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ABSTRACT 

 

Abstract. Resource-constrained project scheduling with activity pre-emption assumes that 

activities are allowed to be interrupted and restarted later in the schedule at no extra cost. In 

the current paper, we extend this pre-emptive scheduling problem with setup times between 

activity interruptions and the possibility to fast track pre-emptive subparts of activities.  

 

The contribution of the paper is twofold. First, we present an optimal branch-and-bound 

procedure for the pre-emptive resource-constrained project scheduling problem with setup 

times and fast tracking options. Second, we test the impact of these pre-emptive extensions to 

the quality of the schedule from a lead-time point-of-view.  
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1 INTRODUCTION 

The well-known resource-constrained project scheduling problem (RCPSP) is one of 

the most widely studied problems in project scheduling and We study the resource-

constrained project scheduling problem (RCPSP), denoted as m,1cpmCmax using the 

classification scheme of Herroelen et al. (1998a).  The RCPSP can be stated as follows.  In a 

project network in AoN format G(N,A), we have a set of nodes N, and a set of pairs A, 

representing the direct precedence relations. The set N contains n activities, numbered from 1 

to n (|N| = n). The set of pairs A+ adds the transitive precedence relations to A, and thus 

contains all precedence relations. Furthermore, we have a set of resources R, and for each 

resource type kR, there is a constant availability ak throughout the project horizon. Each 

activity iN has a deterministic duration diIN and requires rikIN units of resource type k. 

We assume that rik  ak for iN and kR.  The dummy start and end activities 1 and n have 

zero duration while the other activities have a non-zero duration; the dummies also have zero 

resource usage. A schedule S is defined by an n-vector of start-times s(S) = (s0,...,sn), which 

implies an n-vector of finish-times f(S) where fi = si+di, iN.  A schedule is said to be 

feasible if it is nonpreemptive and if the precedence- and resource-constraints are satisfied.  

The objective of the RCPSP is to find a feasible schedule that minimises the schedule 

makespan fn. 

 

The research on the RCPSP has widely expanded over the last few decades, and 

reviews can be found in Brucker et al. (1999), Herroelen et al. (1998b), Icmeli et al. (1993), 

Kolisch and Padman (2001) and Özdamar and Ulusoy (1995). Numerous exact solution 

approaches have been advanced, with Brucker et al. (1998), Demeulemeester and Herroelen 

(1992, 1997), Mingozzi et al. (1998) and Sprecher (2000) the most noteworthy. However, 

these procedures are only capable to solve relatively simple problem instances.  This has 

motivated researchers to develop heuristic methods for dealing with more challenging 

RCPSP-instances.  Kolisch and Hartmann (1999) and Hartmann and Kolisch (2000) present a 

classification and performance evaluation of existing heuristic procedures. Additional recent 

sources include Alcaraz and Maroto (2001), Alcaraz et al. (2004), Bouleimen and Lecocq 

(2003), Debels et al. (2004), Fleszar and Hindi (2004), Hartmann (1998, 2002), Merkle et al. 

(2002), Nonobe and Ibaraki (2002), Palpant et al. (2004), Tormos and Lova (2001, 2003) and 

Valls et al. (2002, 2003, 2004). 
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Among the best performing procedures, we need to include those of Alcaraz and 

Maroto (2001), Alcaraz et al. (2004), Valls et al. (2002, 2003 and 2004) and Debels et al. 

(2004). These procedures are founded on meta-heuristic principles, and their power can partly 

be attributed to the use of both left-justified and right-justified schedules. A left-justified 

schedule is obtained by iteratively scheduling precedence-feasible activities forwards. To get 

a right-justified schedule, the precedence-relations should be reversed such that precedence-

feasible activities can be scheduled backwards. 

can be stated as follows. In a project network G(N,A) in activity-on-the-node (AoN) 

format, we have a set of nodes N representing the n activities (numbered from 1 to n, i.e. |N| = 

n) and a set of pairs of activities A representing the precedence relations between the 

activities. Furthermore, project execution requires a set of resources R with a constant 

availability ak for each resource type k  R throughout the project horizon. Each activity i  N 

is assumed to have a deterministic duration di  IN and requires rik  IN units of resource type 

k. The dummy start and end activities 1 and n have zero duration and zero resource usage. A 

schedule can be defined by an n-vector of finish times (f1, ..., fn), and implies an n-vector of 

start times (s1, ..., sn) such that si + di equals fi. A schedule is said to be feasible if it is non-pre-

emptive and if both the precedence and renewable resource constraints are satisfied, and 

optimal if the project makespan fn is minimized. Figure 1 displays an example project network 

that will be used throughout the remainder of this manuscript. Each activity has a fixed 

duration di shown above and a single resource requirement ri1 shown below the node. The 

resource availability a1 equals 6 units. The optimal schedule is displayed at the right of the 

figure, and has a minimal makespan of 11 time units. 

Insert Figure 1 About Here 

The research on the RCPSP has widely expanded over the last few decades, and 

reviews can be found in Icmeli et al. (1993), Özdamar and Ulusoy (1995), Herroelen, et al. 

(1998), Brucker et al. (1999) and Kolisch and Padman (2001). In literature, various RCPSP 

extensions have been proposed. In this paper, we extend the RCPSP by relaxing two strict 

activity assumptions, as follows. 

 

1) Activity pre-emption: the activities are allowed to be interrupted during 

execution  
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2) Activity fast tracking: The pre-emptive sub-parts of an activity can be executed 

in parallel 

 

The pre-emptive resource-constrained project scheduling problem (PRCPSP) includes 

the first relaxation and assumes that activities can be pre-empted at any integer time instant 

and restarted later on at no additional cost. This problem type has been investigated in 

literature as an option to reduce the total RCPSP project lead-time. Kaplan (1988, 1991) was 

the first to study the PRCPSP and presented a solution procedure. However, Demeulemeester 

and Herroelen (1996a) have found an error in one of her theorems, and presented a correct 

optimal algorithm for the PRCPSP. Their computational results revealed that activity pre-

emption has only a small positive effect on the lead-time of a project schedule. However, 

Ballestin et al. (2006) show that their heuristic procedure is able to produce high-quality 

solutions more easily for the PRCPSP than for the RCPSP. 

