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Abstract

As networks become more versatile, the computational requirement for supporting addi-

tional functionality increases. The increasing demands of these networks can be met by

Field Programmable Gate Arrays (FPGA), which are an increasingly popular technology

for implementing packet processing systems. The fine-grained parallelism and density of

these devices can be exploited to meet the computational requirements and implement

complex systems on a single chip. However, the increasing complexity of FPGA-based

systems makes them susceptible to errors and difficult to test and debug.

To tackle the complexity of modern designs, system-level languages have been developed

to provide abstractions suited to the domain of the target system. Unfortunately, the

lack of formality in these languages can give rise to errors that are not caught until late

in the design cycle. This thesis presents three techniques for verifying and validating

FPGA-based packet processing systems described in a system-level description language.

First, a type system is applied to the system description language to detect errors before

implementation. Second, system-level transaction monitoring is used to observe high-level

events on-chip following implementation. Third, the high-level information embodied in

the system description language is exploited to allow the system to be automatically

instrumented for on-chip monitoring.

This thesis demonstrates that these techniques catch errors which are undetected by

traditional verification and validation tools. The locations of faults are specified and errors

are caught earlier in the design flow, which saves time by reducing synthesis iterations.

ii
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Chapter 1

Introduction

Networks are pervasive in modern society. High bandwidth applications, such as audio

and video streaming, are frequently used on both fixed and mobile networks. Cloud

computing is commonplace with many traditionally local applications being hosted re-

motely as services. This trend towards software services means that more computation is

performed within the network.

In order to support these applications, the network needs to provide complementary

functions such as access control, encryption, load balancing, packet classification and

packet forwarding. These functions are collectively known as packet processing and they

are provided transparently by nodes within the network. The demands placed on these

nodes are ever-increasing as bandwidth and computational capabilities improve to meet

the insatiable demand for more functionality.

Early packet processing systems were implemented using general purpose processors. This

permitted the use of cheap standard components, which could be customised through

software. However, these architectures failed to meet the increasing computational re-

quirements associated with the increase in bandwidth. In response to this, a class of

domain-specific system-on-chip devices was developed. Known as Network Processing

Units (NPUs), these devices provide dedicated hardware components and frequently in-

clude specialised microengines. The dedicated hardware units typically perform functions

such as framing and checksum calculation. The microengines support specialised in-

structions for packet processing such as bit field manipulation. These features permit

1
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performance improvements over general purpose processors while retaining the flexibility

and customisation of software. Software customisation allows a NPU device to be used

in a variety of applications, which leverages economies of scale. Although these architec-

tures are more efficient than general purpose processors, the software programming model

exposes complex detail, making programming difficult and time consuming. As a result,

there has been a significant research effort devoted to improving the programming model.

The concept of device customisation can be extended further through the use of Field

Programmable Gate Arrays (FPGAs). FPGAs are regular structures composed of pro-

grammable logic cells and their interconnections [1]. They might also include other com-

ponents such as multipliers, memories and processors. The main advantage of FPGAs is

that they allow hardware units to be customised to the needs of a specific application and

they can be reconfigured after device fabrication. Some devices even permit the hardware

units to be reconfigured as the system is executing. FPGAs can also provide improved

performance and lower power consumption compared to CPU and NPU implementations.

The available resources in modern FPGAs permits complex designs to be implemented

on a single device. Again, the precise customisation afforded by FPGAs permits their

use in a variety of applications, which can also leverage economies of scale. However, the

increasing complexity of FPGA systems makes them difficult to program and susceptible

to functional errors. Consequently, FPGAs can be difficult to test and debug. As FP-

GAs provide many benefits over CPUs and NPUs, improving the programming model of

FPGA-based systems would allow the capabilities of these devices to be exploited in a

wider range of applications.

1.1 Motivations

As process geometries shrink following the trend of Moore’s law, more transistors can

be fabricated on a single silicon device. On a FPGA this means that the number of

programmable logic cells can be increased and indirectly the functionality of the device

increases. However, the ability of the designer to utilise this increased functionality is

improving at a much slower rate, giving rise to what is known as the designer productivity

gap, as shown in Figure 1.1.
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Figure 1.1: The designer productivity gap with numbers obtained from the International

Technology Roadmap for Semiconductors[2].

One solution to the productivity gap is to use abstraction through libraries of reusable

functions. These libraries of functions, commonly known as Intellectual Property (IP)

blocks, are customisable to suit the needs of a particular design. These libraries have

well-defined interfaces and functionality. They are frequently used to reduce complexity

as perceived by the designer and improve the time to market. The IP blocks are also

well-tested, validated and used in a variety of designs providing confidence that the com-

ponent is functionally correct. Systems can be built by assembling IP blocks to create

the desired functionality[3], which parallels the software engineering technique of using

software libraries.

In order to further reduce the productivity gap, high-level design tools have been de-

veloped that allow the designer to connect IP blocks to form a complete system. Such

high-level design environments define the types and semantics of IP block interfaces and

provide IP block interconnection specification languages, which may be textual or graph-

ical. Using domain-specific languages removes the need for the designer to connect each
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wire of an IP block individually and reduces the time needed to describe the system. It is

also less error prone. Furthermore, the designer does not need a detailed understanding

of each interface type used in the system.

Within Xilinx, several IP interconnection tools have been developed including the Em-

bedded Development Kit [4], System Generator [5], Brace and System Stitcher. The

Embedded Development Kit and System Generator are commercial applications, which

target processor-based systems and DSP applications respectively. Brace and System

Stitcher are research tools that support packet processing systems. However, Brace can

also be used in a range of application domains beyond packet processing. The common

feature between these tools is that each one is capable of creating systems from intercon-

nections of IP blocks.

1.2 Aims and Objectives

The aim of this research is to provide verification and validation of FPGA-based packet

processing systems described in a high-level design environment without requiring a de-

tailed understanding of the low-level signalling. Existing techniques and methods require

a detailed knowledge of low-level signalling but high-level system descriptions present

a different class of errors that might not be caught through traditional validation and

verification techniques.

For example, an IP block might function correctly in isolation but errors can be in-

troduced when it is integrated with other components. The area requirements, spatial

layout and timing constraints of an IP block might cause system-level integration errors.

Typical integration errors range from mismatched timing constraints to undesired com-

ponent interactions. For example, two incompatible interfaces might exhibit unintended

interactions when connected together. As a result, integrating IP blocks might require

a significant effort as the designer needs to understand the function of the block, the

operation of its interface and the protocol used for data transmission. Furthermore, the

interfaces on IP components might be incompatible, requiring wrappers or collars to com-

municate with the rest of the system. These issues are compounded in the traditional

HDL design flow as the designer must manually ensure that all components involved use
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the same standard.

The aim of this research is complemented by six specific objectives, which state how verifi-

cation and validation can be applied to FPGA-based packet processing systems described

in a high-level design environment.

1. Use static verification to detect interconnection errors that are not presently de-

tected by the implementation flow.

2. Reduce the time required to detect interconnection errors compared with the tradi-

tional implementation flow.

3. Use dynamic monitoring to detect errors not observed by existing on-chip monitoring

tools.

4. Design a mechanism to interpret low-level signalling as high-level events.

5. Temporally relate distributed events observed on-chip.

6. Eliminate observation errors by automating the insertion of a dynamic on-chip mon-

itoring system into designs.

1.3 Contributions

This work has focused on researching techniques for the validation and verification of

IP block interconnections used in FPGA-based packet processing systems. Within this

thesis, validation is defined as a demonstration of conformance to a set of properties or

tests. Validation gives confidence that an artifact is correct but does not guarantee that

its properties hold under all conditions. Conversely, verification is a formal proof which

states that the given properties are true under all specified conditions. This thesis makes

three main contributions:

1. Type checking of an IP interconnection specification language, allowing errors to be

caught before the system is synthesised.
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2. System-level transaction monitoring of packet processing systems described by an

IP interconnection specification language, permitting errors to be observed at run-

time.

3. Automatic instrumentation of packet processing systems described by an IP inter-

connection specification language for on-chip monitoring, eliminating errors due to

incorrect instrumentation.

Type checking an IP interconnection specification language is a form of static verification.

This technique allows errors to be detected in the high-level design environment as the

system is compiled and before it is synthesised. Type checking saves a significant amount

of time by catching errors earlier in the design flow and reducing the number of synthesis

iterations. This technique is frequently used in software design to prove certain properties

of a program.

This thesis makes two specific contributions with regards to type checking an IP inter-

connection language. First, a type system for static verification of IP block interfaces is

specified. Second, an implementation of a type checker, which verifies connections accord-

ing to the rules of the type system, is presented. The type checker has been implemented

as a component of the Brace research tool.

System-level transaction monitoring addresses some of the limitations of traditional on-

chip monitoring tools. Traditional run-time monitoring tools typically record low-level

information and tend to focus on monitoring a single location. Low-level monitoring also

produces vast amounts of information, which can be difficult to comprehend. To configure

and use these tools effectively, the designer needs a detailed understanding of the low-

level signalling within the system, which they might not necessarily have. System-level

transaction monitoring addresses these limitations by using transaction-level observations,

which relates events to the design environment and exposes a different class of errors

compared to traditional tools. The amount of data transmitted off-chip is significantly

reduced and fewer external pins will be required. Furthermore, system-level transaction

monitoring has a small resource requirement, which minimises the impact on placement,

routing and system timing. The small resource requirement also allows more probes to

be inserted throughout the design to provide a system-level perspective.
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The architecture of a system-level transaction monitoring tool is a major contribution

of this thesis. This architecture consists of probes, collection circuitry and external host

software. This thesis presents six variants of the probe architecture and two variants of

the collection circuitry. Each probe and collector architecture has been implemented on a

variety of FPGA devices and has been used to monitor several packet processing systems.

Finally, this thesis has also contributed monitoring software, which interprets the results

transmitted by the monitoring system on the target FPGA.

The insertion of on-chip monitoring circuitry is typically a manual process. In traditional

design flows the probe insertion process is time consuming and error prone as signals need

to be connected individually. Typical designs require the designer to connect many signals

in order to correctly insert a probe and its supporting circuitry. The configuration of the

probe is also a separate step that must be manually performed. The transaction-level

semantics of component interfaces can be exploited to permit automatic instrumentation

of the design, which reduces the potential for error in connecting probes and reduces the

time required to instrument a design. The transaction-level semantics can also be used

to configure the monitoring system. This thesis specifies an algorithm for automatically

instrumenting a design and has contributed an implementation of that algorithm within

the System Stitcher research tool.

1.4 Thesis Layout

The format of the remainder of this thesis is as follows. Chapter 2 provides a background

to the validation and verification of packet processing systems. It also provides a wider

understanding of network monitoring and the problems associated with monitoring packet

processors.

Chapter 3 describes the FPGA design flow, while highlighting existing validation and

verification techniques. The main contributions of this thesis are discussed in relation to

their applicability to the FPGA design flow and high-level design environments.

Chapter 4 discusses the verification of IP block interconnections. It presents a type system

for static verification of interfaces and their connections. The formal representation of
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the type system is presented and the error detection rate is discussed in comparison to

techniques used commercially.

The architecture of an on-chip monitoring mechanism that observes packet processing sys-

tems implemented in a FPGA is presented in Chapter 5. The system raises the abstraction

level of the monitored signals and is designed to observe the interfaces of components,

which has the advantage of leaving the IP blocks unaltered. The architecture of the com-

ponents comprising the monitoring system are explored and their resource requirements

are presented.

Chapter 6 describes the application of the monitoring system to three case studies. This

chapter demonstrates the observations that can be made with a system-level monitoring

tool and highlights the errors detected. The errors that could not be detected with

traditional tools are also presented.

An algorithm for automatically instrumenting a design is presented in Chapter 7. It uses a

variation of the type system as a method of instrumenting a system described in a domain

specific language such as Click. The technique used to create a system description with

monitoring circuitry is also described.

Chapter 8 examines future directions for the work. This thesis has presented work on

validating and verifying packet processing systems, which has improved designer pro-

ductivity. However, the techniques presented can be researched further. Additionally,

there are other complementary techniques that can be explored to further improve design

validation and verification.

The conclusions are presented in Chapter 9. Although, there are avenues yet to be

explored, this thesis has presented a significant body of work related to the validation

and verification of FPGA-based packet processing systems. The techniques presented in

this thesis have improved designer productivity and caught a class of errors not detected

by traditional tools.

Finally, Appendix A contains a list of publications, which have resulted from the research.



Chapter 2

Background

Networks are employed in many diverse applications that vary dramatically in scale. The

most common perception of networks is the interconnection of multiple desktop computers

which can span the globe, such as the Internet, or occupy a single room. Networks can

also be much smaller. They can be found within a single computer or contained entirely

within a single silicon device. In each case, the user of the system might be unaware that

a network is being employed.

Due to the pervasive nature of networks in modern electronic systems, packet process-

ing is frequently employed to provide the functionality which permits components to

communicate. This chapter presents an overview of packet processing applications. It

examines packet processing systems as components within the network and as complex

systems in their own right. An overview of existing FPGA-based packet processing sys-

tems is presented and descriptions of functions implemented in FPGAs are given. The

chapter also discusses existing design environments for packet processing applications and

presents an overview of type checking applied to existing languages. Furthermore, tools

and techniques for monitoring and observing FPGA-based systems are presented. These

tools tend to focus on capturing low-level information, which is not directly related to the

abstractions used in high-level design environments. Consequently, the monitoring tools

discussed in this chapter are not restricted to packet processing applications. Existing

automated instrumentation techniques are presented and the requirements for on-chip

monitoring are discussed. Finally, this chapter presents a review of two methodologies for

9
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debugging applications.

2.1 Introduction

The design and implementation of packet processing systems is a topic of active research,

which can be examined from two different perspectives. First, packet processors form

components within a network. The properties and responses of an individual packet

processor can affect other components in the network, which can alter the performance

and response of the network as a whole. Second, a packet processor is itself a complex

system, which performs a variety of functions. The architecture of the packet processor

can impact the power consumption, latency, throughput and memory requirements of the

silicon device.

Due to the complexity of packet processing systems, languages and tools have been de-

veloped that describe, implement, validate and verify such systems. These languages and

tools tend to increase the level of abstraction used to describe the operation of such sys-

tems and frequently enforce a separation between the control and data paths in the system.

Modern design environments remove the need for the designer to perform mundane error

prone tasks and can provide tools for validating and verifying packet processing systems.

These design environments frequently include tools for monitoring the implementation of

the system, as not all errors can be caught beforehand.

While packet processors are implemented in a variety of technologies, FPGAs have be-

come a popular implementation choice. The customisation and fine-grained parallelism

inherent in FPGA devices allows them to be used in a variety of applications and can

provide improved performance compared to software implementations. The cost and re-

configurability of FPGAs provides several advantages over ASIC implementations, which

makes them suitable for a range of packet processing applications. Due to the popu-

larity of FPGA-based packet processing systems, research has been carried out on the

architecture of such implementations and the boards that support these devices.
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2.2 Packet Processor as a Network Component

Packet processors are not isolated artifacts. Each packet processor is one component of a

larger system which provides services to other components. The provision of services to

other components allows the network to operate as a single complex system by supporting

network protocols and providing quality of service guarantees. In order to examine and

determine the properties of these services, the packet processor cannot be observed in

isolation. The network must be examined as a complete system.

Within networks, protocols are used to define the rules of communication and are an area

of active development. Peer to peer protocols for file sharing and instant messaging are

becoming increasingly popular, while client-server protocols are widely used for database

applications and delivery of web pages. Ideally, these protocols would be tested using the

target hardware but this is impractical due to the expense of creating large physical net-

works, the complexity of repeatedly reconfiguring the network topology and the difficulty

of creating repeatable experiments on hardware. As a result, network simulators have

been developed to observe and examine network operations.

Network simulators are used to develop and examine a variety of protocols, which range

from router queueing protocols, such as Random Early Discard (RED), to TCP behaviour,

such as selective acknowledgement. The abstraction mechanisms provided by network

simulators allow the designer to focus on details of interest in both abstract and detailed

models. Network simulation also provides a high degree of control over scenario generation

and can usually permit multiple protocols to be simulated simultaneously, which can

highlight unexpected protocol interactions. Two frequently used network simulators are

OMNeT++ and ns-2.

OMNeT++ [6] is a discrete event simulator, which uses a split programming model.

Components of the network and their operations are described in C++, whereas the

architecture of the network is described in a declarative language called NED. The NED

language separates component implementation from network topology, which encourages

components to be reused between various simulations.

Ns-2 [7] is also a discrete event simulator with a split programming model. The event-level
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packet processing operations are described in C++ but the simulation orchestration is

described in OTcl. The OTcl scripts express the definition, configuration and control of

the simulation. As OTcl is an imperative scripting language the distinction between the

component functionality and the network topology can become blurred.

Although abstraction is a powerful tool, the operation of the network can be affected sig-

nificantly by the architecture and implementation of individual components. The details

of component architecture and implementation are lost as additional layers of abstraction

are applied. To address the loss of accuracy many network simulators allow real imple-

mentations of network components to be included in simulation models. For example,

ns-2 has been extended to include SystemC models with the aim of providing more accu-

rate simulation results [8]. It has also been argued that hardware and software trade-offs

in networked embedded systems cannot be made without reference to the impact on the

network [9]. To further improve the accuracy of network simulators, real software network

stacks can be included to eliminate the inaccuracies of the default models [10]. For exam-

ple, ns-2 has been extended to incorporate Click descriptions as part of the simulation [11].

Click is a domain specific packet processing description language that will be presented

in detail later in this thesis. The inclusion of Click within the ns-2 simulator allows the

code that will be deployed in the target packet processor system to be simulated, giving

greater accuracy in terms of event timing and system response.

As networks are complex systems, it is difficult to predict the actual operation of protocols

on various topologies. Network simulators allow designers to understand the operation of

a network and highlight the interaction between various protocols, whether the interaction

is intended or not. As the architecture and implementation of individual packet processors

can affect the operation of the network, the design of packet processing systems cannot

be validated or verified by solely using network simulators. In order to validate and verify

packet processors, these components must be examined as complex systems themselves.

2.3 Packet Processor as a System

Although packet processors are not isolated artifacts, they are complex systems them-

selves. As a system, packet processors are subject to a variety of constraints including
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packet throughput, packet loss, quality of service guarantees, power dissipation, memory

utilisation and silicon area requirements. These constraints limit the choices for imple-

menting such systems but the exact nature of the requirements depend on the target

application.

Packet processors are used in a variety of applications such as multiplexers, routers,

switches, firewalls and intrusion detection systems. They are implemented in a variety of

technologies and provide a set of services to the network. For example, Asymmetric Digital

Subscriber Lines (ADSL) are frequently multiplexed to provide connections from the local

telephone exchange to multiple subscribers. The multiplexing function is performed by

a Digital Subscriber Line Access Multiplexer (DSLAM), which parses the packet headers

and provides a scheduling policy for multiplexing the connections. The DSLAM system

presented by Neogi et al. [12] is based on a network processor but the system could be

implemented in other technologies.

Mobile phones increasingly use packet-based transmissions for data communications,

which require packet processing systems within the mobile phone basestation. Packet

Control Units (PCUs) are frequently used in mobile phone basestations to coordinate

packet transfer between the mobile phone and the networking subsystem. The PCU

parses packet headers and performs packet encapsulation and decapsulation. Other ser-

vices provided by the PCU include scheduling packets and controlling the link power

algorithms. Again, the PCU system described by Yu-Jie et al. [13] is implemented using

a network processor but other technologies could be used.

The Smart Port Card [14] is a processor-based packet processing system, which consists of

an embedded Pentium processor running the NetBSD UNIX kernel. The card processes

ATM cell streams on a per connection basis and supports active network applications,

which allows end systems to alter the behaviour of the network. Code fragments or ref-

erences to code fragments are received by the processor and are executed as required to

alter the behaviour of the network. The ability to change the behaviour of the network

permits network management applications to be applied and can alter the behaviour of

the network to support other functions as required. Although this system could be imple-

mented in other technologies, the general purpose processor provides the most flexibility

for executing code on demand.
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The Smart Port Card can be used in conjunction with the Washington University Gigabit

Switch [15], which is an ATM switch implemented in an ASIC. This system provides an

efficient mechanism for switching packets but the functionality of the device cannot be

altered. Conversely, the restriction on reconfiguration and the exploitation of parallelism

allows the system to exhibit high data transfer rates and remain power efficient.

Finally, active networking can also be applied to networks-on-chip as described by Vander-

bauwhede [16]. Described as a service-based architecture, the system controls the dataflow

in a heterogeneous multi-core SoC device and uses a task graph description language to

define the operations required for a specific application.

Packet processing systems need to meet a variety of constraints, which can affect the

choice of implementation. Each technology has unique strengths that encourage their

use in specific applications. However, the diverse range of packet processing applications

means that the best implementation technology for a system is not always immediately

obvious.

2.4 FPGA-based Packet Processing Systems

While packet processing systems are frequently implemented in ASIC devices or in soft-

ware, the use of FPGA devices is becoming more popular. FPGAs exhibit the programma-

bility of software and the parallelism of ASIC designs, which make them an interesting

option for implementing packet processing systems. The architecture of FPGA-based

packet processing systems has been explored for a variety of applications, which include

routers, switches, firewalls and intrusion detection appliances.

Routers and switches are essential to the operation of packet-based networks as they

forward packets to their eventual destination. Typically, these devices work independently

but Ethane [17] and OpenFlow [18] have been proposed as centralised solutions, which

creates consistency between appliances. The approach taken by Ethane is to simplify

the switches in a network such that they only contain a flow table, which determines

where packets should be forwarded. Unknown flows are sent to the central controller

for identification and to update the flow tables, which forward packets matching that
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particular flow. The central controller makes all forwarding decisions, which are then

sent to the switches for implementation.

OpenFlow is based on Ethane but all forwarding decisions are made once for each flow

as opposed to each switch requesting independent flow updates. In this simplified system

the switches still need to perform packet header parsing and flow identification, which de-

termines whether the packet can be scheduled for transmission or whether a flow update

request is made to the controller. In both cases, the switches are implemented using FP-

GAs on the Field Programmable Port Extender board [19], which allows the functionality

of the switch to be tailored to the network application.

Firewalls prevent unwanted access to network resources by blocking specific flows, which

requires the firewall to parse packet headers, perform packet classification and potentially

scan the packet payloads. A firewall can be created on a single FPGA, as demonstrated by

Lockwood et al. [20], which can perform these operations. The firewall is flexible enough

to permit exact matching of IP headers and use regular expressions for scanning the packet

payload. This particular system also permits the use of HDL plugins to provide additional

functionality. The use of a FPGA permits a higher throughput compared to software

implementations, while maintaining the flexibility to alter the rules and functionality of

the device following implementation.

While firewalls that block flows using packet classification can stop certain attacks on

networks, they cannot prevent the transmission of malicious software as the payloads of

the packets need to be scanned. Internet worms and viruses can be blocked by scanning

the payloads of packets for signatures of malicious intent [21]. Lockwood et al. [22] have

proposed a distributed monitoring system that consists of a data enabling device, regional

transaction processor and content matching server. The data enabling device is configured

by the content matching server and is responsible for searching packet payloads for strings

that match the regular expressions provided by the content matching server. There may

be multiple data enabling devices in a network and each reports positive payload matches

to the regional transaction processor. The regional transaction processor receives reports

from the data enabling devices and provides the network administrator with information

as to which packet was blocked and why. The data enabling device is implemented on

a FPGA, as these devices implement regular expressions efficiently and can cope with
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the data rates employed in the network. These devices are also reprogrammable, which

allows updated signatures to be received from the content matching server.

While specific packet processing systems have been implemented in FPGA devices, there

are also several general purpose packet processing boards that utilise FPGAs. Two such

boards are the Field Programmable Port Extender and the NetFPGA board.

The Field Programmable Port Extender (FPX) [19] supports packet processing at the

edge of a network switch and consists of two FPGAs, five banks of memory and two

network interfaces. One FPGA controls the packet flows and performs routing to and

from the various modules on the board. The second FPGA implements dynamically

loadable modules which contain specific functionality. The board can be used for active

networks in a similar manner as the Smart Port Card but a FPGA bitstream is required

as opposed to code fragments. The use of a FPGA allows custom pipelines to be created

and the potential for parallel computation to be exploited.

The NetFPGA [23] board uses the logic of a FPGA to implement core data processing

functions, and an embedded or external processor to perform the control functions. The

board contains two FPGA devices, a PCI interface, banks of memory, a quad-port PHY

and two SATA connectors. The board supports communication between the host PC and

the user-defined logic in the FPGA through the use of a software driver and the PCI

interface.

While most of the research into FPGA-based packet processing systems has focused on

using the fabric of the FPGA device, the use of processors within the fabric has not

been precluded. Processors implemented within the fabric of the FPGA are commonly

referred to as soft processors. The architecture of soft processors differs from ASIC

implementations as the relative speed of memory and logic is different between FPGA and

ASIC devices [24]. The area cost of implementing a processor is also higher in a FPGA

device. However, complex processors can be implemented efficiently using the FPGA

fabric as demonstrated by Buciak et al. [25] and Munteanu et al. [26], who implemented

a multi-threaded network processor and a network processor with IP compression support

respectively.

Many networks require testing to determine whether their performance is satisfactory.
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One method of achieving this is by injecting packets into the network and monitoring the

response. Packet generators [27] allow different shapes of traffic to be injected into the

network with customised packet headers to exercise a specific component or protocol of

the network. For example, the firewalls can be tested for the correct application of access

control policies to specific ports, and prioritisation protocols can be tested for correctness.

The packet generator can also repeat captured traffic so that tests are repeatable.

FPGAs provide the reconfigurability of processors combined with the fine-grained paral-

lelism of ASICs. However, they tend to be less power efficient and require more area for

the same functionality implemented in ASIC devices. Even with those limitations, FPGA

implementations of packet processing systems provide many advantages for research and

commercial systems, as they retain the flexibility of software with a comparative perfor-

mance improvement.

2.5 System Functions

In order to provide services to the network, packet processing systems need to perform

operations on the packets which they receive. These operations frequently include packet

classification, forwarding, access control, encryption and framing. The implementation of

these operations affects the architecture of the system and the performance of the packet

processing system.

Packet classification associates a packet with a particular flow, which defines the source,

destination and protocol of the packet. This operation must be performed before for-

warding or access control decisions can be made, and the implementation can affect the

performance of the system. Due to the critical nature of packet classification to the

system’s performance, many algorithms have been developed and implemented in vari-

ous technologies. These algorithms can be classed into exhaustive search, decision trees,

decomposition and tuple space [28, 29].

For example, Nikitakis and Papaefstathiou [30] have proposed a decomposition algorithm,

which is implemented in a dual stage Bloom filter. The decomposition algorithm decom-

poses multi-field searches into single field rules, which are combined using multi-level
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Bloom filters.

Exhaustive search can be implemented using a specialised hardware circuit called a

Ternary Content Addressable Memory (TCAM). Although this circuit provides optimal

performance, it is very expensive and power hungry. The circuit is frequently combined

with other less expensive alternatives to balance the cost and performance of the device.

For example, a TCAM circuit has been combined with a bit vector algorithm [31] to

support intrusion detection.

Following packet classification, forwarding operations are frequently performed in many

packet processing systems. Forwarding is implemented by performing lookup operations

for the flow once the packet has been classified. As with packet classification, there are

several algorithms which can be used to obtain forwarding information. For example, a

Content Addressable Memory (CAM) can be used. This circuit performs an exhaustive

search of the set of flows and returns a result in linear time. However, this circuit does not

scale well, is very expensive to implement and might not meet the timing requirements

of many applications. Alternatively, a tree bitmap algorithm can be used, which employs

a trie data structure for performing IP lookup operations as suggested by Taylor et al.

[32]. Tree based algorithms also lend themselves to performance improvements through

pipelining as demonstrated by Le et al. [33], who proposed a linear pipeline architecture

that uses longest prefix matching.

