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Abstract

In this thesis, we examine theoretical aspects of the Gomory-Chvital closure of polyhe-
dra. A Gomory-Chvital cutting plane for a polyhedron P is derived from any rational
inequality that is valid for P by shifting the boundary of the associated half-space to-
wards the polyhedron until it intersects an integer point. The Gomory-ChvAital closure
of P is the intersection of all half-spaces defined by its Gomory-Chvital cuts.

While it is was known that the separation problem for the Gomory-Chvital closure
of a rational polyhedron is NP-hard, we show that this remains true for the family of
Gomory-Chvital cuts for which all coefficients are either 0 or 1. Several combinatorially
derived cutting planes belong to this class. Furthermore, as the hyperplanes associated
with these cuts have very dense and symmetric lattices of integer points, these cutting
planes are in some- sense the "simplest" cuts in the set of all Gomory-Chvital cuts.

In the second part of this thesis, we answer a question raised by Schrijver (1980)
and show that the Gomory-Chvital closure of any non-rational polytope is a polytope.
Schrijver (1980) had established the polyhedrality of the Gomory-Chvdtal closure for
rational polyhedra. In essence, his proof relies on the fact that the set of integer points
in a rational polyhedral cone is generated by a finite subset of these points. This is not
true for non-rational polyhedral cones. Hence, we develop a completely different proof
technique to show that the Gomory-Chvital closure of a non-rational polytope can be
described by a finite set of Gomory-Chvital cuts. Our proof is geometrically motivated
and applies classic results from polyhedral theory and the geometry of numbers.

Last, we introduce a natural modification of Gomory-Chvaital cutting planes for the
important class of 0/1 integer programming problems. If the hyperplane associated
with a Gomory-Chvital cut for a polytope P C [0, 1]' does not contain any 0/1 point,
shifting the hyperplane further towards P until it intersects a 0/1 point guarantees that
the resulting half-space contains all feasible solutions. We formalize this observation
and introduce the class of M-cuts that arises by strengthening the family of Gomory-
Chvital cuts in this way. We study the polyhedral properties of the resulting closure, its
complexity, and the associated cutting plane procedure.
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Chapter 1

Introduction

The theory of integer linear programming provides some of the most important tools and

approaches for solving combinatorial optimization problems. Cutting plane methods in

combination with branch-and-cut algorithms are among the most successful techniques

for solving integer linear programs. Hence, studying theoretical and computational as-

pects of cutting planes and understanding the structural properties of sets that naturally

arise from them is fundamental in developing efficient algorithms for many important

combinatorial optimization problems.

Integer linear programming is concerned with the optimization of a linear function

over the integer points in a polyhedron. Formally, an integer linear program can be

written as max {cx Ax < b, x E Zf}, where c E Z" is the objective function vec-

tor, A E ZiX" the constraint matrix, and b E Zm the right-hand side vector. Inte-

ger programming is, in general, NP-hard and, hence, it is unlikely that there exists a

polynomial-time algorithm that solves all instances. If P = {x E R| Ax < b} denotes

the underlying polyhedron of the integer program and Pr = conv {x C Zn| x E P} the

convex hull of all integer points in P, the integer program can be equivalently expressed

as linear programming problem max {cx x c Pr}. The difficulty in applying this equiv-

alence is that representing Pr by linear inequalities is, generally, a difficult task. Given

that a nice description of the integer hull P is known - in the sense that it can be decided

in polynomial time whether a given point is contained in Pr or, if not, that a violated

constraint can be exhibited in polynomial time - the problem can be solved efficiently via

the ellipsoid method. However, for most combinatorial optimization problems a linear



description of P_ with these properties is not known; and in the case that a problem is

thought to be intractable, it is unlikely that such a description exists.

A general approach to solve these problems even so, is to approximate the convex

hull of feasible integral solutions by some rational polyhedron P that has the same set

of integer points and for which the separation problem can be decided efficiently. If the

optimization over the relaxed polyhedron results in an integral optimal solution, the same

point yields an optimal solution to the original problem. In general, however, one cannot

assume this to be the case and cutting plane methods represent a powerful technique to

iteratively arrive at an optimal integral solution. The basic idea behind these methods

is to refine the relaxation P of the optimization problem by means of cutting planes. A

cutting plane for a polyhedron P is an inequality that is valid for its integer hull P1 , but

not necessarily for P itself. In other words, a cutting plane potentially strengthens the

approximation P of P by cutting off fractional points in P. In a typical cutting plane

algorithm, the optimization problem for the relaxation P is solved and, if the optimal

solution x* is fractional, a cutting plane that is violated by x* is added to the system

of inequalities defining P and, hence, a tighter approximation of P, is obtained. In this

manner valid inequalities are added to the current relaxation until the linear optimization

results in an integral optimal solution.

Arguably, one of the most famous families of cutting planes was first introduced in

Gomory's cutting plane method (Gomory 1958) and later, more formally studied, by

Chvital (1973). A Gomory-Chvdtal cutting plane for a polyhedron P is an inequality

of the form ax < Lao], where a is an integral vector and ax < ao is valid for P. If the

components of a are relatively prime, it is not difficult to see that ax < Lao] describes

the integer hull H, of the half-space H = {x - R"|I ax < ao}. Geometrically, H,

arises by shifting H towards the polyhedron until its bounding hyperplane contains an

integer point. Clearly, for every half-space H with the property that P C H, it holds

that P C H1 . Hence, the intersection of all half-spaces defined by the Gomory-Chvital

cuts of the polyhedron P defines an approximation of its integer hull PI. The resulting

set is called the Gomory-Chvdtal closure of the polyhedron P or the elementary closure,

and it is, typically, denoted by P'. Chvital investigated the sequence of successively

tighter approximations of the integer hull of a rational polyhedron that arises from a

repeated application of all Gomory-ChvAtal cuts to the polyhedron. This iterative process



is also referred to as the Gomory-Chvdtal procedure. The minimal number of rounds

that are necessary to obtain P with this procedure is called the Chvdital rank of P.

Chvital showed that for every rational polytope this number is finite and Schrijver (1980)

extended the result to rational polyhedra. Hence, the Gomory-Chvital procedure defines

a generic method to generate the integer hull of rational polyhedron, without requiring

any knowledge of the structure of the underlying problem.

Given the formal definition of the elementary closure, it is not obvious whether the

sets of successively tighter approximations obtained during the Gomory-Chvaital proce-

dure are polyhedra themselves, that is, whether they can be described by a finite set of

Gomory-Chvital cuts. Yet, Schrijver (1980) showed that the Gomory-Chvaital closure of

a rational polyhedron is itself a polyhedron: the Gomory-Chvdtal cuts corresponding to

a so-called totally dual integral system of linear inequalities determining P are sufficient

to describe P'. In the same paper, Schrijver raised the question of whether the Gomory-

Chvaital closure of a general polytope is also defined by a finite set of inequalities. As

the notion of total dual integrality does not generalize towards non-rational systems of

linear inequalities, the proof technique applied for the rational case does not extend to

non-rational polyhedra. Moreover, it is well-known that the integer hull of a non-rational

polyhedron may not be a polyhedron and the same is true for the Gomory-Chvital clo-

sure of a non-rational polyhedron. However, for bounded polyhedra, that is, polytopes,
the integer hull clearly is a polytope. The question as to whether the Gomory-Chvital

closure of a non-rational polytope is a polytope has remained open since Schrijver (1980)

posted it. In this thesis, we answer this question in the affirmative and show that the

Gomory-Chvital closure of a non-rational polytope can be described by a finite set of

Gomory-Chvaital cuts; that is, it is a polytope itself.

Most often integer programming formulations of combinatorial optimization problems

have variables that can take the value 0 or 1, depending on the occurrence of a particular

event. In other words, the feasible sets of the linear relaxations are polytopes in the unit

cube [0, 1]'. While one can already construct general polytopes of arbitrary large Chvaital

ranks in two dimensions, the Chvital rank of polytopes in the unit cube is polynomi-

ally bounded in the dimension (Bockmayr et al. 1999 and Eisenbrand and Schulz 2003).

Hence, the special structure of these polytopes has a significant impact on the efficiency

of the Gomory-Chvaital procedure. On the other hand, since Gomory-Chvital cuts are



defined for general integer programs, not all the structural properties that distinguish

polytopes in the unit cube from the general case are exploited by the procedure. In this

thesis, we introduce a natural strengthening of Gomory-Chvital cutting planes for the

important subclass of 0/1 integer programs. As described above, the classic Gomory-

Chvital cut associated with a valid inequality ax < ao is obtained by shifting the bound-

ary of the half-space H = {x E RI| ax < ao} towards the polytope until it intersects an

integral point. The procedure guarantees that every integer point in R" that satisfies the

original inequality also satisfies the Gomory-Chvital cut. However, to derive a cutting

plane for a polytope P in the n-dimensional unit cube [0, 1]", it suffices to require only

that every point in {0, 1}" that satisfies the original inequality satisfies the modified cut.

This guarantees that no integer point in P violates the strengthened inequality. From a

geometric point of view, we can push the boundary of H until it intersects a 0/1 point

and, hence, we potentially obtain a valid inequality for the integer hull that strictly dom-

inates the corresponding Gomory-Chvital cut. In this thesis, we formalize this idea. We

introduce a family of refined Gomory-Chvital cuts for polytopes in the unit cube and

study various aspects of the elementary closure arising from this class of cuts. For exam-

ple with respect to structural properties, we show that for any rational polytope in the

unit cube, the elementary closure associated with this family of refined Gomory-Chvital

cuts is again a polytope. Furthermore, we characterize its facet-defining inequalities and

consider related complexity aspects. We also compare this new closure to elementary

closures associated with important families of cutting planes for 0/1 integer programs

discussed in the literature. Finally, we investigate the cutting plane procedure associated

with these strengthened Gomory-Chvital cuts. More precisely, we study how quickly an

iterative application of the described family of cutting planes to a polytope generates its

integer hull.

Given the significance of an efficient separation procedure when solving linear pro-

gramming problems and the importance of cutting plane methods in integer program-

ming, the meaning of efficient separation algorithms for families of cutting planes is

evident. Eisenbrand (1999) proved that the problem of deciding whether a given point

is contained in the Gomory-Chvital closure of a polyhedron is NP-hard. His result is

based on an observation of Caprara and Fischetti (1996a) who showed that the separa-

tion problem for the subclass of so-called {0, }}-Gomory-Chvital cuts is NP-hard. In

this thesis, we investigate the complexity of the separation problem for the subclass of



Gomory-Chvital cuts ax < [aoj for which the coefficients of the normal vector a are all

either 0 or 1. On the one hand, several important combinatorially derived cutting planes

belong to this family of cuts. On the other hand, the integral hyperplanes that are de-

scribed by normal vectors in the set {0, 1}" are among the most symmetric hyperplanes

spanned by integral points in R". More precisely, the lattices of integer points in these

hyperplanes are very dense. We show that for this subclass of Gomory-Chvital cutting

planes, the separation problem is already NP-hard.

1.1 Outline and Main Contributions

This thesis is divided into six chapters, including this chapter and the concluding

Chapter 6. Each of the Chapters 3, 4, and 5 is largely coherent and builds on the results

and concepts introduced in Chapter 2.

Chapter 2 While we assume that the reader is familiar with basic concepts of linear

algebra, polyhedral theory, and complexity theory, we review in Chapter 2 the most

important definitions and concepts that the subsequent chapters rely on. In particular,
we introduce basic notations and provide an introduction into polyhedral theory, linear

programming, integer programming, lattices, and cutting plane methods.

Chapter 3 In Chapter 3, we study the complexity of the membership and separation

problem associated with the subclass of Gomory-Chvital cuts ax < [aoj for which the

normal vector a has coefficients 0 or 1. Several combinatorially derived cutting planes

belong to this class and the hyperplanes associated with these cuts are, in a sense, the

most symmetric hyperplanes spanned by integer points. We show that the membership

problem for the closure associated with this family of cutting planes is NP-hard and,
hence, so is the corresponding separation problem.

Chapter 4 It has been well-known that, despite its definition as the intersection of

an infinite number of integral half-spaces, the Gomory-Chvital closure of any rational

polyhedron is itself a polyhedron. A question that was raised by Schrijver (1980) and



which has been open since then, is whether the same is true for the Gomory-Chvital

closure of a non-rational polytope. (For non-rational polyhedra, the Gomory-Chvital

closure does not need to be polyhedron.) In Chapter 4, we answer Schrijver's question

and show that for every non-rational polytope a finite system of rational inequalities is

sufficient to describe its Gomory-Chvital closure. Hence, the Gomory-Chvatal closure

of a non-rational polytope is, indeed, a polytope. Our proof is geometrically motivated

and applies various classic results from polyhedral theory and the geometry of numbers.

Chapter 5 Gomory-Chvital cutting planes can be applied to arbitrary integer

programming problems, that is, arbitrary polyhedra in R". As a result, their application

to 0/1 integer programming problems cannot exploit all the structural properties that

distinguish polytopes in the unit cube from general polyhedra. In Chapter 5, we

therefore introduce a natural modification of Gomory-Chvital cutting planes for the

important subclass of polytopes in the unit cube [0, 1]. This new family of cutting

planes arises from the set of Gomory-Chvital cuts by strengthening the right-hand sides

of cuts ax < LaoJ for which the hyperplane {x - Rn|I ax = Laoj } does not contain any

0/1 point. Hence, in general, the implied cutting plane dominates the corresponding

Gomory-Chvital cut. As a result, the elementary closure of a polytope P C [0, 1]"

associated with this new family of cutting planes defines an approximation of the integer

hull P, that is potentially better than the Gomory-Chvaital closure P'. We study various

aspects of this new closure and show that several properties of the Gomory-Chvital

closure have a natural analog with respect to the strengthened closure. Moreover, we

compare this closure with other elementary closures from the literature, investigate

the cutting plane procedure associated with it, and examine related complexity questions.



Chapter 2

Preliminaries

We assume that the reader is familiar with basic aspects of linear algebra, graph the-

ory, convex and polyhedral theory as well as complexity theory. A nice introduction

to polyhedral theory and proofs of many of the results presented in Sections 2.3 to 2.6

can be found in textbooks such as Schrijver (1986) or Ziegler (1995). For an introduc-

tion to the theory of computational complexity, we refer to Papadimitriou (1994) and

Garey and Johnson (1979).

2.1 Basics and Notations

The symbols R, Q, Z, and N denote the set of real, rational, integer, and natural numbers,

respectively. R+, Q+, Z+, and N+ are the restrictions of these sets to the nonnegatives.

If a is a real number, then [a] denotes the largest integer less than or equal to a and [a]

denotes the smallest integer larger than or equal to a. For integer numbers a and b, we

say that b divides a if a = Ab for some integer A. If a1 ,.. . , a, are integer numbers, not

all equal to 0, then the largest integer dividing each of a1 ,... , a, is called the greatest

common divisor of a1 ,..., a,; it is denoted by gcd(a1,..., an). The numbers a1 ,..., an

are called relatively prime if gcd(a, . . . , a,) = 1. For 1 < i < n, we denote by ej the unit

vector in R' that has all components 0, except for the i-th component, which is 1.



2.2 Linear Algebra

For sets U and V, we write U C V, if U is contained in V. If the containment is strict,

we write U C V. If U and V are subsets of R", then U+V {u+vlu E U,v E V}.

If V = {v} is a singleton, then we write U + v instead of U + {v}.

For a row vector v = (vI, . . ., vn), we use the same notation v to address its column

vector vT. We implicitly assume compatibility of sizes when we write products between

vectors or products between vectors and matrices. Given two vectors u, v E R", we

denote their scalar product by uv, that is uv =(, v) = unvj. If uv = 0, that is, the

vectors u and v are perpendicular, then we also write u I v. We use the notations l|vii
and ||v||K for the Euclidean norm and the maximum norm of the vector v, respectively.

That is, lvi |:=11v 2 := fvv and ||v||K := max{Iv1, |.

The full-dimensional ball centered at a point c E R n with radius p is denoted

by B(c, p), that is, B(c, p) {x E R I ||X - c| < p}.

Let S be a subset of the Euclidean space R'. A point x C R" is an interior point

of S if there exists an E > 0 such that B(x, E) C S. The set of all interior points of S is

called the interior of S and denoted by int(S). The (topological) closure of S, denoted

by S, is the set of points x E R' such that every open ball centered at x contains a

point of S. The boundary bd(S) of S is the set of all points in the closure of S that

are not interior points, that is, bd(S) = S \ int(S). There are natural refinements of the

concepts interior and boundary for a. lower-dimensional set S, when S is considered as a

subset of its affine hull. The affine hull of S, denoted by aff(S), is the smallest affine set

containing S. That is,

aff (S) := aixi xi E S, azs E R, i = 1, .. k; azi = 1; k E N, k > 0 .

The relative interior ri(S) is defined as

ri(S) := {x e S I E > 0, B(x, E)naff(S) c S}

and the relative boundary is the set rbd(S) := S \ ri(S). The set S is convex, if for

any two points x, y E S and any A c [0, 1], Ax + (1 - A)y C S. The smallest convex set



containing S is called the convex hull of S and denoted by conv(S). We have

conv(S) := x Ek; ai = ; k E N, k > 0
i=1i=

The conical hull of S is the set of all conical combinations of vectors in S, that is

cone(S) := cixi xi E S, as E R+, i = 1, - k; k = 1, 2, ... .

For an affine space H C R", the maximal rational affine subspace of H is the affine

hull of the set of rational points in H.

2.2.1 Unimodular Transformations

A matrix U E Z"'" is called unimodular if it is invertible and U- E Z"e". In particu-

lar, U E Z""" is unimodular if and only if det(U) = ±1. Every unimodular matrix can be

obtained from the identity matrix by elementary column operations. Hence, unimodular

matrices describe series of elementary column operations.

A map f : Rn F R' is an affine map if f(x) = Lx + t for some matrix L E Rn

and vector t E Rk. A unimodular transformation is an affine map u : R" 1- R"

with u(x) = Ux + v such that U E Znr is a unimodular matrix and v E Z". Note

that a unimodular transformation is a bijection of Z".

2.2.2 Orthogonal Projections

Let U C R" be a linear vector space. The orthogonal complement U' of U is the set of

all vectors that are orthogonal to every vector in U, that is,

U' :={v E R|I v _L u for all u E U}

Given two vectors u, v c Rn, the vector v can be uniquely decomposed as v v + i,
where v = au for some a E R and where ii is a vector orthogonal to u. The vector v



is called the orthogonal projection of v onto u and given by

vU = proju(v) := u.
uu

Similarly, if U is a linear vector space and v EC R', then v can be written as v = u ± i,

where u E U and f) E U'. Then u is the orthogonal projection of v onto U and i5 is the

orthogonal projection of v onto U'. In other words, i is the unique vector satisfying

) E U-L and (v -i) E U .

The length of the vector i is called the distance between the v and the vector space U,

it is denoted by dist (, U) := I|||I. If U is a k-dimensional linear vector space with

orthogonal basis U1 ,... ,uk, then v = + with

k k

S=V - E pro j z, (v ) = v - E Vus .
j=1 j=1 a a

2.2.3 Parallelepipeds and Volume

Let a1,.. . , Un be linearly independent vectors in R'. The parallelepiped spanned by these

vectors is the set

II(ui, ... , 7uk) :=Ajui 0 < Ai < 1, i=1, .. ., k .

The corresponding semi-open parallelepiped is the set

(k

Let A denote the matrix with columns U1,. . . , . If k n, then A is a non-singular

square matrix and the absolute value of the determinant of A equals the volume of the

parallelepiped spanned by u1 ,. . . , u,. More precisely, let t1 := u1 and let Li denote the



orthogonal projection of ui onto (span(ui,. . . ,u- 1))', for i = 2,... ,n. Then

|det(A)I =vol(Ii (u. ,us)) F I |iI| . (2.1)
i=1

In general, if k < n, then the k-dimensional volume of the parallelepiped spanned

by U1 ,... , Uk is given by

k

I/|det(A T A) =vol(HI(u,... ,Uk)) iiil . (2.2)

2.3 Polyhedra and Linear Inequalities

A polyhedron in Rn is a set of the form P = {x E Rn I Ax < b}, where A is a real matrix

and b a real vector. The matrix A is called the constraint matrix of P. If A and b

can be chosen such that all their entries are rational, then P is a rational polyhedron.

A bounded polyhedron is called a polytope. The polyhedron C {x E R| Ax < 0}

is called a polyhedral cone; if 0 E C, then the cone is pointed. The dimension of a

polyhedron P equals (ISI - 1), where S is a maximal affinely independent subset of P;

that is, dim(P) = dim(aff(P)). A polyhedron P C R n is said to be full-dimensional if it

has dimension n.

From a geometrical point of view, a polyhedron is the intersection of a finite number of

affine half-spaces, where an affine half-space is a set of the form H = {x E R"| ax < ao}

for some non-zero vector a and some number ao. We write the half-space H also

as (ax < ao). The hyperplane {x E R' I ax = ao} is the boundary of the half-space H

and denoted by (ax = ao). If H is a rational half-space, that is, H = (ax < ao) for

some (a, ao) E Qn+1, then it always has a representation in which a is an integral vector

with relatively prime components. If H cannot be described by rational data, it is a

non-rational half-space. Similarly, the hyperplane (ax = ao) is a non-rational hyper-

plane if (ax < ao) is a non-rational half-space. We say that an inequality ax < ao is a

non-rational inequality if the associated half-space (ax < ao) is non-rational.

An equivalent definition of polyhedra says that every polyhedron is the sum of a con-

vex hull of a finite set of points plus a conical combination of a finite set of vectors. This



fact is summarized in the following theorem (see also Corollary 7.1b in Schrijver 1986).

Theorem 2.1 (Decomposition theorem for polyhedra) A subset P C R"

is a polyhedron, that is, an intersection of a finite set of closed half-

spaces P = {x E R' I Ax < b}, if and only if there exist vectors vU,...,vs and r1,...,rt

in R" such that

P = conv(vi, ... ,v') + cone(rl,. . ., rt).

Note that the Decomposition theorem holds both in real and rational spaces. In the

latter case, all vectors are restricted to the rationals. Hence, every polyhedron is finitely

generated and every finitely generated set is a polyhedron. In particular, a polytope is

the convex hull of a finite number of points.

The integer hull P of a polyhedron P is the convex hull of the integer points in P,

that is, P = conv({x Ix E P n Zn}). The following important observation is due to

Meyer (1974):

Theorem 2.2 If P is a rational polyhedron, then P is a rational polyhedron.

If P = P, then P is called an integral polyhedron. In particular, an integral polyhedron

is the convex hull of its integral points. A 0/1 polytope is the convex hull of a subset

of {0, 1}.

We say that a linear inequality ax < ao is valid for a polyhedron P if it is satisfied

by all points in x E P. A valid inequality ax < ao is called a supporting hyperplane of P

if az = ao for some z E P. A face of a polyhedron P is a non-empty set of the form

F=Pn (ax = ao) ,

such that ax < ao is a valid inequality for P. In particular, P itself is a face of P.

The inequality ax < ao is also called a face-defining inequality. We say that F is a

non-rational face, if it cannot be written as F = P n (ax = ao) such that (a, ao) E Qn"l.

The following equivalent characterization can be found in Schrijver (1980).



Proposition 2.3 A set F is a face of a polyhedron P = {x G R" | Ax < b} if and only

if F is non-empty and of the form F = {x E P| A'x = b'} for some subsystem A'x K b'

of Ax < b.

Similar to the dimension of the polyhedron P, the dimension of a face F of P is defined

as the dimension of its affine hull aff(F). A face F is called proper if F C P. The faces of

dimensions 0, 1, and dim(P) -1 are called vertices, edges, and facets, respectively. In par-

ticular the facets are the maximal proper faces. A face-defining inequality ax < ao such

that F =P n (ax = ao) is a facet, is called a facet-defining inequality. A minimal face

of P is a non-empty face that does not contain any other face. For a polytope, the vertices

are the minimal faces. The following result is due to Hoffman and Kruskal (1956):

Theorem 2.4 A set F is a minimal face of a polyhedron P = {x E R" |I Ax < b} if and

only if F is non-empty and

F {x e R A'x =b'}

for some subsystem A'x K b' of Ax < b.

A very useful and famous result regarding linear systems of inequalities is due to

Farkas and appears in the literature in many equivalent forms. Here, we state an 'affine'

version due to Haar (1918) and Weyl (1935).

Lemma 2.5 ('affine' Farkas' lemma) Let the system Ax K b of linear inequalities

have at least one solution and suppose that the linear inequality ax < ao holds for each x

satisfying Ax K b. Then for some a' < ao the linear inequality ax < a' is a nonnegative

linear combination of the inequalities in the system Ax K b.

2.4 Linear Programming

Linear programming is concerned with the maximization of a linear function over a

polyhedron. The linear programming problem (LP) can be stated in many equivalent



forms, one of them being

max cx 
(2.3)

s.t. Ax < b,

where A is a rational matrix and b and c rational vectors of suitable dimensions. Equiv-

alently, the problem can be written as max{cx I x C P}, where P = {x E R"| Ax < b}.

A point x E P is called a feasible solution of the LP and the set of all feasible solutions is

the feasible region. A linear programming problem is feasible, if the feasible region is non-

empty, and otherwise it is infeasible. An important result of linear programming is the

following duality theorem by von Neumann (1974) and Gale, Kuhn, and Tucker (1951).

Theorem 2.6 Let A be a matrix and let b and c be vectors. Then

max{cx I Ax < b} = min{by I y > 0, yA = c}

provided that both sets are nonempty.

Arguably, the best-known algorithm for solving linear programming problems is the

simplex method designed by Dantzig (1951). The basic idea of this combinatorial method

is to "walk along" the edges of the polyhedron underlying the linear program from vertex

to vertex, until an optimal vertex is reached. Although some artificial instances show

exponential running time, in practice and on the average the method is very efficient.

With Khachiyan's method (Khachiyan 1979), an extension of the ellipsoid method to

linear programming, one can solve explicitly given linear programs in polynomial time,

at least theoretically. Even if no explicit representation of a polyhedron P is known in

terms of linear inequalities, there is an extension of the method to problems for which

one can efficiently solve the following problem:

Definition 2.7 The separation problem. is:

Given a polyhedron P C R' and a vector x E R", decide whether C P and,

if not, find an inequality which is valid for P but violated by x.



The polynomial-time equivalence of separation and optimization was observed by

Gr6tschel, Lovaisz, and Schrijver (1981) and provides a powerful tool for solving certain

combinatorial optimization problems in polynomial time.

Theorem 2.8 For any polyhedron P C Rn, the separation problem is solvable in poly-

nomial time if and only if the optimization problem is solvable in polynomial time.

2.5 Integer Programming

If the set of feasible solutions of a linear program (2.3) is further constrained to integer

points, the resulting problem is an integer (linear) programming problem:

max cx

s.t. Ax < b (2.4)

x integral,

where A is a rational matrix and b is a rational vector. With P = {x E R" I Ax b}

being the underlying polyhedron, we can write the problem as

max{cx| x E PnZ} . (2.5)

The corresponding linear program max {cx I x E P} is called the linear programming

relaxation.

Unlike (2.3), the integer programming problem (2.4) has no known polynomial-time

algorithm. The problem is NP-complete, which means it is unlikely that such an al-

gorithm exists. As the integer hull P, of any rational polyhedron P is also a rational

polyhedron (see Theorem 2.2), the integer programming problem (2.4) can be reduced

to the linear programming problem

max{cx|xcP}.

However, there are difficulties related to this equivalence. First, there are many classes

of polytopes P for which the number of inequalities that are necessary to describe P



is exponentially large in terms of the size of the inequalities describing P. In addition,

describing the inequalities appears to be a difficult problem. Unless NP = co-NP, one

cannot find for any NP-complete problem a so-called NP-description of a class of inequal-

ities that describes all facets of the convex hull of integral solutions. Such a description

essentially allows us to decide in polynomial time, whether an inequality belongs to the

class or not (Karp and Papadimitriou 1980).

2.5.1 Hilbert Bases and Total Dual Integrality

A finite set of vectors a1 ,... , a E R' is called a Hilbert basis of the polyhedral

cone C = cone(ai,. . ., ak) if each integral vector in C can be written as a nonnegative

integral linear combination of ai, . . . , ak. An integral Hilbert basis is a Hilbert basis that

consists of integral vectors only. Every pointed rational polyhedral cone has a unique

minimal integral Hilbert basis (minimal with respect to taking subsets). The following

definition of total dual integrality is closely related to Hilbert bases and integral polyhe-

dra.

Definition 2.9 A system of rational linear inequalities Ax < b is called totally dual

integral if the minimum in

min{ybI yA = w, y > 0}

is attained by an integral vector y, for each integral vector w for which the minimum

exists.

