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Abstract
POLYHEDRAL APPROACHES TO HYPERGRAPH 

PARTITIONING AND CELL FORMATION

Levent Kandiller 

Pli.D. in Industrial Engineering 

Supervisor: Mustafa Akgiil, Associate Professor

December 1994

H\ pergraphs are generalizations of graphs in the sense that each hypereclge 
can connect more than two vertices. Hypergraphs are used to describe manu
facturing environments and electrical circuits. Hypergraph partitioning in man
ufacturing models cell formation in Cellular Manufacturing systems. Moreover, 
hypergraph partitioning in VTSI design case is necessary to simplify the layout 
problem. There are various heuristic techniques for obtaining non-optimal hy
pergraph partitionings reported in the literature. In this dissertation research, 
optimal seeking hypergraph partitioning approaches are attacked from polyhedral 
combinatorics viewpoint.

There are two polytopes defined on r-uniform hypergraphs in which every 
hyperedge has exactly r end points, in order to analyze partitioning related prob
lems. Their dimensions, valid inequality families, facet defining inequalities are 
investigated, and experimented via random test problems.

Cell formation is the first stage in designing Cellular Manufacturing systems. 
There are two new cell formation techniques based on combinatorial optimization 
principles. One uses graph approximation, creation of a flow equivalent tree by 
successively solving maximum flow problems and a search routine. The other 
uses the polynomially solvable special case of the one of the previously discussed 
polytopes. These new techniques are compared to six well-known cell formation 
algorithms in terms of different efficiency measures according to randomly gen
erated problems. The results are analyzed statistically.

Keywords: Combinatorial Optimization, Polyhedral Combinatorics, Hyper
graph Partitioning, Cellular Manufacturing Systems.
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özet
HİPERÇİZGE PARÇALAMA PROBLEMİNE 
POLYHEDRAL YAKLAŞIMLAR VE HÜCRE 

BELİRLENMESİ
Levent Kandiller 

Endüstri Mühendisliği Doktora 

Tez Yöneticisi: Doç. Dr. Mustafa Akgül 

Aralık 1994

Hiperçizgeler, '̂izgelerin ayrıtların birleştirdiği düğümlerin sayılarının ikiden 
fazla olabildiği daha genel durumlarıdır. Hiperçizgeler imalat sistemlerinin ve 
elektrik devrelerinin ifade edilmesinde kullanılırlar. Hücre Tipi İmalat sistem
lerinde hiperçizge parçalaması hücre belirleme problemine dönüşür. Hiperçizge 
parçalama entegre devre tasarımında yerleşim problemini kolaylaştırmak için 
gereklidir. Literatürde çeşitli optirnal olmayan çözümler veren sezgisel yöntemler 
vardır. Bu doktora çalışmasında hiperçizge parçalama problemi için tasarlanmış 
optimali arayan polihedral kombinatoriks temelli yaklaşımlar tanıtılmıştır.

Hiperçizgeleri ikiye ayırma problemini incelemek için r-düzenli hiperçizgeler 
üzerinde iki politop tanımlanmıştır. R-düzenli hiperçizgelerde her ayrıt r düğümü 
bağlar. Bu politoplarm boyutları, geçerli eşitsizlik aileleri ve yüzey tanımlayan 
eşitsizlikleri araştırılmış ve bu eşitsizliklerin etkinlikleri rastsal problemler yardı
mıyla denenmişlerdir.

Hücre belirleme aşaması Hücre Tipi imalat sistemlerinin tasarımındaki ilk 
aşamadır. Yeni iki kornbinatoryal optimizasyon temelli hücre belirleme tekniği 
geliştirilmiştir. Birinci teknik bir çizge ile hiperçizgeye yakınlaşmayı, ma.xinıurn 
akış problemlerini arka arkaya çözme yoluyle elde edilen akış eşdeğer ağacı yarat
mayı ve bir tarama yordamını kullanmaktadır, ikinci teknik ise daha önce bah
sedilen politopun polinom zamanda çözülebilen özel halini kullanmaktadır. Bu 
iki yeni teknik tanınan altı hücre belirleme algoritması ile değişik ölçüler bazında 
rassal problemlerde karşılaştırıirmştır. Bulgular istatistiksel analizlerle yorum
lanmıştır.

Anahtar kelimeler: Kornbinatoryal Optimizasyon, Polihedral Kombinatoriks, 
Hiperçizge Parçalama, Hücre Tipi imalat Sistemleri.
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Chapter 1

INTRODUCTION

1.1 G eneral Background and Sum m ary

A hypergraph [11] on a set V =  { l . . . . , n }  is a family H = of

nonempty subsets tj of V’. The elements of V’ are vertices of H  and e_,’s are hy

peredges of H. The elements of e_, are end points of hyperedge. Hypergraphs 

are generalizations of graphs in which each hyperedge may be incident to more 

than two vertices (nodes).

Hypergraphs are very useful structures in representing incidence relationships 

of two sets, V and E. The set V is taken as the verte.x set and for each element 

j  of the other set E  a hyperedge ej is constructed by connecting vertices which 

have an incidence relation to the selected element j .  That is, ej — { i  E V : 

i is related to j  }.

Hypergraphs can be used to represent manufacturing environments. The ma

chine set may constitute the vertex set of this representation and the parts may 

form the hyperedges. In this case, each hyperedge ej connects the vertices which 

represent the machines through which the part j  is routed. Hypergraphs are also 

powerful data structures for abstract representation of physical connections. For 

instance, wires in an electrical circuit usually connect more than two components. 

Each hyperedge in the hypergraph then corresponds to one electrical connection 

whereas circuit components are represented by nodes.

1



CHAPTER 1. INTRODUCTION

Hypergraph partitioning can be used both in grouping the elements of two 

sets V and E  into distinct clusters, and in breaking some physical connections 

to have disconnected parts. An example of the former case arises in Cellular 

Manufacturing design, whereas VLSI layout is an instance of the latter case.

Cellular Manufacturing is an application of Group Technology philosophy to 

the manufacturing environment [4, 97]. In Cellular Manufacturing, parts are 

identified as families such that design and manufacturing functions can take the 

advantage of the similarities in a family [96]. Cell formation is the first phase of 

the design process of Cellular Manufacturing systems. This initial decision on the 

top of design hierarchy influences all other decisions in Cellular Manufacturing. 

During this stage, machine groups of functionally dissimilar types are placed 

together and dedicated to the fabrication of part families.

The cell formation problem can be defined via hypergraphs. The machine 

types are represented by vertices of its associated hypergraph, and hyperedges 

represent parts, or vice versa. Various weights can be tagged to the hypergraph 

representation of the situation. Machine types differ from each other by their 

operating cost values. Parts are different in their unit profits. The cell formation 

problem can be defined as the minimum cost hypergraph partitioning when the 

nodes of the associated hypergraph are machine types, it is the minimum cost 

(vertex) separation problem when the parts are represented by vertices. In the 

former case, the associated hypergraph is partitioned into pieces by deleting hy

peredges. In a sense, the original manufacturing shop is divided into machine 

groups by subcontracting removed parts. Here the objective is to subcontract 

least valuable parts. In the latter case, the separation set made up of nodes di

vides the hypergraph into parts that are connected only to that separation set. 

In other words, the conflicting machinery is duplicated so that no part is sub

contracted. The objective in this case is to duplicate machinery in the cheapest

wav.

Another application of hypergraph representation arises from VLSI circuits. 

In VLSI circuit design, it is assumed that the description of the circuit to be laid 

out is given in any convenient form. The circuit components are represented by
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vertices of the associated hypergraph. The wires are represented by hyperedges. 

Moreover, one can associate weights with the hypergraph representation of a 

VXSI circuit. For instance, verte.x weights can be the estimated area requirement 

of the corresponding circuit element. Also, the hyperedges may have wiring costs 
as weights.

The VLSI layout problem formulations given in the literature [53, 68, 74] are 

both theoretically and practically intractable. One and the most common heuris

tic method is to break up the VLSI layout problem into sequential subproblems 

in such a way that the solution of a subproblem is fed as an input to the ne.xt 

one. Unfortunately, these subproblems are still yVP-Hard. The most common 

[53, 74, 91] way of breaking up the VLSI layout problem is the following: par

titioning 1-  ̂ placement i-̂ · global routing and topological compaction i-)· detailed 

routing and geometric compaction. In the partitioning phase, the huge hyper

graph representing a VLSI circuit is divided into a number of subhypergraphs 

by cracking the hyperedges having minimum total weights. Since partitioning 

pha.se stays on the top of the hierarchy that produces a solution, the final layout 

is influenced most by the quality of partitioning.

In this dissertation, partitioning problems are defined via a generic mathemat

ical programming formulation. An immediate analysis shows that all hypergraph 

partitioning problems belong to j\'V  class. The main motivation in the thesis is 

to design methods for obtaining optimal solutions to the hypergraph partitioning 

problems using the principles of polyhedral combinatorics which are proved to be 

an effective tool for graph partitioning. A detailed analysis of polyhedral tech

niques for graph partitioning points out the ways to generalize graph partitioning 

polytopes to hypergraph partitioning polytopes.

Graphs are generalized by r-uniform hypergraphs in which every hyperedge 

has exactly r end-points. There are two polytopes related with hypergraph par

titioning, which are defined on r-uniform hypergraphs. The first polytope, the 

Boolean R-atic polytope, is investigated for obtaining the best portion of a given 

hypergraph. A simple transformation from a general hypergraph to an r-uniform 

hypergraph is detected for which respective solutions are invariant. Therefore
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the Boolean R-atic Polytope can be used to solve the problem of picking the best 

portion for all hypergraphs. This polytope is properly defined, its dimension and 

facet defining ineciualities are investigated. The valid inequalities are tested by 

means of random problems using both simplex and interior point codes. The 

results state that more than 90 percent of the cases an integer solution is found 

before branch and bound. A polynomially solvable special case of this problem is 

identified, which yields a new problem in Cellular Manufacturing systems: identi

fying the best manufacturing cell. This leads to a new heuristic for cell formation 

problem.

The second polytope, the R-uniform Hypergraph Cut polytope, is investigated 

for solving maximum cut and bipartitioning problems on r-uniform hypergraphs. 

This polytope is proved to be full dimensional. Families of valid inequalities, some 

of which define facets are found. The effectiveness of these inequalities are tested 

for both of the above problems by means of interior point and simplex based 

procedures. The integer optimal solutions obtained by using these inequalities 

only are more than 91 percent for the maximum cut problem and more than 76 

percent for bipartitioning.

Two new cell formation techniques are developed. One is based on the spe

cial case mentioned above on the Boolean R-atic polytope which is proved to 

be polynomially solvable. The manufacturing cells are sequentially created by 

solving the problem of identifying the best cell one after another. The second 

technique involves a graph approximation of the hypergraph that represents the 

manufacturing environment. A special tree which is flow equivalent to the graph 

approximation is constructed next. Cells are formed by sequentially deleting the 

edges in this tree. These new techniques are analyzed and compared to six well- 

known cell formation techniques. Four different efficiency measares are developed. 

All the techniques are compared in terms of efficiency values obtained from solv

ing random problems. Algorithms, part demand and operating cost variations, 

density and manufacturing environment, and number of parts in the system are 

the considered factors in the experimental design. The statistical analyses state 

that our measures are effective in evaluating cell formation solutions and each
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technique has a region of superiority indicated by the sensitive factors.

The manuscript is organized as follows: In the rest of this chapter hyper

graphs are introduced and the basic properties are developed. In Chapter 2, the 
partitioning problems are defined on a mathematical programming formulation 

and a literature review of partitioning techniques is presented. Recent polyhe

dral approaches to graph partitioning problems are analyzed in Chapter .3, with 

a special treatment of the cut polytope of graphs. Chapters 4 and 5 are devoted 

to the study of the two polytopes defined for hypergraph partitioning. The two 

new cell formation algorithms are illustrated and compared with the other cell 
formation techniques in Chapter 6, which is followed by the conclusions presented 

in Chapter 7.

1.2 N otation and Prelim inary R esults

The basic concepts of hypergraph theory and the notation used throughout the 
thesis are introduced in this section. The conventions used in graph theory, 

polyhedral theory and linear programming cire included in Appendix A.

Let S  Ç V, then 7(5') is the set of internal hyperedges contained in 5'. If 
 ̂ ^  S\ T  C V and 5" n T  = 0, then 6 {S ;T )  is the set of hyperedges that have 

at least one end point from each set. A cut S(S) in a hypergraph H  is the set 

of hyperedges which have at least one end point in 5 , i.e., S{S) =  6{V \ S). We 
write 8(v) instead of ¿ ({u }), call it as star of v. The cardinality of the star of a 

node V is termed as its degree and denoted by deg{v).

There are weights associated with nodes and hyperedges. Nodes are differen
tiated by means of c,’s, in the node weight associated with i G V. On the other 
hand, hyperedges are discriminated via d j’s, in the edge weights associated with 

t j .  Let c{S) denote the total weight of the nodes in S, and d ( 7 ( 5 ) )  denotes the 

total weight of the edges inside 5.

■A hypergraph H  is simple if no hyperedge contains any other. The order of 

H  is \ V \= n, its maximal rank is r{H ) = max,-i,...,m | Ci |, and its minimal 
rank is p{H ) = min,=i,...,m | e» |· A hypergraph H is called r-uniform  if it



Figure 1.1: Example complete r-uniform hypergraphs of order 5.

is a simple hypergraph such that | e, |= r, Vi =  In an r-uniform

hypergraph, a hyperedge can be represented by a sequence of r vertices. .An 

ordinary graph with no isolated vertex is a 2-uniform hypergraph. If there is a 

hyperedge for every subset of V of size r, then the resultant hypergraph is called 

complete r-uniform, and denoted by There are m=^"^ hyperedges in an

complete r-uniform hypergraph Without loss of generality we may assume 

that hyperedges of a complete r-uniform hypergraph are lexicographically 

ordered. So, the first edge of is the edge 12 · · · r whereas the last edge is the 

edge (n — r -|- l)(n  — r -f 2) · · · n.