While packet classification and forwarding are employed in many systems, access con-

trol has become an equally important subject in recent years. Access control requires

the payload of a packet to be inspected, which is achieved by parsing the payload with

a string matching engine. Due to the importance of access control within modern net-

works, there are several approaches which have been suggested as described by Lin et

al. [34]. These approaches are heuristic matching, filtering and the use of automatons.

For example, Moscola et al. [35] scan the contents of IP packets by generating a custom

finite state machine or automaton that searches for matches to regular expressions. This

state machine can be extended to perform search and replace operations in linear time

[36]. Schuehler et al. [37] also perform regular expression matching using deterministic

finite automata. Both approaches can generate custom state machines from a higher-level

description as presented by Mackenzie and Johnson [38].
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A filtering approach, proposed by Johnson et al. [39], uses binary decision diagrams to

classify patterns. Binary decision diagrams are acyclic graphs, which can be implemented

as a series of multiplexers. The multiplexers filter the payload as it is being parsed.

SIFT [40] is another intrusion detection filter, which supports the Snort filtering database.

It performs regular expression scanning, header processing and TCP flow reconstruction

[41] and uses Bloom filters to perform string matching [42].

Packet processing systems perform a variety of operations on packets, which are required

to provide services to the network. Each operation has been the subject of much research

and various implementations have been proposed. The implementations have varying

throughput, memory requirements and area costs associated with them. However, the

architecture of FPGA devices can support a class of algorithms that are infeasible in

other implementation technologies.

2.6 Design Environments

Due to the complexity of modern packet processing systems, specialised design environ-

ments have been devised to ease the burden of designing, programming and configuring

the system. These design environments can be either general purpose or domain specific.

Two general purpose design environments that have been created are the Ptolemy project

[43] and Hume [44]. Both design environments model the constraints placed on embed-

ded systems and support various representations of time and space independently of the

technology used to implement the system.

The Ptolemy project aims to address the design of reactive systems, which includes mod-

elling signal processing, communications and control. These systems are subject to real-

time constraints with various components executing concurrently. The Ptolemy project

composes systems using multiple domain specific models of computation as no single gen-

eral purpose model can capture all of the relevant properties. The domain specific models

include data flow networks, discrete-event systems, finite state machines and communi-

cating sequential processes. The strength of the Ptolemy project is the separation of the

data path and the control path, which allows such a variety of systems to be described.
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The Hume [45, 46, 47] project is designed for developing, proving and assessing concurrent,

safety-critical systems. While not directly designed for packet processing applications, it

can capture some of the properties of network communications. Systems are described us-

ing three distinct strongly type languages, which are the declarative language, expression

language and coordination language. The declarative and expression languages describe

the functions performed by a component and the constraints placed on its operation,

while the coordination language describes the communication between components.

While general purpose design environments can provide better representations of systems,

further improvements can be made by employing domain specific design environments.

Packet processing systems have traditionally been implemented as monolithic systems,

which have extended general purpose operating systems. Several researchers have pro-

posed alternative strategies that address modularity, extensibility, flexibility and perfor-

mance of the system [48]. Three of these design environments are Scout, Router Plugins

and Click. Each of these systems separate the datapath description from the control

description.

Scout [49] is a modular, communication-centric operating system. Packet processing is

performed on paths, which are composed of multiple modules that operate on packets.

Modules implement functions such as quality of service or IPv6 processing.

Router plugins [50] is an extension to the NetBSD operating system kernel, which allows

modules to be dynamically loaded and configured at run-time. The system supports

the notion of flows, which are similar to the paths used by Scout. Each flow is able to

load modules independently. The system incurs a performance penalty over the standard

kernel but can forward packets up to three times faster than a standard kernel. The

standard kernel operates on a best effort basis, which makes no guarantees as to the

throughput or latency of packets.

Click [51, 52] is a programming language specifically designed to create modular routers.

The language describes the interconnection of elements, which form directed graphs rep-

resenting the data path. Elements are processing blocks, which perform functions such as

Random Early Discard (RED) or traffic prioritisation. The runtime component of Click

bypasses the traditional kernel and can sustain a throughput twice that of a Cisco 7200
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series dedicated router. Click provides limited support for run-time configuration and

does not support run-time module loading as Scout and Router Plugins do.

The Click language is not restricted to describing packet processing applications in soft-

ware. The language has been extended for use in FPGAs, where the elements are written

in VHDL, Verilog or a domain specific networking language [53]. Using Click in this way

simplifies the design of hardware components, and allows Click systems to be implemented

either in hardware or software providing that the appropriate elements exist.

2.7 Type Checking of IP Interconnection Languages

There are many languages that permit descriptions of IP block interconnections. The

trend towards separation of functionality and communication permit systems to be de-

scribed and implemented more quickly than traditional HDL languages. The languages

that describe these interconnections do not always exploit the available information to

prevent errors in the target design. High-level design environments can provide more

information related to the interfaces of IP blocks and this information can be used to

detect errors before compilation and synthesis are executed.

As these languages are focused on describing the interconnection of IP blocks, the errors

exhibited are due to incorrect connections. Incorrect connections may be the result of

misunderstanding the composition, operation or functionality of the IP block interfaces.

Consequently, the aim of verifying the description is to expose incorrect connections before

the system is implemented.

One verification technique frequently used in languages is type checking, which requires

the creation of a type system [54] and the implementation of a type checker. A form

of semantic analysis, type checking is a lightweight formal method which can prove that

a class of errors is absent in a given program [55]. This technique will also explicitly

state which part of the description is incorrect, allowing the designer to correct the error

quickly. Finally, type checking is an automated phase in the compiler that will catch

errors earlier in the design flow and save time.

Type checking of IP block interconnections is a property of several design languages.
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VHDL, Verilog, SystemC, SystemVerilog, Lava, Coral, IP-XACT and PSF each provide

methods for statically verifying connections. The verification methods used in these lan-

guages include type checking but other techniques are also applied.

Register Transfer Level (RTL) languages such as VHDL [56] and Verilog [57] verify simple

properties of designs through type checking. For example, Verilog verifies that ‘wires’ are

not used to store the results of operations as the data type does not permit blocking

assignments. Verification of operands is supported through data types representing the

direction of the ‘wires’ on module interfaces. VHDL provides a comprehensive represen-

tation of interfaces using record types. Collections of related wires can be represented as

a single complex interface where the direction of each wire and the total number of wires

are verified. Neither language contains functional information regarding the wires and

consequently cannot detect whether a clock signal has been inadvertently connected to a

reset interface.

Transaction Level Modelling (TLM) languages such as SystemC [58] and SystemVerilog

[59] support a greater range of data types. SystemVerilog is an extension of Verilog that

supports verification of interface types. Interfaces are similar to VHDL records but also

include definitions of the transactions supported on the interface. The SystemVerilog

type system verifies the structural and transactional properties separately as modules

are either transactional or structural descriptions but never both. SystemC supports a

similar set of types compared with SystemVerilog. However, the emphasis of SystemC is

on transactional descriptions and uses the C++ type system to verify connections.

Lava [60] is a component interconnection specification language, which is embedded in

Haskell and based on Hydra[61]. The language describes regular netlists compactly while

maintaining relational placement information. As Lava is embedded in Haskell, it uses the

Haskell type system to verify connections and permits abstract component representations

through the use of type variables. System level extensions [62] have been created that

support complex interfaces but these extensions do not verify the functional properties of

wires or the payloads transferred.

Coral [63] is a graphical design language that does not use a type system. Instead, it ver-

ifies connections through binary decision diagrams. Coral manipulates components with
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abstract interfaces and elaborates the properties of those interfaces through descriptions

associated with each IP block. The properties defined by the descriptions are encoded as

boolean functions, which are then matched using binary decision diagrams. The binary

decision diagrams also allow basic glue logic to be inserted, if necessary.

IP-XACT is a XML-based component interface and interconnection description language

defined by the SPIRIT consortium [64]. The language supports the definition of complex

interfaces and has a defined set of rules for validating connections. Custom scripts may

also be used to validate connections and these were the sole source of validation in earlier

versions of the standard. Using scripts to validate connections places the burden of

ensuring correctness on the designer of the IP block. Unfortunately, the IP block designer

is unlikely to anticipate every possible use case for their component, which may result in

inconsistent checks and rejection of valid connections.

The Platform Specification Format (PSF) is a collection of proprietary descriptions used

by the EDK [4]. The PSF format defines the roles of interfaces and the roles of wires

within an interface. The descriptions use nominative typing to verify connections, which

allows structural errors to be propagated to the low-level tools. The EDK is also tightly

coupled to a predefined set of interface types, which restricts the verification of custom

interface descriptions.

2.8 Dynamic On-chip Monitoring

FPGA-based systems are commonly validated through simulation, which exercises models

of the final implementation. Unfortunately, simulation cannot guarantee designs to be

free of defects and is a time consuming process. In order to provide greater confidence in

the system formal verification techniques, such as property checking, equivalence checking

and static timing analysis, are applied. These formal techniques complement simulation

as they mathematically prove design properties but they frequently rely on the designer to

specify the properties of interest. Consequently, even with the plethora of tools available

to support the designer, errors can still occur in the final implementation. These errors

could be the result of an undetected functional inconsistency or they might be due to

variations between silicon implementations of the system. In either case, these errors can
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only be detected by observing the execution of the implemented system.

Historically, FPGA designs were comparatively small and on-chip monitoring tools fo-

cused on observing low-level information as systems were created using the primitives

present in their target device. Even today, designers still create critical sections of their

design using device primitives and manually place specific components to meet timing,

area and power constraints. Consequently, on-chip monitoring tools have evolved to ad-

dress the need for low-level information such as signal timing, signal toggle rates and

signal propagation. The majority of on-chip monitoring tools are therefore related to

tracing, capturing and recording signals in FPGA-based systems.

The available resources in modern FPGA devices permit complex designs, which are more

susceptible to errors. While signal tracing is still the most dominant method of monitor-

ing a FPGA-based system, other monitoring techniques have evolved to observe a wider

range of errors. On-chip monitoring tools now include support for assertion monitoring,

transaction observations, combined monitoring with software and system profiling. As-

sertion monitoring uses custom circuits to monitor the sequence of signal transitions and

reports any illegal sequences. Transaction monitoring is becoming popular in network-on-

chip designs where the signalling between components is abstracted by packet switches

present in the device. The information from the switches can then be recorded to provide

a representation of the communication on a link. Combined monitoring with software

allows the designer to observe hardware events in tandem with software executing on a

processor, which observes errors that result from operations in either domain. Finally,

system profiling is used to understand the communication in a system and to identify any

bottlenecks that might prevent real-time constraints from being met.

2.8.1 Signal Tracing

Signal tracing samples the values of signals over a period of time in relation to a clock.

It is particularly useful for observing signal transitions in relation to the other signals

that form a computation or communication event. Signal tracing infrastructure is now

frequently included in ASIC systems and can reuse existing test infrastructure to debug

functional errors as demonstrated by Ludewig et al. [65]. This form of signal tracing
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requires the system clock to be halted as the system state is recorded externally through

an IEEE 1149.1 standard interface, which is commonly known as JTAG. Stopping the

clock limits the class of errors that can be detected and is not suitable for applications

where real-time constraints are imposed.

Trace buffers can be used to capture samples without stopping the reference clock as

samples are stored on-chip. However, the size of the buffer limits the number of samples

that can be stored. Hsieh and Huang [66] have proposed a compression mechanism which

aims to increase the number of samples that can be stored by employing on-chip com-

pression techniques. This approach has been extended by Kao et al. [67, 68], who employ

both compression and abstraction techniques to improve the real-time observations of an

AMBA bus in SoC devices.

While these approaches improve the visibility of the system under observation, the points

of interest are fixed following synthesis. Quinton and Wilton [69] have demonstrated a

programmable debugging module that can alter which signals are monitored following

fabrication of an ASIC device. While the debugging module can process information

tailored to the needs of the designer, the range of signals that can be observed at run-

time needs to be defined before fabrication. As with the tools mentioned previously, the

programmable debugging module uses the JTAG interface to communicate with a host

computer.

As the JTAG interface is commonly found on FPGA devices for validation by the manu-

facturer and configuration of the device, the interface has been exploited for use in on-chip

monitoring systems. The unused external pins or internal JTAG access ports can be used

to form custom scan chains which can be used to stimulate the device [70]. The JTAG

interface is also commonly used by commercial monitoring tools such as Xilinx ChipScope

[71], which creates monitoring probes within the FPGA fabric. This tool samples signal

values in relation to a predefined reference clock and records low-level data. However,

ChipScope can monitor any signal in the FPGA fabric and provides a sophisticated trig-

gering mechanism, which allows data capture to be controlled by complex sequences of

low-level signal transitions [72]. As a result of its architecture, ChipScope requires a sig-

nificant number of on-chip memory blocks, which limits the number of samples that can

be captured [73]. As packet processing applications tend to use the majority of BRAM
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components on a FPGA, it might not be possible to instrument systems using low-level

signal trace tools such as ChipScope.

One approach, proposed by Penttinen et al. [74], aims to overcome the buffering limi-

tations of ChipScope by using a microprocessor to sample signals. In their system, the

signals of interest are sampled by a microprocessor which processes the data and sends the

results over an Ethernet interface. While this approach provides continuous monitoring,

the use of a microprocessor limits the sampling rate of the system and requires BRAM

resources to store the sampling code.

While readback techniques and trace mechanisms are normally inserted independently

of the design environment, several research tools have been developed which relate the

hardware observations to the design environment. For example, the Java Hardware De-

scription Language (JHDL) is a structural description language which instantiates the

primitives on a FPGA [75]. As JHDL operates at a low-level, it can exploit the readback

facility present in some devices to present the sampled values in relation to the compo-

nents specified by the designer [76, 77]. Another approach demonstrated by Graham et

al. [78] instantiates logical probes in the FPGA fabric and uses a low-level library to

connect the probes to signals of interest by altering the bitstreams. Finally, JHDL has

been extended to include design-level scan chains that allow the state of various IP blocks

to be captured using a JTAG scan chain [79].

While JHDL can map data observations to the design specified by the user, the Xilinx

Virtual File System (XVFS) creates a representation of the FPGA device primitives as a

file system that can be explored on a host computer [80]. As the file system is mapped

directly to the device primitives, it does not process the data and requires the system

clock to be halted while the state is readback. BoardScope [81] performs a similar set of

operations but it displays captured data as waveforms or within a schematic.

Signal tracing mechanisms vary in functionality and resource requirements. Tools tradeoff

some features to provide other benefits to the end user. For example, tools sacrifice real-

time signal capture for the ability to spatially observe the entire FPGA. Alternatively,

resource requirements are increased in order to provide a greater temporal sampling pe-

riod. Consequently there is no single tool, which can provide appropriate information in



CHAPTER 2. BACKGROUND 27

all circumstances.

2.8.2 Assertion Monitoring

Assertions are frequently used to terminate the execution of simulations when an error

condition is detected. As simulation can be time consuming, it is possible to implement

assertions directly in the hardware. For example, Bartzoudis and McDonald-Maier [82]

have implemented an assertion monitor in a FPGA-based daughter card, which checks

for PCI protocol and application errors. Assertion circuitry can be synthesised from a

property description language and automatically inserted into a design as demonstrated

by Gharehbahi et al. [83]. Finally, Straka et al. [84] have implemented an assertion

checker that validates the LocalLink protocol used in Xilinx FPGAs. As with the tool

by Gharehbahi et al., this tool takes a description of the protocol and automatically

synthesises the circuit to perform the analysis.

Assertion monitoring in FPGA designs tends to focus on monitoring low-level signals.

Existing tools do not allow assertions to be described in relation to high-level events at

disparate locations in the system. While assertion monitoring is very useful for catching

errors in a design, the technique needs to be combined with a form of data capture in

order to observe and understand what is happening in the system. Thus, an assertion

monitor could form the trigger of a signal capture tool.

2.8.3 Transaction Observations

Signal tracing is a useful monitoring technique for observing low-level details with cycle

accuracy but the sheer volume of data can overwhelm the designer. Transaction-level

monitoring addresses the volume of data by processing it to obtain higher-level data and

is increasingly being used to monitor the buses in SoC devices and NoC applications.

Goossens et al. [85, 86, 87, 88, 89, 90, 91] have proposed a transaction monitoring infras-

tructure for the Aethereal Network-on-Chip, which monitors the communication between

packet switches in the network and abstracts the low-level details of the communication

between components. Their approach reuses the network fabric to transmit the processed
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information, which can affect the performance of the system under observation. The

transactions are obtained by reusing the interpretation circuitry already present in the

switches.

The architecture of network-on-chip monitoring tools permits observations to be con-

trolled by triggers at varying locations on-chip as suggested by Tang et al. [92]. Cross-

triggers allow patterns of communication in one location of the system to initiate ob-

servations in other parts of the design. The system-level communication can also be

combined with detailed observations of a single IP block, which can improve the design-

ers understanding of the operation of a component and its interaction with the system

[93].

Transaction monitoring can aid the designer to understand the system under observation.

A high-level perspective of the operation of the system can be obtained but the impli-

cations of transaction level monitoring are dependent on the target technology. Systems

composed of indirect interconnects, such as a network-on-chip, exhibit communication

patterns that may change over time as the system executes. However, direct interconnects,

used frequently in FPGA-based designs, cannot change the target of their communication

so monitoring circuitry cannot reuse the existing infrastructure in this instance.

2.8.4 Combined Monitoring of Hardware and Software

The tools presented thus far in this chapter have focused solely on monitoring the hard-

ware signals in the system. As many applications require the use of processors, debugging

techniques need to support combined observations of hardware and software operations

in tandem.

Roesler et al. [94] have developed a tool, which integrates software debuggers with gate-

level debug tools in the JHDL environment. However, this tool captures low-level in-

formation that is difficult to relate to the symbols used by the software debugger. The

tool uses the readback capability of the FPGA to observe the hardware components and

requires the operation of the circuit to be halted while reading back the current values.

The combination of monitoring hardware and software can be extended to include em-

ulation as suggested by Yu and Zou [95]. Again using JHDL, the design is decomposed
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into submodules which can be emulated independently while the remainder of the design

is simulated. This provides a performance improvement while maintaining visibility and

accuracy for key locations of interest.

The BEE2 platform [96, 97] is a multi-FPGA system, which has been created for reconfig-

urable computing applications. It is designed to be modular, scalable and uses a software

design methodology. BEE2 abstracts FPGA designs as user processes via the BORPH

operating system. The debugging environment allows assertions and breakpoints to be

created and variables to be recorded through pipes. The debugging environment is the

same regardless of whether the application is implemented in hardware, software or both.

This system abstracts low-level details for debugging purposes but is focused on recording

system state, which also hides the communication events from the user.

Combined hardware and software monitoring can produce significant amounts of data.

This data rate can be reduced by only recording the events that can alter the execution of

the system as presented by Hochberger and Weiss [98]. The data requirements for com-

bined monitoring are reduced by restricting observations to peripheral components and

interrupts as only events in these locations can change the program flow unpredictably.

The software and other hardware properties are recorded using a separate in-circuit em-

ulator, which can be used to deduce the operation of components that are not monitored

directly.

Although there are tools for combining the observations of software and hardware, most

tools focus on capturing low-level hardware observations. These observations are difficult

to relate to the functions provided by the software and require high data rates. In order

to assist the user further, the hardware events need to be presented to the user in a form

which is more suited to software debugging. Transaction-level events might be the most

appropriate form to represent hardware operations in conjunction with software functions.

2.8.5 Profiling

Profiling is the dynamic analysis of a system’s behaviour, which highlights bottlenecks

and determines the computationally intensive functions in the design. The information

obtained through profiling can aid the designer in deciding whether a function should
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be implemented in software or hardware. There is a wide range of profiling tools, which

collect diverse sets of information. A classification of profiling tools has been proposed by

Tong and Khalid [99], which groups profiling tools into software-based, hardware-based

and FPGA-based implementations.

Software-based profilers, such as Gprof [100] and Valgrind [101], develop profiles of func-

tion call graphs and memory accesses. Gprof instruments the software application, which

alters the target being observed and reduces the accuracy of the results obtained. Valgrind

simulates the processor, which is very slow compared to other profiling techniques. The

accuracy of Valgrind is also dependent on the accuracy of the simulation model, which

tends to be architecture agnostic.

Hardware-based profilers, such as those found in Intel processors [102], provide similar

information to that obtained by software profilers. The inclusion of counters in hardware

improves the accuracy of the results obtained and negates the need for the target applica-

tion to be instrumented. As with the software-based tools, only the software application

can be profiled, which prohibits comparisons of performance with the microarchitecture

of the system.

FPGA-based profiling tools tend to be more flexible by permitting the profiling informa-

tion to be customised to the needs of the designer and target application. Tools, such as

SnoopP [103] and Airwolf [104], provide counters in the FPGA fabric to profile software

functions. The results obtained are cycle accurate and do not require the software to

be altered. Analysis of software loops can also be performed using the Frequent Loop

Analysis Tool (FLAT), which identifies the most frequent short backwards branches in

the software application.

FPGA-based profiling tools also allow accurate profiles of hardware signals in conjunction

with the software application [105]. Both Hough et al. [106] and Padmanabhan et al.

[107] describe methods of monitoring software functions and recording the value of hard-

ware signals, which provide an overview of the hardware performance in relation to the

software applications. Nunes et al. [108] describe a profiler which observes the message

passing between components in the BEE2 platform regardless of whether the component

is implemented in hardware or software.
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Watches Over Data STreaming on Computing element linKs (WOoDSToCK) [109, 110,

111, 112] is an FPGA-based profiling tool that records the buffer utilisation between

computing processor elements. Assuming a single interface type with buffering, the system

adds monitors to detect cycles when links are stalled or starved. This approach uses

communication-centric monitoring and abstracts the low-level signalling from the designer

but does not record individual transactions. It provides useful information for identifying

bottlenecks but permits only limited observability of transactions between components.

Using the same interface type as WOoDSToCK, it is possible to stimulate a system using

an on-chip testbed to reduce verification time [113]. It has been shown that run-time

traffic can be emulated using a hardware testbed, which is infeasible with the software

equivalent. Such a hardware testbed can be used in conjunction with a monitoring system

to provide insight into the operation of a system in a controlled environment.

There are many profilers available to analyse software applications and the supporting

hardware. These tools can provide useful information to optimise applications and re-

duce performance penalties. However, these tools do not focus on the interconnection

between IP blocks. WOoDSToCK monitors the connection between components but it

is restricted to monitoring the buffer utilisation and does not suggest the frequency of

specific operations.

2.9 Automated Instrumentation Techniques

With the range of on-chip monitoring tools available to observe systems, there has been

little work to explore automatic instrument of those systems for observation. For example,

design environments, such as Coral [63], Platform Express [114], Xilinx Embedded De-

velopment Kit [4] and Cliff [53], provide unique abstractions for representing components

but none provide support for automated instrumentation. The EDK is the only tool with

limited support for on-chip monitoring systems. However, it only permits components

to be manually inserted using abstract interfaces and does not provide any configuration

information to the monitoring software.

Systems can also be instrumented using software provided by the on-chip monitoring
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tools. The majority of these tools focus on capturing low-level information, which implies

that the instrumentation is performed on low-level signals. On-chip monitoring tools with

software instrumentation include JHDL [75], ChipScope [73] and Identify [115].

The JHDL implementation flow provides a mechanism for monitoring the design on-

chip but it requires significant guidance from the designer to determine which signals

to monitor. The insertion of monitoring circuitry is performed on netlist descriptions

where the semantics of signals are unknown and low-level data is recorded. However,

the circuitry is inserted as part of the design flow once the signals of interest have been

specified.

Xilinx ChipScope can be manually inserted in HDL descriptions as a component in de-

signs. Alternatively, it can be inserted by a specialised program, which instruments

netlists. In both cases ChipScope requires the designer to specify the locations of interest

and to manually connect the probes to the controller IP block. Furthermore, configura-

tion is performed through a separate software tool, which does not automatically contain

the information used to instrument the design.

Synplicity’s Identify inserts monitoring circuitry that provides similar functionality to

JHDL. However, it allows the designer to specify locations of interest as breakpoints in

the HDL descriptions. Consequently, it is able to partially automatically insert monitors.

This tool does relate events to the RTL design environment but the design environment

does not contain the information found in high-level design environments.

2.10 Requirements for Monitoring Packet Processing Sys-

tems

As designs become more complex, the range of errors that might be present in the imple-

mentation and the effort required to correct those defects increases. On-chip monitoring

tools have been designed to observe defects in the implementation of systems but they

have traditionally focused on recording low-level information and monitoring a single lo-

cation. There are two disadvantages to these low-level monitoring tools. First, low-level

monitoring produces vast amounts of information, which can be difficult to comprehend.
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Secondly, to configure and use these tools effectively, the designer needs a detailed under-

standing of the low-level signalling within the system. The designer might not necessarily

have a detailed understanding of the low-level signalling as modern designs increasingly

rely on libraries of IP blocks. Frequently, these IP blocks are inserted into designs as black

boxes, although the function of the component is known. The internal signals and their

required behaviour are normally unknown to the user. Thus, a designer integrating IP

blocks is unlikely to be familiar with the details of the interface standards and associated

low-level signalling of every IP block forming the system.

Furthermore, designers do not need to be familiar with the internal signals of IP blocks

as they are well tested and validated. IP blocks are also used in a variety of systems,

giving the designer greater confidence that the component is functionally correct. Al-

though the IP block may function correctly in isolation, it might introduce errors when

integrated with other components. Typical integration errors range from mismatched tim-

ing constraints to undesired component interactions. The method of monitoring systems

created in high-level design environments should therefore focus on observing component

interactions and abstract low-level signalling.

In addition to these requirements, a monitoring mechanism needs to be unintrusive. This

means that the monitoring facilities must not interfere with the computation or commu-

nication of the system; They must be passive. For example, many embedded systems

interact with external stimuli, where the validity of computations is dependent on the

time that the result is calculated. Within the packet processing domain, many applica-

tions need to maintain connections, which requires responses to be generated within a

given time constraint. If the system is halted then no response can be generated and

the connections are lost, which can alter the behaviour of the system and prevent the

observation of any errors.

Finally, many packet processing systems employ processors to perform non-critical func-

tions. While software and hardware are normally considered distinct branches of engineer-

ing, the interaction between the two disciplines is becoming critical to delivering systems

on time. Consequently, a monitoring system designed to observe packet processing sys-

tems should be able to observe hardware and software operations simultaneously.
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Passive system-level transaction monitoring is one technique that fulfils these criteria. It

provides four main benefits, which address some of the limitations of low-level tools.

First, transaction-based monitoring abstracts low-level details into high-level events, which

addresses the need for understanding low-level information. Consequently, the low-level

signalling does not need to be recorded as the high-level event embodies the same infor-

mation.

Second, monitoring low-level signal transitions requires high data rates for transferring

data off-chip. This may also require a significant number of external pins, which might

not be available for debugging purposes. By using a transactional representation, the

low-level details can be abstracted from the designer and may reduce the data rate and

the number of external pins required.

Third, communication-centric monitoring only records the interactions between IP blocks,

which can highlight misconceptions concerning component intercommunication. It also

reduces the amount of data recorded by limiting the monitoring points and avoiding

changes to the components. This information can be used to recommend a location of

interest for further low-level monitoring, if required. It can also be used to monitor

software by observing the communication between the processor and memory.

Fourth, transaction level monitoring requires fewer resources. Smaller resource require-

ments will generally reduce the impact on system timing and ease the burden of routing

the design. Consequently the instrumentation is less intrusive and less likely to impact the

system’s behaviour. Furthermore, the debug infrastructure must also remain within the

resource limitations of the monitored device, as otherwise it cannot be observed on-chip.

