
D/2006/6482/15

Vlerick Leuven Gent Working Paper Series 2006/15

THE IMPACT OF VARIOUS ACTIVITY ASSUMPTIONS ON THE LEAD-TIME

AND RESOURCE UTILIZATION OF RESOURCE-CONSTRAINED PROJECTS

DIETER DEBELS

MARIO VANHOUCKE

Mario.Vanhoucke@vlerick.be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vlerick Repository

https://core.ac.uk/display/288010235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

THE IMPACT OF VARIOUS ACTIVITY ASSUMPTIONS ON THE LEAD-TIME

AND RESOURCE UTILIZATION OF RESOURCE-CONSTRAINED PROJECTS

DIETER DEBELS

Ghent University

MARIO VANHOUCKE

Vlerick Leuven Gent Management School

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School

Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

 3

ABSTRACT

The well-known resource-constrained project scheduling problem (RCPSP) schedules

project activities within the precedence and renewable resource constraints while

minimizing the total lead-time of the project. The basic problem description assumes non-

pre-emptive activities with fixed durations, and has been extended to various other

assumptions in literature.

In this paper, we investigate the effect of three activity assumptions on the total lead-time

and the total resource utilization of a project. More precisely, we investigate the influence

of variable activity durations under a fixed work content, the possibility of allowing

activity pre-emption and the use of fast tracking to decrease a project’s duration.

We give an overview of the procedures developed in literature and present some

modifications to existing solution approaches to cope with our activity assumptions under

study. We present computational results on a generated dataset and evaluate the impact of

all assumptions on the quality of the schedule.

 4

1. INTRODUCTION

The well-known resource-constrained project scheduling problem (RCPSP) is

one of the most widely studied problems in project scheduling and can be stated as

follows. In a project network G(N,A) in an activity-on-the-node (AoN) format, the set of

nodes N are used to represent the n activities (numbered from 1 to n, i.e. |N| = n) and a set

of pairs of activities A represent the precedence relations between activities. Furthermore,

project execution requires a set of resources R with a constant availability ak for each

resource type k  R throughout the project horizon. Each activity i  N is assumed to

have a deterministic duration di  IN and requires rik  IN units of resource type k. The

dummy start and end activities 1 and n have zero duration and zero resource usage. A

schedule can be defined by an n-vector of start times (s1, ..., sn), and implies an n-vector

of finish times (f1, ..., fn). A schedule is said to be feasible if it is non-pre-emptive and if

both the precedence and renewable resource constraints are satisfied, and optimal if the

project makespan fn is minimized.

Figure 1 displays a project network example with 9 activities and one resource

type with an availability a1 of 6. This example will be used throughout the remainder of

this paper. The duration di of each activity i has been displayed above the node, while the

resource demand ri1 has been shown below the node. The optimal solution with a

minimal project duration of 9 has been displayed at the right part of figure 1.

Insert Figure 1 About Here

In this paper, we relax the strict activity assumptions of the basic RCPSP and

investigate the impact of these assumptions on the quality of the project schedule. More

precisely, we investigate the effect of three activity assumptions, i.e. fixed or variable

activity durations, activity pre-emption (splitting) and fast tracking (parallel execution of

sub-parts of activities). The purpose of this research is twofold. First, we present some

adaptations to current solutions approaches to cope with the activity assumptions under

study. This allows the generation of optimal schedules for the various problem types that

can be used for comparison purposes.

 5

Second, we evaluate the impact of the various activity assumptions on the total

project lead-time as well as on the efficiency of resource use. In doing so, we are able to

provide some general guidelines to project schedulers for better choosing between the

various activity options in their scheduling software.

The outline of the paper is as follows. In section 2 we discuss the three activity

assumptions into detail. We show that many assumptions do not fundamentally change

the problem description and can therefore be solved by any RCPSP solution procedure. In

section 3, we propose some adaptations on a well-known branch-and-bound procedure

for the basic RCPSP to cope with most of our new assumptions. Section 4 presents

detailed computational results and investigates the impact of the activity assumptions on

the quality of the schedule, both from a lead-time as from a resource point-of-view.

Section 5 presents some overall conclusions and suggestions for future research.

2. PROJECT SCHEDULING UNDER THREE ACTIVITY ASSUMPTIONS

Many project scheduling software packages aim at the construction of resource

feasible schedules in order to minimize the total lead-time of the project. Hence, an AoN

project network with a list of activities with their corresponding precedence relations and

resource requirements need to be given as an input. However, various activity

assumptions need to be made by the user in order to construct a feasible schedule. We

investigate three different activity assumptions, as summarized in figure 2. This figure

displays the effect of the three assumptions on activity 2 of figure 1. These extensions

are:

• Fixed duration or fixed work

• The presence of activity pre-emption

• The effect of fast tracking

Fixed duration or fixed work: The basic RCPSP assumes that each activity i

consists of a deterministic work content Wik for each resource-type k, and imposes a fixed

duration di and fixed resource requirements rik on its execution. The extension to the

discrete time/resource trade-off problem (DTRTP) still assumes a fixed work content but

 6

allows variable activity durations. As an example, activity 2 of figure 1 still has a fixed

work content Wi1 of 9 for the single resource type 1, but can now be executed under

different scenarios. Note that many commercial software packages pay a lot of attention

to this activity assumption, and call for the well-considered use of this activity option

before the construction of a schedule (see e.g. the many “Duration * Units = Work”

examples of Uyttewaal (2005)).