The pre-emptive resource-constrained project scheduling problem with fast tracking 

(PRCPSP-FT) includes both relaxations and has been proposed by Debels and Vanhoucke 

(2006). When projects are fast-tracked, it usually indicates the compression of a project 

schedule by doing certain activities in parallel that would normally be done in a sequence. 

Hence, fast-tracking violates the precedence relations between activities and implies activity 

execution at incomplete information. Debels and Vanhoucke (2006) have investigated the 

impact of within-activity fast tracking, which allows the execution of pre-emptive sub-parts of 

an activity in parallel. This fast tracking option removes precedence relations between sub-

parts of pre-empted activities and increases the number of execution scenarios.  

Demeulemeester and Herroelen (1996a) have shown that the PRCPSP can be 

transformed into an RCPSP network by constructing a sub-activity network that splits each 

activity i into di sub-activities is with a duration 
si

d  = 1 and a resource requirement kis
r = rik. 

Debels and Vanhoucke (2006) have taken a similar approach for the PRCPSP-FT where all 

precedence relations between sub-activities is of a similar activity i have been removed. 

Hence, the PRCPSP-FT assumes pre-emptive activities with fixed durations, which results in 

di non-related sub-activities with a duration 
si

d  = 1 and a resource requirement kis
r = rik. 

Demeulemeester and Herroelen (1996a) state that activity-pre-emption seldom has a 

huge impact on the total project lead-time compared to the RCPSP lead-time. However, 

Debels and Vanhoucke, (2006) has shown that activity pre-emption and activity fast-tracking 

of pre-empted sub-parts of activities can lead to large lead-time reductions. In the current 



7 

 

manuscript, we study the PRCPSP-FT where we only allow activity pre-emption and within-

activity fast tracking at an extra setup cost. Hence, our defined activity durations consist of 

both a setup and a processing time.  

The setup time component includes activity preparations such as equipping, resetting, 

changing, positioning, cleaning and warming up (Mika et al., 2006). This setup time is added 

to the total duration each time activity pre-emption and/or fast tracking occurs. In our 

problem-statement we assume an activity-dependent setup time ti that needs to be added to the 

sub-activity duration at the initial start of the activity as well as for each time the activity is 

interrupted. The idea of setup time incorporation in project scheduling is not new. Kaplan 

(1991) has studied a similar approach for the PRCPSP. However, she assumes that a setup 

time is only required between activity interruptions and not for the initial start-up of an 

activity. To that purpose, she splits each activity i in di sub-activities and shows in a theorem 

that activity pre-emption is never beneficial for the first ti + 1 sub-activities of each activity i. 

In our problem formulation we include this theorem in our problem-definition by assuming 

that each activity automatically requires a setup time from the moment it is started. Note that 

Demeulemeester and Herroelen (1996b) argue that possibly setup times before the starting of 

an activity are allowed to overlap with the processing of predecessor activities. For simplicity 

reasons, we do not add such an overlap to our problem description, although this could be 

included rather easily by adding minimal (negative) time-lags to the finish-start precedence 

relations (i, j), corresponding to the setup time of the end node activity j. 

Insert Figure 2 About Here 

Figure 2 displays the sub-activity network for the PRCPSP-FT with a corresponding 

optimal schedule for the PRCPSP-FT with setup times. We assume the setup times t2 = t4 = t6 

= 1 and t5 = 2 while all other activities can be pre-empted without extra setup. These setup 

times have been displayed above the node while resource requirements 1si
r  are shown below 

the node. All sub-activity durations 
si

d  are equal to 1 and have not been displayed in the 

network. Note that we have carefully selected the number of sub-activities is for each activity i 

(denoted by nrsai), in order to allow a fair comparison with the RCPSP schedule of figure 1, 

as nrsai = di – ti. Consequently, the number of sub-activities of activity 2 equals 1. Hence, 

since the total duration of activity 2 is not pre-empted (and not fast tracked) there is no 

difference with the RCPSP (i.e. the total duration di is equal to 2). However, the number of 
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sub-activities for activity 5 is equal to nrsa5 = 4. In doing so, the activity can be scheduled 

without pre-emption, resulting in a total duration of t5 + nrsa5 = 2 + 4 = 6 which is similar to 

the RCPSP duration d5 of figure 1.  

In figure 2, this activity is pre-empted resulting in a total duration of 8 time units 

instead of 6, due to the extra setup time before subactivity 53. The activity labels have been 

shown in black, while the sub-activity numbers have been displayed in white. The shaded 

areas represent the use of resources due to setup times. Despite the pre-emptive setup times, 

the optimal lead-time could be decreased from 11 to 10 time units. 

The outline of the paper is as follows. In section 2, we propose a branch-and-bound 

approach for the PRCPSP-FT with set-up times, which relies on the branching scheme of 

Demeulemeester and Herroelen (1992). Section 3 presents some specific adaptations to our 

branch-and-bound algorithm to efficiently cope with setup times. In section 4, the problem 

example of figure 1 is solved as an illustration. In section 5, we report extensive 

computational results. We conclude in section 6 with some overall conclusions and 

suggestions for future research.  

