p < 1  for M = M(Xh). Given the nature of the 

vectors ^  in (3.29) and the behaviour of the solution of the test 

equation it is possible to define relative stability concepts 

(Baker [4]) which can also be analysed in terms of the eigenvalues

of M = M(Xh)

The analysis presented here provides a necessary foundation on 

which to develop a theory for more involved test equations. With regard
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to the practical conclusions which may be drawn from the work, it is 

appropriate to issue a caveat. We recall that Baker [4, p.763] wrote 

as follows: "It is, of course, the very simplicity of the (test)

equation which makes it ideal for mathematical analysis, and a study

of this simple case does give some genuine insight........  What we

must guard against is an unquestioning acceptance that a method which is 

suitable for this special equation is suitable for more complicated 

equations." As we observed in §3.2.6, it now seems generally accepted 

that a necessary (but not sufficient) requirement for an all-purpose 

method is that the method should be suitable for the test equation

(3.3). Thus, the analysis developed here for (3.3) can readily be 

extended to more general test equations and we note the results in 

[1], [2], [3] for test equations of the form

f(x) - R ,
2 Xr(x-y)^f(y)dy = g(x)

0

For such equations the concepts of stability and asymptotic stability 

depend on R and are not covered by Definition 3.4. The appropriate 

definitions result in generalizing the concept of A-stability 

(applicable to methods for equation (3.3)) to a concept of 

(A;R)-stabi1ity (see [2]), for R = 1,2,3,...A stable methods need not 

be (A;R)-stabie, for R)l.

Other directions in which our analysis can be extended arise when 

we seek to mimic properties other than those represented by 

Definition 3.4. Thus, for example, we motivated the definitions of 

stability and asymptotic stability by classifying the response of f(x) 

to constant perturbations in g(x). When considering the effect of 

more general perturbations it is natural to turn explicitly to the 

properties of, in the linear case, the resolvent kernel, and (for the
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numerical methods) the inverse of the infinite block-lower-triangular 

matrix of coefficients in the formulae (3.28) defining the method.

The differencing procedure by which, in the case of (3.3), the latter 

equations are reduced to the form (3.29) is in effect an elimination 

procedure permitting such an approach.

Finally, we may enquire what extensions are possible when (3.3) 

is replaced by a more general equation with, for example, separable 

kernels (see [6], [14], [15]). A stability analysis may result in 

recurrence relations of the form

^k+1 = Mk Pk + 2^

where depends on k and where strict stability requires

^k^k ^ The local stability criterion p(M^) < 1, for all k,

is necessary but not sufficient (if p(Mĵ ) = 1 then is required

to be of class M) whilst the local block-stabi1ity criterion

^ Tor all k is sufficient but not necessary. When Mi, = M,

the analysis for (3.3) provides some insight into which tests are 

meaningful in the more general case, and the limitations of such tests. 

We may compare, for example, regions of block stability in differing 

norms for the special case, in order to gain insight for the more 

general case.
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CHAPTER 4

  stability analysis of Runge-Kutta methods for Volterra

integro-differential equations.

4.1 Numerical methods and stability

4.1.1 Perspective

4.1.2 Extended Runge-Kutta methods and mixed quadrature - 

Runge-Kutta methods.

4.2 Extended Runge-Kutta methods and stability definitions

4.2.1 Stability of Runge-Kutta methods
■)

4.2.2 Extended Runge-Kutta methods

4.2.3 Some analytic comments

4.3 Runge-Kutta/mixed quadrature - Runge-Kutta methods

4.3.1 Runge-Kutta/mixed methods using reducible rules

4.3.2 Runge-Kutta/mixed methods using block-reducible rules

4.4 Mixed quadrature -RK methods/mixed quadrature -RK methods

4.4.1 Reducible rules.

4.2.2 Block-reducible rules

4.5 A-Stabi1i ty 

^  4.6 Extensions
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4.1 Numerical methods and stability

In the previous chapter and in [5] we discussed classical mixed 

and extended Runge-Kutta methods applicable to the numerical solution 

of Volterra integral equations of the second kind. We presented a 

basic stability analysis of such Runge-Kutta methods for a simple test 

equation of the form

f(x) - X
X

f(y)dy = g(x). (4.1)
0

2) We develop, here, a similar class of Runge-Kutta methods for the

numerical solution of the Volterra integro-differential equation 

introduced in §1.5

f (x) = G(x,f(x), H(x,y,f(y))dy) + d(x) (x>0). (4.2)
0

Background reading is provided by Baker [2], Feldstein and Sopka [9], 

Linz [13], Makroglou, [14], McKee [16], Mocarsky [17] and 

Tavernini [18], etc.

We shall investigate stability results for this particular class 

of methods applied to the "basic" integro-differential equation

f ' (x) - E f (x) + rj
X

f(t)dt + d(x). (4.3)
0

To explain our interest in this latter equation and for additional 

work relating to the stability of (4.3) we cite the more general 

analysis of Baker, Makroglou and Short [3]. The study of (4.3) may 

be regarded as preliminary step towards the study of more general 

test equations. (Stability of various methods is also considered in 

[1], [5], [8], [12] and [19].)

Our interest is directed primarily towards stability of Runge-Kutta 

methods of classical and modified form. Those of classical form are
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investigated in this chapter. The ^-modified methods and a search 

for a unified analysis of stability polynomials are pursued in 

chapter 5.

In §4.2 we re-examine those stability definitions introduced in 

§3.4 in connection with Runge-Kutta methods for the second kind 

Volterra equation and consider their relevance to the study of stability 

of Runge-Kutta methods applied to (4.3).

In §4.3 and §4.4 we introduce an analysis of the R-K/mixed 

quadrature -R-K methods with reducible and block-reducible rules and

present results which are an extension of those of Chapter 3 and [5]

to the treatment of integro-differential equations. We discuss the 

mixed quadrature -R-K/mixed quadrature -R-K methods introduced in [1] 

but which receive greater attention in [6].

In §4.5 we enlarge on some comments made in [5] considering the 

A-stability of an overall method when the associated quadrature and 

extended R-K methods are A-stable.

4.1.1 Perspective

Equation (4.2) provides an example of a functional differential 

equation. Included as a special case is the initîal-value problem 

for an ordinary differential equation:

f'(x) - F(x, f(x)) (f(0) - fQ, x>0). (4.4)

Runge-Kutta methods for this equation are well established and are

defined in §2.3.1. For convenience, we recall that, in terms of the 

Runge-Kutta tableau [0|A] of (2.33), the Runge-Kutta method may be 

defined by the formulae

Ti,r = Ti-l,p + h | A^s F(ih+Ogh, f; g), (r = 0,1,...,p)

(4.5)
f i - l , p  =  T i  -  f ( i h )
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in which we take f;  ̂ )̂e an approximation to f(ih+0j-h) and

T-l^p — f0• The equations (4.5) may be regarded as discretizations 

of the integrated form of (4.4):

f(ih+g-h) -f(ih) =
ih+0rh

F(y, f(y))dt (r = 0 ,1 ,...,p) (4.6)
ih

employing quadrature rules, using abscissae 0q ,6i ,...,6^ and weights

ArO>Ari,...,Arp to approximate p ( y ) d y :

0j-h
V̂ (y)dy - 2„^rs 9̂ (^gh), (r — 0,1,...,p) (4.7)s=0

When considering (4.2), a process similar to that above yields

f(ih+Orh)-f(ih) =

where

ih+0j.h

ih
C(y, f(y), z ( y ) ) d y  +  d ( i h + 0 i - h ) - d ( i h )

(4.8)

z(y) = H ( y ,  t , f ( t ) ) d t . (4.9)

3 and discretizing as in (4.5) provides equations

fi,r = Ti-l,p + h 2 Aj.g C(ih+#gh, Ti,g,Zi,s) + d( ih+0j-h)-d( ih) ,

(r=0,l,...,p)

(4.10)

Ti-l,p = fi = f(ih)

which require approximations z; g to the values of z(y) in (4.9) 

at (ih+Ogh). To proceed, we require computable approximations Z| g 

and for this purpose we turn to techniques common in the treatment of 

Volterra integral equations. In order to discretize (4.9) it has been 

conventional, when studying a wide class of methods, to re-index the 

variables (cf. §2.3.3) and we write
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fj = f(Tj) = fi r where tj - lh+0j.h, r = 0,1,...,p (4.11)

successively for i = 0,1,2,... with j = i(p+l)+r+l, tq = 0 

and fo = fg. Denoting the approximation to z(Tj) by zj we 

see that the problem of discretizing (4.9) then reduces to the choice 

of values in approximations of the form (see (2.52), (2.53),

(2.54) and (2.55))

Zj = h y JLjk H(Tj, Tk, f(Tk)). (4.12)

We shall return to the construction of numerical methods entirely 

from the viewpoint of integral equations in §4.1.2. By this means 

we can draw upon our earlier results in chapter 3. Here we turn to 

address the question of stability.

In previous chapters we have observed that stability studies are 

concerned with the reaction of systems to perturbations. In numerical 

analysis, one considers the response of a numerical scheme to 

perturbations (for example perturbations in the given initial value 

for an initial-value problem). Often, one hopes that this response 

will model that in the analytical problem. The general equation is 

too difficult to analyze and requires a choice of test equation.

2^ In the early studies the equation

f'(x) = Xf(x) (4.13)

was taken in the study of (4.4) but more general equations have now

been considered. Whilst choice of (4.13) as a test equation provides 

genuine practical insight, subsequent work has highlighted what might 

be regarded as self-evident: that any choice of test equation has 

inherent limitations. Equation (4.3) is a simple extension of (4.13).

Equation (4.3) was first employed as a test equation by Brunner 

and Lambert [8]. The usefulness of (4.3) as a test equation for 

studying (4.2) has been demonstrated earlier [3, 11, 15] by example, 

but our previous remarks concerning (4.13) apply a fortiori to (4.3).
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There is a sense in which determining the limitations of a test 

equation requires that the stability analysis should first be performed. 

