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ABSTRACT

Stability in the numerical treatment of Volterra integral and

integro-differential equations with emphasis on finite recurrence

relations.

In the last two decades the theory of Volterra integral equations
and of integro-differential equations has developed extensively. ~New
classes of methods for the numerical solution of such equations have
been developed and at the same time there have been advances in the
qualitative theory of these equations. -More frequent use is being
made of Volterra equations to model various physical and biological
phenomenon as new insight has occurred into the asymptotic behaviour
of solutions. In consequence, there has emerged a need for reliable
and efficient methods for the numerical treatment of such equations.

This thesis is concerned with an aspect of numerical solution
of Volterra integral and integro-differential equations. In Chapters
1 and 2 we are concerned with background material. We provide results
on the classical theory of Volterra equations in Chapter 1 and on
numerical methods in Chapter 2. The original material is contained
in Chapters 3, 4 and\S. ‘Here, stability results which involve the
construction and analysis of finite-term recurrence relations are
preseﬁted. The techniques relate to the treatment of Volterra
integral and integro-differential equations. They permit the
analysis of classical and y-modified numerical methods.

The results presented should be viewed as a contribution

towards an understanding of numerical stability for the methods



considered. The area is one in which further work (subsequent to
the present investigation and involving advanced fechniques) has been
performed and where open questions étill remain.

The techniques which are employed in this thesis are applicable

in other areas of numerical analysis and therefore have intrinsic

interest.



CONTENTS

Page No
CHAPTER 1 Introduction 1
1.1 Preliminary remarks. 3
1.2 Classification of Abel-type and Volterra
integral equations. 5
1.3 Transformation of Equations into new forms. 9
1.4 Relations between integral equations and
ordinary differential equations. 12
1.5 Integro-differential equations. 14
1.6 Variation of constants formula, 16
1.7 The role of Laplace transforms. 21
1.8 Background material, 25
1.9 Topics in the theory of Volterra equations. 32
References. 54
CHAPTER 2 Methods for non-singular problems. 58
2.1 Preliminary remarks. 59
2.2 Quadrature methods. 59
2.3 Runge-Kutta type methods for Volterra equations. 73
2.4 Product Integration methods. 86
2.5 Bownds' method. 88
2.6° y-modified methods. 90
References. 92
CHAPTER 3 Basic stability analysis of Runge-Kutta methods for
Volterra integral equations of the second kind. 95
3.1 Introduction. 96
3.2 Preliminary remarks on stability. 97
3.3 Further remarks on structure. 108
3.4 Extended Runge-Kutta methods and stability
definitions. 113
3.5 Mixed Runge-Kutta methods with reducible rules. 128
3.6 Mixed quadrature - Runge-Kutta methods using
block reducible rules. 136
3.7 Extensions. 142

References.

145



CHAPTER

Basic Stability analysis of Runge-Kutta methods

CHAPTER

for Volterro integra-differential equations.

Numerical methods and stability.

Extended Runge-Kutta methods and stability
definitions.

Runge-Kutta/Mixed quadrature - Runge-Kutta
methods.

Mixed quadrature - RK methods/mixed quadrature -
RK methods.

A-stability.

Extensions.

References.

On the construction of stability polvnomials for

[CECEENENE
U W N

modified RK methods for Volterra integro-

differential eguations.

Introduction. ;

Stability of a recurrence.
A general class of methods.
Basic stability theory.
Summary.

References.

Page No

148
149
156
165

172
176
177
178

180

181
181
185
188
198
200



.._‘l_

- CHAPTER 1
1.1 Preliminary Remarks
1.2 Classification of Abel—iype and Volterra Integral Equations
-1.2.1 Equatioﬁs of the first kind
1.2.2 Equations of the second kind
1.2.3 Equations of convolution type
1.3 Transformation of Equations into New Forms
1.3.1 Volterra equations of the first kind recastvas Volterra
equations of the second kind
1.3.2 Linear Abel equations of the first kind recast as Volterra
equations of the second kind
1.3.3 Other integral equations which may be recast as Volterra
equations
1.4 Relations betweeny[ntegral Equations and Ordinary Differential
Equations
1.5 Integro-differential Equations
1.5.1 As a member of the class of Volterra functional
differential equations
1.5.2 Relations with Volterra equations of the second kind
1.6 Variation of Constants formula
1.6.1 Voiterra integral equation of the second kind
1.6.2 The integro-differential equation
1.7 The Role of Laplace Transforms
~1.7.1 Integral equations of the second kind and of convolution type
1.7.2 Relations with the resolvent

1.7.3 Integral equations of the first kind and of convolution

type

et
o]

Background Material
1.8.1 Function spaces

1.8.2 Linear operators



1.9 Topics in the Theory of Volterra Equations

1.9.1 Existence and uniqueness

1.

1

9.

.9.

2

3

Continuation of solutions

Periodic solutions

Stability

Stability criteria in terms of the resolvent or
characteristics of the kernel

Convolution kernels re-visited

Asymptotic behaviour of solutions of integro-differential
equations

The linearization of Volterra integral equations



1.1 Preliminary Remarks.

In this Chapter we give some background material. Asterisked
sections are peripheral tdiour main theme.

One of the first evolutionary integral equations mentioned in
mathematical literature appears to be due to N.H. Abel who generalised
Christian Huygens; investigations of the isochronous pendulum. Abel
started from a problem in mechanics which was to determine, in a vertical
plane, the path along which a particle must be constrained to fall under
constant vertical acceleration so that its time of fall shall always

equal a prescribed function of the distance fallen. If the particle

falls, without friction, from a given height h to y < h, then from

2
energy considerations we have %m{g%] - mg(h - y) ‘and

ds
—— = /(2g)T(h
J CEED) /(2g)T(h)
where T(h) is the time taken to fall through the distance h.

Introducing the function wu(y) where -ds/dy = u(y) we obtain Abel's

equation

h
, u(y)dy _
Jo th =) /(2g)T(h).

Huygens, in 1673; discovered the isochrone and tautochrone properties of
the cycloid which were the solutions to his problem. Abel, by rather
different investigations, published his solution (see §l1.2 below) in 1826
in Crelle's Journal.

In 1896, V. Volterra (1860-1940), one of the founders of the modern
theory of integral equations, published his theory of Integral Equations
using their solution as a problem of finding the inverses of certain
integral operators; while in 1900 Ivor Fredholm made a contribution on
integral equations which had great impact on the foundation and

development of functional analysis.
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Abel equations occur frequently in the literature and are of'great
interest. For example, many are derived from problems in heat transfer
and are related to solutions of certain parabolic equations.
ﬂowever, it is in the last two decades that the theory of Volter;a
integral equations has developed extensively. This may be because such
equations are now seen to reéult from specific problems and are no longer
regarded as special cases of Fredholm equations. As an illustration of
the wealth of recent literature assessed in the study of Volterra
integral equations we may refer to Tsalyuk [51], who, in a survey

covering 1966-1976, reviewed 515 papers, none having an applied

character, and, furthermore, he restricted his investigation to include
only those which were reviewed in the Referativyni Zhurnal "Matematika".
Equally, the applications of Volterra integral equations are nuﬁerous and
varied in many areas of science. For example, the analysis of problems
of industrial replacement is similar to that in population analysis with
its related actuarial and genetic applications cf. Lotka [36],[371 and
Feller [25]. Furthermore, a recent monograph Brunner &
van der Houwen [12], provides a "state of the art" in the numerical
solution of sucﬁ equations.

Concerning integral equations in general, Lonseth [35] has provided
a useful survey of other applications of integral equations including
problems in geophysics, hereditary phenomena in physics and biology,
quantum mechanics, radiétion, automatic control systems and communication
theory. For further discussion of other sources and applications
particularly of Volterra equations we may reéer to Miller [41],
Noble [42], Saaty ([47], Tricomi [50], Hethcote et al [28], Feller {257,
Lotka [36], Diekman [22], Levin & Nohel [33], Davis [21], Bellman &
Cooke [7], Zemanian [57] and, most recently, Burton [13].

In the discussion which follows we shall describe an integral

equation as a functional equation which involves integrals of an unknown
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function f(x). For our purposes we assume that f(x)'is a real- or
complex-valued function of a single variable x; systems of equations
can be considered if we extend the notation to vector-valued functions.

1.2 Classification of Abel-type and Volterra Integral Equations

The "kernel™" H(X, y, v), to which we refer below, denotes a
prescribed function which is assumed for simplicity to be continuous for
6 { Yy {X+5§X+ 46 and Ivl <o for some § > 0, X ¢ o,
Furthermore, g(x) denotes a prescribed function on [-6, X + 68].

The classical Abel equation, referred to in the introductory

paragraph, is the equation

X
fy) -
Jo x =y W = 8, (0<a<1), (1.1)

where o is given, and which may be called ill-posed. Under appropriate

restrictions on g(x), it has the solution

(cf. (1.68)). The case «a = 0 is mentioned below.

1.2.1 Equations of the first kind.

Equation (1.1) may be generalised to produce a wide class of

'equations of Abel type'. The generalised Abel equation of the first

kind, in which the solution f(x) is sought, is of the form

X
JO H(?;pyl ;é?%l dy = g(x), (0<a<l, p=1 or 2, given). (1.2)

The linear case of equation (1.2),

JX K, MG g9 - oz (0<a<1, p=1 or 2, given), (1.3)
o P - ymya &= 8, ’ ’ T

where H(x, y, v) = K(x, y)v and K(x, y) is continuous at least for
O ¢y < x, is also of interest. We refer to Anderssen and de Hoog [2]
for further comments.

If, in equation (1.2), @ =0 and H(x, y, f) is a smooth kerne!l
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we obtain a genuine Volterra problem resulting in a Volterra equation of

the first kind

X
J H(x, y, f(y))dy = g(x), x ¢ [0, X], (1.4)
0 -

where X may be taken arbitrarily large. A basic example of (1.4) is

the equation

X
- J f(y)dy = g(x).
0

On differentiating, we obtain the solution f(x) = g'(x) provided g'(x)
exists and g(0) = 0. From (1.4) with x = 0 we see g(0) = 0.

Thus, we see that the equation only has a solution if g(x) has special
properties. This suggests that care must Be taken lest the problem in
solving (1.4) is 'improperly posed'.

1.2.2 Equations of the second kind.

The corresponding Abel and Volterra equations of the second kind,

are respectively,

X
f(x) - J Hgiﬁ Y,yggg)) dy = g(x),(0<a<1l, p=1 or 2, given)

0
(1.5)
and
X
f(x) - J H(x, y, f(y))dy = g(x), x € [0, X ] (1.6)
0

In many Volterra equations (1.6), when o = 0, it is found
that, provided the kernel is sufficiently smooth, the smoothness of the
solution f depends on the smoothness of g; It will be observed that
the Abel equations (1.2), (1.3) and (1.5) exhibit weak singularities in
the integrand. It is known that solutions of Abel equations frequently
demonstrate bad behaviour near x = 0 even when g(x) 1is smooth and

later we shall show that the solution f(x) of (1.5) ﬁay be expected

to have a weak singularity despite g(x) being well behaved.



Remark

Equations which arise from practical problems may have forms‘which
differ slightly from those above. For example, Volterra equations

of the second kind may be of the form
‘ b
f(x) - J H(x, y, £(y))dy = g(x), x e [a, X] (1.7)
a
which is not apparently of the form of (1.6). However, we may use
(1.6), without loss of generality, as we now illustrate. Using a linear
change of variables in (1.7) and taking p(x) = f(x + a) we obtain

a+x
p(x) - J H(x + a, y, f(y))dy = g(x + a)
a

X
that is, (%) - J H(x + a, y + a, o(y))dy = g(x + a), Ogx¢X'=X-a.

0
(1.8)
Equation (1.8), for the function ¢(x), has the form of equation (1.7)
with a = 0. Conversely, given ¢(x) as the solution of (1.8) we may
show-that f(x) = p(x - a) is the solution of (1.7). Thus, the constant
a in (1.7) is usually taken to be zero and in the following work we
shall take (1.6) to be our general non-linear Volterra integral equation

of the second kind.

1.2.3 Equations of Convolution Type.

Special subclasses of integral equations occur often. The kernel
H(x, y, f) 1is known as a convolution kernel if H(x, y, f) = h(x - y; )

and non-linear Volterra integral equations of convolution type of the

first and second kinds, are, respectively,

(X
h(x - y; f(y))dy = g(x) (1.9)
Jo
and
(X
f(x) - h(x - y; f(y))dy = g(x). (1.10)
Jo

Equations (1.4) and (1.6) in which H(x, y, f) = K(x, y)f, give rise to
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linear Volterra integral equations of the form

X
Jo K(x, y)f(y)dy =g(x) ' (1.11)

and

X
f(x) - J K(x, y)f(y)dy =g(x) (1.12)
0

where g(x) is termed the forcing function. (The term 'forcing function'
is not always reserved for linear equatjons only.) Thus, any equations

of the form

X
J k(x - y)f(y)dy =g(x) (1.13)
0
and
X
£(x) = J k(x - y)£(y)dy + g(x) (1.14)
0

are both linear and of convolution type of the first and second kind,

respectively.

In our discussion of applications of Volterra integral equations we
shall be particularly interested in (1.14) which gives rise to the
classic renewal equation. The forcing function g is always continuous
and the kernel k(x) 1is at least of class LI (and hopefully continuous)
on each finite sub-interval of [0,®). Frequently, k(x) is non-negative
or non-positive. Often g(x) > O and g(x) may even be monotone non-
decreasing - cf Bellman & Cooke [7], Lotka [36], Feller [25].

We shall also be concerned with a special type of non-linear

convolution equation in which the kernel H 1is such that

H(x, y, £)= k(x - ey, ) (1.15)
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1.3 Transformation of equations into new forms.

1.3.1 Volterra equations of first kind recast as equations of the second

kind.

In general, solution of first kind equations is more difficult
than solution of equations of the second kind. However, under certain
conditions Volterra equations of the first kind may be transformed into
equations of the second kind cf Baker [4], Tricomi [50]. We shall
illustrate by considering linear equations. Consider the linear Volterra
equation of the first kind

X
J K(x, y)f(y)dy = g(x) (1.16)
0
where K(x, y), g(x) are continuously differentiable. We seek a
continuous solution and require, therefore, that g(0) = O.
Given that Bg K(x, y) = Ky(x, y) is continuous for y ¢ x and

that g'(x) 1is continuous’, we obtain, on differentiating (1.16):

i

« .
K(x, x)f(x) + J Ky(x, y)f(y)dy = g'(x).
0

If K(x, x) # O, then

* ' (%)
f(X); + J K1 (Xs }’)f()’)dy = g— )
0

K(x, x)
where K,(x, y) = §%£§i§%l . Thus, we obtain a Volterra equation of

second kind.
If, on the other hand, ) K(x, y) = Ky(x, y) is continuous for
3y y &

y £ X, we may write

X

F(x) = J f(y)dy

0
whiéh is a Volterra equation of the first kind for f(x), with solution
f(x) = F'(x). A Volterra equation of the second kind may be derived for

F(x) from (1.16) by using integration by parts for the left-hand term



to obtain

X
K(x, x)F(x) - J Ky(x, YE(y)dy = g(x).
: 0

Provided K(x, x) # O this results in

X (x)
F(x) - J Ky (x, YIF(y)dy = B
| . ,

Ky(x, ¥)

where Kz(x, y) = m—)—

The function f(x) is then obtained by differentiating the solution F(x)
of this equation, Baker [4 , p.9].

1.3.2, Linear Abel equations of the first kind recast as Volterra

equations of the second kind.

Consider the linear Abel equation of the first kind

<
J KOO NEG) 4oy (1.17)

0 (X‘Y)
It may be shown that, provided K(x, x) and g(x) satisfy certain
conditions, equation (1.17) yields a Volterra equation of the second kind

X

£(x) + J K#(x, y)F(y)dy = g#(x)
0

where

s 1 -
(cf. (1.7.3)) and

N X
gﬂw=smf“%J 5(y) (x - y)@1dy,
0

cf. éaker [4].
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1.3.3. Other integral equations which may be recast as Voltera
1

equations or as systems of Volterra equations.

We have noted that equations of the first kind may sometimes be
transformed into equations of the second kind and .that this is well
known for equations of Volterra type, Tricomi [50]. Other integral

equations

© (%)
f(x) - J K(x, y)f(y)dy = g(x)

p0o(x)
and
¢1(X)
K(x, y)f(y)dy = g(x),
po(x)
where wi(x)' is continuous for i =0, 1 and K(x, y) is continuous for

P (x) €y ¢,(x), are sometimes similar to Volterra equations. In

special circumstances, they may be recast as Volterra equations or as

systems of Volterra equations. For example, consider the equation

X
f(x) - J K(x, y)f(y)dy = g(x) (-» < X < ®) (1..10)

=X

Suppose that o(x)= f(x) for x 3 0, o(x) 0 for x<O0

1

and Y(x) = f(-x) for x 3 0, Y(x)

0 for x< 0.

Then, for x ) 0,

X X
p(x) - J K(x, y)e(y)dy - J K(x, -y)¢¥(y)dy = g(x)
0 0

and

Y(x) + Jx K(-x, -y)¢(y)dy + JX K(=x, ¥)p(y)dy = g(-x).
0] 0
This is a system of coupled Volterra equations in which, if we determine
e(x) and yY(x), we may set f(x) = o(x), X » 0 and
f(x) = y(-x), x ¢ 0.

Thus the foregoing remarks in 881.3.1/2/3 illustrate that Volterra



equations of the second kind are significant in the analysis of classical
equations and justify the attention which we shall give later to equation
(1.6). The direct treatment of other types of equation discussed above

presents additional interesting problems.

1.4 Relations between integral equations and ordinarv differential

equations.

Many integral equations arise directly in the modelling of problems.
However, they can also be deduced from differential equations. In these
latter cases the integral equations are alternative formulations of
problems whose initial mathematical formulation led to differential
equations. Consider the initial value problem for a system of ordinary
differential equations.

f'(x) = F(x, T(x)), x » 0, £(0) = £, (1.20)

On integration, this yields

X
f(x) = J F(y, f(y))dy + £, (1.21)
O —~ —~ —~—

which is a vector-valued form of (1.6). (See e.g. Tricomi [50],
Miller [41], Corduneanu [18], Barucha-Reid [6].)

‘Having observed this relationship between integral equations and
ordinary differential equations we may mention here other significant
results; see also Burton [13].

It is readily seen that the non-linear Volterra equation, with

separable kernels, of the form

X N -
f(x) - J iZ X ()Y (y | f(y ))dy = g(x) (1.22)
o i=1

may be solved by writing

N
f(x) = g(x) + > aj(x)X5(x) (1.23)
i=1

resulting in the functions aj(x) satisfying an initial vaiue problem for

a system of ordinary differential equations, Baker [4]. There also



exists the possibility of a similar development for certain convolution
equations; Golberg [27]. Furthermore, we observe that the second kind

Volterra equation with polynomial convolution kernel
S -

k(x - y) = ZO Ag(x - y)S7 °° may be reduced to a system of
s= :

differential equations; Amini et al [1].

Indeed, large classes of Volterra equations may be reduced to linear
differential equations with constant coefficients, the asymptotic
stability of which can be completely determined by the Routh-Hurwitz
criteria. We shall return to this point later.

Another tool in (for example) the analysis of numerical methods for
second kind Volterra equations is the imbedding of the integral equation
in a differential equation containing a parameter; see Wolkenfelt,
van der Houwen & Baker [55]. The definition of the kernel function
H(x, y, f) of (1.6) is extended for y > x and we define

t
Y(t, x) = g(x) + JO H(x, y, f(y))dy, 0 ¢t <X, (1.24)
where f(x) satisfies the integral equation (1.6).

Ciearly,
£(x) = ¥(x, %),

so that we may write (1.24) .as

t

¢(f, X)= g(x) + J H(x, vy, ¥(y, y))dy. (1.25)

0
On differentiating (1.25) with respect to t we obtain the initial value

problem (Pouzet [46])

I

g; Y(t, x) = H(x, t, ¢y(t, t)), O t, x ¢X, (1.26)

¥ (0, X)

g(x).

This latter equation (1.26) may be regarded as a partial differential
equation although,in the study of numerical methods, it has proved to be
more convenient to treat it as an ordinary differential equation with x

as parameter and t the independent variable; see Wolkenfelt [53], [54];



Wolkenfelt, van der Houwen & Baker [55].

We have commented earlier that in many cases integral equations are
alternative formulations of problems which were initially modelled by
systems of differential equations. Here, we indicate briefly a problem
which may be formulated as a system of integral equations which, under
certain circumstances, may have an alternative formulation as a system of
ordinary differential equations. We refer to work of Hethcote & Tudor
[29] who investigated models for endemic infectious diseases (i.e.
diseases present for many years). They showed that those diseases for
which infection confers permanent immunity may be modelled by a system
of two non-linear Volterra integral equations of convolution type. For
the non-cyclic SIR model (susceptible, infectious, removed) with vital
dynamics (births and deaths) and immunization, the system reduces to a
system of ordinary differential equations near the equilibrium point and
to a system of delay-differential equations elsewhere. Thus, if one is
interested in the behaviour near equilibrium points, or in the
minimization necessary to cause the disease to die out, or in how the
equilibrium points change as the parameter values and immunization rates
change, then the ordinary differential equation models are sufficient.
The authors of [29] employ‘Voltgrra equation theory to deduce stability
results, and the paper illustrates, inter alia, the close relationship
between differential, delay-differential and integral equations.‘

1.5 Integro-Differential Equations

1.5.1 As a member of the class of Volterra functional differential
equations.
It is also our intention to consider an important type of Volterra
equation, namely the Volterra integro-differential equation
X
f'(x) = G(x, f(x), Jo H(x, y, f(y))dy), x » O (1.27a)

with prescribed initial condition
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£(0) = fp (1.27b)
Equations of this type have practical interest and arose, for example,
in the work of Levin & Nohel [33] on reactor dynamics and may be found
in predator-prey systems cf. Brauer [iO], Cushing [20].
Equation (1.27) is a member of a class of equations called
Volterra functional differential equations which have the form
f'(x) = G(x , f(C )) (1.28)
in which the value of G(x, f( )) = G(x, f), at a point depends on x
and f(t) for O ¢t ¢ x. This class also includes the delay-
differential equations and, indeed, equation (1.27) is sometimes
referred to as an infinite-delay equation since, in general, f'(x)
depends on all past‘values of f(x). Thus, a number of papers on delay-
differential equations which deal with the general equation (1.28) may
also apply to equation (1.27a).

1.5.2 Relations between Volterra equations of second kind and integro-

differential equations.

We may rewrite equation (1.27) to obtain the system

X
fi(x) = G(y, f,(y), f(y))dy + f,
“JO
, (1.29)
X
fo(x) = H(x, y, f,(y))dy
Jo

which is a coupled pair of integral equations. Using vector notation

o(x) = [£,(x), £,(x)]7 etc. we obtain the form

y )
o(x) = J d(x s p(s))ds + p(0) (1.30)
~ O — — o~

Thus, the integro-differential equation is written as a special case of
a Volterra equation of the second kind and, hence, techniques for the
numerical solution of Volterra integral equations may also be adapted

to treat the system (1.30). However, this may be a convenient



arrangment rather than a practical one as a wider range of techniques

may be obtained if each equation in (1.29) is treated separately.

On the other hand, just as differentiation of a Volterra equation
of the first kind can, under certain conditions, produce a Volterra
eqﬁation of the second_kind so differentiation of (1.6), assuming
that f, g, H satisfy appropriate conditions, results in a form of
(1.27). Thus, assuming the necessary conditions are satisfied, on

differentiating (1.6) we obtain
b
fr(x) - H(x, x, £(x)) -J Hy(x, y, f(y))dy = g'(x),
0
o
where HX(X: Y f(}’)) = a; H(xi Y f(}’))'
On re-arranging, this results in a form of (1.27) as follows:
X
frix) = g'(x) + H(x, x, f(x)) + J Hy(x, y, f(y))dy.
0

1.6 Variation of Constants Formula.

In the study of stability and asymptotic behaviour of solutions of
ordinary differential equations, use can be made of the variation-of-
constants formulae. The effect of perturbations in (1.6) and (1.27)
upon the solution f(x) is in theory obtainable by analysing variation-
of-constants formulae; see Brﬁnner {11]. However, the géneral
variation-of-constants theory for integral and integro-differential
equations is not simple except in the case of particular kernels.

1.6.1 The Volterra integral equation of the second kind.

Consider the linear case of the Volterra equation of the second
kind
X
f(x) - J K(x, y)f(y)dy = g(x). (1.31a)
0
We may define R(x, y) the resolvent kernel, associated with the

“kernel K(x, y), satisfying
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X

R(x, y) - J K(x, u)R(u, y)du = K(x, y) (1.31b)
y

and express the solution of (1.31a) in terms of g as
X

f(x) = g(x) + J R(x, u)g(u)du. (1.31c)
0

This is, in essence, the variation-of-constants formula. Brunner [11].

To verify (1.31lc) multiply (1.3la) on the left by R(x,u) and integrate

from O to x:

X X u . X
J R(x,u) f(u) du - [ R(x,u) J K (u,y) f(y) dydu = } R(x,u) g(u) du.
0 0 0 0
Thus
X X (X . X
J R(x,u) f(u) du - J J R(x,u) K(u,y) du f(y)dy = ]R(x,u)g(u)du.(l.32)
0 0y 0]
Miller [40, p200] shows that
X X
J R(x,u) K(u,y)du = J K(x,u) R(u,y) du
J y
and thus (1.31b) may be written
X .
R(x,y) - J R(x,u) K(u,y) du = K(x,y) (1.33)
Y
Hence (1.32), together with (1.33), yields
X X X
J R(x,u) f(u) du - J [R(x,y) - K(x,y)] f(y) dy = J R(x,u) g(u) du
0 0 0
Thus
X X
J K(x,y) f(y)dy = J R(x,u) g (u) du

0 0

and together with (1.31la) yields (1.31c). The above manipulation is

more transparent if we use operator notation (see §1.8.2).



"'18""

Further, the solution U(x,y) of the equation

. X
U(x, y) =1+ J K(x, z)U(z, y)dz (1.34)
Yy
is
X v
U(x, y) =1 + J R(x, z)dz. (1.35)
Yy
We could define R(x, y) by
R, ¥) = - 2 (x, y) (1.36)
oy

to show that the resolvent kernel R(x, y) 1is related to the function

U(x, y), which is known as the differential resolvent. Now, from

(1.31c) and (1.36) we have

X

f(x) = g(x) - J gg (x, z)g(z)dz.
0]

On integrating by parts this yields

X

f(x) = U(x, 0)g(0) +J U(x, y)g'(y)dy.  (1.37)
0

Hence, to solve the integral equation (1.31la), either the function
R(x, y) or U(x, y) would enable us to find f(x) wusing either
(1.31c) or (1.37) respectively.

In classical texts the resolyent kernel i; developed from the

. o .
Neumann series: R(x, y) = .Z KJ(x, y), where
j=1

X
Kj(x, y) = J K(x, Z)Kj‘1(x, y)dz. In the case when K(x, y) = k(x - y)
0



is of convolution type then R(x, Y) = r(x - y) 1is also of convolution

type. When the kernel is constant that is, K(x, y). = K, then

X
r(x - y) - J K r(u - y)du = K.
y

Here, the variable y occurs in the equation only as a parameter, if the

role of the parameter is supressed

r(x) - JX K r(u)du = K
0

where Cor(x - 0) = r(x).

This is equivalent to a linear differential equation and it follows that

r(xj = KeKX,  The above formulae for the resolvent R(x, y) are also

applicable to Abel equations of the second kind. They illustrate the'

important fact, alluded to in 1.2.2 that the solution of (1.5) may

be expected to have a weak form of singularity at x = O when g(x) is

well-behaved.

1:6.2 The integro-differential equation.

Brauer [9] has developed an analogous variation-of-constants theory
for the linear integro-differential equation
. ,
fr(x) = e(x)f(x) + [ K*(x, s)f(s)ds, x 3 0, f£(0) = f, (1.38)
0
which is equivalent to the integral equation of the form (1.31a) with
g(x) = f, and
X .
K(x, y) = c(y) + J K#(u, y)du (1.39)
y-
The equations, for the resolvent kernel R(x, y) and the differential
resolvent U(x, y), are, respectively,
X

gg(x, Y) = c(X)R(x, y) + J K#(x, wR(u, y)du + K¥(x, y), R(x,x) = c(x),
v



and

X

gg(X, Y) = c(x)U(x, y) + J K#(x, z)U(z, y)dz, U(x, x) = 1. (1.41)

Yy

Their solutions R(x, y) and U(X;y) are given by (1.31b) and (1.35).
Thus, the solution f(x) of (1.38) is given by
X

F(x) = f, + J R(x, y)f,dy = U(x, O)f, . (1.42)
0

Hence, to solve the given integro-differential equation we need to solve
(1.40) or (1.41) which may be worse than the given problem.

Turning to the non-linear systems of Volterra equations we find that
the resolvent kernel can also be used to write some of the systems in a
form which corresponds to the variation-of-constants formula for
ordinary differential equations.

Consider the non-linear system

X

f(x) = g(x) + J K(x, s)[f(s) + k(s, f(s))]ds (1.43)
) 0

where Kk(x, y) represents "small terms" or.terms of "higher order" in
x. If the solution f(x) 1is assumed to be known then (1.43) can be

written in the form

X
f(x) = G(x) + J K(x, s)f(s)ds (1.44)
0
where
X .
G(x) = g(x) + J K(x, s)k(s, f(s))ds. (1.45)
4 0 :

From these latter equations it can be shown that the solution f(x) of
(1.43) is given by
X
f(x) = F(x) + J R(x, s)k(s, f(s))ds (1.46)
0]

where F(x) is the solution of the linear integral equation (1.31a)



and R(x, y) 1is the resolvent kernel given by (1.31b). Now (1.46) is a
nonlinear equation for f whose solution can be investigated via the

natural iteration (say).
fn+1(x) = F(x) + Jg R(x,s) k(s,f,(s))ds (1.47)

1.7 The role of Laplace Transforms.

1.7.1 Integral equations of the second kind and of convolution type.

We return to a linear system of Volterra equations of convolution

type having the form

X
£(x)- J k(x - y)f(y)dy = g(x) (1.48)
0

and we find a role for Laplace transforms Doetsch [23], Watson [52].

The Laplace transform of f where f: [0, ©) > R is defined as

L(f) = F(x) = J e Xtf(t)dt. (1.49)
0]

We know that, under certain conditions,

L

X
J k(x - Y)f(Y)dY} = L(K)L(f). (1.50)
0 .

Hence, taking the Laplace transforms (assuming that they exist) of (1.48)
we have
L({f) - L(K)L(f) = L(g)

and

L

Comparing (1.48) and (1.51) we see that our integral equation with an
arbitrary convolution kernel k(x - y) has been transformed into the

problem of inverting a Laplace transform, that is, find f(x) such that

J XSG dx = F(s) = poirs . (1.52)
0



For this last equation, provided suitable conditions exist [52], we have

the inversion formula

27i .
o-iw

. 1 g+ic
f(x) = L7 [F(s)] = J eXSF(s)ds (1.53)

where o is greater than the real part of all the singularities of F(s)
(cf Watson [52], Doetsch [23]).

1.7.2 Relations with the Resolvent.

If the resolvent of (1.48) is r(x - y) then

£(x) = g(x) + JZ r(x - s)g(s)ds (1.54)
Hence, L(f) = L(g) + L(r)L(g) (1. 5%5)
Thus, from (1.51) and (1.55)
L) = - 1+ Ees - - P T T TR L
Hence
r(x) = L~ [i-ﬁﬁi%gj] (1.56)

1.7.3 Integral equations of first kind and of convolution type.

Consider the linear integral equation of the first kind and of

convolution type

X
J k(x - y)f(y)dy = g(x) (1.57)
0

The immediate application of the Laplace transformation yields

A (s)F(s) = G(s) (1.58)
that is, F(s) = %%%% (1.59)

However, [K(s)]~' cannot be a Laplace transform as [K(g)]7? — = as



s — o and, without conditions on g, there are no results analogous to
those of §1.7.1/2.

Sometimes, as illustrated in §1.3.1, the integral equation of
the first kind can be converted into one of the second kind which can
then be handled as in 1.7.1. Thus, if k(x) and g(x) are continuously
differentiable and k(O) # O, by differentiation of (1.57), we obtain an
integral equation of the second kind

X

k(O)f(x) + J k'(x - y)f(y)dy = g'(x).
0

If, further, k(0) = k'(0) = ...... = kN-1(0) = 0, KkI(0) # O then, by
differentiating (1.57) n + 1 times, we obtain
X
kN(O)F(x) + JO KOH (x - y)F(y)dy = g™ (x).
Again, this is an integral equation of the second kind.
However, this method fails if k(x) possesses no derivatives at
x = 0. For example, k(x) = x™®, 0 < a <1, is such a function. In

these cases, the following method may lead to the desired result:

In place of the function f(x) we consider the function

'

X
o(x) = J f(s)ds. (1.60)
0
Thus, L(p) = p(s) = = F(s)
and instead of (1.59) we find
B(s) - %Z% (1.61)

If 1/[sK(s)] 1is an L-transform then the inversion theorem will yield
o(x) and f(x) 1is found by differentiation of p(x).

