
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

A CAD Tool for Synthesizing Optimized Variants of Altera's Nios II A CAD Tool for Synthesizing Optimized Variants of Altera's Nios II

Soft-Core Processor Soft-Core Processor

Omar Al Rayahi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Al Rayahi, Omar, "A CAD Tool for Synthesizing Optimized Variants of Altera's Nios II Soft-Core Processor"
(2008). Electronic Theses and Dissertations. 8039.
https://scholar.uwindsor.ca/etd/8039

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/275770939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8039?utm_source=scholar.uwindsor.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A CAD Tool for Synthesizing Optimized
Variants of Altera's Nios II Soft-Core

Processor

By

Omar Al Rayahi

A Thesis
Submitted to the Faculty of Graduate Studies
through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for the
Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47050-3
Our file Notre reference
ISBN: 978-0-494-47050-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

© 2008 Omar Al Ravahi

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis
has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone's copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted material
that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I
certify that I have obtained a written permission from the copyright owner(s) to include
such material(s) in my thesis and have included copies of such copyright clearances to my
appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by
my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

Abstract

Soft-core processors offer embedded system designers the benefits of customization,

flexibility and reusability. Altera's NIOS II soft-core processor is a popular, commercially

available soft-core processor that can be implemented on a variety of Altera FPGAs. In this

thesis, the Nios II soft-core processor from Altera Corporation was studied and a VHDL

implementation, called UW_Nios II, was developed. UW_Nios II was developed to enable

us to perform design space exploration (DSE) for the Nios II processor. It was evaluated

and compared with Altera Nios II and shown to be competitive. SCBuild is an existing

CAD tool that was developed to enable DSE of soft-core processors. We modified SCBuild

to automatically explore the design space of the UW_Nios II using a genetic algorithm.

This tool can accurately estimate the area and critical path delay of different variants of the

UW_Nios II on a field programmable gate array. Through experiments conducted using

SCBuild, it was shown that employing a genetic algorithm to explore the design space of

parameterized Nios II core, with a large design space, helps designers find optimized

variants of UW_Nios II.

V

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Dr. Mohammed A. S.

Khalid, who generously contributed his time and effort toward this project. His enthusiasm

for, and belief in my research has always motivated me. He introduced me to this

interesting research area and guided me throughout my thesis with great patience, which

has made possible the completion of this thesis.

I am also grateful to my thesis committee members, Dr. N. Kar and Dr. Z. Kobti for

their advice regarding the research process and their assistance in the preparation of this

thesis.

I would also like to extend my deep appreciation to my parents for their constant

support, patience and encouragement to complete this work. Special thanks to my sisters

and their families (Salma and her son Omar, and Azza and her children Abdel Monem and

Bana) and brothers (Ahmad and Usama) who helped in ways unknown to them. I extend

special thanks to my uncle and aunt and their family as well.

Finally, I would like to acknowledge my fiends and fellow graduate students at the

University of Windsor. Ian, I'm grateful for your constant advice and help in and out of the

lab. Lastly, thanks to Jay, Marwan, Junsong, Hongmei, Lin Lin, Thuan, Aws, Ray, Harb,

Amir, Yasser and everyone else who gave me good company and made this time of my life

more enjoyable.

VI

Table of Contents

Author's Declaration of Originality iv

Abstract v

Acknowledgements vi

List of Figures x

List of Tables xii

Abbreviations xiii

List of Symbols xv

Chapter 1: Introduction 1

1.1 Thesis Objectives 3

1.2 Thesis Organization 4

Chapter 2: Background and Previous Work 6

2.1 Intellectual Property (IP) Cores 7

2.2 Soft-core Processors 8

2.2.1 Altera's Nios II Soft-core Processor 9

2.3 FPGA Technology 13

2.3.1 FPGA Design Flow 15

2.4 Stratix FPGA and the Quartus II CAD Tool 17

2.5 Design Space Exploration (DSE) 18

2.5.1 Multi-objective Optimization 18

2.5.2 DSE of Parameterized Cores 19

vii

2.6 Closely Related Work 21

2.7 Summary 24

Chapter 3: UW_Nios II 25

3.1 Instruction Set 25

3.1.11-Type Instructions 25

3.1.2 R-Type Instructions 26

3.1.3 J-Type Instructions 26

3.2 Structure 27

3.2.1 Datapath 30

3.2.2 Control Unit 31

3.3 Parameters 31

3.4 Comparison of UW_Nios II and Altera Nios II 33

3.4.1 FPGA Device and CAD Tools 33

3.4.2 Metrics for Evaluating Soft Processors 35

3.4.3 Comparison with Altera's Nios II Core 35

3.4.4 Hardware vs. Software Multiplication Support 37

3.4.5 Register File Implementation 38

3.4.6 Pipeline Register Implementation 41

3.5 Summary 42

Chapter 4: Design Space Exploration (DSE) of UW_Nios II 43

4.1 SCBuild - a CAD Tool for the DSE of the UW_Nios II 43

4.1.1 The Core's Template Description 45

4.1.2 SCBuild CAD Flow 47

4.1.2.1 Design Entry 47

4.1.2.2 XML Syntax Checking 49

4.1.2.3 Collect System Level Parameters 49

4.1.2.4 DSE and Parameter Selection 50

viii

4.1.2.5 Elaboration 51

4.1.2.6 Creating Quartus II Project File and Compilation 51

4.2 Enhancements to SCBuild 52

4.3 Experiments and Experimental Results 52

4.3.1 Target Processor Core 53

4.3.2 Evaluation of Configuration: The Objective Functions 53

4.3.3 Establishing the Objective Estimation Equations 54

4.3.3.1 Parameter Sweep Results 55

4.3.3.2 Objective Estimation Equations 66

4.3.3.3 Testing the Accuracy of the Objective Estimation Equations 66

4.3.4 Design Space Exploration (DSE) 68

4.3.4.1 Determining Algorithm Parameters 69

4.3.4.2 Results 71

4.3.5 Conclusion Drawn from Results 72

4.4 Summary 74

Chapter 5: Conclusions and Future Work 76

5.1 Thesis Contributions 77

5.2 Future Work 77

References 79

Appendix: Synthesis Results for the UW_Nios II Processor Template 84

A.l Parameter Sweep Results 84

A.2 Initial and Evolved Populations 85

A.2.1 Initial Population 85

A.2.2 Evolved Population 87

VITAAUCTORIS 91

ix

List of Figures

Page

Figure 2.1 Nios II Processor Core Block Diagram [18] 11

Figure 2.2 Simplified illustration of a Logic Element (LE) [53] 14

Figure 2.3 FPGA design flow 16

Figure 3.11-type instruction format 26

Figure 3.2 R-type instruction format 26

Figure 3.3 J-type instruction format 26

Figure 3.4 UW_Nios II Design Hierarchy 27

Figure 3.5 Simplified block diagram of the UW_Nios II's datapath 28

Figure 3.6 UW_Nios II block diagram with interfaces 29

Figure 3.7 Inputs/Outputs of each pipeline stage in the datapath module. 32

Figure 3.8 UW_Niso_II Area 39

Figure 3.9 UW_Niso_II Clock Period 39

Figure 3.10 Clk for Register File Implementation 40

Figure 3.11 LE Utilization for Register File Implementation 40

Figure 3.12 Clk for Pipeline Register Implementation 41

Figure 3.13 LE Utilization for Pipeline Register Implementation 42

Figure 4.1 SCBuild System Environment [43] 44

Figure 4.2 SCBuild CAD Flow [43] 49

Figure 4.3 Parameter Sweep Results - Area 56

Figure 4.3 Parameter Sweep Results - Area (Cont'd) 57

X

Figure 4.3 Parameter Sweep Results - Area (Cont'd) 58

Figure 4.3 Parameter Sweep Results - Area (Cont'd) 59

Figure 4.4 Parameter Sweep Results - Critical Path Delay 62

Figure 4.4 Parameter Sweep Results - Critical Path Delay (Cont'd) 63

Figure 4.4 Parameter Sweep Results - Critical Path Delay (Cont'd) 64

Figure 4.4 Parameter Sweep Results - Critical Path Delay (Cont'd) 65

Figure 4.5 Actual versus Estimated Values for the Parameter Sweep

Configurations 69

Figure 4.6 Actual versus Estimated Values for Random Configurations..70

Figure 4.7 Initial and Evolved Population 72

xi

List of Tables

Page

Table 2.1 Nios II Processor Core Features 13

Table 3.1 UW_Nios II Processor Hardware Parameters 34

Table 3.2 Comparison with Altera's Nios II Standard Core 36

Table 3.3 Comparison with Altera's Nios II Fast Core 37

Table 4.1 Summary of the Parameter Sweep Results 55

Table 4.2 Regression Coefficients for UW_Nios II 67

Table 4.3 Number of Occurrences of Each Parameter Value in the

Evolved Population 73

Table A.l Parameter Sweep Data 84

Table A.2 Initial Population 85

Table A.3 Evolved Population 87

xu

Abbreviations

ALU:
ASIC:
ASIP:
CAD:
CMP:
CPU:
DOF:
DS:
DSE:
DSP:
EA:
EX:
FF:
FPGA:
GA:
HDL:
I/O:
IC:
IDE:
IF:
IP:
IR:
ISA:
LE:
LPM:
LUT:
MAC:
MUX:
OP:
OPX:
OS:
PC:
PLL:

Arithmetic Logic Unit
Application-Specific Integrated Circuit
Application-Specific Instruction-set Processor
Computer Aided Design
Chip Multiprocessor
Central Processing Unit
Decode and Operand Fetch
Design Space
Design Space Exploration
Digital Signal Processing
Evolutionary Algorithm
Execute
Flip Flop
Field-Programmable Gate Array
Genetic Algorithm
Hardware Description Language
Input/Output
Integrated Circuit
Integrated Development Environment
Instruction Fetch
Intellectual Property
Instruction Register
Instruction Set Architecture
Logic Element
Library of Parameterizable Megafunction
Look Up Table
Multiply-Accumulate
Multiplexer
Opcode
Opcode-Extension
Operating System
Program Counter
Phase-locked Loop

xin

RAM:
RISC:
ROM:
RTL:
SCBuild:
SEAMO:
SoC:
SOPC:
SPREE:
Tel:
UART:
VHDL:
VLSI:
WB:
XML:

Random Access Memory
Reduced Instruction Set Computer
Read Only Memory
Register Transfer Level
Soft-Core Build
Simple Evolutionary Algorithm for Multi-objective Optimization
System on a Chip
System on a Programmable Chip
Soft Processor Rapid Exploration Environment
Tool Command Language
Universal Asynchronous Receiver/Transmitter
Very High Speed Integrated Circuit Hardware Description
Very Large Scale Integration
Write Back
Extensible Markup Language

XIV

List of Symbols

Symbol

P

Pi

i

N

rc

rm

K

k

Fk(pi,P2, ••• ,PP)

fu(Pi)

ai,k

Definition

Total number of parameters.
th

The i parameter.

Parameter index.

Size of genetic population.

Crossover rate

Mutation rate.

Total number of objectives.

Objective index.

The kth objective function.

The functional form of ith term of the kth objective function.

The ith regression coefficient for the kth objective function.

XV

Chapter 1

Introduction

With the increased variety and complexity of digital electronic devices, demand for

systems that perform a specific set of tasks for a particular application increases. Embedded

systems are used for this purpose; they are designed to do a specific task, rather than be a

general-purpose computer for multiple tasks. In general, an embedded system has a

hardware component and a software component, sometimes referred to as firmware, that's

designed to execute on the hardware. The software component is usually stored in

read-only memory or Flash memory chips rather than a disk drive. It often runs with limited

computer hardware resources: small or no keyboard, screen, and little memory. The

hardware component usually consists of a microprocessor and associated peripherals.

Since the hardware component (i.e., the microprocessor) is only required to run a

single software application, it can be optimized to run it as efficiently as possible. This has

led to the development of Application Specific Instruction-Set Processors (ASIP's).

ASIP's are processors designed and optimized to run only one application. The architecture

is therefore optimized to run that specific application efficiently. With recent advancements

in IC process technology, embedded systems have become more complex and are

performing more tasks. More complex embedded systems introduced new design

challenges.

In the past, embedded systems used to be developed by designing the hardware

component first, and then developing the software component to run on the designed

l

hardware. Designers later realized that by following this approach, they missed out on

potential optimizations that could be exploited if the hardware and software were designed

concurrently. This has led to a second design approach for embedded systems known as the

hardware/software co-design approach [1, 2, 3, 4]. As embedded systems got more and

more complex, it has become impractical and time consuming to design every hardware

component of embedded systems from scratch. Thus, a third approach known as the

platform-based design approach [5, 6,7] took shape. In this approach, designers depend on

pre-designed and pre-tested hardware components, known as intellectual property (IP)

cores, to build their hardware systems.

Soft-cores are one class of hardware IP cores. A soft core is a synthesizable hardware

component that is described at the register transfer level using one or more hardware

description languages (HDLs), such as Verilog or VHDL. Many soft-cores are

parameterized, meaning that one or more of the core's features can be changed at design

time prior to synthesis. A parameter is a specific aspect of the core's architecture that can be

changed and assigned values from a finite set by the designer [8, 9]. Some examples of

parameters include variable bus width, multiple implementations of functional units, and

multiple memory sizes to name a few. Core parameterization makes soft IP cores flexible

because they can be easily configured to suit different applications in a short time, which

makes them attractive to designers.

FPGA's are a special class of programmable logic devices that can be programmed and

re-programmed any number of times to act virtually like any digital circuit, subject to the

logic capacity of the FPGA. FPGAs serve as a real-time prototyping and implementation

medium on which complete embedded systems can be implemented to test and verify their

functionality. This has encouraged embedded systems designers to increasingly use

FPGA's as their implementation medium to in order to minimize design costs and time.

When designing embedded systems, it's necessary that the hardware component be

well optimized and configured so that the software component can run efficiently. This is

2

important to avoid ending up with a sub-optimal system. The set of all possible hardware

design configurations that can be used to perform the system's intended tasks is referred to

as the system's design space (DS). As systems become more parameterized, their design

spaces expand; design spaces can easily contain thousands of possible hardware

configurations or more. Therefore, the task of selecting the most optimal hardware

platform configuration for the hardware component of an embedded system becomes

difficult.

Designers usually find it necessary to explore the design spaces of their systems in

search of the optimal configuration for their target application. This process is known as

design space exploration (DSE) [10]. As design spaces expand, it becomes impractical and

time consuming to consider and evaluate each configuration individually. Therefore, the

DSE process needs to be automated.

In this thesis, a methodology to automatically explore the design space of a

parameterized soft-core microprocessor targeted for implementation on FPGA platforms

and the necessary CAD tool are developed. In this work, a parameterized soft-core

processor, called UW_Nios II, that supports the same instruction set as Altera's Nios II

soft-core processor was initially developed using VHDL. Then, an existing CAD tool was

modified to automatically explore the design space of the UW_Nios II soft-core processor.

1.1 Thesis Objectives

The microarchitecture of hard core processors targeting ASICs has been studied by

researchers and manufacturers in detail for a long time. However, design features and

trade-offs of FPGA-based soft-core processors are significantly different than those

implemented in VLSI design flows [11, 12]. As a result, conclusions drawn from research

conducted on hard core processors may not be transferable to soft-core processors targeting

FPGA platforms. Therefore, the main goal of this research is to enhance the understanding

of the design process of commercial soft-core microprocessors targeting FPGA platforms

including their microarchitectures and associated CAD tools and design methodologies. An

3

exploration of the design space of UW_Nios II soft-core processor targeting Altera FPGAs

was conducted to achieve this goal. This thesis has the following objectives:

1. Develop a parameterized VHDL implementation of Altera's Nios II soft-core

processor, and investigate different architectural variations of it.

2. Modify an existing CAD tool, called SCBuild, and enable it to automatically

explore the design space of the developed soft-core processor using a genetic

algorithm. This tool should be able to accurately estimate the area and critical path

delay of different variants of the processor on a field programmable gate array.

3. Compare the different variants of the processor with Altera's Nios II commercial

soft-core processors in terms of performance and area utilization on an FPGA.

To satisfy the first objective, the Nios II soft-core processor from Altera Corporation

was studied and a VHDL implementation of it, called UW_Nios II, was developed and its

functionality was tested. Different architectural variations of it were developed and

analyzed. For the second objective, an existing CAD tool, called SCBuild ("Soft-Core

Build"), was modified using C++. This tool employs a genetic-based algorithm, the Simple

Evolutionary Algorithm for Multi-objective Optimization (SEAMO) [13], to automatically

explore the design space of the UW_Nios II. This tool is capable of accurately estimating

the area and critical path delay of different variants of the UW_Nios II on a field

programmable gate array. Finally, to achieve the third objective, a set of experiments were

conducted using SCBuild to explore the design space of the UW_Nios II. Different variants

were compared with Altera's Nios II.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the reader with the background

information relevant to this research. It summarizes the related previous work that has been

by other researchers. Chapter 3 focuses on the design and development of our soft-core

processor, the UW_Nios II. A preview of the instruction set supported by the UW_Nios II

soft-core processor is first illustrated, followed by a description of the set of parameters

4

added to the core. The remaining part of the chapter compares the UW_Nios II's variants

and Altera's Nios II. Chapter 4 discusses the results obtained from a set of experiments

performed using SCBuild. This thesis is concluded in chapter 5 with suggestions for

possible future work.