Early work on the stability of methods for (4.2) has concerned 

generalizations of linear multi-step methods, with the exception of 

the work of Baker, Makroglou and Short [3] where Runge-Kutta methods 

are included in the formalism. Our present purpose is to provide 

precise stability polynomials for various Runge-Kutta methods. By 

adopting the formation which we developed earlier in chapter 3 for 

integral equations the derivation of the stability polynomials is 

2) elegant by its straight forwardness.

The stability polynomials are a tool in the study of "stability 

regions as well as relative stability and other features not pursued 

here. Whilst stability regions may be best investigated computationally 

the theoretical approach provides interesting challenges and is 

required to establish A-stability (see below) and related results.

— ^  ̂• Extended Runge-Kutta methods and mixed ouadrature-Runge-Kutta
methods.

)
We may write (4.2) in the form

f(x) =

z(x> =

G(s,f(s), z(s))ds + d(x) (4.14a)
0

rX
H(x,t,f(t))dt. (4.14b)

0

We have seen in §4.1.1 how a R-K method for (4.2) may be derived, but

such methods also follow on applying the ideas of [5] to the coupled

integral equations (4.14). We require the Runge-Kutta parameters

^r'Arg(r,s = 0,1,...,p), #p = 1 [5, Eq. (1.10)], defining the

tableau I A].

For the extended Runge-Kutta method we set x = ih + g^h in (4.14a)
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and discretize using the rules employed in extended R-K methods for 

integral equations. We then have

'p I -1 P _
i(p+l)+r+l = h ^2^ Aps G(kh+6gh,fk(p+i)j^^, Zk(p+l)+s+l)

(4.15)

+ h J qAj-s C(ih+4gh, fi(p+i)+s+l, 2u(p+l)+s+l) + d(ih+0j.h).

Here, fk(p+l)+s+l ~ f(kh+0gh), Zk(p+l)+s+l - z(kh+0gh).

Equivalently, we obtain, on differencing (4.15), the equations (which 

are more suitable for computational use)

fi(p+l)+r+l - f(ih) + h C(ih+0sh,fi(p+i)+s+i,5;(p+i)+s+i) +

+d(ih+0j.h) - d(ih) (4.16)

where

f(ih) - ?i(p+i)_ 5(ih) - 5i(p+i); 

we have #p = 1. These equations represent (4.10), already obtained.

In the present method we set, in (4.15) or (4.16),

~ I -1 P
^i(p+l)+r+l = ^2^ ApgH( ih+0j.h, kh+0gh, fk(p+l)+s+l) +

(4.17)

+ h Ars H(ih+«rh, ih+Ogh, f i (p+i)+s+i> .

The combination (4.16), (4.17) will be discussed in §4.2.2. For

the mixed quadrature-Runge-Kutta methods to be considered in §§4.3 and

4.4 we require quadrature rules

ih .
p(t)dt = h 2 Wik p(kh) (i=l,2,...;h > 0). (4.18)

0

The mixed quadrature-Runge-Kutta methods briefly discussed in §4.4 

then assume the form
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p i _ __
Ti(p+l)+r+l = h ^ik G(kh,f(kh), z(kh)) +

^ slo '̂ rs G(ih+«gh, fi(p+i)+g+i, 5{(p+i)+s+l + d(ih+«rh)

(4.19)
where, in this method,

i
^i(p+l)+r+l = h ^ ûJjk H(ih+0j.h, kh, f(kh)) + k=0

(4.20)

^ ^ s=0 H(ih+0j.h, ih+Ogh, f i (p+i)+g+i) .

3  Combining (4.16) with (4.20) provides an attractive intermediate

course, and yields the RK/mixed quadrature-RK methods which we 

analyze in §4.3.

We shall assume reducibility properties (see §2.3.5) of the rules

(4.18). Briefly, we suppose that the array of weights (#;%) can be 

partitioned into submatrices oT order q such that for fixed

[Aq , Bg) and for some ng 

m
"  V J ’ ">"0

where A, = B, = 0̂  for r / (0,1,2.... m}.

3  Such rules are termed block-reducible (§2.3.5). When q = 1 we

set A q = (XQ, B q = (3q and the rules are called (p*,Œ*)-reducible/V
where

P*(p) = and f*(p) = f (3qii^-^ .
Q= 0  Q=o

Reducibility properties permit the simplification of (4.19) for

pî*3-ctical use so that there is no need to store all previously

computed values of {z(kh)}.

We may write the basic test equation (4.3) in the form
rX rX

f(x) = t f (t )dt + rj z(t)dt + d(f) cHr. (4.21)
■0 0 /0
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3

where

z(x) =
X

f(t)dt. (4.22)
0

The methods yield approximations fj = Ti(p+i)+r+i to f(rj) where 

Tj = ih+0j.h and j=i(p+l)+r+l ( i=0,1, 2 , . . . ; r=0,1, . . . , p) , via 

auxiliary approximations zj = Zi(p+i)+r+i to z ( r j ) .

Associated with {fj) and (zj) we define, for k =  0,1,2,...,

^k+1 = [Tk(p+1)+1. ?k(p+l)+2.... ,f(k+l)(p+l)]T (4.23)

3  ’̂k+l = [zk(p+l)+l, Zk(p+l)+2,....Z(k+l)(p+l)]T (4.24)

For the mixed quadrature-Runge-Kutta methods we also use 

Ĵ O ^ T(0)[1,1, i/'O O'"

 Extended Runge-Kutta methods and stability definitions

4.2.1 Stability of Runge-Kutta methods

We shall seek recurrence relations between vectors such as oi"
T T T . ^

^k^ ^^ order to discuss stability. The following definition

occurs in §3.4.3, but now Xq = (̂ h, rjĥ ) since we consider the

stability of methods applied to (4.3) throughout.

Définition 4.1

The recurrence

m *
.2. XC %n+l-4 - 7n+l, det[XQ] f 0 (4.25)g=U ^ .V

is stable if and only if the "auxiliary" or "stability" polynomial

det

has its zeros on the unit disk centered on the origin, those on the 

boundary being semi-simple (§3.4.3). (The recurrence is strictly 

stable if it is stable but there are no zeros on the boundary).
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For related definitions see §3.4.3. We shall distinguish the 

following types of stability, which relate to the types of recurrence 

which we shall obtain.

Définit ion 4.2

IT the vectors %k cf Definition 4.1 coincide with the vectors 

oT (4.23) then stability is termed internal block stability 

(without auxiliary variables). (b) If then stability

is termed internal block stability with auxiliary variables. (c) If 

the components of Xk are values f ( k g h ) ,  f ( k ^ h ) , . . . f( k q h ) , where 

3  kj.(r=0,l, . . . ,q) depend on k, the stability is called ful 1-step

stability (without auxiliary variables); ful1-step stability with 

auxiliary variables is similarly defined.

The values f(kh), k = 0,1,2,... are of primary concern, whilst 

the values f(kh+0j-h) (r= 0 ,1 , . . . ,p-1) are frequently of secondary 

interest.

We recall from (3.49) the notation

N(Xh) = (I - XhA)-lee^ (4.26)

where eg, e]^,...,ep are the successive columns of the identity matrix
J ^ rkA

of order p+1 and e = eg + ei +...+ e^. N(Xh) has p zero 

eigenvalues and non-trivial eigenvalue

A J ‘
= e (I-XhA)-le. (4.27)

4.2.2 Extended Runge-Kutta methods

We consider the extended method, defined by equation (4.15) 

or (4.16) with (4.17).

We shall show the relationship between all four types of stability 

in Definition 4.2 and the criteria |/i(Xgh)| < 1, |^(Xih)/< 1 where

Xg, X̂  are the roots of X^ - %X-%=0.
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For the basic equation (4.3), the equations defining the method 

may be written conveniently in vector form. Equation (4.15) becomes

[]^-^hA]^i+l - Eh EpA - ^hA^i+1 -^hEpA (4 .28)

Twhere A = [Aj-g] , Ep = f^^p ^i+l is the vector with component,

^d(ih+0^h). Then equations (4.16) and (4.17) become respectively

( ^ “ ^^A)jPj+i - Ep^j - ĥA\̂ i+l = .£i+l “ Epg^ (4.29)

and

’/'i+1 = h Apq+i + h EpA y (4.30)
^  '' - k=l rv

From (4.30) we deduce that

jAi+1 - Ep ^i = h A^i+l, (4.31)

on replacing i by i-1 in (4.30) and multiplying by Ep.

Theorem 4.1 (ful1-step stability with auxiliary variables)

Let
 ̂ T= e [^- XhA]-le., (4.32)

and write

(4.33)

Then

f ( ( i + l ) h )  -  X i z ( ( i + l ) h )  -  / ? ( X Q h )  [ f ( i h )  -  X ] ^ z ( i h ) J  = Ti+l (4.34)

f o r  c e r t a i n  v a l u e s  7 i + i , a n d  f o r  f u l 1 - s t e p  s t a b i l i t y  w i t h  a u x i l i a r y  
v a r i a b l e s  w e  r e q u i r e ,  w h e n  X g  X % , t h a t

I/i(Xgh)| < 1, \fi(\ih) I < 1. (4.35)
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3

)

Proof. From (4.33), E = Xg + X% and r] = -XgX^, whilst (4.23) and 

(4.24) provide f(ih) and z(ih) = e^j (i=l,2,...). Now

equation (4.29) in terms of Xg and X̂  yields

(1 " ^ O h A ) % q + i  - XlhA%i+i - EpPi + XgXlhA^j+i = gj+i - Epg; .
Employing (4.31) we deduce that

(1. - ^O^A)jgi+l - \i(ypi+i - EpjAi) - Ep^i +
(4.36) +  X g X l h A ^ q + i  =  2 i + l  -  E p  5 i .