Activity pre-emption: The basic RCPSP assumes that each activity, once started,

will be executed until its finish. The extension to the pre-emptive resource-constrained

project scheduling problem (PRCPSP) allows activities to be pre-empted at any integer

time instant and restarted later on at no additional cost, and has been investigated in

literature as an option to further reduce the total project lead-time. The literature for the

pre-emptive discrete time/resource trade-off problem (PDTRTP) is, to the best of our

knowledge, completely void. In most project scheduling software packages, the option of

activity splitting can be made before the construction of a resource-feasible schedule. The

option to split activities has an effect on the number of execution scenarios, as displayed

in figure 2.

Fast tracking: Fast tracking is a scheduling technique used to reduce the total

project lead-time during project execution. When projects are fast-tracked, it usually

indicates the compression of a project schedule by doing certain activities in parallel that

would normally be done in a sequence. Hence, it violates the precedence relations

between activities which implies activity execution at incomplete information. In our

paper, we investigate the impact of within-activity fast tracking, which allows the

execution of pre-emptive sub-parts of an activity in parallel. The fast tracking option

removes precedence relations between sub-parts of pre-empted activities and increases

the number of execution scenarios. The within-activity fast tracking option is inspired on

the idea that activities are executed by groups of resources (with a fixed availability), but

the total work can often be done by multiple groups (in parallel). The pre-emptive

resource-constrained project scheduling problem with fast tracking (PRCPSP-FT)

assumes pre-emptive activities with fixed durations, which results in di parallel sub-

activities with each a resource requirement rik. The pre-emptive discrete time/resource

trade-off problem with fast tracking (PDTRTP-FT) assumes variable activity durations

 7

(under a fixed work content) and allows the pre-emptive and parallel execution of each

sub-activity with a duration and resource requirement equal to 1, as shown in the bottom

part of figure 2. To the best of our knowledge, the literature of resource-constrained

project scheduling with a fast tracking option between pre-emptive sub-parts of activities

is completely void.

Insert Figure 2 About Here

In the next subsection, we show that the PRCPSP, the PRCPSP-FT and the

PDTRTP-FT can be solved by any solution approach for the basic resource-constrained

project scheduling problem. In section 2.2, we elaborate on the DTRTP and the PDTRTP.

2.1 The sub-activity network for the PRCPSP, PRCPSP-FT and PDTRTP-FT

In this section, we show that the resource-constrained project scheduling problem

can be easily extended to cope with 3 of our activity assumptions, i.e. PRCPSP, PRCPSP-

FT and PDTRTP-FT, and hence, these problem instances can be solved by any solution

algorithm for the RCPSP.

Kaplan (1988, 1991) was the first to study the PRCPSP, but she did not present a

correct exact solution procedure (Demeulemeester and Herroelen, 1996). Ballestin et al.

(2006) have developed a meta-heuristic procedure to solve the PRCPSP. Demeulemeester

and Herroelen (1996) have translated the RCPSP to the PRCPSP by means of a

subactivity project network G(N’,A’) and developed a branch-and-bound procedure to

optimally solve the problem. In a sub-activity network, each activity i is splitted into di

sub-activities is (s = 1, …, di) with a sub-activity duration
si

d = 1 and a corresponding

resource requirement kis
r = ikr . The PRCPSP allows activity pre-emption and assumes

that the remaining part of the activity is scheduled later in the schedule. Hence, a

precedence constraint between each pair (is, is+1) is added in the sub-activity network.

The complete PRPCSP sub-activity network has been displayed in figure 3(a) and splits

the 7 non-dummy activities into 16 sub-activities. The optimal schedule is displayed in

 8

the right part of figure 3(a) and leads to an overall project lead-time reduction from 9 to 8

thanks to the pre-emption of activities 4 and 5.

Insert Figure 3 About Here

The option to fast track pre-empted sub-parts of activities boils down to the option

to schedule sub-activities of the same activity in parallel, and hence, implies the removal

of all precedence relations between sub-activities of the same activity. Consequently, the

sub-activity network for the PRCPSP-FT assumes that each activity i is splitted into di

sub-activities is (s = 1, …, di) with a sub-activity duration
si

d = 1, resource requirements

kis
r = ikr , and no precedence relations between sub-activities of the same activity. The

fast track option for the PDTRTP-FT assumes a sub-activity network where each activity

i is splitted into Wik sub-activities is (s = 1, …, Wik) with a sub-activity duration
si

d = 1,

resource requirements kis
r = 1, and no precedence relations between sub-activities of the

same activity.

Figures 3(b) and 3(c) represent the sub-activity networks and corresponding

optimal schedules for the PRCPSP-FT and the PDTRTP-FT, respectively. The PRCPSP-

FT schedule shows a decreased lead-time from 8 to 7 time units, thanks to the parallel

execution of pre-emptive sub-part for activities 2, 4, 5, 6 and 7. The sub-activity network

for the PDTRTP-FT contains 36 sub-activities, with all durations and resource

requirements equal to 1. The optimal resource feasible schedule has a minimal project

lead time of 7 time units with a more efficient resource consumption over time.

Since the PRCPSP, PRCPSP-FT and DTRTP-FT can be represented by a sub-

activity network, these problem types can be solved by any algorithm for the RCPSP.