5

Chapter 2

Background and Previous Work

The concept of reconfigurable computing first emerged in the early 1960s [14]. In

reconfigurable systems, some form of programmable hardware is used to accelerate the

execution of compute-intensive algorithms. Computation-intensive parts of the algorithms

are implemented in programmable hardware, while the rest of the algorithm is

implemented in software that gets executed on a general-purpose processor. A lot of

research has been conducted in the area of reconfigurable computing. A survey of

reconfigurable systems can be found in [14]. Soft-core processors are one part of the trend

in the field of reconfigurable computing. Due to recent advancements in FPGA technology,

FPGA's are now a desired platform suitable for soft-core processor implementations.

FPGA's can be programmed and re-programmed any number of times to reflect changes in

the design architecture and parameter values, if the need arises. However, soft-core

processors implemented on FPGA platforms have a lower performance than their ASIC

counterparts, and consume more area and power.

In this chapter we summarize the relevant background necessary to understand this

work, and also discuss the topic of soft-core processor design space exploration. This

chapter starts by giving an overview of intellectual property (IP) cores, their classes and the

concept of parameterization. Next, some examples of commercially available soft-core

processors are given. Since Altera's Nios II soft-core processor is the focus of this research,

a presentation of its architecture and its main features is provided. Then, the basic concepts

6

of FPGA technology and the FPGA design flow are briefly explained, followed by an

overview of the FPGA CAD tool and the FPGA device used in this research. After that, an

introduction to design space exploration and multi-objective optimization is provided. This

chapter concludes with a presentation of previous work that's related to this research.

2.1 Intellectual Property (IP) Cores

Many hardware functional units tend to be repeatedly used in various embedded systems,

therefore many of the developed components can be reused in different applications.

Reusable hardware or software building blocks that are pre-designed and pre-tested to

perform one or more tasks are referred to as intellectual property (IP) cores [15, 16]. Some

examples of hardware IP cores include memory controllers, UARTs (Universal

Asynchronous Receiver/Transmitter), timers, and even full fledged microprocessors. IP

cores can be used together to form complex systems.

IP cores are classified into one of three categories: hard cores, firm cores, and soft

cores [15, 16]. A hard core is a hardware component that is placed and routed targeting a

specific IC process technology. Hard IP cores are described at the Circuit-level of

abstraction, and include details about the physical layout of the core on an IC chip. Firm

cores are specified as gate-level netlists, suitable for placement and routing targeting a

specific process technology. A soft core is a synthesizable hardware component that is

described at the Register Transfer Level using one or more hardware description languages

(HDLs), such as Verilog or VHDL. Our research discusses in detail the development of

soft-core processor targeting Altera FPGA platforms.

Many soft cores are parameterized, meaning that one or more of the core's features can

be changed at design time prior to synthesis. A parameter is a specific aspect of the core's

architecture that can be changed and assigned values from a finite set by the designer [8,9].

Some examples of parameters include variable bus width, multiple implementations of

functional units, and multiple memory sizes to name a few. Core parameterization makes

soft IP cores the most flexible of the three categories of IP cores, and makes the use of soft

7

cores in embedded system designs attractive for a number of reasons. First, parameterized

soft cores can be customized for a particular application in a relatively short time with

relative ease. Second, since soft cores are described using an HDL, they are technology and

platform independent. Thus, they can be fabricated into IC chips for any process

technology, or they can be implemented on FPGA platforms. Finally, developing soft IP

cores resembles the process of software development, which adds to the ease of developing

and modifying the design.

2.2 Soft-core Processors

Soft-core processors are a special class of soft IP cores. Recent advancement in technology

has allowed the addition of more logic capabilities to FPGA's. New FPGA's have large

amounts of memory and dedicated logic. This has made FPGA's a suitable platform for

implementing soft-core processors. Currently, two of the most popular commercial

soft-core processors are the MicroBlaze from Xilinx Inc. [17], and the Nios II [18] from

Altera Corporation. A detailed survey conducted by J. Tong et al [52] presents several

commercial and open-source soft-core processors, and compares their architectural

features.

MicroBlaze is a 32-bit general-purpose RISC microprocessor targeted for

implementation on Xilinx FPGA's [19]. It has a register file that contains 32 32-bit general

purpose registers. Instruction words are 32 bits longs, and it supports up to three operands

and 2 addressing modes. The MicroBlaze family of microprocessors executes their

instructions using a 3-stage pipelined datapath. Memory can be implemented using on-chip

memory modules or as an off-chip external peripheral. It supports the addition of

instruction and data caches, and their sizes are configurable. Depending on the

configuration and target device, a MicroBlaze can have a clock frequency ranging from 65

to 150 Mhz [17]. Xilinx also offers PicoBlaze, which is an 8-bit microcontroller targeting

applications requiring implementation of complex state machines.

8

In addition to the MicroBlaze soft-core processor, Xilinx provides a variety of soft IP

cores that can be used in the development of a complete system on programmable chip

(SOPC). IP cores include memory controllers, Ethernet controllers, UARTs (Universal

Asynchronous Receiver/Transmitter), timers, buses, etc.

2.2.1 Altera's Nios II Soft-core Processor

Since the Nios II soft-core processor is the focus of this research, it will be discussed in

more detail. Altera Corporation released its first commercial soft-core processor, the Nios

[20], in 2000. Due to the increased popularity of soft-core processors, Altera released its

next generation of soft-core processors, the Nios II family [18], whose architecture is

significantly different from the Nios. The Nios II is smaller than the Nios, and provides

better performance.

Embedded system designers can use the Quartus II CAD tool suite [21] and it's SOPC

Builder [22] to instantiate any number of Nios II cores and connect them with other

peripheral IP cores, such as timers and memory controllers, to build complete embedded

systems. We've chosen to work with the Nios II core in this thesis to automatically explore

its design space.

Nios II Processor System Basics:

The Nios II processor is a general-purpose RISC processor providing the following main

features:

• Full 32-bit instruction set, datapath, and address space

• Thirty two 32-bit general-purpose registers

• Six 32-bit control registers

• Thirty two external interrupt sources

• Single-instruction 32X32 multiply and divide producing a 32-bit result

• Access to a variety of on-chip peripherals, and interfaces to off-chip memories

and peripherals

9

• Hardware-assisted debug module enabling processor start, stop, step and trace

under integrated development environment (IDE) control

• Instruction set architecture (ISA) compatible across all Nios II processor systems

The soft-core nature of the Nios II processor enables the user to integrate custom logic

into the arithmetic and logic unit (ALU).

Processor Architecture:

A block diagram of the Nios II processor core is shown below in Figure 2.1 [18]. The Nios

II architecture includes the following user-visible functional units:

• Register File

• Arithmetic and logic unit (ALU)

• Interface to custom instruction logic

• Exception controller

• Interrupt controller

• Instruction bus

• Data bus

• Instruction and data cache memories

• Tightly-coupled memory interfaces for instructions and data

• JTAG debug module

The Nios II processor core supports an ALU that implements an instruction set consisting

of 94 instructions. The ALU operates on data stored in general-purpose registers and stores

the result back in a general-purpose register. Some of the operations supported by the ALU

are data transfer instructions, arithmetic and logical instructions, move instructions,

comparison instructions, shift and rotate instructions, program control instructions, along

with other control instructions. Users can also create their own custom instructions and

incorporate them into the ALU.

Nios II cores have separate instruction and data bus masters. Either on-chip dedicated

RAM memory blocks or off-chip peripheral devices can be used to implement instruction

10

reset
dock.
cpu resetreguest.
^ cpu.rasa

JTAG
interlace

to software"

Mtes i Processor Core

JTAS
Debug Module

irq[31..0]

Custom
MO

Signals

Program
Controller

&
Address

Generation

Exception
Controller

Interrupt
Controller

General
Purpose

Registers
r0tar31

Control
Registers
cllOtocHS

Instruction
Cache

Custom
Instruction

ArithmeliG
Logic Unit

Data
Cache

Tightly Coupled
Instruction Msmtry

Ttghtry Coupled
Instrurten Memory

Instruction Bus

Data Bus

Tightly Coupled
Data Memory

m •
Tightly rjcupled
Data Memory

Figure 2.1: Nios II Processor Core Block Diagram [18]

and data memories. Designers using Nios II cores can debug their systems by instantiating

the optional JTAG Debug Module [18]. In addition to the thirty two 32-bit general purpose

registers that Nios II cores have in their register files, six control registers that are used to

keep track of the status of the processor.

The Nios II processor provides an exception controller to handle all types of

exceptions. All exceptions, including hardware interrupts, cause the processor to transfer

execution to a single exception address. Then the cause of exception is determined and the

appropriate exception routine is dispatched accordingly. The Nios II exceptions fall into

one of the below-listed categories:

• Hardware interrupt

• Software interrupt

• Unimplemented instruction

• Other

n

Altera Corporation developed three different implementations of the Nios II processor

core. These cores are called the "Fast" core, the "Standard" core and the "Economy" core.

All these cores support the same instruction set.

The main objective of the fast core is to provide fast execution speed. Performance is

gained at the expense of core size, making the fast core the biggest of all three cores. This

core is optimal for performance-critical applications. The fast core is pipelined with a six

stage pipeline depth and comes with instruction cache and optional support for data cache.

It supports a 1-cycle barrel shifter/rotator, dynamic branch prediction and supports the

addition of custom instructions.

The main objective of the standard core is to provide a small core size. On-chip logic

and memory resources are conserved at the expense of execution performance. The

standard core is designed to provide a compromise between fast processing performance

and small core size. It is recommended for cost-sensitive, medium-performance

applications. It is pipelined with a five stage pipeline depth and comes with instruction

cache. It supports either a one-bit-per-cycle or a 3-cycle shifter/rotator, static branch

prediction and supports the addition of custom instructions.

The main objective of the economy core is to provide the minimal core size. Hardware

resources are conserved at the expense of execution performance. The economy core is

recommended for cost-sensitive applications. It is non-pipelined and supports a

one-cycle-per-bit serial shifter/rotator and supports the addition of custom instructions. See

Table 2.1 gives a summary of the cores' features.

Custom Instructions

The custom (i.e., user-defined) instruction support that's provided by the Nios II cores

allows designers to incorporate their own functional modules with a Nios II processor

core. The source operands of custom instructions can be operands stored in the register

file if required by the design. Custom instructions can also connect to signals outside the

processor. A Nios II core can support up to 256 custom instructions.

12

Table 2.1: Nios II Processor Core Features

Feature

Objective

Pipeline

Shifter/Rotator

Implementation

Instruction Cache

Data Cache

Branch Prediction

JTAG Debug

Module

Custom Instruction

Support

Core

Nios We

Minimal core

size

1 Stage

1 bit-per-cycle

No

No

No

Optional

Yes

Nios II/s

Small core size

5 Stages

1 bit-per-cycle or

3-cycle shift

Yes

No

Static

Optional

Yes

Nios Il/f

Fast execution

speed

6 Stages

1-cycle barrel

shifter/rotator

Yes

Optional

Dynamic

Optional

Yes

Peripheral Devices

Peripheral IP cores, provided by Altera, can connect to Nios II cores via the Avalon Switch

Fabric [51], which is a collection of point-to-point master to slave connections. A master

can be connected to multiple slaves, and a slave can connect to multiple masters. Altera's

SOPC Builder [22] automatically generates arbitration logic to organize the selection

process when multiple masters attempt to drive a slave at the same time.

2.3 FPGA Technology

FPGA's are a special class of programmable logic devices that can be programmed and

re-programmed any number of times to act virtually like any digital circuit, subject to the

logic capacity of the FPGA. FPGA's have become an attractive medium for implementing

embedded systems. FPGA's are constructed using three major types of resources: logic

13

blocks, I/O blocks, and programmable interconnections (also referred to as routing

resources). In general, FPGA's are an array of programmable logic blocks, sometimes

referred to as logic elements (LE's), connected together using a network of programmable

switching boxes.

Inputs

Logic Element (LE)

*\ 4-input
LUT

• Output

Figure 2.2: Simplified illustration of a Logic Element (LE) [53]

Logic blocks of some FPGA's are made up of a lookup table (LUT) and a flip flop. The

flip flop allows the logic block to implement sequential logic. A multiplexer is used to

select between the LUT and the flip flop output, as illustrated by Figure 2.2 [53]. An

n-input lookup table can implement any logic function with n inputs. Previous research

showed that 4-input LUT's are optimal for FPGA platforms [24]. More powerful FPGA's

have logic blocks that are more complex than the one just presented [25]. Moreover, FPGA

architectures differ across device families and across vendors.

While logic blocks implement logic functions, programmable interconnections (i.e.,

routing) are used to connect logic blocks together. By programming the logic blocks and

the programmable interconnections, designers can implement virtually any digital

hardware circuit's functionality. Routing in FPGA's consumes most of the chip area, and

it's attributed for most of the circuit delay [24].

14

I/O blocks are used as a medium that connects the FPGA's internal logic with the

outside pins. Often, FPGA pins can be configured as input, output or bidirectional [25].

Recent FPGA designs incorporate on-chip memory blocks, and dedicated DSP blocks

to perform multiplication more efficiently. Also, due to technology advancement, recent

FPGAs provide an increasingly larger number of logic blocks, memory blocks and more

I/O pins. In addition to their ability to implement larger circuits, some FPGA vendors

incorporate built-in hardcore processors in their FPGA chips. For example, both Altera and

Xilinx provide FPGA's with built-in hardcore processors. Altera provides the Excalibur

devices [26] which include the ARM922T core; the IBM PowerPC core is integrated in the

Virtex-4 family of FPGA's [27] provided by Xilinx.

2.3.1 FPGA Design Flow

CAD tools are an essential part of circuit design targeting FPGA platforms. CAD tools are

used to convert the user's specification of the digital circuit (i.e., source code describing the

circuit's functionality) into a logic netlist during synthesis that can be later downloaded and

programmed onto the FPGA fabric. Recent CAD tools can be used to optimize the circuit

for area, speed or power consumption to meet design requirements. Figure 2.3 shows the

typical steps in the design flow used by CAD tools to map the design specification into a

netlist downloadable onto an FPGA [24].

Input into a CAD tool is a source code that describes the functionality of the circuit at

the Register Transfer Level (RTL description). The source code is usually written using a

hardware description language such as Verilog or VHDL. The synthesis process converts

the source code into a netlist of basic logic gates that implement the functionality of the

circuit. The netlist can then be optimized using suitable algorithms to meet design

requirements.

Next, a placement algorithm is used to map each logic block from the netlist to a

physical location on the FPGA fabric. Placement is an important process since it has a

15

Synthesis

Placement

Routing

1 _
Programming File

Figure 2.3: FPGA design flow

direct influence on the amount and complexity of routing performed in the next step, and as

a result, placement directly influences the critical path delay of the implemented circuit.

Once placement is performed, a routing algorithm is used to interconnect the placed logic

blocks. The routing process is even more important than placement because of the effect it

has on the critical path delay of the circuit. Routing in FPGA's consumes most of the chip

area, and it's attributed for most of the circuit delay [24].

The output from the routing process is a bit stream stored in a programming file that's

used to specify the state of every programmable element inside the FPGA. The entire

design flow process, including synthesis, placement and routing, is referred to as design

compilation or just synthesis (not to be confused with the synthesis step from the design

flow). The next section will discuss the CAD tool and the FPGA device used in this

research.

FPG/

16

2.4 Stratix FPGA Device and the Quartus II CAD Tool

The Altera Stratix EP1S40F780C5 FPGA device was the chosen to be the target FPGA

device in this research [25]. Logic blocks within the Stratix family of FPGA's are referred

to as logic elements (LE's) in the Stratix documentation [25].

In addition to logic elements, Stratix FPGA devices contain DSP blocks (used for

dedicated multiplication), phase-locked loops (PLL's), and memory blocks. Stratix devices

have three different sizes of memory blocks: M512 (512 bits), M4K (4096 bits), and

Mega-RAM (65,536 bytes). The blocks with the fastest speed are the M512, followed by

the M4K followed by Mega-RAM. Stratix devices have anywhere between 920,448 and

7,427,520 on-chip memory bits.

Quartus II version 7.2 [28] is the CAD tool used in this research. It is provided by

Altera Corporation to provide the necessary tools for circuit designs targeting Altera

FPGA's. Quartus II includes a library of parameterizable megafunctions (LPM functions),

which implement some standard building blocks commonly used by digital circuit

designers. Megafunctions are often implemented more efficiently in the target FPGA than

the custom design, although this is not always the case [28].

In addition to the design flow steps discussed in section 2.3.1, Quartus II uses two

optional steps in its design flow: timing analysis and simulation. Timing analysis analyzes

the logic netlist to locate and approximate its critical path delay. Simulation is used for

design verification by comparing the expected outputs with the output of the design

simulation. Quartus II provides two simulation modes: a functional simulation, and a

timing simulation. Functional simulation is used to verify the functionality of the logic

netlist. Timing information is separate from functional simulation. It simulates the design

functionality including timing relations among signals. Therefore, timing simulation gives

more accurate information about the system behaviour.

17

2.5 Design Space Exploration (DSE)

The design space of a digital embedded system is the complete set of all possible hardware

system design configurations that can be used to achieve the system's functionality. Since

embedded systems are required to perform an increasing number of tasks, the complexity

of embedded systems is increasing; embedded systems are becoming more parameterized

and taking on more system parameters especially with the development of FPGA

platforms. Thus, the design space of embedded systems is getting extremely large (i.e., the

number of possible hardware configurations that can perform a system's functionality is

increasing).