Assuming det(^ - XghA) 0,,.

(ĵ i+1 “ ^l^^+l) - (L - ^0hA)“lEp(^ - X^ ^i)

(4.37)

<1- ^QhA)-l (ji+i - Ep «{).

and taking the inner-product of (4.37) with yields, on recalling

(4.32), the result (4.34). Equally, the roles of Xg,X^ being 

inter-changeable,

f((i+l)h) - Xgz((i+l)h)- /̂ (X̂ h) [f(ih) - Xg z(ih)]

(4.38)

Ti+l “ - X^hA) 1 (5i+i - Epôj).

Thus, (4.34) and (4.38) yield

f((i+l)h)‘ 1 -Xi
-1

.S((i+l)h). .1 -Xg.
/i(Xgh)
0

1 -Xi' f(ih)' +
.1 -Xg, ■z(ih).

(4.39)

provided that Xg Z X^. The recurrence (4.39) is of the form (3.52) 

with an amplification matrix having eigenvalues p(Xg ^h); thus, 

(4.35) follows when Xg X^ •

We also have, as a consequence of (4.37), the following result
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3

(see also [4]).

Theorem 4.2 (block-stabi 1 ity with auxiliary variables)

The conditions (4.35) are, for \q / , the conditions for

internal stability with auxiliary variables.

Proof

By virtue of (4.37) and the interchangeability of Xq .X̂

Yi+l" I - X^ F -1

jAi+1' .1 - XgL

+

N(Xoh)

0
0 i “ îj-

• ̂ ~ XgI, -’/'i'

(4.40)

for suitable inhomogeneous terms where EL - ee^ and where

N (Xh) = (£ -XhA)-l Ep has non-trivial eigenvalue .

Remark: We here restrict our attention to the case Xg ^ X^; for the

case of equality we refer to [4] with the observation that Property 

3.1(b) defined there is satisfied for the extended Runge-Kutta method.

We pause to introduce a lemma which we shall use in the proof of 

Theorem 4.3.

Lemma 4.1

For suitable scalars

f((i+l)h) — j'gf(ih) - Yjh 2̂ z(ih) = Fp+i, (4.41)

where

and

"0 = "0 (£h, t)h2) - e^(l - XghA)-1(1̂  - XphAl'le (4.42)

ri = i-iCJh, I,h2) -6^(1 - XohA)-l (| - XihA)-'Ae. (4.43)

Proof Observe that 1, - (hA - ,,h2 A.2 _ _ XohA)(I_ - XjhA) where

Xq ,i are defined by (4.33). From (4.29) and (4.31), elimination of
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^i+1 yields

<l - A - n \ f i k } ) . p i + i - Ep^i - i,h AEpjlj - ji+i - Ep j;. (4.44)

If (I - XohA)-l(^ - XjhA)-! exists then applying it to both sides 

of (4.44) and taking the inner-product of the result with e^ viel-p
(4.41).

Theorem 4.3 (full step stability without auxiliary variables)

The extended Runge-Kutta method applied to (4.3) displays full 

step stability (without auxiliary variables) and we have 

f((i+2)h) - + /̂ (Xgh)] f((i+l)h) +
(4.45)

+ ^(Xgh) p/X^h) f(ih) = rj+2

for some scalar Tj+2. This recurrence is stable provided

l/x(Xoh)j < 1, ||t(Xih)/< 1 (4.46)

where /̂ (Xh) is defined by (4.27). The stability is strict if and 

only if the inequalities (4.46) are both strict.

Proof From Lemma 4.1,

f((i+2)h) - i'of((i+l)h) - -qh z((i+l)h) = r;+2; (4.47)

subtracting p/Xgh) times (4.41) from (4.47) yields

f((i+2)h) - + ĝ] f((i+l)h) + yg /i(Xgh) f(ih)

+ XgXih VI {z((i+l)h) - /x(Xgh) z(ih)) = ri+2-p(kgh)r;+i. (4.48) 

However, (4.34) yields

h Xg X^ {z((i+l)h) - /i(Xgh) z(ih)}

= h 1̂2 Xg (f((i+l)h) - /i(Xgh) f(ih) - Yi+1 ) 

so that, substituting in (4.48), we obtain

f((i+2)h) - [p(Xgh) + rg - h vi Xg] f((i+l)h)

+ [ rg ^(Xgh) - h Xg /x(Xgh)] f(ih)

= ^i+2 - PX^gh)r|+i + h t > i  Xg
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Writing t {+2 Tor the latter expression, we deduce (4.45) after 

elementary manipulation. The "auxiliary" polynomial for (4.45) is

^ - [P(klh) + MO^oh)] /̂ + /i(XQh) p(Xih) and (4.46) follows.

Theorem 4.4 (block-stabi1ity without auxiliary variables)

The condition for block-stabi1ity (without auxiliary variables) is

iM(Xoh)I < 1, ip(Xih)I < 1.

Proof Eliminate from (4.29) by use of (4.31) to obtain

(I-EhA-r7h2A2)^j^^ - Ep^. _ ?̂ hAEp = Ji+1 - Ep (4.49)

On differencing this equation we obtain

(^^ShA-%h2A2)p,+i - (L-?hA-t,h2A2+Ep)joj-,,hAEp(^,-^i_l) - yf. (4.50) 

Difference equation (4.30) with i replacing i-1, and use the 

result to eliminate “ ^i-1 Trom (4.50). The vectors (pq] satisfy

a three-term recurrence

([-EhA-%h2A2)yq+2 - (kfhA-,,h2A2+Ep + +2AEpA)g{+i + Epg, _ yj, 
and the associated stability polynomial can be factored as

det [1 (p(l-XohA)-Ep) lOfDJ+Ep) i4 (I,-XihA)-Ep)]

whence the result follows.

Example 4.1

Consider the conventional Runge-Kutta tableau, used in Example 3.2,

where /̂ (Xh) - (1+^Xh)(1-^Xh) T _ The conditions for ful1-step or 

block-stabi1ity (with or without auxiliary variables) for the 

extended Runge-Kutta method applied to (4.3) are ip/Xgh)! < | and 

l/̂ (X,h)| < 1, where Xg % are the roots of X^-fX-^ = 0. When E, V
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and h are real this results in (h < 0 and ± V j 2+4^}h < 0

where rj -= ( ” ^0+^1- Thus, we obtain (h ( 0.

an«/ o so that the region of stability may be exhibited as in

Figure 1.

O

O

Ay/)

\ Figure 1.

The region of numerical stability coincides with the region of 

analytical stability.
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4.2.3 Some analytic comments

We pause to comment upon the stability polynomials produced in 

Section 4.2.2. which require certain functions associated with the 

Runge-Kutta tableau [0lA]. The functions of interest are ,

with X = Xo 1 defined by (4.32) and vq = ygCfh, qh?) and 

VI = ri(Sh, %h2) defined by (4.42) and (4.43). The following results 

are useful in obtaining specific stability polynomials.

LEMMA 4.2

^0 + X^hv^ = /̂ (X̂ h) + Xghpi, (4.51)
and

^[XQh, Xqh] = (^(Xoh)-p^Xih))/{XQh - X^h] Xq X̂

(4.52)

dT _ XQh Xq = X]_

REMARK

The notation /x[XQh, X^h] denotes a divided difference. Equations 

(4.51) and (4.52) permit the expression of vq as a divided difference 

of the function Xh/i(Xh) . vs-e-U m  protf4 o4 4-3;

Conventionally, /t(Xh) is a rational approximation to exp(Xh).

We have the following result.

Lemma 4.3

if (2.33) is a "conventional" Runge-Kutta array which, for 

convenience, is reproduced below

#0

Ol

[0\A] =

'p-1

*00

*10

*0,p-l *0,p

*l'p-l *T,p

(4.53)

Ap-1,0

*pO

ip-l,p-l *p-l, 

'P,P-1 Ap,P
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it IS usual to take A^p = 0 for r = 0,1....  and to denote

Ap r (r = 0,1,...,p-1) by Thus, a conventional Runge-Kutta array

corresponds to a choice of (4.53) with

A =

A^ 0

0 (4,54)

Then,

(a) ^(Xh) = 1 ~ Xh wT( - XhA#)"lll (4.55)

(b) Pl((h, %h2) = wT(^ - XghA#)-! (I - XihA#)-lll (4.56)

where Xg^i are defined by (4.33) and IJ = [1,1,...,1]T g rP and J[ 

denotes the identity matrix of order p.

Remark Lemmas 4.2 and 4.3 permit expressions for in terms of

^h, ?)h2 and A#,w.

4.L.3— Runge-Kutta/Mixed guadrature-Runee-Kutta methods

For the Runge-Kutta/mixed quadrature Runge-Kutta methods the 

results are less transparent. For the basic test equation (4.3) 

the vector equations associated with the method defined by (4.16) 

and (4.20) are

( I  - - Epgi - v h A h + i  - 5j+i - Ep (i-0,1.2, . . . ),
(4.57)

and

V'i+l - % i + l  + h j^i^^ik Ep^k, (4.58)

where = f(0)e. We shall consider two types of quadrature rules

(4.18), those which are reducible (§§2.3.5 and 4.1.2) and those which 

are block-reducible (ibid).

■4-3.1 Runge-Kutta/Mixed using reducible rules

We shall consider quadrature rules (4.18) which, we recall, are
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(p"^,O'*)-reducible when

m
|̂Q«i2̂ n-i2 , j = Pn-j, J = n,n-1, . . . ,n-m, (4.59)

= 0 otherwise

and p*(n) - J  ?*(p) _ J  fig , (4.60)
i'—U i2=0

We attempt to find stability criteria in terms of p*, a*, p(XQ,lh)

and yg 1 defined in (4.42) and (4.43).