Thus, the requirements for debugging a complex FPGA-based packet processing applica-

tion are communication-centric monitoring, abstraction of low-level details and a small

resource footprint. The observations of the system should also be passive to allow the

correct operation of the system to be monitored.
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2.11 Debugging Methodology

Validation of systems through on-chip monitoring is a difficult task that is normally

performed in an adhoc manner. The methods employed tend to vary depending on the

experience of the designer and the time available. Due to the difficulty and cost of correct-

ing errors at this stage in the design flow, several attempts have been made to formalise

the technique for debugging systems through on-chip monitoring. Araki et al. [116] have

suggested a methodology for debugging concurrent software applications which can be

extended to FPGA-based systems. Concurrent software applications are composed of

functional units that exchange data amongst themselves through channels. This separa-

tion of communication and computation is similar to the high-level design environments

being employed to described FPGA-based packet processing systems. Josephson [117]

has suggested a methodology for debugging silicon systems, which refers to low-level im-

plementation defects but can also be applied to functional errors.

Araki et al. proposed two phases of debugging applications: localisation and correction.

Localisation requires the designer to determine the location of a defect within a system

and correction requires the cause of the error to be determined. Both phases are iterative

and tend towards a solution. Localisation begins with a set of hypotheses, which defines

the causes that could lead to an error. The set of hypotheses is formed from error reports

and any monitoring tools available to the designer. An attempt is made to reproduce

the error by selecting a hypothesis and testing whether it holds true. If the hypothesis

holds true then the defect has been localised, otherwise the hypothesis is eliminated and

another is selected for testing. Due to the concurrent nature of the application, it can

be difficult to reproduce the events that caused the defect as each functional unit is

executing independently. Araki et al. also warn that care should be taken to ensure that

the application behaviour is not affected by monitoring its execution.

Correction of the defect involves an iterative process that refines the hypothesis. As the

defect has been localised, the cause of the defect needs to be determined. The hypothesis

is tested by modifying the application to reflect the proposed solution. If the solution

rectifies the problem then the defect has been corrected, otherwise the hypothesis is refined

and tested again.
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Josephson has outlined three stages, which detect and correct defects in silicon systems.

These stages are characterisation, triage and debug. Characterisation is the process of

testing the device and obtaining information on the operation of the system in a range

of environments. Triage determines the modes of failure, which can be classified into

separate bins. For example, the results of varying the voltage and frequency of a device

can characterise the performance of the system. Detected failures can be placed into bins

to group related defects of the same type. Following characterisation and failure classifi-

cation Josephson suggests that debugging can then be performed. The debugging process

consists of five distinct stages which are control, isolation, root cause, expansion and cor-

rection. The failure is controlled by determining the variables that might contribute to

the cause of the error and isolated by determining when and where the failure occurs in

the system. Following these stages, there should be sufficient information available to

determine the root cause of the failure, which can be expanded to eliminate other errors

in the class. Finally, the error is corrected using a technique appropriate to the system

in question.

2.12 Summary

Networks are employed in a variety of applications, which vary dramatically in scale.

Independent of their size, networks are complex systems that are composed of nodes

which perform packet processing operations. The network topology and the protocols

employed determine the performance of the network but the implementation of the nodes

can also have a direct impact.

The nodes within the network are complex systems themselves and can be implemented

in a variety of technologies. The architecture of the nodes affects their throughput, mem-

ory requirements, power consumption and cost. The balance between these requirements

is dependent on the target application and the implementation technology. The opera-

tions performed by packet processing applications also impact the characteristics of the

system. Several algorithms have been suggested for packet classification, forwarding and

access control mechanisms. Furthermore, this chapter has also discussed several design

environments that can be employed to create packet processing systems.
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Specifically, this chapter has presented existing type systems used to statically verify

designs created in other languages. It has also presented on-chip monitoring systems that a

used for monitoring systems in FPGAs and other technologies. Several existing techniques

for automatically instrumenting designs have been presented and the requirements for on-

chip monitoring have been discussed. Finally, two debugging methodologies have been

discussed.



Chapter 3

Implementation Flow for

High-level Design Environments

High-level design environments extend the traditional FPGA design flow to provide

domain-specific abstractions. In this thesis a high-level design environment refers to a

tool or set of tools that use descriptions of the communication between functional com-

ponents or IP blocks to generate designs that are used by the traditional implementation

flow. The functional components can be written in abstract languages that are com-

piled to traditional RTL descriptions or they can be written directly as traditional RTL

descriptions or netlists. Extending the traditional FPGA design flow reuses the sophisti-

cated functionality provided by the relatively low-level implementation tool chain, while

providing features applicable to the target domain. Initially, the tools comprising the

low-level implementation flow will be discussed and complementary low-level validation

and verification tools will be presented. Following this, the implementation flow of two

high-level design environments for packet processing applications will be explained. Fi-

nally, the validation and verification of high-level design environments will be examined

and the contribution of this thesis will be highlighted.

38
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3.1 Introduction

The design flow for implementing FPGA-based systems is complex but well-established

[118, 119, 120]. The flow has been used extensively in numerous designs and is supported

by a variety of tool vendors. The implementation tool chain consists of several steps,

which transform designs from device independent descriptions through to bitstreams that

are used to configure the FPGA. Validation and verification is well-supported by the

design flow, and each step provides an opportunity to prove specific properties of the

system being implemented.

Due to the complexity of implementing FPGA-based systems, high-level design environ-

ments extend the existing design flow. Extending the implementation tool chain reuses the

functions of the design flow and exploits the existing techniques for verifying systems dur-

ing implementation. Furthermore, it provides an interface for implementing systems that

can be shared between different domain-specific high-level design environments. Sharing

the low-level implementation flow allows designers to retain control of low-level aspects

of the system, if they so desire.

The techniques for validating and verifying high-level systems are immature as high-level

design environments are new extensions to the existing design flow. The information

obtained from traditional validation tools is not related to the abstractions and repre-

sentations used in the high-level design environments. In order to verify a system ef-

fectively, the techniques need to be related to the design environment. High-level tools

also present more opportunities for detecting errors before the traditional FPGA design

flow is executed. These opportunities arise because high-level design environments con-

tain additional information about the intended system that is discarded by the low-level

implementation flow. This thesis contributes one technique for verifying systems before

synthesis is executed and a method of relating on-chip monitoring to the high-level design

environment. It also contributes a technique for automatically instrumenting a design

by exploiting the additional information found in high-level design environments. These

techniques catch more errors than are presently caught by the low-level implementation

flow and will save time by catching errors earlier than the traditional implementation

flow.



CHAPTER 3. IMPLEMENTATION FLOW 40

3.2 Low-level Implementation Tool Chain

Register Transfer Level (RTL) descriptions are typically used as inputs to the traditional

FPGA design flow. These descriptions specify the transfer of data between registers

and the logical operations performed on that data. Transformations need to be applied

to these RTL descriptions to configure the individual configuration memory elements

found in a FPGA. The algorithms for performing these transformations are complex and

consequently form separate stages of the design flow. As shown in Figure 3.1, these phases

are synthesis, translation, mapping, placement, routing and bitstream generation. Each

phase translates the design into a more specialised description, which eventually targets

a specific FPGA device.

Synthesis transforms a RTL description into a structural netlist. Such RTL descriptions

are normally written in Hardware Description Languages (HDLs), such as VHDL [56] and

Verilog [57]. These languages permit behavioural descriptions of systems to be written

and require the synthesis tool to infer the structural implementation. For example, a state

machine can be described as a sequence of state transitions using RTL descriptions. The

synthesis tool would then infer the structural composition of the state machine, which

would allow the system to be implemented. As already mentioned, the resultant netlist is

a structural representation of the system, which describes the set of components and their

interconnections. At this stage of the design flow the specified components are device in-

dependent logic elements, such as decoders, flip-flops and logic gates. An HDL description

does not need to use behavioural descriptions and may explicitly instantiate these generic

components or device specific primitives, which removes the need for inference.

Within the Xilinx FPGA design flow, two netlist formats are frequently used. These are

the Electronic Data Interchange Format (EDIF) and the Native Generic database and

Constraints (NGC) file. Both formats describe component interconnections but the pro-

prietary NGC format also includes constraint information. Although netlists are designed

to describe component interconnections, the descriptions are explicitly stated and do not

support many of the features found in high-level IP block interconnection languages such

as conditional instantiation, replication and complex interfaces.

Following synthesis, translation merges multiple netlists into a single description, called
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Figure 3.1: The Xilinx FPGA design flow including validation and verification points.
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the Native Generic Database (NGD). It also includes any additional constraints from

Netlist Constraints Files (NCFs) while maintaining the system hierarchy. After trans-

lation, the netlist must be mapped to the primitives supported by the target device.

Mapping produces a netlist that refers to logic cells, I/O cells and other hard IP blocks

found on the target device. Within the Xilinx tool chain the result is a Native Circuit

Description (NCD) file.

At this stage in the design flow the netlist refers to specific device primitives. However,

it does not specify the location of those primitives on the device, nor does it describe the

paths for interconnecting those primitives. Placement and routing converts the mapped

netlist to a placed and routed description. Placement assigns primitives to specific loca-

tions on the target device, while routing allocates resources for interconnecting the placed

primitives. Due to the finite resources on the FPGA the placement and routing algo-

rithms are heavily interdependent. Consequently, both functions are executed as part of

the same tool in the Xilinx design flow.

Having obtained a placed and routed netlist the final step is to convert it to a bitstream

that configures the target FPGA. The bitstream is a binary file that contains configuration

information for all of the programmable logic elements and additional data, such as the

initial values of components.

3.3 Validation and Verification of the Low-level Tool Chain

As the low-level design flow is well-established, several tools for validation and verifica-

tion have been developed that complement the existing flow. The techniques that are

commonly applied include simulation, power analysis, timing verification, equivalence

checking, design rule checking and on-chip monitoring, as shown in Figure 3.1.

Simulation can be performed at most stages within the design flow with an increase

in accuracy as implementation progresses. Figure 3.1 shows the three main classes of

simulation, which are functional, structural and timing simulation. Functional simulation,

which does not contain any timing information, is used to exercise HDL descriptions and

validate the operation of the design. Structural simulation is executed on translated
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netlists, which simulate the system using the inferred generic components. Again, as the

netlist is not placed, no timing information is present. However, the increased accuracy

of structural simulation incurs a computation penalty as more processing is required to

simulate the system. Frequently this means that structural simulation takes more time to

execute than functional simulation. Finally, timing simulation uses a placed and routed

netlist to simulate device primitives. This form of simulation contains accurate timing

information from the netlist but incurs a further computation penalty.

Simulation is a validation technique that cannot prove the absence of defects. However, it

can detect errors within execution traces and is a popular technique as it provides complete

spatial and temporal visibility of the system. Usually, systems are simulated at multiple

levels of abstraction with the same stimulus to give confidence that the implementation

and subsequent transformations are correct.

Power analysis is an important validation tool as power consumption has become a criti-

cal constraint in some FPGA-based designs. Power analysis is performed using a routed

netlist, which defines the length of wires and the connection impedance. It also veri-

fies that junction temperature limits will not be exceeded and ensures that the device’s

thermal limits will not be surpassed.

The satisfaction of timing constraints in synchronous designs can be formally verified by

static timing analysis tools. Within the Xilinx tool flow, TRACE formally proves that all

connections in a design meet timing constraints. It determines the maximum frequency

for a given circuit and calculates the critical path. Timing estimates can be generated

at various stages in the design flow but formal verification is performed on a placed and

routed netlist.

As the design flow is comprised of separate tools, formal equivalence checkers can be

used to verify the output of each tool. Formal equivalence checkers statically compare

HDL descriptions, netlists and other files to detect design inconsistencies. Equivalence

checking does not verify the functional properties of the design. Instead, it ensures that the

outputs generated by the implementation tools do not deviate from the input descriptions.

Formal equivalence checkers can verify that the final bitstream matches the initial HDL

description, detecting errors introduced by the implementation tool chain.



CHAPTER 3. IMPLEMENTATION FLOW 44

The Xilinx design flow also includes a set of Design Rule Checks (DRCs), which are a series

of tests for validating the system. These checks form part of the various tools in the flow

but they can also be executed independently. The DRCs can be categorised into logical

and physical checks. Logical checks are device independent and are executed as part of

translation. These checks validate structural properties such as blocks, nets, pads, clock

buffers, names and primitive pins. Physical checks uncover electrical design errors and

are performed as part of mapping, placement and routing, and bitstream generation. The

checks include the examination of signals for floating segments, antennae and checking

the placement of signals on external pins.

Finally, on-chip monitoring is used to observe the system as it is executing on the target

device. On-chip monitoring is used to record functional, logical and physical errors that

were undetected during implementation. Traditional monitoring tools observe individual

signals by placing monitoring circuitry on-chip or by redirecting connections to external

pins. Additionally, on-chip monitoring allows data sequences to be captured and signal

timing to be observed. This technique also provides greater accuracy and executes more

quickly than simulation but has comparatively limited visibility. Furthermore, these tools

may require external buffering and sampling equipment.

3.4 High-level Design Environments

As the available resources of FPGA devices increases, the abstractions provided by RTL

languages become less suited for describing complex systems. As this trend continues,

the productivity of designers diminishes and the time required to create designs increases.

High-level design environments aim to increase designer productivity by raising the ab-

stractions provided and emphasising the reuse of pre-existing components. These envi-

ronments also encourage components to be described using specialised domain-specific

languages but this does not preclude the use of traditional RTL and netlist descriptions.

To encourage component reuse and foster the adoption of domain-specific languages, high-

level design environments tend to separate the specification of functionality and commu-

nication. Unlike netlist descriptions, the interconnection of each wire does not need to be

stated explicitly. High-level interconnection specification languages typically support fea-
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Figure 3.2: An overview of the design flow of System Stitcher including validation and

verification points.
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tures such as parametrised regular structures, hierarchy and conditional instantiation but

do not permit the description of component functionality. The design environments may

complement the language capabilities through support for features such as component

inference and datapath optimisation.

This thesis is concerned with two specific high-level design environments that target the

packet processing domain. These tools are called Brace and System Stitcher. Both tools

are proprietary to Xilinx and have been developed as part of the research into high-level

design environments. Both tools use the language Click [51, 52] to instantiate, configure

and connect IP blocks. Click is intended solely for specifying the interconnection of

components and has no support for describing component functionality. Although this

may seem restrictive, it encourages separation between the description of component

functionality and the system interconnection. The separation of component functionality

and system interconnection encourages reusable components to be created, which can be

tested in isolation. Systems can then be formed using well-tested components suggesting

that any errors are the result of integrating components as opposed to isolated functional

errors.

Brace and System Stitcher share a similar architecture for creating high-level designs. The

architecture of System Stitcher is shown in Figure 3.2, which is also representative of the

architecture of Brace. These tools are composed of several stages, which include lexical

analysis, parsing, system elaboration and code generation. The output generated in both

cases is a set of files that describe the individual IP blocks and an HDL description of the

system interconnections. The outputs can then be used as an interface to the traditional

design flow, which generates the final bitstream.

3.4.1 Brace

Brace was initially designed for assembling packet processing systems but it has been

extended to act as a generic IP block interconnection tool. Brace extends the capabilities

of the Xilinx Embedded Development Kit (EDK) and supports automated implementation

from Click descriptions through to bitstreams. The EDK provides a library of verified IP

blocks that can be customised and tailored to meet specific requirements. The complexity
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of the IP blocks in the library ranges from simple logic gates to complex processors. Brace

utilises this library and also supports the inclusion of custom IP blocks, which might have

been developed in other tools.

Brace also provides support for inferring components. For example, it can automatically

determine the clock requirements for designs and configure the appropriate Digital Clock

Modules (DCM). Brace is also capable of automatically inferring reset controllers and

correctly matches logic levels using knowledge of the reset signals provided to the FPGA.

It also connects output reset signals from the controller to each IP block using the correct

logic levels. Finally, Brace also exploits board-level information, which reduces the burden

of connecting designs to external components.

3.4.2 System Stitcher

System Stitcher was designed exclusively for assembling packet processing systems. It

restricts the interface types that can be used on IP blocks and supports packet processing

components written in other high-level languages. System Stitcher interfaces directly with

the low-level implementation tools and co-ordinates the generation of IP blocks written in

other high-level languages. This tool also incorporates a facility for co-ordinating system

simulation where each component can be described at varying levels of abstraction.

3.5 Validation and Verification of High-level Designs

As systems become more complex the need for validating and verifying correctness be-

comes critical. High-level design environments provide representations that lend them-

selves to alternative validation and verification techniques. Two existing techniques that

are commonly applied to modern high-level designs are transaction level modelling and

model checking.

Transaction Level Modelling (TLM) is frequently used to model systems using represen-

tations more abstract than RTL [58, 59]. These representations provide a clearer under-

standing of the functionality of the system and permit quicker simulations compared to

RTL descriptions. The simulation techniques have also evolved to provide comprehensive
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functional coverage of the system under test [121, 122]. As mentioned in section 3.3,

high-level simulations can be compared to simulation traces of low-level implementations

providing confidence that the implementation is correct. However, without formal verifi-

cation, there is no guarantee that a low-level implementation matches the transaction level

model. To complicate matters further, the translation from TLM descriptions to RTL

implementations is a manual process. However, tools are being developed to automate

this process [123, 124].

Model checking verifies the functional properties of an abstract design by exhaustively

exploring the state space of the system. This technique can be applied to HDL descriptions

but is more commonly applied to more abstract representations. Abstract models are

commonly used to reduce the number of states that need to be explored, which reduces

the execution time of the tool. Furthermore, the required abstractions of model checkers

may ignore important properties of the system. Model checking requires the designer to

specify the properties of the system but if the designer omits a property then the tool

cannot catch any errors relating to it. Finally, a model of each component in the system

is required. However, these might not be available from third party IP vendors.

This thesis is concerned with the validation and verification of high-level design environ-

ments. It presents three concepts that extend the validation and verification capabilities of

the research tools, Brace and System Stitcher. The concepts proposed are type checking,

system-level transaction monitoring and automated instrumentation.

3.5.1 Type Checking

High-level design environments contain more information related to the interconnection of

components compared to the low-level implementation flow. Unfortunately, this informa-

tion is discarded as the implementation flow progresses. Type checking performs semantic

analysis of IP block interconnections statically, which saves time by eliminating the need

to execute the low-level implementation flow when errors are detected. Additionally, a

class of errors permitted by the low-level flow is detected by the type system.

Brace and System Stitcher both use semantic analysis and type checking to prevent errors.

System Stitcher uses a constrained set of types that target packet processing systems. This
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thesis proposes a type system for Brace that uses the structural and payload properties

of interfaces to verify connections. The type system has been implemented as part of the

compilation flow of Brace and is a contribution of this thesis.

3.5.2 System-level Transaction Monitoring

The reconfigurable nature of FPGAs encourages rapid prototyping in the target hardware,

which allows systems can be exercised more quickly than in a simulation environment.

Furthermore, the final implementation is observed, not an abstract model. Unfortunately,

traditional monitoring tools focus on signal transitions and require significant on-chip

resources.

A system-level transaction monitoring system for observing packet processing systems has

been designed and implemented. The monitoring system interprets the sequences of signal

transitions on component interfaces as events that can be related to the abstractions used

by the high-level design tool. In particular, the events reported by the monitoring system

can be related to a separate system simulation environment developed as part of System

Stitcher. The monitoring system also minimises the extra resource penalty of monitoring,

while providing flexibility for observing a variety of component interconnections. The low

resource penalty allows the monitoring system to be used in a wider range of designs than

low-level monitoring tools.

3.5.3 Automated Instrumentation

On-chip monitoring systems can be inserted into designs at various stages of the imple-

mentation flow. However, the insertion of monitoring circuitry is a manual process as

low-level tools cannot determine which signals to monitor. The lack of semantic informa-

tion in low-level tools also precludes the configuration of monitoring software to interpret

the signals being monitored. High-level design environments contain semantic information

regarding component interfaces that can be exploited to correctly instrument a design for

system-level transaction monitoring. Additionally, the high-level environment contains

sufficient information to configure the monitoring tool, allowing signals to be correctly

interpreted.
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The semantic information in high-level design environments can be exploited to perform

automated instrumentation of systems, which does not require user intervention and com-

plements the semantic information of the design tool. The instrumentation algorithm has

been implemented as part of System Stitcher and uses the type system to correctly insert

the monitoring circuitry.

3.6 Summary

High-level design environments tend to extend the existing low-level FPGA design flow,

as it is complex but well-understood. The low-level design flow is also complemented by

several techniques for validating and verifying systems. Consequently, high-level envi-

ronments exploit the features already present and provide additional functionality. This

chapter has presented the architecture of two design environments developed internally

within Xilinx. Finally, the contributions of this thesis have been explained and their ap-

plicability to the design flow has been shown. In particular, an overview of type checking,

system-level transaction monitoring and automated instrumentation has been given.
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Static Verification of IP Block

Interconnections

High-level design environments contain information that is either not available or used in

low-level tools. This information is used during compilation to create low-level represen-

tations of the design and it is subsequently discarded once the low-level design flow has

been invoked. Properties of the design can be verified before execution of the low-level

flow by exploiting the information available in high-level design environments. Detect-

ing errors before implementation reduces synthesis iterations, saves time and increases

designer productivity.

This chapter presents a type system that statically verifies the interconnection of IP

blocks by exploiting the high-level information available in Brace. The type system itself is

formally presented and an implementation of a type checker is explained. The chapter also

demonstrates that type checking in high-level design environments catches more errors

and catches errors earlier than the traditional design flow. Throughout this chapter,

an IP block is also interchangably referred to as a component, referring to its use as a

component within a larger system.

51
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4.1 Click: A Domain Specific Language

Click was originally created to improve the performance of software-based routers. By

separating the communication and computation of modules, Click improved the perfor-

mance of software routers compared to traditional monolithic implementations [51, 52].

Cliff [53] aimed to further improve the performance of routers by exploiting the paral-

lelism inherent in FPGA devices and by using Click to maintain the separation between

computation and communication. Brace is an extension of Cliff, which provides further

abstractions of the hardware. The intention is to provide a means of describing the sys-

tem irrespective of whether the implementation is in software or directly in hardware.

Although Brace was originally intended to assemble packet processing applications, it is

capable of assembling systems comprised of IP blocks from multiple application domains.

The hardware abstractions used in Brace are also not limited to the packet processing

domain.

Click is an untyped declarative language that describes the communication between mod-

ules. The computation of Click systems is defined by the functionality of the constituent

modules, known as elements, which are written in other languages. Within Brace, the

modules or elements are discrete IP blocks that are instantiated in the FPGA and cho-

sen from a library provided by the EDK. The library can be extended with user defined

IP blocks, which can be described in a language suited for the target application. The

communication described by Click is implemented as a physical connection between IP

blocks. There is a direct mapping from the Click description to the hardware implementa-

tion. Click also supports hierarchical descriptions through element classes. The element

class is a set of connected elements and is treated like any other element in the system.

The interfaces of an element class consists of the unconnected interfaces of the elements

comprising the element class.

The following code shows the instantiation of an IP block that represents a BRAM on a

FPGA. The syntax consists of an identifier, inst0, and the type of the IP block, which is

bram block. This identifier is used to refer to the instance of the IP block throughout the

remainder of the design. The type refers to an IP block that is available in the library.

The instantiation does not define the interfaces of the IP block as these are not explicitly
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defined in the Click syntax. Rather, the interfaces are specified as part of the IP block

library using an extended version of the PSF description.

inst0 :: bram_block;

Brace includes some extensions that are not present in the the traditional Click syntax.

The original Click syntax represents each interface on a module by a unique number.

In Brace, an unique alphanumeric identifier is used, which is defined by the component

definition in the IP library. The following code shows the syntax for connecting two IP

blocks that have already been instantiated. The code specifies that the LLTX interface on

element inst1 should be connected to the LLRX interface on element inst2. As previously

mentioned, the composition of the interface is not stated explicitly, as it is defined by the

IP library.

inst1 [LLTX] -> [LLRX] inst2;

The Click syntax has also been extended to allow individual wires within an interface

to be accessed. The following code shows individual wires and vectors of wires being

accessed and connected. The first line states that wire 0 from the port data on element

inst1 is connected to wire 0 from the port data on inst2. The second statement specifies

that the range of wires (4:1) from port data on inst1 are connected to the range of wires

(7:4) on port data on element inst2.

inst1 [data(0)] -> [data(0)] inst2;

inst1 [data(4:1)] -> [data(7:4)] inst2;

The code shown in Figure 4.1 describes a packet processing system, which consists of

three IP blocks. These IP blocks are a bidirectional LocalLink buffer, Ethernet MAC and

a physical layer device (PHY). The IP blocks have already been defined and are included

in the IP library. The resultant packet processing system is shown graphically in Figure

4.2.

The statement in line 1 of the code in Figure 4.1 declares the instantiation of the LocalLink

buffer. The buffer is of type ll xgmac buffer and has been given an instance name of



CHAPTER 4. STATIC VERIFICATION 54

1: frame_buffer :: ll_xgmac_buffer (C_TX_FIFO_SIZE 512,

2: C_RX_FIFO_SIZE 512);

3:

4: mac :: xgmac (MANAGEMENT_INTERFACE true,

5: STATISTICS_GATHERING false);

6:

7: phy :: xaui (C_MODE ETHERNET,

8: C_CLK_FREQ 156250000,

9: MDIO_INTERFACE true);

10:

11: input [CONFIG] -> [MDIO_CONFIG] phy;

12: mac [HOST] -> [HOST] output;

13: mac [MDIO] -> [MDIO] phy;

14:

15: input [LLRX] -> [LLRX] frame_buffer [CLIENT_RX]

16: -> [CLIENT_RX] mac [CLIENT_TX]

17: -> [CLIENT_TX] frame_buffer [LLTX] -> [LLTX] output;

18:

19: mac [ XGMII ] -> [ XGMII ] phy [MGT] -> [MGT] output;

Figure 4.1: Code describing example Click system comprised of three IP blocks.

frame buffer. The key and value pairs in parentheses are parameters used by synthesis

tool to define the depth of the buffers. The subsequent two statements on lines 4 and

7 instantiate and configure the Ethernet MAC and PHY. The Ethernet MAC is of type

xgmac with an instance name of mac, while the PHY is of type xaui with an instance name

of phy. Following the instantiation of the three IP blocks, the connections comprising the

system are described in lines 11 through 19.

The statement on line 11 specifies that the MDIO CONFIG interface on the instance

phy is an input to the system, which is called CONFIG. Similarly, line 12 specifies that

the interface HOST on instance mac is an output from the system. The system inputs

and outputs are connections to the external pins of the FPGA. Line 13 specifies that a
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Figure 4.2: Graphical representation of Click system comprised of three IP blocks.

connection exists between the MDIO interface of the instance mac and the MDIO interface

of instance phy.

As demonstrated by the previous examples, the connections specified by Click are direct.

Indirect connections and shared-media are supported by creating direct connections to IP

blocks representing those media. For example, buses are instantiated as IP blocks with

separate interfaces for masters, slaves and monitors. The EDK also represents shared-

media as IP blocks but it does not define separate interfaces for different classes of connec-

tion. Rather, the EDK makes a connection to the bus and attempts to resolve connections

using internal definitions of the bus. Consequently, the EDK cannot verify the connection

of IP blocks to shared-media and places the verification burden on Brace.

Brace is a high-level design environment that supports the design and implementation

of packet processing systems. Its aim is to improve designer productivity by abstracting

low-level implementation details and by providing a clear representation of the datapath.

Brace is a continuation of the work on Cliff[53], which uses the domain-specific language

Click[51, 52] to assemble FPGA-based packet processing systems. Brace is not limited

to packet processing applications and can be used to assemble systems comprised of IP

blocks from multiple application domains. It also provides a complete implementation

flow from Click descriptions to bitstreams.

Brace is an extension to the Xilinx EDK and reuses the implementation flow provided by

the EDK. Brace itself consists of several compilation stages, which include lexical analysis,

parsing, semantic analysis, elaboration and code generation, as shown in Figure 4.3. Lex-

ical analysis and parsing create a system model from the Click description. The system
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Figure 4.3: The Brace implementation flow.
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model is an abstract representation of the components in the design and their intercon-

nections. Elaboration performs a variety of functions that can be optionally disabled by

the user. These elaboration functions include component inference and interface reso-

lution, which resolve clock and reset requirements and create structural representations

of interfaces respectively. Following elaboration, code generation creates a description of

the system in the PSF format, which is then used by the EDK and the low-level FPGA

design flow as shown in Figure 4.3.