 

2 THE GENERAL BRANCH-AND-BOUND APPROACH 

In this section, we explain the branching scheme of our branch-and-bound procedure, 

which is an adapted version of the depth-first procedure of Demeulemeester and Herroelen 

(1992) in order to cope with pre-emptive fast tracking of sub-activities with setup times. To 

that purpose, we rely on the following definitions: 

 

is = sub-activity s of activity i (s = 1, …, nrsai) 

dm = current time instant in our search tree (the decision moment) 

S = set of active sub-activities at time instant dm 

PS = partial schedule 

p
D = set of delaying alternatives at level p of the branch-and-bound tree 

p
qD = delaying alternative q at level p of the branch-and-bound tree ( p

qD   p
D ) 

E1  E2 = the eligible set of activities that can be scheduled at time instant dm. This 

eligible set is divided into two disjoint subsets E1 and E2, as follows:  

E1 = set of eligible sub-activities that can be scheduled without setup time at decision 

moment dm   

E2 = set of remaining sub-activities that can only be scheduled with an extra setup time 
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Hence, the set E1 contains eligible sub-activities is that can be scheduled immediately 

after the finish of a sub-activity is’. If more than one sub-activity is can be scheduled after the 

finish of sub-activity is’, priority is given to the lowest numbered sub-activity of activity i. 

Figure 3 displays the sets PS, S, E1 and E2 at decision moment dm = 3. Activity 53 can be 

scheduled after activity 51 without any setup time, and enters E1. Therefore, activity 54, which 

has a higher subscript, can not be scheduled after 51. All remaining sub-activities (41, 42 and 

54) can only be scheduled with an extra setup time, and belong to the set E2. 

Insert Figure 3 About Here 

The depth-first approach builds up partial schedules starting at time 0 and continuing 

systematically throughout the search process by iteratively adding sub-activities until a 

complete feasible schedule is obtained. A partial schedule at level p of the search tree will be 

continued by determining the next decision moment dm at which unscheduled activities might 

start. All unscheduled activities which are a candidate to start at time dm are calculated and 

collected in the set of eligible activities. In order to take the setup times into account, the 

eligible set is splitted into two disjoint subsets E1 and E2 as described earlier. The previously 

scheduled but at dm unfinished activities belong to the set S of activities in progress. If 

scheduling all activities from E1  E2  S at dm would cause a resource conflict, the 

procedure starts to branch to the next level p + 1 and delays subsets (delaying alternatives 

p
qD ) of E1  E2  S  to resolve resource conflicts. The selection of a delaying alternative 

involves that only the unselected activities of E1  E2  S will be scheduled at dm while all 

previously scheduled activities of S and the activities of E1  E2 that belong to the alternative 

are postponed. This process is repeated until a feasible schedule is found, followed by a 

backtracking mechanism and the algorithm continues as a usual branch-and-bound procedure. 

The basic algorithmic steps of the branch-and-bound branching scheme can be 

summarized along the following 5 steps. In section 3, we explain the bold indicated sub-steps 

3.2, 3.4 and 4.4 into detail.  
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Step 1. Initialisation 

1.1 Set the upper bound UB on the project duration at  

1.2 Set the level p of the branch-and-bound tree at 0 

1.3 Initialise the decision moment dm at -1 

1.4 Schedule the dummy start sub-activity: f1 = 0, PS = {1} and S = {1} 

 

Step 2. Increase the decision moment dm 

2.1 If the dummy end sub-activity has been scheduled, update the upper bound UB and go 

to Step 5 (Backtracking) 

2.2 Update the decision moment: dm = 
s

s

i
Si

f


min  

2.3 Update the set of sub-activities in progress S and the set of eligible sub-activities E1 

and E2, as follows: is S|
si

f  = dm 

- Update S = S \ { is} 

- Update E1 and E2 by including all successor sub-activities of is for 

which all predecessor sub-activities are element of PS \ S 

- E1 contains these sub-activities which can be scheduled 

immediately after a sub-activity without pre-emptive setup time 

at dm. If there are more possibilities, the lowest indexed sub-

activities are put in E1. 

- E2 contains the remaining sub-activities 

2.4 Store the decision moment dm, the sets PS, E1, E2 and S and the finishing times 
si

f  of 

each sub-activity is  S at level p of the search tree. 

 

Step 3. Determine the minimal delaying alternatives 

3.1 Calculate the excessive resource use ck for each resource k  R when all sub-activities 

of S  E1  E2 are scheduled at dm: ck = k

EESi

ki ar

s

s
−

 21

 

3.2 Theorems 1/2/3/5 and property 1: Define the set of minimal delaying alternatives D
p
 

= { p
qD  (S  E1  E2) | k

Di

ki cr
p
qs

s




 for each k R and there exists no other p
qD ' Dp 

for which p
qD ' 

p
qD } 

3.3 Fathom all minimal delaying alternatives 
p

qD  that satisfy the conditions of theorem 4 
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3.4  p
qD  D

p
: if LB( p

qD ) ≥ UB, D
p
 = D

p 
\{ p

qD } 

3.5 If D
p
 = : go to step 5 

 

Step 4. Select the next minimal delaying alternative 

4.1 Select the minimal delaying alternative p
bD   D

p with the lowest lower bound LB( p
bD ) 

and update D
p
 = D

p 
\{ p

bD } 

4.2 If LB( p
bD ) ≥ UB: Set D

p
 =  and go to step 5 

4.3 Schedule the sub-activities is  p
bD  as follows: 

-  is   ((E1  E2) \ p
bD ) 

- PS = PS  { is }, S = S  { is } 

- If is  E1: 
si

f  = dm + 1 and E1 = E1 \ { is } 

- If is  E2: 
si

f  = dm + ti + 1 and E2 = E2 \ { is } 

-  is   (S   p
bD ) 

- Remove is from S and PS: PS = PS \ { is }, S = S \ { is }  

- Add is to the eligible set E1  E2  

4.4 Property 2: Check whether there are sub-activities in progress at dm that have been 

scheduled with a pre-emptive setup time before time instant dm: if this sub-activity can 

be scheduled with pre-emptive setup time at time instant dm, remove its setup time and 

change its finishing time to dm + 1 

4.5 Update the branching level of the search tree: p = p +1 

4.6 Go to step 2 

 

Step 5. Backtracking 

5.1 Update the branching level of the search tree: p = p – 1 

5.2 If the branching level p < 0, then STOP 

5.3 If D
p
 = : repeat Step 5 

5.4 Restore the decision moment dm, the sets PS, E1, E2 and S and the finishing times 
si

f  

of each sub-activity is  S at level p of the search tree 

5.5 Go to step 4  
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3. SPECIFIC ADAPTATIONS TO THE PRCPSP-FT WITH SET-UP TIMES 

In this section, we discuss all dominance rules and lower bound calculations used in 

the branch-and-bound procedure. Most of them are modified versions of dominance rules and 

lower bounds presented in Demeulemeester and Herroelen (1992) (further abbreviated as 

DH92), to cope with setup-times. In section 3.1, we discuss two properties that will be used 

throughout the remainder of this section. In section 3.2, the various dominance rules are 

explained in detail. Section 3.3 discusses the calculations of the lower bounds.  