As an example we may consider the Abel integral equation

X f(x) _ €0
JOW dy = g(x) (0<a<l) (1.62)
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which is of importance in many branches of physics. From the definition

of the gamma function

r'(r) = Jm x’~le=Xdx, Re » >0  (1.63)
0
we may show that
L(x~®) = ES%T;QQZ = K(s) provided o< 1l. (1.64)
Thus, from (1.61)
d(s) = Ffigéigjga . (1.65)

It is also well known that

X0 1

(o)

L=1(s™®) = provided o > O. (1.66)

—

Hence, for 0 < o < 1, the original function corresponding to &(s) is

1 X e
p(x) = F?&?FZT?&T JO ya lg(x - y)dy. (1.67)

. 1 _ sin ar
M)l (l - ) T

Since ! then

sin oar

ple
p(x) = ——— J ye~lg(x - y)dy (1.68)
0

w

If g(x) 1is differentiable and continuous for x = O, on

differentiating (1.68), we obtain (see §l.1)

. X
F(x) = p' () = = [g(O)x““ + J yO=1g! (x - y)dy}. (1.69)
0

~



*1.8 Background Material

We pause to introduce some background material which is relevant
our later discussions. A more rigorous treatment may be found in
Cheney [15], Smithies [48], Cochran [16], Mikhlin [38]. The

sophisticated reader may proceed directly to 81,9,

1.8.1 Function Spaces

Some of the ideas in functional analysis are valuable in the
theoretical and numerical solution of integral equations. Certain
basic ideas of such analysis are introduced here but a more advanced
treatment may be found, for example, in Collatz [17].

(a) Normed linear space

to

The set C[a, b] of complex-valued functions which are continuous

on [a, b] form a linear space if, when ¢ and ¢y are members of

C[a, b], then

(p1 + ¥2) (X) = 1(X) + po (%)

and (¢ p1)(X) = @ p1(x), « constant.

A norm of p(x) denoted Illp(x)Il is required to have the properties
(i) p(x)1l = 0 if and only if p(x) = 0,

(ii) floe (X)L = jal le(x)l,

(iii) H(py + 92) GO € N GO+ i (X1

Thus, a linear space with a defined norm is referred to as a normed
linear space. . .

Example 1.1

We illustrate the concepts above.

n 1
(a) RM: nxi = lixtp = o lXilp) P, p > 1.
1

p = 2 gives the Euclidean norm.

p = ©» gives the Maximum or Chebyshev norm Iixll, = maxixji.



b
(b) Real-valued functions on [a, b] such that j 1F(x) 1Pdx < «,

a
b 1/p
1 ¢ p ¢ with Holder norm Hpr = {J |f(x)|pdx} , Ifille = sup1f(x)1.
a
(b) Convergence
Consider a normed linear space, say C[a, b] with 1[.1I. When we
have a sequence of functions {pp(x)} (n =0, 1, ...) and

Hp(x) = on(x)ll > 0 as n > « we say that on(xX) converges in norm

to p(x). With the uniform norm Illp(x)ll, = sup Ip(x)! we speak of
ag¢x¢b
uniform convergence and if the norm is Il.11p where

1

b 2
p(x)1ly = {J |¢(x)12dx} , we speak of convergence in the mean. In
a

addition, we say that ¢,(x) converges relatively uniformly to

p(x) € [a, b] 1if there is some W(x) , = which is usually square-

integrable, such that

Hopn(x) - (XD € e ¥(x) for a ¢ x ¢ b, where 1lim en = 0.
-

(c) A metric defined on a function space

We obtain a metric d(ypj, p2) ona function space when d
satisfies the following properties:
(1) d(p1, ¢2) > 0; (i1) dlp1, p2) = 0 & p1(x) = po(x);
(iii) d(p1, v2) = d(pp ¢1y; (iv) d(p1, ¢3) < dlp1,p2) + d(pg,p3).
The natural (or induceq)metric' on a normed linear space is
d(p1, v2) = llp1(X) - po(x)il. When a metric d( , ) on a linear
space_satisfies (i)-(iv) we call the linear space a metric space.

(d) Cauchy sequence

A sequence {p,(x)) 1in a space is a fundamental or Cauchy

sequence if, given € > 0, there exists N(e¢) such that
d(en, ¢m) < €, for all n, m ) N(e).

If d{p, o) 2 0 as n - o, we say that ¢, (x) converges to (x).



(e) Completeness

A space is said to be complete if every fundamental sequence
converges to an element in the space. (A complete normed linear space
is a Banach space.)

Example 1.2 (Cheney [15]) We illustrate the preceding concept.

Define Hp(x)1t = sup tp(x)1
a¢xgb

The induced metric for the space C[a, b] of continuous functions

is d(e1, ¢2) = sup 1p1(X) - p2(X)1.
a{xg¢b

Then the space is complete and convergence with respect to the

induced metric is described as uniform convergence.

(f) Closed sets

Suppose that S 1is a subset of a normed linear space X with a
norm fi.1l. S € X 1is closed if every convergent sequence in S has
its limit in S.

(g) Compactness

A subset S of a metric space X is said to be compact in X

if every sequence of elements in S contains a subsequence which
converges (with respect to ;he givén metric) to an element of S. Thus,
if S is closed and compact in X it is compact in itself.
Example 1.3 We illustrate compactness

Consider S to be the set of functions (@(x)} which are’ continuous

and differentiable on [a, b] with lp(X)il, <1 and lip'(X)lle < 1. Then

-

S 1is compact in C[a, b], where the metric is that induced by 1l .

(h) Equi-continuity

A set of functions S defined in [a, b] 1is said to be

equi-continuous if, given & > 0, there exists a & = 6(¢) such

that for any xj, x9 € [a, b] satisfying 1Ix7 - xp1 < & we have

1f(x1) - f(x9)1 < e for all f(x) € S.



Example 1.4
S 1= {p(x) t lp' (Nl < 15 ¢ ¢ Cl[O, 1]} is equi-continuous in
Cc[0,1].

1.8.2 Linear Operators

X and Y are linear spaces and T 1is an operator such that

T:X->Y. T is called a linear operator if

1

T(pyp + p9) = Tp1 + Tpy, for all o1, oy € X

1

T(op) = oTp, for all ¢ € X, o ¢ R.
If X and Y are normed linear spaces, a linear operator T is
bounded if there is an M such that

HTpll € Mipll, for all ¢ e X,

If we call the least value of M the norm of T then

11T = sup u%g% .
peX
=0

Example 1.5

A bounded linear Qperator is continuous.
(Proof: T is bounded s ITp; - Tpoll < IITH lpy - @oll < & for all
¢1, v2, €X such that llp] - poll < l_l;—H )

An operator is continuous if it maps every convergent sequence into
a corresponding convergent sequence. A continuous operator which maps
a normed space Sj into a normed space Sy 1is said to be completely
continuous if the iﬁage of any completely bounded set B C‘Sl, is
compact in So. It is sufficient, by linearity of T, "to consider

the 'unit ball' B of elements with norm ¢ 1, B = {peX: gl 1).

Linear Integral Operators

Associated with a kernel K(x, y) and an interval of integration
[a, b] 1is a linear integral operator K which transforms a function

¢ 1into a new function ¢ where ¢ = Kp and y(x) is defined
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b

Y(x) = j K(x, y)ely)dy.

a
We assume that K(x, y) is at least piecewise continuous and hence
Y(x) exists if ¢@(x) is integrable: if the complex-valued K(x, y)-
is continuous on [a, b] then (Kp)(x) e C[a, b] when ¢o(x) Iis
continuous. Then the integral operator K 'maps' C[a, b] onto
itself and is linear as

K(ajpy + aopr) (x) = a3 (Kpp) (x) + ap(Kpo) (x), for o1, ap complex values.

Suppose K(x, y) =0 for y > x; then (taking a =0, b =X) the

linear equation

X
FG) - N [ K, »EWdy = g0 (0 ¢x <X (1.70)
0

may be represented as

(I - NKf = g. (1.71)
The determination of the resolvent, referred to in §1.6.1, may be
regafded as analogous to finding the inverse of a matrix. Thus, if

the solution of (1.70) is given by (see equation (1.31lc))
X
F(x). = g(x) + X [ R(x, wg(uwdu (1.72)
0

(R depends on A\); this may also be represented in operator notation as

f = (I + \R)g; R =Ry. (1.73)

Hence, (I - MK)(I + NR) = I and we see that the inverse operator

of I - NK 1is I 4+ ANR. Further, X # 0, R - K = NKR.

Thus R(x, z) - \ {: K(x, ¥y) R(y, z)dy = K(x, z) which corresponds
to (1.31b). Just as one does not normally compute the inverse of
a matrix to solve a system of linear equations, finding R(x, V)
for any given x «can be as diffécult or more difficult, than

finding f(x). However, knowledge of the qualitative behaviour of



R can give valuable insight.

The Arzela-Ascoli Theorem 1.1 (Courant & Hilbert [19])

This states tﬁat a necessary and sufficient condition that a set
of functions which are continuous on [a, b] should be compact on
ta, b] (with uniform norm) is that the set should be (i) uniformly
bounded and (ii) equi-continuous.

Example 1.6

The above theorem permits us to investigate whether or not an
integral operator is completely continuous on the space Cl[a, b].
Consider the operator K,

b

Kp(x) = f K(x, y)e(y)dy,
a

where lim f: IK(x',y)-K(x",y)1 dy - 0 as [x'-x"[>0 and

b
where sup J IK(x, y)1dy < « and Hp (¥l € 1. Write y(x) = Kp(x)
a¢x<b "a
and note that |Kil, < ® , so that K is a bounded linear operator.- Then

Y (Xl = HKp(X) e € 1Kl Np(X) 1l < Kl -
Thus {Y(x)} are uniformly bounded.

For equi-continuity consider §,¢ such that

‘ b | b
W) - ¥ = 1] KGxq, veWdy - [ Kixg, ye(y)dy!
a a
b .
< KGa, v - K, v ey idy
a
b
< J IK(x1, ¥) - K(xp, y)idy, given lip(xX)lle < 1,
a

< & when |Ix] - X9l < §.

by the uniform continuity of K(x,y) on [a,b]z.
This holds uniformly for every y under consideration, thus (y(x)} are

equi-continuous. Hence by the Arzela-Ascoli Theorem {¢(x)} are compact



on [a, b] and it follo&s that the integral operator K is completely
continuous on C[a, b}]. It is readily seen that when K(x,y)=0 for

y>x, and K(x,y) is continupus for aqy¢x¢b, the assumptions are satisfied
S0 a continuous Volterra kernel defines‘a compact operator on C[a,b].

Contraction Operators

Let (X, d) be a metric space and T: X - X. The operator T
is a contraction operator if there is an o € [0, 1) such that
¢, ¥ € X imply
d[T(p), T(W)] < o d(p, ¥).

Theorem 1.2 (Contraction Mapping Principle)

Let (X, d) be a complete metric space and T: X5 X a
continuous contraction operator. Then there is a unique ¢ ¢ X
with T(p) = p. Furthermore if ¢ ¢ X and if {¥n} 1is defined
inductively by ¥1 = T(y0) and yn4 = T(¥p) then yn = p, the
unique fixed point. That is, the equation T(p) = ¢ has one and
only one solution.

Proof

Let g € X and define a sequence {pny in X by

#1= Tlo)s wp = Tlp1) = T2(e0), ..., g = Tlppo1) = Th(p).

To see that {p,} is a Cauchy sequence, for m >n we have

d(en, ¢m) = d(TPpy, TMpp)

o d(Tn-1W01 Tm“lpo)

aN

Fay

o dleo, ppopn)

¢ a{dlpo, 1) + dlp1, ¢2) + ... + dlpp-n-1, Pmen))
¢ a{d(p, p1)+ad(py, p1) + ... + o P=ld(p), 1))
= ad(yq, ¢1){1 + o+ ... + am”“‘l}

1 - of-n
= ofd(po, p1) {———5-)-



Since « < 1, the right hand side approaches zero as n - ®. Hence

{¢ny 1is a Cauchy sequence and, because (X, d) is complete, it has

a limit ¢ ¢ X. T 1is continuous so

T(p) = T(lim ¢,) = lim T(pp) = lim @ = ¢
n- n-% N>

and ¢ is a fixed point.

To demonstrate uniqueness let T(p) = ¢ and T()

I

V.
Then d(p, ¥) = d(T(p), T(Y)) < @ d(p, ¥) and, as « < 1, d(p, ¥) =0
which implies that ¢ = y.

Various forms of fixed point theorem can be found in the literature.
For later purposes we shall use thé following (see Collatz ({17, p.3571])
which differs from the foregoing result in some details:

Theorem 1.3 (Schauder's fixed point theorem)

Let S be a closed bounded convex set in a Banach space
(X, 1) and let T be a completely continuous mapping of S
into itself. Then there exists at least one point ¢ € S such
that ¢ = T(p). [Proof: see Collétz [17].]

1.9 Topics in the Theory of Volterra Equations

In this section we consider, briefly, some of the questions
regarding the behaviour of solutions of Volterra equations. Problems
of particular interest concern questions of existence and uniqueness,
boundedness, behaviour of solutions as the independent variable
approaches infinity and existence of periodic solutions. The
qualitative theory for integral equations has been developed less than
the qualitative theory which exists for ordinary differential
equations. In consequence, many of the problems outlined above are

discussed in relation to integral equations which have special forms.

We shall frequently refer to a useful survey of problems in qualitative



behaviour of solutions of Volterra equations which is to be found in
Tsalyuk [511. There is also a useful survey due to Nohel [44] which,
although not exhaustive, deals with some equations which are of
considerable mathematical interest and which originate from
investigations in physics and engineering. More recently, Burton [13]
has attempted to develop a systematic treatment of the theory of
Volterra integral and integro-differential equétions so that whenever

possible it parallels the qualitative theory for ordinary differential

equations.

1.9.1 Existence and Uniqueness

In this section we shall indicate elementary proofs of the existence
and uniqueness of solutions of Volterra equations. We illustrate
by using both iterative and fixed point methods cf. Wouk [56],
Thielman [49]. Additionally, for the linear equation, we may refer for
example, to Cochran [16, pp.64 et seq.], Burton [13, pp.24-25]7.
However, before proceeding to the proof of the uniqueness of the
solution of certain Volterra equations we pause to introduce a resuit
which will facilitate the proof of the theorem.
LEMMA (Gronwall's Inequalify - cf. Burton [13, p.24])

Let f, g : [0, X] » [0, ) be continuous and let ¢ be a

non-negative number., If

00 Cot [ EWEWY, x ¢ [0,X]

then

£ <o exp(] gmay), x € [0,X].



X
Proof Suppose c¢ > 0. Divide the given relation by ¢ + J g(y)f(y)dy

and multiply by g(x) to obtain

f(x)g(x)

X
c+ [ gmfydy
O .

< g(x).

Integration from 0 to x yields

X ’ X
on{fec + JO g () dyl/e} < JO g(y)dy

X X
Hemce, f(x) ¢c+ [ gy < cexp [ gydy.
0 0

If ¢ =0, take the limit as ¢ - 0 through positive values.

Theorem 1.4

Consider the linear equation

X
CF(x) = g(x) + J K(x, y)f(y)dy, x € [0, X} (1.74)
0 v

in which g(x) and K(x, y) are continuous for 0 £y ¢ x ¢ X "and

L = max 1K(x, ¥1, M = max 1g(x)!, then there is one
Oy ¢x¢X O¢x¢X

and only one solution f(x) of (1.74) on [O, X].

Proof

The procedure involves a sequence of functions {fn(x)} on

[0, X] defined as Picard's successive approximations.

fo(x) = g(x)

x (1.75)
4100 = g0 + [ K(x, »f,(»dy, » 3 0.

0

From (1.75) we have, by induction,

X
15,4100 = £,601 = 1 [KG, »E,() - Kx, ¥)F,.1()]dyi
' 0



N

X

< jo K(x, 901 1£,(y) - £,_1(y)1dy

X
<L jo 1£,(y) - £,.1(y)1dy

MLV +1yr+1

oA
MLY+1xr+1

'—(—;:1)—!- , XG[O,X].

By comparison with the exponential series, we see that the f, form
a Cauchy sequence in the space of continuous functions on [0, X].
Thus, it follows from the Arzela-Ascoli Theorem that there exists a

uniformly convergent subsequence and hence a continuous limit function

F(x), say, which is a solution of (1.74).
To see that F(x) 1is the only solution, suppose that there are
two solutions, say Fj(x) and F9(x) on an interval [0, X].

From (1.74)

X o
F1(x) - Fa(x) = jo K(x, ¥){F1(y) - Fa(y)}dy

b%e
so that [Fj(x) - Fo(x)1I ¢ L I IF1(y) - Fo(y)idy.
0

This relation is of the form

X
G(x) ¢ ¢ + j L G(y)dy
0

with ¢ = 0. By Gronwall's inequality G(x) ¢ c elX = 0.

Hence Fj(x) = Fo(x).

Similar procedures to those presented above are applicable to
general non-linear Volterra equations, Tricomi [50, pp.42 et seq.],

Cochran [16, pp.68 et seq.], Nohel [43]. However, to illustrate the



fixed point method we use the Contraction Mapping Principle to
demonstrate the existence and uniqueness of the solution of certain
non~-linear Volterra equations; cf. Burton [13, pp.73-74].

Consider the general non-linear Volterra equation

X
F(x) = g(x) + [ H(x, y, £(y))dy. (1.76)
~ ~ O ~ —~

We recall from §1.5.2 that an integro-differential equation with
initial conditions can be put in the form (1.76). Our next theorem
is similar to that given by Kershaw in Baker and Phillips [30], see
also Saaty [47].

Theorem 1.5

Let a*, b* and L be positive numbers and take some fixed
o € (0, 1). Suppose
(i) g 1is continuous on [0, a*],
(ii) H 1is continuous on B = {(X, Yy, £) 1t 0 ¢y ¢ x ¢ X and
nf - gn ¢ b*}, |
(iii) H satisfies a Lipschitz condition with respect to

f on B such that

—~

WH(x, y, f1) - H(x, y, fo)u ¢ Lufy - fou

if (x, y, f1), (x, vy, f2) € B.
If M= sup IIH(x, vy, f)u then there is a solution of (1.76) on
- ¥
- minfa®, B, @
[0, X] where X = min[a™, R L].
Proof

. Let S 'be the set of continuous functions from [O, X] -» RO

with ¢ ¢ S if

~

W - glle = max [yY(x) - g(x)Il ¢ b*.
- = 0gx¢X ~ ~

S is a convex neighbourhood of g.



J

Define a completely continuous operator T on S by

Note that

Hence

T :

~

S > 8§,

To show that T

X
T (x) = g(x) + [ H(x, y, ¥(y))dy.
Y & o - Y

Y continuous implies T(yY) continuous and that

HT(Y) - gll = max NT(Y)(x) - g(x)Il
~ ~ 0¢x¢X ~ -
X
- max uj H(x, y, ¢¥(y))dyu
- 0¢x¢X -~ -
{ MX

b*.

Fal

as required by Schauder's fixed point theorem.

is a contraction mapping, take ¢ and ¢ € S. Then

X

HT(w) - T(YI)n = max nf H(x Y, w(y>dy - J H(x, y, ¢¥(y)dyu
0~ ~

Thus,

f €S

0¢x¢X

X

¢ max [ WHG Y, () - H(x, y, ¥ dy
O¢x¢X "0 ~ - - -

¢ max L J He(y) = ¥ (y)udy
O¢xg¢X

¢ X max Lip(x) - ¢(x)u
O¢x¢X -

= XLllp - Yl

< allp - Y.

by the contraction mapping principle there is a unique function

with



X
TE) ) = £6) = g(x) + JO H(x, y, f(y))dy.

1.9.2 Continuation of’So]utions

Theorem 1.5 gave us a local existence result for the general
non-linear Volterra equation. Here we investigate how large the
interval of existence can be made. We require the following

definition:

Definition 1.1

Let g : [0, ®) 5 (-», @) and for

o]
I

{5y, W) 10 ¢y ¢x<w, weR)

let H: B »(-»,0). Let f(x) be a continuous solution of the scalar
equation

X
F(x) = g(x) + [ H(x, y,1(y)dy (1.77)
0

on - [0, A] with the property that if u(x) is any other solution,
then as long as u(x) exists and x ¢ A we have u(x) ¢ f(x). Then
f(x) 1is called the maximal solution of (1.77).

Of the many useful results which can be proved about maximal
solutions, the following (see Burton [13, p.83]) are of particular
interest to us.

We observe that if g 1is continuous on [0, ») and H(X;J,V> (s
continuous for 0 ¢ y ¢ x<o and all v ¢ R it may be shown that
solutions of (1.77) that remain bounded are continuable to all of

[0, «); cf. Burton [13, p.80].

Theorem 1.6

Let the maximal solution f(x) of the scalar equation



~ X ~
£ = o+ jo H(y, T(y))dy

exist on [0, A], where c¢ is a constant and let H: [0, A] xR>R
A
be continuous and non-decreasing in f when 0 ¢ x ¢ A. If u(x)

is a continous scalar function on [0, A] satisfying

X
UG <ug + [y, wyddy,  ug < e
0

Then u(x) « }(x) on [0,A].

The following theorem requires Theorem 1.6 for its proof and
it is an extension of the classical result for ordinary differential
equations known as the Conti-Wintner theorem.

Theorem 1.7

Let g : [0, ) 3R and H: B> R" be continuous where

where B = (x, y, w:0¢y(x< ©; w ¢ R},  Suppose that for

each X > 0 there is a constant K(X) > 0 and a continuous function

w: [0, ») 5 [1, ) with o non-decreasing, and

ds

o]
MHEG Y Wil ¢ KGY@(IWile) if 0 ¢y ¢ x <X and | ot -
~ - 1

If f(x) 1is a solution of

X
Fx) = g(x) + [ H(x, y, £(y))dy
L 8 o :

on any interval [0, &) then it is bounded and hence is continuable
to [0, «). .
Proof (The proof may be féund in Burton [13, p.83]1.)

Because f(x) 1is defined on [0, @), take X = «. Then

X
HEGOlad g lest [ 1H(x, ¥, £(y)ile dy
. g oM :



X
<M+ K@ Qi (n)iie)dy
o :

where lIg(xX)llex, ¢ M on [0, «].

As o 1is monotone, Hf(x)ll, is bounded (Theorem 1.6) by the

maximal solution of
X
u(x) = M +J K(a)w(u(s))ds,
0
or equivalently of the initial value problem

u' = K(ax)w(u), u(0) = M.

On separating the variables this yields

u(x)
ds 7
= K(o)x
JM [w(s)]
As J ds__ o, u(x) exists and is finite; hence f(rx) 1is bounded.
M w(s)

Since o« is arbitrary, f(x) is bounded, hence continuable.

Nohel in [44] has also proved a theorem which is an extension of
fhe comparison technique for ordinary differential equations due to
Conti and Wintner, where, for simplicity of presentation, he takes
H(x, y, ) = k(x - y)o(y, f). For other applications of Nohel's
Theorem we may refer to [43] and in [44] other deeper results on
existence and boundedness are stated for some specific problems.

1.9.3 Periodic Solutions

Periodicity of solutions is a subject of interest which we shall
not pursue except to give a flavour,

One such problem arising from the theory of super fluidity and
developed by C.C. Lin is also discussed by Nohel [44]. The problem
has also been studied by Levinson [34] and illustrates some properties

of periodic solutions. Here, the heat equation, because of a



T =41
complicated boundary initial value problem, leads to the integral

equation

X
PG + g(x) = joli((—ff’;—g dr x50 (1.78)

where g is a giVen periodic function.

The following results are due to Levinson [34].
Theorem 1.8

Let g(x) be continuous on 0 ¢ x < » and satisfy a uniform
Hglder condition of exponent B > 0 on any finite interval. Let
$(y) be monotone increasing on - <y < o, ®(0) = 0; let &
satisfy a local Lipschitz condition. Then (1.78) ﬁossesses a unique

solution f(x) on (0, «).

Theorem 1.9
Let the hypothesis of Theorem 1.8 be satisfied and in addition
let g(x) have period « and let maxig(x)l = M. Suppose there

exists a positive monotone increasing function k(u) for u > 0

such that

d(y2) - ®(y1) » k(ys - y1)

for yy - y1 >0 and 1yyl, 1ypl ¢ 2M. Then there exists a
continuous periodic function p(x) of period w such that the

solution f(x) of (1.78) satisfies

lim (f(x) + g(x) -p(x)) = 0.

X300

Moreover 1f(x) + g(x)1 ¢ maxig(x)1.
This result establishes asymptotic periodicity.

1.9.4 Stability

Just as for differential equations we investigate different types



of stability for Volterra integral equations. Essentially, we study

the seﬁsitivity of f(x) to perturbatfons in the pfoblem (say in

g(x)) in particular as x - ©. For an introduction to this topic we

refer to Tsalyuk [51]. However, there is a proliferation of terminology
in the literature and the word 'stability' is used with varying
interpretations. Thus, we state here a series of fundamental
definitions. Furthermore, we confine our attention in this and
subsequent sections in the introduction to inherenl - stability

(as opposed to stability of a numerical scheme). Following the literature
we consider (abstract) Volterra equations of the second kind:

X

PG - [ KGx, Ly, £(0))dy = g(x), x 3 0 (1.79)
a

where f, g : [0, ©) » X, ((X, 1 1) may be a Banach Space, but we are

concerned with the choices X =R or X =RN) and
K: [0, @2 x {feX:ufi<r)->X and K(x, y, f) = 0 for y > x.

We shall assume K(x, y, 0) = 0, and frequently take g(x) =0,
to consider small non-zero perturbations in this g. In the
definitions which follow let My and Np be some subsets of the
normed spaces of mappings of [0, ») into X. (Most frequently,

in the literature,

Mp = BC([0, «) » R?) = {f = f e C({0, ») > R : ufy = sup HE(x) 1<}
O {x<e0

-

and Np 1is a linear sub-space of C([0, ») » RD).)



Definition 1.2

The trivial solution (for g = 0) of (1.79) is said to be stable
for a given a ¢ [0, ) if

(i) there exists 6p > 0 such that for any g e Np, ligh < &g
(1.79) has a solution f ¢ Mo

(ii) for any € > 0 there exists &(e, a) > O such that
g ¢ No, lgll < & 3 nfu < e.

The trivial solution of (1.79) is said to be uniformly stable relative

to the parameter in (Np, Mg) if in condition (ii) & can be chosen
independently of the ﬁarameter. In particular, the lower limit a is
such a parameter.

Definition 1.3

Assume that Py © Ny is a subset of some normed space. The

trivial solution of (1.79) is said to be asymptotically stable in

(Ng, Mg, Pg) if it is stable in (Np, Mp) and there exists 61 > 0

such that g ¢ Py, HgHPO < 81 3 %1§wf(x) =0,

Depending on the choice of Ny and Py, various forms of
uniform stability are possible. Assume, for example, that
Pop = Cy ([0, ©) > RM) = (f ¢ BC : lim f(x) = 0}.

X500
Definition 1.4

The trivial solution of (1.79) is uniformly asymptotically

stable in (BC, BC,VC05 if it is stable in (BC, BC) and if for
some 69 >0 for any € >0 and T » a there exists &(e, T)
and Tj(e, T) such that for any g e Cp, satisfying HgHCO < &g,
Ng(x)t < & for x 3 T, the solution of (1.79) satisfies the
inequality nf(x)il < e for x ) Tq.

For references to other types of stability which have been

studied see Tsalyuk [51]. We give here one further definition, that

of strong stability, in the sense of Bownds and Cushing [8].



Definition 1.5

The trivial solution of (1.79) is called strongly stable on
Pg © C([0, ©) » RM) if for any € >0 and a e [0, ©) there
exists 6(e) > 0 such that from g ¢ Po and nf(xy)n ¢ & for

some x1 » O there follows f(x)y ¢ ¢ for all x > 0.

1.9.5 Stability criteria in terms of the resolvent or characteristics

of the kernel

We here consider the linear equation
X
f@)=%K@,wﬂwW+g&) (1.80)
which we have already observed in (1.71) may be represented in
operator theory as ‘
(I - K)f = g.
It follows that (i) (1.80) is stable in (Ng, Mp) if and only if the
operator (I - l()"1 acts from Ny into Mg and is continuous and
(ii) (1.80) is asymptotically stable in (Ng, Mg, Pg) if (I - K)-1
acts continuously from Npy into Mp and also (I - K)‘lPO is contained
in the set of functions which tend to zero for x - o.
We examine first the stability criteria which may be expressed
in terms of the resolvent. For convenience, we recall that for
g ¢ C([0, ») > RM) the solution for f ¢ C([0, ©) - RM) and that
the Rernel K admits a resolvent R(x, y) and a differential
resolvent U(x, y) (see §1.6.1) such that for the solutions of

(1.80) we have

F(x) = g(x) + J: R(x, u)g(u)du (1.81)
and

P(x) = U(x, 0)g(0) + j: UGx, Y8 ()dy (1.82)
where U(x, y) =1 + jx R(x, z)dz.

y



To illustrate the sensitivity of f(x) to perturbations let us
suppose, for example, that in (1.80) K(x, Y) >M>0 for 0¢ygx
and that g(x) is perturbed to a function g(x) + 8g(x) and that the

corresponding solution changes from f(x) to f(x) + 8f(x) where

: X
6£(x) = [ K(x, y) sf(y)dy + sg(x). (1.83)
0

Then

X
5(x) = og(x) + [ R(x, u) sg(u)du (1.84)
0

where R(x, y) is the resolvent given in (1.81) and which is also

5. kIex, v, KiGog)=Kboy)

I

developed from the Neumann Series R(x, y)

. X . j=1
where KJ(X, y) = J K(x, z)KJ 1(z, y)dz. It may be shown, by
0
induction, that
P p-1
p M(x - ¥)

and hence that R(x, y) » MeM(X_y).

Hence, from (1.84)

X
o£(x) > og() + M [ MOV p(yyay
0

when 6g(x) > 0. Thus &f(x) has a possibly increasing component
behaving like MeMX JX e_Myég(y)dy and (1.80) is susceptible to
ill-conditioning. °

One may express stability criteria in terms of the resolvent or
in terms of criteria related to the characteristics of the kernel
itself. Here, we list briefly two statements on stability thch are
true in terms of the resolvent; for others we refer to Tsalyuk [51].

1. Equation (1.80) is stable in (BC, BC) if and only if

X

sup [ IR(x, y)udy < o (1.85)
x30 "0



2. Equation (1.80) is stable (or uniformly stable relative to a) in

(R1, BC) if and only if

sup 1IU(x, O] < »
x>0

3

(or sup NU(x, y)H < ). (1.86)
X1y>O : )

We deduce that if the equation

X
£ = [ IK(x, y)If(y)dy + g(x), (1.87)
0 ~ ~

when |K(x, y)I 1is a matrix with elements lKij(X, y)t, is stable

in (BC, BC) then so also is (1.80).

For kernels K(x, y)»0 the following statements concerning stability

may be made. These are examples of many others which may be found by

reference to Tsalyuk [51].

1. For the stability of (1.80) in (BC, BC) it is necessary and

sufficient that

X
SUPJ HK(x, y)ldy < =

x30 0
and that for some » the spectrum of the matrix
X, X
A, = lim 1lim sup J K (x, y)dy = 1lim sup I K (x, y)dy
X0 X0 X Xom x3X "X

where K?(x, y) is the p-th iterated kernel, should lie in the

unit circle.

2. If equation (1.80) is stable in (BC, BC) then for any »

the spectrum of the matrix

t

v 4

B, = lim lim inf [ K'(x, y)dy
Tt T

lies in the unit circle.

1.9.6 Convolution kernels revisited

Of special interest are the equations in which the kernel is



convolution where the resolvent R(x, y) = r(x - y) and the stability

of

X
PG = [ kGx - y)p(f(y))dy —g(0) (1.88)
0

in (BC, BC) is equivalent to the requirement

0

j e (y)ndy < o. (1.89)
0

Equation (1.88) has been studied under various assumptions on k(x),
g(x) and (x). The particular case where k(x) and g(x) are
non-negative functions and ¢(x) = x gives rise to the renewal
equation which has attracted interest in many areas. We refer to
the account of Bellman and Cooke [7], for example, for a review
of 41 problems of historical interest related to the renewal equation.
The existence of a solution f(x) of

X

FG) - | kGx - y)E(y)dy = g(x) (1.90)
0 ,

and of its stability can be deduced from a well known result of Paley

and Wiener and its association with transform theory.

Theorem 1.10 (Paley and Wiener [45])

oo}
If, in equation (1.90), J Ik(t)1dt < », then a necessary and
0
sufficient condition in order that (1.89) is satisfied is that
(o]
L(k)(z) # 1 for Re z ) 0 where L(k)(z) = j k(t) e_tht.
0

The relationship with stability follows from (1.31c):

X
F(x) = g(x) + [ r(x - wg(u)du
0

and the observation that

(o)
sup 1f(x)1 ¢ sup 1g{x)| {1 +J lr(u)ldu}.
x>0 x30 0



—48—

Thus supif(x)1 is finite when suplg(x)1l is finite 3f¢en fhnk’aU‘fh&
conditions of the Paley-Wiener theorem are satisfied.