Linear duality (Theorem 2.6) implies that if, Ax < b is a totally dual integral system

and b integral, the polyhedron {x E R"| Ax < b} is integral. The following result is due

to Giles and Pulleyblank (1979):

Theorem 2.10 For each rational polyhedron P C R" there exists a totally dual integral

system Ax < b such that A is integral and P = {x E Rn| Ax < b}.



2.6 Integer Linear Algebra

We say that a k x n matrix of full row rank is in Hermite normal form if it has the

form [B 0], where B E Rkxk is a nonsingular, lower triangular, nonnegative matrix.

Every matrix of full row rank can be brought into this form by a series of elementary

column operations.

Theorem 2.11 (Hermite normal form) If B is a k x n matrix of full row rank, then

there exists a unimodular matrix U E Z x" such that BU is a matrix in Hermite normal

form.

The following corollary gives necessary and sufficient conditions for the feasibility of

a single linear diophantine equation (see also Corollary 4.1a in Schrijver 1986).

Corollary 2.12 Let a1,...,a, be integer numbers. Then the linear equa-

tion a1x1 +... + anx, =0 has an integral solution x if and only if 0 is an integral

multiple of ged(a. a).

In particular, if a E Z" is a vector with relatively prime components, then there exists

an integral vector h E Z" such that ah = 1.

Given linearly independent vectors bi, . . . , bk in R', the lattice A(bi, . . . , bk) generated

by these vectors is the set of all integral linear combinations of b1 , . . . , bk, that is,

A(bi,.. bk) := Aibi Ai E Z, i" = 1, .. ., k .

The set of vectors b1,. . . , bk is called a basis and k is called the rank of the lattice. A

lattice can have several bases:

Theorem 2.13 Let A be a lattice in R" with basis b1,...,bk and let b',..., b' be

points of A. Furthermore, let B and B' denote the matrices with columns b1 ,...,bk

and b,. . . , b', respectively. Then b, .... , b' is a basis of A if and only if there exists a

unimodular matrix U G Zkxk with B'= BU.



It follows from the last theorem and (2.2) that the volume of the fundamental paral-

lelepiped of a basis of the lattice A, that is, the volume of the parallelepiped spanned by

the basis vectors, does not depend on the basis itself:

-\/Idet ((B')T(B')| = V|d-et((BU)T(BU))| = /|Idet(UT(BTB) U)|I= V |det (BTB)| .

The number I|det(BTBI is called the determinant of the lattice and denoted by det(A).

In particular, if B = (bi, . . . , b,) is a basis of A, then det(A) =det(B)I. From a geometric

point of view, it is clear that
n

det(A) < |b i.
i=1

The last inequality is also known as Hadamard's inequality. Hermite showed that every

lattice A has a basis bi,... , b,, such that

17 1|bi11 cndet(A) , (2.6)
i=1

where c, is a constant only depending on n. Note that if b1 , . . . , bn is an orthogonal

basis, then ||b 1 || ... ||b,|| = det(A). The ratio (|b1 ||. ... |bn||)/det(A) is also called the

orthogonality defect of the basis.

A famous algorithm due to Lenstra, Lenstra, and Lovisz (1982) - the lattice basis

reduction algorithm - constructs a basis with small orthogonality defect:

Theorem 2.14 Let A C R"n be a lattice. Then there exists a basis b1 ,. . . , b, such that

n

fj ||bill < 2"("~l)/4 det (A).
i=1

Note that the constant in Theorem 2.14 is not the same as the one in (2.6), as the

result by Lenstra, Lenstra, and Lovasz is constructive. A basis that satisfies the property

of Theorem 2.14 is called a reduced basis. The result naturally generalizes to lower-

dimensional lattices. There is another connection between the determinant of a matrix

and the parallelepiped spanned by its columns: the absolute value of the determinant

of an integral non-singular square matrix equals the number of integer points that are



contained in the parallelepiped spanned by the columns of the matrix (see Chapter 7,
Corollary 2.6 in Barvinok 2002).

Lemma 2.15 Let b1,. . . , b,, E Z" be linearly independent vectors. Then the number of

integer points in the semi-open parallelepiped

( Abi 0 < Ai < 1, 1 -I 1 . ,n

is equal to the absolute value of the determinant of the matrix with columns b1,... , bn.

2.7 The Cutting Plane Method

The cutting plane method was developed by Gomory (1958) for solving integer linear pro-

grams with the simplex method. A cutting plane for a polyhedron P = {x R | Ax < b}

is an inequality that is valid for the integer hull P1 , but not necessarily for P. The general

idea of the cutting plane method is to refine the feasible set of an optimization problem

by means of cutting planes, thereby obtaining a better approximation of P. In a typical

cutting plane algorithm, one starts with the linear relaxation P and solves the corre-

sponding linear program. If the optimal solution x* is fractional, a cutting plane that

is violated by x* is added to the system of inequalities defining P and, hence, a better

approximation of P, is obtained. In this manner, valid inequalities are added to the

current relaxation until the linear optimization results in an integral optimal solution.

Over the years, numerous types and families of cutting planes have been introduced

and studied in the literature. Some of these cutting planes were derived for particular

combinatorial optimization problems and, hence, rely on a deeper knowledge of the

specific underlying structure of a problem. On the other hand, there are general families

of cutting planes that can be derived based solely on the polyhedral representation of

the problem. For an overview on the latter, we refer the reader to Cornuejols (2008) and

Cornuejols and Li (2000). In this thesis, we merely want to review the cutting planes that

were generated by Gomory's cutting plane method (Gomory 1958) and more formally

introduced by Chvital (1973).



2.7.1 Gomory-Chvtal Cutting Planes and the Elementary Clo-

sure

The simplest type of a rational polyhedron is a rational half-space, that is, a polyhe-

dron defined by a single rational inequality. Every rational half-space H has a repre-

sentation H = (ax < ao), where a is a nonzero vector with relatively prime integer

components. The integer hull of H is given by

H, = (ax < [ao])

To see this, observe the following: The subspace of R' defined by the system (ax = 0)
is integral because a is an integral vector. Furthermore, gcd(ai, . . . , a,) = 1 implies

that there exists some integral vector y with ay = 1 (see Theorem 2.12). Then every

hyperplane (ax = ao) can be seen as the translation of (ax = 0) by the vector aoy.

If ao E Z, then every integer point in (ax = 0) is mapped to an integer point and,

hence, (ax = ao) is integral. Geometrically, H1 arises from H by shifting the boundary

of H inwards until it contains an integral vector. The inequality ax < [ao] is a cutting

plane for H, since it is satisfied by all integer points in the half-space.

If P is a polyhedron and H a rational half-space such that P C H, then

clearly P, C H1 . Consequently, the inequality ax < Lao] is also a cutting plane of P. By

considering all rational half-spaces H with P C H, we obtain the elementary closure of

the polyhedron P:

P' := (ax < Lao]) (2.7)
(ax<ao)_P, aEZn

Clearly, one can restrict the intersection in (2.7) to integral normal vectors with relatively

prime components and half-spaces such that the bounding hyperplane (ax = ao) is a sup-

porting hyperplane of P. While the set of inequalities in (2.7) is infinite, (Schrijver 1980)

showed that a finite number of them are sufficient to describe P'.

Theorem 2.16 Let P = {x G R" | Ax < b} be a polyhedron such that Ax < b is a

totally dual integral system and A an integral matrix. Then P' = {x G R" | Ax < Lb] }.
In particular, for any rational polyhedron P, the set P' is a polyhedron.
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Figure 2-1: The inequality -2x 1 + 3x 2 K 4 - E is valid for P for some E > 0. The

inequality -2x 1 + 3x 2 : 3 is a cutting plane for P as it separates only fractional points

from P. The boundary of the half-space (-2x1 +3x 2  4- E) has been pushed towards P

until an integer point is contained in it.

By Lemma 2.5, every (supporting) valid inequality ax < ao for P = {x E R" I Ax < b}

can be obtained as a positive linear combination of the rows of the system Ax < b.

If A E RnXn, then the Gomory-Chvaital closure of P can be equivalently obtained as

P' n ((AA)x < LAbj) . (2.8)
AE[0,1)m, AAEZ"

A useful property of the Gomory-Chvital closure operation is that it commutes with

unimodular transformations.

Lemma 2.17 Let P be a rational polyhedron and let u : Rn" R R" be a unimodular

transformation. Then

(u(P))' = u(P')

2.7.2 The Gomory-Chvatal Procedure

The elementary closure operation - that is, the application of all Gomory-Chvatal cuts

to a polyhedron P - can be iterated so that a sequence of relaxations of the integer



hull P, of P is obtained. Defining P(O) := P and p(k+1) :- (p(k))' for k > 0, we

have P D p', P( 2) D ... D PI. This iterative method is also called the Gomory-

Chvdtal procedure. Chvital (1973) showed that for every rational polytope, there is a

natural number t such that P() = P,. In particular, the above sequence is a sequence

of successively tighter relaxations. Schrijver (1980) extended this result to unbounded

polyhedra (and non-rational polytopes).

Theorem 2.18 For each rational polyhedron P, there exists a natural number t such

that P() = Pr.

The smallest number t with the property that P(t) = P is called the Chvital rank of

the polyhedron. Even though the number is finite for every rational polyhedron, it can

be arbitrary large, even in dimension two (see Figure 2-2).

(0,(1)

(0,0)

Figure 2-2: (Chvital 1973) The polytope Pk= conv{(0, 0); (0, 1); (k, })} has the prop-

erty that P(k--1) C Pk. Because P, = conv{(0, 0); (0, 1)}, the Chvi'tal rank of Pk is at

least k. In particular, the rank of Pk is exponential in the encoding length of Pk, which

is O(log(k)).

In contrast to the above example, Bockmayr et al. (1999) proved that the Chvital

rank is polynomially bounded in the dimension n if the polytope is contained in the unit

cube [0, 1]". Eisenbrand and Schulz (2003) improved the upper bound:

Theorem 2.19 If P C [0, 1]", then the Chvital rank of P is bounded by a function

in O(n2 logn).



Chapter 3

The Complexity of Gomory-Chydtal

Cuts with Coefficients 0 or 1

3.1 Introduction

In order to solve a linear programming problem with the ellipsoid method it is not

necessary to rely on explicit inequality description of the underlying polyhedron. In

fact, it suffices to be able to decide whether a. given point is a solution of the problem

and, if not, to find a violated inequality (see, e.g., Gr6tschel, Lovisz, and Schrijver 1988,

Karp and Papadimitriou 1980). In particular, if one can solve the separation problem

for a polyhedron P in polynomial time, one can optimize any linear function over P

in polynomial time. This observation is invaluable for the solution of combinatorial

optimization problems with linear programming techniques as the polyhedra associated

with these problems generally have too many facets to be listed explicitly.

Example 3.1 (Matching problem) Given an undirected graph G = (V, E) with

vertex set V and edge set E, a matching Al C E in G is a set of pairwise non-adjacent

edges; that is, no two edges share a common vertex. The matching polytope is defined

as the convex hull of all incidence vectors associated with matchings in G and, hence, a



subset of RIE. A standard relaxation Q(G) of the matching polytope is given by

xe > 0 for all e E E (3.1)

S xe 1 for all v E V . (3.2)
eC6(v)

Here, 6(v) denotes the set of edges incident to the node v. Clearly, every integral so-

lution to the above system of constraints corresponds to a matching in G. However, in

general, Q(G) is not an integral polytope, that is, Q(G) $ Q1(G). In order to obtain

a linear description of the matching polytope, additional inequalities that are satisfied

by all solutions associated with matchings of the graph have to be added to Q(G). In

particular, any matching in G has the property that for any odd subset U C V of the

nodes, it has no more than (IUI - 1)/2 edges with both endpoints in U. If E(U) denotes

the set of edges with both endpoints in U, the constraints

ZecE(U) Xe < |U"1 for all U C V. IUI odd (3.3)

are valid for Q1 (G). In fact, Edmonds (1965) showed that the matching polytope is fully

described by the constraints (3.1), (3.2), and (3.3).

The matching polytope has an exponential number of facets. Yet, one can find a

maximum matching in polynomial time. This is because the separation problem for

odd-set inequalities (3.3) can be solved efficiently (Padberg and Rao 1982). (Note that

one can check in polynomial time whether a given point satisfies the inequalities (3.1)

and (3.2).) Another interesting observation is that the inequalities (3.3) are Gomory-

Chvital cuts for Q(G). They correspond to the valid inequalities obtained by summing

up the inequalities (3.2) for all nodes v E U, adding the inequalities -xe < 0 for every

edge e with exactly one endpoint in U, and dividing the result by 2. Hence, the Chvital

rank of the relaxation Q(G) is exactly 1.

A remarkable proportion of research in the integer programming community has been

devoted to finding efficient separation procedures. Typically, one would first identify valid

inequalities or facets of the convex hull of the feasible solutions to an integer programming

problem and then derive efficient separation algorithms or heuristics for these inequalities.



As a result, many of these separation procedures refer to problem-specific cuts, that

is, cutting planes that are derived combinatorially and require knowledge about the

underlying structure of a problem. Impressive results have been obtained in this way for

many important combinatorial optimization problems, especially in combination with

branch-and-cut algorithms (see, e.g., Padberg and Rinaldi 1991).

While the general sentiment in the 1990's was that general cutting planes, such

as Gomory-Chvi'tal cuts or lift-and-project cuts, were practically not useful, this

perception started to change a few years later, when these cuts were successfully

implemented by Balas, Ceria, and Cornuejols (1993) (see also Balas et al. 1996 and

Balas et al. 1996). As a consequence, this raised interest in the study of the-

oretical aspects of general cutting planes and, in particular, the separation and

membership problems associated with certain subclasses of general cutting planes.

Definition 3.2 The membership problem for the elementary closure of a family of cuts

is:

Given a rational polyhedron P C Rn and a rational point t E P, decide

whether x does not belong to the elementary closure of P for this family of

cuts.

Regarding the family of Gomory-Chvital cuts, Caprara and Fischetti (1996a)

showed that the membership problem for the so-called {0, }-closure is NP-complete.

A {0, }-cut for a polyhedron P {x E R'| Ax < b} is a Gomory-Chv6tal cut of the

form (AA)x < [Ab], where AA is integral and each component of A is either 0 or }.
Eisenbrand (1999) proved the same hardness result for the membership problem of

the Gomory-Chvital closure. In particular, he observed that for the polyhedron con-

structed in the reduction of Caprara and Fischetti (1996a), the Gomory-Chvital closure

and the {0, }-closure are identical.

In this chapter, we study the membership problem for the subclass of Gomory-Chvital

cuts ax < [aoj for which all components of the normal vector a are either 0 or 1. Many

combinatorially derived cutting planes are in fact Gomory-Chvaital cuts with this prop-

erty, as for example the odd-set inequalities for the matching problem or the odd-cycle

inequalities for the stable set problem. We show that the problem of deciding whether



for a given point 2 E P there exists a Gomory-Chvaital cut ax < Lao) with a E {0, 1}

and such that az > ao is NP-complete.

3.2 Membership and Separation

The membership problem associated with the subclass of Gomory-Chvital cuts with

coefficients 0 or 1 is:

Given a rational polyhedron P C R" and a rational point 2 E P,

decide whether there exists a Gomory-Chvdtal cut ax < LaoJ such

that a E {0, 1}" and at > [aoJ.

In the following, we show that the membership problem for the elementary closure

associated with the set of Gomory-Chva'tal cuts with coefficients 0 or 1 is NP-complete.

The proof is inspired by a reduction of Caprara and Fischetti (1996b).

Theorem 3.3 The membership problem for the family of Gomory-Chvaital cuts with

coefficients 0 or 1 is NP-complete.

Proof. We describe a reduction from the maximum cut problem: Given an undirected

graph G = (V, E) and a positive integer K, decide whether there exists a subset U C V

such that the number of edges with exactly one endpoint in U is greater than K.

Consider an arbitrary instance of the maximum cut problem and define n := |V|

and m := |E. Let E = {ei,..., em} and assume that ej = {u, v} for j = 1, .. ., m. For

any subset U C V, we denote by E(U) the set of edges with both endpoints in U and

by 6(U) the set of edges with exactly one endpoint in U. We will construct a rational

polyhedron P C R" and a rational point t E P such that there exists a Gomory-Chvital

cut with coefficients 0 or 1 separating zr if and only if there exists a set U C V such

that 16(U)| > K.

We can assume w.l.o.g. that K < m, since the maximum cut problem can be

solved easily for K = m. Let M E {0, i}nxm denote the incidence matrix of G, that

is, Mi= 1 if {i, j} E E and Aij = 0, otherwise. Furthermore, for i = 1,. .. , n,
let di := lo(i)| denote the degree of node i in G. We define P = {x E R"| Ax < b},



where A E Z(mn1+)x( 2 m+n+l) and b E Zm+n+1 are specified in Figure 3-1. Furthermore,

let
Edn (1+Em)
2 2

m times

where F : 1/(m - K). We have

( edi ed (1± em) _
At = ed1 - 2 ,..., ,-dn - 2 ,dEm - 2 ,-+ M1E,..., -E

2 2 2

=i(0,..,0,t -1,a t -e ,.i , b ,

that is, :t E P. Note that the sizes of A, b, and t are polynomially bounded in n and m.

n +1

m

Ax =

Figure 3-1: The constraint matrix A and right-hand side vector b that specify the con-

structed polyhedron P = {x E R" I Ax < b} in the NP-completeness proof.

In the following, we show that there exists a Gomory-Chvital cut with coefficients 0

or 1 separating t if and only if there is a cut in the graph G of size greater than K. First,

suppose there exists U C V such that 16(U)I > K. We will derive a valid inequality

for P as nonnegative linear combination of the rows of the system Ax < b such that

Edi,

2
m times



the corresponding Gomory-Chvital cut has all coefficients 0 or 1 and is violated by z.
Let A,1,. .. , A,+ 1 denote the multipliers associated with the first n + 1 rows of Ax K b

and let p1,.. . , mt, denote the multipliers corresponding to the last m rows. We define

for i=1,.,n,

A 21, if i E U

0, otherwise

and set An+1 := 1. Furthermore, we define

, if e E E \ 6(U)

0, otherwise

Now let ax < ao denote the valid inequality for P that is associated with these mul-

tipliers. We will show that each component of a is either 0 or 1. First, consider a

component aj corresponding to an edge of G, that is, 1 j K m. If e = {u3 , v} E 6(U),
then I{uj,vA} n U= 1, implying a- = 1 + - = 1. If ej {u,,v} ( 6(U), then ei-

ther I{uy,v} n U| =2 or f{uy,v,} nU| = 0. In the former case, a-= +j+j-j =!1,

and in the latter case, aj= - =0. For i = 1, ... , n + 1, we have am+i = 2Ai E {0,1},
and for j = 1,... , m, we get am+n+1+i = 2pi3 E {O, 1}. Hence, a E {0, 1}2mn+n+1. The

right-hand side of the valid inequality is ao = -An+1 = -j. Consequently, all coefficients

of the Gomory-Chvdtal cut ax K -1 are in {0, 1}. Moreover,

i (1+ m)
ax = aE - am+j 2 - am+n+1 2

j=1

E + )7 d _ (I1+ Em)
E E'2 2

jE6(U) jEE(U) icU

1 d
2 + E 16() I +>1(~ -E2 2)

2 ± (|(U)I - n)

1 E> -_ + _(K -Tm) =-



that is, x violates the cut.

For the other direction, suppose there exists a Gomory-Chvital cut ax <

such that every component of a is either 0 or 1 and such that ai >

am+n+1+j - 2p E {0, 1}, we must have pug E {0, '}, for j

since am+i = 2Aj c {0, 11, we get Ai E {0, }, for i'

thermore, An+I E {0, }} together with the fact that [aoj -

that An+I = 1. Finally, it must hold forj =1,... ,m that

I
Y9 = if and only if

LaoJ. Since

1, ... , m. Similarly,

1,.. .,n + 1. Fur-

[-A+ 1+] # ao implies

Ai Mi E {0, 1}
i=1

This is because fore= {u, v3 } EE, we have a3 = Au, + Ay, + I - pj. Now let us define

E V Ai

Then it holds that

if and only if ej e E \ O(U)

and therefore

yij = E\ (U)|.

Finally, az > -1 implies that

m n Edi (1+ En)
as - ajE - am+z 2 - m+n+1 2

j=1 i=1

m 1

j=1

1
= E(cE(U)I + 116(U)I)

Ed i (1 + Em)

i 2
icu

2 |E \ (U)| -z
iEU

- E \ 6(U)| -- > -1
2 2

and therefore E \ (U)| < 1/6 = m - K. We obtain lo(U)| > K

[aoj

pj =

Edi 1
2 2

1



As the separation problem associated with a family of cutting planes is at least as

hard as the membership problem, we obtain the following corollary.

Corollary 3.4 Optimizing a linear function over the elementary closure associated with

the family of Gomory-Chvstal cuts with coefficients either 0 or 1 cannot be done in

polynomial time, unless P / NP.



Chapter 4

The Gomory-Chvdtal Closure of

Non-rational Polytopes

4.1 Introduction

Gomory-Chvital cutting planes first appeared in Gomory's cutting plane method

(Gomory 1958), which provided a general framework for solving integer programming

problems. Thus, they were originally introduced for polyhedra that can be described by

rational data. Chvital (1973) studied Gomory-Chvital cuts more formally. In particular,

he showed that the sequence of successively tighter relaxations arising from repeated ap-

plications of all Gomory-Chviital cuts to a rational polytope P yields the integer hull P,

after finitely many steps. Schrijver (1980) generalized the result to unbounded rational

polyhedra and non-rational polytopes.

Formally, the Gomory-Chvital closure P' of a polyhedron P is the intersection of

all half-spaces defined by the Gomory-Chvital cuts of P. As their number is infinite, it

is not clear from the definition whether P' is also polyhedron. Put differently, does a

finite number of inequalities suffice to describe P'? Schrijver (1980) showed that, for a

rational polyhedron, the Gomory-Chvaital cuts corresponding to a totally dual integral

system of linear inequalities describing P specify its closure P' fully. For every rational

polyhedron such a system is guaranteed to exist. Equivalently, the elementary closure

is obtained by taking all Gomory-Chvital cuts that are associated with normal vectors

in the Hilbert bases of the basic feasible cones of P. Since the number of basic feasible



cones of a polyhedron is finite and since every rational cone has a finite Hilbert basis,
the number of undominated Gomory-Chvital cuts is finite.

For polyhedra that cannot be described by rational data the situation is different. It

is well-known that the integer hull of an unbounded non-rational polyhedron may not be

a polyhedron (see, e.g., Halfin 1972). In fact, the integer hull may not be a closed set.

Consider for example the non-rational polyhedral cone P = {x R| X2  V'x 1}. The

half-line {x E R 2 12 = zxi } belongs to the topological closure of P, and, therefore, no

rational polyhedral cone can contain the same set of integer points as P. As a result, P is

not a polyhedron. Regarding the Gomory-Chvital closure of this non-rational polyhedral

cone, it is not difficult to conclude that every Gomory-Chvital cut for P is a valid

inequality for P itself. In particular, we can approximate the non-rational facet-defining

inequality x 2 < Vfzxi for P with arbitrary precision by a Gomory-Chvital cut. This

implies that P' cannot be described by a finite set of inequalities and, therefore, P'

is not a rational polyhedron either. On the other hand, in the case of a non-rational

polytope, P is the convex hull of a finite set of points and, therefore, a polytope. Yet,

there is no notion of total dual integrality for non-rational systems of linear inequalities.

Consequently, Schrijver (1980) writes in the discussion section of his paper, in which he

proves the polyhedrality of the closure for rational polyhedra:

"We do not know whether the analogue ... is true in real spaces. We were able

to show only that if P is a bounded polyhedron in real space, and P' has empty

intersection with the boundary of P, then P' is a (rational) polyhedron."

Since then, the question of whether the Gomory-Chvital closure of a non-rational poly-

tope is also a polytope has remained unanswered. In this part of the thesis, we re-

solve this open problem and prove that the Gomory-Chvital closure of a non-rational

polytope is a rational polytope. That is, a finite number of Gomory-Chvatal cuts suf-

fice to describe the elementary closure. Apart from answering Schrijver's question,

our result also extends a recent line of research concerning the polyhedrality of the

Gomory-Chvital closure of general convex sets. As Gomory-Chvaital cutting planes

have been effective from a computational point of view (see, e.g., Balas et al. 1996,
Bonami et al. 2008, and Fischetti and Lodi 2007), they have also been applied to gen-

eral convex integer programs, that is, discrete optimization problems for which the

continuous relaxation is a convex set, but not necessarily a linear program (see, e.g.,



Qezik and Iyengar 2005). Dey and Vielma (2010) showed that the Gomory-Chvital clo-

sure of a full-dimensional ellipsoid described by rational data is a polytope. Shortly

thereafter, Dadush, Dey, and Vielma (2010) extended this result to strictly convex bod-

ies and to the intersection of a strictly convex body with a rational polyhedron. Since the

proof of Schrijver (1980) for rational polyhedra strongly relies on polyhedral properties,

Dey and Vielma and Dadush, Dey, and Vielma had to develop a new proof technique,

which can be summarized as follows: First, it is shown that there exists a finite set

of Gomory-Chvital cuts that separate every non-integral point on the boundary of the

strictly convex body. Second, one proves that, if there is a finite set of Gomory-Chvital

cuts for which the implied polytope is a subset of the body and for which the intersection

of this polytope with the boundary of the body is contained in Z', only a finite number

of additional inequalities are needed to describe the closure of the body. The second step

is strongly informed by Schrijver's observation that the boundary of the convex set is

crucial for building the Gomory-Chvital closure (see the quote above).

Our general proof strategy for showing the polyhedrality of the Gomory-Chvital

closure of a non-rational polytope is inspired by the work of Dadush et al. (2010). Yet,

the key argument is very different and new, since Dadush et al.'s proof relies on properties

of strictly convex bodies that do not extend to polytopes. More precisely, strictly convex

bodies do not have any higher-dimensional "flat faces", and therein lies the main difficulty

in establishing the polyhedrality of the elementary closure for non-rational polytopes.

Our proof is geometrically motivated and applies ideas from convex analysis, polyhedral

theory, and the geometry of numbers.

Dadush, Dey, and Vielma (2011) proved, at the same time and independently, that

the Gomory-Chvaital closure of any compact convex set is a rational polytope.

4.2 Outline

The remainder of this chapter consists of two main sections. In Section 4.3, we first

review the techniques used by Dadush et al. (2010) (Section 4.3.1) and then give an

informal description of our proof (Section 4.3.2). The latter Section 4.3.2 is intended to

introduce the main ideas of our approach, without going into technical details. Section 4.4

contains the actual proof, which is divided into four steps. We start by presenting some



preliminary results in Section 4.4.1 and then prove each of the four steps separately in

Sections 4.4.2 to 4.4.5.

4.3 General Proof Idea

Schrijver's proof of the polyhedrality of the Gomory-Chvital closure for rational poly-

hedra uses totally dual integral systems, which do not exist for non-rational inequality

systems. On the other hand, the proof technique of Dadush et al. (2010) for strictly

convex bodies depends crucially on the fact that these sets do not have any higher-

dimensional flat faces. Therefore, new ideas have to be developed to show that the

Gomory-Chvaital closure of a non-rational polytope is a (rational) polytope. However,
our general proof structure is inspired by the work of Dadush et al. (2010). Therefore,
we outline briefly the two main steps of their argument for strictly convex bodies.

For this section and the sections to follow, some basic notation is required.

Let K C R' be a closed and convex set. For any vector a E R', we will denote

by aK the minimal right-hand side such that ax < aK is a valid inequality for K, that

is, aK := max{ax x E K}. For every S C Zn, we define

Cs(K) :=n (ax < [aK)
aES

that is, Cs(K) is the intersection of all half-spaces defined by the Gomory-Chvital cuts

with normal vectors in S. In particular, the Gomory-Chvital closure K' is obtained

for S = Z'.

4.3.1 Outline of the Proof for Strictly Convex Bodies

The general idea of Dadush, Dey, and Vielma (2010) for showing that the Gomory-

Chvaital closure of a strictly convex body K can be described by a finite set of Gomory-

Chvital cuts is the following: In the first step of their proof, they construct a finite



set S C Z, such that

(i) Cs(K) C K , (Ki)

(ii) Cs(K) n bd(K) C Z" . (K2)

In other words, Cs(K) is a polytope that is contained in the original body and every point

that it shares with the boundary of K is an integer point and, thus, is also contained in

its closure K'. Consequently, any additional Gomory-Chvaital cut that is necessary in a

description of K' has to separate a vertex of the polytope Cs(K) that lies in the interior

of K. In the second step of the proof, they argue that only a finite number of such cuts

can exist and, hence, S needs to be augmented by, at most, a finite set of vectors.