Every configuration within the design space has a set of K objectives, and K objective

functions, Fk(pO, where pi represents the parameters of the system and k € {1, 2, ..., K}.

Objective functions are used to measure how well a configuration from the design space

meets the objectives of maximizing performance, minimizing chip area, reducing power

consumption, etc. However, not all of the configurations in a design space are optimal. In

fact, the majority of configurations within a design space are sub-optimal for any given

application. Therefore, it's crucial that embedded system designers isolate and identify

optimal configurations from a design space, since they play a key role in maximizing the

system's performance and reducing its cost. This is the main objective of design space

exploration.

2.5.1 Multi-objective Optimization

Embedded system designers are usually concerned with balancing a set of competing

objectives. Most often, these objectives include maximizing the system's processing speed

performance, and minimizing the system's chip area and power consumption. This makes

the DSE process a multi-objective optimization problem, where design configurations are

required to balance between the set of competing objectives. Most often, there exists an

inter-dependency relationship between the set of competing objectives, meaning that

improving one objective will most likely mean sacrificing another.

18

In multi-objective optimization problems there is not one single optimal configuration,

but rather a set of optimal configurations known as the Pareto-optimal set. A configuration

becomes part of the Pareto-optimal set if one objective cannot be improved without

sacrificing another.

Embedded system designers explore the design spaces of their systems to approximate

the Pareto-optimal set by eliminating all sub-optimal configurations. Unlike the design

space, the Pareto-optimal set is limited in size, allowing designers to choose a suitable

configuration for their system from a small and finite set of configurations.

2.5.2 DSE of Parameterized Cores

Embedded system designers explore the design spaces of their parameterized cores in

search of a hardware platform configuration suitable for their applications. This suitable

configuration is often required to balance between each of the objectives without violating

any of the requirements. As the complexity of embedded systems increases, their design

spaces expand. Soon, it becomes impractical to evaluate every possible configuration in the

design space to come up with a suitable platform configuration, as concluded by Givargis et

al [29]. Therefore, the process of DSE needs to be automated; to this end many approaches

have been proposed including the use of genetic-based algorithms. A good summary of the

proposed approaches can be found in the literature [10, 30, 31].

For this thesis work, a genetic-based algorithm was chosen to automate the DSE

process as will be detailed in the following sections.

Genetic-based Algorithms Approach

The concept of genetic-based algorithms, also known as evolutionary algorithms, was

developed in 1975 by Holland [32]. It proved to be effective in solving multi-objective

optimization problems, like the one we face in the DSE process of parameterized soft-core

processors.

In a way, genetic algorithms try to imitate the biological process of natural selection;

genes from two parents are combined and passed along to their offspring. Only strong

19

members of a population survive and reproduce, while weak members are eliminated.

Many versions of genetic algorithms have been proposed; a summary of genetic algorithms

for multi-objective optimization is given in the literature [33, 34].

The genetic algorithm chosen in this research was the Simple Evolutionary Algorithm

for Multi-objective Optimization (SEAMO), proposed by Valenzuela [13]. It accepts a set

of design configurations, generated by the user, as input. This set has a fixed size N; the set

is referred to as a population. Each member of the population is known as a chromosome.

In our case, a chromosome represents a unique design configuration. A chromosome is

composed of a collection of genes; in our case, a gene represents a parameter of the system.

Each parameter (i.e., gene) can be assigned a value from a finite set of possible values that

the parameter can take.

After receiving the input initial population, each chromosome gets evaluated

separately in terms of its objectives, which are the FPGA area utilization and critical path

delay in our research. The algorithm runs for a number of iterations; an iteration is referred

to as a generation. During each iteration, chromosomes within a population are randomly

grouped into pairs (i.e., parents); each pair is allowed to reproduce to generate an offspring

chromosome. Two operators control the operation of the genetic algorithm: the crossover

and the mutation operators.

During reproduction, genes from both parents are combined to generate an offspring

chromosome according to the crossover genetic operator. A cut-point is selected randomly

by the crossover operator, and the left half of one parent in the pair is combined with the

right half of the other parent. The crossover operator is only applied a certain percentage of

the time; this percentage is specified by the crossover rate, rc. Next, a certain percentage of

the offspring is mutated; this percentage is specified by the mutation rate, rm. Offspring

mutation involves randomly selecting one gene from the offspring and changing it to

another value.

20

At the end of each generation the performance of offspring chromosomes gets

evaluated in terms of their objectives. If an offspring chromosome performs better than its

parent chromosomes, the offspring chromosome replaces one of the parent chromosomes

selected at random. Otherwise, the offspring chromosome is discarded.

The genetic algorithm is allowed to run for a number of generations, G, at the end of

which the final population converges toward an optimal configuration set, the

Pareto-optimal set. The SEAMO algorithm has four parameters: the crossover rate (rc), the

mutation rate (rm), the population size (N) and the number of generations (G).

I. Anderson et al. [35] conducted a case study involving a parameterized Altera Nios

soft-core processor to approximate its Pareto-optimal set of design configurations. The

SEAMO genetic algorithm was employed to perform an automatic exploration of the

processor's design space. It was concluded that the SEAMO algorithm proved to be useful

in providing a good approximation of the Pareto-optimal set of design configurations, from

which designers can easily choose a suitable hardware platform design for their

application.

2.6 Closely Related Work

P. Yiannacouras [8, 36, 37] developed a CAD, tool named SPREE (Soft Processor Rapid

Exploration Environment) that was used to automatically generate soft-core processors

targeted for implementation on FPGA platforms, and explore their design spaces. SPREE

has two main modules, an RTL generator and a library that stores the hardware modules

used to build his soft-core processor. The RTL generator is responsible for instantiating the

necessary hardware component modules from the library to build a datapath according to

an input description of the architecture. The RTL generator also generates the necessary

control logic.

SPREE is capable of generating both pipelined and un-pipelined soft-core processors.

The soft-core processors that SPREE was used to generate are based on the MIPS-I

instruction set architecture [38]. Yiannacouras investigated the performance versus area

21

tradeoffs of various functional unit implementations (shifters and multipliers) and different

pipeline depths, along with other architectural optimizations. He determined that

customizing processors with the recommended features showed an improvement in

performance-per-area over general purpose processors.

The main difference between this work and the SPREE system is the exploration

procedure used. The SPREE system utilizes a manual design space exploration approach,

where the user is to use SPREE to generate different architectural variations of the soft-core

in order to compare the various design tradeoffs. On the other hand, this work uses an

automatic design space exploration approach, based on a genetic algorithm, to explore the

design space of the target soft-core.

B. Fort et al. [39] developed a 4-way interleaved multithreaded soft-core processor

that's instruction-set compatible with Altera's Nios II soft-core processor. The authors

compared the area and performance of the multithreaded soft-core processor versus two

chip multiprocessors (CMP) systems, one of which is developed using Altera's Nios II

soft-core processor. They concluded that using multithreaded processors in FPGA

environments can result in significant area savings with comparable performance to a CMP

system. This work differs from Fort's in that our processor does not support multithreading

capabilities; Fort's work does not include an automatic scheme for the design space

exploration.

Plavec [40] developed a methodology for efficient soft-core processor design. He

generated a parameterized processor that supports a compatible instruction set as Altera's

Nios soft-core processor, and compared its performance with commercial soft cores. He

also investigated his processor's performance dependence on various architectural

parameters. His processor's performance was on average slightly better than Altera's Nios,

but occupied a larger area on FPGAs. The major difference between his work and the

present work is that he did not develop a CAD tool for the automatic generation and design

space exploration of soft-core processors.

22

The PEAS-III system [41] developed by M. Itoh followed a hardware software

co-design approach that is capable of generating synthesizable RTL descriptions of

pipelined processors. He developed pre-designed stage models of each pipeline stage and

stored them in a library. The PEAS-III system generates the datapath of the processor core

by instantiating the stage models from the library, and then cascading them in series. It

enables a wide range of explorations, but in order to make a small architectural change,

significant changes to its description are required.

Changing the multiply/divide unit to sequential was explored, and a

multiply-accumulate (MAC) instruction was added. Several processor cores were

developed using the PEAS-III system and then evaluated, including a MIPS R3000

processor, a DLX processor [42], and a simple RISC controller. In the results, area and

clock speed as reported by the synthesis tool were compared. However, the PEAS-III

system does not support automatic design space exploration of soft-core processors, which

is what distinguishes it from this work.

SCBuild [43, 44] developed by Ian Anderson is a CAD tool developed for automated

design space exploration of parameterized CPU soft-cores targeting FPGA platforms. This

tool takes a template description of the core, containing information about the core's

parameters and architecture, as input. It employs a genetic algorithm based design space

exploration methodology to automatically explore the core's design space and returns an

approximation of its Pareto-optimal set of configurations, along with an approximation of

each configuration's area utilization and critical path delay on an FPGA. When prompted,

this tool can also generate a synthesizable VHDL description of the core with the selected

parameter values by instantiating ready made components from a library of synthesizable

VHDL components that can be used to build the core. If a copy of Altera's Quartus II CAD

tool is installed, SCBuild can also be used to automatically generate a Quartus II project file

and compile the generated VHDL description.

23

It was concluded from experimental results that using this tool, designers can make

intelligent decisions regarding the assignment of values to the parameters of an embedded

hardware platform. SCBuild was designed to be general enough to accept any

parameterized soft-core given, provided that the user supplies a template description of the

core that follows proper syntax. The initial version of SCBuild, developed by I. Anderson,

supports a simple RISC processor CPU design. The work in this thesis is an extension of

the work initiated by I. Anderson to enable SCBuild to support and explore the design

space of a widely deployed commercial soft-core processor, Altera's Nios II.

2.7 Summary

In this chapter we presented the background necessary to understand this research work.

We started with a discussion of intellectual property (IP) cores, their classification and the

concept of parameterization. Then, examples of some of the most popular commercially

available soft-core processors were given. A detailed overview of Altera's Nios II soft-core

processor was presented since it's the focus of this research. Next, the basic concepts of

FPGA technology and the FPGA design flow were briefly explained, followed by an

overview of the FPGA CAD tool and the FPGA device used in this research. After that, an

introduction to design space exploration and multi-objective optimization was provided.

This chapter was concluded with a presentation of previous work that is closely related to

this research. In Chapter 3, a detailed discussion of the design of UW_Nios II, a soft-core

processor that supports the same instruction set as Altera's Nios II, is presented.

24

Chapter 3

UW_Nios II

The parameterized UW_Nios II processor developed in this research is our own

implementation of the Nios II standard core. UW_Nios II resembles Altera's Nios II

soft-core processor and supports the same instruction set. It was developed to enable us to

use it with the SCBuild CAD tool to perform DSE of Nios II processor. We now present a

description of its key features.

3.1 Instruction Set

The UW_Nios II core supports the same instruction set as Altera's Nios II cores [18]. It

supports three types of instruction word formats: I-type, R-type, and J-type.

3.1.1 I-Type Instructions

The main characteristic of the I-type instruction-word format is that it contains an

immediate value embedded within the instruction word. I-type instructions are composed

of three components:

o A 6-bit opcode field (OP)

o Two 5-bit register fields (A, B)

o A 16-bit immediate field (IMM16)

In most cases, fields A and EVIM16 specify the source operands, and field B specifies

the destination register. EMM 16 is considered signed except for logical operations and

unsigned comparisons. Figure 3.1 illustrates the format of I-type instructions.

25

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP

Figure 3.1:1-type instruction format

3.1.2 R-type Instructions

In R-type instruction-word formats all arguments and results are specified as registers.

R-type instructions are made up of 3 components:

o A 6-bit opcode field (OP)

o Three 5-bit register fields (A, B, C)

o An 11-bit opcode-extension field (OPX)

In the majority of cases, fields A and B specify the sources operands. The destination

register is specified within field C. Certain R-type instructions have a small immediate

value embedded in the low-order bits of the OPX field. Figure 3.2 illustrates the format of

R-type instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B G OPX OP

Figure 3.2: R-type instruction format

3.1.3 J-type Instructions

J-type instructions have two components:

o A 6-bit opcode field (OP)

o A 26-bit immediate data field (IMM26)

The only J-type instruction is the "call" instruction. Figure 3.3 illustrates the format of

J-type instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 7 6

IMMED26

s * % 3 2 1 0

OP

Figure 3.3: J-type instruction format

26

The UW_Nios II core supports an instruction set with a total of 94 instructions

including data transfer instructions, arithmetic and logical instructions, move instructions,

comparison instructions, shift and rotate instructions, program control instructions, along

with other control instructions. The OP field in the instruction word specifies the class of an

opcode. The majority of the OP field values are for I-type instructions. For the single J-type

instruction OP = 0x00. OP = 0x3a is used for all R-type instructions, in which case, the

OPX field differentiates the instructions.

3.2 Structure

Figure 3.4 shows the design hierarchy of the UW_Nios II core. The UW_Nios II core has

two main modules, the datapath and the control unit. The datapath is further divided into 4

main components: the Instruction Fetch Stage (IF), the Decode and Operand Fetch Stage

(DOF), the Execute Stage (EX) and the Write Back Stage (WB).

^

•i

Datapath

\l

Execute_Stage

*

1 nstruction_Fetch_Stage

UW_Nios_ll

s

* •

Control Unit

Write_Back_Stage

'

DecodejDperand_Fetch_Stage

Figure 3.4: UW_Nios II Design Hierarchy

Recent work conducted by Peter Yiannacouras from the University of Toronto

compared the impact of different pipeline depths (2-stage to 7-stage pipeline depths) on the

performance of soft-core processors. It was concluded that both 3 and 4 stage pipelined

27

soft-core processors are optimal in terms of area and performance [8]. As a result, the

UW_Nios II core was designed to be a four-stage pipelined RISC processor core.

In the first pipeline stage, the Instruction Fetch Stage (IF), instructions are fetched

from the instruction memory. They are later decoded and operands are fetched from the

Register File during the second stage, the Decode and Operand Fetch Stage (DOF). The

Program Counter is incremented in this stage. The operands are then passed on to the third

stage, the Execute Stage (EX), where instructions are executed by the ALU. Branch and

Jump instructions are resolved in this stage and the Control Registers are read or written if

necessary. Finally, the result is written back to either the register file or the data memory

during the last pipeline stage, the Write Back Stage (WB). Figure 3.5 shows a simplified

block diagram of the UW_Nios IFs datapath core illustrating the four pipeline stages.

Figure 3.5: Simplified block diagram of the UW_Nios IFs datapath

Results from one pipeline stage are temporarily stored in the pipeline registers before

they're passed on to the next stage. The result of the Instruction_Fetch_Stage is a fetched

instruction, which is temporarily stored in the Instruction Register (IR). The results from

28

the Decode_Operand_Fetch_Stage and Execute_Stage are stored in the pipeline registers

D/E and E/WB, respectively.

elk .
reset n-

M ir!tenrept„«cttve

Control Unit
reset n

fetch j*ts»g«_exe«tirif

execute_stag«ja>Eecuting
writej£iackjtage„e*ecutirt5i

Sr^st»gejsxeeutiM}

I I I I I I H

32

32 .

elk
resetjs
fetchjstagejsxetutlrwf
dftcode^stage^executirw)

nwitejjack^stage^exeaftlng
Ir$js6a§*j**«£utlftg
pipellnej&alled

intemiptjre*ju«stjsl$nate

datajfcus

instruction bus

Datapath

lnterruptm#aitfc
desJasi8ti<wi_address

dattjwecnoiyj'ead^en
data_memofy_wiifce_efl

•wrSteJbackjdata
Instruction address

-M-

Figure 3.6: UW_Nios II block diagram with interfaces

Figure 3.6 displays a simplified block diagram of the UW_Nios II soft-core processor

with the core's inputs and outputs. The datapath receives 32 "interrupt_request_signals", a

32-bit "data_bus" and a 32-bit "instruction_bus" signals from external sources, along with

the "elk" and "reset_n" signals. Six control signals generated within the control unit are

also passed on to the datapath to control its operation, and a 1-bit signal, "interrupt_active"

is a feedback signal from the datapath to the control unit. The outputs from the datapath

include a 32-bit "destination_address" signal, which specifies the address of the destination

29

memory word in the data memory; it's used for store operations. A 1-bit write-enable,

"data_memory_write_en", and a 1-bit read-enable, "data_memory_read_en", signals are

also produced by the datapath and supplied to the data memory to control the flow of

information to and from the data memory module. The "write_back_data" output signal is

used to transfer a 32-bit word to the data memory for store operations. Finally, the

instruction memory receives a 32-bit "instruction_address" signal from the datapath; it

contains the address of the instruction to be fetched.

The current version of the UW_Nios II core does not contain additional hardware for

handling data and control hazards in the pipeline. Therefore, hazards must be handled in

software by inserting NOPs in between instructions in a program.

Variants of the UW_Nios II core were generated and compiled using Altera's Quartus

II design software version 7.2. In order to test the functionality of different variants to

ensure that they functioned as expected, a number of instructions and operands were

applied to the inputs of different variants of the core and the outputs were observed using

the Quartus II's Simulator Tool [28]. In this way, the processor's instructions were verified

to be functioning correctly.