Four complete r-uniform hypergraphs of n = -5 vertices are illustrated in 

Figure 1.1. In illustrating hypergraphs, circles represent vertices and squares 

represent hyperedges. This representation leads to the following observation: 

each hypergraph is actually a bipartite graph with n + m vertices such that one 

part is the vertex set of the hypergraph and the other part is the set of hyperedges.

Any cut 6{S) in can be represented by means of five sets as illustrated in 

Figure 1.2. Two of these sets are node sets: S  and V \ S. The remaining sets
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contain hyperedges. A cut divides all hyperedges into three sets: one set for the 

hyperedges in the cut, and two sets of hyperedges inside of the two parts S  and
K \ 5 .

Let Cffr denote the set o f  all cuts 6{S) in such that I S  1= s. Clearlv, Clir 

is equivalent to Thus, we are interested in CffUs where 1 < 5 < . For

instance, CffF is the set of stars in the hypergraph. The cardinality o f Cffr C )· 

The number of hyperedges cut by an element of Cf̂ r is denoted by

In ¿ (5 ), there are m in {r -  l , s }  subsets ¿i{S) as illustrated in Figure 1.2. Each 

6i{S) includes the set of hyperedges in the cut whose exactly / endpoints are in

S. Then, the cardinality of Si{S) is (̂ fj (" I* )·  Thus

inin{r —l,s} min{r-l,5}
c :., =16‘(S) 1= I ¿,(5)1= £

/=1 /=1

Tl —

. r  -  I

On the other hand, there are hyperedges inside 5, and ("p*) hyperedges 
inside V \ S. Thus

C* =n , r

n  — 3 '

< r J

T h eo rem  1.1 C®  ̂ is strictly increasing u'hen 1 < < [|J (and is strictly de

creasing when [|J + l < - 5 < n  — 1̂ . C®p is increasing while n is increasing.

V-S

Y (S) 5 (S ) Y(V-S)
Figure 1.2: A cut 6{S) in a hypergraph.
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Proof:

Let 1 < .  < Lfj .  c j ; ·  = ( ;)  -  (■:■) -  and a ,  = { : )  -  ( ;)  -
Recall that ( j)  + = ( " « ) .  Then,

f a i ' - C · ' . .  = - f  + r
'n — s — l\ in  — s 
t r J \ r .

^ n - s - l
t r  -  1 , , r  — 1,

> 0.

Thus 1 < 5 < [|J. This completes the first part.

CUi.r = ( " t ' )  -  (;)  -  ( ”" “ ). and C ',, =  ( ; )  -  ( ;)  -  Recall that,
t o  = ( : : 0  + - "  +  ( r - 7 ) +  (“-")■  Then,

pS _  1̂S _

n
+ ··· +

f n  +  l \  _

K  ̂ J

+ I —

+ 1 -  .s' 

 ̂ r
'n'
i 'r J

n — s'

ri -  1 \ n -
, C - 1  ' + 1 - 1 ,

> 0.— 1/ y r — I

The above inequality is from the fact that each term on the left is grater than 

each term on the right respectively, i.e., n + 1 — i > n — i, Vi =  1 , . . . ,  s. Thus, 

< â+l.r > Q .r , Vn. □

C orollary  1.1 For  1 < 5 < n — 1,

n
r 'l  = { M < C" <

I r - l i  -  \r
LtJ^ r r t l2 I 1 ^ 2 \

- ^  n,r ·

An incidence vector A’{S) of a set 5  C K is a binary vector of length n whose 

component is 1 if i G 5 , and 0 otherwise. Similarly, an incidence vector 

A '(7(5)) of a 7 (5 ) of 5  C K is a binary vector of length ( " j whose component 

is 1 if e, C and 0 otherwise. Let X{Cffr) be the incidence matrix o f  cuts o f  

size s in This incidence matri.x has rows and columns. Both rows 

and columns of <T(C|/r) are ordered lexicographically. Rows are indexed by s[i],

i.e., s[i] is the set 5  whose incidence vector of the cut A!{S{S)) is the row of

We denote by R the set of real numbers. The set of natural (respectively, bi

nary) numbers are denoted by N (respectively, ®). Let R", N' ,̂ be the set of vec

tors with n components. Let u,· € be a canonical unit vector whose first n
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Figure 1.3: Union operation in

components are and others are zero. Similarly, let Vj G be a vector

whose first n components are A'{ej) and last components form a canonical unit 

vector A '(7 (ej) = ê ·). Let = (^̂ ’( 5 ) ,  A '(7 (5 ))), and 2  ̂ =  (A’( r ) ,  ,U(7 ( r ) ) ) .  

Then, the union operation is defined as 2·̂  l+l 2  ̂ =  { A!{S U T ) , ^ '(7 (5  U T ) )). 

The union operation in is illustrated in Figure 1.3:
2I = ( l , l , 0 , 0 , 0 f 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

2̂  = (0 , 1 , 1 , 1 , 0|0 , 0 , 0 , 0 , 0 , 0 , 1 , 0,0,0)

2i(±)22 = ( l , 1 , 1 ,1 ,011 ,1 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,0 )
If /1 is an n X m matrix, then A{ denotes row of A, Â  denotes column 

of A, and A\ denotes element of A. 1 is a matrix whose elements are all

equal 1. Similarly, e is the vector whose components are all ones, and e,, tij, tijk 

are appropriate canonical unit vectors. 0 is a matrix whose elements are all ecjual

0. In is the identity matrix of size n. A" is an operation similar to taking a 

transpose: [A For instance,

(hr =

0 0 1
0 1 0
1 0 0



Chapter 2

PARTITIONING: 
DEFINITIONS, 
COMPLEXITIES and 
TECHNIQUES

2.1 Prelim inaries

In this section, a family of partitioning problems is defined from a combinato

rial optimization viewpoint. A partitioning problem is referred as hypergraph 

partitioning when the underlying structure is a hypergraph. It is called graph 

partitioning when the associated data structure is a (simple) graph.

The partitioning of a (hyper) graph is obtained either by deleting (hyper) 

edges, or deleting vertices and their incident (hyper) edges. The former opera

tion is known as partitioning whereas the latter one is called separation. In our 

ta.xonomy, there are three kinds of partitioning: bipartitioning, multiple parti

tioning and free partitioning. The cost of the partition operation is the total 

costs of the removed elements. Another criterion is the balance criterion which 

tries to make subparts to have equal number of vertices as much as possible.

Definition of some symbols are needed before defining separation and the

10



three kinds of partitioning: A (hyper) graph G = (V, E) consisting of n = \V\ 

vertices is used to represent the circuit to be partitioned into p e H parts. For 

each edge e G E , the incident vertices are denoted by u(e). There is an edge cost 

function c : E  H, a vertex weight function w : V H. There are also size 

limits for parts: s { j)  € N is the lower limit and S {j)  G N is the upper limit for 

part j  =

In m ultiple p artitions, the node set V is partitioned into p > 1 disjoint 

nonempty sets satisfying the size limits s(i) and S{i). In order to formulate this 

as a mathematical program, a binary decision variable is needed to be defined;

1, if vertex is assigned to part;

0, otherwise.

Multiple partitioning problem is formalized by the following mathematical for

mulation:
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M axim ize  n
j=l cGE iGt'('s)

(2. 1)

subject to:

!=1

E  =  ‘
i=i

Vi, = 1,. .. ,n (2.2)

< S (j) V; = l , . . . , p (2.3)

Xi,j -  0,1 V i=  1,. . . , n

Vi = l , . . . , p (2.4)

The objective of the multiple partitioning formulation is to minimize the total 

cost of the (hyper) edges that are in the cut set. In the formulation, a comple

mentary objective is used. The objective is to maximize the total weight of the 

(hyper) edges not cut by the partition. The product in the objective function 

identifies whether the edge has all of its incident vertices inside a part. The con

straints (2.2) satisfy the partition criterion. That is, every vertex is assigned to 

only one part, and the disjoint parts span all vertices. The constraints (2.3) are 

size constrains and the constraints (2.4) are integrality constraints.
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Not surprisingly, the multiple partition problem is A'”'P-Hard, even if it is 

severely restricted. For instance, the multiple partition problem in which G is a 

graph, w =  1, c =  1, s{i) =  1 and S{i) = n, is strongly A''"P-Complete [74].

The special case of the multiple partition problem in which p=2  is called 

the bipartition problem. The additional restrictions -  n is even, s{i) =  1, 

S{i) = |, te =  1, define the bisection problem. The hypergraph bipartitioning 

is also A/*P-Hard. In fact, the bisection problem restricted to graphs is strongly 

./V’P-Complete [74].

There is a variant of the multiple partition problem in which p is not specified. 

In this case, s(7) values forcing balanced partitions cannot be defined, and usually 

upper limits on part sizes S{i) are the same S. This variant is called the free 
partition problem. The free partition problem is also A'"'P-Hard. Actually, The 

associated decision problem is strongly A”P-Complete [74] even if S > 3 is fi.xed, 

re = 1, c = 1.

The separation problem is to remove as few vertices (the set C) as possible 

such that the (hyper-)graph is disconnected into two sides (the sets L and R), 

each of which has a total vertex weight not exceeding S. The separation problem 

belongs to A^'P-Hard class [74].

.Multiple partitioning restricted to planar graphs where te = 1, c = 1, s(i) = l, 

and S {i)—n, for p—'i and vertex degree of at most 4 can be solved in polynomial 

time. The bipartition problem for trees can be solved in quadratic time using dy- 

na.mic programming techniciues. The complexity of bisection problem restricted 

to planar graphs is open. It is also not known whether the separation problem for 

planar graphs is A/"P-Complete. Lipton and Tarjan [76] presented a linear time 

algorithm for separating planar graphs with a separator of size 0{\/n). The tree 

partition problem is weakly A/’P-Complete. If all vertex weights are the same, 

the free partition problem of planar graphs is in V.



The approaches reported in the literature has focused mainly on the graph bi

partitioning problem. There are very powerful iterative improvement heuristics, 

bounding schemes, and network flow based approaches. The methods proposed to 

solve the bipartitioning problem are modified to handle the multiple partitioning 

problem. On the other hand, the node separation problem has not attracted the 

re.searches’ interest much. Furthermore, the free partitioning problem remains 

almost untouched.
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2.2 Partitioning Techniques

2.2.1 Local Search Heuristics

The most famous local search technique designed to solve the graph bisection 

problem is due to Kernighan and Lin [6-3]. This technique has served as a com

parison base for the last 20 years. It starts with an initial bisection, and tries to 

exchange pairs of vertices across the cut of bisection. Kernighan and Lin proposed 

to calculate the gains (reduction in the cost) of all possible pair interchanges and 

to select the one with the maximum gain or the one with the smallest increase, 

to reduce the chance of being trapped in a local optima. Then the selected pair is 

locked, and a second vertex pair whose exchange improves the cut of the bisection 

is searched, and so on.

Although this heuristic in its original version is quite simple and effective, 

there are some disadvantages as reported in [74]. The Kernighan-Lin heuris

tic handles only unit weights, operate on exact bisection, cannot process hyper

graphs, myopic and greedy, and finally one pass is not linear. Later on, Schweikert 

and Kernighan [88] discussed the ways of extensions to handle the hypergraphs 

by approximating hypergraphs via cliques.

Ten years later, Fiduccia and Mattheyses come with the idea of moving only 

a single vertex across the cut in a single move [37], and updating the gain calcu

lations to handle the hypergraphs. They used buckets to make their algorithm 

run in linear time. Krishnamurty [67] introduced more look ahead mechanisms 

into this heuristic.



Kernighan and Lin [63] suggested a way to achieve balanced multiple parti

tions by applying the heuristic to pairs of multiple subsets to improve the par

tition. However, this method seems not promising because of computational 

intractability, that is the time it takes until a stabilization occurs is too long.

The analogy between a combinatorial optimization problem and the prob

lem of determining lowest energy ground state of a physical system with many 

interacting atoms was first observed by Kirkpatric tt al. [66] in 1983. They 

developed a local search technique called simulated annealing using a very early 

result of Metropolis tt al. [78]. .Johnson et al. tailored general simulated an

nealing algorithm for the bipartitioning problem [55] by moving a single vertex 

at a time across the cut. They penalized the squared difference between sizes 

of parts, added to the objective function, and performed a local search on this 

objective function. Penalizing the imbalance in this way is quite similar to a triv

ial Lagrange relaxation method. They reported on detailed experiments using 

appropriate search strategies to bipartition graphs with unit vertex weights. The 

results seem not promising.
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2.2.2 Network Flow Based Approaches

Network optimization approaches to the partitioning problem are usually based 

on the maximum flow - minimum cut theorem. These approaches attempt to solve 

underlying maximum flow between specified pair of nodes yielding a minimum 

cut. This cut bipartitions the node set in such a way that each node of the pair 

lies in different parts. The above method has two main disadvantages. It is very 

difficult to adjust the sizes of each part, and fixing the terminal pair of nodes is 

troublesome.

Bui et al. [18] suggested the following method for bisections to take care 

of size restrictions. After fixing a pair of distinguished nodes, shrink the neigh

borhood of size s around these nodes. That is, shrink all vertices that can be 

reached from the distinguished node along the paths of length at most s edges. 

Consequently, assign infinite capacities to the edges of the resulting graph that
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are incident to the shrunk nodes, and make a maximum flow computation. Out

put the smallest minimum cut over all vertex pairs that is a bisection. Kahng

[56] extended this idea to treat hypergraph bisections.

The idea of flow equivalent cut tree [41] is used in the partitioning problem. 

The crude ideas appeared first in [54]. Recently Vanelli and Hadley represented 

the same idea [93]. This idea is used to reduce the time complexity of solving 

a maximum flow problem for each distinct pair of vertices of the graph to be 

partitioned.

Garbers et al. [38] suggested to use another approach for free partitioning, 

using A:-/-connectedness. Two vertices ri and w are called ^"-/-connected if and 

only if there exists k edge disjoint paths connecting u and w such that each of 

these paths has length at most /. They suggested to cluster vertices that are 

A’-/-connected to each other as a part. Unfortunately, they did not investigate 

the ways of performing such an operation. However they only indicate that this 

kind of partition can be obtained in polynomial time when k and / are fi.xed.