Many exact and (meta-)heuristic RCPSP procedures have been presented in literature,

and overviews can be found in Icmeli et al. (1993), Özdamar and Ulusoy (1995),

Herroelen et al. (1998), Brucker et al. (1999), Hartmann and Kolisch (2000), Kolisch and

Padman (2001) and Kolisch and Hartmann (2004). In our current paper, we rely on the

efficient branch-and-bound procedure of Demeulemeester and Herroelen (1992) to solve

various problem instances. Their depth-first approach builds up partial schedules starting

 9

at time 0 and continuing systematically throughout the search process by iteratively

adding (sub-)activities until a complete feasible schedule is obtained. A partial schedule

at level p of the search tree will be further build by determining the next decision moment

dm at which unscheduled activities might start. All unscheduled activities which are a

candidate to start at time dm are calculated and collected in the set E of eligible activities.

The previously scheduled but at dm unfinished activities belong to the set S of activities

in progress. If scheduling all activities from E  S at dm would cause a resource conflict,

the procedure starts to branch to the next level p + 1 and delays subsets (delaying

alternatives) of E  S to resolve resource conflicts. It has been shown that it is sufficient

to limit the search to the minimal delaying alternatives, which contain no other delaying

alternatives as a subset. Then, a minimal delaying alternative needs to be selected, which

involves that only the unselected activities of E  S will be scheduled at dm while all

previously scheduled activities of S and the activities of E that belong to the alternative

are postponed. This process is repeated until a feasible schedule is found, followed by a

backtracking mechanism and the algorithm continues as a usual branch-and-bound

procedure. The branch-and-bound procedure has been made very efficient thanks to a

number of dominance rules (probably the best known is the cutset dominance rule) and

efficient lower bound calculations.

Demeulemeester and Herroelen (1996) have adapted their original RCPSP branch-and-

bound procedure to cope with pre-emptive activities. To that purpose, they rely on the sub-

activity network (see f igure 3(a)) with all activity durations equal to one. Furthermore, they

removed some inefficient or redundant lower bound calculations and dominance rules and

simplified their branching strategy. Indeed, since all sub-activities that are scheduled at a decision

moment dm automatically end one time unit later, the next decision moment automatically equals

dm + 1, resulting in an empty set S of activities in progress. The authors observe a clear trade-off

between computational effort to solve the PRCPSP and the resulting schedule quality

improvements compared to the RCPSP, and show that activity pre-emption has only a small

positive effect on a project’s lead-time. However, Ballestin et al. (2006) recently showed that

high-quality heuristic solutions can be obtained more easily for the PRCPSP than for the RCPSP.

In the current paper, we rely on the original branch-and-bound procedure of

Demeulemeester and Herroelen (1992) to solve the RCPSP, and adapt this procedure to

make it more efficient for solving the RCPSP-FT and the PDTRTP-FT (see section 3).

 10

2.2 The solution approach for the DTRTP

The DTRTP assumes variable activity durations and resource requirements with a

fixed work content Wi1 for a single resource type (note that only 1 resource type is

considered, and hence, no resource/resource trade-offs between multiple resources are

included). Each activity can be executed according to a set of feasible execution modes

Mi. Every mode m represents a combination of duration di(m) and resource requirements

ri1(m), for which di(m) * ri1(m) ≥ Wi1. De Reyck et al. (1998) have shown that it is sufficient

to consider only efficient modes for which all other feasible modes are either higher in

duration or higher in resource requirements. As an example, set M2 of figure 4 contains 5

efficient modes m = (di(m), ri1(m)), i.e. M2 = {(1,9), (2,5), (3,3), (5,2), (9,1)}. Note that

modes (2,5) and (5,2) exceed the minimal work content of 9 by 1 unit, and mode (1,9) is

infeasible towards to renewable resource constraints. The optimal schedule has a

decreased lead-time from 9 to 7 time units when shifting from fixed durations (RCPSP)

to fixed work content (DTRTP), thanks to the selection of a different mode for activities

4, 6 and 7.

Insert Figure 4 About Here

Demeulemeester et al. (2000) have presented a branch-and-bound procedure to

solve the DTRTP that relies on activity-mode combinations branching strategy as an

extension of the minimal delaying alternatives branching strategy. Activity-mode

combinations are subsets of the candidate activities of set (E  S), executed in a specific

mode. The authors have shown that only feasible and maximal combinations need to be

considered. An activity-mode combination is feasible if the activities can be executed in

parallel in the specified mode without causing a resource conflict, and maximal if no

other activity can be added in one of its modes without causing a resource conflict. The

authors mention the importance of efficient resource-based lower-bounds since the

resource utilization for a DTRTP schedule is often much higher than for an RCPSP

schedule. The literature for the PDTRTP is, to the best of our knowledge, completely

 11

void. In the current paper, we do not consider the PDTRTP since the problem type can

not be transformed to a sub-activity network as is the case for the PRCPSP, PRCPSP-FT

and the PDTRTP-FT. Hence, we restrict the research of activity pre-emption to the

PRCPSP.

In the remainder of this paper, we consider various approaches for the PRCPSP,

PRCPSP-FT and the PDTRTP-FT, since they can represented by a sub-activity network

and solved by any procedure for the basic RCPSP (as indicated by dashed lines in figure

2). Hence, we do not present new solution procedures for the DTCTP, but only rely to an

existing DTCTP procedure to compare its results with our newly obtained solutions.