The main difficulty of the proof is the argument for the existence of a finite set S

satisfying properties (K1) and (K2). It can be roughly explained as follows: First, one

shows that for every fractional point u on the boundary of K, there exists a Gomory-

Chvital cut that separates the point together with an open neighborhood around it.

Such a cut can be constructed via a Diophantine approximation of some vector a in

the normal cone of K at u. In this part of the proof Dadush et al. (2010) use a crucial

property of strictly convex bodies: the sequence of points on the boundary of K that

maximize the approximations of a converges to u. Subsequently, in the case that there

are no integral boundary points, one can cover the boundary by a, possibly, infinite

number of these open sets. Using a compactness argument, there is a finite sub-cover

that yields a finite set of Gomory-Chvaital cuts separating the boundary of K. If the

boundary contains integral points, one can construct for each of them a finite set of

cuts that remove all points in an open neighborhood around the point. After removing

these open neighborhoods from the boundary, a finite union of compact sets remains.

Therefore, applying the compactness argument to each of these sets yields the existence

of a finite set S of integer vectors with the desired properties.

The second observation, concerning the finite number of additional cuts, follows di-

rectly from the fact that for a vector a C Z", the maximum possible distance between the

boundaries of the half-spaces (ax < aK) and (ax < _aKJ), regardless of the right-hand

side aK, decreases with the norm of a (see Figure 4-2 for an explanation). Hence, for

every vertex of Cs(K) in the strict interior of K there is a threshold for the norm of the

normal vector a, above which the associated Gomory-Chvital cut cannot separate the



Figure 4-1: First part of the proof for strictly convex bodies: construction of a finite

set S of integral vectors satisfying Cs(K) g K and Cs(K) n bd(K) C Zn.

vertex. The assumption of full-dimensionality of K is crucial to this part of the proof.

4.3.2 Outline of the Proof for Non-rational Polytopes

As Section 4.3.1 illustrates, the proof of Dadush et al. (2010) relies on two assump-

tions that prevent us from applying their technique to non-rational polytopes: strict

convexity and full-dimensionality. Strict convexity is crucial for the first part of their

proof, where they show the existence of a finite set S C Zn that satisfies Cs(K) C K

and Cs(K) n bd(K) C Z". In particular, they demonstrate that every fractional point

on the boundary of the strictly convex body is separated by a Gomory-Chv6tal cut.

Obviously, the same cannot be true for polytopes, since this would otherwise imply that

the Gomory-Chvital procedure separates fractional points in the relative interior of the

facets of an integral polytope. On the other hand, if the Gomory-Chvital closure P' of

any full-dimensional polytope P is indeed a polytope, an intuitive modification of the

requirements (K1) and (K2) is the existence of a finite set S C Z" that satisfies

(i) Cs(P) C P (Pla)

(ii) Cs(P) n bd(P) C P' . (P2a)

Similar to the proof for strictly convex bodies, any additional undominated Gomory-

Chvaital cut would have to separate a vertex of the polytope Cs(P) in the strict interior



Figure 4-2: Second part of the proof for strictly convex bodies: If v is an interior point of

the body K, one can find an E-ball around it with B(v, E) C K. For a Gomory-Chvital

cut ax < [aKJ for K to separate v, the distance d between the hyperplanes (ax = aK)

and (ax = [aKj) has to be at least E. Since 11a|| 1 is an upper bound on d, only normal

vectors a with ||a|l < E-1 have to be considered.

of P and, as illustrated in Figure 4-2, the number of such cuts is finite. However, the full-

dimensionality of P that is required in the above argument cannot generally be assumed.

With regard to rational polytopes, non-full-dimensionality is not an obstacle, since one

can find a unimodular transformation that maps P to a full-dimensional polytope in a

lower-dimensional space (see Lemma 2.17). Yet, such a rational transformation does not

exist for polytopes with non-rational affine hulls. In consequence, it becomes necessary

to further modify the second property (P2a): one can only hope to find a finite set of

Gomory-Chvital cuts that separate the points in the relative boundary of the polytope

that do not belong to its closure.

With these considerations in mind, our general strategy for proving that for any

polytope a finite number of Gomory-Chvi.tal cuts is sufficient to describe the polytope's

closure is the following: First, we show that one can find a finite set S of integral vectors

such that

(i) Cs(P) C P , (Pib)

(ii) Cs(P) n rbd(P)CP' . (P2b)



We then argue that, given the polytope Cs(P), no more than a finite number of additional

Gomory-Chvaital cuts are necessary to describe the closure P'. More precisely, we use

the fact that any additional (undominated) Gomory-Chvital cut for P must separate

a vertex of Cs(P) in the relative interior of P. While, in contrast to full-dimensional

bodies, their number is generally infinite, we show that only a finite subset of the Gomory-

Chvital cuts with this property need to be considered. The overall strategy of our proof

is summarized in Figure 4-3.

Part I: Show that one can construct a finite set S C Zn such that

(i) Cs(P) C P , (P1)

(ii) Cs(P) nrbd(P)CP' . (P2)

Part II: Show that, given a set S as in Part I, only a finite number of Gomory-

Chvital cuts have to be added to Cs(P) to obtain the Gomory-Chvital

closure P'.

Figure 4-3: General strategy for proving the polyhedrality of the Gomory-Chvital closure

of a non-rational polytope.

The main challenge of this proof strategy lies in Part I and, more specifically, in

showing the existence of a set S satisfying property (P1). This is due to the presence

of higher-dimensional flat faces for polytopes, that is, higher-dimensional faces with

non-rational affine hulls. These require the development of completely new arguments

compared to the proof for strictly convex bodies. While the high-level idea of our proof

can be described by the two main parts illustrated in Figure 4-3 above, several building

blocks are necessary to implement this strategy. Our actual proof is divided into four

steps:

Step 1: Show that there exists a finite set Si C Z" such that Cs1 (P) C P.

Step 2: Show that for any face F of P, F'= P'n F. In particular, if F =P n (ax = ap),



then for every Gomory-Chvital cut for F there exists a Gomory-Chvital cut

for P that has the same impact on the maximal rational affine subspace

of (ax = ap).

Step 3: Show that if there exists a finite set S satisfying (P1) and (P2), then P' is a

rational polytope.

Step 4: Prove that P' is a rational polytope by induction on the dimension of P C R'.

In the remainder of this subsection, we describe the reasoning behind each step of

the proof and outline some of the applied techniques.

Step 1: Constructing a subset of P from a finite number of Gomory-Chvital

cuts

As the first step of the proof, we show that one can construct a finite set of Gomory-

Chvaital cuts that define a polytope that is contained in P. In particular, we show the

property (P1) of Figure 4-3 for some finite set S of integral vectors. This step is the

most challenging part of the proof.

Imagine that we can find a set S C Z' with Cs(P) C P for some full-dimensional

polytope P C R' for which a non-rational inequality ax < ap is facet-defining. As this

inequality cannot be facet-defining for the rational polytope Cs(P), there must exist a

finite set of Gomory-Chvital cuts that dominate ax < ap. More formally, there must

exist a subset Sa C S such that CSa(P) C (ax < ap). If VR denotes the maximal rational

affine subspace VR of (ax = ap), that is, the affine hull of all rational points in (ax = ap),

then the Gomory-Chvaital cuts associated with the vectors in Sa have to separate every

point in (ax = ap) \ VR. If this were not the case, Csa(P) would have a non-rational

face and, therefore, would not be a rational polyhedron. Regarding the points in the

rational part of the boundary of the half-space (ax < ap), one can imagine that a slight

"rotation of the boundary (ax = ap) around VR" will result in a rational hyperplane that

contains VR and that corresponds to or is dominated by a Gomory-Chvital cut for P.

Indeed, our strategy for the first step of the proof is to show that for each non-

rational facet-defining inequality ax < ap for P there exists a finite set of integral

vectors Sa that satisfies CSa(P) C (ax < ap). This fact is proven in a series of steps.



First, we establish the existence of a sequence of integral vectors satisfying a specific list
of properties. These vectors give rise to Gomory-Chvital cuts that separate all points in
a non-rational facet F= P n (ax = ap) that are not contained in the maximal rational
affine subspace VR of (ax = ap). The number of Gomory-Chvital cuts needed in our
construction for separating the points in (ax = ap) \ VR depends only on the dimension
of VR. If dim(VR) = n - 2, that is, the hyperplane (ax = ap) has a single "non-rational
direction", then only two cuts are necessary. One can visualize these cuts to form a kind
of "tent" in the half-space (ax < ap), with the ridge being VR (see Figure 4-4 for an
illustration). With each decrease in the dimension of VR by 1, the number of necessary
cuts is doubled. Hence, at most 24 Gomory-Chvi.tal cuts are required to separate the
non-rational parts of a non-rational facet of a polytope.

(ax ap)

F

P

Figure 4-4: Construction of a finite set of Gomory-Chvaital cuts that dominate a non-
rational facet-defining inequality ax < ap. Here, the hyperplane (ax = ap) contains only
one rational, in fact, one integral point x0 and has, therefore, one non-rational direction.
That is, VR = {xo} and dim(V) = 0. Two Gomory-Chvaital cuts separate every point
in the hyperplane (ax = ap) that is not in VR.

The proof of Step 1 uses many classic results from convex and polyhedral theory,
as well as from number theory (e.g., Diophantine approximations, integral lattices, and
reduced lattice bases).



Step 2: A homogeneity property: F'= P' n F

As the second step of the proof, we show a property of the Gomory-Chvital closure

that is well-known for rational polytopes (see, e.g., Schrijver 1986): If one applies the

closure operator to a face of a polytope, the result is the same as if one intersected the

closure of the polytope with the face. As it turns out, the same is true for non-rational

polytopes. The proof for the rational case is based on the observation that any Gomory-

Chvital cut for a face F = P n (ax = ap) can be "rotated" so that it becomes a valid

Gomory-Chvital cut for P. In particular, the rotated cut has the same impact on the

hyperplane (ax = ap) as the original cut for F. While the exact same property does

not hold in the non-rational case, we show that there is a rotation of any cut for F

that results in a Gomory-Chivital cut for P, which has the same impact on the maximal

rational affine subspace VR of (ax = ap). As Step 1 of our proof implies that the non-

rational parts of a face are separated in the first round of the Gomory-Chvaital procedure

in any event, this property suffices to show that F'= P' n F.

The insights gained in this part of the proof will be useful for Step 4 of the proof,

where we show the main result by induction on the dimension of the polytope. Knowing

that the Gomory-Chvital closure of a lower-dimensional facet F of P is a polytope, each

of the finite number of cuts describing F' can be rotated in order to become a Gomory-

Chvital cut for P. We thereby establish the existence of a finite set SF C Z' with the

property that CsF(P) n F = F'. Since the facets of P constitute the relative boundary

of the polytope, the union of all these sets will give rise to a set S C Z' that satisfies

property (P2) in Figure 4-3.

Step 3: Finite augmentation property

In Step 3 of our proof, we show Part II of the general strategy outlined in Figure 4-3:

Once a finite set S C Z of vectors is established with the property that Cs(P) C P

and Cs(P) n rbd(P) C P', not more than a finite number of Gomory-Chvital cuts have

to be added to obtain P'.

A similar result has been shown in Dadush, Dey, and Vielma (2010) for full-

dimensional convex sets, that is, when the relative boundary of the set coincides with its

boundary. In this case, it is possible to find an E-ball around every vertex of Cs(P) in



the strict interior of P with the property that the ball is completely contained in P. Any

additional, undominated Gomory-Chvaital cut must separate such a vertex and, hence,
the boundary of the associated half-space containing P must be shifted by at least the

radius of the ball. This is only possible up to a certain size of the normal vector, which

implies the result (see also Figure 4-2).

Since a non-rational polytope P can be contained in some non-rational affine sub-

space and, hence, a unimodular transformation of P to a full-dimensional polytope in a

lower-dimensional space does not exist, an extension of the result to non-full-dimensional

polytopes is required. In that case, any additional Gomory-Chvital cut that is needed

to describe P' must separate a vertex of Cs(P) in the relative interior of P. However,

the E-ball argument is not valid in this situation, as one can only find an E-ball around the

vertex whose intersection with the affine hull of P is contained in P. While in the lower-

dimensional affine space a similar argument as above applies, yet an infinite number of

Gomory-Chvaital cuts in R" remain, which can separate such vertex. Therefore, further

arguments are needed to prove the finite augmentation property for non-full-dimensional

convex sets.

Step 4: Proof of the main result

As the final step of the proof, we establish the main result of this chapter, namely that the

Gomory-Chvaital closure of any polytope can be described by a finite set of inequalities.

The proof is by induction on the dimension of the polytope and uses the observations

made in the steps above. Step 1 provides a finite set S1 9 Z' satisfying Cs, (P) C P.

Applying the induction assumption to the facets of P and using the homogeneity property

of Step 2, we augment Si for each facet F by a finite set SF C Z" such that the resulting

set of integral vectors satisfies properties (P1) and (P2) of Part I in Figure 4-3. From that

it follows with the finite augmentation property proven in Step 3 that P' is a polytope.

4.4 The Proof

In this section, we prove the main result of Chapter 4: the Gomory-Chvital closure of

any polytope can be described by a finite set of inequalities. We start in Section 4.4.1



by introducing a collection of preliminary results that are required for the main proof.

Following these preparatory considerations, in Sections 4.4.2 to 4.4.5 we separately

prove the four steps outlined in Section 4.3.2.

4.4.1 Preliminary Results

In this subsection, we derive a number of preliminary results regarding Diophantine

approximations and bases of lattices that are utilized in the subsequent sections to show

that the Gomory-Chvital closure of any polytope is a rational polytope.

The first lemma relates the coefficients in the representation of a point in R' as a

linear combination of a set of basis vectors to the coefficients of the representation of the

same point with respect to some corresponding orthogonal basis.

Lemma 4.1 Let R > 0 and let U1,... Uk, W1,... , w, be linearly independent vectors

in R" with ||wj|| = R, for j = 1,... , 1. Furthermore, let us define the linear vector

spaces Uo := span(ul,...,uk) and Uj := span(ui,...,Uk,w1,...,wj), for j = 1,...,l.

Let iDj denote the orthogonal projection of wj onto U:r 1 , for j 1,...,l. If there exists

a constant c > 0 such that |17ij' > cR for j = 1,..., l, then there exists a constant c1

only depending on I and c such that

u+ Z ii 9 E U; -1 < 1, j=1...,l
=1

C {u+ Ajw3  u E U; -ci A cij=1...,l
=1

Proof. The proof of the lemma is by induction on 1. For j 1,... , 1, the orthogonal

projection Cvj of wj onto Uj 1 has a unique representation (see also Section 2.2.2):

k j-1

w3-Zpup-Etzt ,(4.1)

p=i t=1



where ajp E R for p = 1, ... , k, and

ajt 2
117t

for t = 1,...,j - 1. First, consider

where u C U and 1 C [-1, 1]. Then

x= U + A = U + Ai i -1

the case 1 = 1. Take an arbitrary x = u + A1'iD1 ,

k k

Ea1pup - u-- 1 E 1pup + iwi
p=1 p=1

and c1 = 1 satisfies the conditions of the lemma. Therefore,

ment of the lemma is true for some I > 1 with constant c1

an x =u + 1+_i1 Api, where u C U and A C [-1,1] for j
induction assumption and (4.1), we get

assume that

= c1(l, c).

1, ... ,l + 1.

x - j

j=1

1 k

j=1 p=1 t=1
= u" + Ajw + l1+1 w+1 - ± + 2 fij

j=1 ~j=1 1 v l

the state-

Now take

Using the

~ )
ICt12

for some u', u" E U and numbers Aj satisfying IAI < c1(l, c), forj = 1,... ,l. Let us define

j=1 Ik 11i1

Then

Ij+1fZjI IIw I+1 I+i1| R _ 1
IvI = 1 2 - IIL'A 2 - jz'31 - Rc c



By applying the induction assumption a second time, we get

y E + -1E U;

=1

1
--

1
< vj <,

c

j=1

1

C

S- {u
c

; U

+ 7wo
-1

+ -Y mWj
j=1

U E U; - 1 < vj7 < 1 , j 1.

U E U; -c1 < g j < Ci, j=1,...

u E U;
C- < < , =

C C

In particular, there exists some .'" E U and numbers 7j E [-c1/c, c1/c], for j =1,... , 1,

such that

y U+' E jw .
j=1

Hence, we obtain

X = U" + Ajwj

j=1

-- §+1 (w+1 - - jwj
j=1

= + (Aj - Z1+175) wj + I1+1 ,

j=1

where ii E U and

Aj - A1+175I < Aj I|+7jI < ci(l, c) + ci(lc)
C

Thus, ci(l + 1, c) := ci(l, c) (1 + 1/c) is the desired constant for 1 + 1.

Next, we review a famous result regarding simultaneous Diophantine approximations:

a finite set of real numbers can be approximated by rational numbers with one common

low denominator.

Theorem 4.2 (Dirichlet's theorem) For a E R" and 0 < E < 1, there exist inte-

j = 1, . .., }

,
1, . ., *)

vjlvj



gersp 1,...,pu andq > 0 such that fori - 1,...,n,

pi e
q q

In the following lemma, we extend Dirichlet's Theorem to rational approximations

that retain rational linear dependencies between the components of the vector a E R'.

Lemma 4.3 Let a E R" and let u1 ,... , un, where k < n - 1, be linearly independent

vectors in Z" such that auj = 0 forj = 1,. .. ,k. For any 0 < - < 1, there exists an

integer vector p = (p1,...,pn) and an integer q > 0 such that puj = 0 for j = 1,... k,

and such that for i = 1,... n,
p e

ai < -.
q q

Proof. Let U denote the k x n matrix with rows U1,... , uk, that is. Ua 0.

Since rank(U) = k, there exists (after possibly reordering the indices) a ratio-

nal k x (n - k) matrix U such that the system of equalities Ua = 0 is equivalent to

the system

an--k+1 al

an an-k-

In particular, one can find a, positive integer s and integers rij, for n - k + 1 < i < n

anddj = 1,...,n- k, such that fori= n-k+ 1,...,n,

n-k

j=1

Let us define the constants

K, := mi {S (n - k) maxij I|ri}

and E1 := K 1 E. Let Pi, .. .,P nk and q be integers according to Theorem 4.2 that satisfy

ai - 1



for i = 1,..., n - k. We define

q := sq

fori=1,...,n-k
n-k

pi := rij P
j=1

Note that

Pn-k+1]

Pn

Pi
implying puj = 0 for j1, ... ,k. Furthermore, for iZ = 1, ... ,n - k, we have

pip 1  81 g

A =a- <- <
q q q/s q

Thenweobtainfori=n-k+1,...,n,

= a,

n-k

j = r i
j-i

S

n-k

j=r a1
n-k

- =1 r j
j=1

S

n-k

j=1

Ir3Ij ja3 -
q

E-
q

and the lemma follows.

From the last lemma, we obtain the following corollary.

Corollary 4.4 Let a E R" and let Ui,. . . , uk, where k < n - 1, be linearly inde-

pendent vectors in Z" such that au3 = 0 forj = 1,...,k. Then there exists a se-

quence {a}iN C Z such that a' I uj for j=1... k and such that

(4.2)

where a = a/ |ail and 0' = a'/ ||ai.

Proof. According to Lemma 4.3, there exist integral

all aIl - aII -- + 0 ,

forti = n- k+ 1,...,n .

ai -

sequences {pilieN C_ Zn



and {qi}iEN C N such that piun = 0 for j=1,...,k and such that

q'a - p4 | - 0 .

Therefore,

q' ||a|| - ||p -- + 0.

Let us define ai := p' for all i E N. Then clearly a' _ uj for j = 1,..., k. Furthermore,

ai|| ||a - i|| = , I a - a- a -p = a i- qia + qa - pi

< a ( i qi) + flqa - p

p - q' ||a|| + ||q'a - p'|| -- + 0.

The next Theorem concerns lattices and their bases: we show that if A C R' is

an integral (n - 1)-dimensional lattice and U1,... , Uk a basis for some k-dimensional

sublattice of A, then we can extend the sublattice basis by vectors v 1 ,. . klVn _1 to a

basis of A such that the vectors v 1 , ... ,vnk_1 satisfy properties that are characteristic

for reduced lattice bases.

Theorem 4.5 Let (ax = 0) be a hyperplane that is spanned by n integral points

in R". Let Uo C (ax = 0) be a k-dimensional linear vector space spanned by integral vec-

tors U1 , .. . , Uk and assume that u1,... , uk form a basis of the lattice defined by the integer

points in Uo. Let I := n - k - 1. If k > 1, assume that for any v E ((ax =0) n z) \ U0,

||Vl12 > .2 (4.3)
p=1

Then there exist vectors v1,. . . , v, that satisfy the following properties:

(1) The vectors us,... , uv 1,.. ,v, form a basis of the lattice (ax = 0) n Zn.



(2) If we denne U. := span(u,...., u, v1,. ... , v) and if Qj denotes the orthogonal pro-

jection of v onto U-_1, for j 1,..., 1, then there exists a positive constant c only

depending on 1 such that for j = 1,. . ., ,

|0f|| ;1> c lIvg| .1

Proof. We prove the theorem by slightly modifying the lattice basis reduction algo-

rithm of Lenstra, Lenstra, and Lovaisz (1982). More precisely, we construct integral vec-

tors v 1 , . . . , v, that satisfy

k j-1

V3 = Qy + E ajPu, + cljt t
p= 1

t=1

1
2

1
IaAI <

2

(4.4)

(4.5)

(4.6)

for 1 j <l and p 1,. ,k

for 1 <j < and t= 1,. .. , j- 1

and

)i+1 + aj+1,JVjI|2 2 111 2

Note that condition (4.7) says that

dist2 (vj+1, Uj_1) ;> 4di U_1)

for j = 1 . I , - I .

for j = 1, ... ,l - 1 .

Suppose that v 1, ... , v, are integral vectors such that u1,. . ., U, vI, . . ., v1 form a basis

of the lattice (ax = 0) n Z' and such that (4.5), (4.6), and (4.7) hold. Then property (1)

of the theorem is clearly satisfied. Now consider property (2). Condition (4.7) implies

that

11 4 I 11 4 2 2 1 2
3 + 3+1 3| - Igij+112 + 3 ||Q|1

with

(4.7)



Therefore, for j = 1,... ,1 - 1,

111j+1102 > j I2
2

and consequently for 1 < Z' < <1

v - 2 2

From representation (4.4) for j = 1, we obtain with assumption (4.3) and (4.5),

IVI 112
k 2

1 + zapup

p= 1

11 112 +
p=1

2

2

and hence,

- 212

Then, using assumptions (4.3), (4.5), (4.6), (4.8), and (4.9), we get for j = 2, . . ,,

(4.9)

j-1 2

Sn, + E a 

t=1

k

p= 1

< I 11

p=1

< +jI vi ±1V11

j-1

+ EZCf t ItI2
t=1

2 +

t=1

j-1

t=1

< IIQ 112 + hi1112 + j -1 2

< (I 12
+ 2 j-1 + - (2' - 2)' i~

4

(4.8)

2

alIPUP

k

p= 1

Ilo112
k

+pE
p=1



Consequently, we can find some constant c only depending on I such that ||1i|| ;> c I1v.| |
for j = 1, . . . , 1, and property (2) is satisfied.

Procedure 1: Given the current basis u1 , ... , k, v1 , ... , v1, compute the orthogonal

projections of v1 , v2 ,... ,v onto Uo, U1 ,..., U1_1 , respectively; that is, the representa-

tions according to (4.4). Then for j = 1,... , 1, do the following:

(i) For p = 1,. .. , k: If aj,| > j, replace vj by v3 - [a 1,jup, where [cyj] denotes the

closest integer to ojp.

(ii) For t =1,.. - 1: If lajtI > -, replace vj by vj - [ajt]vt.

Procedure 2: If for some index s E {1, . . . , l}

Vsi+ + as+1,sis|| < | ,

then swap v, and v+1 and go to Procedure 1.

Figure 4-5: A modified lattice basis reduction algorithm.

In the remainder of the proof, we explain an algorithm that constructs vec-

tors vi,. .. ,v that satisfy (4.5), (4.6), and (4.7) and that have the property

that U1 ,. .. , 1, v,. .. , vi form a basis of A = (ax = 0) n Z'. First, observe that we can

assume that we are given some integral vectors v1, . . . , vi such thatUi, . . k, V1 , .. . , v1 is

a basis of the lattice A. Now consider the algorithm shown in Figure 4-5. The algorithm

will modify the current basis by repeated applications of two procedures. Clearly, if the

algorithm terminates, then v1, . . . , v, satisfy (4.5), (4.6), and (4.7). We therefore need to

show that each of the two procedures is finite and executed only a finite number of times.

First, observe that Procedure 1 requires at most Zj_1 (p + j - 1) changes of vectors, that

is, the procedure is finite. Regarding Procedure 2, let i1 := u1 and let ii, denote the

orthogonal projection of up onto (span(ui,... , up 1))'. Let us define the quantities

k

dj := 11j 1 ||6, llit||

p=1 t=1



and

D:= J7dj.
j=1

Note that Procedure 1 does not change the orthogonal projections of the vectors vi,... ,
and in particular, Procedure 1 does not affect the number D. However, D changes

when there is a swap in Procedure 2. More precisely, d, is reduced by a factor

smaller than , whereas all other dj are unchanged. Let B denote the matrix with

columns u1,... ,Un, v1 , ... , vj, for j = 1,...,1. Note that by (2.2), for j= 1,...,,

k

d.(= Q || (,|2 fi KtH2 = det(BTBj)| 1
p=1 (t=1

In other words, dj is the square of the determinant of the lattice A = U3 n Z and

bounded from below. It follows that there is a lower bound on D and, hence, an upper

bound on the number of times that we execute Procedure 2.

4.4.2 Step 1

In this subsection, we complete the first and most difficult step of our proof outlined

in Section 4.3.2 above: we show that for any polytope P, there exists a finite set of

Gomory-ChvAital cuts that defines a subset of the polytope. In particular, we prove

that for each non-rational facet-defining inequality ax < ap for P one can construct a

finite set Sa of integral vectors that satisfies Csa(P) C (ax < ap). As the non-rational

inequality ax < ap cannot be facet-defining for the rational polyhedron CSa(P), the

Gomory-Chvital cuts associated with the vectors in Sa must separate every point of the

hyperplane (ax = ap) that is not contained in the maximal rational affine subspace VR

of (ax = ap). We will, in fact, show that the set of points in (ax = ap) \ VR can

be partitioned into a finite number of segments such that for each segment there is a

single Gomory-Chvital cut that separates all the points in the segment. The number of

segments will thereby only depend on the dimension of VR.

Our proof technique has a clear geometric interpretation. It is motivated by

an observation made for rational polytopes that we illustrate as follows: Suppose



that H = (ax = ap) is an integral hyperplane in R'. We can assume w.l.o.g. that a, = 0

and that the hyperplane is defined by integral vectors u1 ,... , Un-2, and v, which

span a parallelepiped that does not contain any interior integral points. In other

words, these vectors form a basis of the lattice defined by the integral points in H.

Let U := span(ui,. .. ,u- 2 ). Then U + Av C H, for any number A. One can imagine

that the set of integer points in H can be partitioned into subsets (or layers) associated

with the parallel affine subspaces that are obtained by shifting U by some integral multi-

ple of v (see Figure 4-6). Now consider a rational polytope P with facet F = Pn(ax = 0)

such that F is a subset of U + {Av I A < 1}. Then F does not intersect the affine subspace

spanned by the integer points in U + 1 -v, but lies completely on one side of this subspace

in H. Given this setting, there is some "space" between F and the next layer of integer

+ ~ 0+

H =(ax = 0)
U U +v U + 2v

Figure 4-6: The lattice of integer points in H can be partitioned into layers that are

parallel to U and obtained by shifting U by integral multiples of v. The facet F = P n H

does not intersect the affine space U + v. We can rotate the hyperplane H around U to

obtain a Gomory-Chvital cut for P that separates all points in the grey area.

points in H. It therefore appears intuitive, that a slight "rotation of the hyperplane H

around U and in the direction of v" should result in some hyperplane (hx = 0) that

corresponds to a Gomory-Chvital cut for P. Such a hyperplane would separate every

point in F n (U + {Av I A > 0}) and imply that F' C U + {Av I A < 0}. In other words,



one iteration of the Gomory-Chvaital procedure would guarantee that F', and thus P',
does not contain any points in H that lie strictly between the two affine subspaces U

and U + v. Figure 4-7 illustrates the described situation in dimension two.

h

(h( = 0)

(va 1)

Figure 4-7: Geometric observation for rational polytopes, illustrated for n 2: The

hyperplane (ax = 0) with a = (-2, 5) is spanned by v = (5, 2). Here, U = {0}. The line

segment [0, v] (that is, the parallelepiped spanned by v) does not contain any interior inte-

gral points, that is, gcd(v) = 1. Consequently, there exists an integral vector ho = (-1, 3)

such that hov = 1. Note that the same is true for any h = ho+ ka with k E Z. Hence, by

choosing a large enough k, we can guarantee that there is an integral h such that hv 1

and such that hr is maximized over P by a vertex in F. Since F C {Av I A < 1}, we get

that max{hz I x E P} = max{hx I E F} < hv = 1, implying that hr < 0 is a Gomory-

Chvaital cut for F that separates every point in F n (0, v).