4.2 Type System

Due to its software heritage, Click does not define types for IP block interfaces. In the

original Click system, elements communicate through the use of function calls, which pass

pointers on the stack. Each element is implemented as a subclass of the element class,

which uses the C++ compiler to ensure that data is passed correctly. The lack of type

information in Click can pose a problem for hardware designs as interfaces might not be

compatible. The untyped Click syntax permits incompatible interfaces to be connected,

which results in unconnected signals being tied to VGND or VCC as appropriate. However,

the system is unlikely to operate correctly when interfaces are erroneously connected.

As part of the Brace implementation flow the EDK performs limited validation of connec-

tions. The EDK uses a simple nominative type system to validate connections but this

type system does not verify the structural properties of the connected interfaces. The

EDK also relies on custom validation scripts to ensure that connections are correct, in

a similar manner to IP-XACT. However, it is infeasible to expect an IP block designer

to anticipate every potential connection that might be made to their component. The

verification of connections should be supported by the system description language and

detected by the compiler.

A static structural type system has been implemented in Brace to address the weak

nominative type checking in the EDK and the untyped nature of the original Click syntax.

Type checking is a lightweight formal method, which proves the absence of a class of errors.

In this case, the type system proves the absence of specific errors in connected interfaces.

The type information is obtained from the extended PSF descriptions in the IP library
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and made available to the compiler during semantic analysis. Structural typing ensures

that the composition of an interface determines its compatibility with other interfaces.

The type system must be static as Click is a declarative language that is not executed.

Finally, the type system has been implemented as a type checker, which is executed as

part of semantic analysis in the Brace design flow.

Click has a single function, which is the connection function →. The inputs to the function

are typed identifiers that refer to component interfaces. Applying type checking to this

function will verify that connections are valid and will explicitly state which parts of the

system description are incorrect. Stating incorrect connections will allow the designer

to correct errors quickly. However, the system designer might decide to intentionally

connect incompatible interfaces as defined by the type system. Intentional incompatible

connections should be declared explicitly in the system description to show that the

designer has deliberately intended to make the connection. An annotation to the Click

syntax could be used to permit a form of type casting or to disable type checking for that

connection.

The type system is presented by describing the grammar of the language and presenting

the type rules using the inference rule format as described by Pierce[55] and Cardelli[54].

The grammar defines the set of acceptable statements that comprise all possible sys-

tem descriptions and the type rules determine the preconditions that must be met for a

statement to hold true.

Type rules are comprised of premises and a conclusion, which state the preconditions

that must be satisfied before the conclusion can hold. The preconditions and conclusion

are stated as judgements, which consist of the static typing environment, Γ, and the free

variables declared in that environment. The empty environment is represented by φ. The

judgement used most frequently in this thesis is the typing judgement, which has the

following form:

Γ ⊢ M : A

The judgement above states that the term M has a type A with respect to the static typing
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environment Γ. Another frequently used judgement simply states that an environment is

well formed. This judgement is demonstrated as follows:

Γ ⊢ ⋄

A type rule asserts the validity of a conclusion judgement based on the precondition

judgements that are already known to be valid. The precondition judgements are specified

above a horizontal line with a single conclusion judgement below the line. Only when all

of the preconditions are satisfied can the conclusion hold. For example, a multiplication

function requires two inputs, which must be of the same type or converted to the same

type before the function can be performed. The result of the function is a value which

has the same type as the inputs. The types required by the function are demonstrated in

the following type rule example. Note that the type rule does not specify the semantics

of the function.

(Val ×)

Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ M × N : A

The example states that the function M × N, which returns a result of type A, requires

two preconditions to be satisfied. First, the environment must contain a variable M of

type A. Second, the environment must contain a variable N, which is also of type A. Only

when both conditions are satisfied can the conclusion hold. In other words the function

× can only be performed when both variables exist with the same type that the function

requires. For a more detailed explanation, please refer to Cardelli[54] or Pierce[55].

A simplified grammar of Click is shown in Table 4.1. The grammar follows the conventions

used by Pierce [55], which defines the terms and types. The key statements include

component declaration, interface projection and interface connection. The declaration

of a component creates a component type, which is a product of the interface types for

each interface on the component. Interface projection selects an interface from the set of

interfaces on the component and interface connection is the connection function, which
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Table 4.1: Simplified Click syntax of Brace

A::= Types

PhysicalType × Payload Interface type

{li : Ai
i∈1..n} Component type

D::= Declarations

I :: A1, . . . , An Component declaration

C::= Commands

I1 → I2 Interface connection

C1;C2 Subsequent commands

I[l] Interface projection

I Identifier

requires two interfaces as inputs. The interface type is itself a product type and the

structure of this type will be discussed in detail. The primitive types used in the type

system are listed in Table 4.2.

The type system is presented graphically in Figure 4.4 and the fundamental rules for the

type system are shown in Table 4.3. In Figure 4.4 boxed items represent composite types

or record types, unboxed items represent primitive types and items enclosed in ellipses

group primitive types to highlight the logical relationships.

Rule Env φ, shown in Table 4.3, states that the empty environment is well-typed and

rule Env I specifies that an identifier, I, with type A is well-typed, provided that the

identifier does not already exist in the environment. Rule Decl Component declares an

identifier with a component type and rule Comm Subsequent states that two commands

are valid in the environment. As Click is not a sequential language, the rule means

that multiple connections can be stated in a single Click description. Finally, rule Proj

Interface permits the type of one interface in a component to be projected for use in

connecting the components.

The rule for connecting interfaces is not shown explicitly as each interface type is a product

of multiple primitive types and would need to be presented as a whole. Due to the large

number of permutations that would result, the connection rules for each primitive type

are presented individually to maintain clarity.
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Table 4.2: Primitive Types

PhysicalType::= Physical type

Input Direction types

Output

Bidirectional

Role Role types

AnyRole

Clock Signal types

Reset

Interrupt

Signal

High Sensitivity types

Low

Insensitive

Falling

Rising

Big Endian types

Little

Initiator Bus role types

Target

Master Slave

Master

Slave

Monitor

Payload::= Payload types

Routable Payload kind

Window

Control

Stream

AnyPayloadKind

PayloadType Payload type

AnyPayloadType
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Figure 4.4: Graphical representation of the Click type system
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Table 4.3: Overall type rules

(Env φ)

φ ⊢ ⋄

(Env I)

Γ ⊢ A I /∈ dom(Γ)

Γ, I : A ⊢ ⋄

(Decl Component)

Γ ⊢ {li : Ai∈1..n
i }

Γ ⊢ (I :: A1, . . . , An) : (l1 : A1, . . . , ln : An)

(Comm Subsequent)

Γ ⊢ C1 Γ ⊢ C2

Γ ⊢ C1; C2

(Proj Interface)

Γ ⊢ I1 : {li : Ai∈1..n
i } j ∈ 1..n

Γ ⊢ I1[lj ] : Aj
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Table 4.4: Interface type rules

(Type Interface)

Γ ⊢ PhysicalType Γ ⊢ Payload

Γ ⊢ PhysicalType × Payload

4.2.1 Interface Typing

An Interface type is a product of the PhysicalType and Payload type, as shown in Table

4.4. The PhysicalType captures the structural properties of the interface such as the

composition of wires, it also embodies the properties of each wire within the interface.

The Payload represents the data transferred over the interface. A valid connection is

determined by the product of the PhysicalType and Payload type, which verify orthogonal

aspects of the interface. Both types are labels for other complex data types and these

will be discussed individually.

As the IP blocks may be implemented from varying levels of abstraction, the Interface

type is designed to capture both high-level properties and structural details. The Payload

has an emphasis on packet processing as Brace was designed for this domain but it

also supports other application domains. For implementation, the interfaces need to

be represented structurally regardless of whether the component was initially described

in an high-level language or low-level representation. The type system uses all of the

available information to verify connections but separates concerns in order to ease the

verification problem.

4.2.2 Physical Type

The PhysicalType represents the physical structure of the interface and is an algebraic

data type or variant type. As an algebraic data type it may be either a Wire, WireVector

or Bus. The Wire type represents a single wire, the WireVector type is a set of identical

wires and the Bus type captures complex interfaces. The rule Variant As in Table 4.5

states that a PhysicalType is either a Wire, WireVector or Bus, which prevents errors
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Table 4.5: Physical type rules

(Type PhysicalType)

Γ ⊢ Wire Γ ⊢ WireV ector Γ ⊢ Bus

Γ ⊢ PhysicalType(Wire, WireV ector, Bus)

(Variant PhysicalType As)

Γ ⊢ PhysicalType(Wire, WireV ector, Bus) Γ ⊢ j ∈ {Wire, WireV ector, Bus}

Γ ⊢ PhysicalTypej

such as connecting a wire to a wire vector or a bus. Without this rule, the subsequent

implementation flow may silently remove wires from interfaces. Again, Wire, WireVector

and Bus are labels for other data types.

4.2.3 Bus Type

Bus interfaces typically consist of wire vectors for data transfer and additional wires to

perform control functions. A bus may also be composed of other buses. For example, two

unidirectional interfaces may be concatenated to form a bidirectional interface. The Bus

type is a recursive product type that represents complex interfaces composed of wires,

wire vectors and other buses.

Specifically, a Bus is composed of a set of Wire types, a set of WireVector types, a set of

Bus types and a Role. For two interfaces to be compatible, the sets of wires, vectors and

buses must be related by a bijection, which is defined as a one-to-one correspondence.

For every Wire in one interface there must be a compatible Wire in the other interface.

This implies that the sets of Wire types, WireVector types and Bus types on both sides

must be the same size.

Traditionally, hardware designers omit wires that are not needed in an interface to min-

imise logic. Omitting wires suggests that the interface does not require the full set of

transactions defined by the interface standard. For example, a processor may have two

master connections to a bus in order to access memory. One connection may be used for
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Table 4.6: Bus type rules

(Type Bus)

Γ ⊢ Wire1 . . .Γ ⊢ Wiren

Γ ⊢ WireV ector1 . . .Γ ⊢ WireV ectorm Γ ⊢ Bus1 . . .Γ ⊢ Buso

Γ ⊢ {li : Wirei∈1..n} × {lj : WireV ectorj∈1..m} × {lk : Busk∈1..o} × BusRole

data accesses and the other may be used for instruction fetches. In order to save logic the

designer might not include the write signals for the instruction interface as they are not

used during system operation. However, synthesis tools are very adept at removing re-

dundant logic and should identify unused functionality. Designers should include all wires

to demonstrate that the interface is compatible with the bus although write operations

are not performed. For slave interfaces omitted signals indicate that not all transactions

that might be requested are supported. Using the type system, the designer would be

alerted to the incompatibility and appropriate remedial action could be taken.

The BusRole defines the purpose of an interface and is divided into two incompatible

categories, Direct and Shared. A Direct interface can either be an Initiator or a Target.

A Shared interface can be a Master, Slave, a Master Slave (both master and slave) or a

Monitor. Direct interfaces match the opposite type whereas Shared interfaces match the

same type, as shown in Table 4.7. Rule Comm Direct Connect states that initiators must

be connected to targets for point to point connections. Bidirectional point to point con-

nections are usually comprised of two unidirectional buses and the constituent buses will

have Initiator and Target roles. However, the enclosing bus type will be Master Slave as

it encompasses both directions and the types should match to demonstrate compatibility.

Shared interfaces are intended to connect to instantiations of buses, which is reflected in

rule Comm Shared Connect. This rule states that a shared-medium must provide different

interfaces for masters, slaves and monitors. Separating the interfaces allows the signals

for each interface type to be clearly defined. The interfaces of components that support

both master and slave operations can be represented by using the Master Slave type,

which will contain concatenated Master and Slave bus types.



CHAPTER 4. STATIC VERIFICATION 67

Table 4.7: BusRole type rules

(Type Initiator)

Γ ⊢ ⋄

Γ ⊢ Initiator

(Type Target)

Γ ⊢ ⋄

Γ ⊢ Target

(Type Master)

Γ ⊢ ⋄

Γ ⊢ Master

(Type Slave)

Γ ⊢ ⋄

Γ ⊢ Slave

(Type Master Slave)

Γ ⊢ ⋄

Γ ⊢ Master Slave

(Type Monitor)

Γ ⊢ ⋄

Γ ⊢ Monitor

(Comm Direct Connect)

Γ ⊢ I1 : Initiator Γ ⊢ I2 : Target

Γ ⊢ I1 → I2

(Comm Shared Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : A A /∈ {Initiator, Target}

Γ ⊢ I1 → I2
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Table 4.8: WireVector type rules

(Type WireVector)

Γ ⊢ Wire Γ ⊢ WireV ectorEndian

Γ ⊢ {li : Wirei∈1..n} × WireV ectorEndian

4.2.4 WireVector Type

The WireVector type is composed of a set of identical Wire types and a WireVectorEn-

dian, as shown in Table 4.8. As with the Bus type, sets of Wire types are related by a

bijection and must be of the same size. Matching the size of the sets eliminates uninten-

tional connection of subranges, which is permitted by other languages such as Verilog.

Mismatched vector sizes are undesirable as most vectors are parameterisable and are usu-

ally determined by the result of an expression. If the expressions for the vectors do not

yield the same size then errors can go unnoticed without static verification. The Wire

type is identical for all terms of the product type.

The WireVectorEndian type refers to the location of the most significant bit within the

Wire vector, which can be Big or Little. It does not refer to the word order of data being

transferred. As shown in Table 4.9, the endian of vectors must match. The Wire type is

a label for another data type which will be explained in the following section. Again, in

order to capture the size of the vector, the Wire types must be identical within the vector

as shown in Table 4.8.

4.2.5 Wire Type

The Wire type is the product of the Direction, SignalRole, NetRole and Sensitivity, as

depicted in Table 4.10. The Direction can be an Input, Output or Bidirectional. Rule

Comm Direct Connect in Table 4.11 shows that an Input must be connected to an Output

type and vice versa. A Bidirectional type can be connected to any other Direction type

including another Bidirectional type as demonstrated by the Comm Bidirectional Connect

rules. During synthesis, bidirectional wires are expanded into separate input and output
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Table 4.9: WireVectorEndian type rules

(Type Little Endian)

Γ ⊢ ⋄

Γ ⊢ Little

(Type Big Endian)

Γ ⊢ ⋄

Γ ⊢ Big

(Comm Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : A

Γ ⊢ I1 → I2

Table 4.10: Wire type rules

(Type Wire)

Γ ⊢ Direction Γ ⊢ SignalRole Γ ⊢ NetRole Γ ⊢ Sensitivity

Γ ⊢ Direction × SignalRole × NetRole × Sensitivity

wires controlled by multiplexers. Consequently, for FPGA designs bidirectional wires are

infrequently used.

The SignalRole describes system-level functions such as clocks, resets and interrupts. The

primitive types embodied by the SignalRole are Clock, Reset, Interrupt and Signal. As

demonstrated in Table 4.12, each primitive type must match against an identical type.

The primitive types are self-explanatory as they describe common system-level functions

but they may also be included within an interface. The Signal type embodies all other

signals, which do not have a system-level function. For example, an interrupt controller

may define an Interface type consisting of a WireVector that represents each interrupt

priority available in the system. As described previously, the WireVector will have a Wire

type composed of an Input and an Interrupt. The SignalRole allows common functions

to be defined and verified across a range of IP blocks.

The NetRole type defines the use of a signal within an interface. As shown in Table 4.13,

it can be either a specific Role or AnyRole. A specific Role defines a signal with a specific



CHAPTER 4. STATIC VERIFICATION 70

Table 4.11: Wire Direction type rules

(Type Input)

Γ ⊢ ⋄

Γ ⊢ Input

(Type Output)

Γ ⊢ ⋄

Γ ⊢ Output

(Type Bi-Directional)

Γ ⊢ ⋄

Γ ⊢ Bidirectional

(Comm Direct Connect)

Γ ⊢ I1 : Input Γ ⊢ I2 : Output

Γ ⊢ I1 → I2

(Comm Bidirectional Connect 1)

Γ ⊢ I1 : Input Γ ⊢ I2 : Bidirectional

Γ ⊢ I1 → I2

(Comm Bidirectional Connect 2)

Γ ⊢ I1 : Output Γ ⊢ I2 : Bidirectional

Γ ⊢ I1 → I2

(Comm Bidirectional Connect 3)

Γ ⊢ I1 : Bidirectional Γ ⊢ I2 : Bidirectional

Γ ⊢ I1 → I2

Table 4.12: SignalRole type rules

(Type Interrupt)

Γ ⊢ ⋄

Γ ⊢ Interrupt

(Type Signal)

Γ ⊢ ⋄

Γ ⊢ Output

(Type Clock)

Γ ⊢ ⋄

Γ ⊢ Clock

(Type Reset)

Γ ⊢ ⋄

Γ ⊢ Reset

(Comm Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : A

Γ ⊢ I1 → I2
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Table 4.13: NetRole type rules

(Type NetRole)

Γ ⊢ ⋄ NetRole ∈ Roles

Γ ⊢ NetRole

(Type AnyRole)

Γ ⊢ ⋄

Γ ⊢ AnyRole

(Comm Specific Connect)

Γ ⊢ I1 : NetRole Γ ⊢ I2 : NetRole NetRole /∈ {AnyRole}

Γ ⊢ I1 → I2

(Comm Any Connect)

Γ ⊢ I1 : NetRole Γ ⊢ I2 : AnyRole

Γ ⊢ I1 → I2

purpose within an interface. The set of Role types is defined by the IP library, which

allows the set to be tailored to the application domain. The type system defines the set

of rules for connecting interfaces and does not limit the range of roles that can be used.

As shown by rule Comm Specific Connect in Table 4.13, Role types must match. The

AnyRole type can be matched against any other NetRole type as shown by rule Comm

Any Connect. This capability is useful for generic IP blocks such as “not” gates where

the signal may be used in a variety of roles. It will also allow a clock operating at a

specific frequency to connect to an IP block with a generic clock requirement, where the

SignalRole is Clock in both cases.

The NetRole type prevents misconnections of incompatible wires. For example, the type

system would detect an erroneous connection between a wire indicating the start of a

frame and a wire indicating the end of a frame. It will also prevent two clock signals

operating at different frequencies from being connected. However, it is flexible enough to

permit generic components to be connected without excluding valid connections.

The Sensitivity states on which value an event is triggered and whether the wire is syn-

chronous to the clock. As shown in Table 4.14, the Sensitivity may be High, Low, Rising,

Falling or Insensitive. High and Low types are synchronous to the clock whereas Rising
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Table 4.14: Wire Sensitivity type rules

(Type Level High)

Γ ⊢ ⋄

Γ ⊢ High

(Type Level Low)

Γ ⊢ ⋄

Γ ⊢ Low

(Type Rising Edge)

Γ ⊢ ⋄

Γ ⊢ Rising

(Type Falling Edge)

Γ ⊢ ⋄

Γ ⊢ Falling

(Type Insensitive)

Γ ⊢ ⋄

Γ ⊢ Insensitive

(Comm Sensitive Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : A A /∈ {Insensitive}

Γ ⊢ I1 → I2

(Comm Insensitive Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : Insensitive

Γ ⊢ I1 → I2

Table 4.15: Payload type rules

(Type Payload)

Γ ⊢ PayloadType Γ ⊢ PayloadKind

Γ ⊢ PayloadType × PayloadKind

and Falling are edge sensitive. An Insensitive type does not define whether a wire is syn-

chronous to the clock or which value it is triggered on. The Insensitive type can connect

to any other Sensitivity as defined by rule Comm Insensitive Connect in Table 4.14. An

Insensitive type may be used for automatically generated interfaces, which depend on

the structure of the other interface. The same type may also be suited for describing

differential signal pairs, where the clock is extracted from a data and strobe pair of sig-

nals. Traditionally, the sensitivity of a wire is labelled as part of the wire name but this

technique is not normally used for verification.
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Table 4.16: Payload Kind rules

(Type Routable)

Γ ⊢ ⋄

Γ ⊢ Routable

(Type Window)

Γ ⊢ ⋄

Γ ⊢ Window

(Type Stream)

Γ ⊢ ⋄

Γ ⊢ Stream

(Type Control)

Γ ⊢ ⋄

Γ ⊢ Control

(Type AnyPayloadKind)

Γ ⊢ ⋄

Γ ⊢ AnyPayloadKind

(Comm Specific Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : A A /∈ {AnyPayloadKind}

Γ ⊢ I1 → I2

(Comm Any Connect)

Γ ⊢ I1 : A Γ ⊢ I2 : AnyPayloadKind

Γ ⊢ I1 → I2

4.2.6 Payload

The Payload describes the unit of data transferred over an interface, which complements

the structural information captured by the PhysicalType. The separation from structural

information allows the payload to be verified independently from the method of transfer.

The Payload is the product of the PayloadKind and the PayloadType, as shown in Table

4.15. This payload information is not captured in the traditional PSF descriptions and is

a novel extension to the format.

4.2.7 Payload Kind

The PayloadKind represents general groups of data units that have distinct processing

characteristics. These groups are Routable, Window, Stream, Control or AnyPayloadKind

as depicted in Table 4.16. Each group is processed in a distinct manner that is not suitable

for the other data units.
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A Routable kind refers to packets, frames or cells. Each of these data units can be routed

through a system or network as they contain header information to direct the payload.

Routable kinds are the most common PayloadKind in packet processing systems.

A Window kind is a unit of data with no routing information. Window kinds are frequently

used in memory transfers and Digital Signal Processing (DSP) applications. For example,

the fast Fourier transform is a DSP algorithm that operates on fixed-size windows of data

and Direct Memory Access (DMA) controllers transfer blocks of data between components

in a computer system. Both examples use windows as the destination of data is either

predefined or specified by sideband signalling.

A Stream kind is a continuous set of data. This kind is frequently encountered in signal

processing systems where analogue signals are sampled and converted to digital represen-

tations. Modern mobile telephone basestations are likely to include Routable, Window

and Stream kinds as the basestation consists of signal processing and packet processing

subsystems.

The Control kind specifies that an interface communicates control information as not all

interfaces transfer data. For example, a single interrupt wire does not transfer any data.

Instead, it informs the recipient that a component needs to be serviced or that an event

has occurred.

Finally, the AnyPayloadKind is used to define interfaces that support a range of payloads.

For example, passive components such as a FIFO might have interfaces with an AnyPay-

loadKind. The operation of a FIFO is not dependent on the payload and the component

can be used in a variety of systems. As defined by rule Comm Any Connect in Table

4.16, AnyPayloadKind can match any other payload kind. In contrast Routable, Window,

Stream and Control kinds must match an identical payload kind as shown by rule Comm

Specific Connect in the Table 4.16.

4.2.8 Payload Type

The PayloadType describes a specific instance of a PayloadKind, which differentiates be-

tween the payloads that an interface can process. For example, Ethernet frames and
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Table 4.17: PayloadType type rules

(Type PayloadType)

Γ ⊢ ⋄ PayloadType ∈ Payloads

Γ ⊢ PayloadType

(Type AnyPayloadType)

Γ ⊢ ⋄

Γ ⊢ AnyPayloadType

(Comm Specific Connect)

Γ ⊢ I1 : PayloadType

Γ ⊢ I2 : PayloadType PayloadType /∈ {AnyPayloadType}

Γ ⊢ I1 → I2

(Comm Any Connect)

Γ ⊢ I1 : PayloadType Γ ⊢ I2 : AnyPayloadType

Γ ⊢ I1 → I2

Internet Protocol packets are both Routable kinds. However, the formats of these proto-

col data units differ significantly, which means that they need to be processed differently.

As with other types, the set of PayloadTypes is defined by the IP block library and each

PayloadType must match as shown in Table 4.17.

The PayloadType may also be an AnyPayloadType, which can match any PayloadType

as defined by rule Comm Any Connect in Table 4.17. As with the AnyPayloadKind, the

AnyPayloadType can be used with generic components such as a FIFO. The AnyPay-

loadType can also be used with a specific PayloadKind to restrict the range of supported

payloads. For example, the AnyPayloadType could be used with Routable kind, which

states that an interface can work with any packet, frame or cell type. This could be used

with a high-level compilation tool that defines the interface depending on the component

that it is connected to.
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4.3 Type Checker

A type checker has been implemented as part of the semantic analysis phase of Brace.

The type checker uses the proposed type system to verify the connections within a design

and verifies the design without user intervention. As a result, the connections within a

design are verified during each compilation of the system.

The type checker has been implemented in Haskell and is called by Brace during the

traversal of the system model before elaboration. The system model contains informa-

tion from the IP library, which can be used to perform type checking of connections.

As each connection is direct and independent, type checking is performed on each con-

nection separately before resolution to nets. The type checker is invoked by executing

a separate process, which returns a code stating whether type checking was successful.

Brace communicates with the type checker through an intermediate file that describes the

connection being verified. No other communication is required to perform type checking.

The main benefit of using the type checker in Brace is that each connection which fails

type checking is identified. The identification of erroneous connections allows Brace to

specify the offending line to the user and highlight which property of the type system has

failed. Following a compilation with no type errors, the Click description is compiled into

a PSF description and the subsequent low-level implementation flow is executed.

4.3.1 Interface Examples

The type checker uses a set of data structures to represent types internally. These data

structures follow the architecture of the type system and can be understood by examining

three examples. The three examples that will be examined are an interrupt wire, a data

bus and an implementation of the LocalLink standard.

Interrupt

An interrupt is a single wire which indicates that an event has occurred and that action

needs to be taken by the recipient of the signal. Generally an interrupt is connected to a
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Figure 4.5: Graphical representation of Interrupt wire

Figure 4.6: Graphical representation of Data bus

processor and requests the execution of a service routine. The data structure representing

an interrupt is a record consisting of two fields for the physical type and payload infor-

mation. Assuming that the interrupt signal is to be connected from an Ethernet MAC to

an interrupt controller then the physical type is a wire. The wire data structure is also a

record that contains an output direction, interrupt signal type and “packetreceived” net

role. For the purposes of this example, the sensitivity is rising edge. An interrupt does

not transfer any data so the payload field is a record of a control kind and “Ethernet

interrupt” type.

The type checker uses this data structure and the relevant data structure on the opposite

interface to perform type checking. Each field in the data structure is compared individ-

ually to the relevant field in the opposite interface. If the values of the fields match the

opposite field as defined by the type system then the interfaces are compatible. Otherwise

an error code is returned to Brace.

Data bus

The data bus is a set of wires that operate collectively to transfer data. Data buses are

commonly found on the interfaces from processors to memory and are represented by a

wire vector type. The data type is a tuple type composed of the combination of the endian

and several identical wire types that define the size of the vector. For implementation,
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the data structure is a record consisting of physical and payload fields as described in

the interrupt example. The physical data type is also a record that contains an endian

value and a reference to the wire data structure, which is unchanged from the interrupt

example. Additionally, the size of the product can be represented directly by a natural

number, which simplifies processing. Although the data structure for describing the wire

component of the vector is unchanged, the values of the fields are different. For a data

bus being connected to memory the values would be an output direction and level high

sensitivity. Role of the bus would be Signal and the net role of type Data assuming that

it is defined by the IP library. For the purpose of this example the size of the vector is

eight and the endian is big.

The payload relates to the operation of the IP block, which in this case is to transfer

blocks of memory. The payload kind is Window as the data bus transfers fixed size blocks

of data. The destination of the data is not specified as part of the protocol data unit

but it is specified by sideband signals. An appropriate type for the PayloadType can be

chosen to reflect the variety of memory accesses supported by the interfaces.

LocalLink

LocalLink is a complex interface that is designed for packet transfers over a direct connec-

tion [125]. There are several variants of the standard which are incompatible with each

other. For example, one extension includes virtual channels, which is incompatible with

variants without this feature. Using a nominative type system these inconsistencies are

not detected but they are caught by a structural type system.

The structure of the core LocalLink interface is shown in Figure 4.7. As LocalLink is a

complex interface, the PhysicalType is BusType and the BusRole is Initiator. As shown

in Figure 4.7, the LocalLink standard is comprised of four Wires and one WireVector.

LocalLink is an unidirectional interface but bidirectional interfaces can be composed of

multiple unidirectional interfaces.

