12 research outputs found

    FPGA-BASED MULTI-CORE PROCESSOR

    Get PDF
    The paper presents the results of investigations concerning the possibilities of using programmable logic devices (FPGA) for building virtual multi-core processors dedicated to the chosen application. The paper shows the designed architecture of multi-core processor specialized for performing a particular task and discuss its computation efficiency depending on the number of cores being used. The evaluation of the results are also discussed

    A Multithreaded Soft Processor for SoPC Area Reduction

    Full text link
    The growth in size and performance of Field Programmable Gate Arrays (FPGAs) has compelled System-on-a-Programmable-Chip (SoPC) designers to use soft proces-sors for controlling systems with large numbers of intellec-tual property (IP) blocks. Soft processors control IP blocks, which are accessed by the processor either as peripheral de-vices or/and by using custom instructions (CIs). In large systems, chip multiprocessors (CMPs) are used to execute many programs concurrently. When these programs require the use of the same IP blocks which are accessed as periph-eral devices, they may have to stall waiting for their turn. In the case of CIs, the FPGA logic blocks that implement the CIs may have to be replicated for each processor. In both of these cases FPGA area is wasted, either by idle soft processors or the replication of CI logic blocks. This paper presents a multithreaded (MT) soft processor for area reduction in SoPC implementations. An MT proces-sor allows multiple programs to access the same IP without the need for the logic replication or the replication of whole processors. We first designed a single-threaded processor that is instruction-set compatible to Altera’s Nios II soft processor. Our processor is approximately the same size as the Nios II Economy version, with equivalent performance. We augmented our processor to have 4-way interleaved mul-tithreading capabilities. This paper compares the area us-age and performance of the MT processor versus two CMP systems, using Altera’s and our single-threaded processors, separately. Our results show that we can achieve an area savings of about 45 % for the processor itself, in addition to the area savings due to not replicating CI logic blocks. 1

    Memory controller for vector processor

    Get PDF
    To manage power and memory wall affects, the HPC industry supports FPGA reconfigurable accelerators and vector processing cores for data-intensive scientific applications. FPGA based vector accelerators are used to increase the performance of high-performance application kernels. Adding more vector lanes does not affect the performance, if the processor/memory performance gap dominates. In addition if on/off-chip communication time becomes more critical than computation time, causes performance degradation. The system generates multiple delays due to application’s irregular data arrangement and complex scheduling scheme. Therefore, just like generic scalar processors, all sets of vector machine – vector supercomputers to vector microprocessors – are required to have data management and access units that improve the on/off-chip bandwidth and hide main memory latency. In this work, we propose an Advanced Programmable Vector Memory Controller (PVMC), which boosts noncontiguous vector data accesses by integrating descriptors of memory patterns, a specialized on-chip memory, a memory manager in hardware, and multiple DRAM controllers. We implemented and validated the proposed system on an Altera DE4 FPGA board. The PVMC is also integrated with ARM Cortex-A9 processor on Xilinx Zynq All-Programmable System on Chip architecture. We compare the performance of a system with vector and scalar processors without PVMC. When compared with a baseline vector system, the results show that the PVMC system transfers data sets up to 1.40x to 2.12x faster, achieves between 2.01x to 4.53x of speedup for 10 applications and consumes 2.56 to 4.04 times less energy.Peer ReviewedPostprint (author's final draft

    A CAD tool for design space exploration of embedded CPU cores for FPGAs.

    Get PDF

    Application Specific Customization and Scalability of Soft Multiprocessors

    Full text link

    A CAD Tool for Synthesizing Optimized Variants of Altera\u27s Nios II Soft-Core Processor

    Get PDF
    Soft-core processors offer embedded system designers the benefits of customization, flexibility and reusability. Altera\u27s NIOS II soft-core processor is a popular, commercially available soft-core processor that can be implemented on a variety of Altera FPGAs. In this thesis, the Nios II soft-core processor from Altera Corporation was studied and a VHDL implementation, called UW_Nios II, was developed. UW_Nios II was developed to enable us to perform design space exploration (DSE) for the Nios II processor. It was evaluated and compared with Altera Nios II and shown to be competitive. SCBuild is an existing CAD tool that was developed to enable DSE of soft-core processors. We modified SCBuild to automatically explore the design space of the UW_Nios II using a genetic algorithm. This tool can accurately estimate the area and critical path delay of different variants of the UW_Nios II on a field programmable gate array. Through experiments conducted using SCBuild, it was shown that employing a genetic algorithm to explore the design space of parameterized Nios II core, with a large design space, helps designers find optimized variants of UW_Nios II

    Soft-processor IP per FPGA. Tipologie a confronto

    Get PDF
    L'obiettivo di questo lavoro di tesi è quello di realizzare un confronto tra i diversi soft-processors disponibili attualmente in commerci

    Validation and verification of the interconnection of hardware intellectual property blocks for FPGA-based packet processing systems