As we will formally prove in Lemma 4.6 and Corollary 4.7 below, this intuition is

justified. Most importantly, it will assist in constructing Gomory-Chv6tal cuts that

separate the points in the non-rational parts of facets with non-rational affine hulls: In the

following, we illustrate the basic idea for the special case of a non-rational facet-defining

hyperplane (ax = ap) for which the maximal rational affine subspace VR is integral and

has dimension n-2. There is a natural generalization of this approach for the case that VR



is non-integral or of smaller dimension. Let F = P n (ax = ap) be a facet of a polytope P

and let us assume w.l.o.g. that ap = 0. Furthermore, suppose that (ax = 0) is spanned by

integral vectors ui, . ., un-2 and some non-rational vector v. Then we can approximate

the hyperplane (ax = 0) by a sequence of integral hyperplanes (aix = 0) that are spanned

by the vectors 1,... , n-2 together with an approximation v' E Z" of the non-rational

direction v. That is, the approximations also contain U := span(ui,... , un-2) = VR. It

is intuitive that the norm of the integral vector v' has to increase with the accuracy of

the approximation, as the distance of v' to the non-rational hyperplane (ax = 0) must

become smaller. Now consider the perturbation P' of P that is obtained by replacing

the non-rational facet-defining inequality ax < 0 by the approximation ax < 0. For

large enough norm of the vector vZ, the facet P = Pi n (aix = 0) does not intersect

the affine subspace U + v' that is spanned by n - 2 integral points in (aix = 0). Hence,

with the earlier observation regarding rational facets, there exists a Gomory-Chvaital

cut hx < 0 for P that separates every point in U + {Av' I A > 0}. Our general strategy

is to utilize this cut to derive a Gomory-Chvaital cut lix < 0 for P that removes every

point in U + {Av I A > 0}. Note that such h would need to have a strictly positive scalar

product with v; and the maximum of hx over P would have to be attained at a vertex

in F and be strictly smaller than 1. Ideally, we would want the vector h2 to satisfy these

conditions. However, the modified Diophantine approximation that we use to generate

the sequence of normal vectors a', and thus for v', does not guarantee these properties

for every h2 . One difficulty, for example, is the fact that hvt > 0 does not necessarily

imply hv > 0 (see also Figure 4-8). Hence, the construction of the vector h has to balance

the goal of making the scalar product hv strictly positive and making it not too large,

in order to guarantee ho < 1.

A rather complicated construction and analysis in Lemma 4.8 will show that an inte-

gral vector h with the desired properties always exists. It gives rise to a Gomory-Chvital

cut that separates every point in the set U + {Av I A > 0}. Similarly, one can construct

a cut for the non-rational part on the "other side" of U, that is, for U - {Av I A > 01.

Geometrically, the non-rational part of (ax = 0) is partitioned into two pieces associated

with the directions +v and -v. The two corresponding cutting planes form a "tent" in

the half-space (ax < 0) (see Figure 4-9). In the generalization to lower-dimensional sub-

spaces U, the non-rational part of (ax = 0), spanned by non-rational vectors vi,.... , v1,

will be partitioned into 2' disjoint sets that correspond to parallelepipeds spanned by the



hl vi (aix = 0)
(hx = 0)

v (ax=0)
F-

P- I

Figure 4-8: Illustration of some of the difficulties in the construction of Gomory-Chvital

cuts that separate non-rational parts of facets: h'x < 0 is a Gomory-Chvital cut

for the approximation P' (drawn with a dashed line) that separates every point Av

of F' = Pi n (aix = 0) with A > 0. However, even if the cut h'z < 0 is also a valid

Gomory-Chvaital cut for P, it does not separate any point Av with A > 0, since h'v < 0.

vectors (±vi,. .. , i).

The first lemma and corollary of this subsection formalize the observations for rational

polytopes described above, which can be regarded as the geometric foundation of the

proof of Step 1.

Lemma 4.6 Let U1,... ,-2 and v be linearly independent vectors in Z" such that

7:;yui + Av 7; E- R, i1,..,n- 2; 0 < A < 1InZ 0.

Then there exists a vector y G Z" such that ujy = 0, for i = 1,...,n -

that vy = 1.

Proof. First, let us assume that the semi-open parallelepiped spanned

tors U 1 , Un-2 does not contain any integral points apart from 0, that is,

(n-2
i=1

(4.10)

2, and such

by the vec-

(4.11)



H = (ax = 0)

Figure 4-9: Illustration of how non-rational parts of facets are separated for n = 3:

H = (ax = 0) is a non-rational hyperplane that has a rational affine subspace U of

dimension n - 2. The non-rational direction is given by the non-rational vector v. We

can construct two Gomory-Chvatal cuts that separate all points in F \ U and that form

a "tent" below H with ridge U.

Together with (4.10), we have

( 740; + AV 0 < -yj < 1,i=1, .. ., n - 2; 0 < A < 1 n Z" = {0}

that is, also the semi-open parallelepiped spanned by all n - 1 vectors does not contain

any integral points apart from 0. Now consider the system

U 1

U 2

Un-2

V

: b .

Note that V has full row rank and column rank n - 1. By Theorem 2.11, there exists a

71
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unimodular matrix U E Z",X" that is, |det(U)|= 1, such that

U1  i1

U2  U2

VU= F U [ =: 1,
Un-2 Un-2

V V

where each ii = ujU and f) = vU has its n-th component zero and where V is a non-

singular integral (n - 1) x (n - 1) matrix. The semi-open parallelepiped spanned by

the vectors t,... ,6-2, and i) in (xn = 0) does not contain any integral points apart

from 0. Indeed, suppose there was an integral point z = 'Yii + ... + n-2ftn-2 + AV

with 0 < 7y < 1, for i = 1,... ,n -2, and 0 < A < 1, such that not all of these coefficients

are zero. Then

zU-1 =7 1 1U- 1± +. n-2i,- 2 U-1+ AVU- =71i1+... + 7n-2Un-2+ Av

is an integral point different from 0 in the semi-open parallelepiped spanned

by U1... , Un-2, and v, which is a contradiction. Now observe that Lemma 2.15 im-

plies |det(V)| = 1. Therefore, the system

VQ = b

has an integral solution Q E Z" . The vector = [QT 0 ]T satisfies VUp = b and,

consequently, y = Up is an integral solution to Vy = b.

If assumption (4.11) is not satisfied, then we can find a set of n - 2 integral vec-

tors 'i, .. . , U'n- 2 spanning the same linear vector space as U1, Un-2 such that (4.11)

holds. Consequently, there is a vector y E Z" such that u'y = 0 for i= 1,.. . , n - 2

and vy = 1. Since every ui can be written as a linear combination of the u', we

have ui y = 0 as well. El

In the following corollary, we apply the above lemma and characterize how rational

faces that satisfy a certain property behave under the Gomory-Chvaital procedure. More

precisely, suppose that H = (ax = ap) is an integral hyperplane that is face-defining for



a rational polytope P. Furthermore, assume that the face F = P n H does not share

any points with an (n - 2)-dimensional affine subspace U spanned by some set of n - 1

integral points in H. Then all points of F that lie strictly between U and the parallel

affine subspace U' that is obtained by shifting U in H towards F until the next layer

of integer points is touched, will be separated by a single Gomory-Chvital cut (see

Figure 4-10 for an illustration). Note that the normal vector h of such a cut has to be

perpendicular to every vector in U. Put differently, the hyperplane (hx = [hpj) has to

be parallel to U.

(ax = ap)

F = h]

(hx [hp])

Figure 4-10: Geometric observation for rational polytopes, illustrated for n = 3:

H = (ax = ap) is an integral hyperplane and F = P n H is a face of the ratio-

nal polytope P. Note that the integer points in H are drawn as filled black points.

Since F n U = 0, there is a Gomory-Chvital cut that separates all points in the shaded

area between U' and U in H.



Corollary 4.7 Let H = (ax = ap) be an integral hyperplane in R" such that

H =xo + span(ui, ... , un-2, v) ,

for vectors ui E Z", for i = 1,, n - 2, and vectors xO, v E Z'. Furthermore, let P C R"

be a polytope for which F = P n (ax = ap) is a face. If

() {xo + E n2yinu + Av yj E R, i = 1,.. .,n-2;0 <A<1 Zn = 0,

(Ii) F C { Xo + E~n- _YiUi + Av I 7- E R, i =1, 7 , n - 2; A < 1)

n-2

+ z7Yui+ Av yj E R, i = 1,.. .,n-2; A< 0 .

Proof. We can assume w.l.o.g. that xO = 0. Because of assumption (ii), there exists

an F E [0, 1) such that

F { ^Nu2 + Av (4.12)

With assumption (i), Lemma 4.6 implies the existence of a vector y E Z" such that

ujy = 0 for i= 1,..., n - 2 and vy = 1 ,

and the same is true for any integral vector y+ka, where k E N. Now let r, ... , r, denote

the set of edge directions emanating from the vertices of F to vertices of P that are not

in F. Then rea < 0 for s = 1,..., m. We can choose k large enough, so that

max{(y+ka)x xE P} =max{(y+ka)x xc F} .

Then with (4.12) and ui(y + ka) = 0 for i = 1, ... , n - 2, we get for arbitrary values of

the coefficients 7i

max {(y + ka)xI x c P} < (y

then

F' C o{

7y2 E R, i = ,...,n - 2; A <

+ ka) ,Ying + Ev) = E .



Consequently, (y + ka)x < 0 is a Gomory-Chvital cut for P. Now consider any

point x E F such that x = Z -1 yuj + Av with 7y E R and A > 0. Then

n-2

(y +ka)x =Z[m(y+ ka)ui + A(y +ka)v= A >0
i=1

Hence, the point x violates the Gomory-Chvaital cut (y+ka)x < 0 and, therefore, x ( F'.

While the above lemma and corollary concern integral hyperplanes, in the remainder

of this subsection we will focus on affine spaces that cannot be described by rational data.

Lemma 4.8 below can be seen as the core of the proof of Step 1. Therein, we establish

for every non-rational vector space V = (ax = 0) the existence of sequences of vectors

and numbers, which satisfy a distinct list of properties. The sequences are associated

with integral approximations of the non-rational hyperplane V. The starting point in

the construction of these sequences is a special type of Diophantine approximation {ai}
of the non-rational normal vector a. If U1,... , n denote a maximal set of integral and

linearly independent vectors in V, then the normal vectors a' E Z' are perpendicular

to each of the vectors u1,... , U. As a result, the approximations (aix = 0) of the

hyperplane V contain the maximal rational subspace VR= span(ui,.. . , Un) of V. In

particular, (ax = 0) n (aix = 0) = VR. Each integral hyperplane (aix = 0) is spanned by

the vectors U1, ... , a together with 1 = n - 1 - k additional integral vectors, denoted

by v',...,v', which can be regarded as approximations of the non-rational directions

of V. These vectors will be chosen very carefully among the infinite number of possible

sets of vectors spanning (aix = 0), as not all choices will guarantee the properties that

we require for the other sequences and numbers derived from them. Most importantly,

they will be almost orthogonal to one another. The vectors oj give rise to non-rational

vectors wj that span the non-rational part of (ax = 0). More precisely, each Wj is

obtained as projection of the vector ej onto (ax = 0), scaled by a factor, so that all w;

have a same given length. We refer to Figure 4-11 for an illustration. As the quality of

the approximations of V increases with the index i, the Wj 's will, at some point, also be

almost orthogonal to one another. This property of the wy's will turn out to be material

in the subsequent proof of Step 1. Apart from the mentioned sequences a', oj, and wj,

which have very natural geometric interpretations, we also establish a sequence of integral



vectors h'(6), for each 6 E {-1, 1}1, whose construction is more involved. They arise as

integral linear combinations of the integral vectors found in Lemma 4.6, which were the

basis for Gomory-Chvital cuts separating points in rational facets between affine layers

of integral points (see Figure 4-10 and Corollary 4.7). Some of the properties that these

vectors satisfy are as follows: Each h'(6) is perpendicular to the vectors U1 , .. . , na and,
therefore, the hyperplane (h x = 0) is parallel to VR. Moreover, the scalar product

of h'(6) with each non-rational vector 6owj is strictly positive, but very small.

14V2 iv-(1, 1)

(aix = 0) .
(-1, 1)

'?i(1, -1) ,
(ax = 0)

'(-1, 1)

Figure 4-11: Illustration of Lemma 4.8 for n = 3 and dim(VR) = 0: The non-rational

hyperplane (ax = 0) is approximated by integral hyperplanes (azx = 0). The integral

vectors v and vi span (aix = 0) and are almost orthogonal to each other. Their directions

give rise to non-rational vectors wi and w' of a given length R in (ax = 0). For each

parallelepiped Q(6) spanned by vectors 61w' and 62 w, with 6 E {-1, 1}2, there exists a

Gomory-Chvital cut that separates every point in Q(6) \ VR.



To understand the motivation behind these properties, let us consider the non-

rational parallelepiped Q(6) that is spanned by U1,... , Un and the non-rational vec-

tors 1wi,...,wj. When maximizing h2 (6) over Q(6), the maximum is attained

at fv(6) = Siwi + ... + 61w", or any other point in Q(6) that can be written as iD(6) + u

for some u E VR. Moreover, the properties of hi(6) guarantee that 0 < hi()D(6) < 1.

As a consequence, hz(6)x < 0 is a Gomory-Chvaital cut for Q(6), and this cut im-

plies that (Q(6))' C VR. Thus, for the special case that the non-rational polytope is

the (n - 1)-dimensional parallelepiped Q(6) or, contained in it, the single integral vec-

tor h'(6) implies a finite set S with the properties that we are looking for in Step 1 of

the proof.

For a general polytope P with a facet F = P n (ax = 0), we can cover F by at

most 21 parallelepipeds in V. Then every vector h'(6) will give rise to a Gomory-Chvital

cut that separates all the points in corresponding parallelepiped that do not belong to VR.

Note that for this, we also need the property that, when ht (6) is maximized over P, the

maximum is attained at a vertex in F. In other words, every vector h'(6) must have a

non-positive scalar product with the directions of edges connecting a vertex in F and a

vertex outside of F. Indeed, we construct the h'(6) in Lemma 4.8 with the requirement

that for a given finite set of vectors ri, .... , rm, their scalar product with these vectors is

nonpositive.

The proof of Lemma 4.8 strongly relies on properties of reduced bases of integral

lattices.

Lemma 4.8 Let R > 0 be a constant and let V C R" be a non-rational hyperplane

through the origin, that is, V = (ax = 0) for some a E R" \ Q". Let U be the maximal

rational subspace of V and assume that U is spanned by vectors u1 ,... ,u E Z, that

is, dim(U) = k, where 0 < k < n -2. Let I := n -k - 1. Furthermore, let r1 ,... , rm E Rn

such that for s = 1, ... , m,

ra < 0. (4.13)

Then there exists a constant c > 0 only depending on I such that there exist sequences

{ai} C Z", {I}, .. ., {vj} C Z", {qi}, ... , {q} C R, {w},. .. , {w} C R"



that satisfy the following properties:

(i) gcd(a') = 1.

(ii) r, a' < 0 for s = 1,-.., m.

(iii) ||al ||6a - a|| -+ 0, where ai = a / |ail| and a= a/ |a|l.

(iv) (aix= 0)=span(ui,...,Uk,vi, .,v;).

(v) ||v 00.

(vi) - wI -- + 0.

(vii) V - R.

(viii) V =span(ui, . .. , U, wk, . ..,w)

(ix) Iiv > c R, where dJ denotes

onto (span(i,1 , . U , w , ... ,_1) .

the orthogonal projection of wi

(x) There exists a constant C > 0 such that for any E > 0, there

such that for all i > N(E) and for all = (1, . .. , ) R'

exist vectors {h(3)} ; ; Zn for all o E {-1, 1}l such that

h' (6)
a3 - E

6j hC, 6) V

0

|h' (6) aI|

for

for

for

for

exists an integer N(E)

with hilo 00 < 1, there

1, ..

1,..

1,..

1, ..

,k

,M

Proof. Let us assume w.l.o.g. that the vectors ui,.. ., Ui form a basis of the lattice UnZ".

If this is not the case, we can replace the original vectors by another set of vectors in U

that has this property. Let VIR denote the set of points in V that are not contained in

Up

6jw, h'(6) < aj +E

r hI(6)
C ||a' ||2



the maximal rational subspace of V, that is, VIR := V \ U. Let {a} c Z" be a sequence

of vectors according to Corollary 4.4 such that for p 1, . . . ,

ai _L u,

and

laill lai - all -+ 0 . (4.14)

We can assume w.l.o.g. that gcd(a) = 1, since the same properties hold if we divide a'

by some positive integer. Thus, the sequence {aL} satisfies properties (i) and (iii). Fur-

thermore,(4.14) implies for s = 1, . . . , m,

rsai - rsa -+ 0

As rj < 0 by assumption (4.13), there exists some constant 3 > 0 such that rei2  -<

for large enough i. Hence, noting that ||ail - o because of a E R" \ Q", it also holds

that for s =1, ... , m and large enough i,

rsa -# . (4.15)

In particular, property (ii) is guaranteed for large enough i.

Let A' = (aix = o)nZ" denote the lattice defined by the integer points in the integral

hyperplane (aix = 0). In the following claim, we show that norm of the shortest vector

in A' \ U grows with i

Claim 4.9 Let z' denote a shortest vector in A' \ U. Then ||zi|| -- + oC.

Proof of claim. Suppose that there exists some positive constant K such that for all i,

one can find a point zi E A' \ U with ||zI|| < K. Let proj(z') denote the projection of z'

onto the hyperplane (ax = 0), that is, proj(z) + Aa = z', where A = (az')/ Ia|| 2.

As z' (ax = 0), we have Ilzi - proj(z')I| > 0. Furthermore, since the number of

integer points in B(0, K) is finite, there must exist some positive number D such



that |Izi - proj(z')I| > D for every i. However, using a'zz = 0 and (4.14), we get

1izi - proj(z')|| = |AI|aI = lazi JazzI = Iz - dazj < 1Ia - eill K -- 0

which is a contradiction. LI

Claim 4.9 implies that, for sufficiently large i, we can assume for every v E A' \ U,

I1VI12 IPI
p=1

Since (a&x = 0) is an integral hyperplane and U ; (aix 0), we can find integral

vectors vi... ., v, according to Theorem 4.5. That is,

(azx = 0) = span(ul,... Uk,v 1 ,. .v)

and the vectors u 1 ,... , , i. .. , v form a basis of the lattice A'. Furthermore, let fi be

the orthogonal projection of vi onto U' and let denote the orthogonal projection of vj

onto (span(ui,... .Uk, , ... , Vo 1)) , for j = 2,... ,l. Then it also holds by Theorem 4.5

that for j=1,.. .,l,
jl ;jj> Ci lvj j| , (4.16)

where ci is a constant that only depends on 1. Note that property (iv) of the lemma

follows. Furthermore, observe that v, E A' \ U for j = 1,. . . , 1. Consequently, Claim 4.9

implies property (v).

Since U1. .. , n, .U.. , e4 form a basis of A, we have for every s E {1... ,I},

( k 1

EZ-Kpup±Z Ajv, -y ER, p=,1..,k; Aj cR,i1=1,.l; 0 < A,<Jr n=0
p=1 j=1

(4.17)

Indeed, if this was not the case and there was a point z E Z" such that

k I
Z = 1 j

P=1 *j=1



and such that 0 < A, < 1, then

k

p=1 j=1

Hence, z' is an integral point in the semi-open parallelepiped spanned by the basis vectors.

Because of 0 < A, < 1, it holds that z' # 0, and this cannot be true.

Now, let us define for j = 1,...,1,

(w.§,q):= arg min {-vj - w w E VIR; |Iwi= R; q e R+ . (4.18)

Intuitively, wj is the closest point in the intersection of VIR with the ball B(0, R) to the

line spanned by vj. The definition of w' immediately implies property (vii) of the lemma.

In the following claim, we show property (vi).

Claim 4.10 Forj = 1, .. ,l,we have q-+ oo and

V.

iq

Proof of claim. We first show the second part. Let w denote the projection of the

point (R Vj) onto the non-rational hyperplane (ax = 0), where v' = o vj||. We

have w = RD' - Aa, where A = (aRj)/ flail 2 . Furthermore, let q = I1vj|| /R > 0. Note

that for i7= w/ iwlI, it holds that Rw E VIR and I R| ff= R. Therefore, (RF, q) is a

feasible pair in the minimization (4.18) that defines (w), gj. Consequently,

- ~ v -w < '-R =-e =|~ - (w -w)||
% q Iv /R

< jjRV - w|| + \|w - RI|

We get, using ai'j = 0 and (4.14), that

RV) - w = JAI faf| IRa = R adV3 - a j.7j < R Ia - a11 ||D| = R 1|6 - aill --+ 0



This also implies that ||w|| -+ R and, therefore, the second part of the claim holds. The

first part, qj -+ oc, follows from --+0o, 11 w = R, and lvj/q - w3| -+ 0. E]

Next, we prove property (ix). By (4.16), we have for j 1,. . . , ,

1 1
ci , .lIV7 (4.19)

q' q3'

Let tig denote the orthogonal projection of onto (span(ui, . .. ,uw,. ..

for j = 1, ... ,l. Because of Claim 4.10, there is for every T > 0 a number N(T), such

that for all i > N(T),

q3 q3

and

q q

Now let be some small constant such that ci > -y > 0. By (4.19),7

~ (cl-y > IV 1

Using this observation and R = IKj, we obtain

~ - (Cl - R)R > - T - (C1 -'7) + Tq3 qz

> _ M -T- (CI - )T
qj

> -y(R -r) -Tr- (c1 - 7)r

Note that we can choose r small enough such that the last expression is nonnegative.

Hence, c = (c1 - 6) > 0 is the desired constant for property (ix). Since ci only depends

on 1, the same is true for c.

Now observe that property (ix) implies that the vectors ui,...,n, wI,...,w1 are



linearly independent. This is because ||,Vj >0 for j 1,..., land

spanni,..,u~wl,.., l)=span(i1,..., gs .. , ),

where ii = u1 , and where for p = 2,..., k, the vector ii, denotes the orthogonal projec-

tion of up onto (span(ui,... , up_1))'. Consequently, property (viii) is satisfied.

In the remainder of the proof, we show property (x). Because of (4.17)

Lemma 4.6, there exists for each s =1,. . . , l a vector y' E Z" such that

and

(4.20)y1 E (uiz = 0) n ... n (Uz = 0) nn(vjx = 0) n (vix = 1) =: L.

jS

Since L' is the intersection of n - 1 linearly independent hyperplanes in R", it is a line.

Because az _L uj and a2 1 Ij, the direction of the line is a2 . Let us assume w.l.o.g.

that a1 # 0, and therefore a' # 0 for large enough i. Let g' denote the intersection of LP

with the hyperplane (xi = 0). Note that y± # ±oo because of the assumption a' f 0.

That is, yS is the unique solution to the system

el

U 1

Uk

vi-

v1

i

VI

X1

LzJ

For convenience, we introduce

rows up, p 1,.. ., k, and let

such that j # s. Similarly, let

with j - s. Finally, let V'

some additional notation: Let U denote the matrix with

Vi denote the matrix with rows vj for allj 1 .l

Wi denote the matrix with rows wj for all j 1,...,

and W' denote the matrices with rows and wj,



for j 1,... , 1, respectively. Then the above system becomes

ei 0
X1

U 0

Xn
[ _ -- _

Claim 4.11 For s= 1,..., 1, 9q -+ 2 , where x' denotes the unique solution to the

linear system of equations

U 0

Wi_ 0-n
w i _ - _1

Proof of claim. Let vj/q) denote the vector obtained by dividing every component of vj

with the scalar q). Furthermore, let Vi,/qi8 be the matrix with rows oj/q) for all j #s.
Then

ei 0 eil 0 ei 0
U 0 U 0 U 0
V%0 V V q

. S LJ [v/qJ [] [ viL/qSJ L1
where Claim 4.10 implies

l c el

U U

_ i v/i _wz

Now we will show that the entries of zicannot become arbitrarily large.



Claim 4.12 There exists a constant K 1 > 0 such that for sufficiently large i,

|2,000 < K1

Proof of claim. By definition,

ei 0

. U 0

_wis _ 01

Therefore, it suffices to show that the entries of the inverse matrix in the above equation

cannot be arbitrarily large. We have

(A')-:= U = adj (A')
S[J det(Ai) '

where adj(A2 ) denotes the adjugate matrix of A'. Since all entries of A' are bounded

(note that Iwj| = R), every entry of adj(A') is bounded as well. Hence, it is sufficient to

show that Idet(A')I can be bounded from below for large enough i. The absolute value

of the determinant of A' corresponds to the volume of the parallelepiped spanned by the

vectors U1, ,Uk, wI,. .. , w1,ei (see also Section 2.2.3). Therefore, it holds that

Idet(A')| = ||li1||... JlldkJ JadI ... 11'&1i l l .

Here, 21 denotes the orthogonal projection of ei onto (span(ui,. . . I , ,. ,W,

Hence, by property (viii), the vector ei is the orthogonal projection of ei onto V'.

Because of the assumption ai $ 0, it follows that ||21|| > 0. With property (ix), we

obtain for sufficiently large i,

Idet(A')| > (cR)' 111iII ... iikI Iei .

As the expression on the right in the last inequality is a strictly positive constant, the

claim follows. D



Now let us define for any vector M= (M=,..., Mj1 ) E N', the set

LI(Mi):= (uix = 0) n ... n (ukX= 0) n (vix = Ml) n ... n (vix = M)

By virtue of (4.20), we have

(Ml'y' + . . . + Mjy') E Li) n Z"

and therefore,

L*(M') n Z" f 0

Moreover, Lz(AIP) is a line with direction a' that intersects the hyperplane (x1 = 0) in

i(MI) M i + . . . + MiJpl. Therefore, we can write

LV(Mz) = x E R" n IX = pi(M') + pa', p (E R .

Observe that every line segment of length ||ail| of L2(M) must contain an integral point.

Now let E > 0 be an arbitrary constant. In the remainder of the proof we show that

there exists a constant C and an integer N(E) such that for all i > N(E) and for every a E

R+ with ||a||Ko < 1, there is a vector A = M'(a) C N' and a number p6 = pi(a) E R

such that for each p E [p4, p/ ± 11 and each 6 E {-1, 1}' the vector

'(Mp) :=g(M)+ pa" 61M A119' + . . . + 611Mj g + yt a' (4.21)

satisfies

h'(aM*,qp) _L up

aj - E < 6j w -zAll', p) < aj + E

5j hl (6A, p) vj = [aj q ]

0 > r, h'(0,p)

h(6-AP, p) a'I < C |la' ll2 .

for p = 1,..., k

forj = 1,...,

forj = 1,...,l

for s= 1,...,m

Here, the notation 6M2 means ( 1AJ, ... ., 611). Since every line segment of length ||aIl|

contains an integral point, there must exists some p E [pi, p4 + 1] such that h'(6Mi, p)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



is an integral vector. Consequently, this would imply property (x) of the lemma.

First, observe that condition (4.22) always holds, since any h of the form (4.21) is

a linear combination of vectors that are perpendicular to the vectors up, p = 1,... , k.

Using definition (4.21) of h?(Mi, p), condition (4.25) becomes

0 > 61Mirs + (.1, thrs, +pra'

Now let # > 0 be the constant from (4.15), that is, r, ai < # for s = 1,...,m.

Then (4.25) becomes

and for
1Mmx+ + r

po := max0 S=1,...,m#

this condition is satisfied for all y > p4. Let r E {ri,. . . , rm} such that

1A r* , + ... + o3,jIr t yI

Then by (4.21),

=61 M J +
1.

rZ -% ai) +. .+iM - + r y ai

and (4.23) becomes for p p and j s,

a, - E < 6 6JM r~ 9; w a ) (4.27)

Now let us define A := [ojq)]. Note that M E N'. In the following, we will show that

this choice for M' satisfies (4.27). For this, we consider the terms in (4.27) separately.