The WireVector is DATA, which has a size of eight and is Big endian. As with the

previous example, the WireVector is synchronous to the clock and it is level High. The

Wires are SOF, EOF, SRC RDY and DST RDY which indicate the start of a packet,
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Figure 4.7: Graphical representation of a LocalLink interface
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end of a packet, readiness of the initiator and readiness of the target respectively. The

Sensitivity of these wires is level Low. Each Wire is an Output, except for DST RDY,

which is an Input.

Within the LocalLink interface, the NetRole prevents the connection of incorrect roles.

For example, SOF cannot be connected to EOF in the opposite interface, although the

Click syntax allows this to be described. As the NetRole differs for each wire in the

interface, the type will not match unless it is connected to a wire with the equivalent

NetRole. The SignalRole is Signal in all cases.

The PayLoad of a LocalLink interface is not specified by the standard but it is loosely

designed for packet transfers. The PayloadKind is therefore Routable and the PayloadType

is AnyPayloadType. However, an IP block implementing the LocalLink standard will use

a specific PayloadType as the block is unlikely to support every possible payload. For

example, a LocalLink interface on an Ethernet MAC will have a PayloadType of Ethernet.

Generic components such as a FIFO with a LocalLink interface will be of AnyPayloadType

as the operation of the IP block is not dependent on the payload.

4.3.2 Results

The type checker has been evaluated by application to two reference designs. The refer-

ence designs are the “Ethernet Cores Hardware Demonstration Platform” [126] and the

“Ethernet-to-MFRD Traffic Groomer” [127]. The “Ethernet Cores Hardware Demonstra-

tion Platform” consists of a variety of systems that demonstrate the functionality of the

Ethernet MACs available for a range of FPGA devices. For the purpose of evaluating

the type checker, the Tri-mode Ethernet MAC (TEMAC) demonstration for the Xilinx

ML403 board was used. The TEMAC demonstration connects a Microblaze subsystem to

the TEMAC, which is connected to the external PHY off-chip. The system also includes

an Ethernet statistics IP block and a packet generator. The “Ethernet-to-MFRD Traffic

Groomer” is an extension of the Mesh Fabric Reference Design (MFRD), which routes

packets between end points. The Traffic Groomer prioritises incoming traffic and seg-

ments received Ethernet frames into fixed sized cells. The cells are then processed by the

MFRD and reassembled by the Traffic Groomer before being scheduled for transmission
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Table 4.18: Lines of code and the number of connections required to describe “Ethernet

Cores Hardware Demonstration Platform” in Verilog and Click

Verilog Click

Lines of Code 2740 246

Connections 188 73

on the outputs. Both reference designs required approximately 20 minutes to synthesise

a bitstream on a 2GHz Intel Core Duo Processor with 2GB of RAM.

Each reference design has been described in Click and implemented using Brace. The

appropriate IP blocks were imported into the IP library and each design was tested in

hardware to ensure accuracy and correctness. For comparison, the original Verilog inter-

connection description of the “Ethernet Cores Hardware Demonstration Platform” con-

tained approximately 2740 lines of code and 188 connections, as shown in Table 4.18. The

equivalent system in Click contained approximately 246 lines of code and 73 connections.

Of the 73 connections, 31 were used for connecting the clock and reset signals.

In order to evaluate the type system, the designs were systematically altered with incor-

rect connections, where each erroneous connection exercised a different aspect of the type

system. Unfortunately, the frequency of each error in typical designs is not known and

weights for the probability of the mistake could not be calculated. This method demon-

strates the variety of errors caught but it does not necessarily represent the frequency of

these errors.

After the set of errors was created, the system was synthesised to determine the point at

which the implementation flow failed. The reference designs were synthesised with and

without type checking in order to compare the point at which errors were detected. The

Brace compiler always performs some basic checks, which could not be disabled and these

are included in the comparison. For example, the compiler always checks that a wire is

not connected to a bus.

The test suite consists of 31 different errors that were inserted into the reference designs.

The number of errors detected and the stage at which they were detected are shown

in Figure 4.8. In the absence of type checking, 58% of the errors were caught by the
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Figure 4.8: Results of evaluating the type system

implementation flow. The remaining errors were undetected but the majority of those

were related to mismatched payloads. However, some physical errors were also undetected

during implementation. In comparison, the type checker caught 96% of the errors during

implementation.

Only 96% of errors were caught as the type checker could not detect a problem related

to multiple drivers. The direct connections supported by Click prevent interpretation of

the resultant net without elaborating the entire system. For example, the following code

shows two components inst1 and inst3 that are connected to the same interface on a third

component inst2.

inst1 [data] -> [data] inst2;

inst3 [data] -> [data] inst2;

Assuming data is a single wire then the previous Click statements are syntactically correct.

If data on inst1 and inst3 were both outputs and data on inst2 was an input then both
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statements would pass type checking provided the other criteria of the type system were

met. However, the resultant net would consist of two drivers, which is not permitted

for FPGA-based systems. In order to detect multiple drivers, a design rule check could

be added to code generation. Alternatively, the type system could be enhanced with

dependent typing but care would be needed to avoid excluding correct systems. For

example, if data on inst1 and inst3 were both inputs and data on inst2 was an output

then the intention of the connection would be to connect a single driver to multiple

receivers, which is valid.

In addition to catching more errors, the type system also detects errors earlier in the design

flow as shown in Figure 4.8. Without type checking, the caught errors are detected at

various stages in the design flow. Errors caught by the EDK tool known as Platform

Generator (PlatGen) require 30 seconds for detection. Errors detected by XST required

between 5 and 10 minutes depending on the particular IP block that was erroneously

connected. Designs with undetected errors execute the complete synthesis flow, which

requires approximately 20 minutes to complete on a 2GHz Intel Core Duo Processor with

2GB of RAM. For undetected errors, the time taken to identify and resolve the mistake

is indeterminate as it requires manual inspection and testing of the system. In contrast,

type checking using the proposed type system takes approximately 10 seconds to execute

and explicitly states which connection failed type checking.

Finally, the type system has also caught an error in the EDK library that was previously

unknown. The description of an interface of the Microblaze soft processor was incomplete

in a released version of the EDK IP library. The Microblaze processor supports con-

nections to the CoreConnect PLB bus with separate interfaces for instruction and data

fetches. However, one wire on the instruction interface of the Microblaze processor was

not included for connections to the PLB. The EDK allowed this to pass synthesis as it

did not perform any structural checks. The type system on the other hand identified the

error immediately. The wire concerned did not prevent the operation of the bus but this

may also explain why the error was not detected earlier.
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4.4 Summary

High-level design environments contain information that can be exploited for verification.

Type systems provide one method of verifying designs to prove the absence of a class of

errors. This chapter has presented a type system for verifying the interconnections of

IP blocks. A type checker has been implemented as part of the semantic analysis phase

of Brace and has been evaluated using two reference designs. The type system detects

errors that are not found by the existing design flow and also detects errors earlier than

the traditional design flow. These features reduce the number of synthesis iterations and

save time debugging designs.



Chapter 5

System-level Transaction

Monitoring

Using a type system to statically verify the connections between IP blocks guarantees that

those connections are valid but the type system does not verify the dynamic execution

of the intended system. Dynamic validation allows the designer to observe the operation

of the final implementation, which can highlight errors that are undetected by other

validation and verification techniques.

This chapter presents the architecture of a system-level transaction monitoring system

and a methodology that can be used to debug errors by using the monitoring tool. The

aim of this system is to provide observations of distributed high-level events, which occur

throughout the design under test. The monitoring tool operates passively while maintain-

ing the abstractions of the high-level design environment. The monitoring system consists

of probes, a collection module and software for executing on an external host computer.

This chapter also explores the implementation of the components forming the system-

level transaction monitoring system. The architecture of the probes are explored and

the trade-off between functionality and resource utilisation will be discussed. Two col-

lector architectures are presented, which provide event capture and profiling capabilities.

Finally, the operation of the host software will be explained.

85
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5.1 Debugging Methodology

When creating tools for debugging systems, a methodology describing the techniques

used to employ the debugging tool needs to be specified. Based on the proposals of

Araki et al. [116] and Josephson [117], a validation methodology for FPGA-based packet

processing systems can be composed as shown in Figure 5.1. The methodology consists

of three key stages which are testing, isolation and rectification. Testing is similar to

the characterisation phase proposed by Josephson, which identifies defects in the system.

The term testing reflects the nature of the activity better than characterisation as the

functionality of the system is being exercised at a high-level. Testing is designed to detect

faults and when a fault is found the isolation phase can begin. Isolation determines

the location of a fault and specifies the component that has caused the error. This phase

might follow the strategy proposed by Araki, where a set of hypotheses are constructed and

tested until the correct hypothesis is found. Upon isolation, the error must be corrected

which requires the cause of the fault to be determined and subsequently rectified.

Relating the methodology to the proposal for a system-level monitoring tool, the moni-

toring tool should be suitable for application in the first two phases of the methodology.

To be useful, it must be able to detect errors during testing. It must also be designed

to support isolation of errors as it is required to observe the interaction between mul-

tiple components in the system. Finally, a system-level monitoring tool is not required

to correct defects as low-level data monitoring tools might be more suitable in these cir-

cumstances. However, the ability to correct problems would be advantageous even for a

subset of the errors that can be detected.

5.2 Monitoring System Architecture

System-level transaction monitoring provides several benefits over low-level monitoring

tools. The ability to abstract low-level details and observe events distributed throughout

the system provides a monitoring solution suited to high-level design environments. In

this section, the architecture of such a monitoring system and the associated external

host software is presented.
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Figure 5.1: Proposed debugging methodology using system-level monitoring
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Figure 5.2: Architecture of the system-level monitoring system.

As illustrated in Figure 5.2, the architecture of the monitoring system is comprised of a

set of probes, configuration circuitry, a module for collecting and communicating results

and an external software application. The probes are distributed throughout the system

and observe the interfaces of system components. The probes also communicate their

results to the collection module. The configuration circuitry is responsible for configuring

the probes at run-time under the direction of the external software application. The

collection module receives and processes the results from the probes. It also transmits

the processed data from the FPGA to the external software application. The external

software application is responsible for recording and interpreting the data transmitted by

the collection circuitry. It is also responsible for the presentation of the results to the

user.

The probes have two responsibilities. First, each probe observes and records the trans-

actions over a specific interface type. Second, the probe communicates its results to the

collection module.

The probe observes transactions by interpreting sequences of low-level signal transitions as

high-level events. This requires the probes to be connected directly to the interface being

observed. The probes are passive as they do not interfere with the low-level signalling

during system execution. However, the interface signal timing may be affected by the
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insertion of a probe. The resource requirements of the probe determine the extent to

which timing is affected. Therefore, in order to reduce the impact of signal timing, the

resource penalty of the probe should be minimised.

The probe communicates its results to the collector module through a direct level-sensitive

signal. This method abstracts all transactions to a common representation, which permits

multiple probes to be used regardless of the interface type. The location and type of the

probe are known prior to synthesis, which means that only the occurrence of a transaction

needs to be communicated. The collector module adds location information to events as

they are uploaded to the external software application. As the monitors may be located

on multiple clock domains, the level-sensitive signal may also need to cross clock domains

to be recorded correctly by the collector module.

The collector module receives data from the probes and is responsible for communicating

the information to the external host software. The collector module also processes the

received data to maintain the spatial and temporal information of each transaction. As

the collector is recording high-level information, it requires a lower bandwidth compared

to low-level monitoring tools and requires less on-chip buffering.

The probes are connected to the collector by either a single level-sensitive signal or by two

level-sensitive signals. For transactions of a fixed duration only a single signal is required.

As the duration of the transaction is known a priori, only the time of the completion

of the transaction is recorded. For example, a fixed-sized protocol data unit transferred

over an interface that forbids stalled clock cycles has a predetermined duration, which

makes recording the start time redundant. Many memory interfaces perform operations

in a single clock cycle, which also makes recording a start time unnecessary. Again, an

interrupt indicated by a rising edge signal transition does not need to record the duration

of the event as it is already known. The completion time of the transaction is recorded

to allow the probe to filter events of interest.

Where the duration of a transaction is not known a priori, the start and end times of a

transaction need to be recorded. In this case two level-sensitive signals are required to

connect a probe to the collector. For profiling operations a single signal is sufficient as the

duration of the events is lost and only the number of events occurring within a quantum
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of time is recorded. For event capture operations, the duration of an event is important.

For example, variable-sized protocol data units, such as IP packets, require the start and

end time to be recorded. Within a pipelined packet processing system, this allows the

user to observe the stages of the pipeline that the packet occupies at any given instant.

Without both items of information, it is impossible to deduce which stages are occupied.

The external software application is responsible for receiving the processed data and pre-

senting the results to the user. In order to present the results to the user, the software

application needs to be supplied with configuration data. The configuration data is com-

posed of two key elements. First, the location data provided by the collector module

needs to be mapped to the location information understood by the user. Second, the

software needs to know how to configure the monitoring system to provide meaningful

observations.

This monitoring architecture provides advantages over existing on-chip monitoring tools.

First, the collected samples are not held in separate probes. This allows all events to

be related both temporally and spatially. Second, the probes do not hold data internally

which reduces resource requirements and alleviates the effects of component displacement.

The size of a probe determines the extent to which an IP block is displaced from its original

location. Third, the monitoring architecture allows the location of errors to be isolated

quickly. The location of an error can be identified to the associated interface of an IP

block.

The probes are designed to be lightweight to minimise the effect on resource utilisation.

FPGA designs tend to use the majority of resources on-chip as the smallest chip will

generally be chosen to minimise costs. The system designer would most likely use a smaller

and cheaper device if the FPGA was insufficiently utilised. Each probe requires the use

of Complex Logic Blocks (CLBs) and the interconnections between them. The probes

also require a connection to the central collector which will demand the use of routing

resources. If the probe and collector are at opposite ends of the chip then a significant

proportion of the routing resources might be required. Additionally, as the chip tends

to be well utilised it is possible that adding too many probes will make the design too

big for the target FPGA device. Clocking resources also tend to be sensitive to routing

which might affect the timing delay. Inserting additional logic may cause problems with
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timing closure as components may be displaced. Furthermore, if the probes operate at a

different clock frequency compared to the component being monitored then the routing

of clock signals might be adversely affected. However, the extent of this would depend on

the clock resources available in a particular device.

5.3 Probe Architecture

The probes are designed to observe the interfaces of system components and record the

transactions detected over those interfaces. The probe detects transactions by following

the sequence of signal transitions and inferring high-level events from those transitions.

As the probe is designed to observe the constituent signals of an interface, it operates

passively while it is connected directly to the interface. A direct connection requires the

resource requirements to be minimised in order to reduce the impact on signal timing.

Signal timing is directly related to the impedance of a wire, which is directly related to

its length. The length can be minimised by placing probes close to the interfaces being

observed, which will reduce the capacitive load on the wire and consequently the prop-

agation delay. As the probe is attached to an existing connection, the monitored signal

will be fanned out to an additional point. Increasing fan-out will increase the impedance

of a wire but the increased impedance can be compensated by register duplication. Com-

ponent displacement is also directly affected by the size of the probe, which also affects

the length of the wires. A larger probe will require more resources to be placed close to

the interface being monitored, which will require other components to be placed further

away. The placement of these components will have a subsequent effect on the placement

of their adjacent system components. These effects are compounded by the nature of

system-level monitoring, which requires multiple probes to monitor multiple interfaces.

The probes communicate with the collector module to indicate when a transaction has

been detected. A single direct level-sensitive signal or a pair of direct level-sensitive signals

are used to indicate the occurrence of a transaction. No other information is required as

the location and type of the interface being monitored is known before synthesis. In order

to understand the operation of the system, it is not sufficient to record every transaction

that is detected. Properties of the transaction need to be captured in order to provide a
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Figure 5.3: Standardised probe architecture.

context for the event. Filtering can be used to only record the events of interest, which

will allow the path of events to be identified. Filtering also negates the need to upload the

transaction properties as they are already known to the external software and the user.

The causal relationship of events can be presented by filtering for the same properties at

different points in the system. Finally, most systems require multiple clock domains in

order to operate correctly, which means that the probes must be capable of transferring

their results over multiple clock domains.

Although the probes are specialised to observe specific interface types, the architecture

has been standardised to facilitate rapid development of new monitors. Each probe con-

sists of three main components as shown in Figure 5.3. These components are transaction

interpretation, filtering and clock domain crossing. The transaction interpreter provides

a common set of control signals regardless of the interface type being monitored. Inter-

preters have been implemented for a variety of interface types including GMII, LocalL-

ink, on-chip memory and PLB. The resource requirement for transaction interpretation

is small but, as stated previously, interpreting transactions is insufficient to understand

the operation of the system. In order to observe events of interest, a filtering mechanism

must be applied. Filtering allows the functionality of IP blocks to be tested and validated

according to a set of properties. Filtering can be applied to the payload of a transaction

or to sideband signals such as the address bus in shared media. For example, the headers



CHAPTER 5. SYSTEM-LEVEL TRANSACTION MONITORING 93

Figure 5.4: An example transaction over a LocalLink interface, which transmits a block

of data.

of packets can be filtered to match packet processing operations, which provides a simple

form of packet classification. Filtering reduces the debug information to events of interest

and reduces the bandwidth required to communicate the results to the host software.

5.3.1 Transaction Interpretation

The transaction interpreter provides a common set of control signals, which are required

by the filtering circuitry. The interpreter passively observes the interface to which it is

connected and follows the sequence of signal transitions, which identifies events of interest.

The transaction interpreters can be implemented as a fixed parser or a run-time config-

urable parser. A fixed parser is less resource intensive as the circuitry can be optimised

for the specific sequence of states. Conversely, the run-time configurable parser requires

resources to hold the set of states and the function to compute the following state. For

systems designed in a high-level design environment, the transactions presented on an

interface are known a priori so run-time configurability is not necessary. Run-time config-

urable parsers are typically used by low-level monitoring tools where the signal transition

sequences are not known a priori and the user is required to specify the interpretation of

the low-level signalling.

The interface of an IP block can be represented as a set of wires, which function collectively

to perform operations. The signal values of the wires are discrete and are defined to be

either 1 or 0. The sequence of transitions of the signal values can be defined as the

state of the interface. The data wires are not required to interpret a transaction but

are used for filtering purposes. A transaction is therefore a sequence of state transitions,
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Figure 5.5: The state transitions required to interpret a transaction on a LocalLink

interface

which represent an operation. The transaction interpreter is responsible for observing and

following the sequence of signal transitions, identifying the start and end of transactions

and identifying cycles that contain valid data. As each interface type has a unique set

of transition sequences, the transaction interpreter must be customised for the individual

interface types. The control signals representing valid cycles are then passed to the

filtering circuitry.

For example, LocalLink and PLB are two different types of interconnect, which have

different interface compositions. LocalLink is a Xilinx standard for packet interfaces,

which contains a number of optional extensions. The core set of wires are data, sof n,

eof n, src rdy n and dst rdy n. As shown in Figure 5.4, the start and end of a frame are

indicated by a low value on sof n and eof n respectively. Packets are transferred in the

period between these transitions with no limit specified on the amount of data transferred.

Consequently, LocalLink allows the sender and receiver to stall transmission in the event

that either is unable to complete the request in a given clock cycle. The sender and

receiver initiate stalls by raising the src rdy n and dst rdy n signals respectively and may

assert them indefinitely. The LocalLink signal transition sequence can be interpreted by

a deterministic finite automata implemented as a finite state machine as shown in Figure

5.5.

Figure 5.6 shows an implementation of a trigger for observing LocalLink transactions,

which uses the sof n and eof n signals to determine the start and end of a transaction

repsectively. When the start of a frame is interpreted the circuit generates a signal, assert

start, to indicate the event to subsequent circuitry in the probe. A separate signal, assert
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Figure 5.6: Example implementation of LocalLink trigger.

end, is asserted when the end of a transaction is observed. The remaining signal generated

by the trigger is valid cycle, which instructs subsequent components as to which cycles

are valid to match on for filtering purposes. In this example, the valid cycle signal is

dependent on the values src rdy n and dst rdy n as these signals indicate stalled cycles

on the LocalLink interface. The signals generated by the trigger are shared between all

probes regardless of the interface type that they are connected to.

The CoreConnect PLB bus is an IBM standard for connecting peripherals to a processor.

PLB is a fairly complex standard, which permits multiple simultaneous operations through

separate read and write buses. A PLB master is able to initiate read and write requests,

whereas a slave can only respond to requests. The core signals for FPGA implementa-

tions of PLB master interfaces are M Abus, PLB MRdDBus, PLB MWrDBus, M request,

M RNW, PLB MaddrAck, PLB MrdDAck, PLB MwrDAck and PLB MTimeOut. Fur-

thermore, there are signals available for burst transfers but these are omitted from this

discussion as they do not aid in conveying the basic concepts. A read request is initiated by

asserting M request, asserting the address on M Abus and simultaneously driving M RNW

high. Alternatively, a write request is initiated by driving M RNW low. In both cases,

the request is acknowledged through the signal PLB MaddrAck. The PLB MTimeOut

signal is used to abort a request if the slave has not responded in the correct number of

clock cycles, which is parameterisable. The slave then replies using the appropriate data
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Figure 5.7: The state transitions required to interpret a transaction on a PLB bus master

interface.

bus for the request and acknowledges using the appropriate signal. A write request is ful-

filled by the slave writing data to PLB MwrDBus and asserting PLB MwrDAck. A read

request is fulfilled using PLB MrdDBus and asserting PLB MrdDAck. The separation of

read and write data buses allows a read and write operation between different components

to occur simultaneously over the bus.

The PLB signal transitions can be interpreted using a finite automata as shown in Figure

5.7. The PLB monitor has two separate output signals as it has separate read and write

buses. In order to distinguish between transactions on either bus, separate output signals

are used. If multiple transaction types exist on an interface then a different representation
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Table 5.1: Transaction interpretation resource requirements with single level-sensitive

output

Interface LUTs Flip Flops Slices

LocalLink 3 6 5

PLB 5 7 6

GMII 7 7 8

MII 4 6 6

Interrupt 2 5 5

may be more suitable to minimise resource utilisation.

The transaction interpreters are designed to only record complete transactions. Incorrect

transition sequences or aborted transactions are ignored. Missing transactions in the

monitoring report can point to problems in the signalling sequences, which can then be

further analysed through conventional low-level tools. However, it may be possible to

indicate an error while maintaining resource efficiency as the state machine could be

extended to produce an additional error signal.

As shown in Table 5.1, the resource requirements for interpreting transactions with a

single output signal is small. The direct media, LocalLink, MII and GMII have small

resource footprints. Although PLB is a complex standard, the resource requirements are

minimal as each end-point is monitored separately, which reduces complexity and provides

information related to the interface of a specific IP block.

The transaction interpreters are also designed to support subtypes of an interface through

conditional instantiation of signalling components. These signalling components are de-

fined before synthesis as they need to be specified before the system can be instantiated.

For example, LocalLink supports various widths of the data bus and allows conditional

instantiation of optional wires, which might alter the functionality of the interface. The

probes are parameterisable to allow the debugging system to match these variations.

Alternatively, a run-time configurable parser could be implemented to permit flexibility

in monitoring transactions. This parser would resemble the triggering mechanism of a

low-level tool such as ChipScope, which requires approximately 270 slices, 458 LUTs and
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532 FFs for monitoring a GMII interface. The ChipScope parser provides 16 match units

and a flexible sequencer for ordering the match units temporally. ChipScope can support

sequences of up to 16 matches. As demonstrated, the resource utilisation is greater for

a flexible parser and is unnecessary as the operations of the interface and the connection

are known a priori.

5.3.2 Filter

The filter is responsible for determining whether a transaction should be recorded. The

filtering capabilities of the probes can take one of two forms. The first form filters pay-

loads transferred over an interface and the second form filters addresses through sideband

signals.

Payload filtering is supported by matching the data presented on the data bus against

a preconfigured register or series of registers. This is a lightweight form of packet clas-

sification, which matches packets against a single rule. The transaction interpreter is

responsible for indicating when a comparison should be executed. The comparison itself

may be a simple exact comparison, a comparison with support for bit-level masking, or

the comparison of any expression given in disjunctive normal form.

Address filtering requires the use of a parallel comparator as only a single cycle is available

for matching. The parallel comparator uses the spatial nature of the FPGA fabric to

implement matching and may implement exact or maskable comparisons. In this instance

the destination of a transaction becomes more important than the data being transferred.

Address filtering may also be used to monitor software execution within a system. The

addresses of software functions can be obtained from most compilers and then used to

configure probes that monitor memory or system buses. This technique can also be applied

to the program counter of a soft processor, if this signal is available. Filtering transactions

according to function addresses allows the designer to observe hardware communications

in conjunction with software operations.

There are five variants of the payload filter architecture that will be explored. The

first variant provides a point of reference for comparing the other architectures and is

a specialised filter for IP packets. The specialised filter extracts the 5-tuple from an IP
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packet encapsulated in an Ethernet frame, which is a well-known construct and widely

used in packet processing applications. Both parallel and sequential matching circuits

will be considered. Following this, a generic filter, which can match up to 512 bits, will be

discussed. The generic filter is more flexible as it can filter any packet type, permitting

its use in other packet-based media. An IP packet encapsulated in an Ethernet frame

requires 304 bits to be transferred before the 5-tuple can be extracted so this should

provide a representative comparison of resource utilisation.

Following this, a more flexible version of the generic filter will be presented. This filter

exploits locality of interest to allow a fragmented 512-bit match, which provides the ability

to observe deeper into the packet. Finally, a scalable architecture will be investigated,

which can adapt to the size of the sample being matched and provides more advanced

matching capabilities than the other architectures.

The architecture of an address-based filter will also be presented. This filter matches

addresses and identifies the source and destination of transactions. Each type of probe

has been implemented using a Virtex 4 FX 20 on an ML405 board.

Specialised Filter for IP Packets

As packet processing often targets IP packets, a filter designed to match the 5-tuple will

provide a standard which can be compared to other architectures. This will allow a

comparison between resource utilisation and functionality of the filter.

The fixed 5-tuple filter has been written specifically to parse a TCP/IP packet encapsu-

lated in an Ethernet frame. The parser implementation varies depending on the width of

the datapath as the constituent members of the 5-tuple will be presented on the interface

on different clock cycles. Figure 5.8 shows the format of a TCP/IP encapsulated in an

Ethernet frame as observed on a 32-bit LocalLink bus. The filter checks the value of the

Ethernet type field to ensure that it contains an IPv4 packet and also checks the version

number in the IP header. Following this, the filter captures the 5-tuple, which consists of

the next protocol value, source address, destination address, source port and destination

port, as highlighted in Figure 5.8. The captured values are then passed to the match

unit. If the captured data matches the desired values then the transaction is recorded,
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Figure 5.8: Format of TCP/IP packet encapsulated in an Ethernet frame highlighting the

5-tuple as seen on a 32-bit LocalLink interface.
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Figure 5.9: High-level architecture of the fixed parser parallel matching probe.

Table 5.2: The resource utilisation of the 5-tuple specialised parser with parallel matching.

Datapath Width Slices LUTs FFs Period (ns)

8-bit 532 627 154 6.019

16-bit 517 600 135 6.019

32-bit 509 589 119 6.019

otherwise it is discarded.

The match unit applies a mask to the captured data and the operand being compared.

This provides the flexibility to monitor simple ranges of addresses and port numbers. The

match unit is limited to one mask but the designer can easily add another probe if more

masks are required. The fixed filter can match values either in parallel or sequentially.

Parallel Match

Parallel matching uses the spatial nature of the FPGA fabric to create a 104-bit register

across multiple slices, which provides the ability to determine the result of the comparison

in a single cycle. If multiple clock cycles are required to obtain the 5-tuple then the filter

populates the register as it encounters the values in the packet, as shown in Figure 5.9
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Table 5.2 shows that as the datapaths are widened the filter uses fewer logic resources.