 

3.1 Dominance and lower bound properties 

In this section, we briefly explain two algorithmic details that will be used throughout 

the remainder of our manuscript. They avoid conflicts between dominance rules of section 3.2 

and simplify the lower bound descriptions of section 3.3.  

 

Property 1. Sub-activities is of each set (S, E1 or E2) can only be evaluated as potential 

candidates for a minimal delaying alternative if all other sub-activities is’ from these sets with 

a higher numbered subscript s’ > s have been evaluated first. 

Note that we previously mentioned that entrance of sub-activities in the sets E1 or E2 is 

done according to the lowest numbered subscripts. Possible entrance of these sub-activities 

into the minimal delaying alternatives is done according to the highest numbered subscripts. 

In doing so, the algorithm guarantees that only sub-activities are added to the partial set PS 

when all lower numbered sub-activities already belong to that set. 

 

Property 2. When a sub-activity is moved from the set E2 to the set S at decision 

moment dm, the corresponding setup time can still be removed from that sub-activity at a later 

decision moment dm’ > dm.  

Property 2 removes setup times when a sub-activity is  S, that has been scheduled 

pre-emptively at decision moment dm, can be rescheduled at dm’ > dm without pre-emptive 

setup time immediately after another sub-activity is’ of the set PS. In this case, the initial setup 

time of sub-activity is has become superfluous and can be removed. Both properties will be 

used throughout the remained of our manuscript, and will be illustrated during the description 

of the dominance rules and lower bound calculations. 
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3.2 Dominance rules 

In this section, we review all dominance rules of DH92 and adapt them to cope with 

the PRCPSP-FT with setup times (note that we number these dominance rules from 1 to 4 to 

be in line with the original paper). Moreover, we extended the branching scheme with a new 

theorem 5 to further reduce the number of nodes in the branch-and-bound tree.  

Demeulemeester and Herroelen (1992) have described two special cases in order to 

put eligible activities in progress, which have been adapted in the theorems 1 and 2 to cope 

with setup times, as follows:  

Theorem 1 (Put eligible sub-activity is in progress): If no activities are in progress 

at decision moment dm of the current branching node and an eligible sub-activity is cannot be 

scheduled together with any other unscheduled sub-activity at any time instant dm’ ≥ dm, then 

there exists an optimal continuation of the partial schedule with the eligible sub-activity is 

started at dm. However, when there exists a non-empty set of sub-activities K  (E1 \ { is}) 

that contains sub-activities k’ with tk’ > 0, then the algorithm also needs to consider all 

minimal delaying alternatives which do not contain all sub-activities of K. 

Theorem 2 (Put eligible sub-activities is and js in progress): If no activities are in 

progress at decision moment dm of the current branching node and an eligible sub-activity is 

can only be scheduled concurrently with one other unscheduled sub-activity js  (E1  E2) at 

any time instant dm’ ≥ dm such that js would not finish later than is if both are started at dm, 

then there exists an optimal continuation of the partial schedule in which both sub-activities is 

and js are put in progress at time dm. However, when there exists a non-empty set of sub-

activities K  (E1 \ {is, js}) that contains sub-activities k’ with tk’ > 0, then the algorithm also 

needs to consider all minimal delaying alternatives which do not contain all sub-activities of 

K. 

Theorems 1 and 2 do not differ much from the original versions of DH92. However, 

the incorporation of setup times has resulted in an adaptation of the theorems when the set E1 

contains sub-activities different from is (theorem 1) or {is, js} (theorem 2). These sub-activities 

can be scheduled without a setup time at time instant dm (element of E1), while delaying these 

sub-activities will lead to the scheduling at a later time instant with an extra setup time. 

However, if the algorithm schedules at least one of these sub-activities of E1, we might 

prevent a setup time of the remaining sub-activities of E1 at a later time instant. 
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Figure 4 displays an illustrative schedule for theorem 1, where the resource availability 

has been decreased to 5 units. In this schedule, sub-activity 71 cannot be scheduled together 

with any other unscheduled sub-activity. However, there exists a non-empty set of sub-

activities K  (E1 \ {71}) that contains sub-activity 53 with t5 = 2. The algorithm also needs to 

consider all minimal delaying alternatives (see theorem 3) which do not contain all sub-

activities of K and hence the set of minimal delaying alternatives is equal to {(71, 72), (53, 54, 

72)} instead of only {(53, 54, 72)}.  

Insert Figure 4 About Here 

The partial schedule of figure 5 illustrates theorem 2. Sub-activity 71 can only be 

scheduled in parallel with sub-activity 81 at any time instant dm’ ≥ 8. Moreover, both sub-

activities would finish at time instant 9 if started at dm = 8. Since E1 =  there is no non-

empty set of sub-activities K. Hence, it is sufficient to consider only the minimal delaying 

alternative 6
qD  = {72, 91} such that sub-activities 71 and 81 are both scheduled at dm = 8.  