We start with the terms o6jAl jm3g. If j = s, then we get with Claims 4.10 (q' -+ oc)

61iMir. s+..+ 1zMjr g

h0o*,o

) < a + E .w Q 3 +



and 4.11 (wizt 1),

- |L[qij wi 5 i - as wi s qi - a s+I ± i l

= aswi9 9 q - aswiti|I+ I.wi9 i i -SqS
- ~ q5

K 1
< mi (yq - 'ti )|+ I|wi (p'q'

1 8 (98 8 S qs 1

= R (+ -)gq - t1|+

wt i + wix l8 S 8S

-i)|+ wI

qs

1

-- + 0

Hence, for every E1 > 0 and for sufficiently large i,

a, - E1j < E'lsos , <s a, + E1 .

For j $ s, it similarly follows by Claims 4.10 (q) -+ oc) and 4.11 (wt = 0) that

oojlM w y |I [ajq w c w' Qq - aw7 + w I

Ws3 9qj - +z w' gq -2

< R 1 + xq - I1 0.

Thus, for sufficiently large i,

(4.28)

(4.29)

1 + W S 8 8 S +'i ) 11 ill Ilpiqi - -tillq5



Now consider the terms osojM r gj w' a'. With Claim 4.11, we obtain

JsjjM ri1 wi ai

13

13

13

We can bound

a q ( r y ) ( aI )

aj (r y q3 %) (Wi a ) I+

q w a + |r yj w a

( 1 +

+ 1 .)

rq w' a'

Yrf q T - r1 +i'r2I wi aI

x)1 + 1r m1) ai |

+ 1) 1 ( 119q} - + x ) w a|l

+1

from above by Claims 4.10, 4.11, and 4.12 for sufficiently large i.

ing (4.14) and aw = 0, we get for each s =,...,l,

wa'l = |aI ll lawl = ||aill Iaw' - dw'I < hail l14 - all llwIl=

Furthermore, us-

R aI 14 - al - 0
(4.30)

It follows that

o 16S6i 13 /3 r p w a -- 0

Consequently, for large enough i,

- i 5oM rz w i a .l (4.31)

(r y )D (Wi a )

+ I.) Ir' (yj qj -

r' ( q - + ltl



Plugging (4.28),(4.29), and (4.31) into (4.27), we can bound 6Swz h' (60i, p) for large

enough i by

a, - 2i 1 <o6w' h*(6M*, pht) < a, + 2 l 1 .

Because of (4.30), we have Iw'al < E1 for large enough i. Therefore, for all p E [pi, p ,+1

as - (21 + 1)E <1 Jow' hW(6M0, p) < as + (21 + 1) E1

Finally, by choosing Ei <(2+, we obtain that there exists some integer N(E) such that

for all i > N(E) and for all p E [PIpi+ 1Y ,

as - E <6w. h'(6M, p) < a, + E

In particular, there must exist an integral h'(6) with this property.

does not depend on a. This proves condition (4.23).

Note that N(E)

For condition (4.24), observe

that hvj = A1 for every h E L'(I) and every j 1,..., 1. We thus get

j h p =6 = J ag .

Finally, consider condition (4.26). For every p E [p, p' + 1], we have

h(6N11 , p) a I lh(M,,p)a + a aj

6j [ajqfJ
j1

K= +1.a j ql

+ q a/ +1

+ ' g (

r yqa ) a + +|a 112

lI±+

Since y p5qfll is bounded because of Claims 4.11 and 4.12, since q) -4 oc by Claim 4.10,

a a ) + 9 a +1 r a ai + Iai||2

<

j-i

(rgj)a)a' + Ia' 12

r1 T lIa' 1 + 11a ||12



and since |[rJ is bounded as well, condition (4.26) is satisfied for sufficiently large i. O

In the proof above, we chose the vectors vi,..., v, which span together with the

vectors u1 ,... ,u the integral approximation (aix = 0) of (ax = 0), in a specific way.

The vectors U1 , ... , , vi, ... , v form a basis of the lattice of integer points in (aix = 0)

and they satisfy properties that are characteristic for reduced bases. In other words,

the vectors vi,... , vj are almost perpendicular to each other. We already leveraged

this special property when we showed property (ix) of Lemma 4.8 and also in the

proof of Claim 4.12, which was required for the final analysis in the lemma. How-

ever, there is a second reason why an arbitrary choice of these vectors would not allow

us to prove the main result of this section. Recall that our goal is to show that for

each non-rational facet-defining inequality ax < ap of a polytope P, there exists a fi-

nite set Sa C Z" such that Cs,(P) C (ax < ap). To illustrate why reduced bases

are crucial, consider the special case that ap = 0 and (ax = 0) n Q" {0}. The

basic geometric motivation behind the construction in Lemma 4.8 arose from the ob-

jective to cover F = P n (ax = 0) with at most 2n1 parallelepipeds, spanned by the

vectors i wi,.. .6, on - , where 6E {-1, 1}" . Indeed, if these parallelepipeds cov-

ered F, then the vectors h'(6) of Lemma 4.8 gave rise to Gomory-Chvital cuts that

separate every point in F apart from 0: This is because we can choose the vectors r, for

Lemma 4.8 such that

max {h(6)x I x CP} = max {h()x I x e F}.

Then, for an appropriate choice of the parameters a and E in (x), we can achieve

max {h'(6)x I x cP} < h(6) (6iw +...+ o w ) < 1

and, consequently, h'(6)x < 0 is a Gomory-ChvAital cut for P. As this is true for ev-

ery 6 E {-1, 1}n, these 2n1 Gomory-Chvital cuts imply F'= {0}.

Since P is bounded, F is contained in some ball of radius R around the origin. Clearly,

if the w, ... , wi are orthogonal to each other and of length R, then the parallelepipeds

cover this ball and therefore F (see Figure 4-12).

However, the smaller the angles between the vectors w ..... , w'-, the longer the wiIs



Figure 4-12: Illustration of why reduced bases play a crucial role: The facet

F =P (ax = 0) is contained in B(0, R). If wi and wi are orthogonal to each other

and of length R, the four parallelepipeds spanned by the vectors ±w' and ±w' cover F.

have to be to guarantee that F is completely covered (see Figure 4-13). The analysis in

Lemma 4.8 required that the Wij's have a fixed length, which is chosen at the beginning of

the construction. However, as the lattices of integer points in span(vi . .., o1) change

with every index i, arbitrary bases of the lattices would result in arbitrary angles between

the w5's. Therefore, it is not certain that any fixed length R would guarantee the covering

property that is envisioned. By choosing reduced bases, we make sure that the vj's and,

hence, the w5's are almost orthogonal to each other. Moreover, their orthogonality defect

only depends on the dimension. As a consequence, we can choose a certain fixed length

for the vectors w' (that is, the value R in Lemma 4.8) that only depends on the radius

of the ball that fits F and the dimension n.

In the next lemma, we utilize the sequences from Lemma 4.8 to prove that for every

non-rational facet-defining inequality ax < ap of a polytope P, there exists a finite set Sa

of integral vectors such that Cs, (P) C (ax < ap). This property immediately implies the

existence of a finite set S C Zn with Cs(P) C P.

Lemma 4.13 Let (a, ap) E Rn+1\Qn+1 such that (ax = ap) is a non-rational hyperplane

with P C (ax < ap) and P n (ax = ap) # 0. Then there exists a finite set S C Z" such

that Cs(P) C (ax < ap).



Figure 4-13: Illustration of why reduced bases play a crucial role: The

facet F= P n (ax 0) is contained in B(0, R). If wi and w are of length R, but the

angle between them is very small, the four parallelepipeds spanned by the vectors ±w'

and ±w' do not cover F.

Proof. There are three possible types of non-rational inequalities ax < ap:

(a) a E Qn and ap E R \ Q.

(b) a E R7 \Q" and (ax=ap)fn Q" 0.

(c) a (E R' \ (Q" and (ax = ap) n (Q" 0.

In the following, we consider each case separately:

Case (a): If a E Qn, then we can assume w.l.o.g. that a E Z" by scaling (a, ap) by

some rational number, if necessary. Consequently, ax < [apJ is a Gomory-Chvital cut

for P and (ax < [apj) C (ax < ap). Then S = {a} has the desired property and we are

done.

In the following, let us assume that a E Rn \ Qn and that the same is true for

every Aa with A E R. Let F = P n (ax = ap) and let ri,...,rm E Rn denote the set

of edge directions emanating from the vertices of F to vertices of P that are not in F.

Note that r, a < 0, for s = 1,... , m. First, consider case (b):



Case (b): Let VR denote the maximal rational affine subspace contained in (ax = ap)

and let ui, . .. , Uk E Z" and xO C (ax = ap) n Q" such that VR = xo + span(ui,. . . , Uk).

Define I := n - k - 1 and U := span(ui,. . ., uk). Note that U = {O} is possible. Since P

is bounded, there exists an R 1 > 0 such that for every x E F there is an u E U with

xExo+u+B(0,Ri) . (4.32)

Let po E Z and let qo > 1 be an integer such that xO = po/qo. Furthermore, let c be the

constant from property (ix) in Lemma 4.8 and let c1 be the constant from Lemma 4.1.

Let us fix a constant R such that R > Ric1/c and consider the sequences that exist

according to Lemma 4.8 for V = (ax = 0) and R.

First, observe that we can choose i large enough such that aix < [aixoJ is a Gomory-

Chvital cut for P: Property (ii) in Lemma 4.8 implies

max{axl x E P} =max {ax|I x E F} =axo + max {az(x - xo) x c F}

and by property (iii) and the boundedness of P, we have for all x C F,

Ia(x - xo)|| = ||a j||||d7(x - xo)| = |ai||l (d - ei)(x - XO)|I

< |lail| - all |x - xo|| -k 0

Hence, we can choose i large enough such that

1
max {a'x| I E P} < a'zo +,

2qo

which implies that ax < LaixoJ is a Gomory-Chvaital cut for P.

Now leta = 2qo11)(1,. . , 1). Also by Lemma 4.8, there exists an index i such that

the vectors vj := oj and wj := wj, for j = 1,... , I, and the integral vectors h(6) := (6)



for each 6 E {-1, 1}', satisfy

h(6) I up

0 < 69w h(6) < (qo(l + 1))- 1

6jh(6 ) v > 1

0 > rs h(6)

for p k

for s=1,...,m

Moreover, it holds that ||6|l| > cR, where 6v denotes the orthogonal projection of wj

onto (span(ui,.. . , U, ,.. ., w- 1))I. Observe that by (4.32), every point x E F can

be written as

j=1

where a' E U and |Aj| < Ri/(cR), for j
every x E F can be expressed as

1. Then it follows by Lemma 4.1 that

X=Xo+u+ AjwyjW ,

j=1

(4.37)

where u E U and IA.jI < c1R 1/(cR) < 1, for j 1,. .. , 1. Now consider any 6 E {-1, 1}'.

We obtain with (4.33)-(4.36) and (4.37),

max {h(6)x I x E P} max {h(6) x | x E F} < h(6) o + max {Ajh(3) wj }

= h(6)xo+Z jh(6)wj h(6)xo+l(qo(l +1))--

j=1

1
< h(6)xo+ - [h(6) xoj + 1

Hence, h(6) x < Lh(6) xoJ is a Gomory-Chvital cut for P for every 6 E {-1, 1}'. Now

consider an arbitrary x E (ax = ap) \ VR. By (4.37), there exists an u E U and Aj E R+

and 6j E {-1, 1} for j= 1, ... , 1 such that

X=xo~u+ Ajjwj

j=1

(4.33)

(4.34)

(4.35)

(4.36)



Note that Ej Aj > 0, as x ( VR. Consequently,

h(6) x = h(6) x0 + E Aj6oh(6) wj > h(6) xo > [h(6) xo]
j=1

that is, x violates the Gomory-Chvaital cut h(6) x < [h(6) xoj. Now let H denote the

polyhedron defined by the intersection of the 2' half-spaces associated with the Gomory-

Chvaital cuts h(6) x < [h(6) xoj, with S E {-1, 1}'. Then by the last observation,

= ap) n H = (ax = ap) n f (h(6) x [h(6) xo])

Similarly, let us consider the integral hyperplane (aix aixo). Any x c (a'x = azxo) \ VR

can be written as

x =X0 + U+ZAj j
j=1

for some u C U, and Aj E R+ and 6j E {-1, 1}, j = 1 ... , 1; and in this representation

it must also hold that Ej Aj > 0. Then with (4.35)

h(6) x = h(6) xo +( Ajjh(6) vj > h(S)xo ;> [h(6) xo]
j=1

This implies that also every point in (aix = aixo) \ VR is separated by some Gomory-

Chvital cut h(6) x < [h(S) xo] and, thus,

((aix = a xo) n H) C Vf . (4.39)

As every hyperplane (h(S) x = [h(S) x0J ) is parallel to VR, either every point in VR

satisfies the corresponding inequality or every point in VR violates it. Therefore,

n H) = ((azx = a'x0) n H) E {0,V} .

Observe furthermore that every minimal face of ((aix < aixo) n H) is also a minimal

((ax C V (4.38)

((ax = ap)



face of ((ax < ap) n H) and vice versa (see also Theorem 2.4). Consequently,

((aix [ (aixo ) n H) C ((aix aixo) n H) = ((ax < ap) nH) C (ax < ap)

It follows that a' and the vectors h(6), for 6 E {-1, 1}1, form the desired set S of the

lemma.

Case (c): In the remainder of the proof, we consider the case (ax = ap) n Qfl 0.

Let u1 ,. . . , uk E Z" be a maximal set of linearly independent integral vectors such

that au = 0 for i= 1,...,k. Let U := span(ui,.. .,uk) and note that U = {0} is

possible. Furthermore, take an arbitrary point xO E F. Since P is bounded, there exists

a constant R1 > 0 such that for every x E F there is an u E U such that

xExo+u+B(0,Ri) . (4.40)

Let us fix an R > Ric1/c, where c and ci are the constants from property (ix) in

Lemma 4.8 and Lemma 4.1, respectively. Now consider the sequences that exist according

to Lemma 4.8 for V = (ax = 0) and R .

Property (ii) from Lemma 4.8 implies that if-there exists an index i and an integer a'0

such that

a+1 >max {aI x E P} = max {a'x| x E F} > min {a'x| x E F} > a',

then ax < a' is a Gomory-Chvital cut for P with the property that every point in F

violates the cut and such that

(atx < a')nF=0

In particular, one can then find an E1 > 0 such that (P n (azx < a')) C (ax < ap - E1).

This implies that there exists a rational polyhedron Q D P such that (aix < a') is also a

Gomory-Chvaital cut for Q and such that Q n(aix < a') C (ax < ap). The facet normals

of Q together with a' imply the desired set S of the lemma.

Let us assume in the remainder of the proof of part (c) that for every i, there exists

an integer ai such that

F n (a'x = a') # 0.



Let y' E Fn (aix = a'). Since gcd(a') = 1 according to property (i) of Lemma 4.8, there

exists an z, c (aix = a') n Z". We have

(aix = a')= zo + span(u, .. ,Uk, = ,.. , . i

Let zc' denote the projection of zO onto the hyperplane (aix =a'), that is,

at - a1xo
O = XO + 2 a

|| Il
(4.41)

Note that because of property (iii) in Lemma 4.8 and the boundedness of P,

a- axo = azyi - azxol = 11a11 aly - a6xo + (axo - ayi)|

(4.42)

We can assume w.l.o.g. that the point zo E (aix = ai) n z" is chosen such that there

exist numbers 7), ... ,I, p4, .. .., p E [0, 1] such that

(4.43)

This is because z4 E (aix = a ) can be written as

4- iiV
p=J1 j=1

k

+ Z 1-YJ I
p-i

k

p=

+
j=1

j=1

k

p=1

[1tJ V' )

L41i ) ui±>
j=1

c (aix = a ) n 7/jf

Figure 4-14 illustrated the described situation.

Next, we show that z4, and therefore also xo, is far away from any integer point in

the hyperplane (aix = ai).

and

- [P'4J )ij

Zo' z +7 Aui + ... + 71.Uk + p11eV + ... + pjo1 .

< 1a'1 11 - 611|||zo - y'll -+4 0 .



(aix = ai)

(ax ap)

zi E Z"

Figure 4-14: Illustration of the situation in part (c) of the proof of Lemma 4.13 in the

special case that for every i there exists an integer a' such that F n (aix = az) - 0.

Claim 4.14 Any vertex f' of the parallelepiped

zo + II(Ui, . . , ,V'1, ... ,V19

satisfies lixo - fil oc.

Proof of claim. As F is bounded and as xo and y' are points in F, there exists a con-

stant K1 such that for all i, Ilxo - yll < K1 . Then

I1fi - y'11 = ||fi - xo + Xo - y'I| < I|f' - xolI + I|xo - y'11 < f - xoll + K1

implies |if - zoll > |lf' - y|ll - K 1. Hence, in order to show the claim it suffices to

prove If - yll -- o. Suppose that there exists some positive constant K 2 > 0

such that for all i we have |f - il K 2. Note that then fi E B(xo, K1 + K 2 ) n Z".

Let f* denote the projection of fi onto the hyperplane (ax = ap), that is, fl + Aa fi,
where A = (af' - ap)/ |a112 = (afi - ay)/ |lal|2. Since fi E Z" and fi ( (ax = ap) (re-

member that (ax = ap) n = 0) and since the number of integer points in B(xo, K 1 +

K 2) is finite, there must exist some positive number D such that f - f > D, for

every i. However, with property (iii) from Lemma 4.8 and using a(f' - y') 0, we get

f i- f = A |all|| Iaf - ayjl -'If - y - i(fi yi)

< || - aill Ilfi - yll < K2 I - I -+ 0 ,



which is a contradiction.

As the above claim implies that z4 is far away from any integer point in the hyper-

plane (aix = a'), it is intuitive that not all the coefficients p' in the representation (4.43)

can be close to 0 or 1. We formally prove this observation in the next claim.

Claim 4.15 Let K > 1 be a constant. There exists an integer N1 = N1 (K) such that

for every i > N1, there exists an indexj E {1,. . .,l} such that the coefficient pt in (4.43)

satisfies
K K

Proof of claim. By Claim 4.14, any vertex fi of the parallelepiped

zo + II(Ui, .. , ,V'1 . ... ,Vo)

satisfies ||xo - fill oo. Therefore,

X0 - f i| 1 Xo - zi|| + ||zi - f i|| 1 oo .

Because (4.42) implies |ixo - 21| -+ 0, we must have

ifi| -+ oo

In particular, there exists a number N1 such that for all i > N1

k

-j fiI > Y ||u,1||+ 2K R l
P=1

Now let i > N1 and assume that there are index sets J' and Ji such that Jj U J =

{1,..., l} and such that for every index j E J', we have 0 < P' < K/q), and for every

index j E J2, it holds that 0 < 1 - pj < K/q>. For the vertex

f = zi+ v ,

100



of the parallelepiped it follows with property (vi) from Lemma 4.8 that

k

11- fi|l =- Pinp+ I
p=1

k

< EIUp||+ ' pt Ivj -
p=1 jEJ1

k

< E1up||+Et' p 3+
p=

1
jcji

k I v l
< EJup|±+ K Z 7

p=1 j=1

+ iI:V 6 - ov

Geii

Z(1 - p ) 6 jV

jEJ2

((- pt 1vJ
jcJ]

k

-+ ||up|l + KRl
p=1

which is a contradiction. L

The next technical claim is needed to choose a proper parameter az for the vec-

tors hX, (6) in Lemma 4.8 that give rise to appropriate Gomory-Chvital cuts.

Claim 4.16 Let K > 1, P G [0,1 and q E R such that q > 2K and K/q < p < 1 - K/q.

Then there exist integers pi and P2 such that 1 < p1 < q/(2K) and

P2 + 1/4 < ppi < (P2 + 1) - 1/4 .

Proof of claim. We consider three cases. If 1/4 < p < 1 - 1/4, then pi - 1 and P2 = 0

satisfy the conditions of the claim. If p < 1/4, there must exist an integer p such

that 1/4 < pp < 1/2 < 1 - 1/4. Then

1 1q
1<; < p <; < 2

4 /At - -2/1-2K'

and we can set pi = p and P2 = 0. Finally, if p > 1 - 1/4, then 1 - pt < 1/4 and there

must exist an integer p such that 1/4 < (1 - p)p < 1/2. Then

1
1< <

4 (1 -t) - ~ 2(1-[p)
< 2

~2K
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For p1 p and P2 - p - 1, we get

P2+1/4<p-1/2< p< p -1/4= (P2+1)-1/4

L]

For the remainder, let us fix a constant K such that K > 8(2+1). For large enough i,

the assumptions of Claim 4.16 are satisfied, that is, q, > 2K for every j = 1, ... , 1. Then

Claims 4.15 and 4.16 imply that there exists an integer N(K) such that for every i >

N(K), there exists an index s E {1,. .. , 1} and integer numbers p" and p' such that

1 < -<
_ 2K

and
1 1

P' + -< ppA < (P' + 14 4

Note that we can write the positive integer pi as [a4q'j for some scalar ad. That is,

there exist a number 0 < d' < 1/K and an integer p such that

p2 + 1/4 < pi [aq'j < (p' + 1) - 1/4 . (4.44)

Define a& e R1 by

ifj=s

0, otherwise

Note that |ao < 1. Now take h: h'j(6) according to Lemma 4.8 from property (x)
for = (1,...,1). For some sufficiently large number N2, we can assume that for

every i > N2 ,

h' I up for p = 1,...,k (4.45)

a - 1/K < w' hi < a' + 1/K for j = 1,..., (4.46)

htv= [aqj for j = 1,...,l (4.47)

0 > r, h for s = 1 . (4.48)
he ail < C Il a' 112(.9
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where C > 0 is a constant. By (4.40) and arguing as in part (b), R has been chosen

large enough so that every point x E F can be written as

x=xo+u+Ajjw,

j=1

for some u E U and Aj E [0, 1] and 6j E {-1, 1} for j = 1,. . . , 1. With (4.41), (4.43),

(4.45) and (4.47), we get for every x E F,

hzx = h'xo + h'u + ( Ash 2 jwi = hixo + ( Aj hijw.
j=1 j=1

a - axxoh0 1 1 1 1 Ia 112

±i - a-xo
..+ pI aqi- a 1= hiz±i + Pl(aqi1 +

= hiz' + Pl gi i) -

1

1

h'a' + ( Aj hijw.
j=1

a - a?,X0 'a

Iai 11 2 Ezi > Aj li6 w.

For large enough i we get with (4.42) and (4.49),

ao - a x 0 ha <

lai112

Consequently, with (4.46) and 0 < &i < 1/K, we obtain

a - azxoha +

I ai 12
>3 Ah2Sj iv

j=1

a' - aIx0
< 

| |

Il 112h'ai
j+ 1

K K7~
2+1 1

K 8

This implies that for every x E F,

hz4 + p4 [asq) -
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and with (4.44), it follows that for every x E F,

(h2z + p) + 1/8 h'x < (h'z + pz + 1) - 1/8 (4.50)

Now observe that (4.48) implies that

max{hx|xEP} =max{hix|xEF}

Therefore, using (4.50) and the fact that z E Z, we have that h'x < hiz" + p' is a

Gomory-Chvital cut for P. Moreover, (4.50) implies that this cut is violated by every

point in F, that is,

(hix < hizo + pi) n F= 0.

Arguing as at the beginning of part (c), we can find a rational polyhedron Q D P such

that (h'x < hiz' + pi) is also a Gomory-Chvital cut for Q and such that

Q n (hix < hiz' + p') C (ax < ap)

The facet normals of Q together with h' imply the desired set S of the lemma. O

As the proof of the above lemma shows, for every non-rational face-defining in-

equality ax < ap of P, the Gomory-Chvaital procedure will separate every point

in P n (ax = ap) that is not contained in the maximal rational affine subspace

of (ax = ap).

Corollary 4.17 Let P be a polytope and let F =P n (ax = ap) be a face of P. If VR

denotes the maximal rational afline subspace of (ax = ap), then P' n F C VR.

Lemma 4.13 gives us the tools to complete the first step of the main proof.

Corollary 4.18 Let P be a polytope in R". Then there exists a finite set S C Z" such

that Cs(P) C P.

Proof. Let P = {x EE R'| Ax < b} for some matrix A and some vector b. Let A' denote
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the set of vectors corresponding to rows of A that define rational facet-defining inequal-

ities of P and let A2 denote the set of vectors associated with the non-rational facet-

defining inequalities of P. By means of Lemma 4.13, for every non-rational facet-defining

inequality ax < ap of P, there exists a finite set S_ C Z" such that Cs,(P) C (ax < ap).

Therefore, the finite set

S:= ( Sa) u A1

acA
2

satisfies Cs(P) C P.

4.4.3 Step 2

In this part of the proof, we establish a connection between the Gomory-Chvital closure

of a face F of a polytope P (seen as a lower-dimensional polytope in R") and the Gomory-

Chvdital closure of the polytope itself. In particular, we show that F behaves under its

closure F' as it behaves under the closure P', in short, F' = P'fnF. This relationship has

long been established for rational polytopes and can, in this case, be immediately derived

from the following lemma (see Cook, Cunningham, Pulleyblank, and Schrijver 1998,

Lemma 6.33).

Lemma 4.19 Let P be a rational polytope and let F = P n (ax = ap) be a face

of P. If cx < LcFJ is a Gomory-Chvatal cut for F, then there exists a Gomory-Chvital

cut bx < [e)p for P such that

(ax = ap) n (cx < [CFI = ax = ap) n ( x < [p] )-

Geometrically, this lemma says that every Gomory-Chvaital cut for F can be "rotated"

so that it becomes a Gomory-Chvital cut for P that has the same effect on the hyperplane

defining F.

Corollary 4.20 Let F be a face of a rational polyhedron P. Then

F'=P'nF .
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This last observation was the main ingredient to Schrijver's result that every rational

polyhedron has a finite Chvital rank (Schrijver 1980), and it has also been useful to

Bockmayr, Eisenbrand, Hartmann, and Schulz (1999) who proved that the Chvaital rank

of polytopes in the unit cube is polynomially bounded in the dimension. Both proofs use

induction on the dimension of the polyhedron and induction is also our motivation to

extend Corollary 4.20 to arbitrary polytopes. If we were able to show a similar rotation

property as in Lemma 4.19 for non-rational faces, which would imply that F' = P' n F
also holds for non-rational polytopes, an inductive argument for our main result might

be as follows: Knowing that the Gomory-Chvital closure of a lower-dimensional facet F

of P is a polytope, we would rotate each of the finite number of cuts that describe F'

in order to obtain Gomory-Chvaital cuts for P that play the same role for P' n F. In

doing so, we would establish the existence of a finite set SF C Z" with the property

that CSF(P) n F = F'. As the facets of P constitute the relative boundary of the

polytope, the union of all these sets would satisfy property (P2) in Figure 4-3.

We cannot hope that Lemma 4.19 holds in the exact same way for non-rational

polytopes. For this, we had to rotate the valid cut for F with the non-rational vector a of

the non-rational facet-defining inequality. But such rotation would not result in a rational

inequality Bx < Bp for P and it would, therefore, not correspond to a Gomory-Chvital

cut. However, we can show a weaker statement: For every undominated Gomory-Chvital

cut of the face F = P n (ax = ap), one can find a Gomory-Chvital cut for P that has

the same impact on the maximal rational affine subspace VR of (ax = ap) as the cut

for F. As we showed in Step 1 of the proof, every point in F \ VR is separated by some

Gomory-Chvaital cut (see also Corollary 4.17). As a consequence, this weaker property

would still suffice to show that F' = P' n F applies to arbitrary polytopes.

Lemma 4.21 Let P be a polytope and let F = P n (ax = ap) be a face of P such

that (ax = ap) is a non-rational hyperplane. Let VR denote the maximal rational affine

subspace of (ax = ap) and assume that VR $ 0. If Cx _ LCF] is a Gomory-Chvs4tal cut

for F and facet-defining for F', then there exists a Gomory-Chvstal cut <x [epI for P

such that

(ax = ap) n VR n (ix LepJ) = (ax = ap) n VRn (cx <cFJ)
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Proof. Let VR = xo +span(ui,... , ak), where xO E (ax = ap) f Q" and U 1, ... ,Uk E 7/.

