39 research outputs found

    Geometric Combinatorics of Transportation Polytopes and the Behavior of the Simplex Method

    Full text link
    This dissertation investigates the geometric combinatorics of convex polytopes and connections to the behavior of the simplex method for linear programming. We focus our attention on transportation polytopes, which are sets of all tables of non-negative real numbers satisfying certain summation conditions. Transportation problems are, in many ways, the simplest kind of linear programs and thus have a rich combinatorial structure. First, we give new results on the diameters of certain classes of transportation polytopes and their relation to the Hirsch Conjecture, which asserts that the diameter of every dd-dimensional convex polytope with nn facets is bounded above by ndn-d. In particular, we prove a new quadratic upper bound on the diameter of 33-way axial transportation polytopes defined by 11-marginals. We also show that the Hirsch Conjecture holds for p×2p \times 2 classical transportation polytopes, but that there are infinitely-many Hirsch-sharp classical transportation polytopes. Second, we present new results on subpolytopes of transportation polytopes. We investigate, for example, a non-regular triangulation of a subpolytope of the fourth Birkhoff polytope B4B_4. This implies the existence of non-regular triangulations of all Birkhoff polytopes BnB_n for n4n \geq 4. We also study certain classes of network flow polytopes and prove new linear upper bounds for their diameters.Comment: PhD thesis submitted June 2010 to the University of California, Davis. 183 pages, 49 figure

    Min-max results in combinatorial optimization

    Get PDF

    Zuordnungsproblem auf Hypergraphen

    Get PDF
    Diese Arbeit beschäftigt sich mit dem Hypergraph Assignment Problem (Abkürzung "HAP", dt.: Zuordnungsproblem auf Hypergraphen), einem Mengenzerlegungsproblem auf einem speziellen Typ von Hypergraphen. Das HAP verallgemeinert das Zuordnungsproblem von bipartiten Graphen auf eine Struktur, die wir bipartite Hypergraphen nennen, und ist durch eine Anwendung in der Umlaufplanung im Schienenverkehr motiviert. Die Hauptresultate betreffen die Komplexität, polyedrische Ergebnisse, die Analyse von Zufallsinstanzen sowie primale Methoden für das HAP. Wir beweisen, dass das HAP NP-schwer und APX-schwer ist, sogar wenn wir uns auf kleine Hyperkantengrößen und Hypergraphen mit einer speziellen, partitionierten Struktur beschränken. Darüber hinaus untersuchen wir die Komplexität der Mengenpackungs- sowie Mengenüberdeckungsrelaxierung und geben für bestimmte Fälle Approximations- und exakte Algorithmen mit einer polynomiellen Laufzeit an. Für das Polytop des Zuordnungsproblems ist eine vollständige lineare Beschreibung bekannt. Wir untersuchen daher auch das HAP-Polytop. Dafür ist die Anzahl der Facettenungleichungen schon für sehr kleine Problemgrößen sehr groß. Wir beschreiben eine Methode zur Aufteilung der Ungleichungen in Äquivalenzklassen, die ohne die Verwendung von Normalformen auskommt. Die Facetten in jeder Klasse können durch Symmetrien ineinander überführt werden. Es genügt, einen Repräsentanten aus jeder Klasse anzugeben, um ein vollständiges Bild der Polytopstruktur zu erhalten. Wir beschreiben den Algorithmus "HUHFA", der diese Klassifikation nicht nur für das HAP, sondern für beliebige kombinatorische Optimierungsprobleme, die Symmetrien enthalten, durchführt. Die größtmögliche HAP-Instanz, für die wir die vollständige lineare Beschreibung berechnen konnten, hat 14049 Facetten, die in 30 Symmetrieklassen aufgeteilt werden können. Wir können 16 dieser Klassen kombinatorisch interpretieren. Dafür verallgemeinern wir Odd-Set-Ungleichungen für das Matchingproblem unter Verwendung von Cliquen. Die Ungleichungen, die wir erhalten, sind gültig für Mengenpackungsprobleme in beliebigen Hypergraphen und haben eine klare kombinatorische Bedeutung. Die Analyse von Zufallsinstanzen erlaubt einen besseren Einblick in die Struktur von Hyperzuordnungen. Eine solche ausführliche Analyse wurde in der Literatur theoretisch und praktisch bereits für das Zuordnungsproblem durchgeführt. Als eine Verallgemeinerung dieser Ergebnisse für das HAP beweisen wir Schranken für den Erwartungswert einer Hyperzuordnung mit minimalen Kosten, die genau die Hälfte der maximal möglichen Anzahl an Hyperkanten, die keine Kanten sind, benutzt. In einem sog. vollständigen partitionierten Hypergraphen G2,2n mit Hyperkantenkosten, die durch unabhängig identisch exponentiell verteilte Zufallsvariablen mit Erwartungswert 1 bestimmt sind, liegt dieser Wert zwischen 0.3718 und 1.8310, wenn die Knotenanzahl gegen unendlich strebt. Schließlich entwickeln wir eine exakte kombinatorische Lösungsmethode für das HAP, die drei Ansätze kombiniert: Eine Nachbarschaftssuche mit Nachbarschaften exponentieller Größe, die Composite-Columns-Methode für das Mengenzerlegungsproblem sowie den Netzwerksimplexalgorithmus.This thesis deals with the hypergraph assignment problem (HAP), a set partitioning problem in a special type of hypergraph. The HAP generalizes the assignment problem from bipartite graphs to what we call bipartite hypergraphs, and is motivated by applications in railway vehicle rotation planning. The main contributions of this thesis concern complexity, polyhedral results, analyses of random instances, and primal methods for the HAP. We prove that the HAP is NP-hard and APX-hard even for small hyperedge sizes and hypergraphs with a special partitioned structure. We also study the complexity of the set packing and covering relaxations of the HAP, and present for certain cases polynomial exact or approximation algorithms. A complete linear description is known for the assignment problem. We therefore also study the HAP polytope. There, we have a huge number of facet-defining inequalities already for a very small problem size. We describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of the polytope. We propose the algorithm "HUHFA" for the classification that is applicable not only to the HAP but combinatorial optimization problems involving symmetries in general. In the largest possible HAP instance for which we could calculate the complete linear description, we have 14049 facets, which can be divided into 30 symmetry classes. We can combinatorially interpret 16 of these classes. This is possible by employing cliques to generalize the odd set inequalities for the matching problem. The resulting inequalities are valid for the polytope associated with the set packing problem in arbitrary hypergraphs and have a clear combinatorial meaning. An analysis of random instances provides a better insight into the structure of hyperassignments. Previous work has extensively analyzed random instances for the assignment problem theoretically and practically. As a generalization of these results for the HAP, we prove bounds on the expected value of a minimum cost hyperassignment that uses half of the maximum possible number of hyperedges that are not edges. In a certain complete partitioned hypergraph G2,2n with i. i. d. exponential random variables with mean 1 as hyperedge costs it lies between 0.3718 and 1.8310 if the vertex number tends to infinity. Finally, we develop an exact combinatorial solution algorithm for the HAP that combines three methods: A very large-scale neighborhood search, the composite columns method for the set partitioning problem, and the network simplex algorithm