The classical paper by Feller [25] in 1941 attempted to resolve
some of the controversies and conjectures at that time and to
correct some of the previously announced results. Feller did not use
the result of Paley and Wiener as he argued that this result was too
deep for the properties of k(x) and g(x) which concerned him.
Feller's main objective was not to study the behaviour of f(x) as
X 2> @ but to study the asymptotic behaviour of the mean value
f*(x) = % J: f(x)dx. This was because, whilst it was generally
supposed that f(x) behaved like an exponential function or that
it approached in an oscillating manner a finite limit q (the latter

[ee]
case should arise if J k(y)dy = 1), it was possible to construct
0

specific examples in which f(x) did not behave in this manner .
Feller dealt with two particular applications of (1.88). The first
in the theory of ind;strial replaceﬁent, formulated by Lotka, where
it is assumed that each individual dropping out is immediatély
replaced by a new member of zero age. Here jw k(y)dy = 1 where
k(y) represents a density of probability. Thg second formulation
is one in which f(x) measu}es the rate of female birth at time
x > 0. That is, if k(x) represents the reproduction rate at age
X then the average number of females born during (x, x+éx) from
a female of age x is k(x)déx + 0(éx). If 7x(y) stands for the
age distribution of the parent populatioéyat "x =0 then

X

g() = [ n(Mkx - y)dy

0

measures the rate of production of females at time x by members

of the parent population. Then if f(x) measures the rate of femzle

birth at x > 0 we arrive at the following:

¥ ﬁ:e_ /)qﬂe,n” /90/)(!/0—1"517 L’om,-r';Se,s +hese mothers LJOI“H be fore I'=o)
that lk/ X -y <o



X
F(x) = g(x) + jo f(x - y)k(y)dy (1.91)

This time k is not a probability density function and
J k(y)dy = 1 is a non-negative number measuring the tendency of
0 <
the population to increase or decrease.
We state without proof two of the results of Feller on asymptotic

properties of (1.91).

Theorem 1.11

[ee]
Assume k(x) > 0, g(x) > 0 and suppose that j k(y)dy = a,
0

0

j g(y)dy = b where a and b are finite.

0 X

(i) In order that f*(x) = i J f(y)dy » C as x - o, where C
0

is a positive constant, it is necessary and sufficient that a = 1
[oo}

and that J vk(y)dy = m, a finite number. In this case C = b/m.
0

(o]
(ii) If a <1, then J f(x)dx = T ? S -
0

(o]

Next we deal with the important special case when J k(y)dy = 1.

Theorem 1.12

[0}

Let J k(y)dy = 1, I g(y)dy = b < w. Suppose there is an
0 0 o

integer n ) 2 such that my = J xkk(x)dy, (k =1, 2, ..., n),
0
are finite and that the functions k(x), =xk(x), ..., xn~2k(x) are

of bounded total variation over (0, «). Suppose also that

2 2 7
Tim x"%g(x) = 0 and lim x™~ I g(s)ds = 0.
X0 X0 X
Then 1im f(x)=2- and lim x" 2[f(x) - 2] = 0.
my oy mp
X0 X' cO

1.9.7 Asymptotic behaviour of solutions of integro-differential

equat ions
In his review, because of the length restriction on his survey,
Tsalyuk [51] does not refer to papers on Volterra integro-differential

equations. The equation

X
Fre0 = [ alx - pefNdy (0 ¢ x < @) (1.92)
0

¥ The ;nJejra,/ on +he mﬁkl’ hand side of (/,9/) refeprs I Lirths ..,[’pom
MO‘flaey-; bown Q{Jo.r x=o, %d—fs, X-y >0,



may, of course, be converted into the Volterra integral equation
(1.88) by integration in which k-y) = {: a(u-9dv and g(x) = £(0).
However, integro-differential equations of the form (1.92) are
frequently best studied directly rafher than as conversions to the
form (1.88). The equation (1.92) arises in nuclear reactor dynamics
under hypotheses:

(1) at) eclo, », D% 0  (O<x<w s-0 1,2
(i1)  @(x) € C(-@, @), xp(x) > 0 (x # 0)

and has been studied extensively, particularly by Levin and Nohel.
In earlier work they studied the asymptotic behaviour of (1.92)

in the case when ¢(x) = x. Their situation was different from that
considered by Feller as the functions corresponding to k(x) and
g(x) in (1.90) were not integrable over (0, ®) nor were they
non-negative. In fact, to investigate asymptotic properties, Levin
and Nohel used a Tauberian theorem for Laplace transforms. However,
such methods dq not lend themselves to non-linear problems. Lévin
and Nohel have also studied (1.92) in the non-linear case; in the

reactor problem ¢(x) = e® - 1. Levin [31] has established the

following result.

Theorem 1,13

Let (i) and (ii) be satisfied. Then given any fg there exists

a solution f = u(x), u(0) = fg on 0 ¢ x < . Moreover there
exists a constant K = K(fo) such that
(3 i _q - )
lu (x)1 ¢ K (J=0,1, 2;, 0¢x<w).

If also a(x) £ ag then

1im o9 =0 (j=0,1, 2.
X500

Nohel [44] comments that, in the case p(x) = eX - 1, o(x)
¢ ,

satisfies (ii), a(x) not only satisfies (i) but also satisfies

3),



(-1)5%2¢5? (50 50 (0 < x <'m, s=0,1, ...)

i.e. a(x) 1is completely monotonic on [0, =),

We note that when the linearity assumption p(x) = x 1is dropped
then Levin [32] has obtained a non-linear generalization of the
Paley-Wiener Theorem. Another non-linear generalization of the same
theorem due to Miller [40] will be referred to in the following
section.

Many other problems which lead to integro-differential equations
may be found in Nohel [44] where an extensive bibliography is
provided.

1.9.8 The Linearization of Volterra Integral Equations

A further gap in the theory of Volterra integral equations has
been investigated by Miller [40] who has developed a theory of
linearization of Volterra integral equations which is an analogue
of a theory of asymptotic stability of differential equations.

For the non-linear differential equation

y' =Cy + 0Cyn (1.93)
it is well known that the asymptotic stability of the linear
system x' = Cx 1implies the local asymptotic stability of the
trivial solution of (1.93). Now, we consider the system of

equations

X
F(x) = g(x) + [ alx=y)p(f(y))dy x 3 0 (1.94)
0
where- f, g, ¢ are n-vectors, a(x)A is an n'Xn matrix and
p(0) = 0. If g 1is "small" this system is often replaced by the

more easily analysed linear system

X

y(x) = g(x) + j a(x - s)Jy(s)ds (1.55)
0



where J is the Jacobian matrix ¢'(0) = (a¢i(0)/afj).

NoHel [44] drew attention to a gap in the theory of Volterra
integral equations indicating that, except in the case when solutions
of (1.95) decay exponentially, it had not been possible to show that
solutions of the linear system (1.95) approximate those of (1.94).
(Nohel observes that certain problems in reactor dynamics give rise
to the situation where solutions need not decay exponentially.)

Miller [40] has produced such a theory of linearization of (1.94) under
Os""j Theopem | of [34],

very general assumptions on a(x), J.[khe method produced consists of
replacing the local non-linear problem (1.94) by the linear equation
(1.95) and using the linear equation for its resolvent. These
latter equations may be studied, for example, by transform techniques.
For (1.94), the following assumptions are made:
(i) a € L'(0, x) for each x > 0; (ii) g(x) e C[O, ) ;
(ii1) (x) € C'(RM), ©(0) = 0; (iv) the Jacobian matrix J is
non-singular; (v) Ir(x)1 ¢ L'(0, «) for all x > 0, wheré r(x)
is the resolvent kernel of

X

y(x) = g(x) + J a(x - s)y(s)ds (1.95")
O .

Miller has derived the following general stability results:

Theorem 1.14

Given that assumptions (i)-(v) are satisfied there exists eg >0
and €] > 0 such that when the solution y(x) of (1.95') satisfies
|Dﬁlb< €g the solution f(x) of (1.94) exists for all x » 0 and

f < ep. (W@ e 6clo s lIklly = sup {10l 0 o<} ).

Theorem 1.15

Given that assumptions (i)-(v) hold and €), €] are given by
Theorem 1.14 above then if Hy 1,< eg and y(x) - 0 as x - o

then f(x) » 0 as x - o,



With the additional assumption that a e L'(0, @), Miller [40]
has produced the following non-linear generalization of the Paley-

Wiener Theorem to which we have previously referred.

Theorem 1.16

@

Suppose that (i)-(iv) hold; det(I -J exp(-st)a(t)dt) # O
0 0 €
for Re s » 0 and €9 1 eg(l + J ir(s)ids) ¢ 71 where €7 is
0

the constant given in Theorem 1.14. If ligllp < €9 and g(t) » 0
as t > 0 then f(x) - 0.

In-subsequent sections in {40}, Miller studies applications of
the thebry to integro-differential equations and, in particular,
to the reactor problem. However, the final theorem of [40] is
neither stronger nor weaker than the results of Levin and Nohel

in [33] although it produces a result which is local while the

results of [33] are global.
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CHAPTER 2

2.1, Preliminary Remarks

In this chapter we study methods for the numerical solution of linear
and non-linear Volterra equations of the second kind and linear Volterra
equations of the first kind. The first half of the chapter is largely
devoted to a description of numerical methods, with examples; whilst the
remainder of the chapter consists of a theoretical investigation of such
methods. The techniques for Volterra equations may be divided, roughly,
into quadrature methods, classical Runge-Kutta methods and modifications
of these. The ("Pouzet")-Runge-Kutta methods thémselves may be varied
as an extension of quadrature methods, as one-step methods which are
modifications of their counterparts in ordinary differential equations
and as extensions of piecewise-polynomial collocation methods.

2.2 Quadrature Methods

First, we consider numerical methods for Volterra equations of the

second kind:
X
£00 - [ HGGY,F()ay = g0, x> 0 (2.1)

where g and H are prescribed and satisfy convenient smoothness
assumptions; we seek f. Associated with the methods is a discretization
parameter h,

All methods considered are convergent as h » 0 under a general set
of conditions on H(x,y,v) and g(x) but itﬂis known that not all
methods are suitable in pra;tice.

Various methods for the numerical solution of (2.1) upon a "mesh"
{;i} may be derived by setting x = ;i in (2.1) and discretizing. Thus,
if for convenience, we choose a fixed step length h > 0 and set

x =7y =1h in (2.1) we obtain



ih
E(ih) - [ 7 HGih,y, £(y)dy = g(ih) (2.2)

We define a set of quadrature rules

ih i
Q : Jo o(ih,y)dy = h Zy @ik e(ihkh) (>0, i-1,2,3,...)
(2.3)

We set wjp =0, k> 1i. On applying the rules Q to equation (2.2),
we set ¢(ih,y) = H(ih,y,f(y)). The resulting equations yield a
quadrature method for (2.1).

Definition 2.1

A quadrature method for (2.1) defined by the rules (2.3) consists

of determining values T ", i =1,2,3,... such that
~ i ~
f;i - h REO wjg H(ih,kh,fy) = g(ih), i =1,2,3,... (2.4)
where fg 1 = £(0) = g(0).
The equations (2.4) may be solved for i = 1,2,3,... in turn to yield
the approximate values ?i = f(ih), i =1,2,3,... . For each i there

is a non-linear equation in ?i to be solved by an iterative technique.
(The equations are linear if H 1is linear in f or if wij = 0.) We

may take, as the iterative technique, the method

F()(ih) - h wiy H(ih,ih,FO-1)(inh)) = gi (2.5)

where
N i-=1 - ’
gi = g(ih) + h kZO Wik H(ih,kh,f(kh)) and

?(O)(ih) is predicted by the use of a formula similar to (2.4) in which
the weights w§g> (say) are chosen with w%?) = 0. It is computationally
efficient in the computation of terms like gi. if wﬁ?) = 0fj for

j= 0,1,....“;7K(i), where k(i) is close to i. Iteration (2.5) converges

for h sufficiently small provided H(x,x,v) satisfies a Lipschitz



L

condition in v, uniformly for 0 ¢ x ¢ X. The method (2.4) is called a

(step-by-step) direct quadrature method. A rigorous discussion of such

methods including their properties and convergence behaviour may be

found in Baker [2].
Rules Q may be chosen in a number of ways:

Example 2.1 (Nevanlinna [28]).

"Nevanlinna" rules are described as follows:

Wik 1-90, 1, 1, 1, 1, 0

1-6 9

1-6 1 0

1-0 1 1 0

1-0 1 1 1 0

1-6 1 1 1 1 9

where k runs across the columns from k = 0 and i runs down the rows from
i=1.

The repeated trapezium rule is given by 6 = 4; the (explicit) Euler rule
and the (implicit) backward Euler rule corfespond to 06 =0 and 6 =1
respectively. Partitioning lines have a significance discussed later.
Example 2.2 ("Cregory" rules) .

Details of these may be found in Baker [2]. We illustrate with two

examples.
=0 1 2 3 4 ... i-4 i-3 i-2 i-1 i
5 13 13 5
(a) (x)ik Ti- TQ‘ 1 1 1 ..... 1 1 1 '-1'2‘ T“

(i > 2) with a special case if i = 2.



23 23 7 3
% 1 1..... 1 1 % T 3

ool W
[ RN

(b)  wjx

(i > 4) with a special case if i = 3.

In practice, the Gregory rules cannot be used until i is sufficiently
large and, thus, there is a need for a 'starting procedure'.

(a) Consider the Gregory scheme of order 3, supplemented by

w]p = w11 = %, then the array of weights has the appearance:

l
M
I
N
I
M

)—JIU'I
N

= =
Nof w
[ L
Nof L
l-'lU'\
N

5013, |1 s
12 12 12 12
%%1111%%

(b) With the second scheme, supplemented by wig = wy] = % and

wop = W99 = % , Wy = g , the array of weights has the appearance



0
1 1

2 2

1 4 1

3 3 3

3.9 9 3

8 8 8 8

3.7 1|7 3

8 6 12 6 8

3007 023 |23 7 3

8 6 24 2L 6 8

3 7 23 |, 23 7 3

8 6 24 2L, 6 8

3 723 1 1 23 7 3
8 6 24 2. 6 8

Example 2.3 ('Kobayasi' rules [22])
These are based upon the repetition of a basic rule. (Baker [(21).

Again, we illustrate with two examples:

(a) Simpson's rule (repeated) with the trapezium rule as an 'end'

rule where necessary:

For 1 > 1 we have two cases, i = 2j (even), i = 2j+1 (odd):

k=0 1 2 2j-1 2] 2j+1
| 1 4 2 b 1 (even)
“2j,k 3 3 3 3 3
1 4 2 4 11 1
“2j+l,k 3 303 3 (343 7 (odd).

(b) Simpson's rule (repeated) with the trapezium rule as a 'starting'
p P p

rule where necessary

For 1 » 1 we have two cases, i = 2j (even), i = 2j+1 (odd).

k=0 1 2 2j-1 2j 2 j+1
Wy 1 é g l_{' 1 (even)
2j,k 3 3 3 3 3
1 11 4 2 4 1
91,k 3 Gty 3 3 3 3 (0dd).



are used to supplement either of the

3

@10 = 911

When the weights

above, the arrays of weights have the appearance:

— 1IN
N
— N
— 1N +
— I
N
—IN - i < tn
N\
— N
— len + NI N Ien
— lon
g
N IS S Tap} SN - G <l
N
— N
i N + NI NI NI NI
— N
N~
QO mIN Fien  Fen I (3] < 1 < In ISl [ae)
O i L G2 T 3] i N — 1N — lon — I
N
3]
N~

(b)

— ™M
— N <t ion
—ln - g NI
— ™M < 1en NN < len
i - gin NI - Fln NI
— i < N NIi™M g 1N N IM < 1N

~ ~ ~
—ln - ~n - ™™ M

— N < 1l + RS i lea} + LIRS i [ea] +
~IN - —~I~N - — N

~ ~ ~
— N LR (321 i IN — N —IN — N — N




Other variations may be made by composing rules from the repeated mid-
point rule, trapezium rule,‘Simpson's or g rules; Baker & Keech [3].
Propérties of quadrature methods which are derived by discretizing,
using the quadrature rules Q (2;3), derive from the structure of the
weights wjr. It has been noted elsewhere (Baker, Makroglou & Short [4]),
that the infinite array of weights {wjk), from the rules Q which have

been constructed above, have the feature that {wjx) is lower triangular

and can be partitioned as follows:

wl
Wp
Wo1 Wp
T (2.6)
Wo -... ¥ i, Wo
Wo Wo WO Wq W2 Wp

where the weights of a set of starting formulae are represented

by the elements of Wl; Wo, Wq,..., WP are each of a fixed order

~ ~ ~

q, say, and Wp is lower triangular. Typically (apart from initial

rows) the rows of T repeat in blocks, in the cases illustrated.

For the Gregory rulgs illustrated in Example 2.2 the value of q is 1,
but otherwise this array gives a typical example of (2.6).

Example 2.4

The 'Kobayasi' weights of Example 2.3(a), corresponding to the

repeated Simpson's rule and the trapezium rule, are such that, in the

array, P =1, q = 2, wl = [O O] , Wo = [2/3 4/3] )

5o 2/3 473
W
1/3 07, . _ [1/3 4/3 - |w
V1= [5/6 NERE [1/3 ) T



We may also consider numerical methods for the Volterra equation

of the first kind

J‘Z H(X,y,f(y))dy = g(X), 0 £ X < X (2.7)

Use of the rules Q produces a system of equations
i -
h kZO wix H(ih,kh,fy) = g(ih), 1i=1,2,3,...,N; Nh = x (2.8)

We have indicated, previously, that the Volterra equation of the first
kind (2.7) may be ill-posed and that, in consequence, difficulties may
be expected when solving such equations numerically. Thus, quadrature
rules Q, defined in (2.3) which yield convergent methods for second
kind equations may not generate convergent quadrature methods for first
kind equations. We observe that the system of equations (2.8) is
~different in character from the system (2.4). In general, if wig # 0,
we require, in addition to (2.8) an equation determining f(O).Oerwkgff
L;s#0(i = 1,2,..., N) then (2.8) is a system of N equations in (N+1)
unknowns and cannot be solved. It is also possible to produce a
numerical scheme, by an appropriate choice of weights, which does not
rely on all the equations in system (2.8).

Example 2.5.

Consider the repeated mid-point rule for even values of i, i = ZJ,

with weights owjy:

(2.9
W23,k 0 2 0 2 .. 2 0

where 1 1is odd (i = 2j+1) the mid-point rules must be supplemented
by another rule. For convenience, we use the trapezium rule as an

‘end' correction:

k=20 1 2 3 4 i-2 i-1 i=2j+1
(2.10)



The solution of (2.4) by this 'Kobayasi' rule requires the use of the
weights in both (2.9) and (2.10). Whereas, from systems of equations
using only the weights in (2.9), it is possible to compute T(h),
?(Bh), ?(Sh)... in step-by-step fashion. The system of equations (2.8)

with 1 = 2s becomes

- -1 -
2hH(2sh, (2s-1)h,F((2s-1)h)) = g(2sh) - 2h ¥ H(2sh, (2k-1)h,F((2k-1)h))
' k=1

since W2g,0 = Wg 2 = .... = Wg,2s = 0 and we observe that a starting

value ?(0) is not required here.
~ Now we turn our attention to the linear case where H(x,y,f(y)) =

K(x,y)f(y) and (2.7) becomes
j: K(x,y)f(y)dy = g(x), 0 ¢ x ¢ X. (2.11)

If K(x,y) 1is continuous for 0 €Y £ x X then, setting x =0
in (2.11), we see that if there is a continuous solution f(x) then
g(0) = 0. In 81.3 we observed that, provided gg (x,y) = Ky(x,y)

is continuous for y ¢ x and g'(x) 1is continuous, we obtain
X
K(x,x) £(x) + Jo Ke(x,y) £(y)dy = g'(x). (2.12)

Thus, if K(x,x) # 0 we can endeavour to solve, numerically, the

equivalent equation of the second kind

X
G0+ [ KiGuy) )y = g1 (0,

Ki(%,Y) - 8 ) - 8
where Kl(x,y) = E%W’ g]_(X) = K(X,X) a_,nd f(O) K(0,0)

If K(x,x) vanishes everywhere in 0 ¢ x ¢ X ‘then (2.12) reduces to
the form (2.11) and the process of attempting to find an equation of
the second kind can be repeated. This process would eventually succeed
if [(g;)rk(x,y)]y=x #0 for 0 ¢ xg X and some r. In practice,

there may be some difficulty in evaluating the derivatives required and

the technique may in any case be of little help if r is iarge.



Numerical methods for the Volterra integro-differential equation
(1.27a,b) may be derived by applying methods for ordinary differential
equations to (1.27a,b) in which the integral term is replaced by
numerical quadrature. Such methods have been discussed by Linz[24],
Brunner & Lambert [13] and Tavernini[32]. 1In addition, in §1.5.2, we
have shown fhat the integro-differential equation may be written as a
coupled pair of integral equations (1.29). Thus, techniques for the
numerical solution of integral equations may be adapted to treat the
system (1.29). Additional details may be found in Baker[l]. These two
approaches to the development of numerical methods for integro-
differential equations are not mutually exclusive. See, for example,

the further comment below in §2.2.1.

2.2.1 Reducible Quadrature Methods.

If, in equation (2.1), H is independent of x and g 1is constant

then (2.1) has the form

f(x) = fo + j: H(y, £(y))dy (2.13)

This is equivalent to the initial value problem
f'(x) = H(x,f(x)), f£(0) = {fy (2.14)

Thus, the numerical method (2.4) could be regarded as a technique for
solving (2.14) albeit an unconventional one. This insight suggests
that we should investigate under what conditions a numerical method
for (2.13) may be regarded as a direct method for solving (2.14). We
shall see that the requirement is that the quadrature weights shall
display a particular structure.

Example 2.6.

The repeated trapezium rule has weights such that wjg = wjj = %
and wjx =1 for k=1 (1) i-1. We apply this rule as a direct

quadrature method to (2.13) to obtain



~ i ~
F; =fp+h Lo @ikH(kh, Fo) (2.15)

Differencing successive equations (2.15), and using the structure of the

quadrature weights Wi+l ,k = @ik k = 0(1)i-1, yields

+hl
o

i41 = Tj + 5 [H(ih,Fj) + H((i+1)h, Fi.)] (2.16)

We observe that (2.16) is the trapezium rule applied directly to (2.14).

We denote by

m : m .
p(p) = X ol o(p) = ¥ pium-1 (2.17)
i=0 i=0
the first and second characteristic polynomials of a consistent zero-
stable linear m-step multistep method (p,o) for 2.14 (Lambert [23]),

and we ask under what conditions equations of the form (2.15) reduce

to the following equations

~

m ~
@jfp-i = h iEO BiH ((n-i)h, T,_;) (2.18)

I ™8

i=0
which result from the application of the (p,0) method to (2.14)

From (2.15) and (2.18) we obtain, for some n » ng,

% T > aifg+h T nyt H(jh,T:) (2.19)
o - = o + o Wnoi i jh, f; .
(oo &1 Tn-i 12p %110 2o Y1 Dy “n-iLj Jh, 15

On writing wjx =0 for 1 <k, (2.19) can be expressed as

m - m m -
Y wajfqei = Z oijfg+h ¥ o T owa_: H(jh, ) (2.20)
1S Cin-i i2o 1 0 oo §50 n-i,j J j
from which we derive
x T X f h ¥ x H(jh,T ;) (2.21)
a. 3 = a. + a. w _.‘ . , . .
TR j50 1= "1 “mini FRIRAS

Thus, allowing for a variation in starting procedures, the equivalence
of (2.15) and (2.18) is preserved if the weights of the rules Q in

(2.3) are (p,0)-reducible as follows:



Definition 2.2

Assume (p,0) defines a zero-stable consistent linear multistep

formula. The rules Q are (p,0)-reducible if and only if for some

ng >0

xz
20

o Wn-0,j = Pn-j (n > ng) (2.22)
where Okj = 0 for k< j, and op, Bp =0 for 2 /¢ (0,1,..., m}.

The Gregory rules (Baker [2], Baker & Keech [3]) reduce to
Adams-Moulton multistep formulae; other reducible rules can be generated
from (p,0) (see Wolkenfelt [33], [37] and Matthys [26]).

Example 2.7

The repeated-trapezium rule discussed in Example 2.6 with
Wig = ®Wji = %, Wik = 1, k=1 (1) i-1, is such that o = -0 =1,
Bop=B1 =3, m=1.

Returning briefly to our earlier comment in §2.2 on numerical
methods for integro-differential equations we observe that a linear
multi-step method applied to (1.27a,b) with the integral terms
discretized by the quadrature rules Q may be equivalent to a

quadrature method applied to (1.29).

2.2.2. Cyclically Reducible Rules

Rules such as the repeated mid-point rule and repeated mid-point
with trapezium rules of Example 2.5 and the 'Kobayasi' rules of Example
2.3 are not reducible to linear multi-step methods but to g-cyclic
linear multi-step methods (Stetper [31]) in which characteristic

polynomials are defined:

(v)

(»)
P (W =

af?) pmi, ot () = b

I ™8

p{r) ym-i (2.23)
0 1

for » =0,1,..., q-1. Thus, we arrive at the following:



Definition 2.3

The rules Q are {p(?), a(v)}g—l -cyclically reducible if and only

if for some ng >0 and nj > O

QEO aév)wn_g’j = ﬂéi} nsng;, v e (0,1,..., g-1} (2.24)
where vy = {n-n1} mod q.
Example 2.8

Consider the weights in Example 2.3 (a) (Repeated Simpson rule
with the trapezium rule as an 'end' correction). The rules which they
produce may reduce to more than one set of 2-cyclic formulae (Baker &

Wilkinson [7]).

We may define aéV) = ﬁéV) =0 aéo) - _a£0) = 1;
0) _ L.500) _ 5.000) _ - 1. 1) = _ (1) - 9.
B(()l) = ﬁ§1> = 1 aév) = Bé”) = 0 otherwise.

Alternatively,

0) = - o(0) = 1. g(0) _ g(0) _ L.
a(())_ aé)_l’ﬁé)_ﬁ() 3

3

3%0) -

wi

ofD) = (D) = 1; gL - p(1) = 2, ofr) = B{r) = 0 otherwise.

2.2.3 Construction of quadrature weights

We observe that we may select a linear multistep method for (2.14)
and then determine the weights wji of the quadrature rules for a
numerical method for (2.13).

From (2.225 it can be shown that (see Wolkenfelt [38]) the weights

Wn,j may be arranged in a matrix of the form

oo «vvvvnnn Yo m-1
Q =
Ym-1,0 «---- e Vmn-1,m-1
Ymo «oovenn Wi, m-1 Wi, m
Wn,o «--vvn. Wn,m-1 Wnm «oorennn Vn n




1
The entries in W, correspond to the weights of the starting quadrature
i 1
rules; the weights in Ty, wusually relate to the entries of Wy; the

weights in ( form a semi-circulant matrix i.e. a matrix of the form

" g ;
@1 0]
O, = Wy w1 wg (2.28)
' w2 w1 [
| wn . wp |
where the sequence (wn}§=0 satisfies
op  @p = Bo
o]+ g =
................................... (2.29a)
aguptaen-1 + + qpuo = Bp
and
ogwptaywn_1 + + onem = 0 n > mtl (2.29b)

Thus, for the construction of. the quadrature weights Q from
multistep methods we may, given W%’ generate the first m columns of Ty
by means of (2.22) and the sequence {w,) by means of (2.29).

Most of the commonly used quadrature rules display a further
structure which is of great importénce and which may make the process
of generating {w;jix)} more convepient.

Definition 2.4 (a)

The weights w, ; 1in (2.3) are said to have an (exact) repetition
g n, j

factor r if r 1is the smallest positive integer such that
Ontr,j = ¢n,j for all n>mnp and j; < < n-j2 (2.30)

where ng, j;1 and jp are independent of n.

A method (2.4) is said to have repetition factor r if the associated



weights ®n, j have a repetition factor r. The definition of the
repetition factor r was orginally given by LanB@fbr Examples 2.1, 2.3a

and 2.6 the repetition factor is unity, whilst for example 2.3b it is two

Wolkenfelt [35] has derived the more general notion of the asymptotic
repetition factor as follows:

Definition 2.4(b)

The weights Wnj in (2.3) are said to have an asymptotic repetition

factor r if r 1is the smallest positive integer such that

Hm  (@pgr, j = @n, ) =0 for all j, jj g j < n-jp  (2.31)
n-—o

We shall refer again to the concept of repetition factor in
discussing numerical stability of direct quadrature methods (Wolkenfelt

[35]) and of methods derived by imbedding techniques; see Wolkenfelt,

van der Houwen & Baker [39].

2.3  Runge-Kutta-Type Methods for Volterra equations.

Methods of Runge-Kutta-type for the Volterra equation of the

second kind

PO - [LHOGY )y = G0, x s 0

are various analogues of the methods of Runge-Kutta-type for the solution
of initial-value problems in ordinary differential equations of the form
f'(x) = F(x,f(x)). Two approaches in the development of these methods
are those of Pouzet [30] and Beltyukov [8]. Pouzet derives his formula
for use with integral equations from corresponding Runge-Kutta methods
for‘ordinary differential equations and, therefore, the values 6 and A
(see below) are available from these latter methods. Beltyukov ;ses a )

more direct approach, extended by Brunner, Hairer, Norsett [12].

2.3.1. Classical Extended Runge-Kutta Methods

The approach of Pouzet is illustrated in the following way.



A classical Runge-Kutta method for an ordinary differential equation
of the form
£1(x) = F(x,f(x)), x>0, f£(0) = fy o (2.32)

may be defined by a tableau of the form

) Ao Aol - - - Ap,p-1 Agp
01 A10 Al - - - Al p-1 A
[01A] = (2.33)
fp-1| Ap-1,0 Ap-1,1 - Ap-1,p-1 Ap-1,p
bp=ll Ap0  Ap Ap,p-1  App

— It is sometimes convenient to write b for A

and the formulae

. (n) |
Fnd = ot T Apeks (229
k(m _ hF(nh+orh,?n+§ ArsK(M) (r=0,1,...,p),

?0 = fq.

SN

In general, summations over s are for s = 0,1, ., p. (For an

explicit method Ars =0 if r ) s, so the summation can the be
regarded as running for s =0,1...,r-1 in the second equation of (2.34).)
If F(x,f(x)) = M(x) and ?n >0 as n - o when Re(\) < 0 the

method is called A-stable. For details and related terminology, see

Lambert [23]. An alternative formula may be achieved if we define

fn,r = [ ArsK{M) (2.35)
: s :
where we note that
fnel p = fn & £(nh). (2.36)
Thus, the Runge-Kutta method may be defined by the formulae
fnr = fn-l,p + h ¥ AL F(nh + 6gh, fn,s)y (r=20,1,...,p)(2.37)
s

in which we take fh,r as defined in (2.35) to be an approximation



to f(nh + 6p¢h) and f_j , = fg. As the rows of the tableau (2.33)

may be regarded as defining a family of rules

Orh r '
[T o(yyay = T Apg p(0gh), (r=0,1,...p) (2.38)
0 s=0
we see that (2.37) may be regarded as a discretization of

nh+0.h
f(nh + 0.h) = f(nh) + jnh F(y, f(y))dy. (2.39)

We have observed that linear multi-step rules in methods
for ordinary differential equations are related to quadrature methods
for integral equations. Hence, it is natural to ask whether Runge-Kutta
methods for ordinary differential equations have an association with
methods for integral equations.

Summing (2.37) over n we obtain

n-1
fn,r = fg + h kEO {§ ApSF(kh+GSh,fk,S)) + h § ArsF(nh+osh,fn,s),

(r =0,1,...p) (2.40)

which we may regard as a discretization of the integral equation
x
PG - [ F(.ENay = fo. (2.41)

For the general Volterra equation of the second kind

X
£GO - [ HOLY, E()dy = 800

we obtain

fn

n-1
r=nh kEO g ApgH(nh+6,h,kh+6sh, fy o) + hg ApgH(nh+6ph, nh+0gh, £y o)

+ g(nh+0.h), (r =0,1,...,p) (2.42)

We may regard this approach as one in which we consider the intégral

on [0,nh] and on [nh,nh+6.h] separately. For the discretization over
the first interval [0,nh] the n-times repeated version of (2.37) with

r = p provides the first term on the right-hand side of (2.42), the rule

(2.37) with appropriate r provides the second sum in (2.42).



This method for integral equations, using as it does the Runge-Kutta
tableau for ordinary differential equations, is defined to be the

(classical) extended Runge-Kutta method.

Example 2.9
An analogue of the fourth order Runge-Kutta method for ordinary

differential equations is given by choosing p = 4 and the tableau

o e O

N © O -
W © M

Wik =

1
6
where values omitted from the tableau are zero.

The approach of Beltyukov [8] is frequently discussed in relation

to the Volterra equation in its canonical form, namely,
X
() = [ GO0y, p(y)dy (2.43)

The objective is to devise an approximate value ¢(h), where
;(h) = ¢(h) + O(hP), by a direct approach displaying the basic philosophy
of Runge-Kutta methods in the process. By direct differentiation of

(2.43) and a Taylor series approximation Beltyukov develops formulae of

the type (Baker [2, p. 862])

p(h) = EAPSKS , (2.44)

Kp = hG(apeh, 0.h, T AL Kg). (r =0,1,..., p-1
s

which-are linked to an augmented Runge-Kutta tableau [al101A].

Example 2.10 (Baker [2, p.864])

In the case p = 3 a system of 13 equations in 12 unknowns is obtained

for the determination of the parameters «, 6, A. One solution is given

by the tableau



[a I 0 A ] _

1 0 0 0 0 0

3 H 3 0 0 0

1 . 2/3 2/9 4/g 0 0
! 1 } 0 3/a 0

2.3.2. Mixed Quadrature - Runpge—Kutta Methods.

Consider
X
G0 - [ HGOY F())ay = 8GO, x s 0. (2.45)

We may derive

X nh
f(x+nh) - IOH(x+nh,y+nh,f(y+nh))dy - IO H(x+nh,y, f(y))dy = g(x+nh).