Note that VR = {xo} is possible. Furthermore, assume that P C (ax < ap). Now

consider a Gomory-Chvaital cut cx < [cFJ for F that is facet-defining for F'. Moreover,

assume that 1 is a vertex of F that maximizes c over F. Let ri, . . . , rm denote all edge

directions of P that emanate from vertices in F to vertices of P that are not in F. Note

that for s 1, ... ,m,

ra < 0. (4.51)

According to Corollary 4.4, there exists a sequence {ai} C Z such that a' I uj, for j
1,. .. , k, and such that

aill lti - al -- 0 , (4.52)

where a' = a'/ |ail| and a = a/ |a|l. As raa < 0 by (4.51), it follows with (4.52) that

there exists a constant 3 > 0 such that rest < -/3 for large enough i. Hence, noting

that |a1 -+ oc because of a E R"\Q", there exists a constant # > 0 and an N1 E N such

that r a' < -# for all s= 1,...,m and i > N1. Let A := maxs=1. . m{c rs}. If A < 0,

then 2 also maximizes c over P and, hence, cx < |CFJ is a Gomory-Chvital cut for P.

Therefore, assume that Al > 0. Let p C Z and q C N with q > 1 such that xo = p/q.

We define the constant K q [M] and vectors ': c + K a' for every i > N1 . Note

that K E Z and therefore ' E Z. We have for s = 1,... , m

rse = rs(c + K a') < rc - K3 < 0 ,

which implies that for i > N1, the vector c' is maximized over P by a point in F. Now

let sV E arg max {aixl x E F}. We obtain for every i > N 1 ,

max {cx| x E P} = max {ex I x C F}

< max{cx| x E F}+Kmax{arI x E F}

cz+ Ka',P

CF + Ka xO+ Ka(sP -xO)
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With (4.52), the boundedness of F, and ax = axo = ap, we get

aI(s9 - xo)I = |aill l(d' - 5)(P - xo)| I ||aill a - a|l |l - Xo1l - 0

Therefore, for any E > 0, there exists an N E N such that |Ka'(,- - xo)j < E for

all i > N. In particular, we can choose i large enough so that

cp= max{c xIx E P} < cFj + Kaixo+1 .

Observe that Ka'xo c Z. Consequently,

.X (c[6 LCFJ+ Kaixo (4.53)

is a Gomory-Chvital cut for P. Furthermore, it has to hold that LPJ = CFJ + Ka'xo:

First, observe that Corollary 4.18 implies that F' C F and, therefore, F' C P' n F.

As cx < (cFJ is by assumption facet-defining for F', there must exist a point i c F' such

that cz = (CFJ. Note that F' C VR, according to Corollary 4.17, implies that iJ E VR

and, thus, a z = a'xo. Furthermore, we have E P' n F because of F' c P' n F. In

particular, z satisfies the Gomory-Chvaital cut c-Ox < (c"j. Consequently,

c.z = cz + KaJz = LcF + Kaxo < [p]

Together with (4.53), we obtain (OPJ = LCFj + Ka xo. It follows that

(Bi x < (iP ) n (aix =a'xo) (cx + Ka'x < (cF) + Kaixo) n

(cX < LCFJ) n (azx = axo)

As VR C (ax = aWxo), this implies for 6:= c- for some large enough i,

(Bx < (p) n VR = (cx cF )nVR

(aix = aixo)

The lemma follows.

With this observation, we can prove the homogeneity property for non-rational poly-

topes.
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Corollary 4.22 Let P be a polytope and let F be a face of P. Then F' = P' n F.

Proof. For the first direction F' c P' n F, observe that F C P implies F' C P'. Fur-

thermore, F' C F because of Corollary 4.18. Hence, F' c P' n F.

For the second direction, let F = P n (ax = ap) be a face of P and let cx < [cFJ

be a Gomory-Chvital cut for F that is facet-defining for F'. If (ax = ap) is a rational

hyperplane, then we can find a rational polytope Q 2 P such that FQ = Q n (ax = ap)

is a face of Q and such that cx < [CFJ is a Gomory-Chvital cut for FQ. By Lemma 4.19,

there exists a Gomory-Chvital cut e x < [CQ] for Q such that

(c x < [cFJ a= axp)= (x < QJ ) (ax -ap)

Then P C Q implies that x < [cQ] is also a Gomory-Chvatal cut for P

and we have P' n F C (cx < [CFJ). Now assume that (ax = ap) is non-rational.

If (ax = ap) n Q" = 0, then Corollary 4.17 implies P' n F = 0 C F'. Therefore, assume

that (ax = ap) n Q"z # 0, that is, the maximal rational affine subspace VR of (ax = ap)

is non-empty. By Lemma 4.21, there exists a Gomory-Chvital cut for P that satisfies

(ax = ap) nVR n (ex LcpJ ) = (ax - ap) nVRn (cx LCFJ)

Together with Corollary 4.17, that is, P' n F C VR, we obtain

P'n F C (cx LcF) -

4.4.4 Step 3

In this subsection, we show Part II of our

If for some finite set S C Z' of vectors

Cs(P) c P and

general proof strategy outlined in Figure 4-3:

Cs(P)fnrbd(P) C P'

109



not more than a finite number of Gomory-Chva'tal cuts have to be added to Cs(P) to

obtain the Gomory-Chvaital closure P'. In fact, we prove that this is true for arbitrary

bounded convex set.

Dadush, Dey, and Vielma (2010) proved this property for full-dimensional convex

sets K. The key observation in this case was that one can find an E-ball around every in-

terior point of K such that the ball is contained in K. Since any additional undominated

cut for K' must separate a vertex of Cs(K) in the strict interior of K, it must be derived

from an inequality for which the boundary of the associated half-space is shifted by at

least E. However, for valid inequalities ax < ap with flail > 1/E this is not possible (see

also Figure 4-2). As a consequence, only cuts that are associated with normal vectors of

a certain bounded norm need to be considered and their number is finite.

For a lower-dimensional convex set K the situation is a somewhat different. Any ad-

ditional undominated cut would have to separate a point v in the relative interior of K

and no E-ball around v is fully contained in K. All we can guarantee is that there exists

an E-ball whose intersection with the affine hull of K and, hence, also with the affine hull

of Cs(K), is contained in K. Therefore, any cut that separates v has to correspond to a

half-space (cX < CK) for which the intersection of its boundary (cx = cK) with the affine

hull aff(Cs(K)) is shifted by at least E within aff(Cs(K)). This intersection of (cx = CK)

with aff(Cs(K)) is a lower-dimensional rational affine subspace, say H*. Similar to the

full-dimensional case, there is only a finite number of these affine subspaces H*, which

are shifted within aff(Cs(K)) by at least a distance of E by the rounding operation in

the Gomory-Chvtal procedure. However, an infinite number of hyperplanes in R' has

the same intersection H* with aff(Cs(K)). Consequently, there is an infinite number

of Gomory-Chvital cuts that could separate a point in the relative interior of Cs(K).

Yet, we show that among all rational valid inequalities cx cK with the same intersec-

tion (cx = cK) 0 aff(Cs(K)), there will be one that corresponds to a Gomory-Chv6tal

cut that dominates every other Gomory-Chvaital cut associated with a valid inequality

in this "equivalence class". For this reason, no more than one Gomory-Chvaital cut for

each of the finitely many H*'s has to be added to the description of Cs(K).

In the following lemma, we formalize this observation and prove the finite augmen-

tation property for arbitrary bounded convex sets.
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Lemma 4.23 Let K be a convex and compact set in R'. If there exists a finite

set S C Z' such that

(i) Cs(K) C K ,

(ii) Cs(K) nrbd(K) C K'

then K' is a rational polytope.

Proof. As Cs(K) is a rational polytope, we can assume that aff(Cs(K)) = wo + W,

where wo E Q" and where W is a rational linear vector space. Let V denote the finite set

of vertices of Cs(K). Because of assumption (ii), any Gomory-Chvital cut for K that

separates a point in Cs(K) \ K' must also separate a vertex in V \ rbd(K). We will show

that for each of the finitely many vertices of Cs(K) in the relative interior of K one only

has to consider a finite set of Gomory-Chvital cuts.

First, observe that because of V \ rbd(K) C ri(K) and since the number of vertices

of Os(K) is finite, there exists an E > 0 such that for every v C V \ rbd(K),

(v + B(0, E)) n aff(K) C K . (4.54)

Consequently,

(v + B(0, E)) n aff (Cs(K)) C K . (4.55)

Now let us fix a vertex v of Cs(K) in the relative interior of K, that is, v E V \ rbd(K).

Furthermore, let c (E Z". We will consider two cases, depending on whether K is full-

dimensional or not. If dim(K) = n, then aff(K) = R' and with (4.54),

(v + B(0, E)) C K

We get

[cKJ [max{cx x GK}J] max{cz x E K} - 1

> cv + max {cxIx (E B(0, E)} -1 = CV + C E - 1 =CV + E CI1.
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If |icli > 1/, then the Gomory-Chvital cut associated with the normal vector c does

not separate the vertex v. Hence, we only need to consider Gomory-Chvi'tal cuts that

correspond to vectors c such that ||cil < 1/E and their number is finite. This completes

the proof for the case that K is full-dimensional.

In the remainder of the proof, let us assume that dim(K) < n and, there-

fore, dim(aff(Cs(K)) =: k < n. Since dim(W) = k, we can rename the indices such

that there exist integers pij and qij > 1, for i = 1,... , n - k and j = 1,... , k, such that

for every x E W,
k

Xk±ZZ Pj X J
j=1 q

In words, any point in W is uniquely determined by its first k components. Moreover,

we can find an upper bound for the norm of each point x E W that is a function of the

norm of the vector (x 1 ,..., Xk), that is, the restriction of x to its first k components:

Since
k+ 2 Xnkj

|x|| =x+ x+( )+ ... + E1 "
(j=1 ql (j=1 qn-k,j

there exist rational constants a > 0, for i = 1,..., k, and cij, for 1 < I < k, such

that

1<i<j<k

Using the relation
1 .. 1. 2

and defining aji := aij for every 1 < i < j < k, we obtain

III2<1k 2+ +k-12

ixII2E i± ±I-j -i -ik + 2 ak± - akji xk
j=2 j=1

Let az := maxi=1,...,k {ai + 1 E jj Iaj }. Then a is a constant that only depends

on W. For any x E W, we have

lxii _ a 11(Ix ,.Xk)I11
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Moreover,

n-k k \

cx = C1X1+...+CkXk+ Ck+i Xj

i=1 j=1

k n-k

(cE ±>3
j= 1 i=1

Let L: R' -> Rk denote the affine map that is defined for j = 1,..., k by

n-k

Lj(x) :=xj +> xk+i.
i=1

Then for every x E W,

cx = Lj(c) xj = L(c) (xl, . . . , xk) .
j=1

Let xc= (xi,.. . , xc) W such that (xi, . . , x) = L(c). Observe that

|IIx" < II(x, . . .,x)|| = II |L(c)I

implies
1

xU E B(0, 1) n w.
i || IL (c)||

Using aff (Cs(K)) = v + W, we get

v + I|L(c)||X E (v

and by (4.55),

V + | L(c) E K

Therefore, and with (4.57), we get

= Linax{cxxCK}j]>max{cx|xEK}-1

> co+ a E|L(c)|| xc - 1 = cV + | IL(c)II - 1
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For IL(c)I I > /E, the Gomory-Chvital cut associated with c does not separate v.

Because of (4.56), for each j = 1,... , k, there exists an integer qj > 1 such that Lj(c) is

a multiple of 1/qj. Therefore, the number of vectors L(c) in R k with |IL(c)|| < V/E is

finite. However, there is an infinite number of integral vectors c in R"n that are mapped to

the same rational vector L(c) in Rk. Let A denote the set of rational vectors a E Rk such

that a is a multiple of qj, for j =1,..., k, and such that flail < /aE. For every a E A,
we define

N(a) := {c C Z I L(c) = a}

Let

c4 Earg min LcKJ -cv
cEN(a)

Observe, that c is well-defined: Since v E K, we have for any c E N(a),

[cKj - cv > max{cx Ix E K} - 1 - cv > -1 .

Furthermore, as v is a vertex of the rational polytope Cs(K), it holds that v E Qn.
Hence, there exist an integer vector V E Z" and an integer q, > 1 such that v = V/q,.

Consequently, the set { [CKj -cv | c E N(a)} contains only multiples of q, and is bounded

from below.

Finally, observe that the Gomory-Chvaital cut Ca X < [ca] dominates every other

Gomory-Chvital cut associated with a vector in N(a) in aff(Cs(K)): For this, consider an

arbitrary point x E aff(Cs(K)). We can write x = v+w, for some w =(w,. .. , wn?) E W.

If, using (4.57),

cax ca caw=c + L(c")(w,...,wk) cav+a(wl, ... ,wk) cK

then

a(wi, .. . ,lwk) K cg - a

By the definition of c', it follows that for every c E N(a),

cx = c + cw = cv + a(wI, .. ,wk) < cv + LcK - CV = LCK -

That is, if x satisfies the Gomory-Chvital cut Ca x < [cyr], then it also satisfies every
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Gomory-Chvital cut cx < [cKJ with c E N(a). Consequently, for each vector a E A, we

only need to consider a single Gomory-Chvaital cut. Since JA is finite, this completes

the proof. F1

4.4.5 Step 4

We are finally prepared to prove the main result of this chapter. By drawing from the

insights of the previous three subsections and using an inductive argument, we prove

that the Gomory-Chvital closure of any polytope is a rational polytope.

Theorem 4.24 The Gomory-Chvstal closure P' of a non-rational polytope P is a ra-

tional polytope.

Proof. The proof is by induction on the dimension d < n of P C R'. Let n > 1 be

arbitrary. The base case, d = 0, is trivially true. Therefore, assume that d > 1. By

Corollary 4.18, we know that there exists a finite set S1 C Z" such that

cs,(P) C P .

Let {F 2}E denote the set of facets of P and assume that F' = P n (ax = a'). By the

induction assumption for d - 1, we know that Fj' is a rational polytope for every i E I.

That is, there exists a finite set Si C Z" such that

Cs,(F) = F| .

According to Lemma 4.21, we can find for every Gomory-Chvaital cut for F that is facet-

defining for Fj' a Gomory-Chvital cut for P that has the same impact on the maximal

rational affine subspace of (aix = a'). Furthermore, by Corollary 4.17, Fj' is contained

in this rational affine subspace. Hence, for every i C I, there exists a finite set SC 7

such that

Cg(P) n F = F| .
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Because rbd(P) = Uic Fi , the set S = S1 U (LUisj 5j) satisfies

Cs(P) C P

Cs(P) nrbd(P) C P'

By Lemma 4.23, P' is a rational polytope.
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Chapter 5

A Refined Gomory-Chydtal Closure

for Polytopes in the Unit Cube

5.1 Introduction

Numerous cutting planes for integer and mixed-integer programs have been introduced

and studied in the literature (see, e.g., Cornuejols and Li 2000 and Cornu6jols 2008).

One possible way to classify general cutting planes - that is, cutting planes that are

derived solely from the linear description of a polyhedron without knowing any specific

structure of the underlying problem - is according to the types of polyhedra that they

can be applied to. For example, there exist families of cutting planes that are derived

for general (mixed) integer programming problems in Rn (such as Gomory mixed integer

cuts or disjunctive cuts), while others require that the integer hull of the given polytope

is contained in the unit cube (e.g., lift-and-project cuts or knapsack cuts). The more

general the derivation of a family of cutting planes, in the sense that fewer assump-

tions are made about the linear programming relaxation or its integer hull, the wider

the class of problems that they can be applied to. On the other hand, when applying

a cutting plane method that was designed for a broad class of problems to a specific

subclass of instances, not all the structural properties that distinguish this subclass from

the general case are exploited. Consider for example the Gomory-Chvital procedure, a

method designed for arbitrary integer programming problems. Suppose that we apply

the procedure to a polytope P = {r E Rn I Ax < b} for which all variables have implicit
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lower and upper bounds; in particular, every integer point in P is contained in some

cube [L, U]", where L < U. The standard Gomory-Chvital procedure takes every valid

inequality ax < ao for P such that a is an integral vector with relatively prime com-

ponents and rounds down the right-hand side ao. Geometrically, the Gomory-Chvital

cutting plane is obtained by shifting the boundary of the half-space (ax < ao) towards

the polytope until it intersects an integral point. The procedure guarantees that every

integer point in R" that satisfies the original inequality also satisfies the strengthened

one. In fact, for the purpose of the given problem it would suffice to require only that

every integer point in [L, U]n n (ax < ao) satisfies the modified inequality. This alone

guarantees that no integer point in P is cut off. From a geometric point of view, we can

shift the boundary of the half-space (ax < ao) until it contains an integer point of the

cube {L, U]" and, thus, ignore any integer points outside this cube. As a result, we obtain

a valid inequality for the integer hull P that potentially dominates the corresponding

Gomory-Chvital cut.

In this chapter, we formalize this idea for the important class of 0/1 integer pro-

gramming problems. Many combinatorial optimization problems can be modeled as

integer programs with decision variables, that is, variables that can take the value 0

or 1, depending on the occurrence of a particular event. The standard relaxations of

these problems are optimization problems over polytopes that are subsets of the unit

cube [0, 1]". We introduce a refined family of Gomory-Chvital cutting planes for this spe-

cial case. More precisely, we define the M-cut associated with a valid inequality ax < ao

for a polytope P G [0, 1)" to be the inequality ax < a', which results from decreasing

the right-hand side ao until the hyperplane (ax = ao) contains a 0/1 point. Hence, the

M-cut associated with a valid inequality generally dominates the corresponding Gomory-

Chvital cut. We call the implied cutting plane method the M-procedure. It represents a

natural strengthening of the Gomory-Chvital procedure in the sense that the right-hand

sides of Gomory-Chvital cuts are further decreased if the boundaries of the associated

half-spaces do not intersect any 0/1 points. Hence, when shifting the boundaries of half-

spaces containing P, we neglect the integer points outside the unit cube. Similar to the

Gomory-Chvital closure for a polytope P, we define the M-closure of P as the inter-

section of all half-spaces implied by the M-cuts of P. We denote this closure by M(P).

As it is the case for the elementary closure, the set of M-cuts of a given polytope is

infinite. For that reason, it is not obvious whether the M-closure of a polytope is again a
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polytope. However, we show that for any polytope P c [0, 1]' a finite number of M-cuts

suffice to describe M(P). In addition, we study various other structural properties of this

closure. For example, we discover an interesting characteristic regarding facet-defining

inequalities for the case that M(P) is full-dimensional. While it follows directly from

the definition of the M-closure that every undominated inequality for M(P) is tight at

a 0/1 point, we show that any facet-defining inequality ax < ao for M(P) corresponds

to a hyperplane (ax = ao) that is spanned by 0/1 points. In other words, the M-cut is

tight at n affinely independent points in {0,1}n. This property can be seen as analogous

to the fact that every undominated Gomory-Chvital cut is associated with a hyperplane

that is spanned by n affinely independent integer points. Furthermore, the M-closure

shares an important property with P': even though the right-hand sides of M-cuts are

derived in a seemingly less structured way, compared to the consistent rounding in the

Gomory-Chvaital procedure, for any face F of P, it holds that M(F) = M(P) n F.

Cornuejols and Li (2000) gave a detailed overview and comparison of the closures

associated with certain families of cutting planes for 0/1 integer programs. They es-

tablished all inclusion relationships between these closures. Surprisingly, various of the

seemingly different closures derived from different types of cutting planes turned out

to be equivalent. For example, the intersection of all half-spaces associated with lift-

and-project cuts of a polytope yields the same set as the intersection of the half-spaces

implied by simple disjunctive cuts. We study the relationship between the M-closure of

a polytope and these well-known other closures, complementing the picture drawn by
Cornu6jols and Li.

Moreover, we investigate the sequence of successively tighter approximations of the

integer hull of a rational polytope arising from a repeated application of all M-cuts

to the polytope. Clearly, as the M-closure of a polytope P in the unit cube [0, 1]n

is contained in P', any such sequence will result in P, after polynomially many steps

(see Theorem 2.19). We show that if the integer hull of a polytope is empty, then
the M-procedure requires, in the worst case, as many iterations as the Gomory-Chvital

procedure to generate an empty polytope.

Finally, we study complexity questions related to the M-closure. We show that, in
fixed dimension, the M-closure can be computed in polynomial time. In general, however,
the membership problem is NP-hard.
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5.2 Outline

In Section 5.3, we begin by formally introducing M-cuts and the M-closure of a poly-

tope. In Section 5.3.1, we investigate structural properties of the M-closure. A detailed

comparison of the M-closure with other known elementary closures from the literature

follows in Section 5.4. In Section 5.5, we study the cutting plane procedure associated

with M-cuts. More precisely, we analyze how quickly an iterative application of all M-cuts

will generate the integer hull of a given polytope. Finally, Section 5.6 is concerned with

the complexity of the M-closure.

5.3 The M-Closure of a Polytope

Throughout this chapter, we consider polytopes P = {x E R I Ax < b} whose integer

points are contained in the n-dimensional unit cube [0, 1]". As in this case the inequal-

ities 0 < xi < 1, for i = 1,..., n, are known to be valid for the integer hull PI, we can

assume w.l.o.g. that

P C [0, 1]" . (5.1)

For any vector a E Z", we define ap to be the smallest number such that ax < ap is a

valid inequality for P, that is,

ap:=max{axxEP}.

Consider an arbitrary inequality ax < ao such that the polytope P is contained in the

half-space H = (ax < ao). If a E Z" and gcd(a1,..., a,) = 1, then (ax = ao) n Z" z 0

if and only if ao E Z. In particular, (ax < Laoj) is the integer hull of the half-space H.

Clearly, as P is contained in H1 , the inequality ax < LaoJ is a cutting plane for P. It is

the classic Gomory-Chvital cut associated with the valid inquality ax < ao. Now suppose

that (ax = [aoj)nf{0, 1}" = 0. Then assumption (5.1) implies that P C (ax < [aoj - 1).

Hence, we can further decrease the right-hand side LaoJ and, yet, guarantee that the re-

sulting inequality does not separate any integer point from P. Let us define the knapsack
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value for any pair (a, ao) E Q" x R as

KV(a, ao) := max {ax I x E {0, 1}, ax ao}

where we set KV(a, ao) := -oc if (ax < ao) nf {0, 1}" = 0. Then it holds that

Pr ; (ax < KV(a, ao)) ,

and the inequality ax < KV(a, ao) is a cutting plane for P. Geometrically speaking,
this cut is obtained by shifting the hyperplane (ax = ao) towards the polytope until

a 0/1 point is contained in it (see Figure 5-1). The set of 0/1 points satisfying the

inequality ax < ao is the same as the set of 0/1 points satisfying the cut ax < KV(a, ao).

(0,0)

0 0 0

Figure 5-1: The inequality 3x1 + 5x 2 < 7 - E is valid for P C [0, 1]", for some E > 0. The

hyperplane 3x 1 + 5x 2 = 6 does not contain a 0/1 point, but the hyperplane 3x 1 + 5X2 = 5

does. The inequality 3x 1 + 5x 2 < 5 is valid for P and dominates the corresponding

Gomory-Chvi'tal cut 3x 1 + 5x 2 <6.
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For any a C Qn, the inequality ax < KV(a, ap) is called the M-cut associated with the

valid inequality ax < ap. Note that there is an infinite set of M-cuts for a polytope that

define the same half-space. The simultaneous application of all M-cuts to a polytope gives

rise to a new elementary closure: we define the M-closure M(P) of a polytope P C [0, 1]n

as

M(P) := n (ax < KV(a, ap)) . (5.2)
aEZ"

Note that in the definition of the M-closure, we could restrict the intersection to

M-cuts ax < KV(a, ap) for which a C Z", since every rational half-space has a rep-

resentation with an integral normal vector. In analogy to Section 2.7.2, we define the M-

procedure as the iterative application of the M-closure operation to a polytope. More pre-

cisely, we define M(0)(P) := P and M(k+l)(P) := M(M(k)(P)), for every integer k > 0.

As a result, we obtain a sequence

P D M(P) D M(2)(P) D ... DP1

of successively tighter approximations of PI. We call the smallest number t E N such

that M(t)(P) = P, the M-rank of P.

5.3.1 Structural Properties

As elementary closures of polytopes are defined with respect to families of cutting planes

that have a clear methodical derivation, they are generally characterized by a list of

natural structural properties. Of foremost importance, when regarding the main purpose

of cutting planes, is the property that an iterative application of a closure operation to

a polytope generates its integer hull after a finite number of steps. The property of

monotonicity is also intuitive: if the closure operation is applied to a pair of polytopes,

such that one is contained in the other, the same inclusion relation is satisfied by their

closures. In particular, given two relaxations P1 and P2 of a 0/1 polytope such P1 C P 2 ,

no more iterations will be needed to generate the integer hull from P1 compared to the

number of iterations that are required when starting with the relaxation P2 .

In the following lemma, we prove some basic properties for the M-closure of a general
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polytope (that is, these properties also hold for polytopes that cannot be described by

rational data).

Lemma 5.1 Let P and Q be polytopes in [0, 1|". Then the following properties hold:

The M-closure

(1) approximates the integer hull: P1 C M(P) C P.

(2) preserves inclusion: If P C Q, then M(P) C M(Q).

(3) rounds coordinates: If xi < E (xi > E) is valid for P for some 0 < E < 1, then xi < 0

(xi > 1) is valid for M(P).

(4) commutes with coordinate flips: Let -i : [0, 1] - [0, 1|" with xi i-* (1 - xi) be a

coordinate flip. Then Ti(M(P)) = M(ri(P)).

Proof. (1) P, C M(P) follows from the observation that the set of 0/1 points satisfying

an M-cut is the same as the set of 0/1 points satisfying the valid inequality of P,

from which the M-cut was derived. The second inclusion follows for rational poly-

topes from the fact that every rational valid inequality for P is dominated by its

corresponding M-cut. If P is a non-rational polytope, then Corollary 4.18 implies

that M(P) C P' C P.

(2) As every valid inequality for Q is also valid for P, every M-cut for Q is also an M-cut

for P.

(3) The inequality xi < 0 (xi > 1) is the M-cut associated with the valid inequality xi < E

(4) This property follows from the symmetry of the unit cube.

Next, we focus our attention to a less obvious property that we already studied with

respect to the Gomory-Chvital closure in Section 4.4.3. There, we showed that for any

face F of a polytope P, F' = P'nF. While this property had been well-known for rational

polytopes, we extended the result to general polytopes. In particular, we showed that

every Gomory-Chv~tal cutting plane for F can be rotated to become a Gomory-Chvatal
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cutting plane for P that has the same impact on the maximal rational affine subspace of

any hyperplane defining F. In the next lemma, we prove that this homogeneity property

is also satisfied for the M-closure of a rational polytope.

Lemma 5.2 Let P C [0, 1]' be a rational polytope and let F be a face of P. Then

M(F)=M(P)nF .

Proof. Suppose that P {x G R I Ax b} .$ 0, where A E Z and b E Zm .

Furthermore, assume that F = P n (ax = ap) $ 0, where a E Z", gcd(a) = 1,

and P C (ax < ap). The inclusion M(F) c M(P) n F is obviously true, since any in-

equality that is valid for P is also valid for F and since M(F) C F.

In the remainder of the proof, we show M(P) n F C M(F). If (ax = ap)nf{0, 1} = 0,
then K(a, ap) < ap and the M-cut associated with ax < ap strictly dominates ax < ap.

Consequently, M(P) n F 0 C M(F). Therefore, let us assume in the following that

(ax = ap) n f{0, 1}" f0 . (5.3)

Consider an arbitrary M-cut cx < KV(c, CF) for F that is associated with the valid

inequality cx < CF for F. From Farkas' Lemma 2.5, we know that there exist a vec-

tor A E Q' and a number i C Q such that c = AA + pa and cF>Ab +ap. If. 0,

then cx K CF is also valid for P, implying that cx < KV(c, CF) is an M-cut for P. We

therefore assume in the following that y < 0. Consider the set

S= {x e{0,1}" 1 ax = ap, AAx < Ab}

We will distinguish two cases. First, assume S 0. Let

M1 := min {AAx I x C [0, 1]n, ax = ap}

A 2  min{AAx|xcf{0,1}n, ax>ap+1 ,

M13  max{AAx|x e {0,1}", ax<ap-1}

Note that M has a finite value, since F $ 0. Furthermore, A 2 E (-cO, 00]
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and M 3 E [-oc, o). Therefore, we can find a finite number v that satisfies

v > max{Ab - M 2 , M 3 - M, 0} . (5.4)

By Lemma 2.5, the inequality eiz < 6o with e := AA + va and o := Ab + vap is valid

for P. If M 2 = oc, then {,1} n (ax > ap + 1) = 0. Otherwise, (5.4) implies for

every x E {o, i}" n (ax > ap + 1) that

ez = A A +vaz > M2+v+vap>Ab+va=-

That is, every such point violates the inequality elx < eBo. Consequently, and together

with the assumption S = 0, we obtain

{o, 1}, n(ax > ap) n (ex < 2o) = 0 . (5.5)

Hence, the right-hand side of the M-cut for P associated with liz < co satisfies

KV(ei, co) = max {lix Ix E {0, 1}", cx < eKo)

= max {(AA + va) xIx E ,1} , ax < ap - 1, (AA + va) x < Ab + vap}

Note, that

{0, 1} n (ex < co) f0

since, otherwise, the fact that ex < o is valid for P would imply P 0. Hence, we have

{o, 1}" n (cx < eo) = {O, 1}" n (ax < ap - 1) n((AA + va) x < Ab+ vap) / 0 ,

which implies that M/3 is finite. We obtain

KV(i,co) K max{(AA+va)xjx C {0,1}n, ax < ap - 1}

K max {AAz| x E {0, 1}n, ax ap - 1} + v(ap -1)

= M 3 + v(ap - 1) .