This is a result of the reduced number of clock cycles to obtain the 5-tuple, which also

reduces the logic required to implement multiplexing between subsections of the target

register. This trend is limited by the spatial nature of parallel matching, which uses three

104-bit registers and a 104-bit comparator. However, this approach has the advantage

of abstracting the data-path from the rest of the monitor. Parallel matching is also

mandatory for memory interfaces where transactions execute in a single clock cycle. If a

match is required on more than one string then the match units need to be replicated.

An interesting property of the parallel match unit, as shown in Table 5.2, is the invari-

ability of the period. The critical path of the probe is in the comparator as it matches

104-bits using a ripple effect. The width of the data bus does not alter the timing of the

probe but it does affect resource utilisation. As the data bus width increases, the resource

utilisation decreases, which is due to fewer multiplexers being required to place data in the

104-bit registers. These properties are useful for monitoring packet processing systems

operating at speeds greater than 10 Gb/s. At 10 Gb/s, the bus width of interfaces on IP

blocks might be increased to 512 bits wide to allow the system to operate at lower clock

frequencies and to relax the constraints on component placement. Parallel matching is

suitable in these instances as it can cope with larger buses without increasing the size of

the comparators.

Sequential Match

As packets are transferred over multiple clock cycles, it is possible to reduce the size of the

comparator for smaller bus widths. Reducing the size is achieved by matching the 5-tuple

as it is presented by the filter over multiple clock cycles. The match unit is then able to

exploit the architecture of the FPGA to reduce the spatial area of the registers for the

mask and the desired value. As each 4-input LUT contains 16 registers, the registers can

be addressed for matching 16 separate clock cycles. Look-up tables can also be combined

to form distributed memory, which can be used to extend matching beyond 16 cycles.

This method allows the comparator to maintain the same width as the data bus, which

minimises resource requirements for smaller bus widths. This method requires the use of

a state machine to co-ordinate the matching process.
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Figure 5.10: High-level architecture of the fixed parser sequential matching probe.

Table 5.3: The resource utilisation of the 5-tuple specialised parser with sequential match-

ing.

Datapath Width Slices LUTs FFs Period (ns)

8-bit 85 129 67 4.114

16-bit 111 151 45 4.951

32-bit 192 246 60 5.307
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As Table 5.3 shows, the resource requirement of the sequential match unit is significantly

smaller than the proposed parallel match unit. The table also shows that more resources

are required as the datapath increases. This is due to the increasing size of the comparator

and the spatial layout of the registers. As the datapath continues to increase, it is expected

that the resource requirements will tend towards those of the parallel match unit as more

computations execute in parallel. Again, the maximum clock frequency is reduced as the

datapath is widened, which is due to the ripple effect of the comparator increasing.

The members of the 5-tuple might not be aligned to the word size of the interface datapath.

As the fields are presented on the interface they will appear at various offsets within the

current word depending on the width of the datapath. In order to keep the sequential

match unit small, the configuration software can be given responsibility for choosing which

bits are relevant on a given clock cycle. This removes the need for the designer to ensure

that bits external to the 5-tuple are not included. It is possible to include this mechanism

in hardware but this would increase the resource requirements.

512-bit Generic Filter

Although IP packets are common, packet processing is applicable in a wider context.

The previous method described a fixed parser, which can only parse a single packet type.

While this is an effective solution for filtering IP packets, it is restrictive and requires re-

synthesis in order to monitor different packet headers. It is also possible that an interface

may transfer more than one packet type, such as data packets and internal system control

packets. Thus, a more flexible solution might be required to monitor packets at run-time.

One solution is to increase the amount of memory available to the filter and perform a

match on each valid clock cycle. This would move the parsing function into the filter,

as demonstrated by Figure 5.11. Increasing the memory would allow any packet header

up to the size of the allocated memory to be compared. Only sequential matching is

considered for this architecture because parallel matching would require a 512-bit register

to be placed spatially. It would also require a 512-bit comparator, which might not meet

timing constraints.

In this example, the first 512-bits of an IPv4 packet encapsulated in an Ethernet frame are
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Figure 5.11: High-level architecture of the generic sequential matching probe.

compared. This would allow the probe to classify a datagram according to the Ethernet

header, the complete IPv4 header and the source and destination ports of UDP datagrams

or TCP packets. This architecture provides greater flexibility compared to the fixed parser

as the range of values that can be compared increases in addition to the ability to capture

different packet types.

In order to reduce the complexity of configuring a sequential probe, it is possible to

arrange the memory addresses such that the configuration is independent of the datapath

width. Thus, a single configuration can be used to configure an array of probes with

different datapath widths. This is achieved by allowing the memory layout to be decided

at synthesis time, when the datapath widths are chosen. Once the datapath width has

been decided, the memory addressing scheme redirects the location of values to reflect the

clock cycle on which they appear on the interface. The datapath width is then abstracted

from the configuration software and the designer. The memory configuration is specified

for each permissible datapath width and is then synthesised with the rest of the system.

As 512 bits need to be stored, they can be placed within 32 4-input LUTs. By arranging

the addresses in the configuration memory appropriately, the datapath of the IP block’s
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Table 5.4: The resource utilisation of the generic parser with sequential matching.

Datapath Width Slices LUTs FFs Period (ns)

8-bit 87 172 29 4.816

16-bit 96 188 37 5.608

32-bit 182 226 57 5.307

interface can be abstracted. For example, an 8-bit interface will require 64 cycles to

transfer 512 bits. In this case, 64 cycles can be stored in 4 sequential LUTs. For an 8-bit

interface, a total of 32 LUTs are required. For a 32-bit interface, 16 cycles are required to

transfer 512 bits utilising a total of 32 LUTs. Finally, for a serial interface with a single

data bit, 32 LUTs will be required to match 512 bits. Thus, for up to a 32-bit datapath

width, the total memory requirements do not change, although the sequential and spatial

layout has been altered appropriately.

Beyond 32-bit datapaths, the memory requirements increase because the LUTs are fixed

in size. For a 33-bit datapath, 33 4-input LUTs are required which gives a total of 528

bits for matching. A 64-bit datapath requires 64 LUTs, which provides 1024 bits. The

additional memory in the LUTs is not used in the current implementation as a common

configuration mechanism is desired. However, it may be appropriate to increase the depth

of matching but this will alter the memory map for configuring the probes. The simplest

solution is to leave the memory unused to provide a common method of configuring the

system regardless of probe type.

For 6-input LUTs found on some FPGA architectures, the first 512 bits can be matched

with 16 LUTs. Again, the memory requirement is constant for datapath sizes of 16-bits

or less. For datapaths greater than 16 bits, there will be unused memory. The memory

requirement can be given by expression 5.1, where α is the number of bits available for

matching, β is the width of the interface’s datapath and δ is the number of input bits to

the LUT in the FPGA architecture.

α = β.2δ (5.1)

Again, as the size of the datapath increases, the size of the comparator must increase.
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Figure 5.12: High-level architecture of the generic sequential matching probe with offsets.

However, it should be noted that the size of the generic filter is comparable to that of the

fixed parser in terms of slices used, as shown in Table 5.4. Although it uses more LUTs

overall, the tightly coupled nature of the memory in the CLBs allows the probe to be

implemented in a compact form.

512-bit Generic Filter with Offsets

Although the generic filter gives greater flexibility compared to the specialised filter, it is

limited to sequential matching. A designer is unlikely to examine the first 512 consecutive

bits of a packet header. Instead, there is likely to be locality of interest, with several

locations of interest at different points within the packet. For example, the designer is

likely to be interested in the encapsulation of a packet. This may involve capturing all

Ethernet frames containing IPv4 packets, which would entail matching the Ethernet type

field and the IP version number. Subsequently, the designer might match against the

5-tuple and potentially deeper inside the packet.
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Table 5.5: The resource utilisation of the generic parser with sequential matching using

offsets.

Datapath Width Slices LUTs FFs Period (ns)

8-bit 137 270 38 5.131

16-bit 139 274 46 5.643

32-bit 230 322 66 5.307

The proposed filter allows an 8-bit offset from each match cycle, giving a maximum of

256 cycles between matches. The amount of memory devoted to matching is still 512 bits

so for an 8-bit interface that matches 64 separate cycles the maximum theoretical offset

is 16384 cycles. However, this limit will be much smaller in practise due to the locality

of interest. The architecture of the filter is shown in Figure 5.12.

Table 5.5 shows that the resource requirements are slightly higher than the generic filter.

This is due to the resource requirements for the offset memory and the more complex state

machine. However, the offset mechanism employs the same placement structure, which

uses the CLB memory efficiently. The resource requirements and timing constraints follow

the same trend as those of the generic filter.

Scalable Filter

The last proposed architecture is intended to be more scalable and flexible. First, it allows

the user to specify the exact number of match units at synthesis time. Second, it allows

more flexible matches at run-time than other filters. For example, it permits the designer

to match TCP and UDP packets by checking that the value of the next protocol field is

6 or 17 respectively. However, this flexibility comes at the expense of resources as more

comparators are required due to the parallel nature of the scalable probe.

As shown in Figure 5.13, the scalable filter operates by creating multiple filters. Each

filter has an independent offset, which can match against any one word within the first

256 clock cycles. This accommodates matching within the first α.β bits, where α is the

datapath width and β is the number of clock cycles. For example, a probe operating on a

32-bit datapath can match up to the 256th word, which allows matching from the 8,161st
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Figure 5.13: High-level architecture of the generic sequential matching probe with offsets

and multiple match units.
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Table 5.6: The resource utilisation of the scalable probe with 16 match units

Datapath Width Slices LUTs FFs Period (ns)

8-bit 258 341 56 4.295

16-bit 485 437 56 4.164

32-bit 844 693 56 4.400

Table 5.7: The resource utilisation of the scalable probe with 1 match unit

Datapath Width Slices LUTs FFs Period (ns)

8-bit 36 52 6 3.952

16-bit 62 74 6 4.128

32-bit 117 122 6 4.400

to the 8,192nd bits. The comparator must be the same size as the datapath width.

The system is controlled by a single transaction trigger, which instructs multiple atomic

match units as to which cycles are valid to count or match on. As each atomic match

unit is triggered and matches the value assigned to it, the outputs are combined and a

result given from the combination. The combination unit implements disjunctive normal

form of all trigger outputs from the atomic match units, which allows any possible logical

combination to be expressed. To further optimise resource requirements, the number

of possible conjunctive clauses could be constrained. For example, a compiler could

determine the maximum number of conjunctive clauses needed before run-time. Overall,

this approach is more flexible than can be achieved through any of the other proposed

architectures.

The results in Table 5.6 show the utilisation for the scalable filter with 16 match units.

The resource requirements increase at a greater rate with datapath width than other

probe types due to the requirement for multiple match units and associated memory.

Table 5.7 shows that the resource requirements for a filter with a single match unit are

smaller than those for the generic filter. For a single match unit, the combinator does not

need to be present. Furthermore, the memory requirements are smaller as only a single

clock cycle can be matched. In this case, the functionality of the scalable probe is more

limited than that of the generic filter.
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Regular Expression Matching

The proposed probe architectures use masked matching to classify fields within a packet

header. The offset capabilities of some architectures allow the probe to observe deeper

within a packet. However, the features of the monitors do not lend themselves to deep

packet inspection. An alternative technique for classifying packets is regular expression

matching, which is more suited to these applications. Regular expression matching engines

require significantly more resources. In particular, they require the use of BRAM resources

which are unlikely to be available for monitoring the packet processing system. FPgrep

[35] and FPsed [36] are two examples of regular expression matching engines. FPgrep uses

a textual representation of a regular expression, which is converted to a state machine

implemented in an HDL language. The regular expression matching systems also require

protocol wrappers to interpret the headers of packet passing through the content scanning

module.

The functionality of regular expression matching engines is excessive for packet classifi-

cation but it is beneficial for deep packet inspection. FPgrep has been implemented in a

Xilinx Virtex XCV2000E device and requires 4422 slices, 4547 flip flops and 22 BRAMs

for implementing the protocol wrappers and content scanning module with a single search

engine [35]. The system also operates at 37MHz in that device. Compared to the proposed

architectures, this is a significant increase in the number of slices. The use of BRAM and

a significant proportion of the device slices would preclude the use of regular expression

matching from a system-level transaction monitoring tool.

Address Filtering

The address filter is designed to monitor transactions over shared-media, where the des-

tination of a transaction is specified by the address of the target. As shown in Figure

5.14, the monitor contains a single trigger that interprets the signalling as perceived by

a single bus master. The source of the transaction is then known as each probe only

records events for a single interface and not the bus as a whole. The probe uses multiple

match units to identify a range of destinations. Each match unit is independent and can

filter independent address ranges. Additionally, each match unit has its own clock do-
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Figure 5.14: High-level architecture of the address matching probe.
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Table 5.8: The resource utilisation of an address filtering probe with masked matching

for monitoring PLB bus masters.

Match Units Slices LUTs FFs

1 47 44 45

2 91 88 90

3 137 132 135

4 181 174 180

5 228 217 225

6 271 259 270

main crossing circuitry and generates a separate result. The individual results generated

from the match unit, allow the source and destination information to be conveyed to the

collector circuitry.

The address filter can be configured to monitor software function addresses, the address

space of peripheral IP blocks or other parts of the system memory map. As shown in

Table 5.8, the resource requirements increase nearly linearly as the number of match units

increases. However, each match unit produces a separate output signal, which will affect

the resource utilisation of the collector module.

5.3.3 Clock Domain Crossing

Most nontrivial designs require multiple clock domains in order to operate correctly. For

example, a system processing Ethernet frames at 1Gbps will require a GMII interface

operating at 125MHz. Following frame reception and buffering, the subsequent system

components may use wider datapaths and a lower clock frequency in order to reduce the

burden of meeting timing constraints. As the debugging system is designed to monitor

several interfaces simultaneously it is likely to be used to monitor interfaces operating

in different clock domains. Thus, it must be able to cope with recording transactions

and transferring the results over different clock domains. The proposed solution transfers

all events to a common clock domain, which drives the collector. Transactions are rep-

resented as level-sensitive signals, which can be transmitted across clock domains using

pulse synchronisation, as shown in Figure 5.15.
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Figure 5.15: Diagram of the clock domain crossing circuitry shared by all probe architec-

tures.

5.4 Collector Module

The probes transmit their results to the collector, which processes the spatial and temporal

information received from the probes. The collector module also transmits its results

to the external host software. Two variants of the collector module exist. The first

architecture provides a profiling capability, which sacrifices timing accuracy for the ability

to continuously monitor a design. The second architecture captures individual events.

Event capture gives improved accuracy in observing event sequences but cannot guarantee

continuous monitoring under all conditions.

The collector module has been designed to use a 115,200bps serial UART connection for

communicating with the external software application. The UART connection was used

as readily available on the development boards but the collector module could be easily

extended to use other relatively higher-speed media, such as JTAG, for communicating

with the external host software. This serial link can configure the monitoring system and

upload results from the collector. A low-speed link is suitable for transmitting the results

as transaction monitoring requires a lower bandwidth compared to low-level monitoring

tools. The configuration mechanism is also decoupled from the monitoring circuitry, which

negates the requirements for high-speed links.

5.4.1 Configuration Mechanism

The configuration mechanism is common between both collector architectures. In both

cases, the serial link sends a sequence of two bytes to configure a single memory address.

The first byte represents the 8-bit address to be configured and the second byte is the data

to be written to the configuration memory. This provides a total of 256 addresses, which
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can be assigned to the monitors in the system. The addressing format can be extended

easily, for example, a three byte code could be used. In this instance, the first two bytes

could represent the address and the third byte would represent the configuration data.

This would provide a total of 65,536 memory locations. Alternatively, a scan chain could

be used to configure the various memory elements, which would eliminate the need for an

address space. However, these alternatives have not been explored in detail.

As previously stated, the data rate for configuration is unimportant. Configuration is

decoupled from the operation of the monitoring system and the system under test. How-

ever, the impact of the configuration architecture on resource requirements is significant.

Each probe type has a unique address space size and multiple probe types are frequently

included within a single system under test. Each probe identifies the most significant bits

of its address space, which generates an internal enable signal. However, each address

within the probe’s address space requires multiplexers to direct data to the correct mem-

ory location within the probe. This feature is part of the probe architecture and has been

included within the resource comparisons in the previous section. Thus, adding probes

at the system level does not require any resources beyond those already specified for the

probes. High fan-out of the data bus and address bus can be tolerated as the data rates

for configuring the system are low and buffers are automatically inserted as required.

As the probes have their address space specified at synthesis, it is possible for multiple

probes to share the same address space. The configuration of the probes is unidirectional

so a shared memory address space merely requires the probes to share the same base

address. However, the probes need to be of the same type in order to interpret the

configuration data correctly.

The configuration mechanism can also be used to control the system under test. For

example, a reset control block can be inserted into a design, which can place the system

under test in reset mode. The reset block can also control multiple reset domains for

system buses, processors, peripherals and other components. Combined with a set of

stimuli for the system, this provides the ability to automatically test and monitor the

system.
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Figure 5.16: Architecture of statistical collector

5.4.2 Profiling Collector

The profiling collector is designed to provide a means of continuously monitoring a system

without requiring buffering resources. It counts the number of transactions that occur

within a period of time and match the given filtering criteria. This allows a different class

of errors to be detected that cannot be observed with traditional low-level monitoring

tools. For example, performance bottlenecks and events of long duration can be observed

by using the profiling collector.

The profiling collector consists of a timer, set of counters and a controller as shown in

Figure 5.16. The timer is used to determine when a sampling period has completed, while

the set of counters accumulate the number of completed transactions that occur within

the sampling period. Each probe has its own unique counter, which maintains the spatial

information provided by the probes. Upon reaching the end of a sampling period, the

values of the counters are copied to temporary registers, allowing the counters to be reset

and accumulate results for the subsequent time period. Using temporary registers allows
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the time period to be measured accurately. The controller is responsible for coordinating

the copying process and uploading the results from the temporary registers to the external

host software. The system also provides parametrisation to cope with a flexible number

of probes in the system under test. The current implementation limits the number of

probes to 16 but this can be easily extended.

The profiling collector employs a simple encoding scheme for uploading the results to the

external host software. In this scheme, the collector transmits a datagram for each probe.

This datagram consists of an identifier for the probe location and the result obtained

for that probe. The time interval is recorded by transmitting a tuple, consisting of the

datagrams for each probe. The subsequent time interval is indicated by the transmission

of the datagram for the initial probe.

As the system uploads results periodically, it is necessary to determine the minimum

sampling period for the profiling collector. Intuitively, the minimum permissible sampling

period is the time taken to upload the results of all probes for one period to the external

host software. If the minimum sampling period was shorter than this then buffering would

be required to store results on-chip. Thus, the minimum sampling period for the simple

encoding scheme is a function of the number of probes, the number of bits for the probe

identifier, the size of the counters for each probe and the speed of the link to the external

host software.

Assuming that the counters for each probe are of identical size, then the expression for

the minimum interval is given in 5.2, where α is the minimum sampling interval, N is the

number of probes, β is the number of bits required for the probe identifier, δ is the number

of bits required for the probe counter and γ is the upload speed in bits per second.

α =
N (β + δ)

γ
(5.2)

The simple encoding scheme also permits the external host software to synchronise itself

to the uploaded datagrams. The increasing sequence of probe identifiers allows the host

software to determine which bytes are the identifiers and which are the results. However, a

more efficient encoding scheme could reduce the minimum sampling period, which would

reduce the number of transmitted bits. For example, the values of all counters could be
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Figure 5.17: Resource utilisation of the profiling collector

grouped together into a single datagram with a short preamble. The preamble is necessary

to permit the external host software to synchronise on the start of the datagram. The

minimum time interval is given by expression 5.3, where ǫ is the number of bits in the

preamble.

α =
(ǫ + Nδ)

γ
(5.3)

As the number of probes increases, the encoding scheme described by expression 5.3

gives a smaller minimum sampling period. This statement holds true provided that the

preamble is smaller than the overhead of transmitting a probe identifier with each sample.

As shown in Figure 5.17, the resource requirements of the profiling collector increases

almost linearly as the number of probes increases. Each additional probe requires a

counter, temporary register and a connection to the upload controller. The connection

to the upload controller tends to consume the majority of the extra resources as the

multiplexer connections become more complex.
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Figure 5.18: Architecture of transactional collector

The profiler provides several benefits over traditional low-level monitoring tools. First,

it provides the capability to monitor systems continuously. The temporal representation

of events allows monitoring to be continuous. Second, it demonstrates the performance

of a given architecture. Third, it can identify system bottlenecks. As locations can be

monitored for long periods of time, link utilisation trends can be followed for various

interconnects. This provides an overview of system performance and allows potential

bottlenecks to be highlighted. By the same virtue, the monitoring system also has the

potential to show whether deadlock is present in the system. This would be observed

by a lack of events. Finally, the profiling collector can identify the paths of events by

exploiting the filtering capabilities of the probes. By filtering various locations for the

same properties, the path of events will be shown and the IP blocks which operate on the

events will be highlighted.

5.4.3 Event Collector

The event collector is designed to capture individual transactions and report them to the

user. This provides a detailed system-level view of the component interactions. The event

collector also allows the designer to observe the temporal relationship between individual
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transactions. For example, with event capture the user can determine whether a path

executes as a pipeline or not. It can also determine the location of an error more quickly

than with low-level monitoring tools.

As shown in Figure 5.18, the collector is composed of a probe identifier, timer, trigger,

buffer and upload controller. The probe identifier is responsible for giving each probe a

unique identifier to be used by the external host software. The start and end of data col-

lection is controlled by the trigger. The timer is used to present the temporal relationship

between events and the upload controller is responsible for transmitting the results to the

host.

The probe identifier assigns an unique identifier to each probe in the system, which is

then appended to each event before it is uploaded to the host. This allows the external

host software to determine the location of each event. The identifier is also used by the

trigger to determine when to start data capture. As with the profiling collector, the event

collector can specify the number of probes as a parameter during synthesis.

As multiple events may be recorded on the same clock cycle, the results from the probes

are registered. The probe identifier is implemented as a priority encoder which provides a

deterministic method for multiplexing events. The highest priority identifier is presented

first and is then followed by the second highest priority identifier on the following clock

cycle. Multiple identifiers cannot be recorded simultaneously as the collector must multi-

plex events for serial transmission to the host. This means that the recorded transactions

might not be cycle accurate. However, this level of detail is not required to convey a

system-level perspective. For a system being monitored by 16 probes, the critical instant

would require 16 clock cycles to record all events into the buffer. However, the buffer

might require multiple clock cycles to upload an event over a serial connection.

Using a priority encoder also presents the potential for starvation. It is conceivable

that one or more higher priority interfaces continually present events for identification

preventing the lowest priority event from being recorded. In practise, this is generally

not a problem as transactions usually occur over multiple clock cycles. Furthermore,

the impact of this problem can be minimised by developing a profile of each monitored

interface using the profiling collector.
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Alternatively, a different representation could be used for encoding the probe identifier.

Each probe could be assigned a designated bit within a word, where the word is the same

size as the number of probes in the system. When an event is recorded, all interfaces that

detected an event on the same clock cycle would assert their designated bit within the

word. This would permit multiple transactions to be recorded on the same clock cycle

and remove the need to register the probe results. However, this is not a scalable solution

as the size of the datagram for uploading events to the host would vary according to the

number of probes in the system. For large systems, the overhead for each transaction

could reduce the temporal visibility of the monitoring system by filling the buffer more

quickly. This alternative encoding strategy has not been implemented.

The collector uses a run-time configurable trigger to determine when to start event cap-

ture. Once started, event capture continues until the buffer is full. The trigger com-

plements the filtering present in the probes, forming a distributed triggering system.

The current implementation limits the number of probes to 16 but this can be easily ex-

tended. The triggering mechanism could also be extended to permit the use of transaction

sequences to start event capture.

The event collector uses a single timer to relate all events to its clock domain, as a

common reference. This maintains the accuracy of clock domains on lower frequencies

relative to the collector but exhibits inaccuracies for higher frequency domains. However,

this does not require the timer to operate using the highest clock frequency in the design.

First, the event collector does not guarantee cycle accuracy. This is also a consequence

of the priority encoder for the probe identifier. Second, operating at the fastest clock

frequency is often undesirable due to the effect on placement and routing. For a complex

design, such as the collector, it can be difficult to obtain high clock rates. Additionally,

the fastest clock rate is generally used on a small portion of a design. Within packet

processing applications the fastest clock rate is typically used for communicating off-chip.

The remainder of the design uses wide datapaths to reduce the clock rate and ease the

burden on placement and routing. A lower frequency is therefore more desirable but it

should match the clock frequency of the majority of the design to maintain a degree of

accuracy. This technique can maintain the relative order of events provided that the

probes are connected to the collector using the correct priorities.
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The timer is the highest priority event presented to the probe identifier, which occurs

when the timer rolls over. The current implementation uses a 24-bit counter, which gives

a period of 0.335 seconds at 50MHz. It is possible to use a smaller counter to reduce the

size of uploads but this would need to be balanced with an increased frequency of timer

rollovers.

The buffer receives events presented by the probe identifier and the timer. It can be

implemented using Block RAM or Distributed RAM. Using a BRAM on a Xilinx Spartan

3E device, 512 entries can be scheduled for transmission. When the buffer is full, the

trigger is notified and event capture terminates. If the buffer is never filled then it is

possible to maintain continuous monitoring. However, this is dependent on the frequency

of the recorded events and the data rate of the upload controller.

The upload controller is responsible for uploading recorded data to the external host

software. As events are placed into the buffer, they are then scheduled for transmission

to the host. The datagram for uploading an event consists of the probe identifier and

the time of the event according to the collector timer. The probe identifier requires 8-

bits providing a theoretical maximum of 255 probes after subtracting the timer rollover

signal. If the alternative encoding was used then only 8 probes could be used for an 8-bit

probe identifier. Time is represented using 24-bits, which means that each event requires

a total of 32-bits to be transmitted. While there is data present in the buffer, the upload

controller will transmit it to the host.

As shown in Figure 5.19, the resource requirements of the profiling collector increase

in a non-linear fashion. For small numbers of probes, the resource requirements are

fairly linear. However, when 8 or more probes are instantiated the resource requirements

increase at a higher order of magnitude, which is due to the resource requirements of the

priority encoder. A more efficient probe identifier could reduce the resource requirements

for large numbers of probes.
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Figure 5.19: Resource utilisation of the event collector with priority encoding

5.5 External Host Software

The on-chip monitoring system is complemented by software executing on an external

host. The software has several responsibilities, which include receiving results from the

collector, synchronisation of the received data, configuration of the monitoring system,

correct interpretation of the results and presentation of the results to the user. The soft-

ware can be configured to interact with the various probe implementations and collector

architectures, which allows the designer to use a single software application regardless of

the exact configuration of the monitoring system.

As shown in Figure 5.20, the host software can be represented as a state machine. The

first task performed by the software is to parse the configuration file, which specifies

the number of probes and the type of the collector used in the system. This file also

describes the location of the probes and the translation of that location to a user defined

representation. The configuration memory map and the configuration sequence for each

filter are also described. After the configuration file has been parsed, the host software
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Figure 5.20: UML state diagram representing the operation of the host software.
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iteratively configures each probe through the configuration circuitry.

Following the configuration of the probes, the host software configures the collector’s

trigger. At this point the operation of the host software is dependent on the type of the

collector so the software branches into two distinct sequences. Although both sequences

set the trigger for the collectors and synchronise the serial ports, the methods for per-

forming these actions are different and require separate functions. The synchronisation of

the serial port allows the software to interpret the data sequence correctly by determining

the start of the payload being transmitted. The event collector might have periods with

no data transmission as the events detected by the system may be sporadic, which sim-

plifies synchronisation. However, the profiling collector transmits data continuously and

requires the start of a sample to be correctly identified within a continuous set of data.

As the profiling collector uploads the results of each probe in sequence, the probe identifier

can be used to synchronise the serial port. The host software examines the sequence of

data being received and determines whether an incremental series of numbers is present.

This series does not exceed the maximum number of probes in the system and is present

at a fixed offset in the data stream, which is determined by the size of the samples used

by the collector. An error is raised if the sequence cannot be detected.