Multi-commodity flow techniques can be used to assist graph bipartition

ing [74]. A special commodity is assigned to each pair of vertices having de- 

rnands/supplies of |. The edge costs of the multi-commodity problem are ig

nored and capacities are kept equal to edge costs of the partitioning problem. 

The objective is to maximize 2. For each bipartition (U '.U "), the minimum 

multi-commodity flow across the cut is .: · ]U'] · \ V\. On the other hand, it is nec

essary to have some nonnegative slack in the arc capacities for a multi-commodity 

flow to exist; that is C{V',,V") — z ■ \V'\ ■ \V"\ < 0, where C{V\V") is the ca

pacity of the cut [V\V"). The above argument creates an upper bound to the 

maximum flow:
.  . C{V\V")

" "  ]U'] · \V"\ ■

The term at the right hand side is called the sparsity of a cut. A cut with the 

minimum sparsity is the sparsest cut. Since only one direction of the maximum 

flow minimum cut theorem holds for the multi-commodity flows, the maximum 

value of a multi-commodity flow is only a lower bound on the minimum sparsity 

over all cuts.



The notion of the sparsest cut relaxes the balance criterion. Cuts of any bal

ance are allowed; however, the more balanced a cut is, the higher the denominator 

is, and the sparsest a cut is. Thus, the sparsest cut is likely to be an attractive 

cut for balanced bipartitioning. The investigation of the connections between 

partitioning and multi-commodity flow is still in its infancy as reported in [74].
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2.2.3 Nonlinear Optimization Based Methods

number of lower bounds are developed on the minimum cut sizes of the multiple 

graph partitioning problem formulated as a quadratic assignment problem. The 

bounds are stated in terms of eigen values {A,(C), г = 1 , . . . ,  n) of the cost matrix 

(C) that are sorted in decreasing order. The bounds are usually based on the 

Hoffman-Wieland inequality: Let A and B  are two real symmetric matrices, then 

T race(A  ■ B^) < YCi=\ ^¡(^) · where A,(·) is the largest eigen value o f

(■)■
Barnes [9] suggested the following lower bound: c{E) — | Z L i5 '(0  ’ 

where c( E) is the sum of the costs of all edges. Recall that p denotes number 

of parts and 3(1) denotes upper bound on the size of part in the multiple 

partition. Barnes [10] reported a procedure to obtain tight low'er bounds on the 

number of edges that must be cut when the nodes of a given graph are multiple 

partitioned into the parts that are sorted in decreasing order of their fixed sizes. 

The procedure substitutes the decision variables of the quadratic assignment 

formulation by orthonormal decision variables, and constraints by orthogonal 

eigenvectors.

Donalth and Hoffman [36] suggested a more general lower bound using a 

diagonal matrix U such that Trace(U ) =  2c(£') — | S{i) ·· X,(C — U). They 

observed that this bound is a concave function of the diagonal entries of the 

matrix U. This fact helps to employ nonlinear optimization methods to maximize 

the bound family by a good choice of the diagonal entries of U. Boppana [13] 

extended this lower bounding scheme to derive tight bounds on the cutsize of 

bisections.



Clustering is grouping objects such that the groups have objects that are close 
to each other in certain specified properties. If the node set of a (hyper)graph 

is viewed as the set of objects and the edges in between them are treated as 

properties, or vice versa, the multiple partitioning is a special kind of clustering.

A hypergraph can be represented by its incidence matrix. A specific element 

{ i , j )  of the incident matrix A identifies whether the node i is incident to the 

hyperedge j  {A( i , j )  - 1) or not {A{ i , j )  — 0). Either the columns of A can be 

viewed as objects to be clustered or the rows are to be clustered. In any case, 

there are a number of binary vectors to be grouped.

There is a large amount of work in the area of clustering [1, 62]. .A. clus

tering algorithm depends on two factors; the distance function and the method 

of representing clusters. When computing a similarity ¿ (01, 02) or dissimilarity 

(distance) ¿ (01, 02) between two objects Oi and 02 that take two values (0,1) in 

variables denoting existence properties, one draws a 2x2 contingency table such 

as in Table 2.1. Here a is the number of variables that are equal to 1 for both 

objects. .Similarly, 6, c, and d are defined. Obviously, a + b + c + d = t, the 

total number of variables. The values a, h, c, and d are combined in a coefficient 

describing to what extent objects Oi and 02 agree with regard to the collection of 

binary variables. Table 2.2 gives a number of similarity and distance functions 

reported so far in the clustering literature.

The method of identifying a specific cluster usually names itself. If a rep

resentative object in a cluster is selected, the technique is called representative
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2 .2 .4  C lu sterin g  M ethods

object 0\

object 02 
1 0
a b
c d

a-|-c b-j-d

aTb
c-fd

t

Table 2.1: A 2x2 contingency table.
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N ame dioi^02)
a+6+c-|-'i

_____ g+c/_____
(g-|-ci)+2(6-|-c)

2{a-\-d)

2(g+ci)+(6+c)
{ a ^d )-{ b + c )

ad—be 
ad+bc

_____a-j-d_____
(6-j-c)-f-2(g+(i)

d(oi,o-2)
Zubin (1938), Dumas (1955), Sokal and Michener (1958) 
Sneath (1962), Hill et al. (1965).
Rogers and Tanimoto (1960).
Sokal and Sneath (1963), Duran and Odell (1974).
Hamrnan
Yule
Back, Romezburg

I E
g+64-c-f

___ 6+c___
(g+(i)-|-2(6+c)

(<>+c)
2(a+d)+(6+c)

Table 2.2: Similarity-density functions in clustering binary data.

partitioning. If the centroid of a cluster is used, the underlying method is named 

partitioning around medoids, and so on.

In measuring inter-cluster similarity (distance), there are again several ways. 

Group average is the average of similarities (distances) inbetween every pair of 

objects. The similarity (distance) between the nearest neighbor pair [single link

age methods] and the similarity (distance) between the furthest pair [complete 

linkage methods] are other ways of measuring similarities (distances) between 

clusters that are used in hierarchical clustering methods.

Kwatera and Simeone [72] developed a clustering based technique first to solve 

a graph related combinatorial optimization problem. They proposed clustering 

methods as a new class of set covering heuristics. In the meantime, Simeone with 

Antenucci and Nicoloso applied elementary clustering heuristics in hypergraph 

partitioning [2]. Feo and Khellaf [74] investigated the relationship between clus

tering, matching (a special case of clustering in which the size of each cluster is 

fixed at 2) and partitioning.

2.2.5 Polyhedral Approaches

Polyhedral approaches are based on the determination of the minimal repre

sentation of the constraint set via facet defining inequalities provided that the
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associated polyhedra is full dimensional, .^fter determining the set of '‘easy-to- 

list" facet defining equalities, one can find a solution to that constraint set and 

checks whether the solution satisfies all facet defining inequalities.

Works on cut polytope has begun with the appearance of the max-cut problem: 

Given a graph G=(V,E) and a weight function w:Ei-+ z, the problem of finding 

a cut 6{S) such that its weight Eee5(S) is as large as possible. Yannakakis 

[98] showed that this problem is AÎP-Rârd  even for graphs having degree at most 

three. On the other hand, Hadlock [49] proved that the max-cut problem can be 

solved polynomially for planar graphs. It is also polynomial for weakly bipartite 

graphs [46], and for graphs without odd long cycles [45].

Barahona [6] used the decomposition schema [95] for graphs not contractible 

to the complete graph with 5 nodes A's, and facial description of bipartite sub

graph polytope Pb İG) [44], to derive a polynomial algorithm for the graphs not 

contractible to A',· His procedure is quite similar to that of Cornuejols et al. s

[27] which is designed for solving Travelling Salesman Problem in graphs with
3-edge cutsets. He also proved that the max-cut problem in graphs with no sub

graph contractible to A'g is .V'P-Hard. Later. Barahona and Mahjoup [8] gave 

complete polyhedral description of the cut polytope Pc{G) for the graphs not 

contractible to A'5. They argued that some facet defining inequalities of Pb {G) 
work in describing Pc{G). Furthermore they developed a facet defining pro

cedure to characterize facets associated with edges and cycles and proved that 
these facets uniquely define the cut polytope PciG) for graphs not contractible 

to A '5 .  Based on the above partial characterization of the cut polytope for gen

eral graphs, Barahona et al. [7] designed a cutting plane algorithm and report on 

computational experience with it. Boros and Hammer [14, 15], Deza and Laurent 

[33, 34] presented a class of valid inequalities as well as a class of facets for the 

cut poly tope of the complete graph Pc{Kn)·
If the set to be clustered X  is made up of a finite number of points in a Eu

clidean space, the partition o i X\, X 2, . . . ,  Xp of X  into p groups which maximizes 

the sum of unsimilarities of all those pairs which do not belong to the same group 

is studied by Boros and Hammer [16]. They discussed that there are cases that
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the optimal partition has special properties which make the optimization prob
lem easier. They reported two cases. One such case consists of the minimization 

of the objective function which is a quasi-convex function depending on the sum 

of the coordinates of the points in each set of the partition. In this case, the 

unsimilarity function has no influence on the problem: conv D conv Xj = ih 

for i ^  j .  Another case is that the non-negative real valued dissimilarity function 

is defined between all pairs of points in X. In this case, there exists an optimal 
partition such that the intersection of Xj with the convex hull of A', is empty for 

all i < j .

Grotschel and Wakabayashi [42] transformed the clustering problem to a clique 

partitioning problem. A set A of edges in a graph C = {V .E )  is called a clique 

partitioning of G if there is a partition of V=Wy U W2 U · · · U U p  upon the removal

of A such that the subgraph induced by Wi is a clique for /= 1 ........p. In case G is

complete, every partition of the node set of G induces a clique partitioning. The 

clique partitioning problem is then defined as follows: Given a complete graph 

i\n = (VnCEn) with weights rce ^ Z ' ie   ̂ En, find a clique partitioning A C E,i 

such that iy(A) is as small as possible. Grotschel and Wakabayashi [43, 47] 

investigate facet defining inequalities of the clique partitioning polytope 

They proposed a cutting plane algorithm and reported on its applications and 

computational results [42].
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POLYHEDRAL APPROACHES 
TO PARTITIONING

Polyhedral Combinatorics deals with the interactions between linear (affine) al

gebra, linear programming and combinatorial optimization. .A. problem of com 

binatorial optimization generally has the following form. There is a finite ground 

set G, a family J- of "feasible'’ subsets of G and associated with each element 

e € G. The aim is to find an optimal set 5 ’ among all feasible sets S ^ J-, for 

which u’e is maximized/minimized over all members of T . A fundamental

theorem in polyhedral theory state that every polytope is the solution set o f  a 

finite system  o f linear inequalities and equations. If one is successful to find such 

a system, then it is sufficient to solve the combinatorial optimization problem at 

hand by using a linear programming technique.

A technique based on polyhedral combinatorics usually employs a five step 

process:

51. Represent the members of IF by vectors, usually 0-1 incidence vectors of 

the sets S £ fF\

52. Define the polyhedron P  to be the convex hull of the vectors of S i;

53 . Obtain a linear system sufficient to determine P]

54. Apply linear programming duality to obtain optimality criteria special to 

the problem at hand;

21
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So. Develop an algorithm using the optimality criterion as a stopping condition.

In this chapter, studies on cut polytope induced by the max-cut problem are 

reviewed. In Section .3.1, a polytope family related with the graph partitioning 

problem is introduced. In the last section, current results on the cut polytope 

are presented.

3.1 Partitioning R elated  Polyhedra

In this section, various polytopes related with graph partitioning are listed to

gether with their intersection pattern. These are cut polytope, bipartite sub

graph polytope, equipartition polytope, clique partitioning polytope, multi-cut 

polytope, free cut polytope and boolean quadratic polytope.

The bipartite subgraph polytope Pb {G) is the convex hull of incidence vectors 

of bipartite subgraphs of G = { \ ■ E) [44]. Similarly, the cut polytope Pc{Cr) is 

the convex hull of incidence vectors of bipartitions of G' [8]. Since any bipartition 

or cut S{S) defines a bipartite subgraph of G which is (5, V \ S,6(S}). Pc{G) Ç  

Pb [G)· However, in general Pc[G) ^ Pb {G). Equipartition polytope Pe (G) is 

the convex hull of incidence vectors of bisections of G [2-5, 26]. Clearly, Pe [G) Ç  

PciG).
The multi-cut polytope P ciG )  is the convex hull of incidence vectors of 

multiple partitions of G when the number of parts is exactly k [24]. Thus, 

P ciG ) = P t \ G ) .
The convex hull of the incidence vectors of clique partitionings (H’l , . . . ,  Wp) 

of G is called the clique partitioning polytope [4.3] and is denoted by P^-iG). By 

the above definition, P^-iG) Ç  P^~^iG). In particular, P^iKn) =  Pc~^iEn)·

The free cut polytope P riG )  is the convex hull of free partitionings of G [30]. 

Hence, P^iG) Ç Pf (G'), Yk =  2, 3 , . . . ,  n.

The boolean quadratic polytope B Q iG ) is the convex hull of boolean vectors 

iz , y) € such that = ZiZj [83]. BQ iG ) is actually the image of P ciG  +

v) under a bijective linear transformation [89]. Thus, BQ iG ) =  P ciG  + v).
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3.2  C ut Polytope

The cut polytope Pc{G) is investigated in detail in this section. It is the most 

studied partitioning related polyhedra since early 19S0s. Works on cut polytope 

has begun with the appearance of the max-cut problem: Given a graph G = 

{ V ,E ) and a weight function w:Ei-^ Z, the problem of finding a cut 6{C) such 

that its weight tu{e) is as large as possible. Yannakakis [98]

showed that this problem is TYP-Hard even for graphs having degree at most 

three. On the other hand, Hadlock [49] proved that the max-cut problem can be 

solved polynomially for planar graphs. It is also polynomial for weakly bipartite 

graphs [46], and for graphs without odd tong cycles [45].