3 A BRANCH-AND-BOUND PROCEDURE

In this section, we present two adaptations to the branch-and-bound procedure of

Demeulemeester and Herroelen (1992) in order to solve the PRCPSP-FT and the

PDTRTP-FT more efficiently. Section 3.1 presents an adapted minimal delaying

alternatives approach to solve the PRCPSP-FT. In section 3.2, we present adapted lower

bound and upper bound calculations for the PDTRTP-FT

3.1. The minimal delaying alternatives for the PRCPSP-FT and the PDTRTP-FT

Demeulemeester and Herroelen (1992) have shown that only minimal delaying

alternatives need to be investigated during their branch-and-bound procedure. A minimal

delaying alternative is a subset of activities to delay in order to resolve a resource

conflict, that contains no other delaying alternative as a subset. Since the PRCPSP-FT

removes precedence relations between sub-activities, all sub-activities is of an activity i

become eligible to be scheduled at the same decision moment, and hence, the number of

minimal delaying alternatives at each level of the search tree grows exponentially.

However, an extension of the minimal delaying alternatives principle limits the search of

delaying alternatives to subsets of the eligible activities of set E, and dominates many

nodes in the branch-and-bound tree, as follows:

 12

Theorem: In order to define the set of minimal delaying alternatives for the

PRCPSP-FT and the PDTRTP-FT, it is sufficient to define the number of sub-activities ei

for each activity i that should be chosen from the eligible set E

The theorem implies that it is not required to define which sub-activities should be

selected from the eligible set for entrance in each minimal delaying alternative. All sub-

activities have a duration of 1 and the set S of activities in progress is always empty at the

decision moment dm. Hence, if a minimal delaying alternative selects ei sub-activities of

activity i from the eligible set E, then every other combination of ei sub-activies of i in E

will lead to an equivalent schedule. In our specific implementation, we always select the

ei highest numbered sub-activities of activity i to enter the minimal delaying alternative,

such that the remaining lower numbered sub-activities are scheduled at dm.

Insert Table 1 About Here

Table 1 illustrates the theorem at the initial decision moment 0 for the example

PRCPSP-FT problem of figure 3(b). The set E of eligible sub-activities contains all sub-

activities of activities 2, 3 and 4, i.e. E = {21, 22, 23, 31, 41, 42, 43}. Scheduling all sub-

activities in parallel results in a total resource demand of 14 units, which exceeds the

availability of 6. In order to solve this resource conflict, the branch-and-bound procedure

of Demeulemeester and Herroelen (1992) generates 16 minimal delaying alternatives.

The theorem selects only one delaying alternative for each combination e2, e3 and e4, and

hence, only alternatives 1, 3, 6 and 16 need to be considered in the tree.

3.2. The lower and upper bound calculations for the PDTRTP-FT

The PDTRTP-FT assumes sub-activities with all durations and resource

requirements equal to 1 and no precedence relations between within-activity sub-

activities. Hence, the problem type is a strong relaxation of the RCPSP for which many

alternative optimal schedules exist. In this section, we present straightforward yet

 13

efficient lower and upper bounds that dramatically improve the efficiency of the adapted

branch-and-bound algorithm of section 3.2.

Lower bound LBp: the algorithm calculates at each node of the branch-and-

bound tree the minimal remaining duration
si

L of each sub-activity is of the eligible set E

(i.e. ready to be scheduled) at decision moment dm. Hence, the lower bound LBp at level

p of the tree equals ()
s

s

i
Ei

Ldm


+max and is based on the backward calculations (from the

dummy end node to the dummy start node) of
si

L , as follows:

() 







++






























=


11

1max,max
a

u
L

a

S
L s

s
sis

s

s

i

j
Sj

i

i

where
si

S is used to denote the set of all (immediate and transitive) non-dummy

successor sub-activities of sub-activity is and |
si

S | is used to represent the number of sub-

activities in this set. Moreover,
si

u is used to represent the number of sub-activities of

activity i with a higher subscript than the sub-script s of sub-activity is (these are sub-

activities is+1, is+2,..,
ikWi). (note that all higher numbered sub-activities can not be

scheduled earlier than sub-activity is due to our specific delaying alternatives approach of

theorem 1). This lower bound calculates the minimal remaining length of each activity as

the maximum of the resource-based remaining schedule length














1a

S
si

and the minimal

remaining length of its successors ()
s

sis

j
Sj

L


max , increased by a factor 







+

1

1
a

u
si to represent

the minimal required extra time needed to schedule is and its
si

u higher subscripted sub-

activities of the same activity i.

Lower bound LB0: At the initial node of the branch-and-bound tree, the algorithm

replaces the decision moment dm by the earliest possible start time
si

EST of each sub-

activity is, and hence, the lower bound LBp can be replaced by LB0 = ()
ss

s

ii
Ni

LEST +


max , with

 14

() 







+

















+













=


11

1max,max
a

l
EST

a

P
EST s

s
sis

s

s

i

j
Pj

i

i

where
si

P is used to denote the set of all (immediate and transitive) non-dummy

predecessor sub-activities of sub-activity is and |
si

P | is used to represent the number of

sub-activities in this set. Moreover,
si

l is used to represent the number of sub-activities

of activity i with a lower subscript than the subscript s of activity is (these are sub-

activities i1, i2,.., is-1).

Upper bound UB0: At the start of the search process, a priority-rule based upper

bound by generating a resource feasible schedule with the serial schedule generation

scheme will be constructed. The algorithm relies on the
si

L ranking to construct the

priority rule, with the maximum
si

S value and the index of the sub-activity as tie-

breaking rules.