(2.46)
With
*
fra(x): = f(x+nh),
* nh
Bn(X): = Jo H(x+nh,y, f(y))dy + g(x+nh) (2.47)
we may write (2.46) as
* * X *
Fa(x) - gn(x) = fo H(x+nh, y+nh, fn(y))dy (2.48)

in which the problem of approximating f((n+l)h) becomes that of
*
approximating f,(h).
Following the Pouzet approach, we set r = p in (2.42) and obtain the

*
formula for discretizing (2.48) when g,(x) 1is approximated as follows:

~% n-1
gn(x) = h kEO E ApSH(x+nh, kh+6ch, fk,s) + g(x+nh)

Alternatively, following the Beltyukov approach (which involves the
treatment of (2.43)), we compare (2.48) with (2.43) and see that we may
set

v * * *
p(x) = fH(x) - gu(x) and G(x,y,v) = H(xtnh,y+nh,v+g,(y)).
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Hence, we may use (2.44) as a numerical méthod for an approximate
~ solution of (2.45) provided an approximation for gz(x) can be found.
Beltyukov mentions the Gregory formulae as a possibility.
We have noted that Pouzet and Beltyukov offer alternative approxi-

%
mations to the term gn(x). The family of quadrature rules

nh n
IO e(y)dy = h kZO whk w(kh), (n=1,2,...; h > 0) (2.49)

provides an alternative approach to extended methods of Pouzet in

approximating over the interval [0,nh]. This yields the mixed-quadrature

~Runge-Kutta methods for Volterra equations of the second kind, of the

form

n
fn,r = h L ong Hnhtorh, kh, £33 p) + h I ApgH(nh+0ph, nh+ogh, £, o)
= s ’
(2.50)

+ g(nh+0,.h), (r = 0,1,...p)
where f-l,p = f(0) = g(0).

: *
Note: The scheme proposed by Beltyukov for approximating g,(x) is
a slight variation of this mixed quadrature R-K method.

2.3.3. Extended and Mixed Runge-Kutta Methods as extensions of the

Quadrature Methods,

Hairer [15] has considered the derivation of R-K Methods for Volterra
equations as starting formulae with auxiliary discretizations of the
lag term. In [15], he has presented the theory of extended R-K Methods
for Volterra equations in a compact form. first stating a convergence
theorem then const;ucting some R-K Methods whose stability is also
investigated.

However, it is of interest to note that the quadrature methods of
'§2.2 and the extended and mixed R-K methods of §§2.3.1-2.3.2
respectively could be incorporated into a general analysis in which we
view these methods as extensions of the quadrature methods. To achieve

this we need to re-index the variables. We write

Fj = £(r)) = fj where 7i=1h + 6.h, r =0,1,... p (2.51)
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successively for i =10,1,2,... with j = i (p+1)+r+l, 79 = O
and fg = fy. We note that i = [(j-1)/p+1], r = (j-1) mod(p+l), where
[x] denotes the integer part of x.
Thus, classical R—K_formulae of the form (2.42) for the
discretization of the Volterra equation of the second kind produce

formulae of the type

fj=nh kgo Qi B(7j, 7, Tx) + g(rj), j=1,2,3,... (2.52)

in which the extended R-K method is regarded as the extension of a

quadrature method where the 'weights' are denoted

ij = QJk(ﬁ)
Apt’ 0 <k g i(p+l),
and ij(A) = Are, i(p+l) < k ¢ (i+1)(p+1)| (2.53)

0 otherwise,
where t = (k-1)mod(p+l), r = (j-1) mod (p+1)
For the mixed-quadrature - R-K methods of the form (2.50) we have

formulae of the type (2.52) in which the ‘'weights' are denoted
Q5 = Q5klQ, A]
and

Wim» k = m(p+1), m g i
Qjk(Q A] = A, i(prl) < k < (i+1)(p+1), (2.54)
0 otherwise;
r, t being defined as for (2.53), i being [j-11/(p+1).

Finally, the quadrature methods (2.4) fit into the framework (2.52)

in which. we set
Qjk = Q5x(Q = wj, 7; = jh. (2.55)

The preceding framework is sometimes convenient although high-order
accuracy now appears as a superconvergence phenomenon which may be

difficult to prove.
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2.3.4 Some variants of extended Runge-Kutta and Mixed Quadrature -

Runge-Kutta Methods.

One variant of the procedures already described in 82.3.3 is what
we shall call here the "economized version". In the case when 05 =0
either of the schemes already described yield Ti(p+l) = Ti(p+l)+1 = ih
(since Bp = 1). Thus, effectively, we have two approximations at the
point ih. We may achieve some apparent economy of effort if we modify
‘the methods described by setting F(ih) = ?i(p+1) = ?i(p+1)+1 rather
than compute the new value. In the case of extended methods with g =0

and Apgp =0 (r = 0,1,... p) (such as an explicit method) the original

method is already an economized version.

A further class of methods arises on replacing [Apo, Apl,... App]T
in the R-K tableau (2.33) by b = [bg,bq,... bp_l,bp]T where ET is a
row of quadrature weights associated with abscissae 09, ... 0p. For

example, the row bT may be a row of another R-K method associated

with the same points 60,01,...»0p of the R-K tableau (2.33). Such a

method is proposed by Pouzet [30]. The 'weights' (2.53) are then denoted

ij = ij {b,A}

be, 0 <Kk g i(ptl),

and Qj (b,A) = Are, 1(p+l) < k g (i+1) (p+l), (2.56)

O otherwise; t = (k-1)mod(p+1).
We observe that methods of Beltyukov type (Baker [2]) reduce to
economised mixed methods when the kernel G(x,y,f(y)) is independent of
X.

2.3.5 Structure

We noted in §2.2 that a feature of the rules 2(Q) was that the
infinite array ({wjy) is lower triangular and can be partitioned
into a form given by (2.6).

fn the extended R-K method the weights ij{h,é) in (2.56) have the



form, when partitioned

A
B A
B B A where B = 17 bt
-~ - ~ - 1] -
. (2.57)
B B B A .
- - - - 1

With the obvious parallel in structure of the quadrature rules we are
prompted to give the following definition.

Definition 2.5

A block-lower triangular array of weights (ij] is block-reducible

or {Ap, Bp)™ -reducible if it may be partitioned into square sub-matrices
Q L 0 q

V,p0 of order q, namely,

Vo,0

(Qjx) = : ~ (2.58)
VQ,O VQ,l ......... VQ’Q
Vo41,0 Vo4l b e Vo+1,0 Vo+1,0+1

such that, for some ngq,

I ™8

AQ*Vn—Q,j = Bn—jv n > ngp : (2.59)

=0

=B, =0 for » ¢ (0,1,2,... m} and Vn,Q =0 if 2 >n

v

where A M

~ ~ ~ —~

m
We usually ask that QZO Ap e =0 where ¢ = [1,1,.. 11T ¢ RA.

If Ag =1, Aj =-1, Ap = 0 otherwise the rules are called simply

~ —~ ~ ~ ~

block—reduciblé.

When ij = ij(Q), q=1 and Ap = ap, Bp = fp with Vn,Q = Wpp
the rules are (p,0) - reducible and we see that (2.59) correspond to

generalisations of (2.22) in Definition 2.2.



A subset of the block-reducible rules are those for which (2.58)
assumes a special form. Thus, the weights in the extended R-K methods
and in the quadrafure methods as well as in the mixed-quadrature - R-K
methods can be partitioned (Baker & Wilkinson [7, eq.(2.9)] as shown

in (2.60) (or a similar form indicated by (2.6)):

Wl
wr Wp
w Wo Wy Wp
W Wo Wo Wo Wq Wo ... Wp
- - - -7 - (2.60)
W Wo Wo Wo Wo W o Wp.1 Wp
(W', W", W may be rectangular or square).

The array in (2.60) corresponds to (2.59), where in (2.59), we have

taken Vp o =W, 2 > ng; Vo,j = Wp-0+j for j » 1, and where

W Z2Wo. for rs 0. Such rules are simply block-reducible.
~ ~ 2

WP-H"—'Q) o

Example 2.11

- When the weights have the structure (2.60), define Ag = I and
Ay = -1 and Ap = 0 otherwise; m = P. Then By = Wp,
-~ - ~ ~ n -~ ~
By =Wp_1 -Wp, ... Bp=Wy-W; and L Ap =0
~ ~ - - - -~ =0 ~ -

Example 2.12

Consider the extended R-K methods ij (A) of (2.53). They may

be derived from (2.60) in which we take P = 1, Wi =A and Wp =W

—~ ~ ~ -~

which is the matrix each of whose rows is the last row of A. To

derive ij (b,A} in (2.56) take P =1, W = A and Wo =B in

(2.60), where each of the rows of B is bTl,

~ -~
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Example 2.13

Consider the Kobayasi quadrature rules of Example (2.3a). In (2.60)

take P.=1 and

1/3 4/ 3 2/3 4/3 /3 0
Sl R I P E o P
/3 /3 - /3 /3 /6 /2

-~

If the quadrature rules Q are cyclically reducible (cf. Definition

2.3), then ij(Q) are block reducible with

a60>
all) a(()l)
Ag =
(q-1) (g-1) © alg-1)
L aqﬂl aqﬂz .............. aoq
rel0) af0)
q 1
(1) (1)
qq+1 ......................... oy
Al =
(g-1) . (g-1)
_ 323—1 ........................ aqq |
and so on and likewise for Bg, By .... (Stetter [31, p.218]).

Example 2.14

Consider the weights in Example (2.3a) which have also provided
the weights for Example (2.8). They can be partitioned as (2.60) and
treated as in Example (2.13). Alternatively, we may define

Ap =Bp =0 if €>1 and



so that AoWp + AjWy = By, Agp W3 = Bp. Yet again, another formulation
leads to

1 0 -1 0 /5 0. 15 4/a7
- -1 1 - 0 o1 - 1/2 /21~ 0 0

Each formulation corresponds to a recognisable 2-cyclic method.
If the rules Q are (p,0)-reducible or cyclically reducible

then the weights ij[Q,A] are block reducible.

Example 2.15

Consider the mixed quadrature R-K method employing the repeated

1
trapezium rule and the R-K tableau i— —%—%— . The array

ij(Q,é) may be partitioned

0
o] 1 o
3 0 ) 3 0
3 0 3 1 0
3 1 |o 3 0
3| o 1 ]o 3 1 0
3 1 1 0 3 3y 0
3 1 o 1] o 1] 1 o0
. . 001 0 4 I
in which Yo =1, 1l W = (g %], W2 = (1 o
w take Ag =[5 01,4 =L O By =i, ' v
e may take Ao =1lp 1lv A1 =1Tg 41s Bo=i,. 8, =0-W, , By = Wo=td.

2.3.6. Non-singular Volterra equations of the first kind - Revisited.

We turn our attention, once again to the linear equation

[ xexyrmay = g0 (2.61)

We have already discussed in 81.3.1 and §2.2 the conditions under which
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the‘equation of the first kind may be recast as an equation of the second
kind. Indeed, it is tempting to adapt our quadrature methods for
Volterra equations of the second kind to deal with equations of the
first kind. However, it is our purpose here to refer to the work of
de Hoog & Weiss [17] whose methods generally give high-order accuracy

*

under reasonable assumptions. Weiss chooses 0 K dg< b1 <...<0,=1

p
and constructs interpolating quadrature formulae using values of the

integrand evaluated at 00,61,.,.., Bp of the form

Or
[ Femay = § agoo) r=01,..., p (2.62)
0 s=0
On discretizing (2.61) with x = ih + frh we may obtain
hkgo ij(é) K(7j,71)f = g(7 ;) (2.63)

where j = i(p+l) + r + 1, Tj = ih + 6yh  and ‘in which ij(A)

are the weights given in (2.53) and A is the matrix of coefficients

I

of (2.33). The summation work does not extend beyond k (i+1) (p+1).

In the case when p = 0 ‘it is sufficient to set r

0,1,..., p-1

and the equation corresponding to i =r = 0 is replaced by the special

starting value fg = E%ﬁig% . When 463 > 0 no such starting value is
required.

We observe that in (2.63) values of K(x,y) for y>x are required.
(Ars dees not vanish for s»r)

Thus, a modified method is constructed of the form:

) hQ:p (A)K (7 1, 73) Fr +
Ogkgi(pr1) AKTZTNTITRITK

(2.64)

The second term on the left of (2.64) arises from the use of the

quadrature rule

0y E
[  emay = £ arapgecoco)

* The JeoAn;’gues of de ['luri?g: Wess can  be ﬂo{af'/é[ 7[""” second Kind
L?kﬂ"(l.on}.
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obtained from (2.62) by a change of variables.
The values F(ih+0r05h) are obtained by polynomial interpolation
to the Qalues f(ih+o6,h), r = 0,1,2,..., p using the interpolation

polynomial

%,e(0) = | 0-00)/¢00-00)).
s=0
Equations (2.63) and (2.64) may be solved as block-by-block methods
for the values fi(p+1)+r+l’ (r =0,1,2,..., p) simultaneously. Other
block-by-~block methods typified, for example, by those of Linz may be
found in the literature (Baker [2, §6.7]) where we note that the
different methods of defining H(x,y,f(y)) when Yy > x yield the

differing versions of these block methods.

2.4, Product Integration Methods

'The methods described in §82.2 and 2.3 are inadequate for Abel
equations. We mention these only briefly since we shall not discuss
Abel equations in the remainder of the thesis. Product integration
techniques which may be employed for such equations may also be
developed for kernels of Volterra equations which can be decomposed into
products of weakly-singular and well-balanced kernels. Thus, we refer

general equations of the form

[ 1y cay, 2yay = g0 (2.65)
P00 - [0 Gy Gy, F () ay = g0o (2.66)

where Hy(x,y,f(y)) is smooth. The forms assumed by Hi(x,y) (which

is required to vanish for Y > x) include K(x-y), where K(t) is
permitted to be continuous, or weakly singular (e.g. K(t)= 1/t@,

0 << 1). When Hy(x,y) =1 (y ¢ X) we have the Volterra equations
considered earlier. With Y(X,y)= H,(x,y,f(y)), the integrands in (2.65)-

(2.66) have the form H (x,y)v(x,y).



We may construct "generalised quadrature" rules

[} mxyeenay « L () p(x,kh), x e (ih) (2.67)

which are exact when ¢(x,y) is a polynomial of a certain degree in vy,
or when p(x,y) 1is piecewise-polynomial in y and x € {ih). In
particular, the approximation may be constructed to be exact (a) if
p(x,y ) is linear in y in each interval kh ¢ Yy € (k+1)h, (k =
0,1,2,...); (b) if p(x,y) 1is quadratic in y in each
interval 2kh ¢ x ¢ (2k+2)h, (k = 0,1,2,...) and so on.

Approximating ¢(ih,y) by a piecewise polynomial E(ih,y) agreeing
with ¢(ih,y) for vy e {kh}k>0 and integrating Hl(x,y);(x,y) ovér

[0,x] we may choose {r(ih)} so that

X -
L rr(0 p(x,kh) = jo H (x,7)p(x,y)dy, x e (ih) (2.68)

Firstly we pause to sound a note of caution. In solving a Volterra
equation numerically we are concerned to examine whether or not the long
time behaviour of the discretized equation reflects that of the
ariginal. In other words, we are interested in the concepts of
convergence and stability (see later). Clearly, it cannot be expected
that it would be possible to provide a general answer which would cover
the whole class of integral équations. We should also be aware of the
work of Lubich [25], for example. His approach limits consideration

to methods which are (using the classical stability concepts of
ordinary differential equations) strongly stable,‘A—stable and
A(o)-stable and to the class of problems for which these properties

are maintained. Papers published by Nevanlinna [27], [28] and [29]

adopt a similar approach.



2.5 Bownds' method

Bownds' method [9], for the treatment of (2.1) is based upon the

approximation of H(x,y,f(y)) 1in (2.1) by a finite sum

£ xe (0 Yoy £
r=1
(The latter is a finitely separable kernel approximating H.) If we

consider the equation

60 - [0 2 X 00X (v, T (y))ay = (), (2.69)

when the sum is a finite one, we find that the equation (2.69) can
be reduced to the solution of an initial-value problem of a system of

.differential equations. Indeed, from (2.69)

FOO = g0x) + X ar(OXr (%) (2.70)
where
X
ar(x) = [ Yr(y.F(y)ay,
that i§
a_(x) = Yp(x,f(x))
or

a (x) = Yp(x,g(x) + .g ag(x)Xg(x)). (2.71)

We have a,.(0) = 0. Solutioﬁ of the system of differential equations
(2.71) provides f(x) from (2.76). Thus, Bownds advocates the
construction of appropriate finitely-separable approximations to H
and the solution of (2.7/) by automatic methods for initial-value
problems. It may be noted that the application of a {p,¢) linear
multistep method to (2.7L) with a fixed step h is (if g=0) equivalent
to the use of a certain {p,o)-reducible quadrature rule to (2.67) in
the quadrature method whilst similar parallels hold for a Runge-Kutta

method applied to (2.74) and the extended R-K method applied to (2.69).
“This equivalence indicotes the peldenvavece of the g;,;l,,y,;f anelysis Lor
Metfhadls ‘F""' o-o.e-c (lhe//oo//',y Pacenls <cncepls Svch as Q’»S{al’i/:'/j Anel
ocdqebraie  stok(lils (6, pp 95 -0i]),



The benefit in Bownds' technique [10], [11] arises from the ability
to use automatic routines for (2.7/) which may have variable order and
variable step. The choice of approximation to H(x,y,f) is a
critical aspect of Bownds' approach.

The method proposed by Bownds can be specialized in order to
treat convolution equations, in which H(x,y,f) = k(x—y)H*(y,f(y)),
this kernel being approximated by one which is implicitly of the form
z xr(x—y)rH*(y,f(y)), via an approximation to k(z) in terms of a
finite weighted sum of shifted Chebyshev polynomials. (Golberg [14]
shows how the Volterra equation of the second kind can be reduced to a
system of differential equations when H(x,y,f) = Zarkr(x—y)H*(y,f(y))
provided that the functions Kk,(z) satisfy a system of differential

equations
k. (z) = Targkg(z),

so that the use of Chebyshev polynomials in Bownds' method is not an

essential feature of the technique.)

We mention Bounds' techniques because it indicates a
connection between general Volterra problems and ordinary
differential equations which is exploited in certain approaches to

the analysis of numerical stability [Wolkenfelt 3.



2.6 ~y-Modified Methods.

In this section we shall consider the vy-modified mixed-quadrature -
Runge-Kutta methods proposed by van der Houwen [19] ksee also [18])
with the aim of improving stability behaviour. The motivation for the
modified mixed methods arose from the observation that frequently
A-stable R-K tableau employed in mixed quadrature R-K methods gave
rise to methods which were not A-stable when applied to the integrated
forms of a differential equation (2.41). (For the present,

A-stability in the sense used by Lambert [23] suffices.) Thus, the
purpose of deriving the modified mixed methods is to restore
A-stability when the R-K tableau is A-stable. A slight loss of order
of accuracy is the penalty for the increased stability.

We recall the discretization of (2.45), with x € {Tj}, to produce
formulae of the type (2.52) in which the weights ij[Q,é] of (2.54)
are employed. When r = p, Tj = ih + Oph = (i+l)h and Q(i+1)(p+1),k
are given in terms of ({wjy) and 'Ap,s’ s =0,1,..., p-1.

From (2.45), we obtain

F. =

J

- (+1) (p+1) - .
hoE QuH(Tj, 7, F) + g(rp), § = 1,2,3,... (2.81)

"Replacing i by i-1 and taking r = p

Fi(ps1) = h kgo Qi (p+1),x H(ih, 7y, ) + g(ih) (2.82)

Then the modified methods are defined by the formulae (obtained by
subtracting <, X equation (2.82) from equation (2.81))
=[], [v]
=g(ri) +h T Qi Hri, 7, T2 7)) + 4 ! (2.83)
j AN K50 ik j Tk 1k YaCi

- i(E+1) . =[] .
ci’ = Filps1y - h Eo Digpn) k HGh i TRY - glih) (2.84)
in which a parameterizing vector is selected such that

Y= [v0:715 -5 wplT, 0 < yr < 1. (2.85)



—91—

We note that c£7] provides an 'estimate' of the accuracy of the
method at the end of the i-th step and is based upon previous computed
values f&v], k =0,1,..., i(p+l). Thus, from (2.83), we may regard
the estimate at the end of the i-th step as influencing the (i+l)-th
step.

If we consider the choice H(x,y,v) = Av in (2.83) with

y = [1,1,...,1]7 it follows that

=07l _ w0yl (i+1) (p+1) (7] '
FLYL _ F \h Qi T 2.86
J ilpr1y + kei (Ba1ye1 K TR ( )

We see that the y-modified method with Yr =1 (r 0,1,..., p)

reduces, when applied to the equation

X
TGO = g0+ [ f(nay,

to the extended R-K method for this equation. In particular, we
observe the A-stability of the modified method with Yr =1 when the
R-K tableau is A-stable.

For further discussion of stability considerations which may
motivate the y-modified Runge-Kutta methods and related developments
we may refer to van der Houwen, Wolkenfelt & Baker [21], [39],
Wolkenfelt [36] and van der Houwen & te Riele [20]. Some insight on

the convergence of the methods may also be found in

van der Houwen [19] and van der Houwen, Wolkenfelt & Baker [21].
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3. Basic stability analysis of Runge-Kutta methods for Volterra

integral equations of the second kind.

3.1 Introduction

Our main pupose in this chapter is to reveal the application and
analysis of certain‘stability definitions applied to Runge-Kutta
methods for a second kind Volterra integral equation of a simple
form, now generally described in the literature as the "basic
test equation". Thus we have two prerequisites: To discuss the class
of 'test' equations which might be used and to introduce stability
definitions and examine their application when applied to a certain
class of methods.

In §83.2 we have some preliminary remarks on stability with an
attempt to place on a firm foundation our choice of 'basic test
equation'. The results of our investigations form the basis of this
work although there have been some subsequent developments [18]
which will also be briefly discussed. Nevertheless, we shall seek to
confirm that the analysis of our chosen 'basic test equation' provides
a necessary foundation on which to develop a theory for more involved
test equations where the coﬁplexity of the analysis can obscure the
insight. The results for our basic test equation not only lead to
genuine understanding but have stimulated the production of new methods.

In 83.3 we summarise some important results in the study of
recurrence relations and elaborate on some relevant remarks on the
structure of ‘quadrature weights.

In §3.4 we introduce some of fhe stability definitions which we
intend using in subsequent sections. The relevance of these definitions
is examined in connection with Runge-Kutta methods for the second kind
Volterra integrai equations. Some of our results obtained for our

test equation mirror results already well known when Runge-Kutta
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methods are used for the numerical solution of initial value problems
of ordinary differential equations.

In 83.5 and §3.6 we introduce an analeis of the mixed Runge-Kutta
methods with reducible and block-reducible quadrature rules. We find
that the structure of the methods used results in recurrence relations
and stability polynomials which permit certain stability results to be

stated for our 'basic test equation'.

3.2 Preliminary Remarks on Stability

The aim of this section is to motivate discussions in subsequent

sections in this chapter.
We consider the Volterra integral equation of the second kind

X

f(x) = g(x)+ J H(x,y, f(y))dy, (x 3y 0) (3.1)
0

When solving such an equation numerically we wish to know whether the
behaviour of the discrtized equation, as x - ®, reflects that of the
original integral equation (3.1). For example, will the numerical
solution converge to zero or remain Sounded if the exact solution does?
The study of stability can be related to the qualitative behaviour

of solutions.

In our discussions of stability, consideration will be restricted

to the linear version of (3.1)

X

f(x) = gx) + X\ I K(x,y) f(y)dy, (x » 0) (3.2)
0

The earliest stability studies in the numerical treatment of such
equations ([4], [7]) have been concerned with the performance of

methods applied to an equation which has become generally known in the

literature as the 'basic test equation'



X
f(x) -\ J f(y)dy = g(x). (3.3)

0
(It reduces to f'(x) = N f(x) + gl(x), £f(0) = g(0).) This test
equation is open to some objections because of its simplicity and the
fact that certain typical features of Volterra integral equations are
not present. We shall see that attempts have been made to search for
other more realistic problems. Névertheless, we shall argue that
stability conditions for methods applied to (3.3) provide initial
criteria against which the versatility of methods may be judged.
Thus methods exhibiting poor stability properties on (3.3) are unlikely
to do well on more difficult problems. Further, the stébility study
of methods for (3.3) provides insight into a structure which is valuable

for the study of more general equations ([6]

C;;Lé.Z.l Stability of the continuous problem

» [29]).

The study of stability of the solution of the integral equation
(3.1) is concerned with the sensitivity of f(x) to perturbations
jn the problem. For an introduction to this topic we refer to
Tsalyuk [26]. Particular attention has been given to the effect on
f(x) of a perturbation 4g(x) in g(x) as x - o and various
stability definitions have been given arising from the restrictions
on the class of perturbatiogs 6g(x) to various normed linear spaces
(See, for example, Bownds and Cushing [9].)

For the linear version (3.2),‘progress in the stability analysis
can be made by analysing the resolvent or differential resolvent. We

recall from §1.9.5 the familar results

X

f(x) = g(x) + X\ J Ry (x,y)g(y)dy (3.4)
0



X

where R)(x,y) = J K(x,z) Ry(z,y)dz + K(x,y) (3.5)
0 }

(The resolvent kernel may be developed from the Neumann series:

Ry(x,y) K(x,y) + X Kz(x,y) + N K3(x,y) ..... where

I

X
r-1 :
K (x,y) J K(x,z)K (Z{T)dZ) In practice, it is difficult to derive

0

properties of the resolvent kernel for an arbitrary kernel K(x,y).

Even assuming the linearity of K it cannot be expected that there
will be a general solution to the problem of stability. Hence, one
tries to investigate stability problems for special classes of equations
where one hopes to gain insight under simplifying assumpfions on the
nature of the kernel,

Several papers hav¢ been published in which the essence of the
approach turns out to be analysis of a numerical method for ordinary
differential equations to which the integral equation is more or less
equivalent when the same numerical method is used and certain types of
kernel functions are involved. Thus, Baker and Keech [7] and
Van der Houwen [14], respectively, have produced stability results
for particular classes of methods and kernel functions varying from
simple linear functions such as H(x,y,f) = af and H(x,y,f) = (ax+b)f,
a and b constant to rather more general separable kernels of the

form
r
H(va:f) = 121 X1 (X)Yi(}'»f), - (3-6)

(cf. Baker [6] and Van der Houwen & Wolkenfelt [15]). Particular
examples of kernels of the form (3.6) such as the polynomial

convolution kernel

Ap(x-y) T (3.7)

-t
It 20
o

K(X’Y) = K(x—y) =

and
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K(x,¥) = Ao + M (x) + M (y) (3.8)

have also been studied in Amini and Baker (1] and Amini, Baker,
Van der Houwen & Wolkenfelt [2]. The assumption of the form of

polynomial convolution kernel (3.7) in (3.1) produces equations

X

R
F(x) = g(x) + J > Ap(x-y)Tf(y)dy (3.9)
0 r=0

which permit a reduction of (3.1) to a system of ordinary differential
equations and the analogue of stability results for differential
equations can be established for (3.1). Results for (3.3) can also

be deduced from those of (3.9).

3.2.2 Stability of the numerical method

If, in (3.2), g(x) is perturbed by a small amount ég(x),
then the resulting change &f(x) in f(x) may be obtained from
(3.4) by

X
6f(x) = 6g(x) + X\ J Ry (x,y) ég(y)dy. (3.10)
0

When direct quadrature methods are applied to (3.2) we obtain the

quadrature equations (see (2.4))

~ i -
fi = g(ih) +h Y wjj K(ih, kT, 1=1,2,3... (3.11)

and the stability analysis involves the study of the effect of

perturbations 4ég, in g(nh) (n = 0,1,....) on the resulting changes

6f, in ?n when
n
6f, = égn + Ah 'ZO @n K (nh,jh)éfj (3.12)
Jj=

The perturbation &f,, depends on all previous perturbations
ij, J =0(1)n-1. Miller [19] has given a theory of finite
recurrence equations, in which a perturbation 6f, depends on a

finite number of perturbations 6fp-1,....,8fh_x and this theory may
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kernel and quadrature weights satisfy suitable conditions.

Two approaches to the stability analysis may be found in the

literature. These are described in the following sections.

3.2.3 Numerical stability for small h

Numerical stability "for small h", &n the sense of Linz [17]
and Noble [22] requires the perturbation sensitivity of the numerical
method to be "roughly equivalent" to the perturbation sensitivity
of the original problem. The approach of Linz and Noble is based on
the asymptotic expansion of the global discretization error. Before
pursuing this direction it may be helpful to state here their

respective stability definitions.

Definition 3.1 (Linz [17])

A step-by-step method for (3.1) is numerically stable if the
error growth is roughly equivalent to that of the solution of the
variational equation of (3.1). If there exisf some equations for
which the error grows much faster then the solution of the
variational equation of (3.1) then the method must be considered

numerically unstable.

Definition 3.2 (Noble [22])

A step-by-step method for solving a Volterra integral equation
is said to be unstable if the error in the computed solution has
dominant spuriou§ components introduced by the numerical scheme.
The meaning of the term "spurious™ will be remarked upon later.

Now we turn our attention to the analysis of the global
discretization error. Considering a (p,0) - reducible quadrature

method of order p (defined in §2.2.1) the asymptotic expansion of the
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global discretization error e(x,) = ?n - f(x,) may be shown to

have the form

e(xp) = hP .>531 ™ eé”(x) + 0(hP*1) | (3.13)
1=

where pup =1, Ko,... kg are the essential zeros of p, that is,
are of modulus 1. eél)(x) satisfies
s ] X 3
sV 0 = gV ) + vy J Kex,y) oS (may  (3.14)
' 0
o
and  K(x,y) = 5 H(x,y,f(y).

The quantities +v; are the growth parameters (Henrici [12, p237])

defined as

Yi = o) /ni ' (py), i=1,2,...,s

The functions gél)(x) are related to the errors in the starting values
and to local quadrature errors.
Note that if in (3.1) g(x) 1is perturbed by a small amount

6g(x) then f(x) changes by a small amount 6f(x) where, with

KGx,y) = 5 H(x,y,v>jv4(3>
X
8f(x) = dg(x) + J K(x,y)sf(y)dy
0

which is of the form (3.2) with \=1.

Accordingly, we have (3.10) with \=1.

The component eél)(x) associated with =~q ¥‘1 is the principal error
;omponent which mimics the effect of an analytical perturbation. The
remaining components eéz)(x)....,eés)(x) associated with +p,....,vg
are the "spurious" error components. Clearly, if leéi)(x)l >> leél)(x)l

for some i (2¢i¢s) then, 1in the sense of Linz and Noble, the

method is numerically unstable.
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The advantage of the approach based on the asymptotic expansion
of the global discretization error is that it is applicable to general
equations (3.2) without additional constraints on the kernel K and
the function g; the values of the growth parameters are clearly
crucial for numerical stability. To reinforce this latter point we

consider the basic test equation

X

f(x) = g(x) + J f(y)dy. (3.15)
0
whose solution is given by
' X
f(x) = g(x) + X\ J exp (A (x-y)) g(y) -dy (3.16)
0

Suppose there is a value Yi # 1 for some i # 1. Then, from (3.14)
and (3.16) there is an associated spurious error component eél)(x)

given by

X
e§P 0 = g{ ) + 44 J exp (i Mx=y)gs (ndy. (3.17)

0
The problem (3.15), whose sqlution is (3.16), is well-conditioned
with respect to bounded perturbations of g if Re N < 0. However,
we observe from (3.17) that if vi #1 (i#l) and Re(yi N\) >0
then the global error has a spurious component eéi)(x) which is
exponentia]ly increasing. Furthermore, in his thesis Linz [17]
conjectured that quadrature methods using rufés with repetition
factor 6ne (see Definition 2.%(a)) tend to be numerically stable,
whilst those with repetition factor greater than one tend to be
numerically unstable. This was a useful premise to stimulate further
analysis and Wolkenfelt [28] has investigated this conjecture. First

of all he shows that the natural interpretation of Linz's conjecture
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is too strong by providing, in the following theorem, a more
quantitative definition of the numerical stability concept.
Theorem 3.1 Wolkenfelt [28, p.114]

A reducible quadrature method of the form (3.11) is numerically
stable (for small h) (in the sense of Linz and Noble) if each
essential zero of p has a growth parameter equal to one; the
method is weakly stable (for small h) (or numerically unstable in
the terminology of Linz and Noble) if there exists at least one
essential zero of p whose growth parameter is different from one.

Secondly, Wolkenfelt has demonstrated that methods with an
asymptotic repetition factor of one are always numerically stable in
the sense of Linz and Noble but that methods with an exact or

asymptotic factor greater than one can also be numerically stable.

Example 3.1(a)

An example of a nu@erically stable method which has an exact
repetition factor of two is obtained by taking p(p) = u2-1 and
o(p) = p2+1. (The growth parameters associated with the essential
zeros g1 =1 and pg = -1 are both equal to one.)

Example 3.1 (b) (Wolkenfelt [28])

Consider the (p,0) - reducible quadrature method with
p(p) = (uz—l)(u - %) and o(p) = (y2—2/3u + 1). The weights have an
asymptotic repetition factor of 2 (since the essential zeros of p
satisfy uz = 1) and the method is numerical}y stable as the growth
parameters associated with the essential zeros of p are both
equal to one.

However, the disadvantage of this stability analysis is its
asymptotic nature (as h - 0) and therefore the conclusions drawn
may not hold for particular values of h. We need to gain greater

insight into an appropriate choice of h by considering regions of
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stability and a class of test equations.