VV̂ agner developed a decomposition schema [95] for graphs not contractible to 

the complete graph with 5 nodes A's which can be expressed by planar graphs 

and a special cycle with eight vertices and three chords Vg. Barahona [6] gave a 

polynomial algorithm that uses this decomposition to reduce the max-cut problem 

for graphs not contractible to IG to a sequence max-cut problems in planar graphs 

and in Vg. His procedure is quite similar to that of Cornuejols et al. ’s [27] which is 

designed for solving Travelling Salesman Problem in graphs with 3-edge cutsets. 

Barahona also proved that the max-cut problem in graphs with no subgraph 

contractible to Kg is A'P-Hard.

Barahona, Grotschel and Mahjoup [44] showed that Pc{G) is full dimensional. 

We know from polyhedral theory that if F  C K"* is a full dimensional (dim P — rn) 

polyhedron, a linear system Ax < b that defines P is minimal if and only if the 

inequalities define all the facets of P.
Barahona, Giotschel and Mahjoup stated that some of the facet defining 

inequalities of Pb {G) are also facet defining inequalities of Pc{G):

Facet 1 (/u- ineq ualities) Let I\k={W^F) be a complete subgraph o f order k 

o f  G. Then the Kk inequality

l { F )  = Y , x , <
e€F

'k' k
2 2

is valid fo r  Pc{G); this equality defines a facet i f  and only if k is odd.
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12 + 'r23 + 'i’:34 + '3̂4o + ̂ 15+-i'67 + 3’l6 + ̂ 26+.r36+'i’46 + ‘C56 + -ri7+;Z^27+-i^37+i47+.l‘57 < 10. 

Figure 3.1: .4 bicycle -5-wheel and its inequality.

F acet 2 (B icy cle  ( 2k + l)-w h e e l inequalities) Let G={V,E) be a graph and 

let (W ,F ) be a bicycle (2k+l)-w heel, k > 1, contained in G. Then the inequality

x {F )  <2(2A: + 1)

defines a facet o f PciG).

-An e.xample is illustrated in Figure 3.1.

F acet 3 (G eneralized /u inequalities) LetH={\\\F) be a complete subgraph 

o f  order q where l 'F = {l, 2 , . . . ,  ^}. Let positive integers ¿, (1 < i < q) satisfy 

L = 2k + I, k >  3 and ti < k -  1. Set

aij : —
t f j ,  I < i < j  < q,

0, { i , ; }  ^ W.

Then

defines a facet o f  Pc{G).

aTx < a  := k{k  -f 1)

Barahona and Mahjoup [8] gave complete polyhedral description of the cut 

polytope Pc{G) for the graphs not contractible to l if .  They reported facets 

associated with edges and cycles:
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Facet 4 (U n it hypercube equalities) Given a graph G = {V ,E ), an incidence 
vector X must verify the inequalities

0 < x(e) < 1, Ve € E.

The unit hypercube inequalities define a facet o f  Pc{G ) i f  and only if  e does not 

belong to a triangle.

Facet 5 (Odd cycle inequalities) Let C C E  be a cycle and F  C C , \ F  \ odd,

then

x { F ) -  x {C \ F )  < 1

defines a facet o f  Pc{G ) if and only i f  C is a cordless cycle.

Furthermore, Barahoria and Mahjoup proved that the facets 4 and 5 uniquely 

define the cut polytope Pc(G ) for graphs not contractible to K^.

Grotschel, Lovasz and Schrijver [77] reported that one can use the ellipsoid 

method to optimize a linear function over a polyhedron P  in a polynomial time, if 

there is a polynomial algorithm to solve the so called separation  problem: Given 

a vector x, prove that x G F  or else find an hyperplane that separates x from 

P. The knowledge of an efficient method to solve separation problem gives an 

answer to some theoretical and practical questions. It proves that a problem is 

polynornially solvable, and it permits the design of linear programming based 

cutting plane algorithms.

Barahona and Mahjoup stated that the separation problem can be solved in 

polynomial time by a polynomial algorithm designed to solve max-cut problem for 

graphs not contractible to A'5. The separation problem is trivial for unit hyper

cube inequalities. For odd cycle inequalities, Grotschel, Barahona and Mahjoup 

[44] reported a procedure to the separation problem in polynomial time. For 

bicycle wheel inequalities, Gerards [40] showed that the separation problem can 

be reduced to a sequence of shortest path calculations. Moreover, it is possible 

to check all AT inequalities in polynomial time for a fixed k. However, it is not 

known whether there is a polynomial algorithm to solve the separation problem 

for all AT inequalities.
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Barahona et al. [7] implemented a standard cutting plane algorithm based on 

the simplex method. They start with a very coarse LP relaxation of the max-cut 

problem and use the simplex method to solve it. If the optimum solution is the 

incidence vector of a cut, it is done. Otherwise, a separation phase is entered to 

find inequalities violated by the current optimum solution. If such inequalities 

are found, they are added and the process is repeated. If not, branch and bound 

is applied. Barahona et al. [7] tested their algorithm for special graphs resulted 

from statistical physics and reported their computational experience.

Boros and Hammer [15, 17], and Deza and Laurent [33, 34, 31, 32] presented 

a class of valid inequalities as well as a class of facets for the cut polytope of the 

complete graph Pc{Kn)· Pc{N n) gives .some insight for general cut polytopes 

Pc(G). For instance, every facet defining inequality of P c{K n) also defines a 

facet of PciG) if G is any graph containing /\„ [90]. It was proven in [8] that the 

cut polytope has the following property; namely, a description of the facets that 

contain any particular extreme point gives the description of the whole polytope. 

For this reason, it is enough to study the facets that contain the origin, i.e., the 

facets of the cut cone CdG).
The first known class of valid inequalities of the cut cone Cc{G) is spanning 

tree inequalities.

F acet 6 (Spanning Tree ineq ualities) Let G={V.,E) be a graph o f  order n. 

Let /j > 0, ji = 1, . . . , p and Ij < 0. j  = p + I , . . .  ,n  — 1 be given integers. Let 

T be a spanning tree on the vertices { l , . . . , p } .  The following inequality is valid 

fo r  Pc[G):

k + l
( ¿ ( 2  -  dx{i))xin + X]  Xij) <  0
1=1 ijeE(T)

where ln={2k +  1) — YfiZi h ond d j i i )  denotes the degree o f  vertex i in T .

Furthermore, if Ip+i = ■■■ =  /„_i = —I, Ij > k j  — l , . . . , p  Y^ ĵ- l̂j < 

n. A k — p, and if T is .such that there are disjoint subsets Ci o f  { 1 ,2 , . . .  ,p }  with 

^ je c ,  h  > + 1 * = 1)2, which induce connected subgraphs o f  T , then the above

inequality is facet defining fo r  Pc{G).
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In particular, let r= 2 , n >8, fo r  k —1; and r= k  + l, n > 3k+ 8,

P~Lf+|J k > 2  and let /p+i = ··· = /„_i = —1. Then fo r  any spanning 

tree T  on vertices { 1, . .  . ,p}  the above inequality is facet defining fo r  Pc{G).

Since the number of trees on p points is p̂ “ ,̂ the above facet provides at least 

(|)^ facets for Pc{G), any fixed n. Remark also that the separation problem for 

this class of valid inequalities for fixed n, k ,p  and I is equivalent with a minimum 

spanning tree problem.

The second but more general class of valid inequalities for the cut cone Cc{G) 

is hypermetric inequalities. They are introduced first by Deza in 1960 [29]. This 

class generalizes generalized Kk inequalities and unit hypercube inequalities. For 

small values of n < 6 hypermetric facets are sufficient for C c(Kn)·

Facet 7 (H y p erm etric  inequalities) Let b = (6i , ___6„) where bi's are inte

gers satisfying 6, = 1. The inequality

n— 1 n
I ]  Y i bгbyXгj <  0
1=1 j=i+l

is valid fo r  Cc{N n), R is called the hypermetric inequality defined by b and denoted 

by Hypn{b). Some known hypermetric facets are

1. //j/p3( l , 1, —1) (triangle facet),

2. /7yp5( l, 1, 1, —1, —1) (pentagonal facet),

3. //yp6(2,l, 1 , - 1 , - 1 , - 1 ) ,

4. №ypT(l,1, 1, 1, - 1, - 1, - 1),

-5. /iyp7(3,1 , 1 , - 1 , - 1 , - 1 , - 1 ) ,

6. //yp8(3 ,2 ,2 , - l , - 1 , - 1 , - 1 , - 2 ) ,

7. 7iyp9(2,2,1 , 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) .

Furthermore, i f  Hypn{b) is facet inducing then Hypn+i{b,0) is also facet inducing.
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The third class of valid inequalities for the cut cone C dG ) is cycle inequalities. 
This class generalizes odd cycle inequalities.

Facet 8 (C ycle  inequalities) Let b =  ( b u . . . ,  bn) where bi s are integers satis- 

fyl'^9 Xrr=i “  ■̂· =  {f € N : 6, > 0} is called positive support o f  b.
Set f  —\ I and =  {¿ i , . . . .  i f )  with 1 < < · · · < fy < n and let C be a
cycle with node set B.̂ .. The inequality

1=1 j= i '+ l  ( i J ) 6 C

is called the cycle inequality and denoted by CyCn(b) .  The following cycle inequal
ities are all facet inducing:

1. 0 7 ( 3 , 2 , 2 , - 1, - 1, - 1, - 1),

2. O t(2, 2, 1, 1, - 1, - 1, - 1),

5. 0 7 ( 1 , 1 , 1 , 1 , 1 , - 1 , - 1 ) ,

4. O s ( 2 , 2 , 2 , 1 , - 1 , - 1 , - 1, - 1),

.5. 0 8 ( 2 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 ) ,

6. 0 8 ( 3 , 3 , 2 , - ! , - 1 , - 1 , - 1 , - 1 ) ,

7. 0 8 ( 3 , 2 , 1 , 1 , 1 , - 1 , - 1 , - 1 ) ,

0 9 ( 1 , 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 ) .

Again. ifCyCnib) is facet inducing then Cj/c„+i(6, 0) is also facet inducing.

Third class is pure clique-web inequalities which generalizes bicycle wheel 
inequalities:

Facet 9 (P u re  clique-w eb in eq u alities) The pure clique-web inequality CWjf 

with param eters n, k, p, q satisfying n =  p 9, p — q — 2k + 1., q > 2 is the 
inequality

c w i  ■ X =  y ;  6.6,x ,,  -  y :  x .j <  0
.=1 j=i+i {i,j)eAW^
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with b — ( 1, . . . ,  1, - 1, . . . ,  - 1) whose first p coefficients are +1 and last q = n - p  

coefficients are -1.

The terminology “clique-web” inequality is chosen since the above inequality can 

also be written as

n —1 n P n
E  + E  E  - E E  ^b < 0.

(b)evt'* i=p+l j=i+l 1 = 1 j=p+l

Hence, there is a web on the first p nodes (the nodes for which 6; =  -|-1) and a 

clique on the remaining q = n — p nodes (the nodes for which = —1). The 

edges in the web and in the clique have the coefficient + 1, the edges between the 

clique and the w'eb take the coefficient -1, and the edges in the antiweb have zero 

coefficients. An example is illustrated in Figure 3.2.

WEB,CLIQUE

ANTIWEB

CUT

(•5̂ 12+*i-23 +  ̂ 34 + 3:45-|-Xi5) + (a;67)“ (^16+3r26+3:36-l-J46+X56 + 3:i7 + X27+^37+3^47+^57) ^ 0.

Figure 3.2: A C W j and its inequality.

Finally, there is a superset of valid inequalities for Cc(A'„) which generalizes 

all, called generalized clique-web inequalities:

F acet 10 (G en eral clique-w eb inequalities) Let b =  ( i>i , . . . ,6„) be integers 

whose sum is b\ + ·■■ + bn = 2k +  I {k >  0), and let p ( q )  denote the number 

o f  positive (  nonpositive ) 6, ’s; so n — p A q. Let be positive support o f  b, 

so I 1= p. Without loss o f  generality we may assume that B^ =  { l , . . . , p } .
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Consider the collapsed antiweb AW!^{bx,. . .  on the node set Then the
general clique-web is the inequality

c w ^ w . X = “¿ '  ±  -  · £  < 0.
i=l j=i+i (.',j)€-4№‘(6)



Chapter 4

BOOLEAN R-ATIC 
POLYTOPE

Boolean R-atic Polytope is the convex hull of the incidence vectors of vertex 

induced subhypergraphs in a complete r-uniform hypergraph. Each hypergraph 

can be transformed into an r-uniform hypergraph in such a way that the end

points of all hyperedges are increased to (r) terminal nodes by adding at most 

(r-1) pseudo vertices. The vertex induced subhypergraphs are invariant under this 

transformation if all of the pseudo nodes are kept among the selected vertices in 

the r-uiiiform hypergraph. In this chapter, results on the Boolean R-atic Polytope 

are reported.

4.1 Prelim inaries

The problem of picking the best portion of a hypergraph is the selection of a 

subset S  of the node set V such that the total weight of the nodes and the 

hyperedges in the selection is the best. Combinatorially speaking, the problem is

max c(5) + d{-f{S)).

An instance of the problem on an example hypergraph is illustrated in Fig

ure 4.1. Vertices 3, 4, 5 and 6 form the set S. Hyperedges 6 and 7 lies inside 7 (6').

31



CHAPTER 4. BOOLEAN R-ATIC POLYTOPE 32

Figure 4.1: An instance of the problem on an example hypergraph representation.

In this case, the objective function value is equal to C3 + C4 + C5 +  ce + + (f?·
If we add vertex I into the selected set, hyperedges 4 and 5 will also be selected. 

In this case, we can get an extra i/4 + + ci units in the objective function.

The two set of binary variables defined for nodes, x,·, i — l , . . . , n ,  and for 

hyperedges, yj, j  =  1, . . .  , m indicate whether the associated elements are in the 

selection or not. Then, the problem can be formulated as:

Maximize E?=i + E iL i djyj 
subject to:

yj = Xii ■ 1̂2 ■ ■ ■ ■ · i = 6j =
Xi = 0 or 1, f = 1, . . . ,  n

yj = 0 or 1, j  =  1, . . .  , m

The constraint yj =  a:,·, ■ ■ . . .  ■ prevents the hyperedge ej from being se

lected unless all of its end-points are chosen. These constrains are nonlinear. 