3.2.1 Datapath

Data processing operations performed by the processor are handled by the datapath

module. Figure 3.6 is a simplified block diagram representation of the datapath module.

The four major components of the datapath are the Instruction Fetch Stage, the Decode and

Operand Fetch Stage, the Execute Stage and the Write Back Stage.

The Instruction Fetch Stage module contains the Program Counter (PC) register along

with associated logic. The Decode and Operand Fetch Stage module contains the

instruction decoder unit, the instruction register, the DOF/EX pipeline registers, the register

file and the logic necessary to fetch the appropriate operands. The register file contains

thirty two 32-bit general purpose registers. The first register, RO, always contains a value of

0; writes to this register are invalid.

30

The Execute Stage module contains the arithmetic and logic unit (ALU), the branch

unit, the control registers and the EX/WB pipeline registers. The ALU module contains the

logic necessary to perform arithmetic, logical and shift operations on data stored in the

register file. The ALU can be configured with or without hardware multiplication using the

Include Multiplier parameter. The Include Divider parameter is used to either emulate

division operations in software or implement them in hardware.

The shifter unit module can be configured to optionally handle the arithmetic, logical,

shift and rotate operations. The Arithmetic Shifter Implementation, Logical Shifter

Implementation and Rotator Implementation parameters control which shifters are

included for the shifter unit module, and whether their implementations will be "basic" or

"barrel".

The write back stage module controls whether data is written back to the register file or

to the data memory. In the case of memory access instructions, the write back stage module

performs the necessary alignment of the memory addresses and the data to be written back

to the data memory, and generates the necessary enable signals. Figure 3.7 shows a more

detailed block diagram illustrating the inputs and outputs of each pipeline stage in the

datapath module.

3.2.2 Control Unit

The control unit controls the flow of information within the datapath module and the

transition between the pipeline stages. In other words, the control unit determines when the

pipeline stalls, and when to transfer the execution of an instruction from one pipeline stage

to the next. The control unit is also responsible for taking the appropriate action in case the

"reset" signal or any of the external interrupt signals are triggered.

3.3 Parameters

The UW_Nios II is a parameterized soft-core with a total of ten parameters listed in Table

3.1. The table below displays each parameter along with its parameter's set of possible

values. Three different types of shifters are available: an arithmetic shifter, a

31

eKt
•

r§E
e1_n •

L:»;-S
:ilD

J_S
^'.:jJlE

iX
:ul!'f9

ins'rucU
en_bus

a
re

fn
ip

i raqus-s: fU
gnais,

D
ecodeJ3perand_F

etehJ5tage

S
§

>
e

i«
;8

M
!iM

t

f&
3C

D
ded„&

it|rrasis

b
ra

n
ch

o
ffse

t

Instructton_F
etch_S

tege

p
e

tite
§tgs$&

 *?c:§cti?jp

ta?nG
h..o&

ei

W
ritB

_B
ack_S

tage

feti.t>
_S

t:»>
J>

«S
'"litl>

8

ijn
sm

w
yjw

W
L

w
i

tla
ia

jju
s

adderjesujt

E
xecuie_$tage

decode d_§igna Is

to
g
fejess^

*
data_m

eirtQ
r:»-_:s-ac_er:

• iia
tg

n'ii?ri}t>ry w
nrte-

^
i

• d
e

^n
-slio n_ati dress

•
vm

:^_fa3-:>:._tiate

irH
o

rn
.ip

U
ia

^u

O
SJryC

U
y i'i ildtfeXsSS

logical shifter and a rotator. The user is given the option of removing or including any or all

of these types of shifters. Each of these shifter types can be emulated in software (pi = 1; p2

= 1; p3 = 1), implemented in hardware as a "basic" shifter causing a

one-bit-per-clock-cycle shift, or as a "barrel" shifter allowing shifting of multiple bit

positions in a single clock cycle. The core can have either a signed or unsigned hardware

multiplier module. If no multiplier implementation is chosen, multiplication will be

emulated in software (an exception will be triggered upon a multiplication instruction). The

multiplier can be implemented using logic element (LE's) resources within the FPGA or, to

achieve a better performance, the multiplier can be implemented using dedicated DSP

multiplication blocks. The ALU can be configured with or without a hardware divider

module using either the Include Signed Divider parameter or the Include Unsigned Divide

parameter. In case no hardware division is picked, division operations will be emulated in

software (an exception will be triggered upon a division operation). The designer can

choose to implement the instruction decoder, register file and pipeline registers using LE's

or, if LE resources are more critical, they can be implemented using dedicated memory

blocks. The output from the instruction decoder is a set of control signals that make up the

control word, which will later be used to define the operations that need to be performed to

implement the decoded instruction.

3.4 Comparison of UW_Nios II and Altera Nios II

After the design of the UW_Nios II was complete, it was necessary to see how well its

variants performed when compared with Altera's Nios II variant cores. This section

presents the results of comparison between the UW_Nios II variants against Altera's Nios

II variant cores. Note that each variant is obtained using a specific set of parameter values.

3.4.1 FPGA Device and CAD Tools

While the VHDL source code description of the UW_Nios II soft-core processor is

independent of the target FPGA architecture, a particular FPGA device was targeted for

33

performing our FPGA-based exploration. The targeted device is Altera's Stratix

EP1S40F780C5 FPGA device [25], which is a mid-sized device in the Stratix family with

Table 3.1: UW_Nios II Processor Hardware Parameters
I'arameter

Arithmetic Shifter
Implementation (pi)

Logical Shifter Implementation

(p2)
Rotator Implementation (p3)

Include Signed Multiplier (p4)

Include Unsigned Multiplier

(p5)
Include Unsigned Divider (p6)

Include Signed Divider (p7)

Instruction Decoder
Implementation (p8)

Register File Implementation
(p9)

Pipeline Register
Implementation (plO)

Possible Values

(1) None, (2) Basic, (3) Barrel

(1) None, (2) Basic, (3) Barrel

(1) None, (2) Basic, (3) Barrel

(1) No (i.e., emulated in SW), (2) Using LE's & area
optimization, (3) LE's & speed optimization, (4) Using

DSP blocks

(1) No (i.e., emulated in SW), (2) Using LE's, (3) Using
DSP blocks

(1) No (i.e., emulated in SW), (2) Using LE's

(1) No (i.e., emulated in SW), (2) Using LE's

(1) Using LE's, (2) Using RAM memory blocks

(1) Using LE's, (2) Using Memory blocks

(1) Using LE's, (2) Using Memory blocks

the fastest speed grade. It has a total LE capacity of 41,250 LE's, a total of 3,423,744 RAM

memory bits, and a total of 14 DSP blocks. In addition, Altera's Quartus II v7.2 [28] CAD

software was used for the synthesis, technology mapping, placement and routing of all

designs to the targeted FPGA device.

Quartus II gives its users the option of choosing between a speed, a balanced, or an area

optimization option. With a speed optimization technique the design is synthesized so that

speed performance is maximized at the expense of extra utilization of the LE resources of

the FPGA. When the area optimization technique is chosen, the design is synthesized so

that LE resource utilization is minimized at the expense of slower processing speed

performance. The balanced optimization technique provides a balance between high speed

performance and minimal LE resource utilization.

34

3.4.2 Metrics for Evaluating Soft-core Processors

In order to measure the speed performance and area utilization of the different variants of

the UW_Nios II soft-core processor, an appropriate set of measurement metrics is required.

For an FPGA device, area utilization is measured by counting the number of equivalent

resources consumed. In the Stratix family of FPGAs, the main resource is the Logic

Element (LE), where a LE is composed of a 4-input lookup table (LUT) and a flip flop.

Thus, area is given in terms of the equivalent number of LEs consumed.

For now, speed performance is measured in terms of the maximum clock frequency (in

Mhz) achieved by the processor (based on the critical path delay), as reported by Quartus

IPs Timing Analyzer Tool, after placement and routing.

3.4.3 Comparison with Altera's Nios II Cores

To ensure that our comparisons with Altera's Nios II cores were as fair as possible, several

measures were taken. Comparison with the Nios II Economy core was omitted because it is

an un-pipelined soft-core processor while the UW_Nios II is a four stage pipelined core.

Thus comparison is performed against the Standard and the Fast cores only. Each of the

two Nios II cores was generated with memory systems identical to those used in our

designs: two 8KB blocks of RAM for separate instruction and data memory. Caches were

not accounted for in our measurements, though extra logic to support the caches will

inevitably count towards the Nios II areas. Nios II cores support operating systems (OS)

instructions, which are not yet supported by the UW_Nios II variants. Despite the

previously mentioned differences, we still believe that comparisons between Altera's Nios

II cores and the UW_Nios II variants are fair.

When Altera's Nios II Standard Core was synthesized, placed and routed, with serial

shifters and software emulation of multiplication and division, a maximum clock frequency

of 222 Mhz was achieved. This core consumed the equivalent of 1290 logic elements.

When a similar UW_Nios II core was synthesized, place and routed with a speed

optimization option, a maximum clock frequency of 205 Mhz was achieved; which is

35

within 7% of Altera's Standard Core. In this core, the register file was implemented using

dedicated on-chip RAM memory blocks and the pipeline registers were implemented using

logic elements. And when a similar UW_Nios II core was synthesized with an area

optimization option, up to a 47% saving in area compared to Altera's Standard core was

achieved. This large saving in area was countered by a 60% drop in clock frequency. In this

core, the register file and the pipeline registers were both implemented using on-chip RAM

memory blocks. Table 3.2 illustrates these results along with other similar results.

Table 3.2: Comparison with Altera's Nios II Standard Core

Shifters

.Serial

Serial

Serial

Serial

Serial

Serial

Multiplier/

Divider

Software

Emulation

Software

Emulation

Software

Emulation

Software

Emulation

Software

Emulation

Software

Emulation

Instruction

Decoder

Impl.

LE-based

RAM-based

RAM-based

LE-based

RAM-based

LE-based

Register

File Impl.

RAM-based

RAM-based

RAM-based

RAM-based

RAM-based

RAM-based

Pipeline

Register

Impl.

LE-based

LE-based

RAM-based

RAM-based

LE-based

LE-based

Optim.

Option

Speed

Speed

Area

Area

Area

Area

Clk

(Mhz)

205

176.41

90.01

78.21

109.68

98.9

Eq.

LE's

935

875

677

729

738

800

%

Decrease

in freq.

7.6

20.5

60

65

51

55

% Reduction

in LE usage

27.5

32.1

47

43

42

38

When Altera's Nios II Fast Core was synthesized, place and routed, with barrel shifters

and hardware multiplication using dedicated on-chip DSP blocks, a maximum clock

frequency of 200 Mhz was achieved, with the equivalent of 1715 logic elements consumed.

A similar UW_Nios II core, with LUT-based barrel shifters, synthesized with a speed

optimization option achieved a maximum clock frequency of 125 Mhz; which is about 37%

less than Altera's Fast Core. This core included a register file implemented using dedicated

on-chip RAM memory blocks and the pipeline registers were implemented using logic

elements. The reason for this big gap in clock frequency is because Altera's Fast Core is

hand-optimized to provide the fastest execution speed. When a similar UW_Nios II core

36

was synthesized with an area optimization option, up to a 30% saving in area compared to

Altera's Standard core was achieved. This saving in area was countered by a 59% drop in

clock frequency. In this core, the register file and the pipeline registers were both

implemented using on-chip RAM memory blocks. Table 3.3 illustrates these results along

with other similar results.

Table 3.3: Comparison with Altera's Nios II Fast Core

Shifters

Barrel

Barrel

Barrel

Barrel

Barrel

Barrel

Multiplier/

Divider

DSP blocks

DSP blocks

DSP blocks

DSP blocks

DSP blocks

DSP blocks

Instruction

Decoder

Impl.

LE-based

RAM-based

RAM-based

LE-based

RAM-based

LE-based

Register

File Impl.

RAM-based

RAM-based

RAM-based

RAM-based

RAM-based

RAM-based

Pipeline

Register

Impl.

LE-based

LE-based

RAM-based

RAM-based

LE-based

LE-based

Optim.

Option

Speed

Speed

Area

Area

Area

Area

Clk

(Mhz)

125

123.53

82.3

89

113.62

104.53

Eq.

LE's

1554

1445

1202

1249

1273

1320

%

Decrease

in freq.

37.5

38.2

59

55

43

48

%

Reduction

inLE

usage

9.4

15.7

30

27

25

23

Bearing in mind the design differences between Altera's Nios II cores and our

UW_Nios II variants, it is not our goal to draw architectural conclusions from comparisons

with Altera's cores, since we do not have access to Altera's Nios II architectures. The main

reason for presenting performance comparisons between Altera' cores and our variants is to

show that our design is relatively competitive when compared with commercial,

hand-optimized soft-core processors.

3.4.4 Hardware vs. Software Multiplication Support

Whether multiplication is implemented in hardware or emulated in software has a large

impact on the speed performance and area of soft-core processors. Hardware multipliers

occupy a large area on FPGA platforms but provide better processing performance. Hence,

Altera's Nios Il/e core does not support hardware multiplication, while it is available for

the other two cores (Nios II/s and Nios Il/f). Many variations of hardware multipliers are

available, variations that trade off area for performance. One example is a multiplier that

37

uses a software multiplication routine in which hardware performs a portion of the

multiplication operation. This multiplier is much faster than the typical software version,

which uses a series of shift and add operations. In this work, we do not consider such hybrid

implementations; instead we focus only on either full or no hardware multiplication

support.

New FPGAs have dedicated on-chip DSP blocks that are capable of supporting full

hardware multiplications. We conducted an experiment on our UW_Nios II to compare its

performance when hardware multiplication was implemented using the DSP blocks one

time, and using logic elements (LEs) the second time. As shown in Figures 3.8 and 3.9, in

the case of LE-based hardware multiplication, the UW_Nios II core used 37% more area,

and had a clock frequency that was 43% slower than a similar core with DSP-based

hardware multiplication. From this experiment, we conclude that DSP-based hardware

multipliers are a better choice than the LE-based version.

Research conducted by Yiannacouras et al [37] showed similar results. They generated

different variations of a RISC soft-core processor that supports a MIPS I instruction set

architecture (ISA). Some of those variants supported full hardware multiplication and in

the rest, multiplication was emulated in software. A set of benchmark circuits were run on

their variants and their performance was compared. In terms of the number of cycles

required to execute the benchmark circuits, it was found that some applications were

minimally sped up while others benefited up to 8X from a hardware multiplier. Thus it was

concluded that multiplication support is an application-specific design decision. In general,

especially for multiply-intensive applications, hardware multiplication consumes more

area but provides better processing performance.

3.4.5 Register File Implementation

New FPGAs have dedicated on-chip RAM memory blocks that can be used as storage

elements. Whether the register file is implemented using logic elements (LEs) or using

dedicated on-chip RAM memory blocks has a large impact on the speed performance and

38

UW Nios II Area

5000

_« 4000
UJ
""! 3000
a-
01 2000
o
* 1000

11 - SW Emulation
2 - LE-based HW
Multiplication
3 - DSP-based HW
Multiplication

Configuration

Figure 3.8: UW_Nios II Area

UW Nios II Clock Period

20 n

S 15-t
o
fc 10
Q.

u o 5 H

0

11 - SW Emulation
2 - LE-based HW
Multiplication
3 - DSP-based HW
Multiplication

Configuration

Figure 3.9: UW_Nios II Clock Period

area of soft-core processors. A very important observation can be made from Figures 3.10

and 3.11. During the course of our research, we compared two similar variations of the

UW_Nios II soft-core processor. In the first variant, the register file was implemented

using LE's, and in the second one, the register file was implemented using RAM memory

blocks. It was found that the first variant occupied 400% more logic elements and had a

clock frequency that was 37% smaller when compared with the second variant. In other

words, LE-based implementation of the register file not only occupies an extremely large

area on FPGA platforms, but also degrades speed performance significantly.

39

B 1 - LE-based Register File
2 - RAM-based Register
File

Figure 3.10: Clock Period for Register File Implementation

UW_Nios_ll-Area

2900 -• n
in t&nxm
m 2400 -

o- 1900 -
LLI
l i : 1400 -
o
* 900 -

S i Rsra
4UU r i

1 2

Configuration

B 1 - LE-based Register
File
2 - RAM-based
Register File

Figure 3.11: LE Utilization for Register File Implementation

When the register file is implemented using LE's, a large area is consumed because

one lookup table (LUT) is required to store 1 bit (a LUT is composed of a 4-input lookup

table and a flip flop). Therefore, a 32-bit register requires at least 32 LUT's to implement it.

The reason for the significant rise in clock frequency (in the cased of a RAM-based register

file over the LE-based version) is that the RAM blocks are optimized memory components,

and thus access times are shorter. Also, the LE's used to implement the register file (in an

LE-based register file) could be scattered throughout the FPGA fabric after placement, thus

complicating routing process and resulting in longer routes. This in turn increases the

critical path delay and translates into a smaller clock frequency. From this experiment, we

conclude that RAM-based register files are a better choice than the LE-based version.

(0
c^
"O
o
I-

<u O.
J*
u
o
o

10 -T

9 -

8 -

/ -

6 -

O -f

UW Nios II Clock Per

1 2

Configuration

40

3.4.6 Pipeline Register Implementation

Finally, an experiment was conducted to study the impact of pipeline register

implementation on the overall performance of the processor. Figures 3.12 and 3.13

illustrate that impact on the processor's clock period and equivalent area respectively. In

this experiment, two similar UW_Nios II variants were compared; in the first variant the

pipeline registers were implemented using logic elements (LE's) and, in the second one,

they were implemented using RAM memory blocks.