    Get PDF
    As networks become more versatile, the computational requirement for supporting additional functionality increases. The increasing demands of these networks can be met by Field Programmable Gate Arrays (FPGA), which are an increasingly popular technology for implementing packet processing systems. The fine-grained parallelism and density of these devices can be exploited to meet the computational requirements and implement complex systems on a single chip. However, the increasing complexity of FPGA-based systems makes them susceptible to errors and difficult to test and debug. To tackle the complexity of modern designs, system-level languages have been developed to provide abstractions suited to the domain of the target system. Unfortunately, the lack of formality in these languages can give rise to errors that are not caught until late in the design cycle. This thesis presents three techniques for verifying and validating FPGA-based packet processing systems described in a system-level description language. First, a type system is applied to the system description language to detect errors before implementation. Second, system-level transaction monitoring is used to observe high-level events on-chip following implementation. Third, the high-level information embodied in the system description language is exploited to allow the system to be automatically instrumented for on-chip monitoring. This thesis demonstrates that these techniques catch errors which are undetected by traditional verification and validation tools. The locations of faults are specified and errors are caught earlier in the design flow, which saves time by reducing synthesis iterations

    A novel access pattern-based multi-core memory architecture

    Get PDF
    Increasingly High-Performance Computing (HPC) applications run on heterogeneous multi-core platforms. The basic reason of the growing popularity of these architectures is their low power consumption, and high throughput oriented nature. However, this throughput imposes a requirement on the data to be supplied in a high throughput manner for the multi-core system. This results in the necessity of an efficient management of on-chip and off-chip memory data transfers, which is a significant challenge. Complex regular and irregular memory data transfer patterns are becoming widely dominant for a range of application domains including the scientific, image and signal processing. Data accesses can be arranged in independent patterns that an efficient memory management can exploit. The software based approaches using general purpose caches and on-chip memories are beneficial to some extent. However, the task of efficient data management for the throughput oriented devices could be improved by providing hardware mechanisms that exploit the knowledge of access patterns in memory management and scheduling of accesses for a heterogeneous multi-core architecture. The focus of this thesis is to present architectural explorations for a novel access pattern-based multi-core memory architecture. In general, the thesis covers four main aspects of memory system in this research. These aspects can be categorized as: i) Uni-core Memory System for Regular Data Pattern. ii) Multi-core Memory System for Regular Data Pattern. iii) Uni-core Memory System for Irregular Data Pattern. and iv) Multi-core Memory System for Irregular Data Pattern.Les aplicacions de computació d'alt rendiment (HPC) s'executen cada vegada més en plataformes heterogènies de múltiples nuclis. El motiu bàsic de la creixent popularitat d'aquestes arquitectures és el seu baix consum i la seva natura orientada a alt throughput. No obstant, aquest thoughput imposa el requeriment de que les dades es proporcionin al sistema també amb alt throughput. Això resulta en la necessitat de gestionar eficientment les trasferències de memòria (dins i fora del chip), un repte significatiu. Els patrons de transferències de memòria regulars però complexos així com els irregulars són cada vegada més dominants per a diversos dominis d'aplicacions, incloent el científic i el processat d'imagte i senyals. Aquests accessos a dades poden ser organitzats en patrons independents que un gestor de memòria eficient pot explotar. Els mètodes basats en programari emprant memòries cau de propòsit general i memòries al chip són beneficioses fins a cert punt. No obstant, la tasca de gestionar eficientment les transferències de dades per a dispositius orientats a throughput pot ser millorada oferint mecanismes hardware que explotin el coneixement dels patrons d'accés de les aplicacions, així com la planificació dels accessos a una arquitectura de múltiples nuclis. Aquesta tesis està enfocada a explorar una arquitectura de memòria novedosa per a processadors de múltiples nuclis, basada en els patrons d'accés. En general, la recerca de la tesis cobreix quatres aspectes principals del sistema de memòria. Aquests aspectes són: i) sistema de memòria per a un únic nucli amb patrons regulars, ii) sistema de memòria per a múltiples nuclis amb patrons regulars, iii) sistema de memòria per a un únic nucli amb patrons irregulars, iv) sistema de memòria per a múltiples nuclis amb patrons irregulars

    The Microarchitecture of FPGA-Based Soft Processors

    No full text
    As more embedded systems are built using FPGA platforms, there is an increasing need to support processors in FPGAs. One option is the soft processor, a processor implemented in the reconfigurable logic of the FPGA. Commercial soft processors have been widely deployed, and hence we are motivated to understand their microarchitecture. We must re-evaluate microarchitecture in the soft processor context because an FPGA platform is significantly different than an ASIC platform. This dissertation presents an infrastructure for rapidly generating RTL models of soft processors, as well as a methodology for measuring their area, performance, and power. Using the automatically-generated soft processors we explore many interesting microarchitectural axes in the trade-off space. We also compare our designs to Altera's Nios II commercial soft processors and find that our automatically generated designs span the design space while remaining very competitive
    corecore