If kj =  2, Vy =  l , . . . , m ,  that is if the structure constitutes a graph, the con

straints are quadratic. In this case, the problem is an unconstrained quadratic 

zero-one problem which is A/̂ 'P-Hard in general. Therefore, our problem is one
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of the hard combinatorial problems. A real life example arises from manufactur

ing. The problem of identifying the best manufacturing cell is the best selection 

of machine types that are dedicated to the manufacturing of a specific range of 

parts whose fabrication operations can be made completely using the selected 

machines. In this case, machines constitute the node set whereas hyperedges 

represent parts. The objective function is then to maximize profit over a specific 

period of time which is the revenue obtained from the parts that can be produced 

within the cell minus the cost of machines that form the cell.

The constraints tjj = can be linearized using the following inequalities:

Vj <Xi, 1=

Xii + X{-2 + · · · + Xî  ̂ ^ {kj — 1) -f t/j

V: >  0

Xî  ^ 11 f 17 ·' · 1 kj

tjj integer; and a:,, integer, / = I , . . .  ,k j

By the inequalities yj <  a:,,, the hyperedge is not contained in the subhypergraph 

if any of the end-points is missing. By the next inequality, if all of the end-points 

are in the selected set, the hyperedge should lie inside the selection. On the other 

hand, if a hyperedge is in the subhypergraph, all of its end-points should also be 

in the selection. Moreover, if the hyperedge is not in the subhypergraph, then at 

most {kj — 1) end-points can be in the selected set. The inequalities a:,, <  1 are 

implied by the other inequalities when kj =  2.

If r{H ) — p{H ) + i pseudo nodes are added to the set of vertices with zero 

weights, and each hyperedge is extended to have exactly r = r{H ) vertices, 

the original hypergraph H is transformed into an r-uniform hypergraph. Let 

|ej| = / < r, then this hyperedge is extended to have r end-points such that 

= Cj U  {/ + 1 , . . . ,  r}  where I +  1 , . . . ,  r are new dummy vertices.

This transformation is illustrated in Figure 4.2. In our example, p = 2, r = 5 

(part 9), hence we add 3 pseudo nodes. Since hyperedge 6 is incident to only 

three nodes, it is connected to the last two dummy vertices, 4 and 5. If we extend
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Figure 4.2: The same instarice of the problem on the transformed .5-uniform 
hypergraph.

every hyperedge similarly, we will obtain the 5-uniform hypergraph as given in 
the Figure 4.2.

The pseudo nodes are always in the selected node set because of zero weights. 

Let S  be an arbitrary node subset of the node set V. Let T  — S U {p{H ) -f 

l , . . . , r (/ /) }  be the corresponding node set. Then, 7 (5 ) = 7 (7 ’). Thus, the 

solution is invariant under this transformation.

If we add all of the missing hyperedges with zero weights, we will have com

plete r-uniform hypergraph, /7̂ .

4 .2  Definition and Dimension

The problem in a complete r-uniform hypergraph of order n, /7̂ , is restated as 

follows:
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Maximize c.-c,· + e H  djyj 
subject to:

z =  ( x , y ) € R P { H ' J

where the Boolean R-atic Polytope

m W ; )  = ( (x , ! / )€ B “+(:) : y , < x ,  V i€ e j ,  Vj = l , . . . , ( ; )

X. -  S -  1 Vi = 1 , . . . ,
!<;>o, Vi =

< 1, Vi =  1, . . . ,  n }

R P { H ' ) = c o a , { iX { S ) ,X { - r ( S ) )  : 5 C l / } .

As a consequence of the last definition, R P[H D  is a polytope and it has 2" 

vertices. Moreover, RP{H D  is full dimensional. Let u, G be a canonical

unit vector whose first n components are .A d i}) and others are zero. Similarly, 

let Vj € be a vector whose first n components are A'(ej) and last

components form a canonical unit vector = e j) .  The vectors u,’s and

Vj's satisfy the constraints. In fact, they are vertices of the polytope. Let A be a 

matrix whose rows are UiS and Uj’s.

A =
' I 0 '

B I

Since A has full row rank, dim( R P {H D ) = n + { ^ .

If r =  2, the polytope RP{H^~^) is the Boolean Quadratic Polytope defined 

by Padberg [83]. The following theorems in the next section are generalization 

of his results for R P {H ’̂ ).
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4 .3  Facet Defining Inequalities

T h eorem  4.1 yj >  0 defines a facet fo r  RP( H f̂i.

Proof:

Let F  =  {{x ,y )  e  R P  : yj =  0}.

Let b {x ,y )  < bo be facet defining such that V(j;,i/) €  F, b {x ,y ) = bo.

i. 0 & F  => 60 = 0 = 6o·

ii. Ui € F, Vi =  1 , . . . ,  n => bui = bi = bo — 0, Vi = 1 , . . . ,  n.

iii. Vk e  F, ek =  { i i , . . .  ,iV} ej => bvk =  -\------- f- bî  bk -  bk = bo =

0, Y k  j .

Then b {x ,y ) < bo reduces to byyj < 0.

6 7  ̂ 0, otherwise b {x ,y )  < bo is not facet defining since RP(H^) itself satisfies 

the facet defining inequality which yields that the facet is not a proper face. 

Hence, 6j < 0 yj > 0 is facet defining. □

T h eo rem  4.2 x, < I defines a facet fo r  RP{H ^), when r > 2.

Proof:

Let F  =  { (x,y)  € R P  : Xi — 1}·
Let b {x ,y )  < bo be facet defining such that V(x,i/) € F, b {x ,y ) = bo-

i. Ui G F  bui — bi = bo-

ii. 2 =  Ui 1+) uj € F, Vj 7  ̂ z ^  bz = bi A bj = bo (r > 2!) => bj =  0, \fj ^ i

iii. Vk E F, 6k =  {z, ¡2, . . . ,  Zr} =A bvk = 6,· + 6,2 +  · · · + bî  A bk = bi A bk = bo 

=4” 6fc = 0, Yk 3 i £ Bk-

iv. 2 =  Ui l±l Vk € F, i  ̂ ek =  {zi , . . .  ,zV} => 62 = 6̂ +  6,j +  · · · + 6,·,. +

6fc +  6/1 +  · · · +  6/,. = 60, where eî  =  {z,z'i,. . . ,  Zfc_i, zjt+i,. . .  ,zV}. Then, 

bz =  bi +  6jt =  bo-

bk = 0, V/z 3 i ^ Cfc.
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Then b {x ,y ) < bo reduces to 6,a:, < => < bi.

b / 0,if  otherwise b {x ,y ) < bo is not facet defining. 0 e RP{H r̂x) => 0 < 6,. 
Hence, 6, > 0 ^  X{ < 1 is facet defining. □

T h eorem  4.3  yj < Xi, i € e_, defines a facet fo r  RP(H^), only i f  r =  2.

Proof:

Let F  = {(x ,y )  e  R P  : yj =  Xi, i e  e_,}.

Let b {x ,y ) < bo be facet defining such that Y(x,y) G F, b (x ,y ) =  bo.

i. 0 E F  60 =  0 = 6q.

ii. Uk E F, k ^ i buk = bk =  bo = 0, Yk ^ i.

iii. Vj 6 F, tj =  ¿2,. . . ,  fr} bvj =  6,- +  6,'2 +  · · · +  6,·,. +  bj = bi +  6j =  6q =  0
6i = - b j .

i v .  Vk ^ F, Ck =  { ¿ 1 ,  ■ .. fir}, i ^ bvk =  6 j j  +  · · · +  bî  bk = bk = bo =  0 ,

6fc = 0, Yk 3 i  ̂ ejt.

V. z =  Uk ^ Vj ^ F , k ^ ej b z =  bi +  6,2 + · · · +  6t'̂ _j + bî  +  6̂  +  bj +  bt̂  +
• · · 6/, = 6o

where,

e/j {z,/j, ?2) · · · 5 r̂ —2) r̂ —1}
e/j |z, A;, ¿25 · · · 5 r̂—2j

¡̂r-\ {L 5̂ *3) · · · 5 r̂—1 }

Îr 2̂? · · · 5 r̂}
=> 6:r =  (6, + 6j) + 6(j + · · · 6/̂ _j = 6/j + · · · 6/̂ _j = 0 (o)

e.g. r = 3, i =  1, Cj =  {1 ,2 ,3} ,  k =  4; (o) 6j + 6123 +  6124 +  6134 =

6124 +  6134 =  0;

If r =  2, then 6 (x, y) =  biXi + bjyj =  biXi — 6,z/j < 0.

bi 7̂  0, if otherwise 6 =  0 =4> 6(x, ?/) < 60 is not facet defining.

Hence, yj <  x,·, i € tj is facet defining for r= 2. □
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T h eorem  4.4  < (r 1) + yj, ej — is facet defining fo r
RP{H^), when r =  2,3.

Proofi

l e t  F  =  e  R P  : =  (r -  1) + Vj}.

Let b {x ,y ) < bo be facet defining such that y {x ,y ) e  F, b (x ,y ) = bo.

i. z=i±l _̂jU,·̂  G F  bz = bî  A ■ · · P bî _̂  -- bo-

ii. Vj Ç: L 6 Cj =  6j·, +  · · · -|- bî _̂  +  6,,. +  bj = bo-

^  îk =  =  1, · · ·,  ̂ and bo = - ( r  -  l)bj.

iii. W u , e F , l ^ e ,  => 6z = 6,, + . . .  + 6.„_, + 6, + 6, =  bo, 
where e, = {/,¿1, . . .

bi  =  — 6 ,, ( 9 )  V /  ^  t j ,  I e ,  n  Cj I =  r  — 1, / 6  Cg.

iv. - = Vj l±) ■«; e  F, I ^ ej bz -  (6,·, + 6,·̂  + . . .  +  bi _̂̂ ) + (¿.̂  4. bj) A bi A

bg, +  · · · bĝ  =  60 + 0 +  6„ +  · · · 6,̂  =  bo
where,

Cg] {/ ,  ■ · · , İ t —2, A  —I }

Cgg { i , i \ ,  İ2t · ■·  , i r —2,

1̂r {Ji 2̂, 3̂) · · · 5 r̂}

^  b z =  bi A bĝ  A ■■■ bĝ  =  0 (o) ^  bi = 0,'dl ^ ej and b, 
1, . . .  ,r.

e.g. r =  2, €j =  { 1, 2}, / = .3;
( Ç ' )  63  =  — ¿ 1 3

(9 )  6 3  = — ¿ 2 3  bj =  ¿1 3  = ¿ 2 3  = 0

(^) bo + ¿ 1 3  + ¿ 2 3  — 0
e.g. r = .3, ¿ = 1, e, =  {1,2 ,3} ,  / = 4;
(Ç>) 64 =  —6124

( f ? )  64 =  — ¿ 1 3 4  

(Ç>) 64 =  — ¿ 2 3 4  

(c) 64 +  6124  + ¿ 1 3 4  + ¿ 2 3 4  = 0

Î* ^ 0, Vk =

¿ 4  —  ¿ 1 2 4  =  ¿ 1 3 4  =  ¿ 2 3 4  = 0
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V ·  -  =  l± J l i , ,  W u ; , , e  F I1 J 2 i  tj
bz — {bî  + · · · + bir-i) + bî  + bî  + 6„ + ¿<,2 + ¿u/, +

0̂ +  6/, + 6(2 +  + bq̂  +  b î +  · · · + 6ti
where

■'qi I ^q2

= bo,

'71 — {/1, ¿1, . . .  , ir -l  }

Cqq —1}) 3.n(i

Su/j — {^11 2̂i *2i · · · 1 r̂—2i *r —I}j 

61̂ 2 {̂ 11 2̂i 1̂1 * · · 1 r̂ —2j r̂ —I })

+ '̂ ’XV-I -

^ (1 / ,—  1 —  {  ^1  ? ^ 2 )  ̂ I » · · · 1 ^ r — 3 )  ^ r — 2  }

¿>u;i + · · · + = 0, (4 )  V/i, /2  ̂ Cj, I n Cj I = r -  2, /1 , /2  € e,̂ ,̂

A: = 1 , . . . ,  r — 1 for each choice of .

e.g. r -3, Gj |l ,2,3} ,  /1 4, /2  — 0,
( ^ )  ^ 1.3  =  — ¿ 2 4 5

( ♦ )  ¿ 1.3  =  — ¿ 3 4 5  ¿ 1.3  =  ¿ 2 4 5  =  ¿ 3 4 5  —  0 .

( ^ )  ¿ 2 4 5  =  — ¿ 3 4 5

vi. 5 = Vj <S Uk e  F  Cyt = {/1, . . . , /r} n Cj = 0

bz = bî  -\------------l·  ¿ , \ .  +  ¿ i i  H ----------- l· ¿ i ,  +  bj +  6 ;  +  '£,keS{ej-,ei) ¿ f c  =  ¿ 0

¿ /  +  E f c e 5 ( e 2 ; e , )  ¿^ ·  =  0  ( A ) ·

e.g. r = 3, Gj =  {1,2,3} ,  Gi =  (4,5,6) ;
( ^ )  ¿ 4 5 6  +  ¿ 1 2 4  +  ¿ 1 . 3  +  ¿ 1 2 6  +  ¿ 1 3 4  +  ¿ 1 . 3  +  ¿ 1 3 6  +  ¿ 2 3 4  +  ¿ 2 3 5  +

¿ 2 . 3 6  +  ¿ 1 . 3  +  ¿ 2 4 5  +  ¿ 3 4 5  +  ¿ 1 4 6  +  ¿ 2 4 6  +  ¿ 3 4 6  +  ¿ 1 5 6  +  ¿ 2 5 6 +  ¿ 3 5 6  =  0

= 0 .

¿; = 0, VciD

If r = 2,3 then b (x ,y )  = (Eieej ¿i^O + bjyj =  6q

=> b {x .y )  =  - ¿ j ( E i 6e2 ^¿) + bjyj = - { r  -  l)bj.
bi =  —bj ^ 0,if  otherwise b = 0 =4̂  b[x, y) < bo is not facet defining.