From (4.57), eliminating by means of (4.58), we find

^  O  - fhA - %h2A2)pi+i - Epgi - %h2A ?p <£k ~ «1+1 - Ep 6;.

Provided that (l-^hA-rjh^A^)-^ = (I-XghA)-l (I-X^hA)"! exists 

we obtain

jfi+1 “ “^0^*) (L “

- ')h2 - XohA)-l - XihA)-lA Ep%k (4.61)

- (I - XohA)-l (^ - XihA)-l(_5i+i - Ep 6j).

Employing (4.59) we find, on replacing i by n-5,
m mg|Q««fn+l-e - ((!„- XohA)-l (I - XihA)-l Ep)

- ’)h2 012 (I - XohA)-l (^ - XihA)-l AEp - (4.62)

1 1 mq  - XphA)-l (I_ - XihA)-l y ag(6n+l-« - Ep &„_q ) .

We may readily deduce the following result.

Lemma 4.4

A stability polynomial for the RK/mixed quadrature-RK method 

employing (p*,o'*)-reducible rules is

- ^0 P*(P) - %h2yi (T*(/i) . (4.63)

T-Proof Apply e to (4.62) and use (4.42) and (4.43) to obtain
m m

0% {f((n+l-4)h) - yg f((n-2)l - %h2yi Pef((n-2)h) = (4.64)
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(where T% is the inner product of and the right-hand term of

(4.62)). The result (4.63) readily follows from (4.64).

Theorem 4.5 (full step stability without auxiliary variables)

Let s(XQh,/t) 5 pp*(p) - Xgh n(\Qh)a*(fi)

and
a(\Qh,fi) = p*(pj - \Qha*(pi).

Then the method of Lemma 4.4 exhibits ful1-step stability (without 

auxiliary variables) if and only if

s(XQh,p) - ^0 o-(Xoh,/t) (4.65)

is von Neumann, where yg is defined by (4.42).

Proof From the definitions of ŷ  and yg, yj = (yg - p(Xgh))/(Xih) 

whilst Î] = -XgXi. Thus, the auxiliary polynomial (4.63) may be 

written as (4.65).

Remark

Two families of {p*,cr*}-reducible rules are prominent in the 

literature: the Gregory rules are reducible with {p*, cr*) defined 

by the Adams-Moulton methods; here = ^m_^(m-l) ĵ ie

^  Curtis-Hirschfelder rules are those generated by the

Backward-different iat ion formulae; here cr̂ (p,) = The composite

versions of the trapezium rule and of the backward Euler rule are 

the simplest examples of the two families, here j = 1 if l<j<i-l,

^iO ^ î i 2 3,nd o)jg = 0, o)jj = 1, l<j<i respectively.

Example 4.2

Consider the mixed Runge-Kutta method employing the repeated

-  -  0
trapezium rule (Example 2.7) and the Runge-Kutta tableau —

which yields /t(Xh) = (1+^Xh) (1-^Xh)"1 

P*(P) = P-T; F*(p) = i(/t+l).

0
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'0 - [i + _ xoXih!] [i _ [i _ iihj-1 .

yi = [l - [l - and 1+yg = Iv-̂ .

/t(Xoh) + = (2-iXoXih?) [l - [l -  ̂ = (2-iXQXih? )y 1

/t(Xoh)/t(X]̂ h) = yg +

The auxiliary polynomial obtained is

s(Xgh,/t)-ygO-(Xgh,/t) = p(p-l) - ^  p(Xgh)(^+l)-yg[(p_l) - ^  (/t+1)]

= ^2_^[1 _ —1^0 h^y^ + yg] + [yg + -1^0 h^y^j

= p.2-̂  [/i(Xgh) + /̂ (X̂ h)] + /t(Xgh)/̂ (x̂ h) .

Thus, we have ful1-step stability (without auxiliary variables) if 

IP'(̂ ob)! 4 1 and Ip/^lh) | (1. (The same result can be deduced for 

the extended RK method.)

4., 3 . 2 Runge-Kut ta/Mixed methods using block-reducible rules

Generalizing the class of quadrature rules leads to added 

complication. We transfer our attention to the use in mixed methods 

^ of quadrature rules (4.18) which are block-reducible (which is to say,

those rules which are equivalent to the application of cyclic linear 

multistep methods for the problem of indefinite integration). We have 

(c.f. §3.6.1), as a consequence of the block reducibility, the result

m+1
2%Q,A4Yn+l-2,j - Bn+l-j (4.66)

where Bq = + BgJ, with J = [ei,£2>----,£q_l,0] and

^  [0,0,....... »0,eg] , £0»£1.....’Sq-1 being the successive columns

of the identity of order q(Bg = 0  if 6 / [0,1,...,m+1]). The 

following result is a natural extension of Theorem 4.5.
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Theorem 4.6 

Let

S(\Qh,n) = fL P*(/t) - Xoh/i(Xoh)J*(/x)

and let

2 (^0h,P) = - Xoh^*(p3

m m+1 ^where P*(p) = % Ag T Bn .
jg=0 " - Q=0 ^

Then the RK/mixed quadrature - RK method using block reducible 

quadrature formulae displays ful1-step stability without auxiliary 

variables, if and only if, with the notation (4.33), (4.42).

det(S(Xoh,p) - J'o ^(\Qh,fi)) (4.67)

is von Neumann.

proof. The vectors V̂j »^j> employed earlier, now generate vectors 

Pk' ^k o" setting

^k+l = ^^kq+l''"'f(k+l)q] ’ ^ = 0,.1,2,..., (4.68)

(and defining similarly) with pQ = f(0) [0,0.... 0,1]? in

c q ( p + i ) .
D  The equations (4.16) and (4.20) defining the method applied to

our basic test equation may now be written, using the Kronecker 

product notation (Definition 3.9) as

® ( L  -  S h A J lp q + i  “ n  ® E p l f i  ” ({. ® : 6 ^ ÿ i + l  ^ i + 1  ( 4 . 6 9 )

for a vector depending upon the function d (compare the

equivalent formulation (4.57)), and

i+1 -
lAi+l - h{I ® A}pi+i - h y {Vj+i j ® Epipj = 0. (4.70)

We may eliminate between (4.69) and (4.70) on multiplying

the latter by [I ® A]%h, and adding; we obtain
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- {I 8 Ephpi

" jEoiyi+/,j ® (Agp))fj - Ai+i (4.71)

If we now apply Aq ® I to (4.71) and sum over Q (Q = 0,1,...,m), 

we obtain

elo ® " Eh- ' ’Jh2A2))p„̂ .j_g - J^{Ac 0 Ep3n-e
(4.72)

„ m-t-1  ̂ z'
■ ‘5« ® “ p)^n+l-C -in+1

for some suitable term ^n+1• 

Let us write

Nr - Nj. (Eh, %h2) = (^ - EhA - î^h^A^)"! A^Ep (4.73)

for r = 0 and r = 1, where J:p = ̂ ee\ The matrix N̂. is of rank

unity with non-trivial eigenvalue

fp(l - fhA^%h2A2)-lATe = ^^(Eh, %h2), (4.74)

the latter being defined for r = 0, r = 1 by (4.42) and (4.43)

respectively.

]) The notation (4.73) allows a convenient reformulation of (4.72).

Multiplying (4.72) by l @  (I - EhA - î^h^A^)-! yields 
m m z.

® J^fn+1-2 - (Ag ® No(Eh,%h2ypn-4

9 m+1  ̂ -
g%0 (Bo 8 Nl((h,%h2)^pn+l_C - Tn+l (4.75)

for some vector 7n+l*

The recurrence (4.72) or (4.75) provides the basis for a stability 

result in terms of internal stability, for ful1-step stability we 

require a relation obtained on multiplying (4.75) by {I ® Ep). 

Observing that

EpNj.(Eh, %h2) = f̂ j.(Eh, %h2)Ep, (4.76)
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we thus deduce from (4.75) that

J o  ® 5p)fn+l-g - >'0 (?h, %h2) J^(Ae @ Ep)pn_g2=0
(4.77)

m+l
%h2yi(Eh, %h2) g {Bjg @ = {I ® Ep)y^+l

Now consider the vectors ^  = [f((kq+l)h),...,f((k+l)qh)]T 

which are related to the vectors (4.68) since

2  f k q + l , G p ^ k q + 2  , . . . , 6 p ^ ( k + l ) q ] •f< P
Equation (4.77) states that

(4.78)

2=0 2=0
(4.79)

m+l "
- rih^ yl((h, qh2) "  i n+1

for a suitably chosen vector ^n+1• Expressing in terms of v q

yields the required result (4.67).

Example 4.3

Consider the mixed -RK method employing block-reducible quadrature 

formulae of Example 3.7, in which we may take A from Example 4.2 and

-1 0

0 0
, B2 = 0 5 

0 01

®2 = Bq^2 + + Bo = 3^
1 ^ ll
3^ + 3

2^

We know that ^ = ^Xh) = (l+iXh)/(l-^Xh) , = [l-  ̂ [l - ^

and 1 + PQ = 2^1. If = pJXgh), then by Theorem 4.6 we require
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- k È

to be von Neumann. After some manipulation this expression reduces 
to

)
+

+ (^0 + ^  V^'^n^O + 2:̂ 0 + \v^^n + 2%2h4y^)p _ ro(rO+r%h2yi)].

)

— Mjxed quadrature -RK methods/Mixed quadrature - RK methods 
When quadrature rules are reducible or block-reducible the 

equations (4.18) simplify to the application of a linear multistep 

or a cyclic linear multistep method to the problem of indefinite 

integration and there is a corresponding simplification in (4.19).

