1,708 research outputs found

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    Modelling and performance analysis of mobile ad hoc networks

    Get PDF
    PhD ThesisMobile Ad hoc Networks (MANETs) are becoming very attractive and useful in many kinds of communication and networking applications. This is due to their efficiency, relatively low cost, and flexibility provided by their dynamic infrastructure. Performance evaluation of mobile ad hoc networks is needed to compare various architectures of the network for their performance, study the effect of varying certain network parameters and study the interaction between various parameters that characterise the network. It can help in the design and implementation of MANETs. It is to be noted that most of the research that studies the performance of MANETs were evaluated using discrete event simulation (DES) utilising a broad band of network simulators. The principle drawback of DES models is the time and resources needed to run such models for large realistic systems, especially when results with a high accuracy are desired. In addition, studying typical problems such as the deadlock and concurrency in MANETs using DES is hard because network simulators implement the network at a low abstraction level and cannot support specifications at higher levels. Due to the advantage of quick construction and numerical analysis, analytical modelling techniques, such as stochastic Petri nets and process algebra, have been used for performance analysis of communication systems. In addition, analytical modelling is a less costly and more efficient method. It generally provides the best insight into the effects of various parameters and their interactions. Hence, analytical modelling is the method of choice for a fast and cost effective evaluation of mobile ad hoc networks. To the best of our knowledge, there is no analytical study that analyses the performance of multi-hop ad hoc networks, where mobile nodes move according to a random mobility model, in terms of the end-to-end delay and throughput. This work ii presents a novel analytical framework developed using stochastic reward nets and mathematical modelling techniques for modelling and analysis of multi-hop ad hoc networks, based on the IEEE 802.11 DCF MAC protocol, where mobile nodes move according to the random waypoint mobility model. The proposed framework is used to analysis the performance of multi-hop ad hoc networks as a function of network parameters such as the transmission range, carrier sensing range, interference range, number of nodes, network area size, packet size, and packet generation rate. The proposed framework is organized into several models to break up the complexity of modelling the complete network and make it easier to analyse each model as required. This is based on the idea of decomposition and fixed point iteration of stochastic reward nets. The proposed framework consists of a mathematical model and four stochastic reward nets models; the path analysis model, data link layer model, network layer model and transport layer model. These models are arranged in a way similar to the layers of the OSI protocol stack model. The mathematical model is used to compute the expected number of hops between any source-destination pair; and the average number of carrier sensing, hidden, and interfering nodes. The path analysis model analyses the dynamic of paths in the network due to the node mobility in terms of the path connection availability and rate of failure and repair. The data link layer model describes the behaviour of the IEEE 802.11 DCF MAC protocol. The actions in the network layer are modelled by the network layer model. The transport layer model represents the behaviour of the transport layer protocols. The proposed models are validated using extensive simulations

    Towards Reliable Multi-Path Routing : An Integrated Cooperation Model for Drones

    Get PDF
    Ad-hoc networks have evolved into a vital wireless communication component by offering an adaptable infrastructure suitable for various scenarios in our increasingly interconnected and mobile world. However, this adaptability also exposes these networks to security challenges, given their dynamic nature, where nodes frequently join and leave. This dynamism is advantageous but presents resource constraints and vulnerability to malicious nodes, impacting data transmission reliability and security. In this context, this article explores the development of a secure routing protocol for Ad-hoc networks based on a cooperation reinforcement model to reduce the degradation of routing performance. We leverage the reputation of nodes as an additional security layer to monitor their behavior and evaluate their level of reliability. To exemplify our solution, we focus on drone fleets (UAVs) as a pertinent case study. Drones frequently operate in dynamic, challenging environments, relying on Ad-hoc networks for communication. They serve as an apt illustration, highlighting the complexities of the issue and the efficacy of our proposed remedy. The simulation results show the effectiveness of our proposed solution compared to stae-of-the-artsolutions

    Low interference routing for wireless ad-hoc networks

    Get PDF
    In this thesis the primary focus is on the problem of interference between messages. The thesis discusses why the messages are blocked in a system? How adding a message impacts the cost of all other available links, which can be established in the system. This thesis analyzes how the availability of channels, increase in number of nodes and increase in the transmission range help in increasing the number of messages that can be handled in the network. It is also analyzes how critical is the selection of the maximum transmission range MTR, transmission range TR and required transmission range RTR. Therefore, the focus is on the method of tagging or evaluation of cost for developing any communication link between two nodes. The thesis proposes a system of evaluation of cost of each link and then utilizes the standard Dijikstra\u27 s algorithm to evaluate the cost of each message route from its source to its destination. Chapter 2 explains the proposed algorithms with examples and the way to evaluate the cost of the links, subsequently Chapter 3 discusses the actual simulation environment, the cost matrix, distance matrix and the comparison of various selections of number of nodes in the system (N), maximum transmission range (MTR) and the number of available channels for each node (Ch)

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Reliable Multicast in Mobile Ad Hoc Wireless Networks

    Get PDF
    A mobile wireless ad hoc network (MANET) consists of a group of mobile nodes communicating wirelessly with no fixed infrastructure. Each node acts as source or receiver, and all play a role in path discovery and packet routing. MANETs are growing in popularity due to multiple usage models, ease of deployment and recent advances in hardware with which to implement them. MANETs are a natural environment for multicasting, or group communication, where one source transmits data packets through the network to multiple receivers. Proposed applications for MANET group communication ranges from personal network apps, impromptu small scale business meetings and gatherings, to conference, academic or sports complex presentations for large crowds reflect the wide range of conditions such a protocol must handle. Other applications such as covert military operations, search and rescue, disaster recovery and emergency response operations reflect the mission critical nature of many ad hoc applications. Reliable data delivery is important for all categories, but vital for this last one. It is a feature that a MANET group communication protocol must provide. Routing protocols for MANETs are challenged with establishing and maintaining data routes through the network in the face of mobility, bandwidth constraints and power limitations. Multicast communication presents additional challenges to protocols. In this dissertation we study reliability in multicast MANET routing protocols. Several on-demand multicast protocols are discussed and their performance compared. Then a new reliability protocol, R-ODMRP is presented that runs on top of ODMRP, a well documented best effort protocol with high reliability. This protocol is evaluated against ODMRP in a standard network simulator, ns-2. Next, reliable multicast MANET protocols are discussed and compared. We then present a second new protocol, Reyes, also a reliable on-demand multicast communication protocol. Reyes is implemented in the ns-2 simulator and compared against the current standards for reliability, flooding and ODMRP. R-ODMRP is used as a comparison point as well. Performance results are comprehensively described for latency, bandwidth and reliable data delivery. The simulations show Reyes to greatly outperform the other protocols in terms of reliability, while also outperforming R-ODMRP in terms of latency and bandwidth overhead
    • …
    corecore