Since O g P, ^ ¿ 0  = 0 < ¿ o  = —(r — l )6j  => —bj >  0.

Hence, Eieej ^ — 1) + Vj, =  {*i) · · · »v} is facet defining for r=2,3. □
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4 .4  Clique and Cut Inequalities

A wide range of valid inequalities namely clique and cut inequalities are analyzed 

next. Let us focus on the special case n = r + 1 to gain some insight. The 

following fractional points satisfy the previous inequalities that define RP{Hl^): 
r — 1 ,

“  ~ ’ ? =  l , . . . , r  +  l z/j =  0j'' =  l , . . . , r + l

i = l , . . . , r  + 1 yk = {)y  ̂ = = 2 , . . . , r + l ; j ^ k .

The first point can be cut off by means of the following inequality:

yj < r - l
* J

One can generalize this inequality for any n as follows:

T heorem  4.5 Let S C V . The clique inequality

E -  E  vj < r - 1
‘€5 ej€7(S)

is valid fo r  RP{H^).

Proof:

For n = |5| < r -  1, it is trivial. For n =  |5'| = r, E.ee^.· -  J/e = r -  1. For 
n = |S|>r + l, 17(5)1 >|5|=> — He67(5) 2/e < 0 < r — 1 is Valid. □. 

The second set of points can be cut off by the following inequality:

1 V -
E  Vj k ^ e/.

ej^8(k)

This inequality can be generalized as

+ a  Y  y j -  Y  y j -  Y  y. < 0 , S ,T  C V  Sr\ T  = <D.
i€S ej€5(S;T) ej€7(5) ê e7(T)

The above set of inequalities are called as cut inequalities. The problem is to find 

the minimum value for a. Let s = |5'|, t =  |T|, |{z e 5  : x,· =  1}| = a, |{i e  T  :
Xi = 1}| = 6. Then,

“ + f ) + C)

(• f) -  t )  -  (;)
> «rmn 1 < a < 5, 1 <  6 < i.
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Let

= <

^s,t s < t < r

s ~> r, t < r·,

s > r, t < r;

^s,r s < r, t > r

OCr̂ r s = r, t = r

^r,r+l s > r ,t  > r

The next theorem is proved with the help of the following propositions: 

P rop osition  4.1 Let s < r, t < r. Then

min ¿
l<a<5, 1<6<¿

Proof:

â,h —

Let F {a )  = Then F (a  + 1) = <1 1

mm a .̂b =  mm Oa *.
K a < i  ’

F \ a )v s F {a  + l) vs C r ) Í + a + 1 — r
-|_ 1 t + a + I

at + a'̂  + a vs at + a  ̂ + a(2 -  r) + (i + 1 -  r) =i> F (a ) > F (a  + 1)

mini<2<̂  0 (j ¡ — ctj

P rop osition  4.2 Let s > r, t < r. Then

OÍ7-_|_2j1̂  7 ^ *5, t 1
mm aa,b = \

i<a<s, i<6<< I a r + i , i ,  otherwise

Proof:
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In order to minimize one should maximize b. Hence, b = t. Let a > r .

a + ( “) a + l  + f“·̂ )̂ « + ( “) + 1  +  i
C(o) = o ... = -f io + l)  = T.---------- — -------------------------   ̂ '

(* r )  -  (:)

R H S —  —  ( ‘* r - l ‘ )  +  ’ " + ( r - l )  >  a - r + 2
~  C l lh U r )  ~  (“:i l ')+ -+ ( .! .)  -  ’•-1 

R H S  -  L H S  > —-----V  + ----- ------------7^  > -----V  +
r(r  — 1) r — 1 1 +  r(r — 1) r — 1 ( ^ i )

RHS > LHS, a > r  + 2.
Let i = 1, then

^  _  r + i  ^  — 2 ( r + l )  _  1 ^  _  '~+^+(’'r^ )  _  3 ( r+ 3 )
« r , l  -  ,  , « r + 1 , 1  — — r> « r + 2 , 1  -  (r+3^_^r+2^ — r ( r + l )

Or+1,1, r < 5
mm ar,i = <

a=r,r+l,r+2 ’ I ar-(-2,l5 T > 5

, T .  „  _  _  ’■ + ̂  + ('̂ r̂ )
^ ’■ +14 — (’■+‘+'^_(r+l) ’ ^ ’■+2,1 — '̂•+t+2̂ _̂ r+2̂  ·Let t > 2. ar,t =  -  ■ · ■ =

ar,tvsar+i,t 44̂  ^  ( r - i - 1 )  ^ vs ( r - l ) ( i + l )

(̂ r,t ^ <̂ r+l,i·

Oir+i,i VS ar+2,t 44·

LHS

LH S <

2(r + -  i ( r  + 2)(r +3)] i"  R H S =  i(r+l)^(r+2)

2(>- + 1 ) ^  -  ^(r + 2)(r + 3)1 = l[(r + l)(r + 4) -  (r + 2)(r + 3| < 0 <

RHS « r + l , t  <  O r+ 2 , i · □

Proposition 4.3 Let s < r, t > r. Then

mm aa,b = Qj.r
K a < 3 , l < 6 < <
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Proof:

+ (r)

Let 6 >  r be fixed. Let Fb{a) =  aa,b, for a given b.

o + C) a + (*) + 1
= /„ .A  - AV vs Fb{a 4- 1) = ------------

e : ‘) -  (̂ ) (“4 )  -  (;) +

vs 0

Cl A b — r + 1 < a  + =>· Fb{o) ^ Fbî ci +  1) ^ Fi,{s).

Let a be fixed at s. Let G{b) =  a^.t.

s  +  ( J )  5

GW  = t: i a ^ v s G(6 + 1) = + Ct‘)
( * : ‘) -  (r)

S  +  ( J )

I H S  = ------ 7̂  vs R H S =
+ C t‘)

( . » » )  _  (H .)

(•r) - C)
(,+H .) _  (6+1)

///■ 9  — ^

—  (  r - l ' ) + -  +  ( r - l )  >  6 - r + 2

»-r+l1  ̂ I (*’r‘) _  , 6-r+l

R H S - L H S > ^ -  - * + '
ft+ 1  ,  +  (»+>)

■ s(r-l) < f· ;:') ·  ^  R H S  > LH S, 6 > r +1  F,(h) > F ,(6+ l ) ,  6 >  r +1

"  C O  ™ "  ( r )  -  1 "  (·+;-■) + (■*:;■) -  1
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^5,r —1 ^ ^S,r·

^5,r+l —
s + r + I (s + l) + r

C T )  ( r ) - 1  + ( ;i ;)  -  '■

■s + 1

(T ) -1
S  +  r '

vs (.s+l)
's +  C
. r — 1 >

— r sr  vs

^5,r+l ^ ^3,r* HcnCC nnini<(j<3̂  ^a,6 ^5,r* □

Proposition 4.4 Lei .s > r, i > r. L/ien

min QTo.i = rnin{o!yt,A:,Q:yt,A:+i :  ̂ = 1 minis,  i — 1} }.
l < a < 5 , l < 6 < i

Proof:

Let a < b.

-  fa+b
a + (“) + 0  A

= — and aa+i.6-1
n  -  (;) -  C) ■ «

+ )  + (+) c
( + ) - ( + ) - ( + )  ~ D

C < A and B  < D, since b > a. Thus aa,b > aa+i,6- i  > · · · > a, a+h □

Proposition 4.5

rrun Oia,a — ^r —l,r —1· 
K a < r - 1

Proof:

CV/2 a — · Then Oid̂ d — iZ <C fit “h 1 — 1 ^  ̂ ^ 2 *

^LiJ+i'LfJ+i “  *'r+i (■•+iK’-+2)
2

i_+i

d 1.
“  /2a\ < â+l,a+l -  /2a+2\

(3 “t" 1

V . ;  C )  +  (4 · .)  + C + ·)

r (2a +  1)

vs

(2(3 "f· 2 — r )(2iz -j- 1 — r)
2a — r +  1 

+ a --------------  vs 1

r ( 2 a + l )
(2a-\-2 — r)(2a-\-\—r ^ 1 ^  ^a,a ^ ^a4-l,a+l niini<a<r —l <̂ a,a — ^r —l,r —1· □
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Proposition 4.6

Proof:

^ r , r  ^  ^ r —l,r  —1

r + 2 r — 1
^r.r —  ̂ ^r —l,r—1

C:)-2 Ct 5
r +  2____  ^ ------ ----- ---  --------,_______ _
r -  1 ('2r-2  ̂ p r-2 j -  r -  1 r +  1 (r -  l ) ( r  +  1)

Oir,r <  Or-l.r-l-

Proposition 4.7

(" ) 2 ^ 2 ( 2 r - l ) 4r2

T̂,T ^ <̂ r+l,r + l·

Proof:

r + 2 _
<̂ r,r = TZ\------ ^r+l,rfl —

3(r + 1)

e ; )  -  2 ■ ^ " " ' " ‘ ^ ( r ) - 2(-  + D - 2

2 ( '’ '', '^ ‘ ) - 2('- + 2) v s 3 ( ' f ) - 6

' 2(2r + 1)
r + 1

- 3
2r\ r — 1 /2r 

r + 1 V r ,
vs 2(r — 1)

r̂,r ^ ^r+l,r + l

Proposition 4.8

Proof:

^r,r ^ ^r,r+l

r + 2 2(r + l)
e ; )  -  2 = e r ) - ( r + 2)

(r + 2 ) E ^  -  (  ̂+ 2)  ̂ vs 2{r +

(r +  2)(2r + l )  j
r +  1

^r,r ^ ^r,r+l*

□

□

= 2(r + 1) ) vs (r + 2y  -  4(r + 1) = r(r -  2)

□
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Proposition 4.9

Q r  +  l , r + l  ^  0‘r+2,T+2·

VS

Proof:
ry , 3(r +  l) _  3 ( r + 2 )

-  2(̂ 7 »)-2(r+2) 
( r + 2 ) + 2 ( - + " )  _  ( r + 2 ) ( r + 4 )

a ,+ 2,r+2 -  (2r+^)_2(r+.) -

6(2r + 3)(2r+ 2) , ,  , J / 2r + l\
 ̂ j  vs(r + 4)(3(r + l ) - 2 ( r  + 2))-  2(r + 4)

(r + 2)(r + 3)

Let A = 6(2r + 3)(2r + 2) -  2(r + 4)(r + 3)(r + 2) = 12(2r2 + 5r + 3) -  2(r + 
4)(r^ + 5r + 6). Then A < 0 , r > 4 «r+i.r+i < cxr+2,T+2- Special case: 
r = 3 => q;4_4 = 05,5. □

Proposition 4.10 Let a > r + 2 . Then

^a,a ^ <3;a4.î a+l·

Proof:
 ̂ _  “+■-!(“) _  (o + l) + 2(“i ’) _  [a+2(;)] + [2(^ :J  + l]
'·■· “  m w ) ·*'··*' ~ v n - i ’t') “ l(t3-2(:)l+l(V-V)+(i,)-2(,!,)l

a + 2 1
[ ( - V

‘■ + 3 0

- i ! . VS
^ U - 1  + '

2 a \ _ , a -  
r / \r.

LHS = 0  -  2O

I + 2 O , )  ( r . ‘) + C - . ) - 2 0 ,)
= RHS

a - r j - l

LH S  = + ^  + ^ 0  (<‘ + l ) ( ' ' - 0  , a - r + i+

RHS =

I + 2O , )  I + 2O , )  r [ l + 2 0 ,)]

0 ) -  3 ^ 2 ( ; )  , -  l| 2 Q
+

C O )  + (0 . )  -  2( . ! , )  ( O ' )  + ( . - , )  -  2( . ! , )

RHS >
( 0  -  0 ^ 2 Q  , [ ^ 1  (;) _  2a - r  + l .  f ^ l O

2 ( 0 C )  -  2( . ! , )  ( O f )  + ( 0 )  -  2( f .) ■  2r 0 « )  + ( _  2( ,· ,
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i. Case:2a + 1 > 3r:

R H S  > R H S  -  L H S  > ^  -

r -  1 (a + l)(r  -  1) 1 (a + 1)
vs ----- — — r-r -  vs

2r l + 2 ( , : , ) ]  2 l + 2 ( , ! , )

1 +  2 (^ !j) > 2a + 2, a > R H S  > L H S .

ii. Case:2r + 3 < 2a + 1 < 3r:

R H S  >
2a — r + 1

2r
3r -  2a -  1 (:)

Cr.‘) + - 2(.̂ )
(;)Let i4 — 2a ) ’ B — A . Then,

C - .)  2( , ! j

(■;) (:) (:) - ‘ L t) (;) J
( 2“ )

Since Yz\̂  is an increasing function of a, its minimum is attained when
V r  /

a= r+ 2. Furthermore, is also an increasing function of r. Hence, its

minimum is achieved when r=3. Similarly, the maximum value of is

Then,

B > 2 r C -7 )  1
’̂•+2̂  a — r +  1 

2a — r + 1

= 2r
9 _  1 

L2 3
25

= r ·

R H S  >
2r

0.

=> R H S  > L H S .  

Hence, Oa,a <  « 0+1,a+1·

3(3r -  2a - 1) 2a ■> -  r + 1 6
25r2 _ 2r 75

1) ^ r-l 1 r+3__ 6 ^ 2  
75 — 3

' 39
J I -  ' [2 .126 ■4 >
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P ro p o sitio n  4 .11 Let a > r. Then,

^a,a ^ —l,a·

Proof:

^ a . n  —

° + ^ « ■ - !  + ( ;)  +  ( · / )  g + 2 ( ; )  - 1 -

■ ( i )  -  2 ( ;)  ■  C ; ' )  -  C ) -  (“;■) ~ ( i )  -  2( ; )  -  ( - ,■ )  +

/ / / S '  — ... — 1 4 .  (^“r ‘ ) ~ ( ° r \ ) ~ (r)_ / J / / C  _  ’  +  ̂ ( r )  _  .-) I 2 ( “/ * ) + ! I - 2

Î//S < 1 +  < 1 +
(?_/)+■■■+fc-1)

^a.a — ^a — l,a·

+  ^  < 3 < 2 +  ^ < R H S
2a — r — I a — r

□

T h eo rem  4 .6  Let S ,T  Ç V S D T  =  0, and s =  |5|, t |T|. Then the cut 

inequality

~~ ”l" ^min Vj ~  X^ Vj ~~ X^ Vj ^  0
ies

is valid fo r  RP{H ^).