Since both reducible and block-reducible quadrature rules share 

common features we shall first treat the unsimplified equation (4.19), 

which in vector form, for the basic equation (4.3), becomes

a  - ?hA)gi+i - % E %  (4,80)
K=U

J g  “ ik Ep^k - ii+1. 

in the notation (4.23), (4.24). Likewise, (4.20) becomes

Vd+1 = hApi+i + h ^2^ Wik Eppk. (4.81)

Substituting (4.81) in (4.80) and collecting terms yields

(£ - EhA -

-{(EhI+7yh2A)Ep + );h2 EpA} S ~ y ^ k=0 ^k - (4.82)
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i. %
4.4.1 Reducible Rules

Ep “ ik ^k-1, j^j = il+1-

We shall now assume that the rules (4.18) are {p*,cr^)-reducible. 

Then, from (4.82),

(L - ^^6 - ^^2a2) Q ^Qi^n+l-Qi

- {(EhI+î]h2A)Ep + %h2EpA)  ̂(^Qi^n-Qi

r m m
'̂ ’ -P al-O In-Cl-l - cf_o “«!' in+l-Ci (4.83)

where

k
f k  - i g  « k j  fj- (4.84)

From (4.84),

m m
 ̂ #2=0

so that replacing n by n-#2 in (4.83), multiplying by œ q  ̂ and 

summing yields

m m
^ (i - 5hA - ^h2a2) ^ 2 ^ «C2 “2l fn+l-êi-22

- {((hi + %h2A)Ep + ,,h2EpA)^J^ g^gg ««2 Sr^-&r&2

ry m m
- ’’ ’’  5p 0 J n  o L n  ^«2 J?n-ei-Ô2-l

m m

^2=0 #2=0 

m
^ #1-0 #2^0 *#iO#2 in+l-4i-#2 (4.86)

Equation (4.86) is a finite-term recurrence and yields the following 

result.

Theorem 4.7 (internal block-stabi1ity without auxiliary variables)
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The recurrence (4.86) is stable if

det[(^ - XgbA) (Î  - X^ h A )/x2(p*(^) )2

-{(Xo+Xi)h Ep- XqXx h2(EpA+AEp))p*(p)ff*(p)p (4.87)

- 7)h2 {<r*(p))2EpJ 

has zeros of modulus at most unity, those of modulus unity being 

semi-simple. Thus, the mixed quadrature -RK/mixed quadrature -RK 

method, with - reducible rules, displays internal stability

when applied to (4.3) if and only if

det[R(Xgh)R (X^h)] (4.88)

is von Neumann, where

R(Xh) - (IrXhAJ p p*(p3 - XhEp Œ*(p). (4.89)

4.4.2 Block-reducible rules

Employing the notation of §4.3.2 we may write (4.80) and (4.81) 

in the forms

(.1 ® (L - ShA/1 g^lVkj ® Epl^j

- %h @ Al^k - 2^ (Ykj 8 Epl^j (4.90)

- jk

and

Yk = h U  ® A}^k + h (Ykj 8 Ep)^j- (4.91)

Substitution of (4.91) in (4.90) gives a version of (4.82);

{£ ® (J[ - EhA - %h2A2)lp^ - Eh (Ykj 8 EpljOj

- ^h2 .|^(Vk 0 (EpA+AEp) ,gj - ^h2 (V^j 0 Ep)fj - Sj, (4.92)
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where
z' j  ̂ z\
Ij " (4.93)

From the preceding equation, on setting k = n-#^, multiplying 

by ® I and summing over #3 we find the result

m

m+l z\
- (g#i ® (EhEp+)7h2(EpA+AE^p) ) (4.94)

'Z . 0 ni+1  ̂  ̂ m
"  ̂ q^Iq % 1  ® 3p) {A#i ® j)Sn-#i-

We also have

m+l m+l ^
c j o  ‘-^2 0 J+n-C2 - J _ o  <|22 ® 5 + n - P 2  <4-95)

but in general this equation cannot be employed to eliminate 

Ĵ n-#2 from (4.92). The two equations (4.92) and (4.93) then provide 

a basis for studying internal stability with auxiliary variables 

(the components of being approximations to values of z(x)).

+ On the other hand, if the matrices Aq2 commute with the matrices

SQ i then we can obtain a relation not involving the vectors Tj.

The required conditions obtain when Ag = I, A^ = A# = 0,

# = 2,3,...,m. Such conditions are associated with a 

subclass of block reducible rules, namely those possessing 

Property 5.1 of [4]. We illustrate with the following result, which 

subsumes the case of (p*,&*)-reducibility (Theorem 4.7). Recall that 

Am+1 = 0.

Theorem 4.8 (block-stability for a subclass of block reducible rules)

Suppose that Ag = I, An = -I and A/> = 0, # = 2,3,...,m, or

more generally that the matrices An., commute.^ i z.
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Then, using (4.95) in (4.94) 

m+l m+l
e|_o e|-o ['-^2 èii @ <L - - # 2 A 2 )

- (Aj22 Bj2 P  8  (Ep ((hi + ,,h2A) + 7,h2AEp)

- %h2(BCi Bgp 0 Ep)7n-l2i-«2^

*
= in

*for an appropriate vector 5̂  and the associated stability polynomial 

^ is obtained on replacing ^n-#i-#2 ^2m-#i~#2 the left hand

side and taking its determinant.

We conclude that the mixed quadrature -RK/mixed quadrature -RK 

method displays internal stability (without auxiliary vaiables) when 

applied to (4.3) if and only if

det[Xo V(Xoh)V(Xih)-Xi V(Xih)V(Xoh)] (4.97)

is von Neumann, where

m+l z\
Y(^b) = y (Ag ® ^(Ir^bA) -Xh(Bjg @ Ep)} p™-# (4.98)

^ 4.5 A-stabilitv

We showed in [5] that mixed quadrature-Runge-Kutta methods for 

(4.1) need not be A-stable when both the associated quadrature method 

and extended Runge Kutta method are A-stable. The corresponding feature 

is present in the discussion of (4 .3).

Definition 4.3

Let Xg 1 be defined by (4.33). Then a method for (4.3) is said 

to be A-stable when it is strictly stable whenever Re(Xgh) < 0 and 

Re(Xih) < 0. It is said to be Ag-stable when it is strictly stable 

whenever Xgh < 0 and X^h <0, Xg, X^ e R.

.Example 4.4 (a) With the trapezium rule and Runge-Kutta tableau
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employed in Example 3.2 of [5] the RK/mixed quadrature RK method 

considered in §4.3.1 is A—stable. (b) With the quadrature rules 

defined by the backward Euler method, and the same Runge-Kutta 

tableau, the method considered in §4.3.1 is not A -stable and hence not 

Ag-Stable.

To investigate the method in Example 4.4 (b) we apply Theorem 4.5 

with p*(/i) = ^ - 1, Œ*(^) = fi, /i(Xh) = (1 + iXh)/(l - axh) and

0̂ = ((1 “iXgh) (1 - ^X^h)}"!. (1 + ^Xgh+^X^h - ^X^X^h^) and obtain

the stability polynomial

^ (1 - iXgh) (1 - ^Xih)^2 + (XgXihZ - 2 )  ft + [1 + ^Xgh + iX^h - (^XgX^h^] ,

Restricting attention to the case Xg, X^ < 0, h > 0, this can be 

shown (by well-known techniques) to be a Schur polynomial only if

-4 < rjĥ  <0, Eh < 2

where t] = -XgX^, E = Xg + X^, and hence the method is not A-stable. 

The corresponding extended method of §4.2.2 is A-stable.

Example 4.4 (b) established on analogue of Theorem 3.9 of [5],‘ 

and prompts the search [7] for modified Runge-Kutta methods which 

possess the economy of mixed methods yet the desirable stability 

properties of extended methods.

4.6 Extension

The results presented in this chapter provide initial results 

extending those of [5] to the treatment of integro-differential 

equations. However, they do not exhaust the variations of Runge-Kutta 

methods available for the treatment of integro-differential equations. 

Additional investigations are pursued in chapter 5 where their results 

are presented and a general analysis is made of the stability 

polynomials derived so far.

)



)

-178-

REFERENCES

1. AMINI, S., BAKER, C.T.H. & WILKINSON, J.C. Basic stability analysis
of Runge-Kutta methods for Volterra integral equations of 
the second kind. University of Manchester, Numer. Anal Tech 
Rept. No.46 (1980).

2. BAKER, C.T.H. Initial value problems for Volterra integro-
differential equations. Chp. 21 in Modern numerical methods 
for ordinary differential equations (eds. HALL, G. &
WATT, J.M.) Clarendon, Oxford (1976).

3. BAKER, C.T.H. The numerical treatment of integral equations,
^ Clarendon Press, Oxford (1977, reprinted 1978).

4. BAKER,. C.T.H., MAKROGLOU, A. & SHORT, E. Regions of stability
in the numerical treatment of Volterra integro-differential 
equations. Siam. J. Numer. Anal. Vol 16, No.6 (1979).

5. BAKER, C.T.H. & WILKINSON, J.C. Stability analysis of Runge-Kutta
methods applied to a basic Volterra integral equation.
J. Austral. Math. Soc. (Series B) 22 (1981) pp.515-538.

6. BAKER, C.T.H. & WILKINSON, J.C. Stability of Runge-Kutta methods
applied to a basic integro-differential equation. Manuscript, 
October 1981 (A revised version of Numer. Anal. Tech. Rept.
No.50, University of Manchester, June 1980).

1 n

BAKER, C.T.H. & WILKINSON, J.C. On the construction of stability 
polynomials for modified R-K methods for Volterra 
integro-differential equations. Contribution to Treatment 
of Integral Equations by Numerical Methods (eds BAKER, C.T.H. & 
MILLER, G.E.), Academic Press (1982). Also Num. Anal. Tech. 
Rept. No.81, University of Manchester, September 1982.

BRUNNER, H. & LAMBERT, J. Stability of numerical methods for
Volterra integro-differential equations. Computing, 12, (1974) 
pp.75-84.