Figure 5 displays the sub-activity network of figure 1 for the PDTRTP-FT, with

the values of
si

EST and
si

L . The lower bound LB0 equals 7 (see nodes 77, 78, 79, 81, 82 and

91) and the upper bound UB0 has a total duration of 7 and corresponds to the schedule of

figure 3(c). Hence, the resource-feasible schedule constructed for the upper bound is

optimal, and no branching is needed.

Insert Figure 5 About Here

 15

4 COMPUTATIONAL RESULTS

In this section, we test the impact of the three activity assumptions on the problem

complexity and the schedule quality based on 1,920 randomly generated project networks

generated by RanGen (Demeulemeester et al. 2003). The number of non-dummy

activities (n – 2) has been set at 10, 12, 14, 16, 18 and 20 with an order strength OS and a

resource-constrainedness RC fixed at 0.2, 0.4, 0.6 and 0.8. All project instances require a

single resource type with an availability of 10 units. The activity durations have been

chosen randomly between 1 and 5. Using 20 instances for each problem setting, we

obtain a problem set of 6 * 4 * 4 * 20 = 1920 network instances. In section 4.1, we

measure the problem complexity by means of different branch-and-bound procedures.

Section 4.2 investigates the impact of all assumptions on the total project lead-time and

the utilization of resources.

4.1 Impact of the activity assumptions on the problem complexity

In this section, we report computational results for the resource-constrained

problems discussed in section 2. Thanks to the transformation to sub-activity networks,

the PRCPSP, PRCPSP-FT and the DTRTP-FT can be solved by the efficient RCPSP

procedure of Demeulemeester and Herroelen (1992). Moreover, the contribution of the

adaptations of section 3 will be tested for the PRCPSP-FT and PDTRTP-FT.

The results have been displayed in table 2. The abbreviation ‘DH92’ refers to the

branch-and-bound procedure of Demeulemeester and Herroelen (1992) while the

abbreviation ‘DH96’ refers to the branch-and-bound procedure of Demeulemeester and

Herroelen (1996) for the PRCPSP. The adapted branch-and-bound approach as discussed

in sections 3 will be abbreviated with ‘DV06’. The rows labeled “sub-activities” displays

the average number of sub-activities in the sub-activity network (this number equals to

our number of activities for the RCPSP row).

 16

The row “Avg. OS” displays the average value for the order strength OS, defined

as the number of immediate and transitive precedence relations between the (n – 2) non-

dummy (sub-)activities in relation to a maximal number ((n - 2).(n - 3))/2 of precedence

relations between (sub-)activities. The average OS value equals 0.5 for the original

problem instances, which is an average of our RanGen input settings 0.2, 0.4, 0.6 and 0.8.

The row “Avg. CPU” displays the average CPU-time (in seconds) needed to solve a

problem instance and the row “% Opt” reports the number of problem instances that

could be optimally solved within a time limit of 100 seconds.

The results can be summarized as follows. First, the table clearly reveals the

increase in problem complexity as we move further from the basic assumptions of the

RCPSP. All RCPSP relaxations lead to an increase in the number of sub-activities (e.g. an

increase from 20 to approximately 61.85 sub-activities for the PRCPSP and PRCPSP-FT

to 300.25 sub-activities for the PDTRTP-FT). However, note that the PRCPSP is still

easier to solve than the PRCPSP-FT, although both rows show an equal number of sub-

activities. Hence, the order strength, that measures the presence of precedence relations in

the sub-activity network, has decreased from 0.5 to approximately 0.46 for the PRCPSP-

FT and increased to approximately 0.53 for the PRCPSP. This lower (higher) amount of

precedence relations is responsible for the difference in problem complexity between the

PRCPSP and the PRCPSP-FT, which is completely in line with the negative effect of OS

on problem complexity in literature (Herroelen and De Reyck, 1999).

Second, the table shows that dedicated and problem-specific algorithms always

perform better than the RCPSP branch-and-bound procedure applied on the sub-activity

networks. Though the DH92 procedure shows relatively good results for the PRCPSP, the

dedicated DH96 clearly outperforms it. The RCPSP-FT and the PDTRTP-FT could not

be efficiently solved by the DH92 procedure. The DV06 adaptations clearly improve the

results, both from a CPU-time as from a percentage solved to optimality point-of-view.

The DV06 procedure is able to optimally solve all PRCPSP-FT problem instances with

up to 16 non-dummy activities, and can optimally solve 309 20-activity problem

instances within the pre-specified limit of 100 seconds. The average CPU-times decrease

drastically compared to the DH92 procedure from 23.82 to less than 1 second for the 20-

activity instances. The PDTRTP-FT instances could not be solved by the DH92

 17

procedure, but show excellent results for the DV06 procedure. Almost all problem

instances could be optimally solved at very low CPU requirements. Thanks to the

removal of all within-activity precedence relations (fast tracking) as well as the presence

of variable durations (fixed work), optimal schedules often utilize all available resources

almost completely. Hence, the initial lower bound LB0 is often equal to the initial UB0,

such that no branching is needed.

Insert Table 2 About Here

The increase in problem complexity by relaxing the basic assumptions of the

RCPSP is, from an algorithmic point-of-view, straightforward. However, the increase in

problem complexity can also be considered from a project manager’s point-of-view, who

is using a commercial software scheduling package to find a resource-feasible schedule.