€ j £ 6{ S \ T )  C j e - y i S )  e j G 7 ( T )

4 .5  C om putational R esu lts

In this section, computational results on random problems are reported. There 

are two test sets in the experimentation. The first set consists of nonnegative edge 

weights and nonpositive node weights. That is, every node has a cost figure and 

every hyperedge has a profit value. In the second set, mixed values are allow’ed. In 

any of the cases, there are specific range of objective function coefficients. If c fs  

are relatively large as compared to the dj's, then the solution is a:, =  0 =  yj,

On the other hand, if d fs  are relatively larger than c,’s, the trivial solution is 

x, =  1 =  j/j, y i , j .  Hence, c, and dj values should be balanced. Hyperedge profits 

are drawn from uniform distribution between 0 and 600 for the first set, and 

between -200 and 600 for the second set. Node costs are also drawn from the
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Inequality
Type

Subclass
# Constraints

n=10
r=3 r=4

n=
r=3

15
r=4

STAGE

Vj < 360 840 1365 5460
Aee, - y j < r - i 120 210 455 1365

Xi < 1 10 10 15 15 I
Clique k=r+l

k=r+2
k=r+3
k=n-3
k=n-2
k=n-l

210
252
210
120
48
10

252
210
120
120
48
10

1365
3003
5005

455
105
15

3003
5005
6435
455
105

15

II
II
III 
II 
II 
II

Cut l=r+ l
l=r+2

840
2520

1260
3150

5460
♦30030

15015
♦75075

II
III

♦  : These constraints are added up to the limit of LP so ver

Table 4. 1: The stages of computation.

uniform distribution from 0 to 9500 for the first set, and from -2000 to 9500 for 

the second set.

The first test set consists of 25 random problems on complete .3-uniform and

4-uniform hypergraphs of order 10 and 15. The second set contains 40 random 

problems of the above sizes. The size of test problems seems to be small at the 

first glance. However, typical values for the case of complete graphs are 20, 30 

up to 40. There are ^̂2°) =  190 edges in the case of n=20; ( ‘*2°)=780 edges when 

n=40. In our case, if n=10, there are ^2°^=120 and ^^°j=210 hyperedges; and if 

n=15, there are ^3̂ j=455 and ’̂'^®)=1365 hyperedges.

The set of constraints that are considered are tabulated in Table 4.1. We have 

designed four stages. The first stage contains easy-to-list constraints. A quick 

solution is obtained immediately after solving these constraints. In the second 

stage, the constraints force the current solution to be an incidence vector. Finally, 

in the third stage, there are lots of constraints that are checked whether they are 

satisfied by the solution found in the previous run. In this stage, the clique and 

cut constraints are added up to the limit of LP solver. If an integer solution is
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c,· g ¿/[-9500,0|. and dj e C11;600],
STAGE CASE NO PRIMAL CPLEX 

Mean Min Max
BARRIER CPLEX 

Mean Min Max

ONE
10,3 Integer 25 1.1353 0.6000 1.9833 30.7020 27.4.500 .33.7502
10,4 Integer 25 3.6920 2..5833 5.4167 349.9741 291..5667 .393.7.500
15,3 Integer 25 17.9760 10.2833 24.7833 1167.15.56 923.3333 1451.9833
15,4 Integer 25 158.1273 127.3666 248.1833 Not Enough Memory!

Table 4.2: The results of the first set of the computational study on RP(H^) for 
n=10,15 and r=3,4.

not found at the end of stage III, we resort to branch and bound. The initial 

bound is obtained from clustering using similarity coefficients followed by an 

interchange routine across the cut of clustering. These techniques are introduced 

in the second chapter.

The experiments are done at a 22 MIPS Sun system and Cplex 3.0 is used. 

Two different Cplex routines are compared in this computational study. The 

first routine is a primal simplex routine. The second routine is based on an 

interior point method, called barrier routine. For the details of these routines, 

the interested reader is referred to [28].

Each problem set consists of randomly generated 40 problems. In each set, 

the mean, the minimum and the maximum values for the CPU seconds used by 

the random problems are reported. These are net CPU values obtained from the 

”sys/times” routine. Furthermore, each test set are divided into two subcases in 

each stage according to the solution characteristics: integer and fractional. The 

CPU times are reported for separately each subcase together with the number of 

problems that are in the subcase. The fractional problems are fed into the next 

stage, and so on. In the fourth stage, branch and bound is performed by using 

the primal method only.
The results for the first set are tabulated in Table 4.2. All of the test problems 

in the first set have integer solutions at the end of the first stage. The barrier 

method is relatively inferior than the primal simplex method as the number of 

CPU seconds is considered. This case is investigated in detail in the next section.



CHAPTER 4. BOOLEAN R-ATIC POLYTOPE 51

c, € ¿/[-9000; 2000], and dj € f/[-200; 600],
STAGE CASE NO PRIMAL CPLEX BARRIER CPLEX

Mean Min Maj{ Mean Min Max
10,3 Integer 30 1.0244 0.3833 1.7000 36.0494 27.4833 43.0667
10,3 Fractional 10 0.6483 0.0167 1.0833 37.4467 30.5667 42.9167
10,4 Integer 33 3.7772 1.1167 6.9000 3.59.0763 290.8833 427.2667

ONE 10,4 Fractional 7 1.8262 1.28.33 4.4000 402.7071 359.2667 461.0.333
15,3 Integer 30 7.2827 4.6333 10.2833 1445.0133 1294.7333 1671.2833
15,3 Fractional 10 7.1500 5.3000 11.4166 1445.1833 1296.7500 1668.8000
15,4 Integer 30 148.8794 43.3333 372.0166 Not Enough Memory!
15,4 Fractional 10 95.8.350 42.7.500 156.0000 Not Enough Memory!
10,3 Integer 3 4.0.500 1.4833 6.0000 1014.2.363 923.45.56 1134.2966
10,3 Fractional 7 7.4595 4.3000 11.1166 978.3884 912.33.33 1098.6776
10,4 Integer 2 3.3583 3.0666 3.6500 2876.3333 2456.3211 3296.3455

TWO 10,4 Fractional 5 16.0.333 2.9833 60.3667 2912.6667 2678.9251 .3451.7000
15,3 Integer 4 609.0944 236.3333 795.8833 7814.2290 7145.9065 8491.9.300
15,3 Fractional 6 147.8666 26.1000 736..3666 8345.6667 7910.2397 8993.1455
15,4 Integer 3 1114.8900 7.54.5264 1447.3270 Not Enough Memory!
15,4 Fractional 7 800.1.535 422.1990 1411.44.50 Not Enough Memory! i

10,3 Integer 3 7.8930 2.0-567 9.1634 2161.7222 18.58.8167 2402.6333
10,3 Fractional 4 8.2375 1.9463 12.9834 2610.4976 2041.28.33 .3669.1833
10,4 Integer 2 6.8622 5.9367 7.7877 4684.0649 4389.9876 4978.1422

THREE 10,4 Fractional 3 14.3457 7.5.337 30.6534 4958.8992 4602.01.33 5318..5555
15,3 Integer 2 435.9608 85.0486 786.8756 28720.8004 25982.6667 31458.9390
15,3 Fractional 4 327.2303 124.7623 837.9631 297.36.8967 26.545.2937 .367-54.9033
15,4 Integer 3 1294.2846 616.8333 1936.6667 Not Enough Memory!
15,4 Fractional 4 1014..3.3.56 714.7667 1744.5255 Not Enough Memory!
10,3 Integer 4 3.8166 2.0166 6.23.33 Primal Cplex is used!

FOUR 10,4 Integer 3 6.7166 1.2667 13.8433 Primal Cplex is used!
15,3 Integer 4 109.4330 17.7166 289.4641.. Primal Cplex is used!
15,4 Integer 4 1.5.36..5.533 174..5442 2926.6667 Primal Cplex is used!

Table 4.3: The results of the second set of the computational study on RP(/f^) 
for n=10,15 and r=3,4.
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The results for the second set are presented in Table 4.3. We have obtained 

integer solutions of the 145 test problems out of 160 by using the inequalities 

listed in this study. The percentage integer solutions obtained before branch and 

bound is 90.625 which is quite high. At the end of the first stage, more than 

I of the test problems have integer solutions. By adding the inequalities in the 

second stage, we have obtained 12 integer solutions out of 37 problems which is 

approximately 32.43 percent. Among the remaining problems, we have found 10 

integer solutions out of 25 problems in stage IV, yielding a percentage of 40.

The simplex method outperforms the barrier method in terms of speed. As 

the number of constraints is increased, the barrier method’s CPU usage jumps up. 

As the number of variables is increased, its time scores get worse. The behavior 

of the primal simplex method against these changes is relatively tolerable.

4 .6  A Special Case
·♦

Let us consider the case where the weights of all hyperedges are nonnegative and 

all node weights are nonpositive. If we take nodes as machines and hyperedges 

as parts and use annual operating costs and annual profit values as node and 

hyperedge weights, we will be in this special case. Then our problem is

(")Maximize djyj -  

subject to:

yj < Xi Vf € Cj, V; = 1 , . . . ,

< r - i v i  =  i , . . . , ( ; )

yj > 0 , Vj = I , . . . ,  ( )̂

X,· < 1, Vi = 1 , . . . ,  n }

X,· =  0 or 1, i =  1, . . . ,  n 

yj =  Oor l , i  = l , . . . , m

The constraints Xi < ( r - l )  + yj prevents the case yj =  0 when x, = 1, Vi € 

Cj. These constrains are unnecessary in the special case because the objective
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function forces yj to take higher and higher values. Let us consider the following 

linear relaxation:

(")Maximize <̂ jyj ~ E"=i c,-r,· 
subject to:

Vj - X i < 0  Yi € ej, V; =  1 , . . . ,

Xi < 1, Vi = 1, . . . ,  n 

^ 0, Vi = 1, . . . ,  n 

»  > 0, V; = 1, . . . ,  ( ; )

Theorem 4.7 The LP solution of the above formulation is always integral. 

Proof:
Let A be the coefficient matrix of the above formulation. A has only 0, ±1  en

tries. Furthermore, there are at most two nonzero elements in any row of .4. The 

Heller, Tompkins &: Gale criterion for total unimodularity states that i f  a m atrix  

contains no elem ents other than 0, + 1, -1 and i f  no row contains more than two 

nonzero elem ents then the matrix is totally unimodular if and only i f  the columns 

are partitioned into two such that for any row, unequal nonzero elem ents are in 

the sam e component and equal nonzero elem ents are not in the sam e component. 

Here, we have a component containing all columns and one null component. Thus 

/1 is totally unimodular. Hence, every solution to a totally unimodular coeiBcient 

matrix with integral right hand side is integral. □

Corollary 4.1 The above problem is polynomially solvable, i.e., in V.

Corollary 4.2 Let Ci > 0, and dj > 0. The following problem is polynomially 

solvable:
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Maximize z -  djVj ~ E"=i 
subject to:

Uj ’ 1̂2
X, = 0 or 1, 

Vj =  0 or I,

X i

г = 

i  =



Chapter 5

R-UNIFORM HYPERGRAPH 
CUT POLYTOPE

R-uniform hypergraphs are generalizations of graphs in which every hyperedge 

has exactly r end-points. The complete r-uniforrn hypergraph cut polytope 

P c(tK )  is the convex hull of the incidence vectors of bipartitions in a complete 

r-uniform hypergraph This family includes cut polytope of the complete

graph Pc{Kn)· hi this chapter, Pc(H^) is proved to be full dimensional, except 

for the case r=3. Moreover, a number of valid inequalities some of which define 

facets are presented. Finally, a procedure based on polyhedral combinatorics is 

experimented for solving max-cut and hypergraph bipartitioning problems.

5.1 Dimension

The first step in studying a polyhedron is to check its dimension. If a polyhedron 

is full dimensional, then facet defining inequalities are the minimal representa

tion of that polyhedron. Moreover, full dimensionality simplifies some facetness 

proofs. The main result of this section is that complete r-uniform hypergraph 

cut polytope is full dimensional except r=3.

55
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Let A'{Cffr) be the incidence matrix of the cuts of size s in a complete r- 

uniform hypergraph

1, i f  6j  ̂ S{s[i]);

0, i f  tj € 7 (^W) or e.j G 7 (^  \ s[i]),

where s[i], i =  1, . . . ,  is specific cut set whose size is s, s = 1, . . . ,  

Without loss of generality we may assume that these cut sets are ordered lex

icographically, i.e., s[l] =  { 1, 2, •••s}, s[2] =  { l , - - - ( s  -  l ) , ( s  -|- 1)},  =

{(n — s-t- L) , - - - ,n} .

Let yiC fjr) be modified incidence matrix of the cuts of size s in a complete 

r-uniform hypergraph In y{Cjfr), the edges inside the complementary part 

take the value 1:

y(C hr)i =
1, i f  6j € ¿(s[i]) or 6j e  'y{V \ s[f]);

0, i f  tj € 7(^W)·

Let Z{C'lfr) be modified incidence matrix of the cuts of size s in a complete r- 

uniform hypergraph in which the hyperedges inside the cut set also have the 

value of 1:
1, i f  6j e  ¿(.s[i]) or Cj € 7(5['i]);

ZiCt^rJ =
0, * / ej € 7 (^ \ 5[i])-

P rop osition  5.1

X iC L·) =
y { C p - . )

L “ n - i
X ( C U . J  _

Proof:

X(Cb,) € bC:)««. Let (;) = + (":■) and (;) = Then

A’(Cfjr) is partitioned into four parts:

where / € // e *), /// g i("/ )^ (r -i) , IV  €

There are two immediate observations:

I I I  '

I I I IV
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1 V-S 0

Figure 5.1: A cut in region I.