As a result, (AA + va) x < M3 + v(ap - 1) is valid for M(P). For an arbitrary
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point x C [0, 1]" n (ax = ap), (5.4) implies that

ex = (AA + va) x = AAx + vap > (AI + v) + v(ap - 1) > M3+ v(ap - 1) > KV(e, o),

that is, any point in F violates the M-cut ex < KV(Z, Eo) for P. This implies that

M(P) nF=0CM(F) .

Now consider the second case: S # 0. We define two more constants

M4 := min {AAxIx E {0, 1})I,

M5 := max{AAxjxE{0, 1}", ax = ap, AAx < Ab) .

Observe, that both constants are finite because of the assumption S # 0.

choose v to be finite and such that

v > max{Ab - M4 , M 3 - M 5 , 0} .

Now we can

(5.6)

Again by Lemma 2.5, the inequality elx < do with a := AA + va and lio := Ab + vap

is valid for P. With the definition of M,4 and condition (5.6),

point x E {0, 1}" n (ax > ap + 1),

ex = AAx +vax > A4 +v +vap > Ab+ vap = eco

we get for any

It follows that

{0, 1}"7n (ax > ap + 1) n (x < io) = 0 . (5.7)

Observe, that

{0, 1}f, n(ax = ap) n (cx < eio) = S : 0 . (5.8)

{0, 1}n (ax < ap -1) n (ex < eo) # 0 ,
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then M 3 is finite and we get with (5.6),

max {azx | x E {0, 1l}n, ax < ap - 1, a z < Zo)

= max{(AA+va)x|xc{0, 1}, ax < ap - 1, (AA + va) x < Ab + vap

< max {(AA + va) x x E {,1}, ax < ap - 1}

< max {AAx Ix E ,1}, ax ap-1+v(ap-1)

= (M 3 - v) + vap

< M 5 + vap

= max {AAx E xC{O, 1}", ax = ap, AAx < Ab) + vap

= max {(AA + va) x x E {,1}n, ax = ap, (AA + va) x < Ab + vap}

- max { zIx E {0, 1}n, axz = ap, cX < Z) .}

Because of (5.7), (5.8), and the last observation, the maximum in the computation

of KV(Z, co) is achieved by a 0/1 point in (ax = ap). In particular,

KV(c, co) = max {x I E {0, 1} Ir < 6 o}

= max {(AA + va) z x E {0, 1}n, (ax = ap), (AA + va) x < Ab + vap}

= max {AAz| x E {0, 1}", (ax = ap), AAx < Ab} + vap

= A 5 + vap .

On the other hand, the right-hand side of the M-cut cx < K(c, CF) for F satisfies

KV(c, CF) = max{cx I x E {0, 1}n, cX < CF

> max{(AA+pa)xx c {0,1}"', (AA+pa)x < Ab+-pap}

> max{(AA+bpa)x|x C {0, 1}n, ax=ap, (AA+ pa)x < Ab+pap}

= max {AAx IEx {0,1}n, ax = ap, AAx < Ab} + pap

= MA/1 + pata .
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As a result, we obtain

(Zx < KV(BBo)) n (ax= ap) = ((AA+va)x < M 5 +vap) n (ax = ap)

= (AAx < M 5) n (ax = ap)

= ((AA+ pa)x < 5 5 + pap) n (ax = ap)

C (cx < KV(c, CF)) n (ax ap) ,

and the M-cut 6x < KV(e, Eo) for P dominates the M-cut cx < KV(c, CF) for F in F.

This completes the proof.

5.3.2 Polyhedrality

Similar to the Gomory-Chvital closure, the M-closure (5.2) of a polytope P is defined as

the intersection of an infinite number of half-spaces. In the case of the Gomory-Chvital

closure, it is well-known that, instead of looking at every valid inequality for P, it suffices

to consider only those normal vectors which are associated with the Hilbert bases of

the basic feasible cones of P and their number is finite. Equivalently, the elementary

closure P' can be derived from a totally dual integral system Ax < b describing P,

such that A is an integral matrix. In that case, P' is obtained by rounding down the

right-hand side vector, that is, P' {x E R"| Ax < [bJ }. Naturally arises the question

as to whether the M-closure of a polytope can also be described by a finite system of

inequalities, that is, whether M(P) is a polytope itself. Here, we want to examine this

question for rational polytopes.

The way in which the M-procedure decreases the right-hand sides of valid inequalities

is much less structured than the rounding operation for Gomory-Chvital cuts. While

for some inequalities the right-hand side is simply rounded down, as is the case for the

Gomory-Chvaital procedure, there are M-cuts that strictly dominate the corresponding

Gomory-Chvital cut. Hence, the reasoning behind the proof that the Gomory-Chvital

closure of a rational polytope is also a polytope cannot be applied for the M-closure.

Yet, we show that 1(P) is indeed a polytope for every rational P. The general idea

of our proof is to represent the M-cuts of P as feasible points of a finite collection of

rational polyhedra. Since every M-cut induces a partition of the set of 0/1 points into

three sets - the set of 0/1 points that satisfy the cut with strict inequality, the set
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of 0/1 points at which the cut is tight, and the set of 0/1 points that violated the M-cut

- it is possible to partition the infinite set of M-cuts into a finite number of subsets that

are associated with these partitions. For each of these sets, we will construct a single

polyhedron such that every feasible point of that polyhedron corresponds to an M-cut in

the set, and vice versa. We then use the decomposition theorem for polyhedra to show

that every M-cut is dominated by a finite set of M-cuts that correspond to the basic

feasible solutions and extreme rays of the polyhedron that the M-cut is associated with.

First, let us introduce some notation. Let (L, E, G) with L O E 0 G {0, 1}" be a

partition of the set of 0/1 points in R". We will denote by M(L,E,G)(P) the set of all

pairs (a, ao) E Qn+1 that correspond to M-cuts ax < ao for P for which

ax < ao for all x E L ,

ax = ao for all x E E ,

ax > ao for all x E G .

Thus, every M-cut associated with the set M(LE,G)(P) partitions the set of 0/1 points

into the three sets L, E, and G. Every point in L is strictly contained in the half-

space (ax < ao), every point in E is on its boundary (ax = ao), and every point in G

violates the inequality. As every rational half-space has an infinite number of representa-

tions, M(L,EG)(P) contains an infinite number of representatives of the same half-space.

Since every M-cut of P is associated with a certain partition of the 0/1 points in R",

the union of the sets M(L,E,G)(P) over all possible partitions (L, E, G) of {0, 1}" com-

pletely describes M(P). In other words, M(P) is the intersection of all inequalities

associated with the finite number of sets M(L,EG)(P). We will first show that for every

partition (L, E, G), the set M(L,E,G)(P) can be represented as the feasible set of a rational

polyhedron.

Lemma 5.3 Let P C [0, 11" be a non-empty rational polytope and let V(P) denote

its set of extreme points. Furthermore, let (L, E, G) be an arbitrary partition of {0,1 }n
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ax ao
G

Figure 5-2: Classification of M-cuts according to the

three sets L, E, and G.
implied partition of 0/1 points into

with L, E, G -f 0, and let 0 < 6 E Q be a small constant. If (a, ao) is a pair in M(L,E,G) (P),
then there exists a constant A > 0 such that (Aa, Aao) is a feasible point of the polyhe-
dron Q(L,E,G) that is defined by the following constraints in variables (a, ao) c Rn+:1

ax = ao for all x E E (Q(L,E,G)(P))

ax > ao + 6

ax < ao - 6

az < ax - 6

for all x c G

for all x C L

for all x E G and for all z C V(P)

Conversely, every rational point (a, ao) in Q(L,E,G)(P) is a pair in M(L,E,G)(P)-

Proof. For the first part of the lemma, assume that (a, ao) is a pair in M(L,E,G)(P). That
is, ax ao is an M-cut for P that is tight at all 0/1 points in E, violated by all points
in G and satisfied with strict inequality by the points in L. Then there exist positive
constants A1 , A 2 , and A3 such that

KL

Kz

: max{ax| x E L} < ao - A1 < ao + A2 < min{axI x G} =: KG

: max{azI z E V(P)} < min{axI x E G} - A 3 = KG A 3

Note that the constants KL, KG, and Kz are finite (see Figure 5-3 for an illustration).
For every A > 0 satisfying AAj > max{ao, J} for i = 1, 2, 3, it holds that
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A~3

E

L

ax = KG

ax = K2 = ao + Ao

ax = ao

ax = KL

Figure 5-3: The inequality ax < ao is an M-cut for P that is associated with the valid

inequality ax < ao+Ao of P, where A0 > 0. The set of points in (ax = ao) is precisely E,
all points in G lie strictly above (ax = ao+Ao), all points in L lie strictly below (ax = ao).

(Note: Only 0/1 points are illustrated and no other integer points.)

ao < AAi < A(ao - KL)

ao < AA2 < A(KG - ao)

ao < AA3 < A(KG - K),

and therefore

A(ao - KL)

A(KG - ao)

A(KG - K2)

Aao - max{Aax | x E L}

= min{AaxI x G G} - Aao,

min{AaxI x E G} - max{Aaz| z E V(P)}

Consequently, (Aa, Aao) is a point in Q(L,E,G)(P)-

Now consider the second part of the lemma. If (a, ao) is a rational point

in Q(L,E,G)(P), then for a := a and ao := ao, ax < ao is the M-cut associated with

the valid inequality ax < ao + A0 , where A0 := max{ax x E P} - ao. This is, since for
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every 0/1 point x E G, we have

ax>max{az|zEV(P)}+ =ao+Ao+6>ao+Ao

and thus,

ao = max {axIx E {0, 1}, x C (L U E), ax < ao + Ao}

= max {axI x E {0, 1}n, ax < ao + Ao}

= KV(a, ao + Ao)

Note that the feasible set of Q(L,E,G)(P) is either empty or unbounded, since any

feasible solution can be scaled by an arbitrary positive constant greater than 1 to obtain

another feasible solution. More precisely, Q(L,E,G)(P) is non-empty if and only if there

exists a hyperplane that contains every point in E and that strictly separates conv(G)

from conv(L).

In order to show that M(P) can be described by a finite set of inequalities, we want to

make use of the fact that the feasible set of a polyhedron can be represented as the sum

of the convex hull of its vertices plus the cone generated by its extreme rays. Lemma 5.3

implies that any rational point in Q(L,E,G)(P), and in particular any vertex of Q(L,EG)(P),

defines a valid inequality for M(P). In the following lemma, we show that also every

extreme ray of Q(L,EG)(P) is associated with a valid inequality for M(P).

Lemma 5.4 If Q(L,E,G)(P) is feasible and (r, ro) an extreme ray of Q(L,E,G)(P),

then rx < ro defines a valid inequality for M(P).

Proof. Let (r, ro) be an extreme ray of Q(L,E,G)(P) and suppose that there exists

some t E M(P) with r x > ro. Define - := rz - ro > 0. Now consider an arbitrary ratio-

nal point (a, ao) C Q(L,E,G)(P). Then (a, ao) + A(r, ro) is in Q(L,E,G)(P), for any A > 0.

By Lemma 5.3, it follows that (a + Ar) x < ao + Aro is a valid inequality for M(P) for

every rational A > 0. In particular, (a + Ar) < ao + Aro. We obtain A-y < ao - ax for

any A > 0. However, since the right-hand side of the last inequality is finite, there exists
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some rational A such that X-y > ao - az. This is a contradiction to the fact that t E M(P)

and, therefore, rt < ro must hold. LI

With this, we are prepared to show that the M-closure of any rational polytope can

be described by a finite set of inequalities.

Theorem 5.5 If P C [0, 1] is a rational polytope, then M(P) is a rational polytope.

Proof. If P 0, there is nothing to show. Therefore, assume that P f 0. First, ob-

serve that P f 0 implies that there is no M-cut for P that belongs to a set M(L,E,G)(P)

with E = 0. Let M(L=0)(P) denote the union of all sets M(L,E,G)(P) for which L = 0.
For any cut ax < ao in M(L0) (P), it holds that [0, 1]' C (ax > ao). We claim

that the set (ax < ao) n [0, 1]" is a face of the unit cube: For this, assume w.l.o.g.

that (0, .. . , 0) E E and therefore ao = 0 and a, > 0, for i 1, . . . , n. Let I denote the

set of indices i such that a, > 0. Then

(ax = 0) n {0, 1}"n = {0, 1}" n n (zi =0)
(iEI

implies that (ax = 0) n [0, 1]n is, indeed, a face of the unit cube. Since the unit cube has

only finitely many faces, there exists a finite set of M-cuts that dominate every M-cut

in AI(L=0)(P). Next, consider M-cuts ax < ao in sets M(L,E,G)(P) such that G = 0.
Then [0, 1]" C (ax < ao) and, hence, any such cut is dominated by the cube constraints.

We define M0 to be the intersection of the unit cube [0, 1]" with the M-cuts in M(L=0)(P)-

Let P denote the set of all partitions of {0, 1}" into disjoint sets L, E, and G such

that L, E, G f 0. Then with the above observations and Lemma 5.3, it holds that

M(P) = MO n n 7 {(ax < ao) (a,ao) E Q(L,E,G)(P) n+1Qn± . (5.9)
(L,E,G)E'P

For any partition (L, E, G) E P, the polyhedron Q(L,E,G)(P) has a representation in

terms of its finite set of vertices V(L,EG) and its finite set of extreme rays 7R(L, E, G) (see

Theorem 2.1). That is,

Q(L,EG)(P) Conv (V(Q(L,EG))) + cone (R(L,EG)) . (5.10)
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Since P is rational, Q(L,E,G)(P) is a rational polyhedron and, hence, the points in V(L,E,G)

and R(L,E,G) are rational. We claim that M(P) = M*(P) n MO, where

M*(P) : l (vx vo) (v,vo) E V(L,E,G) {(rx ro) (r,To) 6 R(L,E,G)})
(L,E,G)CP

(5.11)

Clearly, because of Lemma 5.3 and 5.4,

M(P) c M*(P) n Mo.

For the other inclusion, take any inequality ax < ao for M(P) from representation (5.9)

that is not valid for MO, that is, (a, ao) E Q(L,E,G)(P) n Qn1. By (5.10), the point (a, ao)

can be written as a convex combination of solutions in V(L,E,G) and nonnegative com-

binations of extreme rays in R(L,EG). Suppose that V(L,E.G) (v 1, -v).... (VS, v)}

and JR(L,E,G) (r 1 ,r -... , (tr, r)}. Then there exist Ai > 0, for i 1.

and pj > 0, for j = 1, . t, such that ' Ai = 1 and

s t

(a, ao) =Z Ai(v', v') + Z (Ti, rj)
i=1 j=1

For an an arbitrary point x C M*(P), we have

S t S t
ax- Ai vtx+( pj rix ( A v + , TIj jao,

i=1 j=1 i=1 j=1

that is, x satisfies the inequality ax < ao. Hence, MV*(P) n Mo M M(P). Since the

number of partitions of the set of 0/1 points in R' is finite, that is, 'PJ is finite, M*(P)

is a rational polyhedron. As a result, M*(P) n Mo is a polytope, implying that the same

is true for M(P). LI

The proof of Theorem 5.5 does not extend to non-rational polytopes, since in that

case, Q(L,E,G)(P) is not a rational polyhedron anymore. In particular, the sets V(L,E,G)

and W(L,E,G) are no longer rational.
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5.3.3 Facet Characterization

By definition (5.2), every facet-defining inequality for the M-closure of a non-empty

polytope is tight at a 0/1 point. This is why in the proof of Theorem 5.5, we could

restrict ourselves to partitions (L, E, G) of the set of 0/1 points with E # 0. It turns

out that the partitions that imply undominated M-cuts satisfy a stronger property: If

M(P) is a k-dimensional polytope and ax < ao a facet-defining M-cut for M(P), the

hyperplane (ax = ao) contains at least k affinely independent 0/1 points. Furthermore,

the corresponding facet F = P n (ax = ao) is contained in the affine subspace spanned

by the 0/1 point in (ax = ao). In the special case that P has full dimension, every facet-

defining inequality for M(P) is associated with a hyperplane that is spanned by n affinely

independent 0/1 points and, therefore, corresponds to a facet of some 0/1 polytope.

Our proof of this property relies on the fact that the M-closure of a polytope is a

polytope itself (see Section 5.3.2).

Theorem 5.6 Let P C [0, 1|" be a rational polytope and assume that the polytope AI(P)

has dimension k > 0. If ax < ao is a facet-defining M-cut for M(P), then (ax = ao)

contains at least k affinely independent points in {0, 1}". Furthermore,

M(P) n (ax = ao) C conv((ax = ao) n {0, 1}") .

Proof. Let ax < ao be an M-cut for P that is facet-defining for M(P).

Let F = M(P) n (ax = ao) be the corresponding facet. Define

L = {x E {0, 1} Iax < ao) ,

E = {X E {0, 1}" ax=ao) ,

G = {x E {0, 1} ax>ao.

Furthermore, let S := conv(E).

We will show that for any point z E (ax = ao) \ S, there exists an inequality cx < co

that is valid for M(P) and violated by z, thereby proving that F C S. If we know

that F C S, then dim(M(P)) = k implies that k - 1 = dim(F) < dim(S). In particu-

lar, (ax = ao) must contain at least k affinely independent 0/1 points.
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Consider an arbitrary point z E (ax = ao) \ S. The set S is a (lower-dimensional)

integral polytope and can therefore be described by a finite system of rational inequalities.

Since z ( S, there exists some rational inequality fx < fo that is valid for S, but is

violated by z; that is, fz > fo. Suppose that we can find constants A > 0 and E > 0 such

that c:= a + Af and co := ao + AfO satisfy

(i) cx <cofor allx CLUE,

(ii) cx < min{cx x G} - E is valid for P.

Then the inequality cx < co is valid for M(P), since the right-hand side of the M-cut

for P associated with the valid inequality cx < min{cx x c G} - E satisfies

KV(c, {cx I x G} - E) = max (cx xE {0, 1}n, cx < min{cz| x EG}G - E}

= max{cx x E(LUE) cxz min{cxxcG} -E}

< max {cx x E (L U E)} co .

Furthermore, cz = az + Af z > ao + Afo = co, that is, z ( M(P).

In the remainder of the proof we will show that such A and E indeed exist. First,

observe that property (i) holds for every point x E E C S for any choice of A, since

then x C (ax = ao) and x E S imply that cx = ax + Afx < ao + AfO = co. Regarding

the set L, let us define the constants aL := max{ax I x C L} and fL := max{f|x x C L}.

If

A(fL - fo) < ao - aL , (5.12)

then we get for all E L that cx = ax + Afx < aL + AL ao + Afo= co. Note

that ao -aL > 0 and that condition (5.12) is trivially fulfilled for any A > 0 if fL - fo < 0.

Now consider property (ii). Since ax < ao is an M-cut for P, we know that there exists

some Ea > 0 such that the inequality

ax < min{ax x E G} - Ea

is valid for P. If we choose A and E such that

Amax{fx EP} -Ea Amin{fxxEG}-E , (5.13)
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then for any x E P,

cx=ax+Afx < min{axxcG} - a+Amax{fxlxEP}

" min{ax| xc G} + Amin{f| xE G} -E

" min{cx I xE G} - E.

Define E:= Ea/2 > 0. Then condition (5.13) becomes

A (max{f x I xeP} - min{f xlx E G}) < Ea/2 . (5.14)

It is not difficult to see that for all possible four cases of signs of fL - fo

and max{fx x Cz P} - min{fx I x E G}, we can find a A > 0 such that conditions (5.12)

and (5.14) are satisfied. Hence, there exist A and E such that properties (i) and (ii) hold.

This completes the proof of the theorem. D

In the case that P, has full dimension, Theorem 5.6 represents a natural analogy to

the fact that every hyperplane that is associated with a facet-defining Gomory-Chvital

cut is spanned by n affinely independent integral points. However, while this property

of the Gomory-Chvaital closure is a direct consequence of its definition (only inequalities

with integral normal vectors are considered for the computation of the Gomory-Chvital

closure), the corresponding property for the M-closure does not immediately follow from

Definition 5.2. Observe, furthermore, that in the above proof we specifically used the

fact that F can be described as the intersection of M(P) with a hyperplane (ax ao)

that corresponds to an M-cut. Theorem 5.6 does not apply to arbitrary faces of M(P).

In particular, there are face-defining inequalities for which the associated hyperplanes do

not contain any 0/1 points (see Figure 5-4).

5.4 Comparison of the M-Closure with other Ele-

mentary Closures of 0/1 Integer Programs

Numerous families of cutting planes and their associated elementary closures have been

introduced and studied in the literature. Surprisingly, several of these families have
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ax = ao

Figure 5-4: The inequality ax < ao is face-defining for M(P), but the hyper-

plane (ax = ao) does not contain any 0/1 points.

turned out to be essentially identical, even though they had been derived by very differ-

ent methods. For example, Cornu6jols and Li (2000) showed that Gomory-Chvital cuts

and Gomory fractional cuts are equivalent, even though the latter are derived from an

equality system describing the polytope P = {x E RnI Ax < b}. Similarly, the closures

associated with mixed integer rounding cuts, disjunctive cuts, and Gomory mixed integer

cuts are identical. In particular, any disjunctive cut can be obtained from the mixed in-

teger rounding procedure, Gomory mixed integer cuts can be derived from a disjunction

expressing integrality conditions on the x-variables, and mixed integer rounding cuts can

be derived by Gomory's mixed integer procedure (see Cornuejols and Li 2000 for defini-

tions of families of cutting planes for 0/1 integer programs and a detailed comparison

of their elementary closures). Figure 5-5 illustrates various known closures and their

pairwise relationships. In this section, we investigate how the M-closure fits into this

picture. Specifically, we compare the M-closure of a polytope with each of the closures

depicted in Figure 5-5.

As demonstrated in Theorem 5.6, the hyperplanes in Rn that are spanned by n

affinely independent 0/1 points are of fundamental importance for the M-closure of a

polytope. Therefore, we will introduce a special notation for the M-cuts that define

hyperplanes with this property. We will denote by Fn the set of pairs (a, ao) E Z"

with gcd(a) = 1 for which the hyperplane (ax = ao) is spanned by n affinely inde-

pendent points in {0, 1}". Thus, for any facet-defining inequality ax < ao of an arbi-

trary 0/1 polytope, the pair (a, ao) is contained in T'. Conversely, every pair (a, ao) E T"

defines a facet of some full-dimensional 0/1 polytope. When we say in the sequel that

an inequality ax < ao is an inequality in FT, we refer to the fact that (a, ao) E P4.
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Figure 5-5: Comparison of elementary closures of 0/1 integer programs (taken from

Cornuejols and Li 2000). An arrow from one family of cuts F1 to another family of

cuts F2 indicates that the closure PF2 is contained in the closure PF1, and there exist

instances for which the inclusion is strict. If two families F1 and F2 are unrelated, there

exist instances such that PF1 7 PF2 and instances such that PF2 V PF1 .

5.4.1 Comparison of the M-Closure with the Gomory-Chvital

Closure

The close relationship between the M-closure and the classic Gomory-Chvital cutting

plane procedure is self-evident. We introduced the M-closure as a natural strengthening
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of the Gomory-Chvaital closure for the special case that all integer points of a polyhe-

dron are 0/1 points. By definition, every Gomory-Chvital cut of a polytope P defines a

valid inequality for its M-closure and, hence, M(P) C P'. On the other hand, an M-cut

can strictly dominate the corresponding Gomory-Chvital cutting plane. If ax < ao is

a Gomory-Chvital cut for P and facet-defining for P' and if the hyperplane (ax = ao)

does not contain a 0/1 point, the right-hand side associated with the M-cut is strictly

smaller than ao, implying that M(P) C P'. Conversely, one can ask the question of

under which circumstances a facet-defining M-cut is also a Gomory-Chvital cut. For

this, consider a polytope P with full-dimensional integer hull. By Theorem 5.6, every

facet F of M(P) is contained in an affine space that is spanned by 0/1 points. Put

differently, F C (ax = ao) for some pair (a, ao) E F". If for every inequality ax < ao

in YT there was a 0/1 point in the hyperplane (ax = ao +1), any such inequality ax < ao

would be valid for M(P) if and only if it was also a Gomory-Chvaital cut. As a con-

sequence, it would hold that M(P) = P' for every polytope P with full-dimensional

integer hull. On the other hand, if we were to find an inequality ax < ao in F" for

which (ax = ao + 1) nf {0, 1}" = 0, this would immediately enable us to construct a poly-

tope P for which the M-closure M(P) is strictly contained in its elementary closure P'

(see Figure 5-6 for an illustration).

0

ax = ao + 1
ax = ao

Figure 5-6: The hyperplane (ax = ao) with gcd(a) = 1 is spanned by two 0/1 points and,

therefore, facet-defining for some 0/1 polytope. If the hyperplane (ax = ao + 1) does not

contain a 0/1 point, we can construct a polytope P such that (ax < ao) is facet-defining

for P and such that M(P) C P'. (Note that points in {0, 1}n are illustrated as black

points and general integer points are drawn in grey.)
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The following lemma summarizes these observations.

Lemma 5.7 M(P) = P' for every rational polytope P C [0, 1|n with full-dimensional

integer hull P if and only if (ax = ao + 1) n {0, 1} $ 0 for every inequality ax < ao

in Fn.

The characterization in Lemma 5.7 allows us to compare the Gomory-Chvital closure

and the M-closure of any rational polytope with full-dimensional integer hull in small

dimension. It is possible to simply enumerate all inequalities ax < ao in Fn and check

whether (ax = ao + 1) n {0, 1} # 0. It turns out that this is indeed the case for n < 7.

That is, for every pair (a, ao) E F"n, the hyperplane (ax = ao + 1) contains a 0/1 point.

Corollary 5.8 M(P) = P' for every rational polytope P C [0, 1|" with full-dimensional

integer hull, if n < 7.

For complexity reasons, it was not possible to enumerate the inequalities in F

for n > 7. The above condition, therefore, does not allow us to draw any general con-

clusions for higher dimensions. However, the following example confirms the general

intuition that there should exist polytopes of some dimension for which the M-closure is

strictly contained in the Gomory-Chvital closure.

Example 5.9 The integral vector a E R" with

a (3041115360, 3216174509, 3081631465, 2598051222, 2888963817,
-129947214, 25001283, -76282297, -384543308, 24697928,

-102658009, -900040667, 157047656, -207693535, -883266807,

-740003674, -352003226, 458140458, -261010564, 566248994,

-360665679, -185629660, -305123253, -182278292, -272079117,

-518683, 311565566, -569860449, -691996681, -303576202,

1885519442)

has relatively prime components. The hyperplane (ax = 0) is spanned by affinely inde-

pendent points in {0, 1}31, that is, (a, 0) E F3 1 . Furthermore, (ax = 1) n {0, 1}" = 0.
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(The smallest right-hand side ao > 0 such that ax = ao contains a 0/1 point is ao = 8.)

The above example has not been chosen at random. Joswig published a list of 0/1

polytopes that have facet-defining inequalities with very large integer coefficients. These

polytopes were generated based on a construction of 0/1 matrices with large determi-

nants by Alon and Vu (1997). Geometrically, the hyperplanes described by 0/1 matrices

with large determinants slice the unit cube non-symmetrically. They can be thought of as

the most skewed hyperplanes spanned by 0/1 points. The inequality ax < 0 from Exam-

ple 5.9 is facet-defining for one of these 0/1 polytopes (named "MJ:32-33"). Interestingly,

we were unable to generate an example with the same property randomly. For every hy-

perplane H that we generated by randomly picking n affinely independent 0/1 points

(for dimensions up to 35), the parallel hyperplanes obtained by shifting H to the next

level of integer points above and below the hyperplane also contained a 0/1 point. This

might suggest that the number of hyperplanes (ax = ao) that are spanned by 0/1 points

and that satisfy (ax = ao + 1) n {0, 1}' = 0 is small compared to the size of F.

Example 5.9 allows us to specifically construct polytopes in arbitrary dimension for

which the M-closure is strictly contained in the Gomory-Chvital closure.