3.2.4 Numerical stability for fixed h

We have already indicated that in order to obtain insight into the
general stability problem (3.12), special cases of (3.2) have been
considered in the literature. 1In §3.2 and §3.2.1 we cited some of the
special cases of K(x,y) which may be considered, the most simple case
arising from the choice of K(x,y) =1, X e¢C yielding the 'basic

test equation' (cf. Baker and Keech [7])

X
f(x) = g(x) + \ J f(y)dy. (3.18)
0 ,

However, we cannot assume that a method which is suitable for our
rather special test equation (3.3) is suitable for more complicated
equations. To this end attempts have been made to provide a firmer
foundation to the stability énalysis based on (3.3) by considering
more general kernel functions. Earlier we remarked that

Van der Houwen [14] considered kernel functions of the form

H(x,y,f) = (a+bx)f, a and b constant. (3.19)

Baker [6] and Van der Houwen & Wolkenfelt [15]) considered the class

of finitely decomposablekernels of the form
r
H(x,y,f) = .ZO Xi(X)Yi(y, ). (3.20)
i=

The relevance of (3.19) may also be disputed as the equation can be
reduced to a second order differential equation. However the form of
stability analysis for (3.19) provided understanding when dealing with
kernel functions of the form (3.20). 1In [15].Van der Houwen and
Wolkenfelt compare the stability conditions derived for kernels of

the form H = Nf with those derived for (3.20) and conclude that the

first class of kernel functions gives a rough indication of the
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stability behaviour of the numerical scheme. Hence (3.3) may be
considered as a first sieve for the selection of an appropriate scheme
for the solution of Volterra integral equations of the second kind.
Other contributions of the stability theory for fixed h exist,
which vary in the class of methods considered and in the special case
of (3.2) adopted as a test equation. For a brief survey of 'some of
these approaches we may refer to Amini, Baker, Van der Houwen and
Wolkenfelt [2]. Since our earlier investigations, but prior to
recording them here, there have been several new approaches to stability
analysis which we shall discuss briefly in the following section.

3.2.5 Further contributions to the stability theory for fixed h.

Lubich [18] has observed that, in applications, one often

encounters convolution equations of the form

X

f(x) = g(x) + J k(x-y)o(y,f(y))dy, x 3 0 (3.21)
0

In this subsequeﬁt stability analysis he considers the linear case
where o(y,f(y)) = f(y ) and makes use of the Paley and Wiener
theorem (Theorem 1.10) which provides a result on the asymptotic
stability of Volterra integral equations of convolution type. The
theorem is repeated here for convenience.

Theorem 3.2 (Paley and Wiener [24])

Consider the equation

X
f(x). - J k(x-y) f(y)dy = g(x), x 30 (3.22)
o .

where the kernel k(x) belongs to L'(O,w). Then we have
f(x) > 0 whenever g(x) » 0 (x » ®)

if and only if
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[ee]
J e"WXk(x)dx # 1 for Re w ) O. (3.23)
0

Lubich investigated the asymptotic bahaviour of the numerical
solutions obtained by applying linear multi step methods with a
fixed step size h to the following class of Volterra integral equation

X

f(x) = g(x) + ) I k(x-y)f(y)dy (x30) (3.24)
0

where Re N < 0 and the continuous kernel k(x) e L'(O,m) with

[oo]
{k(nh)}o e 0 is positive definite. That is, for all n > 1,

n

; k(Ej - &) Z3 Em > 0 for any choice of real numbers
El,...,én and complex numbers Z],...Zn: Kk(x) 1is extended to the
negative real axis by k(x) = k(-x). By Bochner's theorem this is
equivalent to (3.23). Examples of positive definite functions are
convex non-negative, non increasing functions on [0,®), cosx and
exp(-x2) . By the use of the Paley and Wiener theorem, it can be

demonstrated that positive definite kernels form "the largest class

of linear convolution kernels" such that

.¥(x) > 0 (is bounded) whenever ﬁ(x) > 0 (is bounded)
for all N with Re X\ < 0.

For initial value problems in ordinary differential equations,
a method is called A-stable if the left half-plane Re z < 0 is
contained in the stability region for the basic equation. Lubich has
shown that, in the application of an A-stable linear multistep method
to an integral equation with positive definite kernel, the stability
region of the linear multistep method is not preserved. However,
in general, A(a)-stability (that is, where the stability region
contains the sector arg z ¢ (v-a, 7+a) with o e (0, T/9) does

carry over to a restricted class of integral equations (3.24) where the
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continuous L' kernel k(x) 1is completely monotonic. That is,

(-1)S kS(x) » 0 for s = 0,1,2,.... and x 3 0, where
kS(x) represents the sth derivative of k(x).

In addition to Lubich's work Nevanlinna [20], [21] has also
considered test equations with non-separable kernels. However,
Nevanlinna's papers and that of Lubich deal only with multistep
methods. In [11] Hairer and Lubich show to what extent the results
"of [18] can be adapted for extended Runge-Kutta methods when applied
to selected convolution equations with positive definite L'kernels.

3.2.6  Concluding remarks

We remgin convinced that the development of the stability analysis
for (3.3) is useful and relevant. We accept that there are limitations
té the use of (3.3) as a test equation and these have been cited in
Baker [4] and repeated elsewhere. To overcome some of these limitations
more general test equations can be, and have been, mentioned in earlier
sub-sections in this chapter. Nevertheless, the stabilfty analy;is of
the simple test equation gives genuine insight into the structure and
complexify of the analysis arising from more general test equations.
Indeed, it now seems to be genefally accepted that suitability of
a method for the testiequation (3.3) is a necessary (but not sufficient)
requirement for an all purpose method.

3.3 Further Remarks on Structure

In this section we refer to two prerequisites which will be
useful in subsequent sections. The first refers to the type of
recurrence relations which arise; the second deals with the special
structure of fhe quadrature weights which will also be exploited.

3.3.1 Recurrence Relations

When determining stability regions of numerical methods for initial

value problems in ordinary differential equations one considers the
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effect of applying the numerical scheme to the test equation:
frequently f'(x) = X f(x), ) real or complex. Thus Lambert [16]
illustrates that a (p,0) linear multistep method associated with the
’ k . k .
polynomials p(z) = ‘Zoai uk“l and o(z) = .20 Bi pk‘l for this
i= i=

particular test equation gives the formulae
k ~
i%0 (o =MhBy) fL4pq = O, n=20,1,2,... (3.25)

where we seek ?r = f(rh), given suitable starting values ?0,...,?k_1.

If o - Mg # 0 and v; = (aj -M\h B1)/(ag-AhBy) then (3.25) may be

written in the form (cf. Baker & Keech [7])

Trik k-1  Yk-2 - - : Y0 Frik-1
1 0 0
- o 1 0 . (3.26)
i ?n+1_ | ?n |
L0 0 1 o0

These recurrence relations may be expressed as

-~ ~ - ~ - T
f/’k+1 = ﬂwk where Pk = (frtk-1,.--ful (3.27)

and ‘ﬂ is a fixed square matrix, independent of k. The usual

stability criterion in terms of the zeros of p(z)-‘ho(z) imposes

a requirement that the zeros of  {zK - Tig Yiz?} (equivalently, the

eigenvalues of M) liehﬁnthe unit disc. We return to this point later.
Here, we are concerned to illustrate how we shall gain insight

into relevant aspects of error propagation when developing the

stability analysis of numerical schemes applied to integral equations.
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We recall that, when extended or mixed R-K methods are used for

the discretization of Volterra Integral Equations of the second kind,
formulae of type (2.52) are produced where the 'weights' are denoted by
(2.53) or (2.54) respectively. In addition, the quadrature methods

of (2.4) fit into the framework (2.52) where the weights are given by
(2.55). For convenience we reproduce the formulae of type (2.52)

here:

?J = h k;O ij H(Tj, TR ?k) + g(Tj), i=1,2,3,... (3.28)

Due to the simple form of our 'basic test equation' (3.3), when
differencing procedures are applied t0(3.28), under certain conditions
such as the structure in the weights ij, recurrence relations will

be yielded of the form

Sk+1=,r:4,$k+7k’ k=0,1,2,... (3.29)

-

where M = M(Ah) and &y = v 1is given. The components of the
vectors ¢ will be successive values of ?j the approximations to
f(jh). Stability definitions given in later sections are introduced

in order to permit the study of relationship between the solution of

(3.29) and the solution of a perturbed recurrence

~

,fk+1 = y:ék + K +,fk (3.30)
(where the term Ek stems from the introduction of rounding error or
truncation error). Clearly, if _§k = %kfék we have ’§k+1 =,§§k +,fk!
so that the study of error propagation (the Behaviour of the sequence
{ék} in response to {Ek}) is in effect the study of the behaviour
of the solution of equations of the form (3.29). For further

elaboration we refer to Baker [4].

3.3.2 Partitioning - Further Remarks on the structure of weights

Here we make some additional observations on the weights ij (ﬁ)



—111—

defined in (2.53) for the classical extended R-K formulae and of the
weights ij [Q,A] defined in (2.54) for the mixed quadrature R-K
method. Later, we shall find it helpful to refer to the following

structures. The array of values ij (’é) which are defined in (2.53)

as
Apt 0 <k ¢ i(p+l)
ij Qé) = Are s i(ptl) < k ¢ (i+1)(p+l) (3.31)
0 otherwise

where t = (k-1) mod (p+l), r = (j-1) mod (p+l),

may be represented in partitioned form given below:

4]
0
° A
-’ S
(8]
0
0
- T
. A
.| <2p b
0
0
4]
1 T T
ij(f/\) =, ea? eap ,i\ (3.32)
5 [Vares ~
0
0
0 T T T
. ea ea eap e ea A
:‘ ,«\9 Aa At P ~
0
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. T T
where A = [Apg] 1is of order p+l; a_ = e A (the last row of A)
~ ~P ~P ~
where egq, e1,...,ep are the successive columns of the identity
~ -~ S
matrix of order p+l, and e = eg +tey +...+ ep- (The matrix eaT

has all rows equal to the last row of A.)

In the mixed quadrature method, whose weights are defined in

(2.54) as
Wim> k = m(p+l), m ¢ i
Q5 [QA] = jAre, i(p+l) < k ¢ (i+1)(p+l) (3.33)
0 otherwise

r,t being defined as for (3.31), i being [(j-1)/(p+1l)], the

partitioning assumes the form:

@ioe, | @ilkp | @i2fp | - etilp | 2 |
Ra | | | - |
@i+1,08! @i+1,1Ep | @i41,2Bpl oo @iin iEpl @it1,i41Epl A
(3.34)
where the matrix Ep is defined as
o~
E = ee
~ P ~vP
With this notation, A = eaT can be written E _A. (3.35)
o P ~uP ~p~

We observe that the wji in (3.34) frequently have a.structure which

has been outlined in (2.6) as follows:

Y Yo Y W Yp
ij(Q)
W Y | o o |1 | Vol .. | Vpa| W
Yl Y% Yo | Wo | Wi| .- | Wp-2| ¥p-1| ¥p

(3.36)
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where &b< is lower triangular, the partitioning being into square
submatrices of the same order q. Example 2.4 provides such an
illustration. Furthermore, from §2.3.5, we recall that the structure
(3.36) provides an example of a more general structure where the

weights oy, for » ) 0 can be partitioned as:

Ve,o Vo,1 <o ] Vo,e-1 Vo, e
Yorr,0 ! Vo+r,1 1 oo 1 Vogg 001 1 Vos1 0 | Voy1 041
(3.37)
Here, the submatrices are all of order q and relations
m
2 ApVni1-0,y = Bnilo, (3.38a)
R=0~"~ ~
are satisfied (for all n sufficiently large) with
A,=B, =0 if »¢ (0,1,2,...,m. (3.38b)

The matrices Ap, By are fixed matrices of order g and at least one
~ -~
of the matrices Ap is required to be non-zero. An additional and
~

natural requirement is the condition

m
Ape = 0, (3.38c)
where e = [1, 1,...,1]T is the sum of the columns of the identity

matrix of order q.
When the relations (3.38a,b,c) are satisfied the weights are block
reducible and §2.3.5 contains illustrative examples. Further

elaboration may be found in Amini, Baker & Wfikinson [3].

3.4 Extended Runge-Kutta methods and stability definitions

The earliest stability studies in the numerical treatment of
Volterra equations of the second kind [4,7] have been concerned with

the performance of methods of applied to the basic test equation
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X

f(x) - N J f(y)dy = g(x). (3.39)
' 0

Stability conditions for methods applied to (3.39) provide initial
criteria against which the versatility of methods may be judged.
Further, the stability study of meth&ds for (3.39) provides insight
into a structure which is valuable for the study of more general
equations [6, 29]. We believe that for a class of problems the
stability properties of methods applied to equations of the form
(3.39) provide practical guidance but do not pursue here the question
of the scope of this class of problems.

We shall include various stability definitions as the discussion

proceeds.

3.4.1 Extended R-K Methods

Classical extended methods were defined by (2.52) which for
convenience, is reproduced in (3.28). The rules (2.38) are defined by
(2.53) in terms of the Runge-Kutta array (2.33) and are reproduced
in (3.31) or the partitioned form (3.32). We now consider the stability
of the extended methods applied to (3.39) where H(x,y, f(y)) = MM (y).

Equations (3.28) become

fj=)\h k;O ij fk+g(Tj). j=1,2,3.... (3.40)

The approximate values ?j obtained from the extended method define

vectors ¢1, ¢, ¢3,... Where

0,1,2,...), (3.41)

I

pirl = [Ti(pe1)+1r Ti(peny+2! L Faany e G
(See also [5]).

By virtue of (3.31) with j = i(p+l) + r +1 and r 0 we obtain

from (3.40) the equation

’f‘i(p+1)+1 = \h [(Apo T’l+. . .+App ’f‘p+1) + (Apo ?(p+1)1"l’+”"+App f2(p+1))+" .
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.. .+(Apo ?(i—-l) (p+1)+1+- - '+App Af'i (p+1) 1+

+ M[Ago Fi(p+1)+1 *+--F Aop T(ialy (pi1)) + 8(T1(pr1y+1)
(3.42)

Using (3.32) (the partitioned form of (3.31)) together with (3.41), the

equation (3.42) may be written as

= T i T |
Fi(pery+1 = A aj 3 ok + M2y 0 + 8075 (p+1)+1) (3.43)
T T
where, we recall, ap = e A, the last row of A.
»~ ~ P ~
For further values of r = 1,2,...p 1in (3.40) the following equations

are produced

= T d T
Figpeiyr = M a2 e+ M2y eiin + 8074 (pr1)+2)

(3.44)

= T § T

Fhany ey = Mhag 2 ek + A ag i+ g(7 (541 (pr1))

Combining equations (3.43) and (3.44) we obtain

i

(1-AhA)pi41 -Mh 33; O ek g1, =012, (3.45)
T

Here gi+1 = [8(7i(p+1)+1): 8(Ti(p+1)+2)s «---- 8(7 (i+1) (p+1))]

We pause to observe that equation (3.45) forms the basis of our

studies.

Recall that

E, = eeT
~ N'vp
also E A = eaT and eTe = 1.
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Applying Ep to (3.45) for 1 =1,2,3,... yields the equation
E -\h T E
i =\h e = .
—p 2 & 3 2%k ~ Ep 8i (3.46)

Subtracting (3.46) from (3.45) yields
(’\I,—)\hﬁ)fi_l_l - Epf’j = §i+1 - 12951 (3.47)

From (2.51), f(7i(p+1)) = Ti(p+1) = f(ih), j = i(p+l)+r+l, r = 0,1,..
and we observe that Epwi can be written f(ih)e. The matrix

I - \hA is invertible if we exclude at most p+l exceptional values

of Ah for which the method fails; with fhis exclusion we find

pi+l = NOh)pj + ri4q (3.48)
where
T
NOh) = e (3.49)
with
d(zh) = (I - nha)~le (3.50)
and
rie1 = (- MA)L(gieg - Epgi) - (3.51)

We note that, here, the matrix N(Mh) is of rank one.

Equation (3.48) is of the form

(9i+1 = ﬂwgi + riy1, M= M(\h). (3.52)
which (as noted earlier) is commonplace in the matrix analysis of
numerical stability of, for example, ordinary differential
equations. Equation (3.52) has interest in its own right (Hahn
[10, p47], Miller [19]). We observe that (3.52) may be a scalar
relation. The stability analysis which follows is devoted to the

analysis of relations which can be put into the form (3.52).
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Example 3.2(a)

Consider the conventional R-K tableau

we find d(Ah) = [(1-$3h)~1, (1+4xh) (1-4ah)-19T

and E (A\h) =£gr;|4”,(l\hﬂ‘:?t |

3.4.2 Stability Definitions

We now turn to the provision of stability definitions for the
analysis of (3.52).

Definition 3.3(a)

A recurrence of the form (3.52) is said to be (block-) stable in

the norm 11 11 if the subordinate norm of the amplification matrix

M satisfies |iIMil ¢ 1, and the stability is strict (the method is
"contractive") if ltﬁll ¢ L<1.

The above definition réquires a choice of norm. We can introduce
new definitions which rely on the location of eigenvalues of M.
First note that a matrix is said to be of class M [23] if and only
if its eigenvalues having largest modulus are semi-simple. (An
eigenvalue g is semi;simple if the number of linearly independent
eigenvectors corresponding to p is equal to’the algebraicr

multiplicity of p).

Definition 3.3(b)

An arbitrary square matrix M will be called strictly stable if

p(ﬂ) < 1 where p(ﬂ) is the spectral radius. A matrix M will be
called stable if and only if either it is strictly stable or it is

of class M and p(ﬂ) =1, (c.f. [27, p.265]).
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The stability of a recurrence relation will be related to the
stability of its amplification matrix M.

Observe that the spectral radius p(m) S ||ﬂj| of the amplification
matrix ﬂ satisfies p(ﬂ) <1 1if and only if there exists some
subordinate norm with IMrr < 1. Suppose now that M is class M
(a rank-one matrix is of class M); then p{@) =1 if and only if there
exists a subordinate norm with ltyll = 1. Observe that since
.y E}ﬂ(kh) in our applications, thé subordinate norm in the latter
statement will depend on \h.

Remark

We pause to emphasise how the study of stability of the solution
of the integral equation (3.1) is mirrored by studying the effects of
perturbations on recurrence relations of the form (3.52). For the
basic test equation (3.3) we know that a constant change & in g(x)
results in a change e(x) = Sexp(Ax) in f(x). If and only if
Re(\) « 0; e(x) js bounded and (3.3) is stable; if and only if

Re (N\) <0, 1lim e(x) = 0 and (3.3) is asymptotically stable.
X0

Definition 3.4 Equation (3.3) is stable if Re()\) ¢ O and

asymptotically stable if Re()\) < 0.
On the other hand, when equations (3.28) are applied to (3.3)
we obtain (3.40) and we seek the effect of perturbations in the
values of gj on the values ?j' Structure in the weig%ts ij
enables us to derive a finite term reoufrencq relation of the form
(3.52) wﬁere the components of the vectors ,gi are successive
values of ?j’ A perturbation ¢ in ,?0 results in perturbations
MKe in ,%k and the recurrence for the vectorslgk is damped if and only

~ A

if iim llﬂkll = 0. For any subordinate matrix norm,
—300

1
lim 11MKp g /k = p(M). Thus the method is damped if p(M) < 1. However,
koo  ~ ~ ~

if p(M) =1 and also r@ is of class M then the perturbations are
~
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bounded.
Applying definitions 3.3 we have the following result.
Theorem 3.3
For given \h, the matrix /g(Xh) is stable, and the recurrence

(3.48) is block-stable in some norm, if and only if

p(N(\h)) = lezgﬂkh)l ¢ 1. The recurence (3.48) is block-stable in the
0,-norm if and only if Ilﬁﬁkh)llw = 11d(\h) 11, ¢ 1 and is block-stable
in the Qp-norm if and only if IlEﬂAh)lll = 11dAh)rrg ¢ 1.

Proof. The proof is straightforward.

3.4.3 Additional Definitions

We shall need some additional definitions later.
It frequently happens that recurrence relations occurring in practice

have the form [7]

m ,
QZ Xo (NN Xn+1-0 = Yn+l: det[’)\gO (zh)] # 0. (3.53)

(The vectors and matrices in this relation may reduce to scalars.)

We obtain a relation of the form (3.52) on setting

T T T T
Ol = Dfml’ Xn v Xnem ]
and
X5Xg ~Xp X -Xélffm"
: I 0 e 0
M(\h) = - . - , (3.54)
i 0 0 1 0
~ ~ A ~ -
where Xp E£§Q(Xh). The recurrence relation will therefore be

called stable when the recurrence for the vectors {gn) is stable:
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Definition 3.5

A recurrence (3.53) will be called (strictly) stable if and only
if the matrix (3.54) is (strictly) stable.

To assist in detecting whether the matrix M(X\h) is of class M
(and the nature of its eigenvalues) we observe the following result.

Lemma 3.1

T
~ Suppose that z = [EI’ zg,...,z;] and M(Mh)z = pz; then
T
z = [u ’;fT, um'%gT,...,f?] where

m
-Q _
[,2, Xe(xh)pn=£] 50, (3.55)

and conversely. Thus an eigenvalue pu of M(Mh) is semi-simple
(that is, the corresponding Jordan block is diagonal) if and only if
p is a semi-simple zero of the "auxiliary polynomial®

det[z §Q(kh)um‘Q] in the sense that exactly » linearly independent

j} satisfy {ng fg(xh)pm‘Q} £_=’g_ where » is the multiplicity of
i as a root of the auxiliary polynomial.

When the matrices A¥Q reduce to scalars it can be seen that a
multiple root cannot be semi-simple. In this case fy(xh) is of
class M if and only if the roots of largest modulus of the
auxiliary polynomial are simple.

The introduction of the spectral radius of the matrix ,ﬂ, of
(3.54) may be considered somewhat artificial in a discussion of the

stability of (3.53). To clarify, we observe that if the vectors

Xg+ 51, 52,... are defined by (3.53) and perturbations
Ep, El’ ﬁ,"'°’§m-1 are made in the "starting vectors" Xo,...,zm_l,
then the resultant changes ,imﬁém+1""‘ in Xp, Xpe1 satisfy the

m
homogeneous version of (3.53), that is QZOXQEn+1_Q = 0  for

n=mml.... . The choice Ef = ytﬁ (r =0,1,...,m-1) where p Iis
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. - - T .
an eigenvalue of 'g and where z = [#m %E?, pm %5?,...,{?] is the
corresponding eigenvector, yields &, = pul'{(r = m,m+l,...). Thus
~ ~

p(M) = maxipl gives real insight into the possible growth of
v
perturbations in X, (r > m) resulting from certain perturbations
~
in the "starting vectors" Xg,Xy,...,X;.1. We return to a similar
~T A s
aspect of our theory at the end of 83.4.4.
Since stability of recurrence relations is related to the location

m

of zeros of det {QZO XQ(Xh)pm'Q} we recall the following
= v

definitions.

Definition 3.6

A polynomial is said to be a von Neumann polynomial if its zeros
lie in or on the closed unit-disk centred on the origin, and its zeros
of modulus unity are semi-simple. A polynomial is Schur if it is a
von Neumann polynomial with no zeros of modulus unity.

3.4.4 Full-step stability

Whilst analysis of (3.48) is sufficient for internal stability
(see later, 83.4.5) we can in the present case obtain a scalar
recurrence as fqllows. From (3.48) we find, on using (3.49) and

(3.50),

T _ T _ -1 T )
Epfia1 T CplITAAITIe eppy F epii

or, since ; pi = ?(ih),

e
~

F((i+1)h) = ROWTF(ih) + vi4 (3.56)

where /»(xh) =n§;§ﬂxh), and Vi ="5£’51+1. Here,

~

p = p(Mh) = ei(l—khﬁ)‘li, (3.57)
. T T ~ . .
and since pep =,Sp g’(xh), g is the eigenvalue of /g(xh) which does

not vanish identically. The scalar recurrence (3.56) is stable if and
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only if 1pu1 ¢ 1, that is p(N(\h)) ¢ 1.

Definition 3.7

A Runge-Kutta method defined by (3.28) and (3.31) displays

full-step stability (when applied to a given test equatipn) if and
only if there exists a stable recurrence between vectors where
components are the values f(ih) = ?i(p+1)’ i ng.

Remark: The relation between values Tf(ih) may be of the form
(3.53) where the components of the vectors X0 are values Tf(ih).

In view of the above, we state the following result.

Theorem 3.4

The extended Runge-Kutta method applied to (3.39) displays
full-step stability if and only if Eth) is stable, that is,
if and only if IL(Xh)l ¢ 1 where L(kh) is defined by (3.57).

The analysis of extended methods follows similar lines to the
analysis of Runge-Kutta methods for f'(x) = AM(x). The notion of
block-stability discussed below, provides a tool for the analysis of
concepts of internal stability (cf. [13]).

Observe that ;(kh), expressed here as an inner-product
e:iﬁxh), can be expressed as a ratio of determinants. We see that
det[p({;khﬁ)fssg] is a polynomial of degree p+l in pa with

~

non-zero root u and we find

1-)hA -\hA . ... -ABA 1]

—XhAlO ' 1-3\hA

i = det 11 . |=det[1-)hAJ.

| -\hA S\bApy . MDA 1
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on examining the coefficient of the polynomial, for example. (For
"economized versions" referred to in §2.3.4, with
Agr = 0, r =0, 1,...,p the order can be reduced by one.)

3.4.5 Block stability

With the analysis now developed we can consider a discussion
of A-stability.

Definitions 3.8

The region of (block) stability, in some norm, of a recurrence

(3.52), where ﬂ E’ﬁ(xh), is the region of values of Ah ¢ C such
that l[g(xh)ll ¢ 1, in the subordinate matrix norm. The region of
strict stability is the region of values \h € C for which

||§;xh)|| < 1. A recurrence (3.52) is A-stable, in a certain norm,

if its region of strict stability includes the region -o < Re(\h) < O.

A matrix M(Xh) will be said to be A-contractive if p(%ﬂ%h)) <1
~ b

whenever -o < Re(M\h) < 0. Strict stability of (3.52) is analogous
to (asymptotic) stability of (3.39).

We state, without proof, the following result.
Theorem 3.5

Let the Runge-Kutta tableau (2.33) define a method for an
initial-value problem in ordinary differential equations, and
let the latter method be applied to the equation f'(x) = AM(x), £(0)
given. Then the approximate solution values define vectors satisfying
a relation of the form (3.48) with an appropriate choice of vector
Li+l- fhe region of stability of the method is identical to the region

of stability of the extended Runge-Kutta method applied to
X

f(x) - X\ Jf(y)dy = g(x). (See Stetter [25, ppl31l, 174] and observe
0

that ezith) in the "growth function" of [25] assuming (2.33)

is a conventional R-K array). In particular if the Runge-Kutta
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method is A-stable the recurrence (3.48) is A-stable and the matrix

N(\h) is A-contractive.
~

The following example serves,

inter alia, to show that requesting

étability (of (3.48)) in a prescribed norm may be too severe.

Examg]é'3.2§bz

Given the conventional R-K tableau of Example 3.2(a)

We know that d(Mh) = [(1-3N\h)~1,

(i+gxh)(1-5xh)-1.

(1+33h) (1-53h) "1 T and

-1 :
-10
(1—§kh)"1]' ['”

max{l(l-%kh)'ll, |(1+§xh)(1-§xh)-1|}

ff%h)}.

1 for all

Re(N\) < 0 for all h

{ia-pm=11 + 1@+pn) A-phy 1],

| if 0>xh>-1 and X ¢ R.

C

p(Zh) =
N(Mh) = 0 (1-3xh)
~ 0 C(1+34)h)
Thus, llﬁ(xh)lrw = llg(xh)||m =
<
and Ilﬁ(kh)lll = Il%(kh)lll =
>
. <:;;ﬁ\»
7
L R
L7 /1

%

tid(xh)11p > 1 if  hheR = ((e,6)

The recurrence

<0 &2~ %62 < 1}.

(3.53) is A-stable, and the recurrence (3.48) is

A-stable in the uniform norm. Moreover (3.48) is strictly block-stable
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in the uniform norm when Re(Ah) < 0. 1In the 1|} norm this

”1
feature is lost and Xh = 0 is not in the region of block stability.
Example 3.3
Consider the Runge-Kutta tableau for an A-stable semi-explicit
method of order two [16, p.244],
0

1

NI= |IN= O
(NI ST e

We find d(n) = [1, (1+352h) (1-53h) -1, (A+0h) A-0h)-1T  and

~

p (Z\h) = (1+%xh)(1—QXh)‘1. Thus, the extended R-K method displays

full-step stability since 1u(Ah)1 < 1 when - < Re(\h) < 0.

NN 11 = 1 + 2 1(1+$\) (1-5h)~1

max{1l, 1(1+iNh) (1-4xh)-11}.

Ilﬁﬂkh)llw
When -» < Re(\h) < 0 IIE(Xh)IIw = 1 and we have block stability
but not strict stability in the uniform norm. In the 1] 'y
norm block-stability does not exist. Once again, we stress that the
choice of norm is significant in discussing stability and regions of
stability.
Remark The final observation of the preceding example shows that
the choice of norm is significant in discussing stability énd regions
of ;tability and it also affects the practical relevance of the
theory. In the present case it is easily argued that ;(Xh) is the
significant factor affecting stability, first in respect of its rgle
in full-step stability but also from the following reasoning. We
suppose that ,?k+1 =.§(xhl?k + Ykl and that ,?O is perturbed by the
addition of io. The consequent change ,ék in ,?k is {ﬁﬁkh))ﬁgo and
llékllw g !l(ﬁ()\h))kllwllﬁpllw < {llﬁ(kh)llm)klliolloo. The latter

inequality loses much however. With Qﬂkh) = d(kh)e;, we find
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(N(h)K = (k) PE-INOR) . Thus,  11H(NOR) KT = 1pOW) k=1 NI
and 11Egil Ilgpll if the latter factor is bounded by unity for

some norm. In the more general case of a relation (3.51), in which
the amplification matrix has no special structure, we may appeal to the
definition p(M(\h)) = lim 11{M(Ah))K111/K which is valid for any

R k-—)OO ~
subordinate norm. Thus, given e > 0 there exists a corresponding

integer k(e) such that, for k ) k(e), ll{M(Xh)}kll ¢ {p(M(N\h)) + e}k-
A -~

3.4.6 Modified extended methods

As noted earlier, in §2.3.4 wvariants of the extended methods

~

with ei; of (3.32) replaced by eb; may be found in the literature.

For this methéd (3.45) is replaced by

T i
(I-\hA)p;47 - Ah eb L= g (3.58)
LM Pi+l p jgl.ﬁJ 8i+l

and the result analogous to (3.47) is
h T T . 59
(I-MhA)piiy = {EP+)‘hi(Ep~3p)}.‘f,i + gi+1-Epgi  (3.59)
Equation (3.59) assumes the form (3.52) with an amplification matrix
T T
Nx(Ah) = d(Ah)|e (I-\hA) + Xhb ,
Nx(Nh) = d( >[~p<v A) Vp]

on applying (l;xhé)-l and writing '3; = S;é’ The matrix ﬁﬁ(xh)

is of rank one and its non-trivial eigenvalue is expressible as

~

ue(A) = 1+ \h Bg(I—XhA)“le. (3.60)
o ~ - V

When ’PE # aT it is more difficult to derive the exact analogue of the

scalar relation (3.56).
Paul Wolkenfelt has observed that we may proceed in the following
way.

Equation (3.58) becomes, on applying ~?;(i>-Xhﬁ)*1,

T T T i T
ia1 = I-xhA)-le Ah b . + e (I-\hA)~lg. 3.61
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or, since ez $i = ?(ih),

fii1 = #(Ah) X\h b o+ e W 3.62
i+1 = #(3h) Ah b jglth &pVi+l (3.62)
where Wi, = (l;xhé)-1§j+1. (3.63)

We observe that, on using (3.58),

T i i-1 T T T i-1 - T
b ( .- ) = b p; =b (I-xhA)"L e A\h b c o+ b Wj.
P jgl Z jZ1.fJ> 2p%i T BT 2 Wb By jzl L7 A
(3.64)
Thus, b 3 o - [1 + 3hb! (1-xha)-1 o] b St bl
~p j& AP A~ o~ ~p jE1 < ~pd
(3.65)
On applying p(Nh)Mh we obtain
L(\h) Ah b % = e OM) (AR A BL S gy 4 w(Wh) NhELW;
~p j&1 2 ~p & 2 ~pt
(3.66)
From (3.62), and using (3.66),
Tial - eWipq = meOh) [Ff - elW;] + wOh) rh bhw; (3.67)
i+l 7 Spli+l K i~ Epl K Zpad- '
Thus,
= = T T ~ T
fi41 = me(Mh) Ty + [gp%j+1—ﬂ*(kh)lsp Wi + y(kh)kh‘bpﬁhj. (3.68)
Theorem 3.6

The recurrence (3.59) associated with the modified extended method

is block-stable in some norm (depending on \h) if and only if

~

s ()

1+ M b (1-xha)~le

/\/p ~ -~ ~
lies in or on the unit circle centered on the origin.
Example 3.4

Consider the third-order Runge-Kutta tableau

0 0 0 0 0

1 1

3 3 0 0 0

2 2

3 0 3 0 0
1 3

1 i 0 A 0
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. . . T (1 3 3 1 .
with which we may associate EL -[g, 5 3 E]' We find
_f 14l 2 2,9,2 19,2 o 1,3.377T
Sﬂxh) =[1, 1+ shh, 1+ 53h + ghh%, 1 + Ah + FAChe, + Z3h 1.
Then () = 1+ M+ 53202 + 2303, pe(hh) = 1 + ah + $h2h2 +
%g Ah3 + %ﬁ Mh4. In the i1 111 norm.and the 11 11, mnorm block

stability exists as there is a region of values Xh ¢ C such that

13
tpe(Nh) 1 ¢ 1. (ipe(AR)1 = 1 when Xh =0, -4, -3/5 (1 i V 3);
Mx (Ah)=~1 has U Complex roots. Rejion of s-#ab(lfl:y i Eq.,oj)
We note that the result implies a lower-order accuracy in the modified

method. (Consider exp(Mh)-px(Ah).) The modified method in this

example requires more effort per step than the extended method.