FELDSTEIN, A. & SOPKA, J.R. Numerical methods for non-linear 
Volterra integro-differential equations. SIAM J. Numer 
Anal, 11, (1974) pp826-846.

HALL, G. & WATT, J.M. (eds) Modern numerical methods for ordinary 
differential equations. Clarendon Press, Oxford (1976).



-179-

)

)

11. von der HOUWEN, P.J., TE RIELE, H.J.J. & WOLKENFELT, P.H.M. On the
stability of multistep formulas for systems of Volterra 
integro-differential equations. Rep NW 63/78, Mathematisch 
Centrum, Amsterdam (1978) .

12. van der HOUWEN, P.J., WOLKENFELT, P.H.M. & BAKER, C.T.H. Covergence
and stability analysis for modified Runge-Kutta methods in 
the numerical treatment of second-kind Volterra integral 
equations. IMA J.Numer.Anal. % (1981) pp303-328.

13. LINZ, P. Linear Multistep methods for Volterra integro-differential
equations. J. Ass. Comput . Mach lj6 (1969) pp295-301.

14. MAKROGLOU, A. Numerical solution of Volterra integro-differential
equations. Ph.D. Thesis, University of Manchester, 1977.

15. MATTYS, J. A-stable linear multistep methods for Volterra
integro-differential equations. Numer, Math. 27 (1976) 
pp 85-94.

16. M^KEE, S. Cyclic multistep methods for solving Volterra integro- 
different ial equations. SIAM J. Numer. Anal. 16. (1979) 
ppl06-114.

17. MOCARSKY, W.L. Convergence of step-by-step methods for non-linear 
integro-diferential equations. J. Inst. Math. Appl, 8,
(1971) pp235-239.

18. TAVERNINI, L. One step methods for the numerical solution of
Volterra functional differential equations. SIAM J. Numer. 
Anal, 8, (1971) pp786-795.

19. WOLKENFELT, P.H.M. Linear multistep methods.and the construction 
of quadrature formulae for Volterra integral and integro- 
different ial equations. Rep. NW 76/79 Mathematisch Centrum. 
Amsterdam (1979).



)

-180- 

CHAPTER 5

—  Qh the construct ion_of stability polynomials for modified R-K

methods for Volterra integro-differential enuations.

5.1 Introduction

5.2. Stability of a recurrence

5.3 A general class of methods

5.4 Basic stability theory

5.5 Summary
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5.1 Introduction

In this chapter we continue our interest in the stability analysis 

of a wide class of numerical methods for the Volterra 

integro-differential equation

f'(X) = C(x, f(x),
X

0
H(x, y, f(y)dy) + d(x) (x)0). (5.1)

The results are applicable due to the choice as a stability test 

equation of the "basic" integro-differential equation

) f ' (X) = Ef(x) + T]
X

f(t)dt + d(x) (5.2)
0

and because we assume reducibility structure [1, 6] in the numerical 

methods. The methods covered include classical methods treated in 

[3] and described in chapter 4 of this manuscript and new y-modified 

Runge-Kutta methods which are motivated by the corresponding methods, 

first introduced, for Volterra integral equations of the second kind, by 

Van der Houwen [5]. The y-modified R-K methods are introduced in 

§2.6 of this work.

Our purpose is to gain insight into the construction of stability 

^ polynomials for classical and modified Runge-Kutta methods which we

describe below. This task is, in our view, a prerequisite to further 

study. Although (5.2) reduces, on differentiation, to a second-order 

differential equation the approach to our methods is from the viewpoint 

of a system of integral equations and the modified methods are of 

particular interest. Incorporating the modified methods into a general 

analysis requires some rather special insight which we elucidate below 

(cf. [4]).

5.2 Stability of a recurrence

IVe commence by investigating, briefly, recurrence relations of 

the form



-182

m+l " m+l
#Zo ĵ n+1-# + gZg Q# ^n+1-# = 3  n+1 (5.3)

m+l m+l
#Zo $2 ^n+l-# + S# jAn+1-# = ^  n+1- (5.4)

)

Hence {Fq , Qq , Rq , S^} are square matrices of fixed order and 

(Ph, ÿn)n>0 is a sequence of vector pairs. Considering (5.3) and

(5.4) we have the following result (cf. [3]).

Theorem 5.1

A stability polynomial for (5.3) and (5.4) is

Z(m) = det (5.5)

m+l
where P = P(^) = t PjO ^ , and likewise for Q = 0(a),^ #=0 ^ ^ ^

R = R(a«.) and S 5 S(pi) .

Proof

It is convenient to express the recurrence relation (5.3) and (5.4) 

as follows

) Pn+1

V̂ n+1 -m

’/'n+l

.V'n+l •mJ
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)

“̂ m+1

^n-m

’An

.’An-m

Then the stability polynomial is

+

o

(5.6)

)

“Jm+1 -Ql-/̂ QOi -02

det

§m+l
(5.7)
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This may be simplified if the following procedures are observed.

1. Add X column s to column (s+1) for successively increasing 

values of s from s=l to s=m.

2. Add p, X row r to row (r-1) for successively decreasing values

of r from r = 2m+2 to r = m+3.
m ^

3. To column 2m+2 add ^ pS x column (2m+2-#).<2=1
A simplified form of the stability polynomial may now be expressed 

from which the required result is readily derived

)

)

m+l
-y pg/x“+i-2

det
m+l -
-y m+l ,m+l-<2

(5.8)

In general we wish to expand (5.5). We have a number of 

possibilities of which the following are illustrative (but not 

exhaust ive).

Case 1 SQ = QŜ  and S“  ̂ exists then = det [SP-gR] .

Note that I
-S-ÏR

P-QS-lR Q 
~0 ^ S

P-S-lgR Q
0 s
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-asG 2 PR - RP and P 1 exists then = det [PS-RQ].

\? §1 1 "p o' "E o'R S 0 I R S-RP-1q R S-P-lRQ

3 If S-1 exists then 2(p) = det [P-gS'^R] det S.

For remarks on Case 3 see [2]. We observe that Cases 1 and 2 (and, 

indeed, Case 3) correspond to elimination of either or

between (5.3) and (5.4). Thus, for example, if we denote by E the 

advancement operator (E^^ = E^^ = î n+l) then (5.3) and (5.4)
become

P(E)^n-m Q(E)]^n-m ~ A n+1
A

(5.9)

R(E)^n-m + §(E)lAn-m A n+1 (5.10)

where P(E) denotes substitution of E for p in P(p) etc.

Apply S(E) to (5.9) and Q(E) to (5.10) with some loss of 

information if either ^ or Q is singular. Subtracting now yields, 

if we make the assumption that Q(E)S(E) = S(E)Q(E),

[S^E)P(E) - g(E)R(E)]p^_m = S(E)A;n+l " QfE^d^n+l (5.11)

for which a stability polynomial is Case 1, det[S(p)P{p)-q(p)R(p)].

5.3 A General Class of Methods

We recall from §4.1.2 that if we write (5.1) in integrated form, 

we obtain the pair of integral equations

rX
f(x) = C(s,f(s), z(s))ds + d(x). (5.12a)

z(x) = H(x,t, f(t))dt. (5.12b)

and we seek approximations fj — f(rj) and zj = z(Tj) at the points 

Tj = ih+Ofh (i=0,l,2,...;r=0,l,...p; j=i(p+l)+r+l).
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Here, the values 6^ are parameters defined by a Runge-Kutta method, 

We require quadrature rules with abscissae {tj) of the form

Q  : , (i+l)(p+l)
 ̂ p(t)dt = h ^jk^(TR), (5.13)

with weights Q - Q = We define = 0 = 0,

for k > (i+l)(p+l). A choice of vectors

I - ' I ' d  T p )^  ( 5 . 1 4 ' )

%" -  (7 o  .Yp)'^ (5 .1 4 " )

with components in [0,1] permits the replacement of (5.1%) by the 

equations given below (cf. §2.6 equation (2.83) and (2.84))

= h Ojk C(Tk,fk,Zk) + d(Tj)

I ~ i(p+1) I „ _
+  T j . { f i ( p + 1 )  -  ( h  ^ i ( p + l ) + l , k  C ( T k , f k , Z k )  +  d ( + / i ) }

(5.15)

and

^ k^O "jk H(fj'rk.fk)

" ~ 1 (p+1 ) "
+ 7r(zi(p+l) - (h Oi(p+i)+i kH(ih,rk,fk)l

(5.16)

The corresponding method will be denoted M(0',7 ' ;C",y"). These 

equations with 7r ^ Tr ^  ̂ (î* = 0,1, . . . , p) define classical methods

which are modified by the introduction of the parameters (5.14'),

(5.14 ). (The more natural class of methods requires only the choice 

of 7", with 7' = 0).

It remains to construct the rules (Q') and (Q"), of the form 

(5.13). We shall employ R-K parameters [^|A] defined by the tableau
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in (2.33) and the quadrature rules Q defined in (2.3) with weights 

{o)ik) (w;k = 0, k>i). Subsequently we shall employ rules q ',q "
I It

with weights Wik, Wik and R-K tableaux [ 0* ,a ’] and [0",a "]

with 0* = = I. Rules Q and tableaux [0,k] permit the

definition of Q.

The extended Runge-Kutta method uses 'weights' denoted by 

^jkXA) which are defined in (2.53). We take 7=0 for definiteness 

and write Q = 0(A) for use in (5.13).

The mixed Runge-Kutta methods uses 'weights' denoted by OjkCQlA]

^ which are defined in (2.54) and we write Q = fi[Q:A]. Thus, the weights
I It

^jk and may be defined as

^jk = ^jk (a ') (5.17')
or

^jk = ^jk[Q';A’] (5.18')
and

^jk = Ojk (A") (5.17")
or

^jk = ^jk[Q ;A ] (5.18")

When njk(A) are taken as the weights defining fi' or O", the 

^ corresponding 7(7' or 7") may be chosen arbitrarily. Computationally

one would assume 7=0 but it is convenient in §5.4 , to suppose that
T ' ' 1) • When ^jk “ ^jk^A^ ’  ̂ method may be regarded as

an adaptation of an R-K method for an ordinary differential equation.