Corollary 5.10 For every rational polytope P C [0, 1]", AI(P) g P'. Furthermore,

there exists a number no e N such that for every n > no there exists a polytope P C [0, 1]"

with full-dimensional integer hull such that M(P) C P'.

Proof. Since every M-cut associated with a valid inequality for P dominates the corre-

sponding Gomory-Chvital cut, we have M(P) C P'. For the second part of the corollary,

we construct an example: Let n = 31 and P := [0, 1] n (ax < 7), where a is the normal

vector defined in Example 5.9. Since (a, 0) E Fn and (ax > 0) n (ax < 7) 0 {0, 1}" = 0,

the inequality ax < 0 must be facet-defining for PI. In particular, it cannot be implied

by other inequalities that are valid for P. Clearly, ax < 0 is valid for M(P). However,
the inequality is not a Gomory-Chvaital cut and, since it is facet-defining for P1 , it cannot

be implied by other Gomory-Chvital cuts, that is, A(P) C P'. Furthermore, P, is full-

dimensional, since the 0/1 points that span the hyperplane (ax = 0) together with the

unit vector e6 E {0, 1}31 are n + 1 affinely independent points (note that a C6 = a6 < 0).
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For every n > no := 31, we can extend a to an n-dimensional vector by adding n - no
zero components and the same argument applies. D

5.4.2 Comparison of the M-Closure with the Knapsack Closure

Another elementary closure that is very closely related to the M-closure is the knapsack
closure, which was formally introduced by Fischetti and Lodi (2010) for polytopes in
the unit cube. The definition of the knapsack closure is inspired by an observation of
Crowder, Johnson, and Padberg (1983): if P C [0, 1]' is defined by inequalities ax < bi,
for i = 1, .. . , m, then

iz=1

where Pj = conv{x c {0, 1}"| aix < bi}. That is, P is contained in the intersection of
all knapsack polytopes defined by the constraints of P. As the example in Figure 5-7
illustrates, it is possible that the intersection of these knapsack polytopes results in P
itself, that is, it does not provide a better approximation of the integer hull.

(0,1)

(0,0)

(I,1)

(1,0)

Figure 5-7: The polytope P C [0, 1]2 is defined by the inequalities -X 1 + x2 < 0,
X1 + X2 < 1, and X2 > 0 and P = conv{(0, 0); (1, 0)}. Since each constraint defines an
integral half-space, Pjl n Pj n P = P.

However, if one intersects the knapsack polytopes associated with all valid inequality
for P, the resulting set certainly represents a better approximation of the integer hull Pr.
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The knapsack closure of a polytope P C [0, 1]' is defined as

K(P) fl conv{x E {0, 1} ax < ap} . (5.15)
aEzn

As the knapsack closure clearly dominates the Gomory-Chvital closure, its iterative

application to a polytope will generate its integer hull a finite number of steps. Further-

more, it is easy to see that the knapsack closure of a rational polytope is a polytope

itself. (In fact, the knapsack closure of an arbitrary set in [0, 1]' is a polytope.)

Lemma 5.11 For any polytope P C [0, 1], the knapsack closure K(P) is a rational

polytope.

Proof. The knapsack closure is an infinite intersection of knapsack polytopes. However,

only a finite number of different knapsack polytopes in Rn exist, since every such polytope

is uniquely defined by the set of 0/1 points that violate the knapsack inequality. More

precisely, the number of different knapsack polytopes is given by the number of possible

subsets S C {0, 1}" such that S can be separated from {0, 1}" \ S by a hyperplane. E

We can characterize the facets of the knapsack closure of a polytope in the following

way:

Lemma 5.12 Let P C [0, 1]" be a polytope with full-dimensional integer hull. If ax < ao

is a facet-defining inequality for K(P) with (a, ao) C Zn+1 and gcd(a) = 1, then the

following properties hold:

(i) ax < ao is in F".

(ii) There exists a valid inequality cx < co for P such that

(cx < co) n {0, 1}" C (ax < ao) n {0, 1}"

Proof. Property (i) follows from the definition of the knapsack closure as the inter-

section of knapsack polytopes: Since P, is full-dimensional, every knapsack polytope

containing P is full-dimensional. Therefore, every facet of K(P) is a facet of some full-
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dimensional 0/1 polytope, that is, it contains n affinely independent 0/1 points. Now

consider property (ii): If ax < ao defines a facet of K(P), there must exist a valid

inequality cx < co for P such that ax < ao is a facet of conv{x E {0, 1}"| cx co}.

Since conv{x c {0, 1}"| cx < co} 9 (ax < ao), we have (cx < co) n {0, 1}" n (ax < ao)
and (ii) follows.

As shown in Theorem 5.6, property (i) of Lemma 5.12 also applies to the M-closure

of P. Property (ii) provides that for every facet-defining inequality ax < ao of K(P)

there must be a valid inequality cx < co for P that is violated by at least the 0/1 points

in (ax > ao). This property is also true for the M-closure, since we can choose cx < co

as ax < min{ax I x E {0, 1}, ax > ao} - E, for some E > 0. However, there is a significant

difference between the M-closure and the knapsack closure:

Corollary 5.13 Let P C [0, 1]" be a polytope and S C {0, 1}. If there exists a valid

inequality cx < co for P with (cx > co) n {0, 1}" - S, then any inequality ax < ao

with (ax > ao) n {0, 1}' C S is valid for K(P).

Proof. The inequality ax < ao is a valid for conv{x E {0, 1}| I cx < co}. El

It is not immediately obvious whether the above property also holds for the M-closure.

If it did, every cut that is valid for K(P) would also be valid for M(P) and, hence, the two

closures would be identical. Equivalently, the property would imply that the M-closure

of any polytope defined by a single constraint (in addition to the cube constraints) would

give its integer hull. That is, for any polytope P {x E [0, 1]"| cx < co}, it would hold

that M(P) = PI. The following example shows that this is, in general, not true.

Example 5.14 For n = 7, let cx < co denote the inequality

-3x 1 - 6x 2 +7X 3 +3X4 + 5 + X +2x 7 5

and let P = {x C [0, 1]n cx < co}. One can verify that ax < ao given by

-3x 1 - 2x 2 + 3x 3 + 3x 4 + x5 + x6 -+ - 2x 7 < 5
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is facet-defining for P1 . Furthermore, it holds that

(cx < co) n {0, 1}" C (ax < ao) n {O, 1}"

However, max {ax I x E P} > 6, and (ax = 6) nf {0, 1}" 0. Therefore, ax < ao is not

an M-cut for P, implying M(P) D K(P).

ax = ao

cx co

Figure 5-8: Schematic illustration of the difference between the M-closure and the knap-

sack closure: The inequality ax < ao is valid for K(P), but not for M(P). The inequal-

ity cx < co is valid for P and cuts off the same set of 0/1 points as ax < ao. (Note that

only integer points in {0, 1} are illustrated.)

Example 5.14 shows that Corollary 5.13 does not apply to the M-closure. It also high-

lights a key difference between the M-closure and the knapsack closure of a polytope P:

In order for an inequality ax < ao in F" to be valid for K(P), it is sufficient that there

exists some valid inequality cx < co for P that cuts off the same set S of 0/1 points

as ax < ao, or a larger set. In contrast, for ax < ao to be a valid for the M-closure,

there must exist a valid inequality for P that separates the points in S in a specific

way. Intuitively, the angle between the normal vectors a and c and, therefore, the angle

between the associated hyperplanes, must not be arbitrarily large (see Figure 5-8).

Corollary 5.15 For every polytope P C [0, 11" K(P) C M(P). Furthermore, there

exists a number no C N such that for every n ;> no there is a polytope P C [0, 1]" with

full-dimensional integer hull such that K(P) C M(P).
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The following figure summarizes the observations of Sections 5.4.1 and 5.4.2.

Gomory-Chvi'tal closure WM-closure 0 knapsack closure

Figure 5-9: Relationship between the Gomory-Chvital closure, the M-closure, and the

knapsack closure of a rational polytope.

5.4.3 Comparison of the M-Closure with Elementary Closures

Derived from Fractional Cuts, Lift-and-Project Cuts, In-

tersection Cuts, and Disjunctive Cuts

Cornu6jols and Li (2000) showed that there is no universal relationship between the

Gomory-Chvital closure and most of the elementary closures depicted in Figure 5-5.

More precisely, they gave examples of polytopes for which the Gomory-Chvital closure

is not contained in the other elementary closures and, in turn, showed the reverse for

other instances.

Example 5.16 (Cornu6jols and Li 2000) Consider the 2-dimensional polytope

P={xER-2 2xi + x 2 < 0; 2x1 + x 2 < 2; X2 > 0} (5.16)

with PI = conv{(0, 0); (1, 0)} {x E R2 0 x1 1; -£2 0; X2 0} (see Figure 5-10

for an illustration). The inequality X2 < 0 is an intersection cut derived from the basic

feasible solution (1/2, 1). Therefore, PIBF F1 , that is, the elementary closure with

respect to intersection cuts derived from basic feasible solutions is equal to the integer

hull of P. However, every Gomory-Chvs'tal cut is satisfied by the point (1/2,1/2),

implying P' f PI. Thus, P' 9 PIBF-

As can be seen in Figure 5-5, the elementary closure PIBF of P associated with the

family of intersection cuts derived from basic feasible solutions is the weakest relax-
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(0,1) (1,1)

(0,0) (1,0)

Figure 5-10: Example of a polytope P C [0, 1]" for which the Gomory-Chvital closure

is not contained in the elementary closure with respect to intersection cuts derived from

all basic feasible solutions, that is, P' 9 PIBF-

ation of the integer hull P among PIBF, PMIBF, PLP, PSA, PLS, PMIB, and PMI. Con-

sequently, Example 5.16 establishes for all these closures the existence of instances of

polytopes such that the Gomory-Chvital closure is not contained in them. Moreover,

since K(P) = M(P) P' for the polytope defined by (5.16), Example 5.16 establishes

the same result for the M-closure M(P) and the knapsack closure K(P).

Corollary 5.17 For every n > 2, there exist instances of full-dimensional poly-

topes P C [0, 1]", such that M(P) = K(P) 9 PIBF, PMIBF, PLP, NSA, PLS, PAIIB, PMI-

Cornuejols and Li (2000) also provided examples of polytopes for which PMIB g P'

and polytopes such that PLS 9 PFBF. Since K(P) C M(P) C P' C PFBF and because

of the relationships between the closures depicted in Figure 5-5, the following observation

is obtained.

Corollary 5.18 For every n > 2, there exist instances of polytopes P C [0, 1]' such

that PIBF, PMIBF, PLP, PSA, PLS, PMIB V M(P) ;2 K(P).

So far, we have established the incomparability between the M-closure and knapsack

closure and PIBF, PMIBF, PLP, PSA, PLS, PMIB (and all closures equivalent to these). For

mixed integer cuts or, equivalently, disjunctive cuts, we know only from Corollary 5.17

that there are instances such that K(P) = M(P) g PMI = PD, but no inferences for the

other direction can be drawn. However, in the next lemma, we construct an example for
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the reverse inclusion.

Lemma 5.19 For every n > 7, there exist instances of polytopes P C [0, 1]" such

that PD PMI 7 M(P), and thus also PD = PMI K(P).

Proof. Let n := 31 and P := [0, i]n n (ax < 7), where a is the normal vector defined in

Example 5.9. As seen above, ax < 0 is an M-cut for P and facet-defining for Pr. We will

show that ax < 0 is not valid for PD. Suppose there exists a pair (ir, ro) C Zn+1 such that

the corresponding disjunction implies ax < 0. That is, P1 := P n (7rx < 7ro) g (ax < 0)

and P2 :=P n (7x ro + 1) C (ax 0). If Pi 7 0 and P2 z, 0, then

max {axI x E [0, 1]", ax < 7, 7rx ro} 0

max {axI x E [0, 1]", ax<7, 7x 7ro+11 0

implies

max {axIx E [0, 1), 7rx 7<ro) < 0

max {axIx E [0, 1], 7rx 7>ro + 1} 0 .

Hence, both 'rx < 70r and rx > -ro + 1 have to dominate ax K 0 over the unit cube,
which is not possible. Therefore, let us assume w.l.o.g. that P2 = 0. Then ax K 7

implies 7rx < wro + 1 for any point x C [0, 1]n and we get that every x C P n {0, 1}"

satisfies rx < iro. Therefore, 7x K -ro is valid for P, and P1 74 0. In particu-

lar, every 0/1 point in (ax = ao) satisfies rx < 7ro. Since P1 C (ax < 0) by as-

sumption, 7rx < -ro has to dominate ax < 0 over the unit cube which is, given the

other observations made above, only possible if rx = 7to contains the same 0/1 points

as (ax = 0). This is only possible if wrx < ro and ax < ao define the same half-space.

But then P2 = P n (7x > wro + 1) ; P n (ax > 1) 74 0, which is a contradiction. O:1

Figure 5-11 summarizes the results of this subsection.

5.5 Bounds on the M-Rank

The M-closure of a rational polytope P C [0, 1]n defines a tighter approximation of its

integer hull P than P itself, assuming P 74 P1 . More precisely, it is at least as tight as
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Figure 5-11: Placement of the M-closure and the knapsack closure into Figure 5-5.

the Gomory-Chvaital closure of the polytope and in certain cases it strictly dominates P'.

Therefore, it is interesting to compare the sequences of successively tighter relaxations

that arise from an iterative application of the M-closure operation with the sequences

obtained during the Gomory-Chvital procedure.

Clearly, as M(P) C P', the M-rank cannot exceed the Chvital rank of a polytope.

Hence, by Theorem 2.19, we can conclude that for any polytope in the unit cube the

M-rank is polynomially bounded in the dimension n.

Corollary 5.20 If P C [0, 1]' is a rational polytope, then the M-rank of P is bounded

by a function in O(n2 logn).

Since we know that there are polytopes for which the M-closure is strictly contained

in the Gomory-Chvital closure, this raises the question of whether a better general upper

bound for the M-rank can be obtained. This question is also of interest in light of the

fact that the upper bound of Theorem 2.19 for the Chvaital rank has not been shown

to be tight, that is, there is a significant gap between this bound and the worst-case

example that has been exhibited so far. Unfortunately, we were unable to improve the

upper bound on the M-rank given in Corollary 5.20. This question, therefore, remains

the main open problem of this thesis and we will discuss it further in Chapter 6. However,

we will show in the next subsection that, in the special case of a polytope with empty

integer hull, the worst-case bound that holds for the Chvaital rank also applies for the

M-rank.
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5.5.1 Upper Bounds for Polytopes in the Unit Cube without

Integral Points

The Chvaital rank of a polytope P C [0, 1]' without integral points does not exceed n

(Bockmayr et al. 1999) and this bound is tight.

Theorem 5.21 Let P be a d-dimensional rational polytope in [0, 1]" with P1 = 0.
If d = 0, then P' = 0. If d > 0, then p(d) - .

A family of polytopes for which exactly n iterations of the Gomory-Chvaital procedure

are necessary in order to obtain an empty polytope is given by

Pn{= X [0, 1]n
iEI

+ (1-x);> , I G{1,.
ivI

(5.17).,n}

Pn is the convex hull of all midpoints of the edges of the unit cube (see Figure 5-12).

To see that the Chvital rank of Pn is n, let F denote the set of all vectors in R'

Figure 5-12: A family of polytopes in the n-dimensional unit cube with empty integer

hull and M-rank n.

such that j components are 1/2 and each of the remaining components is either 0

or 1. Chvital, Cook, and Hartmann (1989) showed that, if a polytope P contains the

set F, then FF1 must be contained in its Gomory-Chvital closure P'. Since it holds



that F1 C Ps, it follows that F G P,"l). Hence, the Chvital rank of Pn is at least n.

With the upper bound from Theorem 5.21, the rank must be precisely n.

As we show next, the same family of polytopes also requires n iterations of the M-

procedure to obtain the empty integer hull.

Lemma 5.22 Let P be a d-dimensional rational polytope in [0, 1]n with P 0. If d = 0,

then M(P) = 0. If d > 0, then M(d)(P) = 0. Furthermore, for every n > 1, there exists

a rational polytope P C [0, 1]" with P = 0 and M-rank n.

Proof. The first part of the lemma follows directly from Theorem 5.21 and the fact

that M(P) C P'. In order to establish the tightness of this bound, we first show that

if P contains F, then M(P) contains Fj+1 , for all j= 1,...,- 1.

Let (a, ao) E Zn+1 such that ax < ao is a valid inequality for P. As the set F is

symmetric with respect to permutations of the coordinates and flipping signs of coordi-

nates, we can assume w.l.o.g. ai > a 2 > ... > an > 0. Suppose that F is contained

in (ax < ao). We need to show that

Fj+1 (ax < max {ax I x E {0, 1}n ax<aof)

If j is even, then

max{a yI y F+} = a + ... + an(j+1)+ 1/2 (an- + .. .+ an)

" a +.. .+ an-(j+) + 1/2 (2anj + 2an-j+2 + + 2an-2 + an)

" ai... + a n-(j+) + (an-+ an-j+2 + . . . + an- 2 ) + a,

= ai + an + 1/2 (2a,-j+2 +... + 2a,-2+ 2a,)

< 1. + a=-j + 1/2 (an-j+1 +... + an)

= maxay y| y (E F} .
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If j is odd, then

max{a y y E F+1} = a +. .. + an-(j+l) + 1/2 (a,-j+ .. + an)

< a +... + an-(j+l) + 1/2 (2an- + 2 an-j+2+ ... + 2an_1)

== a1 +..+an_(j41) +(an-j+ an-j+2 +.. . +an_1)

Sai... + anj + 1/2 (2an-j+2 +... + 2an) +1/2 an

_< a1+..+ an-j +1/2 (an-j+1+... + an)

= max{ay| y c F} .

In both cases, the sequences of inequalities contain a line in which all coefficients of the a,

are either 0 or 1. Therefore, there always exists some x E {0, 1} such that

max{ay| y E F 1±i} < at < max{ay| y E F}.

Since max{a y| E F} I ao, we get for all y E Fj+1,

ay < max{ax I xE {0 .1}n, ax <ao} .

As F1 C P, the above observations imply that Fn C M("-1)(Pn) and, hence, the
M-rank of Pn is at least n. Since the M-rank cannot exceed n, it is exactly n. 0

We want to mention here that the cutting plane procedure associated with the fam-

ily of knapsack cuts (see Section 5.4.2) has the same worst-case bound, that is, not
more than n successive applications of the knapsack closure operation are necessary for
polytopes with empty integer hull to obtain P. Again, the family of polytopes defined
by (5.17) serves as an example for which this bound is achieved.

Lemma 5.23 Let P be a d-dimensional rational polytope in [0, 1]n with P1 = 0. If d = 0,
then K(P) = 0. If d > 0, then K(d)(P) = 0. Furthermore, for every n > 1, there exists

a rational polytope P with P = 0 such that n applications of the knapsack-closure

operation are necessary to obtain P1 .

Proof. As in the proof of Lemma 5.22, we will show that, if a polytope P contains Fj,
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then K(P) contains Fj+, for all j = 1, ... ,n - 1. For this, it suffices to show that for

any inequality ax < ao such that Fj g (ax < ao), it holds that

Fj+1 C conv{x E {0, 1}"| ax < ao} .

Let (a, ao) E Zn+1, such that Fj C (ax < ao). As Fj is invariant to coordinate flips, we

can assume w.l.o.g. that a > 0. Consider an arbitrary y E Fj+1. By renaming the indices,

we can assume w.l.o.g. that yi = 1/2 for i = 1 ... ,+1, i E {0,1} forti =j+ 2 ,...,n,

and a1 < a 2 < ... < aj+1 . If j is even, then Fj C (ax < ao) implies

1
ao > -(a 1 +a 2 +... +a j ) +aj+ 1 +yj+ 2aj+2+yj+3aj+3+... +ynan

2

> ai + a3 + + aj_1 + aj+1 + yj+2aj+2 + yj+ 3aj+3 + ... + ynan

and

1
ao > -(a1 + a 2 + + aj) + aj+1 + yj+2aj+2 + yj+3aj+3 + + ynan

2
1

> -a1+a 2 +a 4 +...+aj+yJ+2aj+2+yj+3aj+3+...+ynan
2

> a2 +a 4 +...+ a+ yj+ 2aj+2+yj+3aj+3+...+ynaan.

From the first sequence, we get that u C {0, 1} with

1 if i j + 1 and i odd

ui= 0 if i < j + 1 and i even

yj if i ;> j + 2

is contained in (ax < ao). The second sequence implies the same for v E {0, 1}"' defined

by
0 ifis j+1andiodd

i <j + 1 and i even

yC if i ;>J{+a2

Consequently, both u and v are contained in convx EX { 0, 1}"|I ax < ao}1.
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Similarly, if j is odd, then

1
ao > I(a1 + a2 +... + aj) + aj+1 +yj+2aj+2 + yj+3aj+3 ynan

> a1+a3+...+a+yj+2aj+2+yj+3aj+ 3 +...ynan

and

1
ao > (a1 + a2  + aj) + aj+ + yj+2aj+2 + yj+3aj+3 .. + ynan

> a 2 + a 4 + . .+. aj+1 + yj+2aj+2 + yj+3aj+3 + . .. + ynan

imply again that u and v are points in conv{x E {O, 1}| ax < ao}. Therefore,

1
y = 2(u + v) E conv{x E {0, 1}f ax < ao}

2

As a result, y C K(P). Now F1 g P implies that F g K(n-1)(Pn) and, hence, the

knapsack-rank of Pn is at least n. Since the knapsack-rank cannot exceed n, it is ex-

actly n. E]

5.6 Complexity of the M-Closure

Considering the purpose of cutting plane methods, one of the most important

questions regarding elementary closure operations is the question of whether one

can efficiently optimize over a closure. Formulated differently, this is the ques-

tion of the complexity of the separation problem associated with a family of cut-

ting planes (see Definition 2.7). The following two problems are closely related:

Definition 5.24 The validity problem for the elementary closure of a family of cuts is:

Given a rational polyhedron P C R' and a rational inequality ax < ao, decide

whether ax < ao is valid for the elementary closure of P for this family of cuts.
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Definition 5.25 The membership problem for the elementary closure of a family of cuts

is:

Given a rational polyhedron P C R" and a rational point T E P, decide

whether t does not belong to the elementary closure of P for this family of

cuts.

In order to solve the membership problem and, in particular, to argue that a given

point is not contained in the elementary closure, it is necessary to exhibit a violated

inequality and, hence, to solve the validity problem. A characteristic of Gomory-Chvital

cutting planes is that their validity can be established easily, that is, one can verify

in polynomial time that a given inequality is a Gomory-Chvaital cut for P. Conse-

quently, both the membership and validity problem are in NP for the family of Gomory-

Chvaital cuts. Eisenbrand (1999) showed that the membership problem for the Gomory-

Chvital closure is NP-complete. Hence, there is no polynomial algorithm for optimizing

over the Gomory-Chvital closure of a rational polyhedron, unless P=NP. In contrast,

Bockmayr and Eisenbrand (1999) showed that for fixed dimension, the Gomory-Chvital

closure of a rational polyhedron P can be described by a polynomial number of inequal-

ities. Moreover, in this case P' can be constructed in polynomial time. The same is true

for the N-closure of a rational polytope with full-dimensional integer hull. This fact is a

direct consequence of the facet characterization in Theorem 5.6.

Theorem 5.26 If P C [0, 1]' is a rational polytope with full-dimensional integer hull,

the M-closure of M(P) can be computed in polynomial time, when the dimension n is

fixed.

Proof. By Theorem 5.6, any facet of M(P) is contained in _7T. We have IF"I < (< )

For each ax < ao in _F", we can check in polynomial time whether it is a valid inequality

for M(P). For this, we first compute z* = max{ax x E P} by solving a linear program-

ming problem. Then we determine z, = max{ax I x E {0, 1}n, ax < z*} by enumerating

all 2n cube vertices and compare the value with ao. The inequality ax < ao is valid

for M(P) if and only if z1 < ao. Since linear programming is solvable in polynomial

time, and since the size of F" and the size of {0, 1} are polynomially bounded in fixed
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dimension, the theorem follows.

The situation is different when the M-closure is considered in general dimension. In

order to certify that an inequality is an M-cut, it is necessary to solve a subset sum

problem. Hence, the validity problem for the M-closure is already difficult.

Theorem 5.27 The validity problem problem for the family of M-cuts is (weakly) NP-

hard.

Proof. We describe a reduction from the SUBSET SUM problem, which is NP-complete:

Given a set of numbers a 1,... , a, E Z+ and a positive integer ao, decide whether there is

subset I C {1, . .. , n} such that Ejj ai = ao. Consider an arbitrary instance of SUBSET

SUM and let P be the polytope defined by P := [0, 1], n (ax < ao). The inequal-

ity ax < ao - 1 is valid for M(P) if and only if there is no point in x E P n {0, 1}" such

that ax = ao. In other words, ax < ao - 1 is valid for M(P) if and only if the subset

sum instance is a NO-instance.
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Chapter 6

Conclusions

In this dissertation, we have discussed several theoretical aspects of Gomory-Chvital
cutting planes and the associated Gomory-Chvital closure of a polyhedron. While the
general sentiment in the early 1990's was that generic cutting planes, and in partic-
ular Gomory-Chvital cuts, were rather useless in practice, this perception began to
change when these cutting planes were successfully implemented for the first time within
a branch-and-cut framework (Balas, Ceria, Cornudjols, and Natraj 1996). Even though
Gomory-Chvital cuts are weaker than various other cutting planes, their derivation is
beautifully simple and, hence, they are very easy to compute. Besides these practical
observations, the theory behind Gomory-Chv6tal cuts is very elegant since they may be
derived without any knowledge of the underlying structure of a problem. As a result,
Gomory-Chvital cutting planes have attracted the interest of many researchers in the
integer programming community. In particular, polyhedral properties and complexity
aspects of the Gomory-Chvital closure have been the subject of investigation.

The work in this thesis contributes to a better understanding of the theory of Gomory-
Chvital cutting planes and, more precisely, to a better understanding of the geometry
behind their derivation. One of our main contributions is to answer the question raised by
Schrijver (1980) as to whether the Gomory-Chvital closure of a non-rational polytope
is itself a polytope. In Chapter 4, we give an affirmative answer to this question by
proving that a finite number of Gomory-Chvital cuts entirely describe the elementary
closure of a non-rational polytope. In that sense, the chapter is conclusive. However,
our proof technique for the key argument (Step 1) provides insights about the geometric
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behavior of Gomory-Chvital cutting planes, as we identify intuitive geometric conditions

for the validity of Gomory-Chvital cuts. We believe that these observations might assist

in approaching other aspects of the theory of Gomory-Chvaital cutting planes from a

different perspective.

The most apparent open questions that arise from this work are in relation to Chap-

ter 5, where we introduce a refined Gomory-Chvaital closure for polytopes in the unit

cube, called the M-closure. The basic idea behind the definition of this new closure is

very natural and also, from a computational point of view, reasonable: We strengthen

Gomory-Chvatal cuts by shifting the associated hyperplanes towards the polytope until

they intersect a 0/1 point. The shifting-operation corresponds to solving a knapsack

problem, and such problem can be solved in pseudo-polynomial time. We exhibit ex-

amples of polytopes for which this strengthening results in a better approximation of

the integer hull than the corresponding Gomory-Chvital closure. Hence, the question

as to whether the associated cutting plane procedure generates the integer hull within

fewer iterations than the Gomory-Chvital procedure is very interesting. The best known

upper bound for the Chv6tal rank of a polytope in the unit cube [0, 1]' is O(n 2 log n) (see

Eisenbrand and Schulz 2003). In the special case that there are no integer points in the

polytope, a maximum of n iterations suffice. While we show that the latter bound also

applies to the M-procedure, we were unable to prove a general better bound in the case

where the integer hull of a polytope is non-empty. This rank question should be viewed

in connection with Theorem 5.6, where we characterize the facet-defining inequalities

of the M-closure of a polytope. In particular, we show that for a polytope P C [0, 1]

with full-dimensional integer hull, every facet of its closure M(P) is associated with a

hyperplane that is spanned by n affinely independent 0/1 points. Hence, understanding

how these special cuts are generated in the M-procedure based on the validity of other

inequalities with this special property is crucial for solving the rank problem. The in-

sights that we gained so far from our attempts towards proving a better upper bound

than O(n 2 log n) on the M-rank of a polytope let us believe the following:

Conjecture 6.1 For every polytope P C [0, 1]", the M-rank is bounded by a function

in O(n 2 ).
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This conjecture is, in our eyes, very intriguing for future research. An answer to

whether the conjecture is true would not only be very interesting in its own right, it

would most certainly help to better understand the geometry of the unit cube.
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