Insert Figure 5 About Here 

Theorem 3 (Minimal Delaying Alternatives): In order to define the set of minimal 

delaying alternatives p
qD

 
for the PRCPSP-FT with setup times, it is sufficient to define the 

number of sub-activities ei for each activity i that should be chosen from the eligible set E1  

E2  S 

This theorem has been proposed by Debels and Vanhoucke (2006) for the PRCPSP-FT 

without setup times as an extension of the minimal delaying alternatives principle of DH92. 

However, in order to cope with setup times, we implemented a specific ranking between 

activities of sets E1, E2 and S in order to standardize the selection of activities for each set. 

More precisely, if ei sub-activities of activity i need to be chosen for a delaying alternative, the 

algorithm always give priority to sub-activities of set E2, then to sub-activities of E1 and 

finally to sub-activities of S. Hence, the algorithm prefers to delay sub-activities that need to 

be scheduled with an extra setup time at the decision moment dm, followed by sub-activities 

that start at the decision moment dm without setup.  



16 

 

The sub-activities of set S have the lowest priority to be delayed since these sub-

activities start earlier than the decision moment dm, and hence, delaying these sub-activities 

would release resources at time units earlier than dm, which can not be re-filled by other 

unscheduled activities at a later point in time.  

Note that within each set, priority has been given to the sub-activities with the highest 

sub-activity number (see property 1). 

 

Insert Figure 6 About Here 

In Figure 6 we display the partial schedule of node 3 of the branch-and-bound tree of 

figure 10. The decision moment dm is equal to 3 and the candidate sets to build the delaying 

alternatives are equal to S = {52}, E1 = {53} and E2 = {54, 41, 42}. Thanks to theorem 3, the 

algorithm only needs to determine the number of sub-activities e4 and e5 to be selected in the 

delaying alternatives. Each (e4, e5) combination can be transformed into a minimal delaying 

set following the priority rules described above. As an example, when e4 = 2 and e5 = 0, the 

minimal delaying alternative is equal to 2
1D  = {41, 42}. The minimal delaying alternative for 

e4 = 1 and e5 = 2 is equal to 2
2D  = {42, 53, 54} and hence no other alternatives (e.g. {41, 53, 54}) 

need to be considered.  

Figure 7 displays the resulting partial schedule under the assumption that the minimal 

delaying alternative 2
2D  has been chosen. This means that sub-activities 41 and 52 have been 

scheduled at decision moment dm = 3 while sub-activities 53 and 54 have been delayed. 

However, note that the setup time of sub-activity 52 needs to removed (property 2) since this 

sub-activity has been originally scheduled at time instant 2 with a setup time of 1, but can now 

also be considered as a non-pre-emptive successor of sub-activity 51 and hence, no setup time 

is required.  

Insert Figure 7 About Here 
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The fourth theorem is based on the well-known cutset dominance rule of DH92. A 

cutset Cx at node x of the branch-and-bound tree with a corresponding decision moment dmx is 

defined as the set of unscheduled sub-activities for which all predecessor sub-activities belong 

to the partial schedule PSx. Furthermore, we refer to xE1 , xE2  and PSx as the eligible sets E1 

and E2 and the partial set PS at node x of the branch-and-bound tree. 

 

Theorem 4 (Cutset Dominance Rule): Consider a cutset Cy which contains the same 

sub-activities as a cutset Cx, which was previously saved during the search of another path in 

the search tree.  

If  

• dmx  dmy 

• All sub-activities in progress at time dmx do not finish later than the maximum of 

dmy and the finish time of the corresponding sub-activities in PSy 

• All sub-activities is  ( xE2   y
E1 )  do not finish earlier if scheduled at dmy in node 

y then if scheduled at dmx in node x 

then the current partial schedule PSy is dominated. 

 

This dominance rule differs from the DH92 cutset dominance rule in the third 

condition. All sub-activities is  y
E1  can be scheduled without setup time at dmy in node y 

while all sub-activities is  xE2  can only be scheduled with an extra setup time at dmx in node 

x. Hence, since dmx  dmy, the xE2   y
E1  sub-activities might finish later at node x (since a 

setup time is required) than when scheduled at node y (without a setup time) such that PSy can 

not be dominated by PSx. Hence, the extra restriction that these sub-activities xE2   y
E1  may 

not finish earlier when scheduled at dmy (node y) than when scheduled at dmx (node x) is 

necessary to conclude that the set PSy can be dominated. 

 

Insert Figure 8 About Here 



18 

 

Figure 8 displays two illustrative schedules where the resource availability has been 

decreased to 5 units. If we ignore the third condition, schedule (a) is dominated by schedule 

(b) and vice versa. However, the third condition clearly illustrates that schedule (b) is no 

longer dominated by schedule (a) since the sub-activities aE2   bE1  = {53, 54} finish earlier in 

schedule (b) than in schedule (a).  

In order to improve performance, we have added one extra dominance rule to cope 

with the PRCPSP-FT with setup times. To that purpose, we define the earliest finishing 

moment efmi of each activity i as the minimum of the finishing times of all its sub-activities is 

that belong to the sets E1  E2  S. This theorem automatically selects sub-activities from E2 

that must belong to each minimal delaying alternative, as follows:  

Theorem 5 (Deviation from the minimal delaying alternatives principle): If there 

is a sub-activity is  E2 for which iii tdmdefms 2−−+  then all sub-activities (is, is+1,…, 

ii tdi − ) should belong to each minimal delaying alternative.  

The formula iii tdmdefms 2−−+  is a simplification of the form 

iiii efmtdmstd −+++−− 11  and reads as follows: 1+−− std ii  is equal to the number of 

sub-activities of activity i with a subscript higher than or equal to s (i.e. is, is+1,…, 
ii tdi − ). 

1++ itdm  is equal to the finishing time of sub-activity is when scheduled at decision moment 

dm. Consequently, ii efmtdm −++ 1  is the difference between the finishing time of sub-

activity is when scheduled at dm and the next time instant efmi at which sub-activity is can be 

scheduled without pre-emptive setup time. When this difference is larger than the number of 

unscheduled sub-activities 1+−− std ii , then scheduling all these sub-activities in series at 

decision moment efmi will result in a finishing time smaller than 1++ itdm  and hence, these 

sub-activities should be delayed. 