It was found that the first variant had a clock frequency was about 27% larger than the

second variant, but it consumed 55 more LE's. This increase in area is relatively small

compared to the gain achieved for the clock frequency. This increase in clock frequency

can be attributed to the fact that using LE's to implement pipeline register allows them to be

placed closer to the logic of the next stage, resulting in shorter routes. That in turn translates

into a shorter critical path delay resulting in a shorter clock period (i.e., higher clock

frequency). From this experiment, we conclude that LE-based pipeline registers are a better

choice than the RAM-based version.

>d
 (

ns
)

•£
a.

C
lo

ck

UW_Nios_ll Clock Period

CD

O

1
1

8-
7 -

6-

m 1 - LE-based Pipeline
Registers
2 - RAM-based Pipeline
Registers

1 2

Configuration

Figure 3.12: Clock Period for Pipeline Register Implementation

41

3100 -|

JJ 3050 -

"*. 3000 -
a-

£ 2950 -

* 2900 -
ZoDU J

UW_Nios_ll Area

B i II II
i i

1 2

Configuration

B 1 - LE-based Pipeline
Registers
2 - RAM-based Pipeline
Registers

Figure 3.13: LE Utilization for Pipeline Register Implementation

3.5 Summary

This chapter started by presenting the design and implementation of the UW_Nios II

soft-core processor. A review of the instruction set supported by the UW_Nios II soft-core

processor was first illustrated, followed by a description of the datapath and the control

unit, respectively. Next, the set of parameters for the core were summarized. The remaining

part of the chapter discussed the experiments conducted to evaluate the performance of the

UW_Nios II soft-core processor along with the proposed metrics of evaluation. A

comparison between the UW_Nios II's variants and Altera's Standard and Fast cores was

presented. It was found that, in the best, the UW_Nios II was 47% smaller and had a critical

path delay that was only 7.6% larger than Altera's Standard core. Finally, a study of the

effects that some parameters have on the core's performance when varied across their range

of possible values was presented. It was concluded that a RAM-based implementation of

the register file and an LE-based implementation of the pipeline registers resulted in a

better overall performance.

In the next chapter, a discussion of the design and implementation details of the

SCBuild CAD tool is provided along with an overview of the results of some experimental

studies that were conducted using SCBuild and the UW_Nios II soft-core processor.

42

Chapter 4

Design Space Exploration of UW_Nios II

This chapter starts by presenting the design and implementation of SCBuild (Soft-Core

Build). SCBuild is a CAD tool developed to explore the design space of a given

parameterized soft-core processor. A description of the target core, containing some of its

major features, is supplied to SCBuild as input. Later in the chapter, the design space

exploration experiments conducted throughout the course of this research are presented and

the results are analyzed. In these experiments, SCBuild was supplied with an input template

description of the UW_Nios II parameterized soft-core processor. Next, SCBuild was used

to apply the SEAMO genetic algorithm to the supplied core to approximate its

Pareto-optimal set.

4.1 SCBuild - a CAD Tool for the DSE of the UW_Nios II

SCBuild (Soft-Core Build) is a CAD tool that was designed to perform an automated

exploration of the design space of a parameterized RISC soft-core. This tool was developed

by Ian Anderson during his master's program at the University of Windsor. Figure 4.1 [43]

illustrates a simplified diagram of SCBuild's system environment.

43

VHDL
Description

of Core

Figure 4.1: SCBuild System Environment [43]

SCBuild takes a template description of the target core as input. The template

description contains details about the hierarchy of sub-components that make up the core,

and also contains information about the parameters of the core. After supplying the

template description, SCBuild uses the SEAMO [13] genetic algorithm to explore the

core's design space and approximate its Pareto-optimal set of configurations. SCBuild

provides an approximation of each configuration's area (i.e., number of equivalent logic

elements consumed) and critical path delay (reported in nanoseconds).

After assigning a value to each parameter, this tool is capable of generating structural

VHDL description of optimized variants of the target core, with the user-selected

parameter values, by instantiating components from a library of synthesizable VHDL

components, the VHDL Component Library. This library contains modules that are the

building blocks for the soft-core. If a version of Altera's Quartus II software [28] is

installed on the machine, when prompted, SCBuild can create a Tool Command Language

(Tel) [45] script file that's used by Quartus II to create a new Quartus Project File (.qpf),

compile the generated VHDL code and save the synthesis results in a text file.

44

SCBuild is not restricted to using a single template description. Instead, it is general

enough that it's able to accept and work with any template description of any core,

provided that this description complies with the syntax required by SCBuild.

The initial version of SCBuild used a RISC processor core whose architecture is

presented in [46]. This soft-core has a simple architecture and is not commercially used.

During the course of this research, SCBuild was enhanced to accommodate the UW_Nios

II soft-core processor. The UW_Nios II supports the same instruction set as Altera's Nios II

soft-core processor [18], which is a widely deployed commercial soft-core processor. This

chapter presents a brief overview of the design and implementation of SCBuild.

4.1.1 The Core's Template Description

SCBuild is a CAD tool that's was developed using the C++ programming language. In

order for it to be able to explore the design space of a parameterized soft-core, a template

description of the core needs to be supplied. This template description is a collection of

files that describes certain features about the target core, such as its parameters and

architecture design hierarchy, that the software tool can read, properly translate and map

onto data structures. This allows the tool to manipulate the input description to produce the

desired output, which in this case is the Pareto-optimal set of configurations. The format of

the template description files will be briefly presented later in section 4.1.2.1; refer to

section 4.3.1 and Appendix A in [43] for more details on the format of these files.

SCBuild was designed to hide as much of the implementation details of the target

soft-core as possible so that end-users do not have to concern themselves with many of the

core's design details. The following is a list of the core's features that the input template

description is required to have:

1. The core's parameters: The template description must contain a list of the core's

parameters along with the set of possible values that each parameter can be assigned.

Each sub-component within the core can have its own set of parameters that can be

45

assigned certain values. The input template description should define each parameter

along with their set of possible values.

2. The effects each parameter has on the core's architecture: Often, varying a parameter's

value changes the underlying architecture of the core. For example, some parameters

are responsible for indicating the physical implementation of some of the functional

units used within the core. Varying this kind of parameters changes the physical

implementation of the functional unit, and therefore changes the physical

implementation of the core as a whole. Other parameters control the instantiation or

elimination of complete functional units within the core (eg., include hardware support

for multiplication or emulate it in software). This kind of parameters has a substantial

impact on the resulting core. Therefore, the input template description should include

details about the ways each parameter can change the core's architecture.

3. The set of possible physical implementations that a sub-component can have: Some

components have multiple physical implementations that are functionally equivalent,

but differ in the way they manipulate input data to produce the output result (i.e., they

are structurally not the same). This difference often translates into varying performance

levels, area utilization, power consumption and/or other objectives. For instance, a

shifter can be implemented as a serial shifter, barrel shifter, or it can have some other

functionally equivalent implementation. Each implementation has its own VHDL file

that describes it; these files are stored in a library. The input template description should

specify all the possible physical implementations that a sub-component may have.

4. The design hierarchy of sub-components that make up the core: The design of a

soft-core processor is a complicated task. Describing the behaviour of an entire core

using a single module (i.e., a single VHDL entity) is challenging. This task is

drastically simplified by breaking the design into a number of smaller sub-components

that collectively define the core's behaviour. Every sub-component can itself be built

46

using any number of smaller sub-components and so on. The core's template

description should show its design hierarchy.

5. The connectivity of the core's sub-components: This contains information about the

interface that each sub-component has with other sub-components and modules.

4.1.2 SCBuild CAD Flow

SCBuild performs its tasks by executing a series of steps. These steps are better illustrated

using the flowchart in Figure 4.2 [43]. These steps define the CAD flow for SCBuild. The

following sections will discuss each step briefly.

4.1.2.1 Design Entry

This is the initial step in the CAD flow. The user supplies the input template description of

the target parameterized core at this stage. In this research, the template description was

developed manually. In future work, this step can be automated by creating a GUI tool that

can be used to develop the template description.

As mentioned in previous sections, a template description is a collection of files that

contain certain details about the target parameterized core that are required by SCBuild.

These files contain Extensible Markup Language (XML) code [47]. A more detailed

description of the format of the template files is provided in Appendix A of [43]. To

summarize, each module in the VHDL Component Library is represented in the template

description using a template Component; the description of each template component is

stored separately in an XML file. Every template component file must contain the name of

the component and a list of the names of the component's parameters. Each parameter is

assigned a list of possible values that it can take, as well as a default value. Every parameter

is further classified as a "scalable", "implementation", or "general" type parameter.

Scalable type parameters are assigned numerical values; they are used to represent

bit-widths or any type of numerical quantities (i.e., parameters that are represented using

numerical values). They are represented using "generic" statements in VHDL [48].

47

Modules that have multiple possible physical implementations are represented using the

implementation type parameters. These parameters are used to indicate which physical

implementation of the functional unit is used (i.e., they are used to control the VHDL

implementation of the module in the VHDL code produced by SCBuild). General type

parameters are used to indicate possible changes in the component's architecture.

In addition to the template component name and parameter list, for a component that is

constructed using one or more sub-components, the template component description

contains a list of ports and sub-components used to construct it. Ports define the

component's interface with other components.

The template description should also contain a Parameter Dependencies file, an

Objectives file, a Top-Level Entity File, and a System file. The Parameter Dependencies file

serves to define any hard interdependencies between various parameters. No hard

interdependencies currently exist between any of the parameters used in the UW_Nios II

core. The Objectives file contains the equations that approximate how each parameter

affects the FPGA area utilization (defined as the equivalent number of logic elements

utilized) and the core's critical path delay (reported in nanoseconds). The Top-Level Entity

File contains a summary of all the core's parameter names, their possible values, their type

and their default values. The System file stores the names of the Parameter Dependencies

file, the Objectives file, along with the names of the template component files. More details

about the input template description and the content of the template component files can be

found in [43].

48

Design Entry N-

Check XML Syntax

s< S y n t a x e s .
" ^ C o r r e c t ? / ^ -

Collect System-
level Parameters

I
DSE and

Parameter Selection

x

Elaboration

Write VHDL
Create and Compile

Quartus II Project
(optional)

Figure 4.2: SCBuild CAD Flow [43]

4.1.2.2 XML Syntax Checking

Once provided with the template description files, SCBuild proceeds to check these files

for any possible errors that may exist. This step ensures that these files follow proper XML

syntax required by SCBuild. Any errors should be fixed for execution to continue.

4.1.2.3 Collect System Level Parameters

During this stage, SCBuild reads the Top-Level Entity template component file.

Information about the core's parameters provided in this file is stored. At this stage, users

are free to lock any or all the parameters to certain values, or keep them free to be used in

the design space exploration process of the core; locked parameters will not be changed

during this process.

49

4.1.2.4 DSE and Parameter Selection

Once the core's parameters are obtained, SCBuild prompts the user to supply the SEAMO

algorithm parameters, which are the population size, the number of generations for which

to run the algorithm, the crossover and the mutation rates. Then, SCBuild explores the

design space of the soft-core by applying the SEAMO genetic algorithm to the free

parameters of the system. If there are any hard parameter interdependencies rules specified

in the Parameter Dependencies file, SCBuild makes sure that none of these rules are

violated during the DSE process (Refer to [43] for more on hard parameter

interdependencies).

Any parameterized core supplied to SCBuild is allowed to have K objectives with their

corresponding K estimation equations. Some of the objectives can be FPGA area

utilization, critical path delay, power consumption along with others. In order to develop

the forms of the objective estimation equations, a set of configurations representative of the

core are synthesized using Quartus II. Information about the FPGA resource utilization and

critical path delay are gathered from reports provided by Quartus II at the end of each

configuration's synthesis. The forms of the objective estimation equations, fi,k(pO in

equation 4.1 (discussed later in section 4.2.2), are determined by studying the relationships

between each parameter value and the corresponding objective values. Once the form of

each objective estimation equation is obtained, P-dimensional regression analysis can be

applied to the collected data to determine the values of the regression coefficients ao,k, ai,k,

..., ap,k- The objective estimation equations should provide estimations with acceptable

degree of accuracy.

The Pareto-optimal set of configurations is the outcome of the DSE process. SCBuild

uses the equations included in the Objectives file to calculate approximating values for the

area and critical path delay. SCBuild displays each configuration's parameter values, along

with its estimated area and critical path delay values. At this point, the user can select a

configuration from the Pareto-optimal set to lock all the parameters to specific values.

50

4.1.2.5 Elaboration

After locking all the parameters of the core to certain values, SCBuild proceeds to generate

the VHDL structural code for the core with the selected features and parameter values

specified previously during the elaboration stage. To achieve this goal, SCBuild constructs

two intermediate representations of the system using data obtained from the input template

description files.

The first representation is the System-level description of the hierarchy of template

components. As the name implies, this representation uses the template description files to

gather information about every component in the system, starting with the top level entity,

and which sub-components are instantiated under it. In this representation, SCBuild forms

a hierarchical representation of component parameters by linking each sub-component's

parameter(s) to parameters of their parent component, and so on up the hierarchy up to the

top level entity of the system. The second representation is the Register Transfer Level

representation. This representation describes the system at the RTL level of abstraction;

this description can directly be used to generate the VHDL code of the core. More

specifically, it lists the ports the each sub-component and ways in which its ports are

interconnected with the ports of other sub-components (refer to [43] for more details on

each representation). Once SCBuild has finished forming the two representations, it

proceeds to form the final structural VHDL description of the system.

4.1.2.6 Creating Quartus II Project File and Compilation

If a copy of Altera's Quartus II software is installed on the machine then, when prompted by

the user, SCBuild can generate a Tool Command Language (for short Tel) script file [45].

Quartus II uses this file to create a new project file, include the generated VHDL files in the

project, perform a complete synthesis of the entire design and store the synthesis results

reported by Quartus II in a text file.

51

4.2 Enhancements to SCBuild

The template description contains a set of XML files that contain certain details about the

processor core required by SCBuild to perform DSE. Every file in the template description

describes one template component using XML. This section explains some of the key

enhancements made to SCBuild to enable it to work with the UW_Nios II core.

Every template component description file lists the component's name and parameters.

For examples that illustrate the exact syntax, see Appendix A in [43]. One of the files that

has been modified was the Objectives File. Varying each parameter has a unique effect on

the area and delay of the resulting core. These effects are modeled using mathematical

equations. The Objectives File contains all the objective estimation equations that are used

by SCBuild to estimate the core's area and delay during design space exploration. Another

file that's been significantly modified is the "risc_cpu.xml" file. Part of this file contains a

complete list of all the parameters of the system, each parameter's type and the set of

possible values, and a default value. This file has been modified to reflect the parameters of

the UW_Nios II system and their possible values. For more details on the content and

format of each file, refer to Appendix A in [43]. Simple modifications were also added to

SCBuild to enable it to tokenize equations with negative terms.

4.3 Experimental Framework and Results

Two sets of experiments were performed on a number of variants of the UW_Nios II core

and the results from those experiments will be presented in this section. For these

experiments, Altera's Quartus II 7.2 design software was used to generate and compile the

different variant implementations. The purpose of the first set of experiments was to

generate enough real synthesis data in order to establish estimation equations that provided

reasonable estimates of FPGA logic element (LE) utilization and critical path delay for any

arbitrary processor configuration. This helped draw conclusions and lead to a better

understanding of processor design targeting FPGAs. The purpose of the second set of

52

experiments was to perform a comparison between Altera's Nios II and the UW_Nios II

cores in terms of logic element utilization and processing speed performance.

4.3.1 Target Processor Core

The processor core targeted in this research is the UW_Nios II parameterized RISC

soft-core processor core. Chapter 3 provides a detailed description of this processor core.

To summarize, the parameterized UW_Nios II soft-core processor core developed in this

research is a modified version of the Nios II standard core and supports the same instruction

set as Altera's Nios II cores. It consists of a datapath module and a control unit module with

no data or instruction memories.

The UW_Nios II core has a 4-stage pipelined datapath. Instructions are fetched in the

Instruction Fetch Stage (IF). During the second stage, the decode and operand fetch stage

(DOF), fetched instructions are decoded and proper operands are fetched from the register

file. Instruction execution is done within the third stage, the execute stage (EX). Finally,

results are written back to either the register file or the data memory during the last pipeline

stage, the write back stage (WB).

The integer operations supported by the UW_Nios II soft core are data transfer,

arithmetic, logical, comparison, shift and rotate, program control, along with other

instructions. Table 3.1 (see section 3.4.1) lists the parameters for this core. Calculations

show that UW_Nios II core has a total of 10,313 possible configurations.

4.3.2 Evaluation of Configurations: The Objective Functions

As the complexity of embedded systems and the number of system parameters they take

increase, the design space expands. In any multi-objective DSE procedure, designers are

required to evaluate individual configurations within the design space in terms of their

objectives. Synthesizing each and every configuration within the design space is

impractical, due to the increased sizes of design spaces. One possible option to solve this

problem is to develop a mathematical model that estimates the effects of each parameter on

the objectives. In order to achieve this, the objective estimation approach proposed by Jha

53

and Dutt [49] was adopted during this research. This approach suggests developing

mathematical equations to accurately estimate the area and critical path delay using

least-squares regression analysis on actual synthesis data for a number of representative

configurations. These equations will be a function of the total number of parameters used in

the system, P, and they have the following general form:

p

2 = 1

Where ao,k, ai;k, ..., aP;t are constant coefficients determined using a regression analysis

procedure. The exact form of functions fi,k(pO can be determined by studying the

relationship between each parameter and the area and delay values, as will be detailed in

the following section.