    Polyhedral Approaches to Hypergraph Partitioning and Cell Formation

    Get PDF
    Ankara : Department of Industrial Engineering and Institute of Engineering and Science, Bilkent University, 1994.Thesis (Ph.D.) -- -Bilkent University, 1994.Includes bibliographical references leaves 152-161Hypergraphs are generalizations of graphs in the sense that each hyperedge can connect more than two vertices. Hypergraphs are used to describe manufacturing environments and electrical circuits. Hypergraph partitioning in manufacturing models cell formation in Cellular Manufacturing systems. Moreover, hypergraph partitioning in VTSI design case is necessary to simplify the layout problem. There are various heuristic techniques for obtaining non-optimal hypergraph partitionings reported in the literature. In this dissertation research, optimal seeking hypergraph partitioning approaches are attacked from polyhedral combinatorics viewpoint. There are two polytopes defined on r-uniform hypergraphs in which every hyperedge has exactly r end points, in order to analyze partitioning related problems. Their dimensions, valid inequality families, facet defining inequalities are investigated, and experimented via random test problems. Cell formation is the first stage in designing Cellular Manufacturing systems. There are two new cell formation techniques based on combinatorial optimization principles. One uses graph approximation, creation of a flow equivalent tree by successively solving maximum flow problems and a search routine. The other uses the polynomially solvable special case of the one of the previously discussed polytopes. These new techniques are compared to six well-known cell formation algorithms in terms of different efficiency measures according to randomly generated problems. The results are analyzed statistically.Kandiller, LeventPh.D

    Discrete Geometry

    Get PDF
    A number of important recent developments in various branches of discrete geometry were presented at the workshop. The presentations illustrated both the diversity of the area and its strong connections to other fields of mathematics such as topology, combinatorics or algebraic geometry. The open questions abound and many of the results presented were obtained by young researchers, confirming the great vitality of discrete geometry

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr

    The Gomory-Chvátal closure : polyhedrality, complexity, and extensions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2011.Vita. Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-166).In this thesis, we examine theoretical aspects of the Gomory-Chvátal closure of polyhedra. A Gomory-Chvátal cutting plane for a polyhedron P is derived from any rational inequality that is valid for P by shifting the boundary of the associated half-space towards the polyhedron until it intersects an integer point. The Gomory-ChvAital closure of P is the intersection of all half-spaces defined by its Gomory-Chvátal cuts. While it is was known that the separation problem for the Gomory-Chvátal closure of a rational polyhedron is NP-hard, we show that this remains true for the family of Gomory-Chvátal cuts for which all coefficients are either 0 or 1. Several combinatorially derived cutting planes belong to this class. Furthermore, as the hyperplanes associated with these cuts have very dense and symmetric lattices of integer points, these cutting planes are in some- sense the "simplest" cuts in the set of all Gomory-Chvátal cuts. In the second part of this thesis, we answer a question raised by Schrijver (1980) and show that the Gomory-Chvátal closure of any non-rational polytope is a polytope. Schrijver (1980) had established the polyhedrality of the Gomory-Chvdtal closure for rational polyhedra. In essence, his proof relies on the fact that the set of integer points in a rational polyhedral cone is generated by a finite subset of these points. This is not true for non-rational polyhedral cones. Hence, we develop a completely different proof technique to show that the Gomory-Chvátal closure of a non-rational polytope can be described by a finite set of Gomory-Chvátal cuts. Our proof is geometrically motivated and applies classic results from polyhedral theory and the geometry of numbers. Last, we introduce a natural modification of Gomory-Chvaital cutting planes for the important class of 0/1 integer programming problems. If the hyperplane associated with a Gomory-Chvátal cut for a polytope P C [0, 1]' does not contain any 0/1 point, shifting the hyperplane further towards P until it intersects a 0/1 point guarantees that the resulting half-space contains all feasible solutions. We formalize this observation and introduce the class of M-cuts that arises by strengthening the family of Gomory- Chvátal cuts in this way. We study the polyhedral properties of the resulting closure, its complexity, and the associated cutting plane procedure.by Juliane DunkelPh.D

    Combinatorial Optimization

    Get PDF
    This report summarizes the meeting on Combinatorial Optimization where new and promising developments in the field were discussed. Th

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr

    Discrete Geometry

    Get PDF
    [no abstract available
    corecore