Furthermore, we require the weights ̂ jk to have structure.

We recall, from Definition 2.5, that the array of weights (fijk) is

block reducible when the weights may be partitioned into matrices

ÿnk °f order q with elements finq+a,kq+(3

(q!,̂  = 0,1,.... ,q-l) (£0 ».êl >••••» £q-l the columns of the identity

matrix of order q) . The matrices satisfy, for fixed matrices

fÂg, 62̂] where Y An e = 0, the relationJg=0, <)=0 ^
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m _
(5.19)

with the convention - 0 for 4 / (0,1....m). If Aq = I,

-1 ~ ~S (5.19), Aĵ  = 0 otherwise, Q is termed simply-block- 

reducible. If q=l in (5.19), Q is called reducible.

Reducibility', in one of the above senses will be assumed 

in the sequel. 'Reducibility' of Q yields 'reducibility' of the 

rules with weights Ojk [Q;A], under an associated partitioning.

5.4 Basic Stability Theory

Our purpose is to discuss the stability of a set of numerical 

methods, included in the description in §5.3, when they are applied 

to the basic test equation (5.2). We shall employ the notation, 

defined in (4.23) and (4.24), viz.

^n+1 = [fn(p+l)+l,...... ,f(n+l)(p+l)]T,

fn+1 - [=n(p+l)+l,.......... z^n+l)(p+l) T

where {fĵ }, (z^l are the values obtained for equation (5.2). We also

write r =  DIAC (70»71.•••,7p). r', r" being defined in terms of

7 » 7 • It is also convenient to write

fp (5.20')

Jp"r"|p- (5.20")

The notation will be used in a generic sense. Since we have

to consider various methods applied to (5.2), we write
( 0 )

Jfn+1 foi' vectors generated using f^jk(A') , 7' = 0 in (5.15);

^n+1 " " " " fijk (A"), 7" = 0  in (5.16),

(the "extended"Runge-Kutta formulae) 

and
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^n+1 for vectors generated using AjkEQ';A'], 7’ in (5 .15);

jAn+1 for vectors generated using fijk[Q";A"], 7" in (5.16),

(the 7 - and 7"- modified mixed formulae").

Thus, we find that (5.17') and (5.2) yield, from (5.15)

- Ep + hA/ + % ̂ n+l) (5.21)
and (5.18') and (5.2) yield from (5.15)

' t « , n « I
Jf’n+l “ fn+1 + Ep [ip̂  -h o)nj (fpj + #j)l (5.22a)

wherein

t n I I  ̂ ,
Pn+1 = h Wnj Ep(Spy + %ÿj)l + hA/lEp^+l + %̂ ;n+l)' (5.22b)

Similarly Ân+l ^ ^2^ Ep A Ŝ j+1 + hA <Px\+\ whence

ÿn+i - Ep + hA"pb+i (5.23)

whilst jn+1 =.ÿl+l +.Tp - h 2^ Wnj,EpPjl (5.24a)

wherein ^ + + 1 - h ^2^ Ep + h A"%n+l. (5.24b)

Our task is to analyse the stability of (5.21) or (5.22a,b) where 

{̂ n) is replaced by or {^n). In order to analyse the

possible co:f>> /on. of (5.21) or (5.22) with (5.23) or (5.24) we

require some common structure which we shall develop. In particular 

we ask, when dealing with (5.22) or (5.24), that the rules {e)\} or
II

(Wnj) should be block-reducible. Then we require the matrices
I It

fYnj)' (^nj) of order q', q" respectively with the elements

17 t I I
= Wnq'+a,jq'+0 (o!,/3 = 0,l.....,q'-l) (5.25')

117 II II II
cfp: YnJ .5(3 ^nq"+0!, jq"+|3 (#,0 = 0,l,....,q"-l) (5.25")
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in the (a,(3) position, respectively. Asssociated with q',q" 

(where appropriate) we define a parameter q which assumes, in our 

analysis of the indicated pair of equations, the value shown

Eq.(5.21) Eq.(5.22)

Eq.(5.23) q-1 q=q'

Eq.(5.24) (̂ n) q=q t IIq=q =q

Table 5.1

Observe that in our analysis of (5.22) and (5.24) we require 

9 — 9 but if this is not the case we are able by restructuring to 

take q = q'q". Recalling the notation £  and J# defined in §4.3.2,
I II

we derive from the matrices Â nj and V^j, as appropriate, the
I ''it

matrices V^j, from the rule

Ynj - Jnj i + Yn,j+1 (5.26)

Having established our interpretation of q, we introduce the
"(e) "(e) ""vectors > '̂ n « obtained on replacing and in an

obvious manner in the notation, first introduced in (4 .68),

_ . T T
^n+1 ^nq+1 » V̂ nq+2 P%n+l)q) (5.27)

T T T
Yn+1 = (^nq+l' Ynq+2 »............,^%n+l)q)^ (5.28)

(n=0,l,2,...) with pQ = f(0)(0,0,----,0,1} ?, ^ = 0 e cq(P+l)

Finally, recalling that the Kronecker product C @ H, of the 

square matrices and U is the partitioned matrix with elements 

9(x(S3' can state the following results.
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Lemma 5.1

If (a) = jPn  ̂ i" (5.27) and Fp = Ĵ p, V^j arbitrary, or

(b) ĵ n i" (5.27) and ,Ep = E Ep, satisfying (5.25'),

then (a) (5.21) or (b) (5.22) yields

f , n+1  ̂I I I ^
( i q  0  ]\<Pn+l -  ? h  V n + i  j @  (Ep-fp) y j  +  ( ^ q  0 Jp)^n +

n+1 "
+ ’ih jIg Yn+l,j ® (3p-rp)Yj + >?h O q  @ A )jAn+l + in+1- (5-29)

Proof

(a) The analogue of (5.21) for is

Zq ® fn+i (Eq ® J'p) JPn  ̂ + ^(jq 0 A ) #n+lj

On re-arranging we obtain

ilq ® (Iq - SbA )}^n+l = (Lq ® Ep)fn^^ + ® A.' )^b+l"

This result has already been stated in (4.69) and may also be derived 

from (5.29) when J"p Sp*

(b) Rearranging (5.22) we obtain

(I-(hA')pn+l - Eh "nj (Ep+p)fj -1 fpgn + vhA.';{̂ „+l +

’’’’ jig “"-i (Ep+p)Y:j -
/\ I

The analogue of (5.22) for is

f , I 1 z' ' n+1  ̂t I I .N I
Ilq ® ^l'“^bA )j jPn+1 = 2  ̂Yn+1, j ® ^Ep“Ep)^j + (^q ̂  Jp)^n +

, /\ n+1 /\ I * y\
+  qh(2q 0  A  ) +  qh V q + i , j  0  (Ep-Ep)Yj.

This is the required result (5.29) which has already been derived 

in (4.90).
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Lenïïna 5.2

If (a) Yp  ~ (5.28) and = Ep, j arbitrary or

(b) i n - i n  (5.28) and Fp - rEp. v"j satisfying (5.25") then 
(a) (5.23) or (b) (5.24) yields

n+1  ̂It 11̂  ^
-  h  j l o 7 " + l . J  ®  +  h ( ^ q  ®  X ’ : ^ n + l  +  ( ^ q  8  £ p ) j ( n

(5.30)

Proof By re-arrangement of the analogues of (5.23) and (5.24).

We pause to recall, from §4.3.2, that when the quadrature rules 

Q =  (Wijl are block-reducible with A^Yn-4, j = Jn-j where

Ac = Be = 0 for e / (0,1...........m, then Vn_c, j -Jn-j

where Bp - 0 for 2 / (0,1, . . . ,m,m+l) and

Be - Bc_i J# + Be J. (5.31)
'' I ''it

The matrices , Bq are derived according to the rule (5.31),

but when treating (respectively the matrices vl :~ — “J/'II , I
(respectively V^j) are arbitrary and we then set Aq = I, Aq =[0 

otherwise (respectively _Ao = j, Ag = 0 otherwise) Bq and B# 

being arbitrary.

Lemma 5.3

(a) Let the rules be block-reducible. Then (5.29) yields

(5.3) where

J q = A^ ® (£ -EhA' ) - EhB^ ® (Ep-Fp) - Aq _i @ Fp (5.32)
" ' I Iand Qjg = -r]h[BQ̂  ® (Ep-Fp) + Ag ® a'] . (5.33)

(b) Let the rules be block-reducible. Then (5.30) yields

(5.4) where

A It It It
R q  = -h[B^ ® (Ep-Fp) + A q  @ a"] (5.34)
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and Je - (Ae ® J) - (Ap.i® Pp) . (5.35)

Proof By applying Ae ® Jlq to (5.29) and Ag ® JLq «° (5.30).

Observe that Pe = Pe(Eh), jQe = Qk(%h), Jc = R.e(h) and Sg

is independent of E,  ̂ and h. As earlier we write

P(/̂ ) = etc in what follows.

Our reference to equations (5.3) and (5.4) establishes the 

connection with Theorem 5.1. However, the result of Case 1 requires 

S^QS, but in general the presence of causes difficulties with

this condition even under the reasonable assumption that
" II II

Y^O-=J. M  = “il A<2 = 9̂  otherwise (simple block-reducibi 1 ity) .

For the combination (5.21) with (5.23) we can appeal to Case 3 since 

^ Î  readily obtained, but to effect a general treatment we proceed 

as follows.