4.3.3 Establishing the Objective Estimation Equations

In order to develop the area and delay objective estimation equations (equation 4.1) for the

UW_Nios II processor core using the P-dimensional regression technique described in

section 4.2.2, a set of configurations that are representative of the core's design space was

synthesized. In this configuration set, a parameter sweep was performed on each of the

core's ten parameters. Starting from a base configuration, in which all parameters are set to

1, each of the core's parameters were varied across their entire range of possible values

while the other parameters were held constant at their base values. This produced a

configuration set with a total of 17 configurations, each of which was compiled using

Quartus II version 7.2 [28]. All of these configurations targeted an Altera Stratix

EP1S40F780C5 FPGA device [25], and were compiled using the default compiler settings.

The Stratix device used as the target FPGA has a total of 41,250 LE's, 3,423,744 RAM

memory bits, and a total of 14 DSP blocks. For each configuration, the equivalent number

of LE's occupied by the core, the number of DSP block elements, the total number of

dedicated memory bits given by the compilation report at the end of synthesis, and the

54

critical path delay of the core (given in nanoseconds) as reported by the timing analyzer

tool were recorded. The following is a detailed discussion of the results from the parameter

sweep experiments.

Table 4.1: Summary of the Parameter Sweep Results
Configuration

Smallest & Fastest

Largest & Slowest

Clk (ns)

5.768

149.443

Number of LE's

594

4331

4.3.3.1 Parameter Sweep Results

A large variation in both FPGA LE resource utilization and critical path delay was

observed from the sweep configurations. A summary of the results from the sweep

configuration is shown in Table 4.1. The complete table can be found in Appendix A. In

terms of critical path delay, the fastest sweep configuration was configuration 15 with a

critical path delay of 5.768 ns (173.4 Mhz). In this configuration, the register file was

implemented using dedicated on-chip RAM memory bits, with multiplication and division

emulated in software. The slowest configuration was configuration 13, with a critical path

delay of 149.443 ns (6.7 Mhz), in which division was implemented in hardware. In terms of

LE resource utilization, configuration 15 was the smallest with 594 LE's consumed,

consuming less than 1.5% of the total FPGA LE capacity; the largest configuration was

configuration 13 utilizing 4331 logic elements.

Configuration 15 was of particular importance. An important observation to be noted

from this configuration is that implementing the register file using the on-chip dedicated

RAM memory bits significantly improves the performance of the processor and reduces the

LE resource utilization when compared with the rest of the configurations. In fact, it gives

the fastest processing speed and the smallest LE usage. This observation triggered more

experiments for comparison reasons between certain variants of the UW_Nios II core and

Altera's Nios II cores.

55

In order to form the area objective estimation equations, functions fi,k(pO in equation

4.1, a study of the relationship between each of the processor's parameters and the resulting

core area was conducted.

Area Utilization

Figure 4.3 shows a set of graphs that illustrate the relationships between each of the core's

parameters and the core's total area (given as the total number equivalent LE's). The

following points can be observed:

• As can be seen in Figures 4.3(a), (b) and (c), the arithmetic, logical shifters and

rotator implementations have a significant impact on the processor's total area. The

basic implementations of these units add 159 LE's to the processor. LUT-based

barrel shifters/rotators result in a large increase in the total area. The LUT-based

barrel implementations of shifters/rotator add anywhere between 440 LE's for the

arithmetic and logical shifters, to 529 LE's for the barrel rotator. The relationships

between the processor's total area and these parameters were modeled using a

quadratic polynomial of the form: ax2 + bx + c.

Area - UW_Nios_ll

m 1 - No Arithmetic Shifter
2 - Serial Arithmetic Shifter
3 - Barrel Arithmetic Shifter

(a) Arithmetic Shifter Implementation (pi)

3500 - _
Ml

j 3300 -

S 3100 - [~~1

* 2900 -

2700 J LJ , LJ _ —
1 2 3

Configuration

56

Area - UW_Nios_l l

3500 -
(0

ji] 3300 -

ill" 3100 -

* 2900 -
oic\c\ -

m 1 - No Logical Shifter
2 - Serial Logical Shifter
3 - Barrel Logical Shifter

1 2 3

Configuration

(b) Logical Shifter Implementation (p2)

3500 -
m

j 3300 -

£ 3100 -

* 2900 -

oTnn -

Area - U\A M Mios.

i i i

1 2 3

Configuration

_ll

H 1 - No Rotator
2 - Serial Rotator
3 - Barrel Rotator

(c) Rotator Implementation (p3)

5000 -i

to 4000 -
[u
-1 3000 -
cr
!^ 2000 -
o

* 1000 -

0 -

Area -UW_

1 1 1 1

1 2 3 4

Configuration

NiosJI

rj 1 - SW Emulation
2 - LE-based Signed Multiplier - Area Opt.
3 - LE-based Signed Multiplier - Speed Opt.
4 - DSP-based Signed Multiplier

(d) Singed Multiplier Implementation (p4)

57

Area-UW_Nios_ll

5000-1

« 4000 -
LU

"* 3000 -
O"

£ 2000 -
o
* 1000 -

n -

m 1 - SW Emulation
2 - LE-based Unsigned
Multiplier
3 - DSP-based Unsigned
Multiplier

1 2 3

Configuration

(e) Unsigned Multiplier Implementation (p5)

Area-UW_Nios_ll

5000 -

£ 4000 -

"I 3000 -

W 2000 -

* 1000 -
n

D1 - SW Emulatoin
2 - LE-based Unsigned
Divider

1 2

Configuration

(f) Unsigned Divider Implementation (p6)

5000

JJ 4000 -

~! 3000 -

JiJ 2000 -

* 1000 -

n -

Area - UW_I NiosJI

1 2

Configuration

m 1 - SW Emulation
2 - LE-based Signed
Divider

(g) Singed Divider Implementation (p7)

58

Area-UW_Nios_ll

3090 -

j£ 2590 -

"I 2090 -

S 1590-,
* 1090 -

590 -f i

m 1 - LE-based Instruction
Decoder
2 - RAM-based
Instruction Decoder

i

1 2

Configuration

2900 -
v)
in 2400 -
- i
tj- 1900 -

UJ

•g 1400 -

* 900 -

400 -

(h) Instruction Decoder Implementation (p8)

Area-UW_Nios_ll

i • " " j
i i

1 2

Configuration

r j 1 - LE-based Register
File
2 - RAM-based
Register File

(i) Register File Implementation (p9)

Area-UW Nios II

JJ 2590 -

*! 2090 -
o-

£ 1590 -
o
* 1090 -

590 -

11 - LE-based Pipeline
Registers
2 - RAM-based Pipeline
Registers

1 2

Configuration

(j) Pipeline Register Implementation (plO)
Figure 4.3: Parameter Sweep Results - Area

• Hardware multiplication modules, both singed and unsigned, consume anywhere

between 1206 LE's for the LE-based singed multiplier, and 1248 LE's for the

LE-based unsigned multiplier. Hardware multipliers are very expensive in terms of

59

LE utilization in FPGA platforms. However, when dedicated DSP blocks are used

to implement hardware multipliers, they occupy 8 DSP blocks with only 56 LE's of

additional logic. Signed and unsigned multiplication parameter implementations

were modeled using polynomials of third and second degrees, respectively.

• Signed and unsigned hardware implementations of division are sometimes more

expensive than hardware multipliers in terms of LE resource utilization on FPGA's.

An unsigned LE-based divider adds 1155 LE's, while a signed LE-based divider

adds 1309 LE's to the processor's total area. The relationship between the divider

implementations and the processor's area was considered to be linear in both cases.

• Varying the instruction decoder implementation parameter between LE-based or

RAM-based implementations has an insignificant impact on the processor's total

area. The RAM-based implementation consumes 52 LE's less than the LE-based

version (i.e., a saving of 52 LE's). Therefore, the relationship between the

processor's area and the instruction decoder implementation parameter was

assumed to be linear.

• Figure 4.3 (i) shows that the register file implementation parameter has the greatest

impact on the processor's area. Implementing the register file using RAM memory

blocks requires 2428 LE's less than the LE-based implementation. A first degree

polynomial was chosen to model the relationship between the register file

parameter and the total area of the processor.

• Finally, as illustrated by figure 4.3 (j), only 55 LE's can be saved when the pipeline

registers are implemented using RAM memory blocks versus the LE-based

implementation. This is not a large saving compared to the processor's total area.

Thus, the relationship between the processor's total area and the pipeline register

implementation was modeled by a first degree polynomial (i.e., a linear relation).

60

Critical Path Delay

The graphs in Figure 4.4 depict the relationship between the UW_Nios II's critical path

delay (given in nanoseconds) and each of the processor's parameters. In general, predicting

the effects of varying the parameter values on the critical path delay was harder than

predicting the effects on the processor's area. Implementing division in hardware causes

the greatest increase in the processor's critical path delay. The following points can be

observed from the graphs in Figure 4.4:

• As can be seen in Figures 4.4(a), (b) and (c), the arithmetic, logical shifters and

rotator implementations have a relatively small impact of the processor's critical

path delay. The basic implementations of these units add close to 1 ns of delay to

the processor. The LUT-based barrel implementations of the shifters add less than 1

ns, while the barrel rotator adds a bit more than 1 ns to the clock period of the

processor. The relationships between the processor's critical path delay and these

parameters were modeled using a quadratic polynomial of the form: ax2 + bx + c.

• Hardware multiplication units, both signed and unsigned, cause an increase in the

clock period anywhere between 10.415 ns for the LE-based singed multiplier, and

10.639 ns for the LE-based unsigned multiplier, which makes the clock frequency

2.5X slower. Hardware multipliers are expensive in terms of critical path delay on

FPGA platforms. However, when dedicated DSP blocks are used to implement

hardware multipliers, they increase the clock period by less 5 ns. In other words, the

processor's clock frequency is 2X faster with a DSP-based multiplier compared

with an LE-based multiplier. Signed and unsigned multiplication parameter

implementations were modeled using polynomials of third and second degrees,

respectively.

• Signed and unsigned hardware implementations of division are most expensive in

terms of critical path delay on FPGA's. An unsigned LE-based divider adds 125 ns,

while a signed LE-based divider adds 141 ns to the processor's clock period. In

61

other words, a hardware divider increases the clock period by 15 to 17 times. The

relationship between the divider implementations and the processor's critical path

delay was considered to be linear in both cases.

• Varying the instruction decoder implementation parameter between LE-based or

RAM-based implementations has an insignificant impact on the processor's total

area. The RAM-based implementation requires a clock period that is 0.05 ns less

than the LE-based version. Therefore, the relationship between the processor's

critical path delay and the instruction decoder implementation parameter was

assumed to be linear.

elk - UW_Nios_ll

9 1
-3T

i 8 - 5 -
fc 8 -
a.
| 7.5-
0

7

m 1 - No Arithmetic Shifter
2 - Serial Arithmetic Shifter
3 - Barrel Arithmetic Shifter

1 2 3

Configuration

(a) Arithmetic Shifter Implementation (pi)

c lk -UW Nios II

m 1 - No Logical Shifter
2 - Serial Logical Shifter
3 - Barrel Logical Shifter

(b) Logical Shifter Implementation (p2)

"ST 9 - _ _

J 8.5 - ~

8 7.5-
D

7 J 1—I , 1—1 , L_
1 2 3

Configuration

62

elk - UW_Nios_ll

9.5 -,

1 9"
0 8.5 -
fc
0- 8 -

J> 7.5 -
D

m 1 - No Rotator
2 - Serial Rotator
3 - Barrel Rotator

1 i i i

1 2 3

Configuration

20 -i

£ 1 5 -

"5 10 -
a

8 5-
D

n

(c) Rotator I m] Dlementation (p3)

elk - UW_Nios_ll

i i i i

1 2 3 4
Configuration

m 1 - SW Emulation
2 - LE-based Signed Multiplier - Area Opt.
3 - LE-based Signed Multiplier - Speed Opt.
4 - DSP-based Signed Multiplier

(d) Signed Multiplier Implementation (p4)

"5T

?
to
a.

0

elk - UW_Nios_ll

20 -i

15 -

10 -

5 -

n -

m 1 - SW Emulation
2 - LE-based Unsigned
Multiplier
3 - DSP-based Unsigned
Multiplier

1 2 3

Configuration

(e) Unsigned Multiplier Implementation (p5)

63

C
lo

ck
 P

er
io

d
 (

n
s)

01

O
 O

l

0
0

0
0

clk-UW_Nios_ll

1 2

Configuration

m 1 - SW Emulatoin
2 - LE-based Unsigned
Divider

(f) Unsigned Divider Implementation (p6)

C
lo

ck
 P

er
io

d
 (n

s)

01

0

0
1

0

0
0

0

elk - UW_Nios_ll

1 2

Configuration

m 1 - SW Emulation
2 - LE-based Signed
Divider

(g) Signed Divider Implementation (p7)

c

P
er

io
d

 (

C
lo

ck

elk - UW_Nios_ll

10.1
9.6
9.1
8.6 -8.1
7.6
7.1 -
6.6 -
6.1 -

m 1 - LE-based Instruction
Decoder
2 - RAM-based
Instruction Decoder

1 2

Configuration

(h) Instruction Decoder Implementation (p8)

64

d
 (

ns
)

O
P

er

C
lo

ck

clk-UW_Nios_ll

10-

9 -

8 -

7 -

6 -

I _
1 2

Configuration

B 1 - LE-based Register
File
2 - RAM-based Register
File

(i) Register File Implementation (p9)

10 1

elk - UW_N

«j 9.6
:r 9.1
S 8.6
•c 8.1
S. 7.6 •
* 7 . 1 •
8 6.6 •
n 6.1
" 5.6 ,

1

Configuration

2

ios_ll

@1 - LE-based Pipeline
Registers
2 - RAM-based Pipeline
Registers

(j) Pipeline Register Implementation (plO)
Figure 4.4: Parameter Sweep Results - Critical Path Delay

• Figure 4.4 (i) shows that the register file implementation parameter has a significant

impact on the processor's critical path delay. Implementing the register file using

RAM memory blocks causes a decrease of 2.139 ns in the processor's clock period

compared with the LE-based implementation (i.e., a 27% improvement). A first

degree polynomial was chosen to model the relationship between the register file

parameter and the total area of the processor.

• Finally, as illustrated by Figure 4.4 (j), a 2.125 ns increase is added to the

processor's clock period when the pipeline registers are implemented using RAM

memory blocks versus the LE-based implementation. In other words, implementing

the pipeline registers using LE's improves the clock period by about 27% compared

65

with the RAM-based implementation. The relationship between the processor's

critical path delay and the pipeline register implementation was modeled by a first

degree polynomial (i.e., a linear relation).

4.3.3.2 Objective Estimation Equations

The Curve Fitting Tool provided by MATLAB [50] was used to determine the exact forms

for all of the functions fi,k(pO for each parameter. A plot was generated to model each

parameter's effect on the processor's area and critical path delay. The Curve Fitting Tool

uses a library of parametric models, including polynomials, exponentials, rationals and

others to determine the function that best fits the plot. The tool was then used to perform

regression analysis on each plot to compute the a;,k coefficients in equation 4.1. The final

functions along with their coefficients used to approximate the processor's area and critical

path delay are listed in Table 4.2.

4.3.3.3 Testing the Accuracy of the Objective Estimation Equations

Having developed the objective estimation equations for the delay and area as discussed in

the previous section, we next test the accuracy of these equations. The area and delay

results for the 17 parameter sweep configurations, used to establish the objective estimation

equations, as reported by Quartus II were compared with the results produced using the

objective estimation equations. The two graphs in Figure 4.5 illustrate this comparison and

show that the estimated values for delay and area match up with the actual values almost

perfectly. The percentage error between the "actual" versus the "estimated" values for the

parameter sweep configurations is negligible.

Next, a set of 20 random configurations were developed. They were compiled

in Quartus II; the delay and area values were collected from the compilation reports. These

results were compared with the estimated values for area and delay obtained using the

objective estimation equations. Figures 4.6(a) and 4.6(b) illustrate how close the estimated

values trace the actual values for area and delay, respectively. The average percentage error

66

for area estimates was 0.59%, and 6.56% for delay estimates. This step serves as an

accuracy test of the objective estimation equations for any arbitrary configuration. As

shown by the figures, it was easier to estimate area with greater precision than delay,

however they are both still within a tolerable margin of error.