Theorem 5 can be illustrated on sub-activity 54 of the partial schedule of figure 6. 

Since 555 2tdmdefms −−+  (4  5 + 6 – 4 – 2 * 2), it is beneficial to delay sub-activity 54 

such that it can be scheduled later without pre-emptive setup time (immediately after sub-

activity 53). Consequently, sub-activity 9 needs to be added in every delaying alternative, and 

2
1D  is extended to {41, 42, 54}. 
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3.3 Lower bound calculations 

 

In this section, we propose two lower bounds that are calculated for each delaying 

alternative at every node in the tree. When the current best solution is lower than the 

calculated lower bound, the minimal delaying alternative can be pruned from the set of 

delaying alternatives. 

 

Critical path based lower bound: LB0( p
qD ): This lower bound is calculated as next 

decision moment if p
qD is selected, increased by the maximum remaining critical path length 

si
L  of all sub-activities is 

p
qD , i.e. LB0( p

qD ) = dmnext( p
qD ) +

p
qs Di 

max (
si

L ). The first term 

dmnext( p
qD ) is equal to the earliest finishing time of all sub-activities is 

p
qD in progress at dm 

while the 
si

L  is calculated by straightforward forward calculations where each unscheduled 

sub-activity i1 is increased by its setup time ti. 

Resource based lower bound: LBr( p
qD ): The presence of fast tracking in resource-

constrained project scheduling leads to an efficient use of resources, as illustrated by Debels 

and Vanhoucke (2006). Hence, the use of efficient resource-based lower bounds could 

dramatically improve the performance of our branch-and-bound algorithm. Therefore, the 

algorithm calculates a lower bound for each minimal delaying alternative 









+=

k

k

k

p
q

k
r

a

extra
dmDLB max)(  where kextra  can be calculated as the sum of: 

 

1) Minimal resource use after dm by all unscheduled sub-activities is  PS \ S 


 SPSi

ki

s

s
r
\

 

This measures the minimal (i.e. excluding setup time) resource use of all sub-activities 

that will be scheduled after the decision moment dm.  

 

2) Unused resource units due to the minimal setup time of sub-activities 








−−++−−+

11
211
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1

1
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s
Fi

kii

Si

kii
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s
rdmfrtrdmfrt  

The first and second terms calculate the minimal setup time of all initial sub-activities 

i1. The first term incorporates the complete setup time for these sub-activities that are 
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neither in progress nor in the partial set. The second term incorporates the minimal 

remaining setup time dmfi −−1
1

 at dm of all initial sub-activities that are in progress at 

dm (only part of the setup time after dm needs to be taken into account). 

 

F1 is used to denote the set of unscheduled sub-activities is  E1  E2  p
qD for which 

all lower labelled sub-activities are already finished at (if is  E1  p
qD ) or before (if is  E2) 

decision moment dm. These sub-activities can only be scheduled with a pre-emptive setup 

time. Note that, thanks to property 1, the higher labelled sub-activities can be left out of 

consideration.  

The set F2 ( S) contains the sub-activities that are in progress at dm and for which all 

lower labelled sub-activities of the same activity finish before dm. These sub-activities can 

only be scheduled with a pre-emptive setup time at dm or later (and hence, the minimal 

remaining setup time at dm, i.e. dmf
si

−−1 , needs to be incorporated) 

Assume a project schedule for our example project as displayed in figure 9. The 

resource based lower bound 







+=

6
5)(

1extra
DLB p

q
k
r  = 10 with extra1 equal to 28 as given in 

the right part of figure 9 

Insert Figure 9 About Here 

 

4 AN EXAMPLE BRANCH-AND-BOUND TREE 

 

Figure 10 displays the branch-and-bound tree for the example project of figure 2 

consisting of 21 nodes. The algorithm starts at level 0 with an empty partial set at dm = 0 and 

calculates D0 that consists of four minimal delaying alternatives 0
1D  = {31, 52, 53, 54}, 0

2D  = 

{51, 52, 53, 54}, 0
3D  = {21, 53, 54} and 0

4D  = {21, 31, 54}. The algorithm first selects the 

alternative 0
1D  = {31, 52, 53, 54} with the lowest lower bound LB( 0

1D ) = 9, and schedules sub-

activities 21 and 51 resulting in the partial schedule of node 1. The algorithm continues this 

way and finds the first complete schedule at node 10.  
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This solution is saved and the upper bound is updated to 11, followed by a 

backtracking step towards level 2 of the tree. The algorithm then selects 2
2D  from the two 

remaining delaying alternatives 2
2D  = {41, 42, 54} and 2

3D  = {52, 53, 54} and continues. The 

optimal solution can be found at node 16 with a total project lead-time of 10.  

 

Insert Figure 10 About Here 

 

5 COMPUTATIONAL RESULTS 

In order to test the performance of our branch-and-bound procedure as well as the 

impact of  pre-emptive fast tracking with setup times on the lead-time, we test the algorithm 

on the 1,920 problem instances generated by RanGen (Demeulemeester et al., 2003) and 

presented by Debels and Vanhoucke (2006). The number of non-dummy activities (n – 2) has 

been set at 10, 12, 14, 16, 18 and 20 with an order strength OS (Mastor, 1970) and a resource-

constrainedness RC (Patterson, 1976) fixed at 0.2, 0.4, 0.6 and 0.8. All project instances 

require a single resource type with an availability of 10 units. The activity durations have been 

chosen randomly between 1 and 5. Since each setting contains 20 problem instances, the 

problem set contains 6 * 4 * 4 * 5 * 20 = 1920 network instances. To compare the resulting 

schedules with the optimal RCPSP schedules, we have assumed that part of the activity 

durations can be considered as the unavoidable setup time before the initial subactivity. We 

consider, without loss of generality, activity-independent setup times (i.e. the setup times ti are 

the same for each activity) under 5 settings ti = 0, 1, 2, 3 or 4. Consequently, the activity setup 

times and remaining activity durations have been calculated as follows: we subtract the 

generated setup time (0, 1, 2, 3 or 4) from the original activity duration to calculate the 

remaining activity duration. In case that the generated setup time setting is larger than the 

original activity duration, we reduce the setup time for that activity to the original duration - 1, 

such that the remaining duration equals 1. Hence, the sum of the activity setup time and its 

remaining duration is always equal to the original duration of the project network instance. 