Once the serial port has been synchronised, the host software receives samples from

the collector on the FPGA. Each sample consists of the results from every probe. The

host software logs the samples and continues to receive samples until it is instructed to

terminate execution by the user. Once termination has been invoked the software ensures

that all of the received data is written to an external file, which the designer can then use

in other applications.

The event collector differs as it only records a finite number of events, which prevents

the on-chip buffer from overflowing. The desired number of events is specified in the

configuration file but it can be omitted to permit continuous monitoring, if permitted by

the system being monitored. Following the specified number of events the host software

terminates execution and ensures that the received data is written to the external file.

The textual output generated by the host software can be used in other software tools or

scripts. Such tools could compare execution traces and provide graphical representations
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of the recorded data. Furthermore, the host software could be used as part of an integrated

development environment where the configuration file is automatically generated and the

results are presented in a form suited to the development tool.

5.6 Summary

This chapter has presented a monitoring tool that addresses some of the limitations of tra-

ditional monitoring solutions. In particular, the tool provides a system-level perspective

by monitoring the communications between IP blocks and abstracting the communications

as transactions. The resource requirements of the monitoring tool are reduced compared

to other alternatives and it uses lower data rates for uploading results as a results of

transaction monitoring. System-level transaction monitoring also provides improved lo-

calisation of error conditions by monitoring the communication between components and

abstracting low-level signalling.

The monitoring system consists of a set of probes and a collector. The probes are designed

for the specific interfaces being monitored which reduces the resource requirements and

reduces the impact on timing and component displacement. The collector interprets the

results from the probes and processes the information before uploading its results to the

host software. The host software is responsible for configuring the monitoring system,

receiving the results and presenting it to the user.

This chapter has presented the common architecture of the probes, which consists of

the transaction interpreters, filtering mechanisms and clock domain crossing circuitry.

The filtering mechanisms have been classified into payload and address filters. Several

payload filtering variants and an example of address filtering have been explored and the

resource requirements for each variant have been presented. The specialised filter allows

the designer to match any field determined before synthesis. The generic filter provides

greater flexibility by permitting filtering according to a user-specified set of fields at run-

time. The offset filter allows the designer to inspect deeper inside a packet up to the

limit of the offset. The scalable filter provides the same capabilities but extends the

combination of triggers to provide more flexible combinations of fields. The functionality

of each probe has been explained and the potential applications have been highlighted.
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The chapter has also presented the architecture of two different collector mechanisms.

Each mechanism uses the same interface from the probes but interprets the data in a

different manner. The profiling collector records the number of events within a period

of time and can provide continuous monitoring. It is useful for observing system opera-

tions over a long period of time and detecting bottlenecks. The event collector records

individual events and relates all events to a common representation of time. Finally, the

functionality provided by the host software has been explained.



Chapter 6

Evaluation of Dynamic

Monitoring

The system-level transaction monitoring system captures information that can be con-

sidered high-level compared to traditional on-chip monitoring tools. As demonstrated in

Chapter 5 the resource requirements of various probe architectures are low but these re-

quirements need to be compared with a traditional monitoring tool. This chapter presents

the results of implementing the monitoring system in three example designs. The informa-

tion captured from the low-level monitoring tool and the system-level monitoring system

are compared. The resource requirements of both tools are also contrasted.

6.1 Introduction

In order to demonstrate the class of errors detected by the system-level transaction mon-

itoring system, three case studies will be presented. These examples also provide an

insight into the resource requirements of the monitoring system in a typical application

and demonstrate how a design could be debugged at the system-level. The first case study

will discuss a web server implemented on a soft processor. The second case study will

discuss an advanced web server, which executes software on a hardened embedded proces-

sor. This system also implements some traditional software functions, such as checksum

calculation, as hardware components. The third case study will examine a firewall imple-

128
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Figure 6.1: System architecture of simple web server

mented entirely as hardware logic in the FPGA fabric. An algorithm for automatically

instrumenting designs with this monitoring system will be presented in Chapter 7.

6.2 Simple Web Server

The simple web server is designed to demonstrate combined software and hardware mon-

itoring. The system is comprised of a Microblaze soft processor, soft Ethernet MAC,

system timer, multi-port memory controller and interrupt controller, as shown in Figure

6.1. There are two interrupts in the system, which are the timer interrupt and the Ether-

net MAC interrupt. The timer interrupt occurs at regular 10 ms intervals and is used by

the kernel to manage software timers, thread scheduling and other activities. The Ether-

net MAC interrupt is raised each time a packet is sent or received on the MII interface.

The interrupt handler is responsible for scheduling the transfer of the packet from the

internal buffer of the Ethernet MAC to the system memory.

As shown in Figure 6.1, the Ethernet MAC is connected to an external PHY, which is
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connected to an Ethernet network. Internally, the Ethernet MAC is connected to the

interrupt controller and the PLB bus. The Ethernet MAC has an internal frame buffer,

which is accessible from the PLB bus. The Microblaze processor is also connected to the

PLB bus, which allows it to communicate with all of the peripherals. The processor has

two master interfaces to the bus, which provide data and memory operations. The bus is

used for configuring the peripherals and for transferring data between IP blocks.

The system uses a simple kernel, called Xilkernel, for thread scheduling, interrupt handling

and IO operations. This is supplemented by the lwIP stack, which provides facilities for

processing IP packets. A simple web server application was written for the kernel, which

is responsible for initialising the peripheral IP cores and configuring the lwIP stack during

system boot. The web server also binds itself to port 80 and listens for connections on

that port.

While the system is executing the following responses are produced when a packet is

received on the Ethernet MAC MII interface. First, a packet is received on the MII

interface and stored in the Ethernet MAC’s internal buffer. The Ethernet MAC then

raises an interrupt request, which stops the current execution of the processor and causes

it to service the interrupt. The interrupt service routine transfers the packet from the

Ethernet MAC into the system memory using the processor to coordinate transfer as no

DMA controller is available in the system.

Once the packet has been copied to the system memory, the lwIP stack is scheduled for

execution by the kernel. The lwIP stack validates the frame by checking the addresses

and calculating the appropriate checksums. Upon receiving a connection, the web server

application spawns a separate thread to respond to the request. The response returns

a standard web page, which is then processed by the requesting entity. The response is

converted into a series of packets by the lwIP stack and copied from system memory to

the Ethernet MAC buffer, which transmits the packets to the requesting party.

6.2.1 Profiling

The simple web server has been instrumented with both a profiling collector and an event

collector. For the purpose of this example the profiling collector has been used and PLB
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Figure 6.2: Simple web server response to HTTP GET request

bus has not been instrumented. In this example, the web server has been instrumented

with transition probes to monitor interrupts between the timer, the Ethernet MAC and

the processor. Finally, the MII interface has been instrumented with two generic probes

for detecting packet transactions. Filtering is only performed on the MII interface as the

other signals are system interrupts. The software perspective will be examined with the

event collector and the advanced web server.

Figure 6.2 shows the response of the system when subjected to an HTTP GET request.

The regular interval of the system timer is shown and is clearly visible with the sampling

period of 5ms. The subsequent interrupt generated by the interrupt controller is also

visible. Figure 6.2 also shows that for every packet sent or received on the MII interface,

there is an associated interrupt. While Figure 6.2 shows the response for a single HTTP

GET request, the response for multiple HTTP GET requests can be easily extrapolated.

In this instance, there will be multiple MII transactions, MII interrupt requests and

subsequent processor interrupts. The total number of processor interrupts should equal

the number of MII transactions and timer interrupts. However, there may be a temporal

delay before the totals equalise due to the quantisation effect of the sampling period and
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Table 6.1: Resource utilisation of the simple web server with profiling collector

Uninstrumented Profiling ChipScope Device

Design Collector Resources

Slices 3728 4231 4779 4656

LUTs 5481 6281 6901 9312

Registers 4347 4908 5323 9312

BRAMs 13 13 19 20

the delay of the system.

The delay of the system means that events may not occur until later samples, which is an

effect of the design’s architecture and not a result of the monitoring system. However, the

quantisation effect is due to the monitoring system. Quantisation means that an event

which starts in one time sample may not be recorded until the following time sample. This

may cause two events which are closely related temporally to be placed into separate time

samples. Thus, a quantisation error can be calculated for the samples in a time interval.

The resource requirements of the profiling collector are comparable to those of Xilinx’s

ChipScope tool, as shown in Table 6.1. Although the system without instrumentation

requires a significant amount of resources, both monitoring systems can be applied in this

instance. Unlike ChipScope, the profiling collector provides observation of event ordering

and does not use any BRAM resources. Furthermore, the temporal information obtained

can also replace that of network monitors. Like network monitors, the time between

packet injection and response reception can be observed but more information on the

internal system events can also be obtained.

6.2.2 Event Capture

The simple web server has also been instrumented with an event collector and has the same

architecture as shown in Figure 6.1. In this example, the web server has been instrumented

with transition probes to monitor interrupts between the timer, the Ethernet MAC and

the processor. The PLB bus has also been instrumented with address monitors to observe

transactions on the bus. Finally, the MII interface has been instrumented with two generic
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Figure 6.3: Web server response for HTTP web page request
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Table 6.2: Resource utilisation of the simple web server with event collector

Uninstrumented Event ChipScope Device

Design Collector Resources

Slices 3800 4013 4026 4656

LUTs 4628 5162 5731 9312

Registers 3878 4296 4825 9312

BRAM 13 14 19 20

BUFG 7 7 8 24

probes for detecting packet transactions. Figure 6.3 illustrates the response obtained when

the web server is stimulated with an HTTP GET request. The figure also shows the path

of events from frame reception on the MII interface through to the interrupt clearance

by the interrupt handler. The execution of software functions designed for receiving and

sending Ethernet frames and generating the HTTP response are also shown. Finally,

Figure 6.3 shows the flow of packets used to create a TCP connection, initiate an HTTP

request and terminate the connection. The observed flow of packets has been validated

by comparing the results to those captured using Wireshark [128].

Table 6.2 shows the resource requirements of the web server and the available resources

of the Spartan 3E device. The system without monitoring circuitry uses 82% of the

available slices, which can make instrumentation difficult. The instrumented design has

the ability to match several addresses on the PLB bus and allows software function tracing

while only using 86% of the available slices. As the web server does not use a cache, all

processor instructions are transferred over the PLB bus, which allows the addresses of

software functions to be matched as they are fetched. The ChipScope implementation

uses approximately 86% of the available slices but also requires an additional 6 Block

RAMs. The ChipScope instrumentation can support software function monitoring but is

unable to relate the timing of software instructions relative to other events in the system.

The low-level monitoring mechanism used by ChipScope allows processor instructions to

be captured and related to the assembly source code.
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Figure 6.4: System architecture of Virtex web server

6.3 Advanced Web Server

The advanced web server consists of a PowerPC, Multiport Memory Controller (MPMC),

hardened Tri-mode Ethernet MAC (TEMAC), interrupt controller and debug infrastruc-

ture, as shown in Figure 6.4. The PowerPC has an integrated timer, which is not visible

on the FPGA fabric. The TEMAC provides the ability to perform TCP and UDP check-

sum offloading, which calculates packet checksums using the FPGA fabric. The TEMAC

is directly connected to the MPMC which provides direct access to memory. Upon receiv-

ing a packet the MPMC raises an interrupt, which is received by the interrupt controller.

Following this, the interrupt is passed onto the processor, which halts its current exe-

cution. The interrupt handler then obtains a pointer for the received packet and the

software continues processing. The software compares the calculated checksum with that

present in the packet and performs other checks as appropriate for TCP packets and UDP

datagrams.

Conversely, when sending a packet, the processor creates a packet descriptor in memory

and passes a pointer to the MPMC. The MPMC then uses the descriptor to transfer the

packet to the TEMAC, which in turn transmits the packet over the GMII interface. The
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Table 6.3: Resource utilisation of the advanced web server with profiling collector

Basic Design Probes ChipScope Device Resources

Slices 6195 6667 x 8544

Registers 6569 7175 x 17088

LUTs 7404 8165 x 17088

BRAMs 35 35 x 68

BUFGs 10 11 x 32

TEMAC is also responsible for calculating the appropriate checksums.

The system has three PLB buses. Two are used for instruction and data accesses via

the MPMC and the third is used for communicating with on-chip peripherals such as the

TEMAC and MPMC registers. The processor executes Xilkernel for scheduling threads

for processing, which is supplemented by the lwIP stack. The lwIP stack provides packet

processing facilities and functions for handling IP packets. Using the features of both

libraries, a relatively advanced web server was created. The application has also been

extended to support a simple time server as well.

The web server application is responsible for initialising the peripheral IP cores and con-

figuring the Ethernet interface to use the lwIP stack. The web server is bound to port

80 and listens for TCP connections. Upon receiving a connection a separate thread is

spawned and the response is sent. The response is a standard web page. The time server

also spawns a separate thread for each request, which is inefficient in comparison to mod-

ern software engineering techniques but serves well to demonstrate the operation of the

system.

The web server was stimulated by sending an HTTP GET request from a standard web

browser and the response on the GMII interface is shown in Figure 6.5. The figure shows

the time taken for creating a TCP connection, the time lapsed for an acknowledgement to

be transmitted, the delay before the payload is sent and the time taken for tearing down

the connection. The results shown in Figure 6.5 are comparable to the results obtained

through WireShark using the same stimulus.

Although the interface to the system can be monitored, it was also insightful to observe
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Figure 6.5: Web server system response to HTTP GET request

Table 6.4: Advanced web server response to received packets

Time (ms) RX RX RX MAC PPC PLB PLB

GMII LL Int Int Int Writes Reads

0 0 0 0 0 0 0 0

5 1 1 1 1 1 6 7

10 0 0 0 0 0 0 0

Table 6.5: Advanced web server response to transmitted packets

Time (ms) TX TX TX MAC PPC PLB PLB

GMII LL Int Int Int Writes Reads

0 0 0 0 0 0 0 0

5 1 1 1 1 1 4 5

10 0 0 0 0 0 0 0
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the internal operation of the system. Table 6.4 shows the system response for receiving

a packet while Table 6.5 shows the system response for transmitting a packet. These

tables show that the reception and transmission of a packet on the GMII interface cause

other events in the system on the LocalLink interface, interrupt controller and PLB bus.

However, due to the large sampling interval of the profiling collector, it is not possible to

infer the ordering of individual events. A faster upload mechanism would allow smaller

sampling intervals to be used and event ordering to be distinguished. Using the current

sampling period of 5ms, the temporal ordering of events cannot be observed.

The instruction and data PLB buses were also monitored for the same HTTP request.

As shown in Figure 6.6, utilisation rates of the buses are different. The instruction PLB

bus operates at the highest rate as instructions are required to perform processing. Data

reads and writes depend on the processor instructions so the data PLB bus operates at a

lower rate. The overall data bus utilisation is the sum of reads and writes within a time

period.

The system was also tested with a trivial time server. The time server was stimulated with

UDP time requests at regular intervals. As the time interval between packets decreased,

the system ignored more requests. As shown in Figure 6.7 the system receives packets at

regular intervals but the responses are sporadic. Viewing the PLB buses is also interesting

as the system fails with the sustained packet reception. As shown in Figure 6.8, the system

maintains a steady transaction rate on the PLB buses until the system crashes and the

buses enter an oscillation state. The system fails due to the sustained rate of packets

being faster than the system can respond. The system spawns a thread for every packet

and the system also has a maximum number of threads that can be spawned at any given

time. However, it is unclear why the buses begin to oscillate.

While instrumenting the advanced web server, there was a problem with the number of

interrupts seen at the processor. It was observed that for every packet received a single

interrupt was created at the interface to the interrupt controller. However, two interrupts

were seen at the interface to the processor. Initially it was thought that the probes

were incorrectly implemented. However, it soon became apparent that the cause for this

problem was more complex. The interrupt controller expected a level high interrupt

request whereas the processor expected a rising edge interrupt request. Initially, it was
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Figure 6.6: PLB bus utilisation

Figure 6.7: Time server response on overloaded conditions

Figure 6.8: PLB bus utilisation on overloaded time server
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thought that both were rising edge. This mismatch highlighted the difficulty in monitoring

transactions as they can be dependant on other parts of the system. For example, in order

to monitor the MPMC interrupts accurately, the probe would need to monitor the MPMC

interrupt status register to determine when the interrupt was cleared. If the status register

was cleared and the interrupt line remained level high then an additional interrupt could

be inferred.

The observation of two interrupts was caused by the order in which the interrupt handler

cleared the interrupt. First, the handler would clear the interrupt controller, which would

dutifully release the interrupt request. However, the MPMC interrupt has not been

cleared so the MPMC requests another interrupt as the signal is level high. Since the

interrupt was masked, it waited until the current handler had completed, which also

included clearing the MPMC interrupt. Following the completion of the interrupt handler,

the interrupt controller raises an interrupt. As the MPMC interrupt has now been cleared

the handler has no work to do, which terminates the handler and allows the processor to

continue its previous execution. In order to correct this problem, the order for clearing

the interrupts was altered so that the MPMC interrupt was cleared before the interrupt

controller.

6.4 Hardware Firewall

The last case study is a prototype firewall, which parses, classifies and forwards packets

entirely in the FPGA fabric. It has been implemented on a ML405 board and has been

instrumented with each type of payload filter. As shown in Figure 6.9 the firewall uses a

Gigabit Ethernet MAC to send and receive Ethernet frames, which contain IP packets.

The Ethernet MAC is connected by LocalLink to a bus width converter, which changes

the width of the datapath from 8 bits to 32 bits. This also allows the clock frequency to

be reduced. Following width conversion, the packet is parsed to determine whether it is

a configuration packet and to extract the 5-tuple. The rulebase is a content addressable

memory, which contains the rules defining packet flows that are permitted for forwarding.

Once a packet has been parsed, the rulebase is searched to determine whether it meets the

criteria for forwarding. In the event that a configuration packet is received, the rulebase
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Figure 6.9: Firewall architecture.

Figure 6.10: Transactions over firewall

is updated and the packet is dropped. After parsing, non-configuration packets are sent

to a buffer that delays processing to allow the rulebase to search its rule table. Following

the delay, the packet is either dropped or forwarded depending on the outcome of the

rulebase search. Assuming that the packet is to be forwarded, it is then transferred to

another bus width converter, which changes the width of the datapath from 32-bits to

8-bits. After which, the packet is then transmitted through the Ethernet MAC.

The IP blocks in this system allow monitoring in 11 locations, these are on the RX and TX

GMII interfaces of the Ethernet MAC, the 6 LocalLink interfaces comprising the pipeline

and the 3 memory interfaces. Figure 6.10 is an illustration of the information obtained

from a working system, which clearly shows the packet flow through the firewall. Time

T1 shows a packet entering the system. T2 shows the completion of packet reception on

the MII interface and the start of packet transmission to the parser. T3 and T4 show the

rulebase search and result transactions respectively. Finally, T5 shows the packet exiting

the system. Figure 6.9 also demonstrates the pipeline effect, which can only be observed
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Figure 6.11: Resultant transactions over firewall when packet buffer has overflowed.

Table 6.6: The resource utilisation of the hardware firewall instrumented with different

probe architectures

Firewall Slices LUTs FFs

Uninstrumented 4291 3890 5216

Specialised Parallel 8133 10066 6503

Specialised Sequential 5254 5425 5802

Generic 6406 7235 5735

Generic Offsets 7050 8312 5813

Scalable (1 Match) 6166 6908 5779

Scalable (16 Matches) 8075 10556 5839

by recording the start and end times of transactions.

If the packet buffer was to overflow, as illustrated in Figure 6.11, there would be no

transactions recorded further down the pipeline. At stages before the packet buffer, exe-

cuting transactions would not terminate due to back pressure signalled by the overflowed

packet buffer, which is propagated to all previous stages in the pipeline. This would

clearly identify the buffer as the source of the problem and as such make the location

of an error obvious. This system-level perspective allows the designer to easily infer and

isolate erroneous components. Alternatively, if the search was not started then no read

would be recorded and the packet transactions would stop at the forwarding IP block.

This information, which is not shown by other tools, makes the location of an error more

obvious. It can also allow the designer to infer and isolate erroneous components.

Table 6.6 shows the resource implications of different architectures. The parallel spe-

cialised probe requires the most resources, which is due to the spatial layout of the com-

parators. As interfaces in this system are at most 32-bits, this is an inefficient use of
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Table 6.7: Resource utilisation of hardware firewall when instrumented with various mon-

itoring tools

Uninstrumented Transaction ChipScope Device

Design Capture Resources

Slices 4300 6587 7906 8544

Registers 5220 6503 9343 17088

LUTs 3908 7414 7070 17088

BRAM 9 10 31 68

BUFG 9 9 10 32

resources. The sequential version of the specialised probe is the most efficient. It takes

advantage of the 8-bit LocalLink interfaces and GMII interfaces to produce smaller mon-

itors. The memory interfaces retain the parallel matching and the 32-bit LocalLink inter-

faces require larger comparators but this method is suited to this design. The sequential

probe provides the same facilities as the parallel version but requires fewer resources.

The generic probe requires more resources than the sequential specialised probe. The

increase is greater than suggested by the individual probe counts, which may be due

to the side-effect of placing probes on an interface. However, the increase in resource

utilisation is significantly smaller than the parallel specialised probe. In any case, the

generic probe can provide greater flexibility to allow the designer to observe other IP

packets passing through the firewall such as ICMP.

The generic probe with offsets has higher resource requirements again. The resource

requirements are close to those of the parallel specialised probe. Although the generic

probe with offsets provides deeper insight into the packet, this may be unnecessary for

this system as the firewall only operates on the 5-tuple.

The scalable probe is interesting as the resource requirements can be customised to the

need of the designer at synthesis time. The ability to scale resources makes this an

attractive option for this design. The combinator may also provide the necessary flexibility

to debug the firewall rules accurately.

Table 6.7 shows the resource requirements of the firewall compared to ChipScope and
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the available resources of the device. The firewall uses approximately 50% of the avail-

able slices. The instrumented design uses about 77% of the available slices to permit

transaction level monitoring. The monitoring system uses a fixed IP packet parser with

parallel matching, which is a resource intensive probe. The monitoring system uses a

single Block RAM as a FIFO for uploading the results. The same design instrumented

using ChipScope requires approximately 92% of the available slices and an additional 21

Block RAMs. As each probe has its own Block RAM for data capture it is difficult to

place the monitoring circuitry close to the locations of interest. This requires additional

circuitry and resources to route signals from the location of interest to the BRAMs, which

suggests that a central collection mechanism may be better suited for monitoring system

component interactions.

6.5 Summary

Three complex example systems have been instrumented to validate the approach to

on-chip monitoring. These examples show that the system-level transaction system is

significantly smaller than conventional tools. They further illustrate that transaction-

level observations are useful as they provide a system-level understanding of the design

by abstracting away the complexity of low-level signalling. In this way, they expose a

different class of errors compared to traditional tools. Furthermore, the amount of data

transmitted off-chip is significantly reduced.



Chapter 7

Automated System

Instrumentation

Although many tools exist to detect errors before synthesis, errors still occur in the fi-

nal implementation. Following implementation, errors can only be observed by on-chip

monitoring, which requires the design to be instrumented. Typically, instrumentation

circuitry is manually inserted, which is error prone and time consuming. This chapter

presents an algorithm that automatically instruments systems created in high-level de-

sign environments. Automated instrumentation exploits the type system of high-level

design environments to select and configure the probes for system-level monitoring. The

alterations to the implementation flow are described and the interaction with monitoring

software is presented.

7.1 Introduction

The FPGA implementation flow supports a variety of tools that validate and verify de-

signs. For example, functional verification validates designs by exercising a set of execu-

tions, while static timing analysis formally verifies that designs meet timing constraints.

An overview of validation and verification techniques frequently used in the FPGA design

flow was presented in Chapter 3. A type system was also described in Chapter 4, which
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formally verifies the interconnection of IP blocks. However, even with the plethora of

tools available, errors may still occur in the final implementation.

In order to detect and correct implementation errors, the system needs to be observed

on-chip. Several tools exist for monitoring FPGA-based systems but these tools typi-

cally require manual instantiation within a design. Furthermore, the majority of on-chip

monitoring tools observe systems at the RTL level, which makes design instrumentation

tedious, error prone and time consuming as signals need to be connected individually. To

correctly insert a probe the designer might need to connect many signals, which com-

pounds the problem. The architecture of a system-level transaction monitoring tool, as

presented in Chapter 5, relates hardware interactions to the abstractions used by high-

level design environments. However, instrumentation using the system-level monitoring

tool is a manual process.

To address the limitation of manual instrumentation, the structural and transactional

information in high-level design environments can be exploited to automatically instru-

ment designs with the system-level transaction monitoring tool presented in Chapter 5.

Low-level tools do not contain sufficient information to extend the implementation flow

with an instrumentation algorithm for system-level monitoring. System Stitcher, a proto-

type high-level design environment for packet processing applications, has been extended

to implement the instrumentation algorithm during its elaboration phase and to interact

with the external host software of the system-level transaction monitoring tool. Conse-

quently, the external host software can then configure and control the monitoring tool as

part of the design environment.

The algorithm has been validated by application to the hardware firewall case study.

System Stitcher has been used to automatically instrument the design from a Click de-

scription and invoke the external host software.

The use of automatic instrumentation creates an integrated development environment

akin to those available for software development. Although the techniques for hardware

development are different to software, an integrated development environment should im-

prove designer productivity. Unfortunately, there are few integrated environments that

combine hardware design, simulation and on-chip monitoring. The integration of multi-
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Table 7.1: Simplified Click syntax of System Stitcher

A,B::= Types

Packet Packet type

Memory Memory access type

Interrupt Interrupt type

Input Input type

Output Output type

A × B Interface type

{li : Ai∈1..n
i } Component type

D::= Declarations

I :: A1 × B1, . . . , An × Bn Interface declaration

C::= Commands

I1 → I2 Interface connection

C1;C2 Subsequent commands

I[l] Interface projection

I Identifier

ple validation and verification techniques makes the contribution of the instrumentation

algorithm significant to hardware design.

7.2 System Stitcher

System Stitcher is a prototype high-level design environment for creating packet process-

ing applications, which has been extended to automatically instrument designs for on-chip

run-time monitoring. It supports IP blocks described in a functional packet processing

language called G, which describes the format of packets and the operations performed

on those packets. System Stitcher is responsible for connecting IP blocks described in G

and other languages to form a system. Click is used as the system description language

and a simplified grammar is shown in Table 7.1.

System Stitcher defines a set of types, which can be either abstract or structural. An

abstract type represents the physical and semantic properties of an interface without
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Table 7.2: Type rules for Click syntax

(Env φ)

Γ ⊢ ⋄

(Env I)

Γ ⊢ A I /∈ dom(Γ)

Γ, I : A ⊢ ⋄

(Type Packet)

Γ ⊢ ⋄

Γ ⊢ Packet

(Type Memory)

Γ ⊢ ⋄

Γ ⊢ Memory

(Type Interrupt)

Γ ⊢ ⋄

Γ ⊢ Interrupt

(Type Input)

Γ ⊢ ⋄

Γ ⊢ Input

(Type Output)

Γ ⊢ ⋄

Γ ⊢ Output

(Type Interface)

Γ ⊢ A Γ ⊢ B

Γ ⊢ A × B

(Type Component)

Γ ⊢ A1 × B1 . . . Γ ⊢ An × Bn

Γ ⊢ {li : Ai × Bi∈1..n
i }

(Decl Component)

Γ ⊢ {li : Ai × Bi∈1..n
i } A ∈ {Packet, Memory, Interrupt} B ∈ {Input, Output}

Γ ⊢ (I :: {A1 × Bi, . . . , An × Bn}) : {li : Ai × Bi∈1..n
i }

(Comm Input Connect)

Γ ⊢ I1 : A × Input Γ ⊢ I2 : A × Output

Γ ⊢ I1 → I2

(Comm Output Connect)

Γ ⊢ I1 : A × Output Γ ⊢ I2 : A × Input

Γ ⊢ I1 → I2

(Comm Subsequent)

Γ ⊢ C1 Γ ⊢ C2

Γ ⊢ C1; C2

(Proj Interface)

Γ ⊢ I1 : {li : Ai × Bi∈1..n
i } j ∈ 1..n

Γ ⊢ I1[lj ] : Aj × Bj
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specifying the exact composition. Although it might not be immediately obvious, the use

of abstract types is useful for the semantic analysis of designs. Type checking can be

performed on abstract types to detect errors in the interconnection of abstract IP blocks

before the structural composition is known. The abstract types also negate the need for

the designer to manually specify the structural composition of an interface as the high-

level design environment can determine the structural composition during compilation.