Table 4.2: Regression Coefficients for UW_Nios II

Parameter

-

Arithmetic Shifter

Implementation

(PD

Logical Shifter

Implementation

(p2)

Rotator

Implementation

(p3)

Include Signed

Multiplier (p4)

Include Unsigned

Multiplier (p5)

Include Unsigned

Divider (p6)

Include Signed

Divider (p7)

Instruction Decoder

Implementation

(p8)

Register File

Implementation

(p9)

Pipeline Register

Implementation

(plO)

i

0

1

2

3

4

5

6

7

8

9

1

0

(Area)

3022

61

56

105.5

9.333

-1220

1155

1309

-52

-2428

-55

ai,2

(Delay)

7.907

-0.6245

-0.6445

-0.445

0.8217

-8.174

125.4

141.5

0.046

-2.139

2.125

fu(Pi) (Area)

-

Pj2 - 0.393 P l - 0.607

P2
2 - 0.161 p2-0.839

P3
2-1.493 p3 +0.493

P4
3 - 70.610 p4

2 +

334.083 - 264.438

P5
2 - 4.023 p5 + 3.023

P 6 - l

P 7 - l

P 8 + l

P 9 - l

P io-1

fu (Pi) (Delay)

-

Pi2-4.549pi + 3.55

P2
2 - 4.503 p2 + 3.502

P3
2-5.175 p3 +4.175

P4
3 - 12.340 p4

2 + 42.692 p4 -

31.350

P5
2 - 4.301 p5 + 3.302

P 6 - l

P 7 - l

P 8 - l

P 9 - l

P io-1

67

The above mentioned experiments demonstrate the difficulty in estimating the critical

path delay of parameterized soft-core processors compared with their area estimates. This

difficulty is a result of the high complexity of the placement and routing processes

performed by CAD tools, such as Quartus II. The core's critical path delay is highly

sensitive to changes in the implementation and placement of the circuit on the FPGA and

the routing between the various components of the core. The impact that such changes have

on the core's critical path delay is hard to predict with great precision. By contrast, the area

utilized by a core is easier to predict more accurately because the effects of varying the

core's parameters on the synthesis results are fairly fixed and predictable.

Another outcome that can be inferred from these results is that a tradeoff relationship

exists between the precision of the estimated objective values and the amount of

computation required to obtain those values. CAD tools, such as Quartus II, are able to

report the exact delay and area because they utilize information about the implementation,

placement and routing of the core in their delay and area computations. Utilizing such

information requires a significant amount of complex computations. On the other hand, the

goal of the regression-based objective estimation technique used in this research is to

provide reasonably close estimations that can be evaluated quickly and easily. In general,

more accurate estimations can be made at the expense of longer computation times; faster

and simplified computations can be utilized at the expense of reduced estimation accuracy.

In future work, increased accuracy of the estimates may be achieved and the need to

generate a set of sweep configurations may be removed by employing different objective

estimation techniques.

4.3.4 Design Space Exploration (DSE)

Now that we determined the objective estimation equations and verified their accuracy,

SCBuild CAD tool was used to apply the SEAMO algorithm to a population of

randomly-generated configurations in order to approximate the Pareto-optimal set. This

section presents the results from this experiment.

68

4.3.4.1 Determining Algorithm Parameters

In order to Apply SEAMO to approximate the Pareto-optimal configuration set, SEAMO's

parameters need to be specified first. Suitable values for these parameters were determined

experimentally. A set of experiments were conducted on a configuration set with

randomly-generated configurations. In these experiments, the mutation and crossover rates

I Actual and Estimated Area Values - Sweep
I Configurations

5000 i

/S00 I y — - - - _

Jy 3 5 0 0 _) - ^ \ ^ L J \ ^ J ^
cr 3000 **8**~I J^...Z%£.. K M- X
•g 2500 f \
B. 2000 4 \—
| 1500 \~~i
< 1000 -\J

500 »••

0 2 4 G 8 10 12 14 16

Configuration

(a) Area

Actual and Estimatd Delay Values - Sweep
Configurations

c
> •

to
<u

JC

n>
ex.
re

tic

i -
U

160

140

120

100

80

60

40

20
I ^ . . • • • • f f < <• ,<f • — < y " ^ - ™ » ^ ~ —up %mm0m*i*&

0 2 4 6 8 10 12 14 16 18

Configuration

(b) Delay

Figure 4.5: Actual versus Estimated Values for the Parameter Sweep Configurations

Actual

Estimated

18

WW&W"W1 A c t U 31

—•—Estimated

69

Actual and Estimated Area Values - Random Configurations

6000

5000

w
iu 4000

1000

\A -+- Actual
- * - Estimated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Configuration

(a) Area

Actual and Estimated Delay Values - Random Configurations

180

"«r
c
>» (0

a>
a
JZ

Q.

"5
o iti

k.

u

160
140

1?0
100

80

60

40
20

0

— Actual

— Estimated!

T 1 r _, ! ,_ - 1 1 \ 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Configuration

(b) Delay
Figure 4.6: Actual versus Estimated Values for Random Configurations

70

were varied between 0.1 and 0.7, and the resulting evolved populations were observed. It

was found that for a mutation rate of 0.5 and a crossover rate of 0.4, the average area and

delay values were lowest. Another set of similar experiments were conducted to determine

the number of generations parameter of the SEAMO algorithm. The number of

generations, N, in these experiments was varied between 10 and 60. It was found that N =

40 provided a large diversity of configurations and resulted in lower average values for the

area and delay.

4.3.4.2 Results

The SCBuild CAD tool was used to explore the design space of the UW_Nios II soft-core

processor and apply the SEAMO algorithm to an initial population of 88

randomly-generated configurations. After 40 generations, SCBuild produced an evolved

population, which approximates the Pareto-optimal set of the UW_Nios II's design space.

The developed objective estimation equations were used to estimate the area and delay of

each configuration in the initial and evolved populations (See Appendix A for a list of the

initial and evolved populations). Figure 4.7 illustrates a graphical comparison between the

initial and evolved populations.

As shown in Figure 4.7, the majority of configurations in the evolved population

cluster around the lower left corner of the design space, whereas configurations from the

initial population tend to be scattered throughout the entire design space. It is clear that

configurations from the initial population tend to occupy much more area and have a

significantly larger critical path delay than those from the evolved population. More

specifically, the evolved population's configurations have an average area that is about

65% smaller than the randomly generated configurations in the initial population, and a

critical path delay that is more than 75% smaller. This indicates that SCBuild successfully

explores the design space of the supplied soft-core processor and approximates its

Pareto-optimal set. More accurate estimation equations would result in a smoother curve

along the lower left boundary of the design space.

71

180

160

140

? 120

sl
ay

o

Z 80

? 60
u

40

20

0

gHĝ Bgfi p P W *

0 1000

%'"'

2000

Initial and Evolved Populations

#*# * * "

4&&^& " ^ ^P'

3000 4000 5000

Area (# of Equivalent LE's)

6000

• Initial Population

e Evolved Population

•

Figure 4.7: Initial and Evolved Population

4.3.5 Conclusions

Table 4.3 was produced after a study of the evolved population was conducted (refer to

Table A.3 of Appendix A). This table lists the number of occurrences of each parameter

value in the evolved population. The following observations can be made:

In about half the configurations, the SEAMO algorithm tended to eliminate the use

of hardware shifting and rotating. As for the remaining configurations, the number

of occurrences of serial arithmetic shifters was almost equal to the barrel

implementation, and the basic implementations of the logical shifter and rotator

were favored over the barrel implementations.

In approximately 75% of the configurations, signed multiplication was set to be

emulated in software. In the remaining configurations, dedicated DSP blocks were

always used to implement the hardware signed multiplier as recommended by

section 3.4.4 (i.e.,. LE-based implementation of signed multiplication was never

used in any of the configurations).

72

Table 4.3: Number of Occurrences of Each Parameter Value in the Evolved Population

Value

PI

P2

P3

P4

P5

P6

P7

P8

P9

P10

1

40

39

47

65

83

88

88

44

4

48

2

26

30

32

0

0

0

0

44

84

40

3

22

19

9

0

5

-

-

-

-

-

4

-

-

-

23

-

-

-

-

-

-

• In all but five of the evolved configurations, unsigned multiplication was set to be

emulated in software. Dedicated DSP blocks were utilized to implement the

hardware unsigned multipliers in the remaining five configurations. No LE-based

implementations of unsigned multipliers were utilized.

• The SEAMO algorithm always favored the software emulation of signed and

unsigned division in all of the evolved populations. This can be attributed to the fact

that hardware dividers consume a very large area and cause a significant decrease in

the processor's clock period.

• As would be expected, exactly half of the evolved configurations contained an

instruction decoder that's implemented using dedicated RAM memory blocks,

while the other half contained a LE-based implementation. This can be attributed to

the fact that varying this parameter has a negligible effect on both area and clock

period.

73

• Since the RAM-based implementation of the register file provides a greater

advantage over the LE-based version (as explained in section 3.4.5) only 4

configurations out of 88 implemented the register file using LE's; the rest were

implemented using RAM memory blocks.

• Recall that implementing the pipeline registers using LE's caused a small increase

in area but resulted in a smaller clock period, as illustrated by section 3.4.6.

Therefore, the SEAMO algorithm favored an LE-based implementation of the

pipeline registers in 48 out of 88 configurations. In the remaining cases, a

RAM-based implementation was utilized.

The experimental results show that using a genetic-based approach for exploration of the

design space of a parameterized core can be helpful in assisting designers choose a

well-optimized and customized hardware platform configuration for their target

application, and in selecting the proper parameter values in a short amount of time. This is

possible because the genetic algorithm employed within SCBuild removes the non-optimal

configurations from consideration by approximating the Pareto-optimal set. This

Pareto-optimal set contains a small number of optimized configurations compared with the

large number of possible configurations that exists in the design space of the parameterized

core. Designers can then choose a configuration from this set that satisfies their design

constraints utilizing an accurate evaluation of each configuration's area and performance

provided by SCBuild.

4.4 Summary

This chapter started by presenting the design and implementation details of the SCBuild

CAD tool. The core's template description, provided to SCBuild as input, was illustrated,

followed by a brief overview of SCBuild's CAD flow. The CAD flow illustrates the step by

step approach utilized by SCBuild during its execution. The remaining part of the chapter

discussed the set of experiments conducted on the parameterized UW_Nios II soft-core

74

processor using SCBuild. An initial set of 17 different "parameter sweep" configurations

that represent the processor's design space were compiled. The compilation results

obtained were used to establish the objective estimation equations. These equations were

used to provide reasonably accurate estimates of the processor's area utilization and critical

path delay on an FPGA platform for arbitrary configurations. Next, a set of 20

randomly-generated configurations were compiled to test the accuracy of the established

objective estimation equations. It was found that the equations provided estimates for area

that were, on average, within 0.59% of the actual values, and within 6.56% of the actual

values for delay. Finally, SCBuild was used to apply the SEAMO algorithm on an initial

population of 88 randomly-generated configurations for 40 generations. In general, the

evolved population showed a substantial improvement in the area and delay objectives.

More specifically, the evolved population, on average, utilized 65% less area and had a

critical path delay that was 75% smaller than the initial population.

In the next chapter, this thesis is concluded with a summary of our research

contributions, followed by a discussion of possible extensions of this research work that

could be done in the future.

75

Chapter 5

Conclusions and Future Work

As embedded systems are becoming more complex, FPGAs provide a low cost and flexible

medium for implementing and testing complete embedded systems. The platform-based

design methodology of embedded systems is becoming more desirable for designers since

they can build more complex systems in less time by using pre-designed and tested IP

cores. This thesis presented a methodology that could help designers make intelligent

decisions when they develop embedded systems using a platform-based design approach. It

employs a genetic-based algorithm to automate the design space exploration process of

parameterized soft-core processors. After presenting some relevant background material,

the design and architecture of a parameterized soft-core processor, UW_Nios II, were

discussed in detail, and the performance of different variants was compared with Altera's

Nios II. It was found that, in the best case, the UW_Nios II's clock frequency was only 7%

less and occupied 47% less area.

Chapter 4 starts by discussing the design and implementation details of SCBuild, a

CAD tool for the design space exploration of soft-core processors. The remainder of this

chapter presents the results obtained from a set of experiments carried out using SCBuild to

automatically explore the design space of the UW_Nios II soft-core processor and

approximate its Pareto-optimal set of configurations. It was concluded that applying a

76

genetic algorithm to approximate the Pareto-optimal set of an embedded system helps

designers choose a well optimized hardware platform configuration for their systems.

5.1. Thesis Contributions

The research contributions of this thesis are:

1. The source code for a parameterized RISC soft-core processor, UW_Nios II, that

supports the same instruction set as Altera's commercial Nios II was developed

using VHDL, and its functionality was tested. During the development of the

UW_Nios II, several contributions were made:

a.Ten system parameters were added to the processor core.

b. Different architectural variations were studied to find out what works best

for FPGA platforms.

c.A comparison between UW_Nios II and Altera's commercial Nios II

soft-core processors was conducted

2. A method for estimating the objective values (i.e., FPGA area utilization and

critical path delay) given a set of parameter values was applied to variants of the

UW_Nios II. Using this method, accurate estimations were obtained.

3. A parameterized template description of the UW_Nios II soft-core processor was

developed and utilized to conduct a set of design space exploration experiments on

the UW_Nios II core.

4. SCBuild, a software CAD tool, was modified and used to automatically explore the

design space of the UW_Nios II using the SEAMO genetic algorithm. Using

SCBuild, a good approximation of the Pareto-optimal set of configurations for the

UW_Nios II was obtained.

5.2. Future Work

In the future, this thesis work can be extended in many different ways. More parameters can

be added to the developed soft-core processor. Instruction and data cache can be added to

the processor core, and different experiments can be conducted to see which cache line

77

depth is optimal for FPGA platforms. Also the performance of cached and un-cached

soft-core processors can be compared. Support for different kinds of branch predictions can

be added, and the performance of different variants with different branch prediction

schemes can be compared. Also, floating-point support, different pipeline depths and

support for custom instructions can be added as system parameters. More implementations

of functional units can be explored, including different implementations of shifters,

multipliers, dividers, adders etc. More optimizations can be applied to the processor system

to improve its speed performance and area utilization even further. Lastly, a better estimate

of the core's performance can be achieved by running different benchmark circuits on

different variants of the core.

Also, more template description files can be developed and supplied to SCBuild to

enable it to automatically generate VHDL source code of different variants of the soft-core

processor, and then, if a copy of Altera's Quartus II CAD tool is installed, automatically

prompt it to create a project file and compile the VHDL code of the processor core. The

number of objective functions estimated by SCBuild can be increased to include estimating

the power consumption of different cores. Other design space exploration algorithms can

be investigated and compared to see which one give the best approximation of the

Pareto-optimal set of a core. More features can also be added to SCBuild, such as adding a

profiling capability, to enable SCBuild to analyze different software applications and

benchmarks and automatically remove un-used instructions from the instruction set of the

processor core, and automatically optimize the processor core for the target application.

Finally, SCBuild can be extended to enable it to explore the design space of more

commercially-deployed soft-core processors.

78

References

[1] R. Ernst. Codesign of embedded systems: Status and trends. IEEE Design & Test of
Computers, pages 45-54, April-June 1998.

[2] R. Ernst, J. Henke, and T. Benner. Hardware-software cosynthesis for
micro-controllers. IEEE Design & Test of Computers, pages 64-75, December 1993.

[3] R. K. Gupta and G. De Micheli. Hardware-software cosynthesis for digital systems.
IEEE Design & Test of Computers, pages 29-41, September 1993.

[4] G. De Micheli and R. K. Gupta. Hardware/software co-design. Proc. of the IEEE, 85
(3): 349-356, March 1997.

[5] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Surviving the
SOC Revolution: A Guide to Platform-Based Design. Kluwer, Norwell,
Massachusetts, USA, 1999.

[6] G. Martin and J.-Y. Brunei. Platform-based co-design and co-development:
Experience, methodology and trends. In Proc. of the 9th IEEE/DATC Electronic
Design Processes Workshop, April 2002.

[7] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis of Distibuted Real-Time
Embedded Systems. Kluwer Academic Publishers, Boston/Dordrecht/London, 2004.

[8] P. Yiannacouras, J. Rose, and J. G. Steffan. The microarchitecture of FPGA-based
soft processors. In Proc. of the 2005 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES'05), pages 202-212, San
Francisco, California, USA, September 2005.

79

[9] T. Givargis and F. Vahid. Parameterized system design. In Proc. of the 8
International Workshop on Hardware/Software Codesign (CODES'OO), pages 98-102,
San Diego, California, USA, May 3-5, 2000.

[10] M. Gries. Methods for evaluating and covering the design space early in design
development. RFC UCB/ERL M03/32, Electronics Research Lab, University of
California at Berkeley, August 2003.

[11] P. Metzgen, "A high Performance 32-bit ALU for programmable logic," in
Proceeding of the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays. ACM Press, 2004, p. 61-70.

[12] P. Metzgen, "Optimizing a High-Performance 32-bit Processor for Programmable
Logic," in International Symposium on System-on-Chip, 2004.

[13] C. L. Valenzuela. A simple evolutionary algorithm for multi-objective optimization
(SEAMO). In Proc. of the 2002 Congress on Evolutionary Computation (CEC'02),
volume 1, pages 717-722, Honolulu, Hawaii, USA, May 12-17 2002 .

[14] K. Compton and S. Hauck, "Reconfigurable Computing: A Survey of Systems and
Software," ACM Computing Surveys, vol. 34, no. 2 (June 2002), pp. 171-210.

[15] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. P. Pande,
C. Grecu, and A. Ivanov. System-on-chip: Reuse and integration. Proc. of the IEEE,
94(6): 1050-1069, June 2006.

[16] R. K. Gupta and Y. Zorian. Introducing core-based system design. IEEE Design &
Test of Computers, 14(4): 15-25, October-December 1997.