This approach allows us to measure the impact of pre-emptive fast tracking with setup times 

on the schedule quality and leads to 3 different scenario’s, as follows:  
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1) If the setup time of each activity is set at t = 0, then the remaining duration for each 

activity is equal to the duration of the RCPSP instances. Since there are no setup times, 

the problem boils down to the PRCPSP-FT described in Debels and Vanhoucke 

(2006). 

2) If the setup times for the activities are set at a value t between 0 and 4, then the 

remaining durations of the activities lie between 1 and 5 – t. The minimal lead-time 

will lie between the RCPSP and the PRCPSP-FT minimal lead-time. 

3) If the setup time of each activity is set at t = 4, then each remaining activity duration is 

equal to 1. In this case, activity pre-emption can never lead to a lead-time reduction, 

and hence, the problem boils down to the basic RCPSP. 

Insert Table 1 About Here 

Table 1 displays the impact of each theorem on the performance of our branch-and-

bound algorithm. To that purpose, we have tested 8 different scenarios, corresponding to 

various combinations of dominance rules. Note that we never excluded the minimal delaying 

alternative theorem (theorem 3) since it has a major beneficial effect on the performance of 

the solution procedure. Moreover, we have combined theorems 1 and 2 into one scenario 

since they can be considered as two versions of the same dominance principle. The columns 

of the table represent the different setup time settings, varying from 0 to 4. The row labeled 

“Avg. CPU” displays the average time (in seconds) needed to solve the problem instances and 

the row labeled “% Opt” displays the percentage of problem instances that have been 

optimally solved within a pre-specified time limit of 100 seconds.  

The table reveals that all dominance rules have a positive effect on the performance of 

the algorithm. For setup times equal to 1, 2 or 3, the inclusion of a dominance rule always 

improves the performance, both in terms of computational effort and percentage of problems 

solved to optimality. The cutset dominance rule (theorem 4) seems to have the most beneficial 

effect on the performance, which is completely in line with literature. The size of the setup 

times has a clear and positive effect on the problem complexity. An increasing setup time 

results in a lower remaining activity duration and hence in a lower number of sub-activities. 

This results in a smaller search and reduces complexity of the problem instance.  
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Table 2 reports results for experiments on the performance of the lower bounds. The 

critical path based lower bound LB0 and the resource based lower bound LBr have been tested 

individually (scenarios 1 and 2) and in combination (scenario 3). Scenario 3 outperforms 

scenarios 1 and 2, showing that both dominance rules have a positive effect on the 

performance of the algorithm. LBr is more effective than LB0, which confirms the results of 

Debels and Vanhoucke (2006) that fast tracking leads to schedules in which the available 

resources are used efficiently. This increases the importance of resource-based lower bounds.  

Insert Table 2 About Here 

Table 3 displays more detailed results for all problem instances with the different 

settings for the setup time and the number of project activities. Moreover, the solutions have 

been compared with the results obtained by the dedicated algorithms for the RCPSP 

(Demeulemeester and Herroelen, 1992), the PRCPSP (Demeulemeester and Herroelen, 

1996a) and the PRCPSP-FT (Debels and Vanhoucke, 2006). The row labeled 

“Avg.improvement” measures the average decrease of the total project lead-time compared to 

the minimal RCPSP lead-time. 

Insert Table 3 About Here 

The results in the table can be summarized as follows. First, the table confirms the 

results of table 1 that the size of the setup times has a positive effect on the problem 

complexity. The higher the value for the setup times, the less beneficial it is to pre-empt 

activities and hence, the closer the problem resembles to the basic RCPSP. Second, the table 

reveals that for t = 0 and t = 4, the dedicated procedures for the RCPSP and the PRCPSP-FT 

without setup times outperform our branch-and-bound procedure. If t = 0, the problem boils 

down to the PRCPSP-FT without setup times, that can be solved by the Debels and 

Vanhoucke (2006) procedure, leading to an average CPU-time reduction from 2.333 to 0.911 

seconds. Likewise, if t = 4, the RCPSP instances that can be solved faster by the DH92 

procedure, resulting in an average CPU-time decrease from 0.077 to 0.002 seconds. Last, it is 

worth mentioning that the option to fast track has a major effect on the project lead-time, even 

with high values for the setup times. As an example, the PRCPSP without setup times results 

only in an average of 1% lead-time improvement, while the PRCPSP-FT with setup times of 3 
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still lead to an average improvement of 2%. This illustrates that setup times do not prevent the 

PRCPSP-FT to find schedule improvements. Hence, if technical restriction allow a within-

activity fast tracking, even within the presence of relatively high setup costs, it is still 

beneficial to allow activity pre-emption as a technique to reduce the project lead-time. 

 

 

6 CONCLUSIONS 

The previous research of the preemptive resource-constrained project scheduling 

problem (PRCPSP) has shown that activity pre-emption drastically increases the problem 

complexity and might lead to only a small decrease in the total project lead-time. However, a 

recently studied pre-emptive extension, known as the pre-emptive resource-constrained 

project scheduling problem with fast tracking (PRCPSP-FT, Debels and Vanhoucke (2006)), 

allows that these pre-emptive sub-activities can be executed in parallel, and leads to a major 

decrease in the total project lead-time. 