Structural types are created from abstract types before code generation as the composition

of the interfaces need to be specified at this stage. However, the structural representation

loses the semantic meaning of the signals.

The abstract types supported in System Stitcher are Packet, Memory and Interrupt, as

shown in Table 7.2. The Packet type represents an interface that transfers packets over the

Xilinx LocalLink [125] standard. The Memory type represents a wide range of interfaces

including the common register, FIFO and BRAM. An Interrupt type is a single wire that

is connected to components and indicates the occurrence of an event. Each type is also

associated with a direction, which can be either Input or Output. The rules for connecting

abstract interfaces are shown in Table 7.2, which state that Packet, Memory and Interrupt

interfaces must be connected to an interface of the same type. They also state that an

Output interface must be connected to an Input interface.

System Stitcher supports the specification of structural types to allow low-level descrip-

tions to be used in the system. However, System Stitcher cannot infer any high-level

information from structural interfaces and they are connected to other components in the

system immediately before code generation.

System Stitcher follows the design flow shown in Figure 7.1, which loosely follows the

architecture of a compiler. The initial operations are lexical analysis and parsing, which

convert the Click description into an abstract system model. The abstract system model

uses abstract types to represent interfaces where possible. Following creation, the abstract

system model is subjected to semantic analysis, which includes type checking. Semantic

analysis detects high-level errors in the system design such as connecting a packet interface

to a memory access interface. It also detects other errors such as connecting multiple

inputs to an interface without appropriate multiplexing circuitry.
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Figure 7.1: An overview of the design flow of System Stitcher including validation and

verification points.
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The system model is represented as a graph, which is comprised of a set of component

instances and a set of component interconnections. The component instances are each

given a type, where the type defines the set of interfaces present on the component.

The interfaces also have a type as already described. Component interconnections are

represented by a tuple comprising the source and destination of a connection, which

only allows direct connections between components. The source and destination refer to

specific interfaces on component instances.

Once the system model has passed semantic checking, it is then elaborated, which con-

verts abstract interfaces to structural representations. Elaboration results in a structural

system model that is used during code generation to produce a RTL representation of the

system connections. The RTL description is written in a hardware description language

such as VHDL.

Following code generation, the resultant RTL code is integrated with the netlists and RTL

code of the IP blocks instantiated in the system. This set of files is then passed through

the traditional FPGA design flow, which consists of synthesis, mapping, placement and

routing. Once a placed and routed netlist is obtained, a bitstream is generated and used

to program the target device.

7.3 On-chip Monitoring

The architecture of a system-level monitoring tool and the results of implementation

have been presented in Chapter 5. The monitoring system is comprised of a set of probes

connected directly to an event collector and software executing on a host computer. The

set of probes monitor different interface types, where each probe is designed to monitor

and interpret the signal transitions of a specific interface type. The probes are capable

of filtering any payload and the functionality can be tailored to the needs of the system

being monitored. The probes are designed to act as pass-through components so that

they can be easily inserted between interfaces.

The collector is responsible for configuring the probes at run-time and communicating

the results from the FPGA to an external host system. The collector provides a spatial
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representation of events and records temporal information dependent on the processing

provided by the collector. The information transmitted by the collector and class of errors

detected were described in Chapter 6.

The external host system executes test software, which configures the monitoring system.

It is also responsible for receiving, interpreting and presenting the results to the designer.

7.4 Automated Instrumentation

The implementation of the instrumentation algorithm is dependent on the data struc-

tures being manipulated and the point of execution in the design flow. The algorithm

is executed as part of the elaboration phase of the high-level system compiler, as shown

in Figure 7.1, for a number of reasons. At this stage, semantic checking will have been

performed ensuring that the connections are valid. Performing automated instrumenta-

tion during elaboration also allows the algorithm to operate on the abstract model. The

elaboration stage computes the low-level data for each interface, which is necessary to

configure the monitors to match the interfaces being monitored. Instrumentation be-

comes infeasible later in the design flow as the transaction-level semantic information of

the abstract system model is discarded following elaboration.

The instrumentation algorithm consists of two main phases. The first phase inserts the

probes into the system model. The second phase inserts the collector and connects the

outputs of the probes to the collector. As described in Figure 7.2, the algorithm iterates

over the set of components in the system and their interfaces. Each interface is only

allowed a single connection so only the output interfaces are instrumented, which avoids

connecting multiple probes to a single connection. The type of each interface is deter-

mined from the abstract system model and the interfaces are evaluated to determine the

structural properties. Following this, the abstract connection is elaborated as two struc-

tural connections. The output interface is connected to the input of the probe and the

output of the probe is connected to the input interface of the original connection, which

has the effect of inserting the monitor into the connection.

Once every connection has been instrumented, the algorithm must then insert a collector
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1: for each component in system do

2: for each output interface on component do

3: if interface is connected then

4: if interface is packet type then

5: insert packet probe

6: else if interface is memory type then

7: insert memory probe

8: end if

9: end if

10: end for

11: end for

12: insert collector

13: for each component in system do

14: if component is probe then

15: connect monitor to collector

16: record monitor identifier

17: end if

18: end for

Figure 7.2: Algorithm to instrument system with monitors.

into the system. Following insertion, the algorithm then iterates over the system model

again and identifies the probes that have been inserted. During this iteration, each probe is

connected to the collector, which completes the connections required for the monitoring

system to operate. As the algorithm connects the monitors to the collectors, it can

also compile a configuration file that relates the probe identifiers to the probe locations.

Following creation, the configuration file can be passed to the actual test software that

configures, monitors and interprets the device under test. The instrumentation algorithm

can be generalised to any high-level environment and could be extended to support other

monitoring tools.

To validate this approach, the proposed algorithm has been used to instrument a hardware

firewall, which is shown in Figure 7.3. The firewall uses both packet and memory interface

types as specified in the high-level environment. The first phase of the instrumentation
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Figure 7.3: The architecture of the hardware firewall.

Figure 7.4: The architecture of the hardware firewall instrumented with transaction mon-

itoring probes.
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Figure 7.5: The architecture of the hardware firewall instrumented with system-level

transaction monitoring circuitry.
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Table 7.3: Resource utilisation of hardware firewall when instrumented using the auto-

mated instrumentation algorithm and generic probes

Slices Registers LUTs BRAM Period (ns)

Uninstrumented 4300 5220 3908 9 19.440

Instrumented 6406 7235 5735 10 19.995

algorithm inserts probes into each connection in the system, while matching the probe

with the correct interface type as shown in Figure 7.4. Following insertion of probes,

the collector is inserted into the system and each probe is connected to the collector, as

demonstrated in Figure 7.5. This then completes the instrumentation of the hardware

firewall and at this stage, the monitoring mechanism can be used to obtain similar results

to those presented in Chapter 6. The resource requirements of the hardware firewall

are illustrated in Table 7.3, which presents the resource requirements of the hardware

firewall without any instrumentation and the resource requirements when instrumented

with generic probes.

Compared to a traditional tool flow using ChipScope, this algorithm saves time and is

less error prone. The instrumentation algorithm negates the need for the designer to

manually instrument the design as the configuration of the probes and test software is

performed automatically. However, the system-level transaction circuitry might not be

able to identify every error present in the system and a low-level monitoring tool might

be required to examine the internal signals of IP blocks.

7.5 Summary

To improve the productivity of designers, high-level design environments and system-level

transaction monitoring tools have been created. This chapter has demonstrated that the

transaction-level semantics of interfaces specified in high-level design environments can be

exploited to permit automatic instrumentation of designs. Automated instrumentation

reduces the burden of probe insertion and configuration. Additionally, it reduces the time

required to instrument designs compared to traditional design flows and it is less error

prone.



Chapter 8

Future Work

This thesis has presented three techniques for validating and verifying the interconnec-

tion of IP blocks comprising packet processing systems. These techniques are methods of

static verification, dynamic validation and error elimination through design automation.

However, they do not prevent every error that can occur in a system. This chapter dis-

cusses potential avenues for future research and divides the discussion into three sections

related to the techniques presented in this thesis. The list is not exhaustive but it does

demonstrate the range of potential research avenues inspired by the work presented.

8.1 Static Verification

Presented in this thesis is a type system that statically verifies the connection of compo-

nents within a system. The type system catches more errors and catches errors earlier

compared to the traditional design flow. Consequently the designer is more productive as

fewer synthesis executions are required and time is saved. As static verification improves

designer productivity, the pursuit of further research into static verification techniques is

likely to further reduce the number of errors that occur in the final implementation.

Further research into static verification of packet processing systems could explore im-

provements to the type system, connection dependencies, interface relationships and

model checking. The type system could be extended to enforce more logical rules and catch
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more errors. The dependencies between interconnected components could be examined

to eliminate configuration and parametrisation errors. Information regarding component

dependencies could potentially be used to automatically configure IP blocks. The rela-

tionship between interfaces in a single component could be explored to highlight data and

control paths in a system. Finally, high-level functional descriptions of IP blocks could

be used to create a model of the system that can be statically verified. Model checking

can eliminate deadlock in a system and highlight unreachable states.

8.1.1 Extended Type System

As discussed in Chapter 4, the type system catches many errors that are currently not

detected by the existing design flow. Although more errors are caught, the type system

can be extended to increase the range of errors that are detected. One technique that

can be applied is dependent typing [129]. Within software engineering, dependent types

are used to statically check array bounds, which can remove the overhead of run-time

dynamic checking.

Within Click, the application of dependent types could be used to enforce limits on the

number of connections to an interface. With care, they could be used to limit the number

of drivers in a connection before resolution to nets. For example, the type system cur-

rently verifies connections without regard for other statements in the Click description.

The type system is only applied to the connection function, which connects components

irrespective of the other connections in the system. As dependent typing can verify ac-

cesses to the boundaries of an array, the same principle can be applied to limit the number

of connections made to a single interface. Some component interfaces restrict the number

of connections that can be made to them. By way of example, direct media comprised of

initiators and targets can only have one connection on each interface. This implies that

both interfaces in a direct connection have only one shared connection. Assuming that

a bus component has separate interfaces for individual masters and slaves, dependent

typing can be used to enforce the connection of only one component to each interface.

Alternatively, if a shared interface is used for each type of component then dependent

typing can still be used to enforce the connection limits. Finally, fan-out of individual

signals can be restricted by dependent typing which can improve system timing.
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8.1.2 Interdependent Component Connections

IP blocks tend to be parameterisable so that they can be used in a variety of applications.

For example, the width of a data bus can usually be specified as a parameter and the

number of interfaces on a component might also be configurable. The multi-port memory

controller (MPMC) is an example of a component with configurable interfaces [130]. In

addition to specifying the width of data buses and the number of interfaces, the MPMC

also allows the type of interfaces to be parameterised.

The type system is able to detect errors related to the connection of two interfaces. It is

able to catch errors related to mismatched data bus widths, the number of interfaces and

incompatible interface types. However, it is not able to detect system-level errors where

properties of two separate connections are interdependent. The mesh fabric reference

design [130] is an example of a complex system with interdependent component inter-

faces. This system creates multiple ingress interfaces to receive packets before scheduling

and prioritising them for transmission to the packet switch. As the packets need to be

multiplexed, limited buffering is available to temporarily store them. The dependency in

the system relates to the number of ingress interfaces and the data bus width of another

component. The number of ingress interfaces is defined by a parameter and the width

of the data bus is defined by a calculation based on the number of ingress interfaces.

The type system cannot catch errors related to this property as the interfaces between

components are always correct.

The relationship between the number of ingress interfaces and the width of the data bus

is a system-level property. The Click syntax will require extensions to capture such prop-

erties between connections. The properties could be specified either directly or indirectly.

A direct specification will configure dependent components using a calculation based on a

root parameter. These properties would be correct by construction during the elaboration

of the system description. An indirect specification would assert the validity of a property

by determining whether it exceeded a specified set of ranges. In this case the semantic

analysis phase could be extended to verify these properties.
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8.1.3 Interface Relationships

Both Brace and System Stitcher treat the IP blocks comprising the system as black boxes.

No information about the internal structure or operation of the component is provided

and only the interface types are available for verification. In order to improve static

verification of the system, simple descriptions of the internal interface relationships could

be provided with the IP blocks. For example, two packet interfaces could be related as

the packets received over one interface are transmitted over the other after processing

within the IP block.

The internal relationship between interfaces could be described using the Click language.

The syntax would need to be extended to allow relationships between different interface

types to be described. These relationships could highlight the datapaths in the system

when the IP blocks are interconnected. Highlighting the datapaths could permit incom-

plete paths to be identified, which could be the result of an error.

8.1.4 Model Checking

Although System Stitcher treats the IP blocks comprising the system as black boxes,

the descriptions of the IP blocks are available in a high-level design language. System

Stitcher could be extended to perform static verification using those descriptions and the

Click description of the system. Model checking would assume that IP blocks are correct

and could identify potential deadlock, livelock and starvation conditions in the system

as a result of the interconnection of those IP blocks. Model checking could also identify

unreachable states and prove specific properties of the design.

8.2 Dynamic Validation

This thesis has presented a system-level transaction monitoring system that dynamically

validates the connections between components in a design. The system-level transac-

tion monitoring system abstracts the low-level details typically captured by traditional

monitoring tools and provides greater visibility into the operation of the system. This
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monitoring tool provides a foundation which can be built upon to further improve the

monitoring of FPGA-based packet processing systems.

The system-level transaction monitoring tool could be extended to support co-simulation

with a network simulator, system state inference, targeted data capture and automatic

generation of the probe state machines. Co-simulation with a network simulator would

allow the implemented system to be tested in conjunction with a simulation environment.

System state inference uses the sequence of transactions to infer the state of the system at

a given instant. Targeted data capture stores specific fields in packets to provide deeper

insight into the system operation, while maintaining a low resource penalty. Finally,

automatic generation of the probe state machines would permit rapid description of probes

to monitor any interface type.

8.2.1 Co-simulation with a Network Simulator

Network simulators are frequently used to test protocols and their performance within

a variety of network topologies. However, the abstractions used in these simulators can

return results that differ from real world implementations. To address this limitation

some network simulators permit co-simulation, which supports simulation using actual

implementation of network stacks and the transmission of packets over real networks.

Co-simulation alleviates the burden of modelling complex nodes and end points within a

network, while returning more accurate results.

Brace and System Stitcher could be extended to exploit the functionality of co-simulation

to provide testbeds for packet processing systems written in Click. The network simulator

can be used to generate and record traffic that occurs in a variety of conditions and net-

work topologies. The response of the Click packet processing system can also be observed

using the system-level transaction monitoring tool. Using hardware-in-the-loop would

provide an insight into the operation of the packet processing system within the net-

work and present the response of the components comprising the system. Co-simulation

may provide a faster and more accurate testing mechanism compared to the simulation

techniques currently employed.
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8.2.2 State Inference from Event Sequences

The system-level transaction monitoring tool only records transactions that occur on

a connection and it does not record the state of any of the system components. The

monitoring tool has already demonstrated that it can isolate and locate errors quickly. It

can also detect errors that are unobserved by other low-level monitoring mechanisms.

Within complex systems, there may be many events which make it difficult for designers

to manually determine whether the sequence of transactions is correct. The system-

level monitoring tool could be extended to infer system state. For example, a TCP

connection consists of several phases including setup, request, response and tear down.

Inferring the state of the system from the sequence of transactions could assist the designer

in understanding the design. This technique is likely to require high-level descriptions

relating the sequences of events that occur between different interfaces. These descriptions

would form an extension to the interface relationships described earlier in this chapter.

The descriptions would describe the relationship between interfaces on an IP block and

the events that result from an event on another interface. State inference is likely to

be done off-chip to maintain the low resource utilisation of the transaction monitoring

mechanisms and to reduce the bandwidth required to communicate events off-chip.

8.2.3 Probe State Machine Generation

The system-level transaction monitoring mechanism has a small resource requirement due

to its architecture and the design of the probes and collectors. The probes consume a small

amount of resources as their functionality is fixed during synthesis and they have little

run-time configurability beyond their filtering capabilities. Unfortunately, this means

that probes need to be created for each interface type that needs to be monitored in a

system. While the architecture of the probes has been standardised to facilitate rapid

development, the specification of the state machine is described at a low-level.

The specification of the interface operation can be described using a high-level language,

which might also include annotations for describing packet formats. These descriptions

would describe the signal transitions that indicate a transaction and the conditions un-

der which a transfer is stalled. The descriptions could be similar to modports used in
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SystemVerilog to describe buses and their transactions. Ideally, the interface descriptions

would be included with an IP block and not require the system integrator to specify the

supported transactions.

8.2.4 Data Capture from Probes

The system-level transaction monitoring tool does not capture any data from the packets

that it observes. Instead, it filters the packets to determine which events to record.

As the filtering mechanism supports masked matches, the designer frequently desires to

know which value matched the filter. For example, if the data bus was configured with

the wrong endian then the designer would be unable to tell from the information obtained

by the filtering mechanism. In order to determine the exact value matched by the filter,

data capture needs to be employed.

The key feature of the probes used in the system-level monitoring mechanism is the

low resource utilisation. Any implementation of data capture needs to maintain the low

resource utilisation, which can be achieved by capturing only the fields of the packet

that are matched for filtering. The monitoring mechanism does not need to capture

every bit within a field. It only needs to capture the bits that are not matched as

these are the only values that are unknown. The mechanism for transferring captured

data to the host computer is also vital in maintaining a low resource utilisation for the

probes. One technique for transferring data from the probes is to employ a scan chain,

which would keep the utilisation of the routing resources to a minimum. However, the

data capture mechanism might not be able to record the fields of every packet that is

observed depending on the clock and data rates. Alternatively, the captured data could

be transferred to the collector with every recorded transaction but this would increase

the complexity of the collector and its resource requirements.

8.3 Error Elimination Through Automation

This thesis has presented an algorithm for the automatic instrumentation of designs spec-

ified in an IP interconnection language. This technique uses the high-level information
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present in the design environment to determine the types of interfaces being monitored.

The current approach instruments every interface in the system to provide a system-level

perspective. While monitoring every interface is desirable in most situations, it is not

suitable for all designs.

Due to the expense of FPGA devices, designers will endeavour to use the smallest and

cheapest device possible. Although the system-level transaction monitoring system has a

low resource utilisation there are still instances where the monitoring mechanism might

not be able to monitor every interface. This might occur as a result of exceeding the

device’s resources, high routing congestion and the inability to place the components to

meet timing constraints.

To address these issues the instrumentation algorithm can be extended to provide the

designer with greater control over the instrumentation process, while maintaining the

benefits of automated instrumentation. First, the algorithm could be extended to de-

termine the minimal set of monitoring points to observe the entire system. Combined

with models of the components comprising the system, the instrumentation algorithm

can insert probes in key locations and use simulation techniques to infer the transactions

in locations that are not monitored. Second, the algorithm could be extended to support

descriptions supplied by the designer specifying the locations of interest in the system.

Such descriptions would only direct the instrumentation algorithm to the areas of interest

and would not restrict the placement of probes to those locations.

8.3.1 Minimal Monitoring Points

On-chip monitoring systems must not exceed the available resources on a device and must

minimise the impact on system timing and component displacement. As device utilisation

tends to be high, the automated instrumentation algorithm could be extended to tailor

the monitoring system to the needs of the target device and application. By combining

on-chip monitoring with high-level simulation of IP blocks, it might be possible to reduce

the number of probes required to accurately observe and test a system.

System Stitcher co-ordinates the synthesis of high-level descriptions to low-level implemen-

tations and it is capable of simulating the IP blocks comprising the system in a high-level
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simulator. As the system-level transaction monitoring mechanism relates events to the

operations described by System Stitcher, it may be possible to infer the events between

components using high-level simulation. By monitoring events in key locations on-chip

and simulating other connections, greater visibility into the system could be obtained and

the resource requirements of the monitoring mechanism might be further reduced.

This technique would require automated instrumentation and would be a suitable ex-

tension for the algorithm described in Chapter 7. This extension would determine the

minimal set of points that need to be monitored in order to observe the system accurately

through simulation. The advantages of automated instrumentation would be maintained

and would improve the resource utilisation of the monitoring system.

8.3.2 Debug Criteria

Designers frequently wish to change the location of interest when monitoring and debug-

ging a system. For example, a designer may wish to observe the entire design to detect

errors in the operation of the system. If an error is detected then the designer would

desire to monitor the connections preceding the location of the error and potentially to

monitor the connections at a lower level. The designer would like to determine the cause

of the error so that it can be corrected. If the designer’s hypothesis was incorrect then

they would like to change the location of interest with ease.

Currently, monitoring tools do not provide a method of describing locations of interest.

The designer must manually insert probes and determine the locations most suitable for

debugging their application. The automated instrumentation algorithm could be extended

to permit the use of monitoring criteria to express the interest of the designer. For

example, the designer might be interested in the path of a specific packet type through

the system or the control signals associated with interrupt processing. In the case of

following a specific packet type through the system, the instrumentation algorithm might

place probes on the connections where that packet type is expected to flow. For interrupt

processing, the algorithm could instrument the component raising the interrupt, any

interrupt controllers and the processor receiving the interrupt. Again, this method would

need a description describing the relationship between the components.
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8.4 Summary

This chapter has presented several avenues for future research based on the work pre-

sented in this thesis. Potential avenues for further work are centred around the three

main themes of the thesis, which are static verification, dynamic validation and error

elimination through automation. Within the domain of static verification, it is possi-

ble to extend the type system to catch more errors before synthesis. The dependencies

between component connections could be modelled to catch system-level errors and the

relationship between interfaces on a single component could be described to analyse data

paths and other properties. By exploiting the high-level descriptions already available

with System Stitcher, it is possible to perform model checking on systems to statically

isolate unreachable states and deadlock conditions.

Potential directions for extending the work on dynamic validation include co-simulation,

system state inference, automated probe generation and data capture. By co-simulating

the implemented packet processing system with a network simulator, it is possible to

monitor the system accurately and observe the impact on other components in the net-

work. The IP blocks used in the system can also be supplemented with annotations that

can describe the causality of events permitting the system state to be inferred and to

automatically generate the state machine for probes to monitor an interface. The main

limitation of the system-level transaction monitoring mechanism can be addressed by

recording specific data from the probes. Data capture allows specific fields of packets

to be observed and could be implemented in a manner that does not increase resource

utilisation significantly.

Finally, error elimination through automation can be improved by extending the au-

tomated instrumentation algorithm to determine the minimal set of monitoring points

required to observe a system and permitting a set of debug criteria to be described. By

simulating specific components within the system it might be possible to observe a subset

of the system connections and infer the events in the simulated locations. Simulation of

components will further reduce the resource utilisation of the monitoring mechanism and

improve visibility into the system under observation. Defining debug criteria allows the

system to be instrumented in a manner that reflects the area of interest. The designer will
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be interested in different parts of the system at different times, which can be supported

efficiently by automatically observing the location and connections of interest.



Chapter 9

Conclusion

In this chapter, a summary of the work presented in this thesis is given and its contri-

butions are highlighted. The outcomes of the work are also discussed in relation to the

motivations and objectives of the project.

This thesis has examined the validation and verification of packet processing systems im-

plemented in FPGA devices. In particular, it has explored the validation and verification

of systems created in high-level design environments, which aim to reduce the designer

productivity gap through the use of abstraction.

Traditional validation and verification techniques have focused on eliminating errors in

the low-level design flow as systems were typically created using low-level descriptions.

However, the insatiable demand for more computation in networks and the increasing

density of modern devices has driven the need for high-level design environments. These

high-level design environments improve productivity and reduce costs but the validation

and verification capabilities are not as mature as the low-level implementation flow.

This thesis has presented three techniques for validating and verifying systems created

in two high-level design environments called Brace and System Stitcher. The three tech-

niques presented are:

1. Static verification by type checking connections specified in Click descriptions.
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2. Dynamic validation by monitoring Click systems using transaction observations of

component communications.

3. Automatic instrumentation of Click systems for observation using the system-level

transaction monitoring tool.

9.1 Thesis Contributions

With regards to Brace and System Stitcher, this thesis has made several contributions

to these research tools. It has also made several contributions to the validation and

verification of packet processing systems in general. The contributions will be discussed

as they relate to the three main themes of this thesis. First, the thesis contributed to the

static verification of Click systems in Brace in the following ways:

• Definition of type system for packet processing systems on a FPGA.

• Implementation of the type system as part of the semantic analysis phase in Brace.

• Evaluation of the type system using two reference designs.

Second, this thesis has made several contributions to the dynamic validation of packet

processing systems on a FPGA. The contributions to dynamic validation might also be

applicable to other domains beyond packet processing. However, the following specific

contributions have been made here:

• Specification and design of the architecture of an on-chip monitoring tool.

• Exploration of lightweight probe architectures with varying transaction interpreters

and filter designs.

• Exploration of collector architectures which define two distinct collection mecha-

nisms for profiling and event capture.

• Implementation of the various monitoring probes and collectors, which allow the

resource requirements to be compared and contrasted.
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• Implementation of host software for receiving results from the monitoring mecha-

nism.

• Implementation of three example systems to validate the implementation of the

monitoring system and demonstrate the class of errors that can be detected.

Finally, the work on automated instrumentation has made two contributions to the vali-

dation and verification of FPGA-based packet processing systems. Automated instrumen-

tation is not widely supported by many monitoring tools but is an important addition to

the thesis, which combines the static verification of the type system and the dynamic vali-

dation of the system-level transaction monitoring tool. This thesis has made the following

contributions:

• Specification of an automated instrumentation algorithm.

• Implementation of the instrumentation algorithm in System Stitcher.

9.2 Thesis Summary

As the designer productivity gap widens, systems will be created at higher levels of ab-

straction. The use of abstraction is supported by high-level design environments, which

can improve designer productivity. The main conclusion of this thesis is that validation

and verification techniques, applied appropriately to high-level designs, can further im-

prove the productivity of designers. This conclusion is supported by the results presented

in this thesis and is supported by the summaries of each theme.

The type system is capable of proving the absence of connection errors in designs and

catches more errors than the low-level FPGA implementation flow. The additional in-

formation embodied in the high-level design environment rigorously verifies properties

that were previously understood by the designer. It has been demonstrated that more

errors are caught by the type system but the class of errors is restricted to those within

individual connections. The type system is not capable of verifying properties that are de-

pendent on multiple connections. Finally, type checking catches errors before compilation

and synthesis, which saves time and reduces synthesis iterations.
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The system-level transaction monitoring mechanism has a small resource requirement

compared to traditional low-level monitoring tools. It has been demonstrated that the

monitoring tool can be used in a wider set of applications and that a different class of errors

can be detected. The errors observed by the system-level transaction monitoring tool

are also undetected by traditional low-level monitoring tools. Furthermore, the system-

level transaction monitoring tool abstracts low-level signal transitions to events, which

reduces the amount of data that needs to be transmitted off-chip. The data rates are also

reduced by filtering payloads, which also provides information as to which packets have

been transmitted over an interface. Finally, the restriction of monitoring communication

between components improves the localisation of errors when combined with the filtering

information.

The algorithm for performing automated instrumentation eliminates errors in the design

flow, which result from incorrect manual insertion or configuration. While not demon-

strated directly, this technique reduces the number of errors injected into the design and

saves time.

In conclusion, this thesis has made several significant contributions to the validation and

verification of FPGA-based packet processing systems. Methods of static verification,

dynamic monitoring and error elimination through automation have improved the error

detection of high-level design environments. These techniques can be applied in other

settings beyond the research tools described in this thesis. Finally, the techniques have

been shown to reduce the time required to complete a design and ultimately improve

designer productivity.
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