[17] Xilinx, Inc., "MicroBlaze Soft Processor,"
http://www.xilinx.com/xlnx/xil_prodcat/product.jsp?title=microblaze, January
2007.

[18] Altera Corporation. Nios II Processor Reference Handbook, May 2007.

[19] Xilinx, Inc., "MicroBlaze Processor Reference Guide," http://www.
Xilinx.com/ise/embedded/mb_ref_guide.pdf, January 2007.

[20] Altera Corporation. Nios Processor Reference Handbook, May 2004.
http://www.altera.com/products/ip/processors/nios/nio-index.html.

80

http://www.xilinx.com/xlnx/xil_prodcat/product.jsp?title=microblaze
http://www
http://Xilinx.com/ise/embedded/mb_ref_guide.pdf
http://www.altera.com/products/ip/processors/nios/nio-index.html

[21] Altera Corporation. Quartus II Version 7.2 Handbook, Version 7.2, May 2007.

[22] Altera Corporation. SOPC builder.
http://www.altera.com/products/software/products/sopc/sop-index.html, January
2007.

[23] Xilinx Incorporated. Xilinx logic design: (XST).
http://www.xilinx.com/products/design_tools/logic_design/synthesis/xst.htm,
January 2007.

[24] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs, Kluwer Academic Publishers: Norwell, MA, 1999.

[25] Altera Corporation, "Stratix Device Handbook,"
http://www.altera.com/literature/hb/stx/stratix_handbook.pdf, January 2007.

[26] Altera Corporation, "Excalibur Devices,"
http://www.altera.com/products/devices/arm/arm-index.html, January 2007.

[27] Xilinx Virtex-4 Overview.
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/overview/ind
ex.htm, January 2007.

[28] Altera Corporation, "Quartus II Development Software Handbook v7.2,"
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf, January 2007.

[29] T. Givargis, J. Henkel, and F. Vahid. Interface and cache power exploration for
core-based embedded system design. In Proc. of the 1999 IEEE/ACM International
Conference on Computer_Aided Design, pages 270-273, San Jose, California, USA,
November 1999.

[30] P. Mishra and N. Dutt. Architecture description languages for programmable
embedded systems. IEE Proceedings Computers & Digital Techniques, 152(3):
285-297, May 2005.

[31] H. Tomiyama, A. Halambi, P. Grun, N. Dutt and A. Nicolau. Architecture
description languages for systems-on-chip design. In Proc. of the Sixth Asia Pacific
Conference on Chip Design Language, pages 109-116, Fukuoka, Japan, October
1999.

81

http://www.altera.com/products/software/products/sopc/sop-index.html
http://www.xilinx.com/products/design_tools/logic_design/synthesis/xst.htm
http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/products/devices/arm/arm-index.html
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/overview/ind
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

[32] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Michigan, USA, 1975.

[33] C. A. C. Coello. A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems, 1(3): 129-156,
August 1999.

[34] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1): 1-16, Spring 1995.

[35] I. D. L. Anderson, M. A. S. Khalid. SCBuild: Design Space Exploration using
Parameterized Cores: A Case Study", Proceedings of Canadian Conference on
Electrical and Computer Engineering, 2006.

[36] P. Yiannacouras, J. Rose, and J. Gregory Steffan. Application-Specific
Customization of Soft Processor Microarchitecture, Proc. of FPGA '06, February
2006. ACM Press.

[37] P. Yiannacouras. The michroarchitecture of FPGA-based soft processors. Master's
thesis, University of Toronto, Toronto, Ontario, Canada, 2005.

[38] J. L. Hennessy, N. P. Jouppi, J. Gill, F. Baskett, A. Strong, T. R. Gross, C. Rowen,
and J. Leonard. The MIPS machine. In COMPCON, pages 207, 1982.

[39] B. Fort, D. Capalija, Z. G. Vranesic and S. D. Brown. A Multithreaded Soft
Processor for SoPC Area Reduction. Proc. of FCCM '06. IEEE Computer Society,
April 2006.

[40] F. Plavec, B. Fort, Z. Vranesic, and S. Brown. Experiences with soft-core processor
design. Proc. of IPDPS '05. IEEE Computer Society, April 2005.

[41] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and M. Imai.
PEAS-III: An ASIP Design Environment. In Proc. of the International Conference on
Computer Design, September 2000.

[42] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, Fourth Edition. Morgan Kaufmann, San Francisco, California, USA,
September 2006.

82

[43] I. D. L. Anderson. A CAD Tool for Design Space Exploration of Embedded CPU
Cores. M. A. Sc. Thesis, Department of Electrical and Computer Engineering,
University of Windsor, February, 2007.

[44] I. D. L. Anderson, M. A. S. Khalid. SCBuild: A CAD Tool for Design Space
Exploration of Embedded CPU Cores for FPGAs, accepted for publication, IET
Computer and Digital Techniques (IET-CDT).

[45] Tel Developer Xchange. http://www.tcl.tk/, January 2008.

[46] M. M. Mano and C. R. Kime. Logic and Computer Design Fundamentals 2n Edition
Updated. Prentice Hall, Upper Saddle River, New Jersey, USA, 2001.

[47] Extensible Markup Language (XML). http://www.w3.org/XML. January 2008.

[48] Institute of Electrical and Electronics Engineers. IEEE standard VHDL language
reference manual, ANSI/IEEE Std 1076-1993, 1993.

[49] P. K. Jha and N. D. Dutt. Rapid estimation for parameterized components in
high-level synthesis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, l(3):296-303, September 1993.

[50] MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/index.htmLMay
2008.

[51] Altera Corporation. Avalon Bus Specification Reference Manual, version 2.3, July
2003.

[52] J. G. Tong, I. D. L. Anderson, M. A. S. Khalid. Soft-Core Processors for Embedded
Systems. Proc. of International Conference on Microelectronics, ICM '06.

[53] EECS Instructional and Electronics Groups Homepage at University of California
Berkeley, http://inst.eecs.berkeley.edu/, January 2008.

83

http://www.tcl.tk/
http://www.w3.org/XML
http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/index.htmLMay
http://inst.eecs.berkeley.edu/

Appendix A

Synthesis Results for the UW_Nios II Processor

Template

A.l Parameter Sweep Results

Table A.l: Parameter Sweep Data

I1*

>-*

0

1
1

3

•I

5

(i

7

X
i)

in

11

12

13
14

15

16

PI

1
2
3

P:

I
l
l
2

3

1

1

1

1

1

1

1
1

1

1

1

1

P3

1
1
1
1

1

2

3

1

1

1

1

1
1

1

1

1

1

PI

2

3

4

P5

1
1
1
1

1

1

1

1

1

1

2

3
1

1

1

1

1

P6 P7 I'S

2

PW

2

1

P10

2

("Ik IIM

7.907

8.875

8.594

8.875

8.554

8.875

8.953

18.322

18.322

12.837

18.546

12.837

133.332

149.443

7.953

5.768

10.032

liq. \.V\

3022

3181

3462

3181

3452

3181

3551

4228

4228

3078

4270

3078

4177

4331

2970

594

2967

84

A.2 Initial and Evolved Populations

A.2.1 Initial Population

3

0

1
1

3

•J

5

fi

7

s
9

10

11

12

13

N

15

Id

17

IK

ll)

:o
:i
n

.'3

2-1
2S

2'i

2*

PJ

2

3

1

2

2

2

3

2

3

2

3

1

1

1

2

3

1

3

1

2

3

1

3

2

1

2

2

1

2

P7

2

2

P4

2

3

4

2

3

4

2

3

4

2

3

4

1

1

P6

2

2

2

1

Table A.2:

P5

1

1

1

1

2

3

1

1

1

1

1

1

2

3

1

1

1

1

1

1

2

3

1

1

1

1

1

1

2

P8

2

1

2

2

1

1

2

1

1

1

1

1

1

2

1

2

1

2

1

2

2

2

2

2

2

1

1

1

2

Initial

P2

2

1

2

2

3

3

3

3

1

3

2

2

3

1

2

3

3

1

1

3

1

3

3

1

3

2

3

1

1

Popul

P10

1

2

2

1

1

1

1

2

2

2

1

2

1

1

1

1

1

2

1

2

1

2

1

2

2

2

2

1

1

ation

P9

1

1

2

1

1

1

2

1

1

1

2

2

1

1

2

2

2

2

1

2

2

P3

2

2

2

3

1

2

3

1

2

3

2

2

2

1

2

1

1

1

1

1

3

1

3

1

Clk (ns)

20.2986

21.1199

13.8123

135.287

20.1582

15.4162

8.1137

154.113

22.1736

22.0494

13.2953

135.305

19.1907

13.8467

8.7477

149.614

17.7936

19.9949

12.8118

135.92

19.2747

15.6517

7.1457

152.543

21.1356

23.4159

16.5523

134.351

19.5562

Eq. LE*<i

4339

4614

703

4287

4859

3670

1192

4868

4764

4763

1253

2382

4700

3185

1285

2503

2389

2292

3079

2234

4658

3401

1033

4383

4552

4865

3613

4706

4377

85

:«;

;o

} \

3:

M
35

.to

37

3S

M

-10

41

42

43

1 1

4?

1ft

4"?

4S

-I1)

51)

M

52
53

54

55

5f!

57

5N

5l)

60

h\

f«2

63

f.l

65

2

2

1

1

2

2

1

1

2

3

1

2

2

3

3

2

1

1

3

3

1

3

1

3

3

1

3

2

3

1

2

2

2

1

3

2

3

2

2

2

2

1

1

1

2

3

4

2

3

4

2

3

4

2

3

4

2

3

2

2

2

3

1

1

1

1

1

1

2

3

1

1

1

1

1

1

2

3

1

1

1

1

1

1

2

3

1

1

1

1

1

1

2

3

1

1

1

1

2

1

2

1

1

2

1

2

2

1

1

2

2

2

2

1

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

1

1

3

1

2

1

3

2

3

1

1

3

3

2

3

1

2

1

2

2

3

1

1

3

3

3

2

3

1

3

1

3

2

3

3

3

2

3

2

2

2

1

1

1

1

1

1

1

1

1

1

1

2

1

1

2

1

2

1

2

1

2

2

1

2

1

2

1

1

2

2

2

1

1

1

2

1

1

2

1

1

1

2

2

1

2

1

1

1

1

1

1

2

2

2

2

2

2

2

1

1

2

1

1

1

2

2

2

2

1

1

1

1

2

1

2

1

2

2

1

1

1

1

3

3

2

2

1

2

1

1

3

3

2

2

1

3

1

3

1

3

2

3

1

1

2

1

2

3

13.8322

12.6132

151.576

18.1141

19.2764

15.4413

135.241

17.0977

11.7072

8.5907

147.914

21.0241

10.9327

15.1598

137.13

20.4747

13.8007

8.9052

148.92

20.7286

17.2159

14.4518

132.828

19.8627

17.3837

8.8732

151.817

19.2841

22.8599

13.7798

133.873

20.4647

14.4802

9.5067

150.739

21.2206

20.6889

702

3559

4224

1963

4388

3619

4339

2220

757

3462

2333

4915

3661

3677

4669

4432

3237

646

2502

2318

2330

1195

2286

2278

3596

3181

2421

4388

4747

3238

2436

1949

1132

1128

4822

4382

4854

86

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

3

2
1

3

1

2

1

2

2

1
1

3

3

3

3

3

3
3

1

1

3

3

2

2

2

4

2

3

4

2

3

4

1

2

2

2

1

1
2

3
1

1

1

1

1

1
2

3

1

1

1

1

1
1

2

3

1

1

2

2
1

2

1

2

1

2

1

2
1

2

2

1

1

1

1
1

1

1

1

2

1

3
3

2

3

3

2

1

1

2

2

3

3

1

1

1

2
1

2

2

2

1

1

1
2

1

2

1

1

1

2

2
1

1

1

1

2

1

1
1

1

2

1

2

1

1
2

2

1

1

1

1

2

2
2

2

1

2

2

2

2
2

1

1

2

1

3

2
2

2

1

2

3

1

2

3
1

1

1

1

1

3

2

3

3

2

3

2

14.5898

135.934

20.1447

13.3622

10.6777

152.034

20.3311

19.3224

14.7333

135.351

17.3722

12.0737

9.2847

147.952

18.9886

17.9019

13.2953

132.898

20.5572

16.8942

8.4662

153.23

3617

4717

2376

1200

3397

4871

4917

4336

758

2330

2001

1089

3461

2343

2186

2391

1253

2339

4958

3185

1343

4823

A.2.2 Evolved Population

cb
* — •

r-*

c
U

0

1
o

3

4

5

6

7

PI

1

2

1
1

1

1

3
3

P7 P4 P6

Table A.3: Evolved Population

P5 P8

2

1

2
1

1
2

2

2

P2

1

1

2
1

2

2

3

2

P10

2

2

2
2

2

1

1

1

P9

2

2

2
2

2

1

2

2

P3

3

1

1
3

1

1

2

1

Clk (ns)

1016

698

646

1068

698

3129

1192

1141

Eq. LE\

8.9827

8.8582

8.9052

8.9367

8.8592

8.9192

8.1137

7.4662

87

s
I)

10

II

11

13

14

15

lh

17

IS

I'J

20

:i
T 1

2.5

24

25

2e»
"7

2S

:y

30

\\

32

34

3S

36

37

38

.W

-40

41

42

43

+4

2

3

1

1

1

2

2

2

1

2

3

1

2

1

3

2

1

3

2

1

3

1

1

2

1

2

3

2

2

1

3

2

2

2

1

3

2

4

4

4

4

4

4

4

4

1

1

1

2

1

2

1

2

1

1

1

2

1

2

2

2

1

1

2

2

2

1

1

1

2

2

2

1

2

2

1

2

1

2

1

2

2

3

1

2

2

1

1

2

3

2

1

1

3

1

1

3

2

1

2

1

2

1

1

3

1

3

1

2

2

3

2

1

3

3

1

1

1

2

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

2

2

1

2

1

2

2

2

1

1

2

2

2

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

2

2

2

2

2

2

2

1

.2

1

2

2

3

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

3

1

1

1

1

1

1

1

1

2

1

2

1

2

1

1186

979

701

758

810

704

1285

1131

753

810

1091

972

753

542

1033

704

596

1138

758

704

1198

539

1119

809

974

757

1086

701

1076

701

3462

1079

1128

705

651

1141

649

8.3492

8.5767

9.8272

11.6873

11.6408

7.7472

8.7477

7.4272

6.7342

11.6403

11.3588

6.4597

6.7332

5.8117

7.1457

7.7477

12.7978

9.5452

11.6863

7.7482

12.3728

7.8907

9.5847

11.6612

13.4918

11.7072

9.5912

9.8267

9.5522

6.7802

8.5907

10.5202

9.5062

14.8002

10.6728

7.4657

9.8727

45

16

47

48

19

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

1

1

1

3

1

3

3

1

1

1

1

1

1

1

1

3

2

1

3

2

2

2

3

1

1

3

3

2

3

1

1

3

1

1

3

2

2

4

4

4

4

4

4

4

4

4

4

4

3

1

2

2

2

2

2

1

2

2

2

2

2

1

1

2

2

2

2

1

1

2

2

1

2

1

1

1

1

1

1

1

2

1

2

2

1

2

1

1

2

1

2

3

1

1

3

3

3

1

3

3

1

1

2

1

3

2

3

3

1

2

1

1

1

2

2

1

2

1

1

2

2

1

2

2

1

2

1

1

1

1

1

1

2

1

1

2

2

2

1

1

2

2

1

1

2

2

1

2

2

2

1

1

2

1

2

2

2

2

2

2

2

2

2

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

3

3

1

2

2

3

1

1

2

2

2

2

2

1

2

2

2

3

2

2

1

2

2

2

1

1

2

2

2

2

2

3

1

1

1

594

646

1175

1132

703

1195

1193

1227

3022

3181

1131

753

701

1188

1076

1033

760

1128

1189

1175

761

695

984

1128

813

1192

978

755

1144

755

698

1138

756

1282

1036

813

703

5.7657

8.9052

9.9512

7.5437

13.8123

14.4518

7.4197

9.9052

7.9047

8.8732

7.4277

6.7337

6.7797

12.3348

9.5527

7.1457

12.6752

9.5067

10.1927

9.9502

12.6543

8.7157

13.5298

9.5067

12.6093

8.1137

9.2707

13.7653

8.4342

13.7658

8.8587

9.5447

7.7022

7.7802

13.4838

12.6088

13.8113

89

82

•S3

84

85

86

87

1

2

2

1

3

1

4

4

1

4

1

1 3

1

2

1

1

2

1

2

2

1

2

1

2

1

2

1

2

1

2

2

2

2

2

2

2

1

1

2

1

1

2

1012

706

756

755

982

757

11.6413

14.7798

7.7012

13.7663

6.4977

14.7552

90

VITA AUCTORIS

Omar Al Rayahi was born in Al-Ain, United Arab Emirates on March 19,1982. He received
his B. A. Sc. degree in electrical engineering in 2005 form the University of Windsor in
Windsor, Ontario, Canada. He is currently a candidate in the electrical and computer
engineering M. A. Sc. program at the University of Windsor. His research interests include
FPGA-related technologies, embedded systems and their applications.

91

	A CAD Tool for Synthesizing Optimized Variants of Altera's Nios II Soft-Core Processor
	Recommended Citation

	ProQuest Dissertations