3.5 Mixed Runge-Kutta methods with reducible rules

Amongst the class of mixed Runge-Kutta methods are those employing
reducible quadrature rules Q (2.3) satisfying (2.22). Before
proceeding with the analysis of such methods it is useful to recall
that the stability polynomial for a linear multi-step method applied to
f'(x) = M(x) is p(p)-Nho(p). If we suppose that the rules Qi are
(p,0) - reducible where p,0 are defined by (2.17) then a simple
calculation shows that the "basic test equation” (3.39Lresuuﬂﬁ ﬁs the

particular form of (3.40) under consideration, yields, using (2.22),

lINgt=!
INgE]

. f((n-2)h) = \h 020 Bo F((n-2)h) + ng ap g((n-¢)h), n 3 ng.

2
(3.69)

This is a finite term recurrence with stabil%ty polynomial
p(pu) =Nho(p).

Returning to the mixed Runge—Kﬁtta methods we observe that the
structure of the equations for approximate values is derived from

(3.33) and we obtain from (3.40) the scalar equations

?i(p+1)+1 = )\h[wio ?0 + wjq ¥p+1+ ........ +0§ § ?i(p+1)]+
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+ M[Ago Ti(pe1y+1 + Ao1 Fi(pr1ysot-. .. Hhop F(i+1) (pr1)] + 871 (p+1)+1)
] (p+1)+2 = )\h[wio fg + wi1 fp+1+ ........ +wj }:i(p+1)]+

+ M[A10 Fi(pe1y+1 + A11 Fi(priyant--. . +A1p Fiv1) (pr1)] + 871 (p+1)+2)
?(i+1)(p+1) = )\h[wio ?O + Wil ?p+1+ ........ +w“ ?i(p+1)]+

+ )\h[Apo fi(p+l)+1 + Ap]_ £ (p+1)+2F- -« .. +App ?(i+l)(p+1)] +

g(7 (i+1) (p+1))  (3.70)

We define 7, 99, p3... by (3.41) and set o = g(0) e,
Then, with E_, = ee:, we have
i
(L—)‘hé)fi+1 - Ah kéo "’ikfpfk = §j+12 (3.71)

It follows that, when (l;khé)‘l exists

i , .
Pi+l = M50 NOW g = 141 (3.72)

where
Yiel = (I-MhA)~lgy g and N(Wh)
is defined by (3.49).

With the aid of (2.22) we find on setting i-=n -2 in (3.72),

multiplying by op and summing over ¢

m m ~
02020 Pn+l-0 - N2 Be N en_p = yne1, (3.73)
~ m
where yp4p = on 09 Ynt1 -0 -
~ = ~

Since this type of argument is repeatedly used below, we pause

to clarify it. In deducing (3.73) we obtain from (3.72) the result
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m n-2 m
-\ =
0 agfp+l—Q h on & kzO wn—Q,g E;(Xh{fk QZO aQZn+1—Q~

[INg=}

2

The argument is more clearly seen on writing wjgx =0 for k> i

so that the second term on the left is

m n
AhN(\h) Q Wn_0, = AhN(\h { QOWn_ .
NOR) (20 %0 (&0 “n-0:kek NOR) - 8o 2o @0¥n-0,k1gk
On using (2.22) we obtain
Ah N(\h) B Ah N(\h) 3 I5)
N 1o Pn-kek = A NOMD 5 Bogn-o-

As in the analysis leading of 83.4.3 the relation (3.73) can

be expressed as

i 4, 4-1 - -
Pn+l Ozol 0111 co. amL Ah 60'11()\11) Blll\\I/(kh) ce 6mﬂN/()\h) ¢n
#n L I #n-1
[ Prt+1-m] L 14 L I 0] [®n-m]
~ ~ ~r o
AT °
+ [Yneds oT,....,Q?]T, (3.74)
C * T T T T . b
Writing .fn+1 = [¢n+1’ wn""’~n+1—m] the relation (3.74) may be

expressed in the form
* 3
¥n+l =4§¢n +’En+1

~

where the amplification matrix M = M(\h) here has as its eigenvalues

the roots of the auxiliary equation

m
det[ng (gl - BN pm=2] = 0. (3.75)

We shall strengthen the following result later.
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Theorem 3.5

The recurrence (3.73) is stable if the roots of (3.75) lie in or
on the closed unit disk centered on the origin, and those of modulus
unity are semi-simple, that is, if det[p p*(u)l/— khd*(u)N(xh)] is a
a von Neumann polynomial.

3.5.1 Full-step stability

We turn now to the consideration of full-step stability for the
mixed method considered above.

Taking inner-products with e

p in (3.73) vyields, with

N(\h) = d()\h)eT as in (3.49), the result
~ ~ ~P

INSet=S

T .m T o T
ope -0 - Ah e N(Ah)p,_p = ope —0- 3.76
o2 20Sp¥n+1-0 022N enp = ) e vnia_g (3.76)

Thus

[INgl=}

o2 apT((n+1-0)h) - Ahu(nh) Q§O BeT((n-2)h) = £,,1  (3.77)

where §.,,7 denotes the right-hand term in (3.76), and

L) = éid(Xh), as in (3.57). Writing pny = [F((ntDh),

~ - T
f(nh),...,f((n+1-m)h)] we may express (3.77) in the form (3.52)

where the characteristic polynomial of the amplification matrix is

m

on {app = Nhp(Zh)Bo)pm-2. (3.78)

We have established the following result.
Theorem 3.6
m . m
Let p¥(p) = QZO aQym'Q, o (p) = QZO BQyW”Q and let the rules
(2.3) be reducible to the linear multistep method whose first and
second characteristic polynomials are p*(y), 0*(p). Then the mixed

Runge-Kutta method displays full-step stability if and only if

pp*(p) = Zhop(Zh) o (W) | (3.79)
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is a von Neumann polynomial. The stability is strict if (3.79) is
Schur.

Theorem 3.7 prompts re-examination of (3.75) to relate it to (3.79)
under standard assumptions [25, pp.188, 206].

3.5.2 Block Stability

From the relation (3.75) we can establish the following results
which are a consequence of the two previous theorems.
Theorem 3.7

Suppose the conditions of Theorem 3.6 prevail and in addition
p*(u) is a von Neumann polynomial with p*(l) = 0. Then (3.73) is
block-stable if and only if the method exhibits full-step stability.
Proof. The value p' is a root of (3.75) if and only if, for some

§ # 9, we have

Moo¥(p') N (b)) b= R '),
~/ ~ ~
If p* and oF have no common factors either u' = 0 and

N(M){ = 0 or d*(0) =0

NN = w™% (3.80)
where

p* o= ¥ "y /e (i) (3.81)

For (3.80) to be satisfied, {y*, E) must be an eigenpair of

N(A\h) and hence gither p* =0, whence p¥(p') =0 or p¥ = p(\h)

whence y' must be a zero of the polynomial (3.79) which occurs in
the statement of Theorem 3.6.
If u' is a root of (3.79) then (. is necessarily a multiple
of d(3h) and u' is semi-simple only if it is simple. (If u'» is
a zero of p*(px) then §{ 1is any vector in a p-dimensional subspace
of vectors annihilated by ﬁﬁkh). We expect to find p*(p') =0,
for some u' with lyll =1 and if ¢ is a zero of (3.79) then there

exist two linearly independent vectors { corresponding to this value.)
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Example 3.5

Consider the mixed Runge-Kutta method employing the repeated
trapezium rule (Example 2.7) and the Runge-Kutta tableau %. i...g.
which yields ;(kh) = (1+i\h)/(1-4N\h) (see Example 3.2). The

polynomials p*(u), a*(y) are determined by the coefficients given

in Example 2.7 and the polynomial (3.75) is
p(p=1) - $Ah(L+ih) (1-$h) ~1(pt1)
The zeros of this polynomial are

\h 1+3\h
= - 5 Ko = T-1I%h

The method exhibits full-step stability if and only if Re(Mh) < 0
an ;Ikhl § 2.

In view of the preceding example we may state the following
theorem, which is of some significance.
Theorem 3.8

A mixed method based on an A-stable reducible quadrature rule
and an A-stable Runge-Kutta tableau need not exhibit full-step

A-stability.

3.5.3 Economized versions

The previous theorem is disturbing when A-stability is a desirable
feature, since mixed quadrature - Runge-Kutta methods consume less
effort than their extended counterparts. However, the mixed methods
can sometimes be modified to obtain full step A-stability. .We consider
only the "economized version" of the mixed method, applicable where
9o - 0, and recall from §2.3.4 F(ih) = Fi(ps1) = Ti(p+1)+1

that is,

T T
e Pi = enpi+l (3.82)

~P -
The first of the scalar equations in (3.70), using (3.82), may be

written in vector form as
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T
eO‘§i+1

~r

T T
S0%p Pi+l = egeppi = M Z Wik e ipsok + Xh ee oA Pi+l + e

~ At s Ve

Subtracting (3.83) from (3.71) we obtain

A i T T
(I-AbA)pi41 - Ah kzo wik(ezeg)e vk = epe i + [I-e e0181+1

where

(3.84)

In consequence,

i
pixl = M Y @i [Ne(h) =Ny (Oh) gy = N (\h)ps + yi1 (3.85)

where
N, ) = [I - ahA]-le of
~0 = o
Ny(Ah) =[1 - AhA] -195}3
and ; [1 XhA} 1[ eT] Thus
Z}+1 0%p18i+1
m m
QZOaQ (en+1-¢ - No(Ah)pp_p)} - Nh QZOBQ[N*(MU—No()\h)]son-Q
) (3.86)
= (84 -1 .
020 QZP+Q 1

If we consider full-step stability we have, on taking the inner

products of (3.86) with &p: the result

ng ap (F((n+1-2)h) - pug(Ah)T((n-2)h))

-Ah ngﬂQ{ﬂ*(Xh)-#o(Xh)}?((n_Q)h)

m

T
= on aQafp,zn_Q+1 (3.87)

where, in the notation of (3.84)
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T o
Ko () = e (1-XnA]"Leo

and (3.88)

T

px(Nh) = e [I-\hA]-le

We deduce the following result.
Theorem 3.9

Suppose that in the economized mixed method, the quadrature rules
(2.3) are (p*,o*)—reducible. Then the method applied to (3.39)

displays full-step stability if and only if

(p-po(NR) }p¥ () - Nh{pw(Zh)-pg(Nh) }o™(p)
is a von Neumann polynomial, and the stability is strict if and only if
it is Schur.

Example 3.6

Consider the economized version of the method in Example 3.5,

<>
1

ey

= O

o . 10
o]' (I-MA)™" - [)\h 1}

po = M, me = 14xh,  pF(p) = p-1, 0™ (p) = F(p+l).

We are interested in the polynomial

A
(p=Mh) (p=1) - 5h (p+l)
that is,

pz —v[l + E%E]ﬂ + %E .

Denoting its =zeros by ui and po, py = exp(ih) + 0(h3) and
po = %E exp(-A\h) + O(h3). The economized method exhibits full-step
stability if and only if Re(Nh) < 0 and I\hI < 1.

Unfortunately, it is not always true that economized methods

have increased regions of stability.
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3.6 Mixed gquadrature Runge-Kutta methods using block-reducible rules.

Now, we consider the stability of mixed Runge-Kutta rules in
which the quadrature rules are block-reducible in the sense of
Definition 2.5. Thus we suppose that the weights (wij) of the
quadrature rules employed in the mixed method can be partitioned into
square matrices of order q represented in (2.8) such that for fixed
matrices {éQ’ EQ}2=O (defining Voj = 0 if j > 2) they satisfy
certain conditions (3.38) which are here repeated for convenience.

1

0 ﬁQYp+1-Q,v = Bpy1-ps m 2 ng 2 0

INg=]

Q
where A, = B, = 9/ for » £ {0,1,2,..... m)
d § A 0 wh (1,1 11T ¢ Ra (3.89)
an e = where ¢ = B € .
Q=0 '\(Q ~ ~ A
Relations (3.89) correspond to generalisations of (2.22). We assume

with little loss, that ng = ng = 0.

3.6.1 Block Stability

(For convenience, below, Api1 = By = B = 0.)
A ~ A ~

We require some additional notation and we set, for ¢ = 0,1,...,m+l,
Bp = Bp_1 J#¥ + By J , (3.90)

where, in partitioned form,

{,= [f},iz,...,i9_1,49], " (3.91a)
J# =10, 0,...,0, ¢o], (3.91b)
and eo’fl""’ig—l are the successive columns of the identity matrix

Iq of order q. (We continue to write 1 for the identity of order
~— Fave

p+l.) Recall the definition of u(\h) in (3.57). The principal result
of this section may now be stated.

Theorem 3.10

Suppose the mixed-Runge-Kutta method employs block-reducible



—137—

quadrature formulae satisfying Definition 2.5, and suppose the
matrices Bp(2 = 0,1,...,mtl) to be defined by (3.90). Then the
P

method displays full-step stability if and only if

m+1 ~ ~
det[QZo {Ag - xhy(Xh)BQ}m—Q+1]

is a von Neumann poiynomial; the stability is strict if and only if
the polynomial is Schur.

We apply the theorem to an example later but now undertake a proof
of the theorem. The partitioning of the weights (wij) into
submatrices ﬂXij satisfying (3.89) is not ideal for our discussion.
We wish to 'exclude' the weights wjp before partitioning. We

A~

therefore define matrices ij by prescribing the columns

A

Vijer = Vijers1, r - 01,0072,
Vijéq-1 = Vi, j+1€0 (3.92)

where Vij =0 if j>i. Thus,
ha 4
TRERTERSIBEL.S (3.93)
Since Vjj is lower triangular the matrix Vjij is strictly lower
triangular.
We shall employ the notation for a Kronecker (direct) product

between matrices.

Definition 3.9

Let A, B be square matrices of order m, n respectively.
Pl
Then A @® B is a matrix of order mn whose (r,s)-th submatrix is
Pacad
ArgB, where Apg is the entry in the r-th row, s-th column of A.
as Pad

Remark

For future use we state the following result:

[A @ B] [C® D] = AC ® BD. (3.94)

~ - ~ v A NS Vv
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We set, for k=20,1,2,.

~ T T T T
Pk = [wkq+1’:?kq+2"":f(k+1)q] (k =0,1,2,...), (3.95)
~ ~ '

where @] is defined by (3.41). Equations (3.71) can be re-written

as

kq
(I-AbA)pqr1 = M le “kq:0 Eppe = Bkqil * b Gkq, 0EpPQ-
On reflection (see Example 3.7 below) we find that the scalar

equations defining the method applied to (3.39) can be arranged in

the form

A k ~
[1q @Q;Xhé)]gk SRV [ij ® EP]EJ = 1) (3.96)

where the components of <r(Ah) have the form g(7,) + \h wV,Og(O),
since T(0) = g(0).

Using the result (3.94), we note that

[Iq ® (I-xhA)71] [Vyj @ Ep] = Vij @ (I-AhA)~1E, = Vij @ N(Mh).

I
Multiplying (3.96) by Igq ® (I-\hA)~1, yields

A~ A~

k ~
ok -Ah jzo [Vkj ® NOh) Jgj = T(Ah) (3.97)

where T}(Ah) = (Ig @8 (I -NhA)~D)y(Ah).

By virtue of the relations (3.89), (3.90) and (3.93) we find

m+1 ~ ~
o2 22 Ynt1-2,j = Bnel-j ‘ (3.98)
where B; =0 if j /£ (0,1,...,m+l}.

~d

It follows that, if we multiply (3.97) by ’éé ® I and sum over ¢ we

find

m+1 m+1

- - ” m+1
Ap ® I) -¢ - Ah Bp ® N(\h 0 = A 1) Thyq_0.
QgO (ng ~ Potl-0 on 2L 1S )fD+1 L QZO (Ng ®! _n+l-Q

(3.99)

The auxiliary polynomial for this relation, which allows a study of
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internal stability, is

mt1 ~
det (5 (Ao ® 1 - xnBy @ NOx))pmrl=2], (3.100)

=

3.6.2 Full step stability

Analysis of (3.100) provides criteria for block-stability, but
for an analysis of full-step stability we proceed as follows.
Multiplying (3.99) by I, ® E, yields
~4 =P

m+1

~ m+l ~ ~ m+1
2o Ao 8 Ep)ent1-¢ - A 504 Bo ® (EpNOM))pnyy—p = ng(ﬁg ® Ep)l'ni1-0

(3.101)

We observe that Ep = eeT and hence

T T
E N(Ah) = ee d()\h)e

p'v

= p(\h)E,

so that (3.101) reduces to

mil B ~omil o~ ~ m+1
QZO (ﬁ? ®\Ep)fp+1—Q - Mg 3, (Eg ®.EPZEP+1"Q = le(ég ®.EP)EP+1“Q
(3.102)
Let us define
B = [F((ka+1)h), F((ka+2)h), ..., F((k+l)qh)]T

where f((kq+r)h) is of course Agigkq+r. Then (3.102) states no

more and no less than

A

m+1

-~ ~ m+1~ ) m—t]_
ngiégfn+1-Q~Xh#<Xh> o2 Beni1-0 = o2oent1-g  (3.103)

for appropriate vectors +p derived from TIp. The stability of
(3.103) governs the full-step stability of the method.
Example 3.7

Consider the mixed method based on the quadrature weights

discussed in Examples 2.4 and 2.14 and the Runge-Kutta tableau
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discussed in Example 3.2. The tableau of coefficients ij in (3.28)
assumes the form which we partition as shown, the diagonal blocks of

order two being the matrix A,
-~/

|
0 ! 0 !
2 |
|
ot |1 ofl
———t e + ——————————
1 1]
-1 o0 - - 1}
2 2 [{2
|
|
1 1
-1 o - |11 0
2 2
1
] T
1 4 |1 1 1 |
-1 0 - 0 - - 0
3 3 1 3 2 I
| |
1 4 | 1 1
-1 o - 0 - 1 0
3 3 3
1 4 | 5 1 1]
-1 o - ] - 0 - - 0
3 3 1 6 2 1|2
I |
1 4 | 5 11
-1 o0 - 0 - 0 . 1 0
3 3 6 2
t T
1 a "2 4 | ] 1 ]
-1 o - 0 - 0 - 0 - - 0
3 3 3 3 | 3 2 1
| I
I |
1 4 2 4 1
-l o - i} - i - 0 - 1 0
3 3 3 3 1 3 |

The dotted partitioning corresponds to partitioning for the vectors

1, ¥2, ©3,... with the conventions of (3.41) (f(0) being known),

whilst the unbroken partitioning corresponds to determination of

~ ~ ~

¢1, ¥2, ¢3,... defined by (3.95).

~

The coefficients of the system of equations (3.97) are obtained as
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1
1 o |
|
|
1 o |
__..__._..1_._..+ __________
0 =d;1 1 0
2
|
|
. I
0 -d,l o 1
ooz
1
T L]
4. | 1 |
0 -d;, o ~d,| 1 0
3 | 3 I
| I
4 | 1 |
0 -d, o =d,| o 1
3 3
__________ +__.__—_..-_._.___-.._.---_-—+___.__...___.-
4, | 5 1 1
0 -d, o =d,| o -d, 1 0
3 ' 6 2 |
| |
a. | 5 19 1
i -d 0 -d 0 -d 0 1
3 2] 6 2 2 2}

and so on and a direct approach via differencing allows a stability
analysis. For full-step stability the result may be obtained directly
by substitution in the determinantal expression given in Theorem 3.10.

From Example 2.14 we know that we may take m = 1,

0, /él=i\1, ,-\“}O:QQ and

o~

which yields A9 =

From Example 3.2 we know that p = p(\h) (1 + $h)/(1 - $xh).

By Theorem 3.10 we require the characteristic polynomial

K2 - (1 + bR - Php - Db

|-<1 + $Nhp) p? p2 ~ihpp
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13 ~ 1 ~ 1
= 2 - (1 + 2= Mhp 4+ 2 AZh22)p 4 z

Nhp + 12 A2h2)2 )

to be a von Neumann polynomial. Denoting its zeros by K1, H2, M3, M4

we find py = pp =0, p3 = %Xhu + %x2h2ﬂ2 gy = 1 4+ 2Xhp  (and, indeed

we find p,

exp (2 zh) + 0(h3) as might be expected), on substituting
the value of pu. If B3 = p4 we must check for semi-simplicity.

We may remark that the block-reducible method considered here is

actually equivalent to a two-cyclic linear multistep method.

3.7 Extensions

The preceding analysis based on the structure of Runge-Kutta
methods, has resulted in recurrence relations and stability polynomials
which permit stabilityrresults for the "basic" test equation (3.3).
Here, we‘indicate possible extensions to the analysis.

Our discussion has entailed the derivation of recurrence relations
(3.29) of the form b1 =M O + Yk+1, where M depends on \h

~ ~ A ~ ~

and is independent of k and the componeﬁts of ‘fk are the values
of the approximaté solutions. A stability condition, resulting in
definitions of "absolute" stability, is the requirement that p(ﬁ? £ 1,
where p(ﬁ) denotes the speétral radius, and that if p(ﬂ) =1 then
:ﬁ must be of class M, Alternatively, we may ask that ||§th)|| <1
in some preselected norm. The remarks of Stetter [25, Section 3.5.5]
can be parallelled here, and one may seek regions in the MAh-plane,
wherein f(@) e p', p' <1 for M = M(\h). Given the nature of the
vectors Sk- in (3.29) and the behaviour of the solution of the test
equation it is possible to define relative stability‘concepts
(Baker [4]) which can also be analysed in terms of the eigenvalues
of M = M()\h).

~

The analysis presented here provides a necessary foundation on

which to develop a theory for more involved test equations. With regard
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to the practical conclusions which may be drawn from the work, it is
appropriate to issue a caveat. We recall that Baker [4, p.763] wrote
as follows: "It is, of course, the very simplicity of the (test)
equation which makes it ideal for mathematical analysis, and a study
of this simple case does give some genuine insight........ What we
must guard against is an unquestioning acceptance that a method which is
suitable for this special equation is suitable for more complicated
equations.” As we observed in §3.2.6, it now seems generally accepted
that a necessary (but not sufficient) requirement for an all-purpose
method is that the method should be suitable for the test equat ion
(3.3). Thus, the analysis developed here fof (3.3) can readily be
extended to more general test equations and we note the results in

[1], [2], [3] for test equations of the form

X R
f(x) - J > A (x=Y)TF(y)dy = g(x).
0 r=0

For such equations the concepts of stability and asymptotic stability
depend on R and are not covered by Definition 3.4. The appropriate
definitions result in generalizing the concept of A-stability
(applicable to methods for equation (3.3)) to a concept of
(A;R)-stability (see [2]), for R = 1,2,3,...A stable methods need not
be (A;R)-stable, for Rjl.

Other directions in which our analysis can be extended arise when
we seek to mimic properties other than those;represented by
Definition 3.4. Thus, for example, we motivated the definitions of
stability and asymptotic stability by classifying the response of f(x)
to constant perturbations in g(x).A When considering the effect of
more general perturbations it is natural to turn explicitly to the

properties of, in the linear case, the resoivent kernel, and (for the
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numerical methods) the inverse of the infinite block-lower-triangular
matrix of coefficients in the formulae (3.28) defining the method.
The differencing procedure by which, in the case of (3.3), the latter
equations are reduced to the form (3.29) is in effect an elimination
procedure permitting such an approach.

Finally, we may enquire what extensions are possible when (3.3)
is replaced by a more general equation with, for example, separable
kernels (see [6], [14], [15]). A stability analysis may result in

recurrence relations of the form

P+l = Moo+ g
where ,ﬁk depends on k and where strict stability requires
My My X‘g. The local stability criterion P(ﬂk) <1, for all Kk,
is necessary but not sufficient (if P(@k) =1 then My is required
to be of class M) whilst the [ocal block-stability criterion

FMg11r <1, for all k 1is sufficient but not necessary. When (yk Eﬂg
the analysis for (3.3) provides some insight into which tests are
meaningful in the more general case, and the limitations of such tests.
We may compare, for example, regions of block stability in differing

norms for the special case, in order to gain insight for the more

general case.



10.

11.

—145—
REFERENCES

AMINI, S. & BAKER, C.T.H. Further stability analysis of numerical
methods for Volterra integral equations of the second kind.
Numer. Anal. Tech. Rep. No.47, University of Manchester (1980).

AMINT, S., BAKER, C.TH., van der HOUWEN, P.J. & WOLKENFELT, P.H.M.
Stability analysis of numerical methods for Volterra integral
equations with polynomial kernels. Rep. NW 109/81,

Math. Centrum, Amsterdam (1981).

AMINI, S., BAKER, C.T.H. & WILKINSON, J.C. Basic stability
analysis of Runge-Kutta methods for Volterra integral
equations of the second kind. Numer.Anal.Tech.Rep.
No.46, University of Manchester (1980).

BAKER, C.T.H. The numerical treatment of integral equations.
Clarendon Press, Oxford (1977, reprinted 1978).

BAKER, C.T.H. Runge-Kutta methods for Volterra integral equations
of the second kind. Lecture Notes in Mathematics No.630
Springer-Verlag (1978) pp.1-13.

BAKER, C.T.H. Structure of recurrence in the study of stability
in the numerical treatment of Volterra integral and
integro-differential equations. J. of Integral Equations 2
(1980) pp.11-39.

BAKER, C.T.H. & KEECH, M.S. Stability regions in the numerical
treatment of Volterra integral equations. SIAM J. Numerical
Analysis 15 (1978) pp.394-417.

BAKER, C.T.H. & WILKINSON, J.C. Stability analysis of Runge-Kutta
methods applied to a basic Volterra integral equation.
J. Austral. Math. Soc. (Series B) 22 (1981) pp.515-538.

BOWNDS, J.M. & CUSHING, J.M. Some stability theorems for systems
of Volterra integral equations. Appl. Anal. 5 (1975)
pp.65-77.

HAHN, W. Theory and application of Liapunor's direct method.
Prentue-Hall, Englewood Cliffs (1963).

HAIRER, E. & LUBICH, Ch. On the stability of Volterra-Runge-Kutta
methods. Sonderforschungskereich 123, Universitat Heidelberg
Preprint No. 194 (1982).



12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

~146—

HENRICI, P. Discrete variable methods in ordinary differential
equations. John Wiley & Sons, Inc., New York & London (1962).

van der HOUWEN, P.J. Construction of integration formulas for
initial value problems. North-Holland, Amsterdam (1977).

van der HOUWEN, P.J. On the numerical solution of Volterra
integral equations of the second kind, -1 Stability;
- Il Runge-Kutta methods (with BLOM, J.G.) Reps. NW42/77 &

61/78, Math Centrum, Amsterdam (1977, 1978).

van der HOUWEN, P.J. & WOLKENFELT, P.H.M. On the stability of
multi-step formulas for Volterra integral equations of

the second kind. Rep. NW 59/78, Math Centrum,
Amsterdam (1978).

LAMBERT, J.D. Computational methods in ordinary differential

equations. Wiley (1973).

LINZ, P. Numerical methods for Volterra integral equations
with applications to certain boundary value problems.
Ph.D. Thesis, University of Wisconsin, Madison (1968).

LUBICH, Ch. On the stability of linear multistep methods for
Volterra equations. Doctral Thesis, Univ. Innsbruck

(1982).

MILLER, K.S. Linear difference equations. Menlo Park (California):

Benjamin Inc., (1968).

NEVANLINNA, O. Positive quadratures for Volterra equations.

Computing 16 (1976) pp.349-357.

NEVANLINNA, 0. On the numerical solution of some Volterra equations
on infinite intervals. Rep. 2 Institut Mittag-Leffler,

Djursholm (1976).

NOBLE, B. Instability when solving Volterra integral equations
of the second kind by multistep methods. Lecture Notes in
Mathematics No. 109 Springer-Verlag (1969) pp.23-39.

ORTEGA, J.M. Numerical Analysis: a second course.
New York (1973).

Academic Press,



24,

25.

26.

27.

28.

29.

—147 -

PALEY, R.E.A.C. & WIENER, N. Notes on the theory and application
of Fourier transforms, VII-On the Volterra equation.
Amer .Math.Soc.Trans., Vol 35 (1933) pp.785-791.

STETTER, H. Analysis of discretization methods for ordinary
differential equations. Springer, New York (1973).

TSALYUK, Z.B. Volterra integral equations. J.Soviet.Math. 12
(1979) pp.715-758.

VARGA, R.S. Matrix iterative analysis, Prentice Hall (1962).

WOLKENFELT, P.H.M. The numerical analysis of reducible quadrature
methods for Volterra integral and integro-differential
equations Acad.Proefschrift; Amsterdam (1981).

WOLKENFELT, P.H.M., van der HOUWEN, P.J. & BAKER, C.T.H.
Analysis of numerical methods for second kind Volterra
equations by embedding techniques. J. Int. Eqns. 3 (1981)
pp.61-82.



—148—
CHAPTER 4

Basic stability analvsis of Runge-Kutta methods for Volterra

integro-differential equations.

Numerical methods and stability

4.1.1 Perspective

4.1.2 Extended Runge-Kutta methods and mixed quadrature -

Runge-Kutta methods,

Extended Runge-Kutta methods and stability definitions
4.2.1 Stability of Runge-Kutta methods
4.2.2 Extended Runge-Kutta methods

4.2.3 Some analytic comments
Runge-Kutta/mixed quadrature - Runge-Kut'ta methods

4.3.1 Runge-Kutta/mixed methods using reducible rules
4.3.2 Runge-Kutta/mixed methods using block-reducible rules
Mixed quadrature fRK methods/mixed quadrature -RK methods
4.4.1 Reducible rules.

4.2.2 Block-reducible rules

A-Stability

Extensions
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4.1 Numerical methods and stability

In the previous chapter and in [5] we discussed classical mixed
and extended Runge-Kutta methods applicable to the numerical solution
of Volterra integral equations of the second kind. We presented a
basic stability analysis of such Runge-Kutta methods for a simple test
equation of the form

-x
f(x) - X\ J f(y)dy = g(x). (4.1)
0

We develop, here, a similar class of Runge-Kutta methods for the
numerical solution of the Volterra integro-differential equation

introduced in 8l.5

X

£ (x) = G(x,f(x), j H(x,y,f(y))dy) + d(x) (x30). | (4.2)
0

Background reading is provided by Baker [2], Feldstein and Sopka [9],
Linz [13], Makroglou, [14], McKee [16], Mocarsky [17] and
Tavernini [18]; etc.

We shall investigate stability results for this particular class

of methods applied to the "basic" integro-differential equation

X
£'(x) = £ £(x) + 17 J f(t)dt + d(x). (4.3)
0

To explain our interest in this latter equation and for additional
work relating to the stability of (4.3) we cite the more general
analysis of Baker, Makroglou and Short [3]. The study of (4.3) may
be regarded as preliminary step towards the study of more general
test equations. (Stability of various methods is also considered in
(1], (5], (8], [12] and [19].)

Our interest is directed primarily towards stability of Runge-Kutta

methods of classical and modified form. Those of classical form are
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investigated in this chapter. The +vy-modified methods and a search
for a unified analysis of stability polynomials are pursued in
chapter 5.

In 8.2 we re-examine those stability definitions introduced in
§3.4 in connection with Runge-Kutta methods-for the second kind
Volterra equation and consider their relevance to the study of stability
of Runge-Kutta methods applied to (4.3).

In 84.3 and §4.4 we introduce an analysis of the R-K/mixed
quadrature -R-K methods with reducible and block-reducible rules and
present results which are an extension of those of Chapter 3 and [5]
to the treatment of integro-differential equations. We discuss the
mixed quadrature -R-K/mixed quadrature -R-K methods introduced in [1]
but which receive greater attention in [6].

In 8.5 we enlarge on some comments made in [5] considering the
A-stability of an overall method when the associated quadrature and

extended R-K methods are A-stable.

4.1.1 Perspective

Equation (4.2) provides an example of a functional differential
equation. Included as a special case is the initial-value problem

for an ordinary differential equation:
£'(x) = F(x, f(x)) (f(0) = fo, x30). (4.4)

Runge-Kutta methods for this equation are well established and are
defined in §2.3.1. For convenience, we recall that, in terms of the
Rungé—Kutta tableau [81A] of (2.33), the Runge-Kutta method may be

defined by the formulae

fi,0 = fi-1,p * h 3 Ars F(Ihtosh, £5 o), (r = 0,1,...,p)

(4.5)
fi1,p = f; = f(ih)
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in which we take fi,r to be an approximation to f(ih+6,h) and
f-l,p = fo. The equations (4.5) may be regarded as discretizations

of the integrated form of (4.4):

ih+6rh
f(ih+6,h) -f(ih) = J F(y, f(y))dt (r = 0,1,...,p) (4.6)
ih
employing quadrature rules, using abscissae 00,01,...,0p and weights
Grh
ArO’Arl:---xArp to approximate J e(y)dy:
0
6rh :
J SO(Y)dy = EOAI‘S 4 (esh): (r = 0,1,--~,P) (47)
S=

0

When considering (4.2), a process similar to that above yields

ih+6,h .
f(ih+6.h)-f(ih) = } G(y, f(y), z(y))dy + d(ih+6.h)-d(ih)
ih
! (4.8)
where
y
z(y) = J H(y, t, f(t))dt, (4.9)
0

and discretizing as in (4.5) provides equations

fir= fj_1,p+h g Aprg G(ih+6gh, fi s52i,s) + d(ih+0,.h)-d(ih),

(r =0,1,...,p)

(4.10)

fi_1,p = Ti = f(ih)
which require épproximations zj g to the values of z(y) in (4.9)
at (ih+0gh). fo proceed, we require computable approx{mations Zis
and for this purpose we turn to techniques common in the treatment of
Volterra integral equations. In order to discretize (4.9) it has been
conventional, when studying a wide class of methods, to re-index the

variables (cf. 82.3.3) and we write
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?j = f(Tj) = fi r where Ty = ih+6,.h, r = 0,1,...,p (4.11)

successively for i =0,1,2,... with j = i(p+1)+r+l, 790 =0

and ?0 = fg. Denoting the approximation to Z(Tj) by Ej we

see that the problem of discretizing (4.9) then reduces to the choice
of values ij in approximations of the form (see (2.52), (2.53),

(2.54) and (2.55))

2j=h 3 gk By, i £050). (4.12)

We shall return to the construction of numerical methods entirely
from the viewpoint of integral equations in §4.1.2. By this means
we can draw upon our earlier results in chapter 3. Here we turn to
address the question of stability.