The many options (activity splitting, fast tracking, fixed duration versus fixed work) all

have a result on the quality of the schedule, and the more complex the problem

description, the more degrees of freedom the software has. Hence, an optimal schedule

for the PRCPSP-FT or PDTRTP-FT, for example, might lead to a very tight schedule in

which many original activity input durations and resource units have been changed due to

activity interruptions (pre-emption), precedence relation violations (fast tracking) and

multiple execution modes (fixed work instead of fixed duration). Due to the adaptations

of the original DH92 procedures and the computational experience of this section, we are

able to measure the impact of all activity assumptions on the quality of the schedule,

which is the subject of the next sub-section. In doing so, the project manager can get

insight into the impact of various activity assumptions and better balance on the trade-off

between relaxed activity assumptions and too many degrees of scheduling freedom.

4.2 The impact of the activity assumptions on project lead-time and resource utilization

In this section, we report results for the various activity assumptions and their

impact on the quality of the schedule. To that purpose, we rely on the dedicated

algorithms for the problem types under study:

 18

The DH92 procedure for the RCPSP, the DH96 procedure for the PRCPSP, the

DV06 procedures of section 3 for the PRCPSP-FT and the PDTRTP-FT and the

Demeulemeester et al. (2000) procedure (DDH00) for the DTRTP.

The impact of the activity assumptions on the schedule quality has been measured

both from a project lead-time and a resource utilization point-of-view. The row “Avg.

LT” of table 3 displays the average decrease of total project duration compared to the

minimal makespan found by solving the RCPSP problem. The row “Avg. Res” displays

the average resource utilization ratio (ARUR), defined as the resource utilization ratio

(Valls et al., 2002) for all resource types averaged over the complete scheduling horizon,

i.e. 
= =

=

R

k

n

i k

ik

n a

W

Rf
ARUR

1 1
.

1
. As an example, the average resource utilization ratio equals (6

+ 4 + 4 + 4 + 4 + 4 + 3 + 3 + 2) / (9 * 6) = 62.9% (only 1 resource type) for the RCPSP

schedule of figure 1 and 70.8% (80.9%) for the optimal schedule for the PRCPSP

(PRCPSP-FT and PDTRTP-FT) of figure 2.

Insert Table 3 About Here

The results can be summarized as follows. First, allowing pre-emption in the

RCPSP has almost no effect on both the lead-time and the resource utilization. Hence, the

‘task splitting’ option of project scheduling software, which results in pre-emptive and

often less clear schedules, is no good alternative to improve the schedule quality. Second,

the shift from fixed duration activities to fixed work activities (DTRTP), however, has a

major effect on both the lead-time (an improvement with approximately 20%) and

resource utilization (from approximately 75% to 92% or more). Hence, the ‘fixed work’

option should be carefully considered as a default option, since – although resulting in an

increasing problem complexity – it has a major beneficial effect on the schedule quality.

Third, ‘within-activity fast tracking’ turns out to have a beneficial effect on the fixed

duration activities (PRCPSP-FT), leading to approximately 15% lead-time improvement

and 88% resource utilization, but the extra benefits when using fixed work activities

(PDTRTP-FT) are relatively small compared to the very efficient schedules found by the

 19

DTRTP. Hence, allowing fixed work activities already results in a very efficient

schedule, making the within-activity fast tracking a redundant alternative to improve

schedule quality.

 20

5 CONCLUSIONS

In this paper, we provided a computational experiment of a project network

dataset in order to measure the impact of three different activity assumptions on the

overall quality of the schedule. The three activity assumptions, fixed duration or fixed

work, activity splitting and fast tracking, are closely related to project scheduling

software options and need to be made by the project manager. The schedule quality has

been measured both from a lead-time as from a resource utilization point-of-view. All

activity assumptions can be considered as relaxations from the activity assumptions for

the well-known resource-constrained project scheduling problem (RCPSP)

The results show that all relaxations lead to an increase of the problem

complexity, and hence, problem specific procedures are needed to solve problem

instances to optimality. Activity pre-emption has only a small positive effect on the

schedule quality. The extension to fixed work and/or fast tracking has a major effect on

both the project lead-time and resource utilization. The additional effect of fast tracking

on the DTRTP seems to be negligible compared to the increase in problem complexity.

We believe that the provided insights are valuable for project managers when using

commercial project scheduling software packages to help them choosing the activity

options and carefully balancing on the trade-off between complexity and schedule quality

impact.

Our future intensions are twofold. First, we aim at the construction of efficient

meta-heuristic solution procedures to solve the PRCPSP-FT and the PDTRTP-FT where

setups are incorporated between pre-emptive sub-activities. These solution procedures

should be able to cope with large-sized and realistic problem settings. Second, we want to

extend this approach to a flexible activity assumptions problem setting, where each of the

activity assumption can differ among activities in the same project. In doing so, we allow

an option for each activity, and tighten the gap between commercial software packages

and various operations research based solution procedures from literature.

 21

REFERENCES

Ballestin, F., Valls, V., Quintanilla, S., 2006, Pre-emption in resource-constrained project

scheduling, working paper, Universidad Publica de Navarra, Spain.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E., 1999. Resource-constrained

project scheduling: notation, classification, models and methods, European Journal of

Operational Research, 112, 3-41.

Demeulemeester, E., Herroelen, W., 1992, A branch-and-bound procedure for the

multiple resource-constrained project scheduling problem, Management Science, 38 (12),

1803-1818.

Demeulemeester, E., Herroelen, W., 1996, An efficient optimal solution procedure for the

pre-emptive resource-constrained project scheduling problem, European Journal of

Operational Research, 90, 334-348.

Demeulemeester, E., De Reyck, B., Herroelen, W., 2000, The discrete time/resource

trade-off problem in project networks: a branch-and bound approach, IIE Transactions,

32 (11), 1059-1069.

