16 research outputs found

    The impact of various activity assumptions on the lead-time and resource utilization of resource-constrained projects

    Get PDF
    The well-known resource-constrained project scheduling problem (RCPSP) schedules project activities within the precedence and renewable resource constraints while minimizing the total lead-time of the project. The basic problem description assumes non-pre-emptive activities with fixed durations, and has been extended to various other assumptions in literature. In this paper, we investigate the effect of three activity assumptions on the total lead-time and the total resource utilization of a project. More precisely, we investigate the influence of variable activity durations under a fixed work content, the possibility of allowing activity pre-emption and the use of fast tracking to decrease a project's duration. We give an overview of the procedures developed in literature and present some modifications to existing solution approaches to cope with our activity assumptions under study. We present computational results on a generated dataset and evaluate the impact of all assumptions on the quality of the schedule

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    Railway scheduling reduces the expected project makespan.

    Get PDF
    The Critical Chain Scheduling and Buffer Management (CC/BM) methodology, proposed by Goldratt (1997), introduced the concepts of feeding buffers, project buffers and resource buffers as well as the roadrunner mentality. This last concept, in which activities are started as soon as possible, was introduced in order to speed up projects by taking advantage of predecessors finishing early. Later on, the railway scheduling concept of never starting activities earlier than planned was introduced as a way to increase the stability of the project, typically at the cost of an increase in the expected project makespan. In this paper, we will indicate a realistic situation in which railway scheduling improves both the stability and the expected project makespan over roadrunner scheduling.Railway scheduling; Roadrunner scheduling; Feeding buffer; Priority list; Resource availability;

    Pre-emptive resource-constrained multimode project scheduling using genetic algorithm: a dynamic forward approach

    Get PDF
    Purpose: The issue resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resource over-allocating drawback is frequently seen after scheduling of a project in practice which causes a schedule to be useless. Modifying an over-allocated schedule is very complicated and needs a lot of efforts and time. In this paper, a new and fast tracking method is proposed to schedule large scale projects which can help project engineers to schedule the project rapidly and with more confidence. Design/methodology/approach: In this article, a forward approach for maximizing net present value (NPV) in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF) is proposed. The progress payment method is used and all resources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in forward mode. For this purpose, a Genetic Algorithm is applied to solve. Findings: The findings show that the proposed method is an effective way to maximize NPV in MRCPSP-DCF problems while activity splitting is allowed. The proposed algorithm is very fast and can schedule experimental cases with 1000 variables and 100 resources in few seconds. The results are then compared with branch and bound method and simulated annealing algorithm and it is found the proposed genetic algorithm can provide results with better quality. Then algorithm is then applied for scheduling a hospital in practice. Originality/value: The method can be used alone or as a macro in Microsoft Office Project® Software to schedule MRCPSP-DCF problems or to modify resource over-allocated activities after scheduling a project. This can help project engineers to schedule project activities rapidly with more accuracy in practice.Peer Reviewe

    Pre-emptive resource-constrained project scheduling with setup times

    Get PDF
    Resource-constrained project scheduling with activity pre-emption assumes that activities are allowed to be interrupted and restarted later in the schedule at no extra cost. In the current paper, we extend this pre-emptive scheduling problem with setup times between activity interruptions and the possibility to fast track pre-emptive subparts of activities. The contribution of the paper is twofold. First, we present an optimal branch-and-bound procedure for the pre-emptive resource-constrained project scheduling problem with setup times and fast tracking options. Second, we test the impact of these pre-emptive extensions to the quality of the schedule from a lead-time point-of-view

    A Branch and Bound Approach to Solve the Preemptive Resource Leveling Problem

    Get PDF

    The impact of applying effort to reduce activity variability on the project time and cost performance

    Get PDF
    During project execution, deviations from the baseline schedule are inevitable due to the presence of uncertainty and variability. To assure successful project completion, the project’s progress should be monitored and corrective actions should be taken to get the project back on track. This paper presents an integrated project control procedure for measuring the project’s progress and taking corrective actions when necessary. We apply corrective actions that reduce the activity variability to improve the project outcome. Therefore, we quantify the relation between the applied managerial effort and the reduction in activity variability. Moreover, we define three distinct control strategies to take corrective actions on activities, i.e. an interventive strategy, a preventive strategy and a hybrid strategy. A computational experiment is conducted to evaluate the performance of these strategies. The results of this experiment show that different strategies are preferred depending on the topological network structure of projects. More specifically, the interventive strategy and hybrid strategy are preferred for parallel projects, while the preventive strategy is preferred for serial projects
    corecore