Lemma 5.4

Under the assumption of Lemma 5.3 and with the notation established 

above,

P(E)j^n-m Q(E)^n-m ^n+1 (5.36)

(5.37)

where 5.*(A) “ [Jq ® ( (/»-Tp'')i + r") ]R(;t) (5.38)

!*(C) - [iq ® ((/‘-Tp)i +rp)]S(ii)

II m+l II
= (p-7p) Z^ (Ac ®J)pP+l-4 (5.39)

and if q=l or the rules Q = (w^jl are simply block-reducible,

S* commutes with Q.

Proof

Equation (5.4) reduces to (5.37) as follows.
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In equation (5.4) write n+1 in place of n and substract -y" 

times the original equation. Add to the result (Iq ® Tp) times the 

original (5.4) and (5.37) results with = A^+2 ~ Tp-̂ n+l +

Remark

Observe the simplification when considering the classical methods. 

The analysis which led to (5.11) is now valid if R is replaced

by R* and £  is replaced by S*. Thus, we have the following result. 

Theorem 5.2

Under the assumptions of Lemma 5.4

[ f  (E)P(E) - Q(E)R*(E)];„.„ - f  (E);A;+i-Q(E)a ";i (5.40)

and the associated stability polynomial is

det[S^(^)P(;t) - Q(p)R*(p)] (5.41)

Some specific results appear below. Theorem 5.3 is of special 

interest since (in view of remarks of Hairer) we might choose a " 

with a sparse last row whilst ^  might be conventional.

Theorem 5.3

Consider the (extended) method M(fi(A'), e; applied

to (5.2). The stability polynomial is

det [f.2z-;t(Z+Ep+,;h2A'EpA")+Ep] (5 .42)

where Z 5 Z(fh, qh?) = (I-$hA-%h2A'A"). (5.43)

Proof

For the extended method y = T = e, Fp = Fp = Ep and we set
' II I II

Aq = Aq =J, A# =^Ag = 0 otherwise. From equation (5.32) - (5.35) and

(5.38) with (5.39) we may write

P(P) = [I ® (I-thA')]^m+l _ [j @ E-luM
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Q(/() = -î̂ h [ I_ 0 A ' ]/xHi+l

= -h[I^0 {(;̂ -l)J[+Ep}] [I_0 A”]/ini+l 

= -h (1^0 A")/im+2  ̂h[I^0 (A"-EpA")];tm+l

S*(p) =

Note that commutes with Q(/t) .

From (5,41) the stability polynomial is

det[S^(pOP(p) - QCpOR*(pJ]

= [j^®(^-^hA') ]/i2m+2(^_l) _ (l0Ep)/̂ 2ni+l(^_i) _

-i7h2(l̂  0 A'A")/(2m+3 + r?h2 [ ̂  0 (a'a"-A'EpV')|/x2m+2 

Rearranging, we obtain

[I 0 (I^-^h^-î̂ h2A V') ]/|2m+3 + Eg+?^h2A' E^A" ] a2m+2 +

O  0 Ep)/i2m+l

from which (5.42) follows with Z defined by (5.43).

Remark

Equation (5,42) may be expressed as

det |[>'O(M(L->'0hA')-Ep)((p-l)I,+ Ep){,t(I^-XlhA'')-Ep)

-Xl {/»(l-XphA' ) -Ep) { (ft-1 ) j+Ep) {/i(I_-XohA" ) -Ep) ] . (5.42')

If A - A - a " then (5.42') reduces to a result of [3] which was 

also previously derived in Theorem 4.4.

The results of Theorems 5.4 and 5.5 which follow require the 

definitions of

£*(Xh) - j 0 [̂ <(L-XhA')-j:p)/tn> (5.44)

and of 2 (^h) and ^  (^h) obtained by inserting primes on 

Ajg, , A and ^p in the definition

m+1 r ^
-  gig W  ® [/t(j[-XhA)-rp]-Xh^Bj2 ® (5p-[p))r-^ (5.45)



— 196 —

Thoerem 5.4

Consider the (extended/modified) method M(n(A'), e ,a"],7") 

applied to (5.2) and assume that the rules q" are simply 

block-reducible (or reducible). Then, if 7" = e, the stability 

polynomial is (5.42).

For the general 7" the stability polynomial is 

XXg^i) ^̂ 0 ]^*()^oh)((/^-7p)(W) + (2®rp)i^"(Xih)

-\l ^*(Xih) { (;t-7p) ( W )  + (2®[p) ] ^"(XQh)] (5.46)

Proof

For the general result, T “ ̂ > ^p = Ep, are arbitrary
' I ~and so we have Aq = I and Âg = 0 otherwise.

From equations (5.32) - (5.35) and (5.38) with (5.39) we may write

P(/̂ ) = [I®{/i(Î -̂ hA') - Eplj/^m

- [XO %^XXoh) -Xl#*(Xlh)]/(Xo-Xi)
Q(/t) = -%h(l0A')/im+l

— XoXl[#*(Xoh) - #*(Xih)]/(Xo-Xi)

" •' m+1 II II II
R (fl) - -h[£ @ (f-YpX+Fp] [Bg ® (Ep-Fp) + Ag ®

- {[I,® (4-Tp)2 + Fp] (t"(Xoh) - +(Xih))}/(Xo-Xi)

 ̂ " " m+1 II II H
S (/t) - [1̂ 0 (/'-Tp) J + Fp] [(Ag XJ) - (Ag_i 0 Fp)),tm+l-e

- [I_® (4-Tp) I + Fp] [Xq +(Xih) - Xi t"(Xoh)]/(Xo-Xi)

From (5.39) the alternative formulation for is
II m+1 It m+l-j2 

(A*-~Tp) (Aj2 ® ^ ) •  Thus, we observe that ^*(^) commutes

with Q(/t) and, in addition, S*(/x) commutes with P(/t) .

The stability polynomial is
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det[s;̂ (/x)P̂ (̂ ) - Q(^) R*(/̂ )]

= det[P(/i)£ (̂/i) - Q(m)R*(/x)]

= det|[Xo*f(Xoh)-Xl*^(Xih)] [^©(/^"Tp”) I+Tp" ] [Xq^  (X^h)-Xi£^(Xoh) ]

+ XiXo[**(Xoh)-g*(Xih)][I_@ (p-7p) ^ +_rp][*^(Xoh) - *;(Xih)]j/(Xo-Xi)2

(5.47)

\ On considering the expression

{[Xoî*(Xoh) - Xi +(Xih)][|L@_I] [Xq +(Xph) - XiCo^oh)]

+ XiXq [-^(XqIi) - $*(Xih)] [£ ® n  [f(Xoh) - t"(Xih)]}(/i-7p)

which is part of (5.47) and the similar expression with I @ F~ ~ P
replacing J 0 J it is readily seen that (5.46) follows.

When 7 = e, (5.46) becomes
_ m+1 II ^

g2o Ag 0 {/i2(^-XohA )(I_-XihA") -;i[Ep + O - X o h A ' ) ^  - XphA") +

’jh^A+pA'l + J-p)

-I'll*'” gig Ag 0 (^2(^-XihA XL-XghA") -p[Ep + 0-XihA')(i-XohA") +

#^A'EpA" + Ep)

from which (5.42) follows.

The methods covered by the preceding results are of particular 

interest. The following is a general result.

Theorem 5.5

For the method M(fl[Q ] , 7 > ^[Q ] , 7 ) , where the rules

Q are simply-block-reducible (or reducible), the determinant (5.41) 

reduces to (5.46) of Theorem 5.4 with g*(Xh) replaced by (Xh).
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5.5 Summary

In this chapter the intention was to investigate further the 

7-modified Runge-Kutta methods. We have endeavoured to develop a means 

of constructing polynomials for the modified R-K methods when they are 

applied to the 'basic' test equation

f ' (x) = ff(x) + Yj
X

f(t)dt + d(x)
0

The analysis includes the stability polynomials for the classical 

R-K methods.

The general result (modified/modified method)

M(n[Q ,A \ n[Q",A"], 7") stated in Theorem 5.5 relies on the 

assumption that the rules Q are simply-block-reducible (or reducible) 

as in general the presence of causes difficulties.

We demonstrate below the way in which earlier results in this 

chapter and those of chapter 4 may be derived from the general result.

1. The extended/modified method M(0(A'), e; 0(Q",A"),7") is derived 

by taking 7 = e in Theorem 5.5. This result is given in Theorem 5.4.

2. The extended/extended method M(0(A'), e; f2(A"), ê  is derived by 

taking 7 = 7  = ^ in Theorem 5.5. This result is given in

Theorem 5.3.

3. If, in addition to 7 = 7" = e we take A = A* = a" we obtain 

M(fi(A), e; 0(A), e) which is the extended/extended result obtained in 

Theorem 4.4.

4. In Theorem 5.5 take 7' = e, 7" = 0 and A = A* = a" we obtain 

the associated stability polynomial

\ { [ ^ 0  i  ®  { ^ ( ^ - X o h A ) - E p } / x m + l ]  ( A g  ®  / t ( I ^ - X i h A )
-Xfĥ t Bg" ®
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- [Xl £ ® {/t(I -̂XihA)-Ep)/Am+l] (Ag @ ^(L">^OhA)-XQh/i Bg @ Ep}/fi-2] j

m+1 II f .  ̂„
= det (Xq-Xi) [Ag ® [(I-$hA-7;h2A2)^-Ep| - rjĥ fi Bq ® AEp] ;̂ 2m-g

This corresponds to equation (4.72) in chapter 4 from which the result 

Theorem 4.6 is deduced for Runge Kutta/mixed methods using block 

reducible rules.

5. In Theorem 5.5 take y = y' = 0 and A = a' = a" and q' = Q" = Q 

We obtain the associated stability polynomial

det i [Xq V(Xoh)V(Xih) -  XiV(Xih)V(Xoh)]

m+1 r ^
where V(Xh) = T |Ag ® /.t (^XhA)-Xh(Bg ® Ep)}/^^-^.

This is the result stated in (4.97) for the mixed/mixed method with 

block reducible rules.
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