Demeulemeester, E., Vanhoucke, M., Herroelen, W., 2003. A random network generator

for activity-on-the-node networks, Journal of Scheduling, 6, 13-34.

De Reyck, B., Demeulemeester, E., Herroelen, W., 1998, Local search methods for the

discrete time/resource trade-off problem in project networks, Naval Research Logistics,

45 (6), 553-578.

Hartmann, S., Kolisch, R., 2000. Experimental evaluation of state-of-the-art heuristics for

the resource-constrained project scheduling problem, European Journal of Operational

Research, 127, 394-407.

Herroelen, W., De Reyck, B., Demeulemeester, E., 1998. Resource-constrained project

scheduling: a survey of recent developments, Computers and Operations Research, 25

(4), 279-302.

 22

Herroelen, W., De Reyck, B., 1999. Phase transitions in project scheduling, Journal of

Operational Research Society, 50, 148-156.

Icmeli, O., Erenguc, S.S., Zappe, C.J., 1993. Project scheduling problems: a survey,

International Journal of Operations and Productions Management, 13 (11), 80-91.

Kaplan, L., 1988, Resource-constrained project scheduling with pre-emption of jobs,

Unpublished Phd Dissertation, University of Michigan.

Kaplan, L., 1991, Resource-constrained project scheduling with setup times”,

Unpublished paper, Department of Management, University of Tenessee, Knoxville.

Kolisch, R., Hartmann, S., 2004. Experimental investigation of Heuristics for resource-

constrained project scheduling: an update, working paper, Technical University of

Munich, Munich.

Kolisch, R., Padman, R., 2001. An integrated survey of deterministic project scheduling,

Omega, 49 (3), 249-272.

Kolisch, R., Sprecher, A., 1996. PSPLIB – A project scheduling library, European

Journal of Operational Research, 96, 205-216.

Özdamar, L., Ulusoy, G., 1995. A survey on the resource-constrained project scheduling

problem, IIE Transactions, 27, 574-586.

Uyttewaal, E., 2005, Dynamic scheduling with Microsoft Office Project 2003 – the book

by and for professionals, J. Ross Publishing, Florida.

Valls, V., Ballestin, F. and Quintanilla, S., 2002. A hybrid genetic algorithm for the

resource-constrained project scheduling problem with the peak crossover operator, Eighth

International Workshop on Project Management and Scheduling, 368-371.

D/2006/6482/15

FIGURE 1

Example activity network and optimal schedule of the RCPSP

4

3

1

2

3

3

1

i

di

ri1

3

1

2

0

0

6

3

1

5

2

3

7

3

3

8

1

2

9

0

0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

2 5 7

3

4 6

9

8

 24

FIGURE 2

Resource-constrained project scheduling under various activity assumptions

Resource Constrained Scheduling

Fixed durations
(fixed duration)

RCPSP

Fixed work content
(fixed work)

DTRTP

Activity splitting
(pre-emption)

PRCPSP

Activity splitting
(pre-emption)

PDTRTP

Fast tracking
(relaxation of

within-activity

dependencies)

PRCPSP-FT

Fast tracking
(relaxation of

within-activity

dependencies)

PDTRTP-FT

 25

FIGURE 3

The sub-activity network and corresponding optimal schedule for the PRCPSP, PRCPSP-