In previous chapters we have observed that stability studies are
concerned with the reaction of systems to perturbatiéns. In numerical
analysis, one considers the response of a numerical scheme to
perturbations (for example perturbations in the given initial value
for an initial-value problem). Often, one hopes that this response
will model that in the analytical problem. The general equation is
too difficult to analyze and requires a choice of test equation.

In the early studies the equation

£'(x) = M(x) (4.13)
was taken in the study of (4.4) but more general equations have now
been considered. Whiist choice of (4.13) as a test equation provides
genuine practical insight, subsequent work has highlighted what might
be regarded as self-evident: that any choice of test equation has
inherent limitations. Equation (4.3) is a simple extension of (4.13).

Equation (4.3) was first employed as a test equation by Brunner
and Lambert [8]. The usefulness of (4.3) as a test equation for
studying (4.2) has been demonstrated earlier [3, 11, 15] by example,

but our previous remarks concerning (4.13) apply a fortiori to (4.3).
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There is a sense in which determining the limitations of a test
equation requires that the stability analysis should first be performed.
Early work on the stability of methods for (4.2) has concerned
generalizations of linear multi-step methods, with the exception of
the work of Baker, Makroglou and Short [3] where Runge-Kutta methods
are included in the formalism. Our present purpose is to provide
precise stability polynomials for various Runge-Kutta methods. By
adopting the formation which we developed earlier in chapter 3 for
integral equations the derivation of the stability polynomials is
elegant by its straight forwardness.

The stability polynomials are a tool in the study of "stability
regions" as well as relative stability and other features ﬁot pursued
here. Whilst stability regions may be best investigated computationally
the theoretical approach provides interesting challenges and is

required to establish A-stability (see below) and related results.

4.1.2. Extended Runge-Kutta methods and mixed gquadrature-Runge-Kutta
methods.

We may write (4.2) in the form

X

£(x) = I G(s,f(s), z(s))ds + d(x) (4.14a)
0
X

z(x) = J H(x,t,f(t))dt. (4.14b)
0

We have seen in §4.1.1 how a R-K method for (4.2) may be derived, but
such methods also follow on applying the ideas of [5] to the coupled
integral equations (4.14). We require the Runge-Kutta parameters
bp,Apg(r,s = 0,1,...,p), 0p =1 [5, Eq. (1.10)], defining the
tableau [Elé].

For the extended Runge-Kutta method we set x = ih + 6h  in (4.14a)
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and discretize using the rules employed in extended R-K methods for

integral equations. We then have

N i-1 , : - -~
£i(p+1)+r+1 = h kgo 320 Aps GUkh+0sh, Ty (p11)4ses Zk(p+1)+s+1)

(4.15)

+ h szoArS G(ih+égh, ?i(p+1)+s+l: Ei(p+1)+s+1) + d(ih+6,h).

Here, ¥k(p+1)+s+1 = f(kh+6gsh), %k(p+1)+s+1 = z(kh+6gh).
Equivalently, we obtain, on differencing (4.15), the equations (which

are more suitable for computational use)
Fi(p+1)+r+1 = T(ih) + h SEO Ars GUh0sh, By (p11) 4641024 (pr1)+s+l) +

+d(ih+6,.h) - d(ih) (4.16)

where

T(ih) = Fi(pi1y, 2(ih) = Zi(pa1ys
we have Gp = 1. These equations represent (4.10), already obtained.

In the present method we set, in (4.15) or (4.16),

- izl ~
Zi(p+l)+r+l = h kzO 520 ApsH(ih+0ph, kh+0sh, fi(pi1y4es1) +
(4.17)

+ h EO Arg H(ih+0ph, ih+0sh, T pi1yess1)-

The combination (4.16), (4.17) will be discussed in 84.2.2. For
the mixed quadrature-Runge-Kutta methods to be considered in 884.3 and

4.4 we require quadrature rules
ih ;
I p(t)dt = h kZO wik ¢(kh) (i=1,2,...;h > 0). (4.18)
0 =

The mixed quadrature-Runge-Kutta methods briefly discussed in 84.4

then assume the form
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Fi(p+1)4r+l = h kgo wix G(kh,F(kh), Z(kh)) +

+ h 520 Ars GUih+0sh, Fi(pi1yresl, Zi(ps1)+st1 + d(ihtoph)

(4.19)
where, in this method,
- i -
Zi(ptl)+rel = b 3 ojg H(ihtorh, kh, T(kh)) +

(4.20)

+ h Eo Aps H(ih+0rh, ih+0ch, T (pi1yie41).
S=

Combining (4.16) with (4.20) provides an attractive intermediate
course, and yields the RK/mixed quadrature-RK methods which we
analyze in 84.3.

We shall assume reducibility properties (see 82.3.5) of the rules
(4.18). Briefly, we suppose that the array of weights (wji) can be
partitioned into submatrices .Xn’Q of order q such that for fixed

{Ag, BQ) and for some ng

m

Ag Voo i = B._:, ndn
Q20,~Q _n 2,j 7 Pn-j 0
where A, = B, = Q/ for » £ (0,1,2,...,m}.

Such rules are termed block-reducible (§2.3.5). When q=1 we

set Ap = ap, Bp = fBp and the rules are called (p*,o*)—reducible
a4 ~

where

B m-Q
0 [

[N

* g ) %
() = op pm and ¢~ (p) =
p™ (1 ng o M=,

Reducibility properties permit the simplification of (4.19) for
practical use so that there is no need to store all previously
computed values of [E(kh)).

We may write the basic test equation (4.3) in the form

X X 4
f(t)dt + g j z(t)dt de(e) ollr, (4.21)

f(x) = ¢ J
0

0

(4
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where

b .
z(x) = J f(t)de. (4.22)
0

The methods yield approximations ?j = ?i(p+1)+r+1 to f(rj) where
Ty = ih+6,h and j=i(p+l)+r+l (i=0,1,2,...;r=0,1,...,p), via
auxiliary approximations Ej = Ei(p+1)+r+1 to z(rj).

Associated with {?j} and {Ej) we define, for k =0,1,2,...

Pl = [Fr(pr1y+ls Tr(priy+2s - Tty (pe1y 1T (4.23)
Vitl = [ZR(pr1)+1r Zk(pt1)+2 - Z(kal) (p+1) 1T (4.26)

For the mixed quadrature-Runge-Kutta methods we also use

g0 = £O[1,1,....,11T, yg = 0,

4.2 Extended Runge-Kutta methods and stability definitions

4.2.1 Stability of Runge-Kutta methods

We shall seek recurrence relations between vectors such as Yk oOr
T T.T . : 21 s . P
[¢k, ¢k] in order to discuss stability. The following definition
~ %
occurs in §3.4.3, but now sz = Xp(th, nhz) since we consider the

stability of methods applied to (4.3) throughout.

Definition 4{1

The recurrence
§ X * det [Xp] 0 (4.25)
X _p = , det = .
020 ¢ vn+1 Q 1p+1 VO

is stable if and only if the "auxiliary" or "stability" polynomial
m m—Q]
det X
[on 2 H

has its zeros on the unit disk centered on the origin, those on the
boundary being semi-simple (§3.4.3). (The recurrence is Strictly

stable if it is stable but there are no zeros on the boundary) .
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For related definitions see §3.4.3. We shall distinguish the

following types of stability, which relate to the types of recurrence

which we shall obtain.

Definition 4.2

(a) If the vectors Agk of Definition 4.1 coincide with the vectors
;ek of (4.23) then st;bility is termed internal block stability
(without auxiliary variables). (b) If 5k = Pfl’ gi]T then stability
is termed internal block stability with auxiliary variables. (c) If
the components of zk are values ?(koh), ?(klh),...?(kqh), where
kp(r=0,1,...,q) depend on k, the stability is called full-step
stability (without auxiliary variables); full-step stability with
auxiliary variables is similarly defined.

The values ?(kh), k =0,1,2,... are of primary concern, whilst
the values ?(kh+8rh) (r =0,1,...,p-1) are frequently of secondary

interest.

We recall from (3.49) the notation
- “leoT
N(zh) = (I - \hA) eep (4.26)

where eg, el,...,ip are the successive columns of the identity matrix
~ s

of order p+l and =eg + ey +...+ ep- N(X\h) has p =zero
A haaat ~

e
o~ s

eigenvalues and non-trivial eigenvalue

A T h
p(Zh) = e, (I-xhA)~le. (4.27)

~ e d ~

4.2.2 Extended Runge-Kutta methods

We consider the extended method, defined by equation (4.15)
or (4.16) with (4.17).

We shall show the relationship between all four types of stability
in Definition 4.2 and the criteria ];(koh)l ¢ 1, |ﬁ(x1h)l< 1 where

Ao, M are the roots of A2 - EN-1=0.
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For the basic equation (4.3), the equations defining the method
may be written conveniently in vector form. Equation (4.15) becomes
i ' i

[1-EhAlpis1 - £h EpA 2ofk = MhAYis -nhEpA otk T hil (4.28)

where A = [A.J], E, = e eT and 4i47 is the vector with components
h " ~

.~ ~P

d(ih+6,h). Then equations (4.16) and (4.17) become respectively

(L- #hpis - Eppy - whAie1 = 8j41 - Epdy  (4.29)
and
i
Vi+l = h Apj41 + h EQA . (4.30)
,»"!:IH ~Li+1 P kgl fk
From (4.30) we deduce that
Vi+l - Ep ¥i = h Apiyg, (4.31)

on replacing i by i-1 in (4.30) and multiplying by Ep.

Theorem 4.1 (full-step stability with auxiliary variables)

Let
ZOMY = el [T - aha7-1 (4.32)
® - sp[f\/ - ‘_\/] ‘-‘e‘.r )
and write
N1 =4 [§* VEZ 1 41 (4.33)

Then

F((i+1)h) - AZ((i+1)h) - f(noh) [Fciny - ISEICIMIE OV 4.3y

for certain values 7§2%, and for full—step.stability with auxiliary

variables we require, when \g # A1, that

tp(oh) 1 ¢ 1, 1p(3h) 1 ¢ 1. (4.35)
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Proof. From (4.33), & = Xg + A\ and 7% = -AoMr1, whilst (4.23) and
(4.24) provide F(ih) = elps, and Z(ih) = ely; (i=1,2,...). Now
,--,"" p,y o~ pfvl
equation (4.29) in terms of \g and \; yields
(1 - MohB)gi+1 - MbApi+l - Epps + MoMbAYiig = 8541 - Epsy-

Employing (4.31) we deduce that

(L - MhMeit1 - MW - Ep¥i) - Eppi +

(4.36)
+ AoMbAYi L = 8541 - Ep 8-
Assuming det(l - NohA) # 0,
(pisl = M¥i+1) - (L - NhA)E(ps - A ¥g)
(4.37)

= (L - 2om)™h (3540 - Ep 840,
and taking the inner-product of (4.37) with '3; yields, on recalling

(4.32), the result (4.34). Equally, the roles of Ao,M being

inter-changeable,

F((i+1)h) - NoZ((i+1)h) - p(Aph) [F(ih) - Ng Z(ih)]

(4.38)
= vgi% =(3; T - MhA) L (654 - Epdild.
Thus, (4.34) and (4.38) yield
=, -1 = (0)
[f((1+1)h)]= 1 -xl] [#(xoh) 0 ] [1 -xl} [f(lh)]+[yi+1]
Z(G+DRd 1 0 o) L o) Eamd R
(4.39)

provided that Xg # Ay. The recurrence (4.39) is of the form (3.52)
with an amplification matrix having eigenvalues y(xo,lh); thus,
(4.35) follows when \g # \p.

We also have, as a consequence of (4.37), the following result
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(see also [4]).
Theorem 4.2 (block-stability with auxiliary variables)
The conditions (4.35) are, for \g # A1, the conditiqns for
internal stability with auxiliary variables.
Proof

By virtue of (4.37) and the interchangeability of Ao, N

gi+1] [1 - Xll]'l N(hoh) 0 } [L - x11] ¢i
Vil I -l 0 NOwh)J L - 2ol Ly
(4.40)
(0)
+  |Yi+l
(1)
Yi+l
. . (0,1) T
for suitable inhomogeneous terms Yi+1 7, where Ep = eep and where

~

N (Mh) = (I —)\hA)‘1 E, has non-trivial eigenvalue uw(\h) .

Remark: We here restrict our attention to the case Ao # N; for the

case of equality we refer to [4] with the observation that Property

3.1(b) defined there is satisfied for Fhe extended Runge-Kutta method.
We pause to introduce a lemma which we shall use in the proof of

Theorem 4.3,

Lemma 4.1

For suitable scalars Cis1s

F((i+1)h) = roF(ih) - gh »y Z(ih) = Tis1s (4.41)
where

vo = vy (Eh, 7h2) =‘§;<£ - Aoh) 1L - aha)le  (4.42)
and

y1 = pat 2y = oT¢y - -1 - -t

1 = v1(¢h, nh2) = $p(L = NohA)™% (1 - MbhA)Y“Ae.  (4.43)

Proof Observe that I - £hA - nh? A2 = (1 - NohA) (I - AjhA) where

xo,l are defined by (4.33). From (4.29) and (4.31), elimination of
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(L - £h A - 9h2A2)p547 - Eppj - 7h AEpYi = 8141 - Ep 8i. (4.44)
If (L - Xohé)‘l(l,— thé)_l exists then applying it to both sides
of (4.44) and taking thevinner—product of the result with S; yields
(4.41).
Theorem 4.3 (full step stability without auxiliary variables)

The extended Runge-Kutta method applied to (4.3) displays full"

step stability (without auxiliary variables) and we have

F((i+2)h) - [p(Ah) + pOh)] F((i+1)h) +

(4.45)
+ p(\oh) p(Aph) F(ih) = 74,9
for some scalar 7j,9. This recurrence is stable provided
tu(hgh)l ¢ 1, le(Zh)i ¢ 1 (4.46)

~

where p(Mh) is defined by (4.27). The stability is strict if and
only if the inequalities (4.46) are both strict.

Proof From Lemma 4.1,
F((i+2)h) - »oT((i+1)h) - nh »y Z((i+1)h) = Fiyo;  (4.47)

subtracting pu(hoh) times (4.41) from (4.47) yields -
F((i+2)h) - [p(gh) + »o] T((i+1)h) + »g p(rgh) T(ih)
+ NoMh 1 (Z((i+D1)h) - p(\oh) Z(ih)) = Ty4p-pOh)Ti4y.  (4.48)

However, (4.34) yields

h vy Mo M (Z((i+1)h) - p(Ngh) Z(ih))
_ P - - (0)
= h vy M {£((i+1)h) - pu(hgh) F(ih) - y34])
so that, substituting in (4.48), we obtain

F((i+2)h) - [#(\oh) + »g - h v] Ag] F((i+1)h)

-+

[¥o #(xoh) - h »7 N\g u(xoh)] T(ih)

(0)

) 0
= Tit2 = pOoh)Tiqg + hry N 7349



—162—

Writing 7Ti+2 for the latter expression, we deduce (4.45) aftér

elementary manipulation. The "auxiliary" polynomial for (4.45) is

uz - [p(\1h) + p(ioh)] p + #(Ngh) p(A1h) and (4.46) follows.
Theorem 4.4 (block-stability without auxiliary variables)

The condition for block-stability (without auxiliary variables) is

tr(oh) 1 ¢ 1, 1p(Mh)1 < 1.
Proof Eliminate VYiy1 from (4.29) by use of (4.31) to obtain

(1-EhA-nh2A2) o111 - Eppy - MhAE, Yi = 8541 - Ep 85 (4.49)

On differencing this equation we obtain

#
(1-EpA-Th?A%) pi 41 - (1-£hA-7h2AZ+EL) o1 -7hAEL (Y1 -$1-1) = 75. (4.50)
Difference equation (4.30) with i replacing i-1, and use the
result to eliminate y; - Yi-1 from (4.50). The vectors {pi} satisfy

a three-term recurrence

#
i

(L-EhA-nh?A2)piyy - (L-EhA-nhZAZ4E, + ph2AEpA)pis1 + Epp; -

~

and the associated stability polynomial can be factored as

1
det [/_L (r(L-NohA)~Ep) ((u-1) I4Ep) (r(I-MhA)-E;) ]
whence the result follows.

Example 4.1

Consider the conventional Runge-Kutta tableau, used in Example 3.2,

~

where p(M\h) = (1+%Xh)(1-%kh)”1. The conditions for full-step or
block-stability (with or without auxiliary variables) for the
extended Runge-Kutta method applied to (4.3) are 1pu(xph)1 ¢ 1| and

~

ip{N,h)1 ¢ 1, where xo,l are the roots of x2—sx-n = 0. When ¢, 7
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and h are real this results in th ¢ 0 and {E * \/52+4ﬂ}h 0
where 7 = -AgA; and § = Ag+)\]. Thus, we obtain ¢th 0,
and '7A%$C) so that the region of stability may be exhibited as in

Figure 1.

— S ¢h

\  Figure 1.
\

The region of numerical stability coincides with the region of

analytical stability.
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4.2.3 Some analytic comments

We pause to comment upon the stability polynomials produced in
Section 4.2.2. which require certain functions associated with the
Runge-Kutta tableau [#1A]. The functions of interest are ;(kh),
with X\ = \g 1 defined by (4.32) and »y = »g(th, 7h2) and
v1 = v1(¢h, nhz) defined by (4.42) and (4.43). The following results

are useful in obtaining specific stability polynomials.

LEMMA 4.2
vo = #(hoh) + Ahvy = (Ah) + Nohry,  (4.51)

and

[~ ~ A~

plZoh, \h] = {y(koh)—p(klh)}/{koh - Mh} N # N\
vy = (4.52)

d ~

QY

-ET * ]§ = \oh A= M

REMARK

~

The notation u[koh,'xlh] denotes a divided differencé. Equations
(4.51) and (4.52) permit the expréssion of vy as a divided difference
of the function xh;(Xh). E}kw4hn (45D was used in the proof of Theorem 43,

Conventionally, ;(Xh) is a rational épproximation to exp(ih).

We have the following result.
Lemma 4.3
if (2.33) is a "conventional™" Runge-Kutta array which, for

convenience, is reproduced below

80 1Ap0 Cen AO,p—l AO,p
61 |A10 . Al’p~1 Al,p
[61A] = . (4.53)
0p-1{Ap-1,0 Ap-1,p-1 Ap-1,p
A
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it is usual to take Arp = 0 for r =0,1,...,p and to denote

Ap,r (r =0,1,...,p-1) by Wr. Thus, a conventional Runge-Kutta array

corresponds to a choice of (4.53) with

e
f‘ - 7 l - (4.54)
Then,
(a) ;(xh) =1 ~h oT(1 - xhé#v)-l.g (4.55)
(b) v1(¢h, nh2) = aT(1 - Aghat)-1 (1 - xlhﬁ#)"lll (4.56)
where \o 1 are defined by (4.33) and 11 = [1,1,...,1]T ¢ R’ and 1

denotes the identity matrix of order p.

Remark Lemmas 4.2 and 4.3 permit expressions for »g,r] in terms of

¢h, nh2 and é#,w.

~

4.3 Runge-Kutta/Mixed quadrature-Runge-Kutta methods
For the Runge-Kutta/mixed quadrature Runge-Kutta methods the
results are less transparent. For the basic test equation (4.3)

the vector equations associated with the method defined by (4.16)

and (4.20) are

(L - &bA)pit1 - Eppj - nbAY 41 = 8i47 - Ep 83 (i=0,1,2,...),
(4.57)
and
Yi+l = hApiyy + h kiowik Epgks (4.58)
where ¢g = f(0)e. We shall consider two types of quadrature rules
(4.18), those which are reducible (882.3.5 and 4.1.2) and those which

are block-reducible (ibid).

4.3.1 Runge~Kutta/Mixed using reducible rules

We shall consider quadrature rules (4.18) which, we recall, are
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(p*,a*)—reducible when

m
onaan_Q,j = Bn_j, J =n,n-1,... n-m, (4.59)

0 otherwise

I

Bp pm-2. (4.60)

m
and p*(p) = S a2, o¥(p) - .

2=0 14

INg=]

We attempt to find stability criteria in terms of p*, ¥, r(rg,1h)
and 0,1 defined in (4.42) and (4.43).

From (4.57), eliminating Vi+1 by means of (4.58), we find

i
(L - £hA - 70h2A2)pi 4y - Epp; - 7h2A 2o @ik Ep ¢k = 8141 - Ep 3.

Provided that (I-£hA-nh2A2)=1 — (1-aghA)~1 (I-ahA)-1 exists
we obtain
#i+l = (L -3oha)~1(L - Aha) 1B p;

i
- 7h? 2okl - NohA)™h (L - ahA)1A Eppp  (4.61)

(X = noh&)~h (1 - Mha)~L(o54y - Ep 89).

Employing (4.59) we find, on replacing i by n-¢,

m m
02o0ent1-0 = (L= 2oh®)™h (L - MbA) T Ep) 5 oopng

- nh2
K 2

Nl

o Pe (L= 20bA) 1 (L - ahA)L A, gy = (4.62)

(L - 2h)~h (L= M) 5 0g(ene10 - Ep Snp)-

b
o3

We may readily deduce the following result.
Lemma 4.4
A stability polynomial for the RK/mixed quadrature-RK method
employing (p*,0%)-reducible rules is
s () = vg p¥(r) - mhZry o®(p). (4.63)

Proof Apply e; to (4.62) and use (4.42) and (4.43) to obtain

by
Nt

o %0 FCm1=0h) = »o F((n-0)) - ghls ng BoF((n=0)h) = 70  (4.64)
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g

(where T; is the inner product of E; and the right-hand term of
(4.62)). The result (4.63) readily follows from (4.64).

Theorem 4.5 (full step stability without auxiliary variables)

Let s(voh, 1) = pp™(p) - Noh p(Noh)o™ (u)

and

o(Noh, 1) = p*(u) - Noho®(p).

Then the method of Lemma 4.4 exhibits full-step stability (without

auxiliary variables) if and only if

s(Noh,p) - vo o(hgh, p) (4.65)

is von Neumann, where vo 1is defined by (4.42).
Proof From the definitions of v1 and »vg, »y] = {rg - ;(xoh))/(xlh)
whilst 7 = -NoAp. Thus, the auxiliary polynomial (4.63) may be
written as (4.65).
Remark

Two families of {p*,o*}—reducibleArules are prominent in the
literature: the Gregory rules are reducible with {p*, 0*} defined
by the Adams-Moulton methods; here p*(fc) = pmopy(m-1)  The
Curtis-Hirschfelder rules are those génerated'by the
Backward-differentiation formulae; here 0*(u) = pMm.  The composite
versions of the trapezium rule and of the backward Euler rule are
the simplest examples of the two families, here Wij = 1 i% 1¢jgi-1,
Wip = wjj = 3% and wjp =0, wjj =1, Ij<i respectively.
Example 4.2

Consider the mixed Runge-Kutta method employing the repeated

trapezium rule (Example 2.7) and the Runge-Kutta tableau --Z4&-—————_

~

which yields p(A\h) = (1+i\h)(1-3\h)-1.

I

I

P () = p=l;  o¥(p) = p(p+l).
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vy = [1 - lgﬁ]_l [1 - %E] and l+4vg = 2»7.

. . -1 1
kOoh) + BOR) = (2-poaH) (1 207 (12 MIT o002y,

s A
OGN RO = rg + 2L p2,,

The auxiliary polynomial obtained is
Moh Agh
s(Aoh, p)-rgo(hoh, p) = p(p-1) - 5~ #(Oh) (u+1) -vo[(p-1) - 5— (w+1)]

A A A A
= ﬂz—ﬂ[l - —%—Q h2V1 + vgl + [vg + —%—Q hzvl]
= p2-p [pOgh) + p(Aph)] + p(hoh)p(rih).

Thus, we have full-step stability (without auxiliary variables) if

Ip(ho) I < 1 and 1u(Xh)1 ¢ 1. (The same result can be deduced for

the extended RK method.)

4.3.2 Runge-Kutta/Mixed methods using block-reducible rules

Generalizing the class of quadrature rules leads to added
complication. We transfer our attention to the use in mixed methods
of quadrature rules (4.18) which are block-reducible (which is to say,
those rules which are equivalent to the application of cyclic linear
multistep methods for the problem of indefinite integration). We have

(c.f. 83.6.1), as a consequence of the block reducibility, the result

m+1 ~ ~

020 20¥n+1-0, 5 = Bntl-j (4.66)
where Bp = Bp_q g# + BpJ, with J = [EI’EZ’----GGq—l»Q] and
i# - [9,9, ....... 0,¢0l, €01€11-+--16g-1 being the successive columns
of the identity of order q(EQ =0 if @ ¢ {0,1,...,m+1)). The

following result is a natural extension of Theorem 4.5.
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Theorem 4.6

Let
SOoh,p) = p P¥(p) - Nohp(hoh)T*(p)
and let

5 (vh,p) = B¥(p) - ohS*(p)
~ ~
m m+l ~
where  P¥(p) = on_ﬁg pum=-2, Z%(#):Q;O‘gg pm+l-2

Then the RK/mixed quadrature - RK method using block reducible
quadrature formulae displays full-step stability without auxiliary

variables, if and only if, with the notation (4.33), (4.42).

det (SOhoh, 1) - »g S(hgh,m)) (4.67)
is von Neumann.
Proof. The vectors ¢j,¢j, employed earlier, now generate vectors
Yk, ¥k on setting
~ T T T '
Pkl = P?kq+1""f(k+1)q] , k=20,.1,2,..., (4.68)
(and defining Yk similarly) with vo = £(0) [0,0,...,0,1]T in

calp+l)

The equations (4.16) and (4.20) defining the method applied to
our basic test equation may now be written, using the Kronecker

product notation (Definition 3.9) as

{i ® (L - Ehé)}fi.}-l - (L ® Ep}fi - ‘nh (I~ ® é)%i—f-l =,éi+1 (4.69)
for a vector Aj;7 depending upon the function d (compare the
equivalent formulation (4.57)), and

~ A i+1 ~ ~
Vi+1 - hil @ Alpj4; - h jZO (Vit1,; ® Eplpj = 0. (4.70)

We may eliminate yj,7 between (4.69) and (4.70) on multiplying

the latter by [I ® Alpyh, and adding; we obtain
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~

(L® (L - £ha - nh2A2)) pi4n - (1 @ Eple;

~

9 i+l ~ ~
- 7h jgo{yiﬂ,j ® (AEp))epj = 4441 (4.71)
If we now apply Ap @ L to (4.71) and sum over ¢ (¢ =0,1,...,m),

we obtain

m 2 2 ~ m ~

=0
(4.72)
2 m+l - ~ ~
- 1h Q; {Bp ® AEplpnt1-0 = Apy
for some suitable term JAYOE I
Let us write
Nr = Ny (¢h, gh2) = (I - thA - nh2p2)-1 ATE, (4.73)
for r =0 and r =1, where .Ep =_9g;. The matrix N is of rank
unity with non-trivial eigenvalue
e (L - EhA-7h2A2)1ATe = 4 (¢h, yh2), (4.74)

the latter being defined for r = 0, r=1 by (4.42) and (4.43)
respectively.
The notation (4.73) allows a convenient reformulation of (4.72).

Multiplying (4.72) by 1 @ (L - £hA - 7h2A2)-1 yields
m ~ m . 2 ~
ZO{i\Q ® Ileny1-0 - on (Ag ® No(Eh,nh%) ey g

~

m+1

-nh? 3, (Be ® Ni(kh,mh®))pnig o = e (4.75)

S

for some vector y,.1.

The recurrence (4.72) or (4.75) provides the basis for a stability
result in terms of internal stability, for full-step stability we
require a relation obtained on multiplying (4.75) by {re Ep}.

Observing that

EpNp(Eh, 7h2) = v (th, nh2)E,, (4.76)
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we thus deduce from (4.75) that
m ~ s M ~
{2-2——:0 (Ap ® Eplony1-¢ - vo(§h, 7h?) on{ﬁg ® Eplen-¢
(4.77)
2 2y ML 2 P ;
Now‘consider the vectors §k = [?((kq+1)h),...,?((k+l)qh)]T
which are related to the vectors (4.68) since
= T T T
$ = [e Pkarls Sppkar2, ... e (kil)q) T (4.78)
K P ~
Equation (4.77) states that
S a3 (¢h, 7h2) S A%
0 - , -0 -
020 20 Int1-0 - vo ) 2o Aedn-g
(4.79)

9 9 m+l ~ .
- nh4 vy (¢h, nh%) QZO Bo $ny1-0 = dnt1

for a suitably chosen vector On+1- Expressing v; in terms of )
yvields the required result (4.67).
Example 4.3

Consider the mixed -RK method employing block-reducible quadrature

formulae of Example 3.7, in which we may take A from Example 4.2 and

41
-1 0 1 nE- 0 0
P T S O P P
0 o 11 0 0 0 : = 0
) 7
P = 3 A 178 = mop + A = [M1 O]
~ 00 ~ ~ ~ -
* & 5 2.0 _3% ] 3 u L
2w = ng Be w7 = Boy2 + By, + By = i i 3
o~ _2 1
ia Via
~ 1

N -1 -
We know that pu = pu()\h) = (1+3X\h) /(1-47h), vy = [1— 5%2] [1 - A%E]

and 1+ vg = 2v3. If pg = p(hgh), then by Theorem 4.6 we require
0 1 ro = n(No
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4 ~ N
(1=r0) (#-1) = 5 Noh p(lg-rQ) = 200 (441) Gug-v )
Aoh ~ h ~
~p(p=rg) = 29= 42 (po-rg) (u=ro)p - %Lu(uo-vo)

to be von Neumann. After some manipulation this expression reduces

to

13 1
pipd - (2vg + 1 + & mhZry + 2 n2nd p® 2 4

2 13 1 1 2 1
+ (vg + T nhzvlvo + 2y + gnthl + §n2h4vl)y - VO(V0+€nh2V1)].

\

4.4 Mixed quadrature -RK methods/Mixed quadrature - RK methods

When quadrature rules are reducible or block-reducible the
equations (4.18) simplify to the application of a linear multistep
or a cyclic linear multistep method to the problem of indefinite
integration and there is a corresponding simplification in (4.19).
Since both reducible and block-reducible quadrature rules share
common features we shall first treat the unsimplified equation (4.19),

which in vector form, for the basic equation (4.3), becomes

i
(1= $heiv1 - Eh 3 ik Eppx (4.80)
i
~mhAVi41 - 7h kzo @ik Ep¥r = Si+1.
in the notation (4.23), (4.24). Likewise, (4.20) becomes
i
Yirl = DAgig + h 5 ik Eppy. (4.81)
Substituting (4.81) in (4.80) and collecting terms yields
(1 - £hA - 7h2A2)p; 4

i
-{(£hI+7h?A)E, + yh2 EpA) kgo Oik Pk - (4.82)



4.4.1 Reducible Rules

We shall now assume that the rules (4.18) are ({p*,0™)-reducible.

Then, from (4.82),

h 272 S
(L - §hA - 1hZA%) Q§=O 001 Pn+1-01

- 2 02 ¢
{(¢hI+nh é)Ep + nh gpé) Q%=O BQlﬁn-Ql

m m
-nh2E Bor $nepa-1 = o0, Optlo (4.83)
1h2%, Q§=O 27 Sn-0q-1 Q§=0 01> On+l-09
where
£ li (4.84)
~k j=o0 “k,j £j- :
From (4.84),
m m
Q% o %02 $n-0y = Q%=0 Boo¥n-2, (4.85)

so that replacing n by n-0o in (4.83), multiplying by a0, and
summing yields

m

m
(I - thA - 7h2A2) o, @ —0+-
1 A - nheA ngo Q%=O 0y @01 Pn+l-01-09

m - m
- ((thl + 7h2A)E, + gh2EA) .
=T Th7Eph 9220 leo @, Boy Pn-01-0,

e, S8 gy By g
~P 0,20 =0 02 V01 En-01-05-1

m m

Q§=o QQZO %1%, Sn+l-01-0y ‘ (4.86)

Equation (4.86) is a finite-term recurrence and yields the following

result.