In this paper, we have extended the pre-emptive resource-constrained project 

scheduling problem with setup times and a fast tracking option between pre-emptive sub-parts 

of activities. We have presented a branch-and-bound procedure, based on the principles of the 

RCPSP procedure of Demeulemeester and Herroelen (1992), to cope with the new problem 

type and reported detailed computational experience. 

Our experiments revealed that the incorporation of setup times further increases the 

complexity of the PRCPSP-FT. However, the improvement in the project lead-time, compared 

to the basic RCPSP, shows that the trade-off between problem complexity and the resulting 

schedule quality is worth investigating. Consequently, it lies in our future intensions to 

develop meta-heuristic procedures in order to solve more challenging and realistic problem 

instances where setup times can be incorporated when activities are pre-empted and these pre-

emptive sub-activities can be fast tracked.  
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FIGURE 1 

An example project with a corresponding optimal RCPSP schedule 
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FIGURE 2 

The example sub-activity network and optimal schedule for the PRCPSP-FT with setup 

times 
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FIGURE 3 

The sets PS, S, E1 and E2 at decision moment dm 
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FIGURE 4 

An illustrative partial schedule for theorem 1 

(Note that – for illustrative purposes – the resource availability has been changed to 5) 
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FIGURE 5 

The partial schedule at node 7 of level 6 of the branch-and-bound tree 
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FIGURE 6 

The partial schedule at node 3 of level 2 of the branch-and-bound tree and the 

corresponding minimal delaying alternatives 
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FIGURE 7 

The partial schedule at node 4 of level 3 of the branch-and-bound tree  
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FIGURE 8 

 

An illustrative partial schedule for theorem 4 

(Note that – for illustrative purposes – the resource availability has been changed to 5) 
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FIGURE 9 

The resource based lower bound for the example project at time instant 5 
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FIGURE 10 

The branch-and-bound tree for the example project of figure 2 
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TABLE 1 

 

Performance of the dominance rules of section 3.2 

 

 

1+2 4 5

Avg.CPU 13.89 5.06 2.92 1.53 0.67

%Opt 87% 96% 98% 99% 99%

Avg.CPU 11.24 4.47 2.56 1.30 0.35

%Opt 90% 97% 98% 99% 100%

Avg.CPU 3.35 2.45 0.97 0.24 0.08

%Opt 97% 98% 99% 100% 100%

Avg.CPU 14.01 4.84 2.63 1.36 0.68

%Opt 87% 96% 98% 99% 99%

Avg.CPU 2.70 2.11 0.92 0.24 0.08

%Opt 98% 98% 99% 100% 100%

Avg.CPU 11.24 4.25 2.33 1.15 0.36

%Opt 90% 97% 98% 99% 100%

Avg.CPU 3.35 2.43 0.89 0.22 0.08

%Opt 97% 98% 99% 100% 100%

Avg.CPU 2.67 1.95 0.87 0.20 0.08

%Opt 98% 98% 99% 100% 100%

3 x

2 x

t  = 2 t  = 3 t  = 4

1

Scenario t  = 0 t  = 1

4 x

5 x x

7 xx

6 x x

8 x xx
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TABLE 2 

 

Performance of the lower bounds of section 3.3 

 

 

LB 0 LB r

Avg.CPU 3.88 17.13 9.55 2.95 1.17

%Opt 96% 85% 92% 98% 99%

Avg.CPU 2.69 2.46 2.00 0.87 0.44

%Opt 98% 98% 98% 99% 100%

Avg.CPU 2.67 1.95 0.87 0.20 0.08

%Opt 98% 98% 99% 100% 100%

t  = 2 t  = 3 t  = 4Scenario t  = 0 t  = 1
Lower bounds

X

1

2

3 X

X

X
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TABLE 3 

Computational results for various problem types 

 
10 12 14 16 18 20 Global

PRCPSP-FT with t  = 0

Avg.CPU 0.01 0.02 1.34 2.29 2.78 9.57 2.67

%Opt 100% 100% 99% 98% 98% 91% 98%

Avg.improvement 19% 17% 15% 14% 13% 11% 15%

PRCPSP-FT with t  = 1

Avg.CPU 0.00 0.03 0.07 1.93 1.66 7.98 1.95

%Opt 100% 100% 100% 98% 99% 93% 98%

Avg.improvement 12% 11% 9% 9% 8% 7% 9%
PRCPSP-FT with t  = 2

Avg.CPU 0.00 0.02 0.04 0.41 0.50 3.88 0.87

%Opt 100% 100% 100% 100% 100% 97% 99%

Avg.improvement 6% 6% 5% 5% 5% 4% 5%
PRCPSP-FT with t  = 3

Avg.CPU 0.00 0.00 0.01 0.02 0.03 1.13 0.20

%Opt 100% 100% 100% 100% 100% 99% 100%

Avg.improvement 3% 2% 2% 2% 2% 2% 2%
PRCPSP-FT with t  = 4

Avg.CPU 0.00 0.00 0.00 0.01 0.01 0.45 0.08

%Opt 100% 100% 100% 100% 100% 100% 100%

Avg.improvement 0% 0% 0% 0% 0% 0% 0%

RCPSP

Avg.CPU 0.00 0.00 0.00 0.00 0.00 0.01 0.00

%Opt 100% 100% 100% 100% 100% 100% 100%

Avg.improvement 0% 0% 0% 0% 0% 0% 0%

PRCPSP

Avg.CPU 0.00 0.00 0.02 0.06 0.57 3.20 0.64

%Opt 100% 100% 100% 100% 100% 97% 99%

Avg.improvement 0% 0% 1% 1% 0% 0% 1%

PRCPSP-FT

Avg.CPU 0.00 0.00 0.05 0.22 1.22 3.96 0.91

%Opt 100% 100% 100% 100% 99% 97% 99%

Avg.improvement 19% 17% 15% 14% 13% 12% 15%

Non-dummy activities 

 
 