FT and the PDTRTP-FT

(a) The PRCPSP

0

0

1 1

3

2 1

3

1

3

1

1

4
1

1

1

1

1

2

3 1

3

5
1

3

1

3

7
1

3

1

3

1

1

6 1

1

1

1
1

2

8

dis

ris1

is

i

0

0

9

11 21 22 23

41 42 43

61 62 63

71 72 73

31 51 52

81 91

1 2 3 4 5 6 7 8

1

2

3

4

5

6

2 5b 7

3

4a 4b

5a

6

21

2
8

22
23

31
51

52

41 42 43 61 62 63

71 72 73
81

(b) PRCPSP-FT

0

0

1
1

3

2

1

2

3

1

2

8

1

3
1

3

1

1

4

1

1
1

1

5 1

3
1

3

1

1

6

1

1
1

1

1

3

7

1

3
1

3

0

0

9

dis

ris1

is

i

11 21

22

23

41

42

43

61

62

63

71

72

73

31

51

52

81 91

1 2 3 4 5 6 7

1

2

3

4

5

6

2

3

4a

5

7

4b

6

8
21 22

23
31

41

42

43

51

52

71

72 73

61

62

63

81

 26

(c) PDTRTP-FT

2

3

4

6

7

5

i

1 98

is

11

21

22

23

24

25

26

27

28

29

31

32

41

42

43

51

52

53

54

55

56

61

62

63

71

72

73

74

75

76

77

78

79

81

82

91

1 2 3 4 5 6 7

1

2

3

4

5

6

3

2

5 7

4 6

8

21

22

23

24

25

26

27

28

2931

32

41 42

4352

53

54

55

51 56

61

62

6371

72

73

74

76

77

78

79

75

81

82

 27

FIGURE 4

The activity network and corresponding optimal schedule for the DTRTP

4

{(1,3),(2,2),(3,1)}

21

i

Mi

3

6

5

7

8 9
{(1,9),(2,5),(3,3),

(5,2),(9,1)}

{(1,9),(2,5),(3,3),
(5,2),(9,1)}

{(1,2),(2,1)}

{(1,6),(2,3),
(3,2),(6,1)}

{(1,3),(2,2),(3,1)}

{(1,2),(2,1)}{(0,0)}

1 2 3 4 5 6 7

1

2

3

4

5

6

2

4
3

5

6

7

8

 28

TABLE 1

The minimal delaying alternatives at the initial level of the example problem

Activity i = 3

Sub-activity

Alternative

1      1 1 3 Yes

2      1 1 3 No

3     2 0 2 Yes

4     2 0 2 No

5     2 0 2 No

6    2 1 0 Yes

7      1 1 3 No

8     2 0 2 No

9     2 0 2 No

10     2 0 2 No

11    2 1 0 No

12     2 0 2 No

13     2 0 2 No

14     2 0 2 No

15    2 1 0 No

16    3 0 0 Yes

i = 2

e 2 e 3 e 41 2 3 1 1

i = 4

selected2 3

 29

FIGURE 5

The sub-activity network for the PDTRTP-FT with
si

EST and
si

L values

2

3

4

6

7

5

i

1 98

(7,0)
(6,1)

(6,1)

(2,2)

(2,2)

(2,2)

(4,3)

(4,3)

(4,3)

(4,2)

(4,2)

(4,2)

(5,2)

(5,2)

(5,2)

(1,4)

(1,4)

(1,4)

(1,4)

(1,4)

(1,4)

(0,5)

(0,5)

(0,5)

(0,4)

(0,4)

(0,4)

(1,4)

(1,4)

(1,4)

(0,5)

(0,5)

(0,3)

(0,3)

(0,3)

(0,6)11

21

22

23

24

25

26

27

28

29

31

32

41

42

43

51

52

53

54

55

56

61

62

63

71

72

73

74

75

76

77

78

79

81

82

91

is
(ESTis1

, Lis1
)

 30

TABLE 2

The RCPSP and the impact of the pre-emption (PRCPSP) and fast tracking (PRCPSP-FT

and PDTRTP-FT) on problem complexity

10 12 14 16 18 20 Total

Sub-activities 10 12 14 16 18 20

Avg. OS 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Avg. CPU 0.00 0.00 0.00 0.00 0.00 0.01 0.00

% Opt 100% 100% 100% 100% 100% 100% 100%

Sub-activities 31.83 37.82 44.21 50.21 55.75 61.85

Avg. OS 0.55 0.53 0.53 0.53 0.53 0.52 0.53

Avg. CPU 0.00 0.00 0.04 0.09 0.85 3.67 0.77

% Opt 100% 100% 100% 100% 99% 97% 99%

Avg. CPU 0.00 0.00 0.03 0.06 0.57 3.20 0.64

% Opt 100% 100% 100% 100% 100% 97% 99%

Sub-activities 31.83 37.82 44.21 50.21 55.75 61.85

Avg. OS 0.46 0.46 0.46 0.47 0.48 0.48 0.47

Avg. CPU 0.43 2.64 7.59 11.67 16.95 23.82 10.52

% Opt 100% 98% 93% 90% 86% 80% 91%

Avg. CPU 0.00 0.00 0.05 0.22 1.22 3.96 0.91

% Opt 100% 100% 100% 100% 99% 97% 99%

Sub-activities 151.56 181.13 212.33 243.00 269.80 300.25

Avg. OS 0.41 0.41 0.43 0.44 0.44 0.45 0.43

Avg. CPU 97.04 98.46 99.88 100.00 100.00 100.00 99.23

% Opt 3% 2% 0% 0% 0% 0% 1%

Avg. CPU 0.04 0.36 0.40 0.35 1.30 0.50 0.49

% Opt 100% 100% 100% 100% 99% 100% 100%

LB 0 = UB 0 91% 92% 94% 92% 92% 93% 92%

Note: DH92 : procedure used for RCPSP, PRCPSP, PRCPSP-FT and PDTRTP-FT

DH96 : procedure used for the PRCPSP

DV06 : procedure for PRCPSP-FT and PDTRTP-FT

PRCPSP-FT

PDTRTP-FT

DH92

DV06

Number of activities

DH92

DH92

DH96

RCPSP

PRCPSP

DH92

DV06

 31

TABLE 3

The schedule quality for the RCPSP, PRCPSP, PRCPSP-FT, DTRTP and the PDTRTP-FT

10 12 14 16 18 20 Total

RCPSP

Avg. LT 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Avg. Res 69.66% 72.60% 75.50% 76.55% 78.00% 79.25% 75.26%

PRCPSP

Avg. LT 0.47% 0.47% 0.59% 0.51% 0.49% 0.49% 0.50%

Avg. Res 70.05% 72.30% 76.01% 76.98% 78.44% 79.67% 75.58%

PRCPSP-FT

Avg. LT 18.91% 17.01% 14.76% 14.00% 12.75% 11.85% 14.88%

Avg. Res 85.63% 87.44% 88.55% 89.08% 89.36% 89.60% 88.28%

DTRTP

Avg. LT 25.25% 23.13% 20.81% 20.20% 19.10% 18.06% 21.09%

Avg. Res 92.18% 93.71% 94.76% 95.61% 95.97% 96.31% 94.76%

PDTRTP-FT

Avg. LT 26.19% 23.85% 21.37% 21.08% 19.65% 18.72% 21.81%

Avg. Res 93.43% 94.66% 95.99% 96.49% 96.63% 97.18% 95.73%

Number of activities

D
V

0
6

D
D

H
0
0

D
V

0
6

D
H

9
2

D
H

9
6