Theorem 4.7 (internal block-stability without auxiliary variables)
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The recurrence (4.86) is stable if
det [(I ~ NghA) (I - AhA)p2(p*(p))2
=((\oFA1)h Ep= NoNp h2(EpA+AEL) 1 p* () o™ (m)p (4.87)
- mh? (0¥ (1)) 2E,]
has zeros of modulus at most unity, those of modulus unity being
semi-simple. Thus, the mixed quadrature -RK/mixed quadrature -RK

method, with {p*,o*} - reducible rules, displays internal stability

when applied to (4.3) if and only if

det [R(Agh)R (A1h)] (4.88)

is von Neumann, where

R(Mh) = (I-MhA) p p¥(p) - MEp o¥(p).  (4.89)

4.4.2 Block-reducible rules

Employing the notation of §4.3.2 we may write (4.80) and (4.81)

in the forms

A k ~ ~
{L ® (L -£&hA)} ¢ - Eh _ZO{YkJ ® Eplyp;
& £

A~ k ~ ~ )
- b (L8 Ak - mh 5 (Vkj © Eply; (4.90)
J=
=,§k
and
~ ~ k ~ ~
Yk = h (l ® é}fk + h ‘20 {ij ® Ep}goj. (4.91)
< i< ~ <P’

Substitution of (4.91) in (4.90) gives a version of (4.82):

~

(1@ (I -¢ha - gh2A2))p ~ th 5 (V5 @ Eplg;

.
[Nl
(@)

~ ~

k ~ k ~ A
S 3k 8 (EpAAER) N - mh? B (Vij B Ep)fy - g (4.92)
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where

~ j - ~

257 2,Wii @ Eplei- (4.93)

From the preceding equation, on setting k = n-01, multiplying

by -ﬁQl ® I and summing over @7 we find the result

2 242y 1
2 lBoy @ (L - EhA - 1h%A%) )y o,

27=0
m+1 ~ 5 ~
T 2o (Bey © (EhEptih®(EpAHARS)) Jen_o; (4.94)
9 m+l -~ } m ~
- 7h leo {EQl ® Ep} n-Qys = Q%=O {éQl ® l)én—Ql-

We also have

m+1

A mEl A ~
0,2 B0z ©Dingy = 5 (Boy © Eplen-oy (4.95)

but in general this equation cannot be employed to eliminate

~

fn~Q1 from (4.92). The two equations (4.92) and (4.93) then provide

a basis for studying internal stability with auxiliary variables

~

(the components of Ej being approximations to values of z(x)).

On the other hand, if the matrices '592 commute with the matrices

~ ~

le then we can obtain a relation not involving the vectors ,gj'
The required conditions obtain when Ag = I, Ay = -1, Ap =0,
¢ =2,3,...,m. Such conditions are associated with a

subclass of block reducible rules, namely those possessing
Property 5.1 of [4]. We illustrate with the following result, which

subsumes the case of (p*,o*)—reducibility (Theorem 4.7). Recall that

1>

m+l = 0.
Theorem 4.8 (block-stability for a subclass of block reducible rules)
Suppose that Ap=1, A = -1 and Ap =0, 2=2,3,...,m or

~

more generally that the matrices AQl’-EQZ commute,
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Then, using (4.95) in (4.94)

m+1 m+1

[tAp, A I - thA - 5h2A2
Q§=O Q%=O [1227 207 & (L $ha - htA%)

- (Agy Bpy) ® (Ep (EhI + nh2A) + nh2AE)

o - ~ 4.96

- nhz(EQl PQZ) ® Ep)fn—Ql—Qz] ( )
%
=,§r1

*
for an appropriate vector §, and the associated stability polynomial

~ 2m~0 1—Q 2

is obtained on replacing 0+ — b in the left hand
$Pn-01-09 Yy K

side and taking its determinant.
-We conclude that the mixed quadrature -RK/mixed quadrature -RK
method displays internal stability (without auxiliary vaiables) when

applied to (4.3) if and only if
det[Ng V(Aoh)V(A1h) -} V(Ah)V(xph)] (4.97)

is von Neumann, where
m+1 ~ 0
VOh) = 5 (Ag ® #(1-\ha) -hh(Bp @ Ep)) un- (4.98)

4.5 A-stability

We showed in [5] that mixed quadrature-Runge-Kutta methods for
(4.1) need not be A-stable when both the associated quadrature method
and extended Runge Kutta method are A-stable. The corresponding feature
is present in the discussion of (4.3).

Definition 4.3

Let xo’l be defined by (4.33). Then a method for (4.35 is said
to be A-stable when it is strictly stable whenever Re(\gh) < 0 and
Re(rh) < 0. It is said to be Ap-stable when it is strictly stable
whenever Noh < 0 and Xh <0, ), zM e R

Example 4.4 (a) With the trapezium rule and Runge-Kutta tableau
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employed in Example 3.2 of [5] the RK/mixed quadrature RK method
considered in §4.3.1 is A-stable. (b) With the quadrature rules
defined by the backward Euler method, and the same Runge-Kutta
tableau, the method considered in §4.3.1 is not A -stable and hence not
Ap-Stable.

To investigate the method in Example 4.4 (b) we apply Theorem 4.5
with p¥(p) = p - 1, o¥(p) = p, ;(Xh) = (1 + $h)/(1 - 4 \h) and
vo = {(1 -3xgh) (1 - 5X1h)}‘1. {1 + #Ngh+ixih - ﬁxoxlhz) and obtain

the stability polynomial

(1 - $2oh) (1 - $M\h)p? + (\oAph? - 2)p + [1 + $3gh + 4rjh - 3rgAph2].
Restricting attention to the case N, M <0, h >0, this can be

shown (by well-known techniques) to be a Schur polynomial only if
-4 < gh2 <0, th<?2

where 7 = -\g\p, & = Ao + N\, and hence the method is not A-stable.
The corresponding extended method of §4.2.2 is A-stable.

Example 4.4 (b) established on analogue of Theorem 3.9 of (5],
and prompts the search [7] for modified Runge-Kutta methods which
possess the economy of mixed methods yet the desirable stability

properties of extended methods.

4.6 Extension

The results presented in this chapter provide initial results
extending those of [5] to the treatment of integro-differential
equations. However, they do not exhaust the variations of Runge-Kutta
methods available for the treatment of integro-differential equations.
Additional investigations are pursued in chapter 5 where their results
are presented and a general analysis is made of the stability

polynomials derived so far.
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CHAPTER 5

On the construction of stability polynomials for modified R-K

methods for Volterra integro-differential equations.

.1 Introduction

.2. Stability of a recurrence
.3 A general class of methods
-4 Basic stability theory

.5 Summary
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5.1 Introduction

In this chapter we continue our interest in the stability analysis
of a wide class of numerical methods for the Volterra

integro-differential equation

X

£'(x) = G(x, f(x), J H(x, y, f(y)dy) + d(x) (x30). (5.1)
' 0

The results are applicable due to the choice as a stability test

equation of the "basic" integro-differential equation

X
f'(x) = §f(x) + nJ f(t)dt + d(x) (5.2)
0

and because we assume reducibility structure [1, 6] in the numerical
methods. The methods covered include classical methods treated in

[3] and described in chapter 4 of this manuscript and new +y-modified
Runge-Kutta methods which are motivated by the corresponding methods,
first introduced, for Volterra integral equations of the second kind, by
Van der Houwen [5]. The y-modified R-K methods are introduced in

§2.6 of this work.

Our purpose is to gain insight into the construction of stability
polynomials for classical and modified Runge-Kutta methods which we
describe below. This task is, in our view, a prerequisite to further
study. Although (5.2) reduces, on differentiation, to a second-order
differential equation the approach to our methods is from the viewpoint
of a system of integral equations and the modified methods are of
particular interest. Incorporating the modified methods into a general
analysis requires some rather special insight which we elucidate below
(cf. [4]).

5.2 Stability of a recurrence

We commence by investigating, briefly, recurrence relations of

the form
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mEl ” m+1 ~ '
020 Po fni1-0 * Q-Z——O Q@ ¥nt1-0 = 4 na1 (5.3)
mil 8 m+l ~ .
02o Be gn+1-¢ + 3 Se ¥ni1-0 = A'ne1 (5.4)

Hence {EQ’.QQ' BQ, Sp)} are square matrices of fixed order and
{¢n, ¢n}n>0 is a sequence of vector pairs. Considering (5.3) and
(5.4) we have the following result (cf. [3]).

Theorem 5.1

A stability polynomial for (5.3) and (5.4) is

P
Y(p) = det [ﬁ gl (5.5)
m¥l
where P = P(p) = QEO BQ ﬂm+1"Q, and likewise for Q = Q(p),

R = B(u) and S = S(w).

Proof

It 1s convenient to express the recurrence relation (5.3) and (5.4)

as follows

Poi 2 | ¢ Pn+l
S RS fmm—mm o ~
{ L {
( {
i
Q1 e : 9
{
1 \I« : fn+1—m
T T =
EOi 9 Spt o Yn+l
1 '
| |
. 9_, | (6] o |
i ~ o
\ (
L [ .Al_ _lbn+1 ~mJ
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This may be simplified if the following procedures are observéd.

1. Add p x column s to column (s+l) for successively increasing
values of s from s=1 to s=m.

2. Add p x row r to row (r-1) for successively decreasing values
of r from r =2m+2 to r = mt+3.

3. To column 2m+2 add #Q X column (2m+2-0).

lINl=]

=1

A simplified form of the stability polynomial may now be expressed

from which the required result is readily derived

i | }m+1 10 m+1 -
-P1-#Bo' . . . -3 Pop -Q1-#Q0 - - - 2 Whimtl-Q
f !Q=O ; |Q=O
_______ r___—_'"_—f'""———'_—_"""”—"_'1"__"_'"“"""T"'"——'_"__"
N | | f
\ | \ :
| ) | |
» e o o g
! 1
1 i ‘ \
i : | \
det t \,J ! }
| i ]
m+1 . im+1
~R1-4Ro =S Rew™Lllisipsg L L L Y spumtl-l
~ i , £=0 : 2=0
TTTTTTTrTTTTTTT T P T TTTTTE T
! ! L !
| ) ! !
} ! ! |
° ! 9 ' Q \ ! 9
! ! , |
! ! \ |
' 1 ] 1
| | | ! L _
(5.8)
In general we wish to expand (5.5). We have a number of

possibilities of which the following are illustrative (but not

exhaustive).

Case 1 SQ = QS and g‘l exists then }(pu) = det [SP-QR].

Note that P qQ L o] E—~§f18 ql _ f'§_1~3
R s| |-s7R 1|~ 0 S 0

= —_, ~ —~ -~

éTuj
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-~

Case 2 PR = RP and P71 exists then S(p) = det [PS-RQ].

Note that P 9 1 "Eflg _ P Q e 0
| R 5| [0 1 R s-Re~19|  |[R  s-P-IrQ

Case 3 If §‘1 exists then Y(pu) = det [f~~§f¥g] det S.

For remarks on Case 3 see [2]. We observe that Cases 1 and 2 (and,

A~

indeed, Case 3) correspond to elimination of either {(Yn) or (pn}

between (5.3) and (5.4). Thus, for example, if we denote by E the

~ A

advancement operator (Epp = P+l EYn = ¥n+1) then (5.3) and (5.4)

become
P(E)pn-m + QBWn-m = &' 1 (5.9)
A "~ " .
R(E)pn-m + S(E)¥n-m = 4 n+1 (5.10)

where E(E) denotes substitution of E for g in B(p) etc.
Apply §(E) to (5.9) and ‘Q(E) to (5.10) with some loss of
information if either S or Q is singular. Subtracting now yields,

~

if we make the assumption that Q(E)S(E) = S(E)Q(E),

~

[SCE)E(E) - QEIR(E) Jgn-p = S(E)A i - Q(E)A" 41 (5.11)
for which a stability polynomial is Case 1, det[E(u)E(p)—gﬁy)B(u)].

5.3 A -General Class of Methods

We recall from 84.1.2 that if we write (5.1) in integrated form

?

we obtain the pair of integral equations

X 7

f(x) = G(s,f(s), z(s))ds + d(x), (5.12a)
Jo '
X

z(x) = H(x,t, f(t))dt, ' (5.12b)
0

and we seek approximations ?j = f(rj) and Ej = Z(Tj) at the points

7j = ih+0,h (i=0,1,2,...5r=0,1,...p; j=i(p+1)+r+l).
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Here, the values 0, are parameters defined by a Runge-Kutta method.

We require quadrature rules with abscissae {Tj} of the form

~

Tj i+1
. J s(tyat = p (D@D
0

20 Qirelryr), (5.13)

~ A "

with weights Q' = Q). Q@ = (Qjk). We define Q;k = Q5 = 0,

for k > (i+l)(p+l). A choice of vectors

(5.14")

Y o= lvy, ... yp) T (5.14")

with components in [0,1] permits the replacement of (5.12) by the

equations given below (cf. §2.6 equation (2.83) and (2.84))

F.-h Qi Glri,Fr.30) + dlr
J k;O jk (ri Fx,2) (TJ)

Vo= i(p+l) - - .
+ v L (p+1) - (h kgo 04 (pr1)+1,k Gk, fi,zw) + dch))

(5.15)
and
Z: =h Qi H(r i1, F1)
j k§0 jk Tk tk
"o i (p+1) " . -
+ yri{zi(p+1) - (h kgo Q5 (p+1)+1,kH(ih, 73, 1))
(5.16)

The corresponding method will be denoted M(Q',y';Q",yv). These

1"

equations with 4. =+v,. =0 (r = 0,1,...,p) define classical methods

which are modified by the introduction of the parameters (5.14'),
(5.14"). (The more natural class of methods requires only the choice
of 4", with ~' =0).

It remains to construct the rules (6') and (6"), of the form

(5.13). We shall employ R-K parameters [01A] defined by the tableau
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in (2.33) and the quadrature rules Q defined in (2.3) with weights

{wjg) (wjx = 0, k>i). Subsequently we shall employ rules Q',Q"

with weights wjy, wjx and R-K tableaux [6 ,A'] and [Q",A"]

~ ~

A~

with § =46 = 6. Rules Q and tableaux [0,A] permit the

definition of Q.
The extended Runge-Kutta method uses 'weights' denoted by

ij(é) which are defined in (2.53). We take 1=9 for definiteness

~

and write Q = Q(é) for use in (5.13).

The mixed Runge-Kutta methods uses 'weights' denoted by ij[Q;A]
which are defined in (2.54) and we write 6 = O[Q:A]. Thus, the weights
Q;k and Q}k may be defined as

Ok = Q51 A" (5.17")
or »

93k=9jk[Q';/},'] (5.18")
and

Q}k - Q5 (A" (5.17")
or

Qi = 03l 5A"] (5.18")

When ij(é) are taken as the weights defining Q; or Q", the
corresponding Z(Zj or zﬁ) may be chosen arbitrarily. Computationally
one would assume I=9 but it is convenient in §5.4, to suppose that
Y = (1,1....,1)7T, When 93k = Q&k(ﬁ), the method may be regarded as
an adaptation oé an R-K method for an ordinary differential equation.

Furthermore, we require the weights ijA to have structure.

We recall, from Definition 2.5, that the array of weights {ij} is

block reducible when the weights ij may be partitioned into matrices

Vnk of order q with elements eTYnk £6= Q

~a ng+et, kq+f
(o, =0,1,..... ,q-1) (50,31,....,§q_1 are the columns of the identity
matrix of order gq). The matrices ,ynk satisfy, for fixed matrices
- —~ M m
{AQ, BQ} where % Ap ¢ = 0, the relation

£=0> =0 ~
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Aos Yook = Bk, (5.19)

with the convention EQ = 9/ for 2 £ {0,1,....m}. If KO =1,

I

51 = -1 in (5.19), ém 0 otherwise, Q is termed simply-block-

reducible. If q=1 in (5.19), Q is called reducible.
'Reducibility', in one of the above senses will be assumed

in the sequel. 'Reducibility' of Q yvields 'reducibility' of the

rules with weights ij [Q;A], under an associated partitioning.

5.4 Basic Stability Theory

Our purpose is to discuss the stability of a set of numerical
methods, included in the description in 85.3, when they are applied
to the basic test equation (5.2). We shall employ the notation,

defined in (4.23) and (4.24), viz.
enil = [(Tnpriy+1, . . ,Fneny (pr1y 1T,

Vel = [Zn(prlytlscveeonnnn. ' Z(n+1) (pr1) )T

where {?n), (En) are the values obtained for equation (5.2). We also

write ‘E = DIAG (70,71,...,7p), E’, E" being defined in terms of
7', 7". It is also convenient to write

Ip = IEp, (5.20°)

" . 1 "

Ip = T'Ep. (5.20")

The notation ¢,, y, will be used in a generic sense. Since we have

to consider various methods applied to (5.2), we write

,féi% for vectors generated using ij(éf), Z' =’9 in (5.15);
éi% 1" " " " ij (é’")’ ‘)/" =9 in (516),

(the "extended’Runge—Kutta formulae)

and
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]

P+l for vectors generated using ij[Q';ﬁ'], Zf in (5.15);

Yn+1 for vectors generated using ij[Q";é"], y" in (5;16),

i~

(the "7'— and 7"— modified mixed formulae").
Thus, we find that (5.17') and (5.2) yield, from (5.15)

(e) (pr(]e)

JPn+1 = Ep ()

+ hA" (Epntl + 1 Ynel) (5.21)

and (5.18') and (5.2) yield from (5.15)

~

1 1 1 ' n 1 1
¢n+l = ¢+l + Tp lgn -h jZO enj By + ¥ (5.22a)
wherein
n ' ! ' 1
¢n+1 = h jZO “nj Ep(Epy + mgj)) + bA (Epnig + mng1). . (5.22b)
s (e) n-1 1 n )
Similarly yny] = h 'ZO Ep A" pj41 + hA g whence
2 j= X £
e e "
fr(w% = Ep L//r(l )y hA on41 (5.23)
. " T " 1 n "
whilst Y+l = Yo+l +.FP {yp = h ‘ZO Wn j Epgoj} (5.24a)
L o 7 j2 Pog 3} ¢
T n " 1
wherein Ynel = h D) On j Ep ej + h A onil (5.24b)

Our task is to analyse the stability of (5.21) or (5.22a,b) where
(e)

{Yn) 1is replaced by (y, ’} or (Yn}.. In order to analyse the

possible combination of (5.21) or (5.22) with (5.23) or (5.24) we
require some common structure which we shall develop. In particular
we ask, when dealing with (5.22) or (5.24), that the rules {w;j) or
[w;j} should 5e block-reducible. Then we require the matrices

{an}, {an} of order q', q" respectively with the elements

IT ' 1

' 1 1
R Xn.] £B = Ynq'+a, jq'+B (e, =0,1,....,q9 -1) (5.25)

A\l " 1" 1n

€y Ynj £8 = Ynq+a, jq'+B (o, =0,1,....,q"-1) (5.25")

~
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in the (o,B8) position, respectively. Asssociated with q',q"
(where appropriate) we define a parameter q which assumes, in our

analysis of the indicated pair of equations, the value shown

Eq.(5.21) (ga®) |Eq.(5.22) (pp)
Eq.(5.23) (yn(®)) g=1 a=q'
Eq. (5.24) (%;) | a=q" ' ="
Table 5.1

Observe that in our analysis of (5.22) and (5.24) we require

1 "

q =4q but if this is not the case we are able by restructuring to

take q = q'q". Recalling the notation J and J# defined in §4.3.2,

1 1
we derive from the matrices ,Ynj and ynj, as appropriate, the
~ ~n

matrices Ynj:,Ynj from the rule

Vnj = Vnj 3 + Vo, je1 I%. (5.26)

Having established our interpretation of ¢, we introduce the

“(e) Y CO R . . ;
Yn s ¢n » ¥n , ¥n obtained on replacing ¢, and fn in an

A~

vectors

obvious manner in the notation, first introduced in (4.68),

-~

T T T
’iDrH_l = {jﬁnq.{_l, fnq+2, ............ ’f(n+1)q}T (527)
’ T T T
Ynil = (ngtls Yngh2se-ovvevenn. ,g(ml)q)’f (5.28)
(n=0,1,2,...) with ¢g = £(0)(0,0,....,0,1} T, y =0 e ca(p+l)

Finally, recalling that the Kronecker product G ® H of the
square matrices G and H 1is the partitioned matrix with elements

CopH, we can state the following results.
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Lemma 5.1

If (a) #n

~ Ay f

(®) ¢n=¢n in (5.27) and T =T'E;, Vpj

£ in (5.27) and T - E. V
,ﬁf’n n . an ~pP —Mp, Nnj

I

then (a) (5.21) or (b) (5.22) yields

n+l ~ [

arbitrary, or

satisfying (5.25'),

I ® [1-£hA'1lppey = Eh Vol 1 ® (Eg-T) wi + (1. @ Yo +
{1q ® 11-t0" 1 Jpni jzo Int1,5 8 (EpTp) pj + (Ig @ Tpden

ntl

+ 1h jg.o Yn+l,j 8 (Ep-Tp)gj + nh (Ig ® A )¥nsl + nel- (5.29)

Proof

(a) The analogue of (5.21) for ;ée) is

198 piHd = (1g 8 Ep) v + h(lq @ &) {&p

On re-arranging we obtain

~ (e)

(e)

+17F ’?:_{/n+1}

' "(e) [N
{1q 8 (g - e }etd — (15 8 Eol® + nh(1q @ A Yyne1.

This result has already been stated in (4.69) and may also be derived

- E

from (5.29) when .rp E;.

(b) Rearranging (5.22) we obtain

1] n 1 1 1 1 f
(I-£hA")pni1 = £h jzo “nj (EpTplej + Lpen + nhA ¥ny1 +

n '
+ 7h jzo “nj (Ep-Tpl¥j-

The analogue of (5.22) for ;n is

n+l A [N

A !

{1 © (1 -nA)} pny1 = €0 5 Vi1 © (Bp-Tplp) + (1 @ Tplen +

j=0

ntl A

~

1

+ mh(lqg 8 A') ¥ne1 + 70 2o Invl, § 8 (EpTp)yy.

This is the required result (5.29) which has already been derived

in (4.90).
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Lemma 5.2

If (a) ¢n_¢(e) in (5.28) and r E,, v,';j arbitrary or

1]

(b) ‘@n =‘fn in (5.28) and F Ifyp, nj satisfying (5.25") then

(a) (5.23) or (b) (5.24) yields

~ n+l An " oA
’_’lbn'*-l = h JZO n+l J ® (E Fp)SDJ + h(lq ® A )ﬂon+1 + (I ® r‘ )‘J’n

(5.30)

Proof By re-arrangement of the analogues of (5.23) and (5.24).

We pause to recall, from §4.3.2, that when the quadrature rules

Q = {wij) are block-reducible with ng‘éQYn;Q’j =,§n j where
ﬁéQ =’§Q = g for 2 # {0,1,......... ,m} then mg;,ﬁQ,gn—Q,J =,§n—3
where /%Q =0 for ¢ £ {0,1,...,m,m+l}) and

53(2 = Bp_1 J* + By J. (5.31)

The matrices Bp, Bp are derived according to the rule (5.31)
~(e)

A1
but when treating “n (respectively ¢é )) the matrices ,Ynj

Al 1 1

(respectively VnJ) are arbitrary and we then set Ap =1, Ap =

bl

" ~ ~n

n
otherwise- (respectively Ag = I, Ap = 0 otherwise) Bp and _§Q
being arbitrary.
Lemma 5.3

(a) Let the rules {wnj} be block-reducible. Then (5.29) yields

(5.3) where
Po = Ap @ (1 -EhA") - £hB) @ (E,-Ty) - Ap.1 ®T,  (5.32)
and Qg = -7h[Bp ® (Ep-Tp) + Ap @ A']. (5.33)

(b) Let the rules {w;j} be block-reducible. Then (5.30) yields
(5.4) where

An
Ro = -h[Bg @ (Ep-Tp) + Ap 8 A"] (5.34)
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and Sp = (Ag @ 1) - (Apu® Ip). (5.35)

Proof By applying ‘éQ ® lq to (5.29) and Ap @ Iq to (5.30).
Observe that BQ E.FQ(Eh)’ ’9Q = Qp(nh), Rp = Rp(h) and Sp

is independent of £, 75 and h. As earlier we write
m+1
P(p) = QEO PQ#m+1"Q etc in what follows.

Our reference to equations (5.3) and (5.4) establishes the

connection with Theorem 5.1. However, the result of Case 1 requires

SQ=QS, but in general the presence of Arp causes difficulties with

this condition even under the reasonable assumption that

n 1" n

Ag-=1, Al =-I, Ap = 0 otherwise (simple block-reducibility).

For the combination (5.21) with (5.23) we can appeal to Case 3 since

g-1

~

is readily obtained, but to effect a general treatment we proceed

as follows.

Lemma 5.4

Under the assumption of Lemma 5.3 and with the notation established

above,
PE)on-m + UE)Yn_p = An41 (5.36)
and R¥(E)pp_p + §*(E)l&n_m = 8n11 (5.37)
where R* (W) = [1q ® ((r=vp")1 + Tp}IR(p) (5.38)
$¥(1) = [Iq ® ((u-vp)L + Ip)1S(w)
1 m+1 1" 1 Q
= (p-vp) on (Ap ® I)pmtl- (5.39)
and if g=1 or the rules Q" = (w;j} are simply block-reducible,
s* commutes with Q.

Proof

Equation (5.4) reduces to (5.37) as follows.
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1
In equation (5.4) write n+l in place of n and substract p

times the original equation. Add to the result (Iq ® F;) times the

1t " " n

original (5.4) and (5.37) results with ;An+1 =4én+2 - 799n+1 +

(1080p) 8041 -

.Remark
Observe the simplification when considering the classical methods.
The analysis which led to (5.11) is now valid if R is replaced

by g% and S is replaced by §f. Thus, we have the following result.

Theorem 5.2

Under the assumptions of Lemma 5.4

[S*(EYR(E) - QUEIR*(E) I pnpp = S*(E)Ap1-Q(E)Angy  (5.40)

and the associated stability polynomial is

det [S¥(WP(p) - QUWR* ()] (5.41)

Some specific results appear below. Theorem 5.3 is of special

e . . + . - "
interest since (in view of remarks of Hairer) we might choose A
—~

with a sparse last row whilst Q: might be conventional.

Theorem 5.3
Consider the (extended) method M(Q(Q'),/g; Q(éf),ag) applied

to (5.2). The stability polynomial is

det [ p2Z-p(Z+E +nh2A" EpA" ) 4E, | (5.42)
where Z = Z(th, h2) = (1-£hA-nh2A'A") . (5.43)
Proof
For the extended method «' = ' = e, Fp = F; = Ep and we set

Ao =Ag =1, Ap=Ap = 0 otherwise. From equation (5.32) - (5.35) and

~

(5.38) with (5.39) we may write

PG = (1@ (1-tha") ]l - (1 g E,)um
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Q(p) = -nh[I @ A'pum+l
K0 = (1 0 (D) 14Ep) ] (16 ")

= -h (L@ 5")#m+2 + h[I ® (A"-E,A")]puml
s¥ () = (p-1)pm (1@ 1)

Note that E*(u) commutes with Q(u).

From (5.41) the stability polynomial is

det [S*(WP(p) - QUWR* ()]
= [1®(1-£hA") 1p2™2(p-1) - (IGE,) p2m1(p-1) -
% (L @ A'A") p2™3 4 ph2[1 @ (A'A"-A'EpA") ] pu2mt2

Rearranging, we obtain

[ @ (L-EhA'-yh2A'A") ] u2M3 1 @[1-£hA'-nh2A"A" + Ejtnh2AE A" ] p2m+2 4
(1,®,Ep)”2m+1

from which (5.42) follows with !g defined by (5.43).

Remark

Equation (5.42) may be expressed as
1 1 "
det Z[ho(s(1-NghA")-Ep) ((p-1)L + Ep){(p(1-A1hA")-Ep)

A ((I-APAT) -Ep) ((u=1) I+Ep) (w(L-MghA")-Ep,) ] . (5.42")

1] 1"

If A=A =A then (5.42') reduces to a result of [3] which was
also previously derived in Theorem 4.4,
The results of Theorems 5.4 and 5.5 which follow require the

definitions of

¥*(\h) = 1 @ [p(1-NhA')=Ep]um (5.44)

and of g'(xh) and Ef(xh) obtained by inserting primes on

~

Ag, Bp, A and .Ep in the definition

m+1

o2 (e 8 KN Tl By @ (Ep-Tp}um?  (5.45)

1

¥(xh)
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Thoerem 5.4
Consider the (extended/modified) method M(Q(Q'), g;Q[Q“,A"],y")

applied to (5.2) and assume that the rules Q" are simply

block-reducible (or reducible). Then, if + = e, the stability

-~

polynomial is (5.42).

For the general 7" the stability polynomial is

~

1

det  Thgny M0 TTOoh) (Cumyp) (IQ1) + (16Lp))¥" (Aph)

i

M FFOh) (Camyp) (IQ1) + (T6Tp)) ¥ (hgh)]  (5.46)

Proof

,Ynj are arbitrary

For the general result, ' = e, Fp = Ep,

o

] 1
and so we have Ag =1 and Ap = g, otherwise.

From equations (5.32) - (5.35) and (5.38) with (5.39) we may write

P(w) = [18(u(1-EhA") - Ep)]pm
= [Mo ¥'(h) -A¥*(A1h).]/(hg-Mp)
Q(p) = -mh(1A")umtl

=AM [FF(Agh) = ¥¥F(A1h)1/(Ag-A1)

R*( — _h(1 _ n r" m+1 1n _I“" " " m+1—Q
R™(w) k@(#butﬂQ%L@®(&~w+éQ®éw

Il

(Lo (p)1 + Tp) (@ Ogh) - ¥ (0gh)) b/ o)

n " m+1 1" " " 110
(10 (wyp) 1+ Tp) 5 [(he X 1) = (Ag1 @ L)l

$¥(w)

[1® (pvyp) 1 +f;1 [Mo ¥'(Ah) - Ay ¥"(Nph)1/(Np-A)

I

From (5.39) the alternative formulation for §%(u) is

m+1 -0

v m+l "
(y—yp) QZ (Ap @ IHp Thus, we observe that S*(y) commutes
=0 ~ ~ =

with Q(u) and, in addition, S*(y) commutes with P(u).

The stability polynomial is
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det [S*(WP(W) - Qp) R¥(w)]

= det [P(1)S™ (1) - QUUR* ()]

= det{[N¥* (\gh) -\ ¥ (A1 h) ][ I10Ck~vp" ) I+LL" T [N¥. (Aph) -\ T¥ (Agh) ]

+ MN[F (o) -F* (A 1L @ (pvp) 1 + TR1IE" (gh) - ¥ (\h) 1}/ Op-rp)2
(5.47)

On considering the expression
{DoZ* Ooh) - A1 O IIL 8 11 Do ¥'Oqh) - ALE" (oh) ]
MM [0 - ¥FOqM] (16 1) (¥ Ogh) = ¥" (Ah) ]} (a-yy)

which is part of (5.47) and the similar expression with I ®,Fp

replacing I @ I it is readily seen that (5.46) follows.
When 7" = e, (5.46) becomes

m+1 ' n 11
MNor™ L oo Ae ® (#2(1-NghA') (I-AhA") -p[E, + (I-AohA')(I - Aha) +

nhZA'E,A"] + Ep)

m+1 " 1] n 1 n
AL S e ® (2(I-MhA') (1-nohA") —p[Ep + (I-MhA') (I-AohA") +

2 1 "
Th2A'Ep” + Ep)

from which (5.42) follows.

The methods covered by the preceding results are of particular
interest. The following is a general result.

Theorem 5.5

1 ”n

; Q[Q",A"], ¥ ), where the rules

-~

For the method M(Q[Q|,§:], Y

Q are simply-block-reducible (or reducible), the determinant (5.41)

reduces to (5.46) of Theorem 5.4 with gf(Xh) replaced by Ej(Xh).



—198—

5.5 Summary

In this chapter the intention was to investigate further the
y-modified Runge-Kutta methods. We have endeavoured to develop a means

of constructing polynomials for the modified R-K methods when they are

applied to the 'basic' test equation

X
£'(x) = £§F(x) + 7 J f(t)dt + d(x).
0

The analysis includes the stability polynomials for the classical
R-K methods.

The general result (modified/modified method)
M(Q[Q'KQ'LZI; Q[Q",éﬁ], Z") stated in Theorem 5.5 relies on the
assumption that the rules Q" are simply-block-reducible (or reducible)
as in general the presence of ff" causes difficulties.

We demonstrate below the way in which earlier results in this
chapter and those of chapter 4 may be derived from the genéral result.
1: The extended/modified method M(Q(é'), e; Q(Q",Q"),zﬁ) is derived

by taking ~" = e in Theorem 5.5. This result is given in Theorem 5.4.

2. The extended/extended method M(Q(éﬁ),_g; QA"Y, e) 1is derived by

n

taking 7' = v = e 1in Theorem 5.5. This result is given in
Theorem 5.3.
3. If, in addition to 7' -~y =e we take A=A = A" we obtain

M(Q(é),'g; Q(é), s) which is the extended/extended result obtained in

Theorem 4.4,

4. In Theorem 5.5 take y' =e, ¥ =0 and A=A = A" we obtain

-~ ~ —

the associated stability polynomial

1 » +1 m+1 "
det o {[xo 1@ (p(1-AohA)-Ep)um+l] [QZO (Ag @ w(I-A1hA)

-Mhp Bp" @ Epipmf)
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mt+1 " Al
- D1 Lo (rLmbA)Ep) ™) 5 (Ae ® m(I-NohA)-Mohk Bp ® Ep)i2])

m+1 " Al
= det (Ng-N1) on [QQ ® {(l—fhé—nhz_éZ)#_ﬂElp} - 7)h2,u By ® égp] uZm—Q_
This corresponds to equation (4.72) in chapter 4 from which the result
Theorem 4.6 is deduced for Runge Kutta/mixed methods using block
reducible rules.
5. In Theorem 5.5 take 7' = =0 and A = A' = A" and Q' = Q" =

~ —~ o~ -~

We obtain the associated stability polynomial

det %L [Xo VOAh)V(A1h) = NV(Ah)¥(Agh)]

h V(X\h) mil {A (behA) Xh(% E )} m-2
where = ® - - ® .,
M 0%o0 Aag ® p (1=-Ahn 20 @ Ep) M

This is the result stated in (4.97) for the mixed/mixed method with

block reducible rules.
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