1 e .?(!|, Vi = 1 , . . . ,  ( ;.,')  and 1 e V \ i(i], Vi = (;_,') + 1 , and 
1 € Vi = 1, . . . ,  and 1 ^ V; = + 1 , . . . .

i. ) /  = >’(C;;,L,):
Node 1 is in the set S and all hyperedges are in the star of 1. The situation 

is illustrated in Figure 5.1. Node 1 is represented as 0 .  In the incidence 

matrix, hyperedges inside S and V \ S have value of 0 and hyperedges in 

the cut take the value of 1. Since all hyperedges should be incident to node 

1, ''f{V \ S') = 0. If node 1 is deleted, then the resulting hypergraph has 1 

less uniformity, all the hyperedges loose dotted connections. Moreover, the 

size of the set S is reduced by one. We have then · Observe that the 

hyperedges that have incidence to only node 1 in 5 , like the one ■ in the 

figure, are moved to 'y{V\S) which is empty beforehand. These hyperedges 

have the value 1 in region I. Thus, region I is y{C^~r-i )·
^  n — 1

ii. ) I l l  =Z(C% r-r):
In this case, node 1 is in the set V \ S and all hyperedges are in the star 

of 1. The situation is illustrated in Figure 5.2. Since all hyperedges should 

be incident to node 1, and 1 G F  \ 5, 7 (5 ) =  0. If node 1 is deleted, the 

resulting hypergraph has 1 less uniformity, all the hyperedges loose dotted 

connections. Moreover, the size of the set 5  is not reduced. We then have 

C® r - i . Observe that the hyperedges that have incident to only node 1 in 5 , 

like the one ■ in the figure, is moved to 7 (5 ) which is empty beforehand. 

These hyperedges has the value 1 in region III. Thus, III is equivalent to
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0 s v-s S-{#} v-s

DELETE

Figure 5.2: A cut in region III.

^n-1

iii. ) n  = X {C ’„-^J·.
Since no hyperedge is incident to node 1 in this region, deletion of node 1 do 

not alter uniformity. Since node 1 is previously in 5 , cut size is decreased 

by one. Hence, we have

iv. ) IV  = X ( C t ,r J :

Like in the above case, r-uniformity is preserved. Furthermore, the size of 

the cut set remain unchanged. Hence, region IV is X{Cf{r_^).

a.

Proposition 5.2

y ( C h J  = ^n-1 y ( C h t y
1

and Z{Cffr) =
1 ) '

z { c · ^ - )^n-l

P roof is quite similar to the proof of the previous proposition.

Proposition 5.3 Let X i,X 2, ■ ■ ■ 1‘̂ m be som e incidence vectors o f cuts o f  size 

s ^  I in Pc{H lfj is full dimensional i f  (e -  <Vi), (e — A’2) , . . . ,  (e -  Xm) are 

linearly independent and m  =  .

Proof.
Assume that we generate all XiCfjrYs Vs = 1 , . . . ,  [ f j . Put all these incidence
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matrices into one binary matrix, A, having rows and columns. The
dimension of Pc{H^) is equal to the row rank of A.

The first n rows of A is the incidence vectors of stars of the nodes, A!{CffA). 

There are exactly r Is in any column of -T(C^r). If every row of X{C¡jr) is added 

and the solution is divided by r, the vector e of size is obtained. Delete first 

n rows of A and add the vector e into A. Call the new matrix as B. Then the 

row rank of .5 is a lower bound to the row rank of A. Now, multiply every row of 

B  by -I and add the first row to all other rows. Then, delete the first row. Call 

the resultant matrix as C. Actually, C,· = e — Vi = 1 , . . . ,  ·

Assume that we have found m = independent rows in C. They make the 

row rank of C, B , and A be equal to the number of columns. So, if (e — Xi), (e — 

A'2) , . . . ,  (e — Xm) are linearly independent and m =  ( ; ) ,  then P c(H l)  is full 

dimensional. □

P ro p o sitio n  5.4 Let A —
’ B i : '

n .
, where every row o f B  E contains

more than one nonzero elements. Then, A has full row rank.

Proof. 

Let A =
C

D
, where C =  [B \ /*] and Z) = [/„ | /*]. Since, /* has full rank, all

rows of C  and D are linearly independent. Suppose that rows of A are not linearly 

independent. Then, for some i € { 1 , . . . ,  n}.  A,· =  f jA j  where f f s  are linear 

coefficients. Since, last n columns of C  and D are the same, =  0, j  7̂  i +  n; 

and /3,+n = 1. However, B{ has more than one nonzero elements and e„_, has 

just one nonzero element. It is a contradiction. Hence, A has full row rank. □

P ro p o sitio n  5.5 Let A =
■ In B  '

, where every row or column o f  B  ^ }>nxn

contains more than one nonzero elements. Then, A has full row rank.

Proof: 

Let A =
D

, where C =  [/„ | B] and D =  [B^ | /„]. Since, /* has full rank.
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all rows of C  and D are linearly independent. Suppose that rows of A are not 

linearly independent. Then, for some i € n }, Ai =  Since, C

contains an identity matrix in first n columns, = 0, j  =  1, . . . ,  z — 1, I , . . . ,  n. 

So, Ai =  nonzero element of B j, say Dk is used with

multiplicity ^n+k =  1· For each such k, there must be more than one nonzero 

element in the first n elements of A,. There is a contradiction. Thus, A has full 

row rank.

P rop o sitio n  5 .6  X{C'lfY=:) is symmetric.

Proof.
The proof follows from the fact that both columns and rows are lexicographically 

ordered, and each s[i], i = 1, . . .  and each ê , j  =  1, . . .  has the same (r) 

number of elements. So, = XiCff^sY. Thus, = AiiCffA,).

□

P ro p o sitio n  5 .7  = 1 —

Proof.
For each set s[i], there is only one internal edge in 7 (s[i]) which is exactly the 

hyperedge e(. So, y(C }frl,)i has one zero on the column, and all other elements 

are all 1. Hence, yiCf^L·,) =  1 -  /(n). □

P ro p o sitio n  5 .8  There are linearly independent row vectors in AiiCffr), 

s =  2 , . . . , L t J ; / o r 4 < r <  LfJ.

Proof: The proposition is proved by cases:

i.) n =  2r:
Consider the cuts of size s = r = |. In any such cut, S  and V \ S  contain

1 - / /

only one edge. Then A’{Cfjr ) =
1 - 7 m

‘ “ ' i a
_______ 2__

1 - 7 m
X{Cfjr ) is a skew-symmetric binary matrix. So, it has lalf row rank. Let
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1 — D he the matrix having first rows of A'{Cfjr ). D has the form

I /̂ 2r-ij], and it has full row rank.

Consider Â (Cl[T ) = ^ ' 2 r - l

Z i C ' - , ' - :  )
L ^ 2 r - l

. Consider a cut ¿(5') €

.̂ The only hyperedge not in the cut is the one contained in C \ 5. 

Hence, ) = 1 — I /2r-i\· Consider a cut S{S) G C[Z-i . There are r
2 ' · - '  t  r - l  ) ^ 2 r - l

hyperedges contained in V\S. So, there are r Os in any row of Z^C'^r-i )· Let 

1 - B  = Z { r ~ i )̂, and let C = [B \ 1 -T (C ,7d  ). Then, C = [B  J .
"n-l 2'·-! 1 r-l )

c
So, C  has full row rank. Let Let Ai =

D
, and apply Proposition 5.4.

ii.) n = Tr + 1:

Consider .YiCffr ) = 

5.6, and 5.7 we have

X (C h t) '
By the propositions 5.2,

A2 — l —A{Cljr^^J —

/ 0 0 1

0 / 1 -  T ( C 7 ' i i )
^2r-l

1 -  )

0 1 -  ) ^2r-l 1 -  2 ( c ; - ! . i )*̂2r-l
1

1 -  2 ( C r - 2  )L ■' 2̂r-l
1 -  )

^2r-l
/* /

1 2 3 4

5 6 7 8

9 10 11 12

. L3 14 15 16 .

7 8 '
has full row rank.

5 6 7 8

11 12 9 10 11 12

’ 1 2 3 4 '

Since /li =

rank. Since 5 and 9 are 0 and 1 is I,

has full row

has full row rank.5 6 7 8

9 10 11 12
Since 16 is I, [13 14 15 16] has full row rank. Furthermore, A2 has full row 

rank since 2,3,5, and 9 are 0; and 1 is I; but 13, 14 and 15 are nonzero.
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iii.) n > 2r + 1:

Investigate whether 1 -  has full row rank or not. This is proved

by induction on n. Initialization step (n = 2r) is proved in the above case. 

Now, assume that An-\ =  1 — T'(Cbr ) has full row rank.

Let An —

1 2 3 4

5 6 7 8

9 10 11 12

. 13 14 15 16 _

■ I 0 0 4

0 I B 8
0 B'^ I 12

.4 ^ 8^ 12^ 16 _

has full row rank by Proposition 5.5. Therefore,

Let A =

5

9

6 7

10 11
8
12

I  B  

I

has full

row rank. Since 1 is I, 5 and 9 are 0, has full row rank.
1 2  3 4

5 6 7 8

9 10 11 12
Since An-i has full row rank, the rows of [13 14 15 16] are linearly indepen

dent. An has full row rank, since 1 is I; 2, 3, 5 and 9 are 0; and 13, 14, 15 

are nonzero matrices.

□

T h eorem  5.1 Pc{H^) is full dimensional except r = 3. In this case, 

d,m Pc (H :·^) =  ( ; ) .

Proof.

The theorem is proved by means of four cases.

1. r > 2:
Choose a cut set S  containing arbitrary r vertices. In this case, just one 

hyperedge is contained inside S. All other hyperedges should be in the cut 

since I V \ S \ = n  — r < r .  That is, the complementary set F  \ 5  is so 

small in size that it cannot contain any hyperedge. The incidence vector 

of this cut has all Is except the element that corresponds to the hyperedge 

in S. Since for all edges, one can find such a cut, and the corresponding 

incidence vectors are linearly independent, Pc{H!^) is full dimensional.
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ii· 4 < r < LtJ :
PciH^J is full dimensional by Proposition 3.8 and Proposition 3.3.

iii. n = 2 :

The cut poly tope Pc{K n) is full dimensional [44].

iv. n =  3̂  :

Suppose that we have complete 3-uniform hypergraph of order n and a 

complete graph of order n. Consider an arbitrary three nodes, nodes 1, 

2, and 3; and focus their induced subhypergraphs. We have a triangle in 

the subgraph, and a single hyperedge in the subhypergraph. Any cut in 

the triangle either no edges or exactly two edges. So Xi2 -b iia  -b X23 =  

0 or 2. The same cut in the hypergraph includes the hyperedge in the 

subhypergraph or not, i.e., 2/123 =  0 or 1. Let us define a function / from 

IrÍ )̂ ^(3) ,which maps Pc{Kn) to Pc[H^) such that i/123 = ^

The claim is / is one-to-one.

Let 2/ = 0 a; = 0, for n = 3. Let n > 4. Pick arbitrarily 4 vertices, say 

h,i,j,k.

y  — 0 ^ i j  *b ^ i k  ”b ^ j k  ^ i j  “b ^ i h  “b X jh i -..  ̂ ^ i k  ”b ^ j k  ~  ^ i h  “b

Similarly,

îh ”b îk — ^jh “b ^jk·

Subtracting the last equation from the previous one, we have

X j k  , — ^ i h  ^ j k  ■■ '' X j h  — X j k -

So, 2/ = 0 a; = 0. For any nonzero 2/, there must be a nonzero x.

In particular, let 2/ 7  ̂ 0 and y defines a cut. This cut in complete 3-uniform 

hypergraph induces a cut set S. There is a x 7̂  0 which induces the same 

cut. So, the vertices of Pc(H^) is mapped to Pc{K n).

Hence, / is one-to-one, and Pc(H^) is the image of Pc{K n) under a bijective 

linear transformation. Thus, dim Pc(H^) — dim  Pc{K n) =  (2)·

‘This part of the theorem is also proven by Deza and Laurent [31].
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□

C orollary 5.1 Let H he an r-uniform hypergraph with r ^  3, then P c{H ) is full 
dimensional.

5.2 Com plete Subhypergraph Inequalities

The corollary to Theorem 1.1 states that for 1 < s < n — 1,

that is, if the cut ¿(5 ) is nontrivial, i.e., 5  7̂  0, S ^ V, its incidence vector 

A’(^(S')) should have at least ( " i j )  Is, and at most Is· Since

our polytope Pc{H^) is inside the unit cube, left hand side of above inequality
/ n - l \  ( r )  . , .

cuts 21'—1'' ft! 2 2 integral vertices. Moreover, right hand side of the above 

inequality is facet defining when r = or The claim is trivial, and the 

proof lies in the proof of Theorem 1.1. Remember, r = s, the incidence matrix 

A’{Cffr) has full row rank, i.e., there are affinely independent vectors in the 

equality set. The following result is a direct con,sequence of the corollary which 

defines complete subhypergraph inequalities:

T h eorem  5.2 Let HI be a complete subhypergraph o f H . Then the complete 

subhypergraph inequality

E  s ( 3
eGHl V /

Lij\ / m

is valid fo r  Pc{ H).

These inequalities are observed to be facet defining when k is odd, especially 

in case k > [| J. In particular, they are facet defining whenever r =  3;

T h eorem  5.3 Suppose k is odd. Then,

A f J '

e&Hl

is facet defining fo r  Pc{H^.).

T ir
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Proof.

Consider the function / from IR̂ )̂ i_+ p/3)^which maps Pc[K n) to Pc{H^) such 

that yi23 =  £LL±iii±£2i  xiie function / is one-to-one, and Pc{H^) is the image of 

Pc{H n) under a bijective linear transformation. Thus, facets of Pc{K„.) are also 

facets of Pc{H^). Take the equality set of k-clique inequalities that define facets 

for Pc{K n).

Y l l< i< j< k  ^ i, j  ~  L2 J '

k(k-i) LfJ(LfJ-0 _  2 >(fc-i)(fc-2) rt1LtJ(L|J-0 L^Ja^J-0(L|J-2)
~  3  3  k-2 6  6  6

_  _ _ 2_  

— k-2 [© -  (T) -  (1‘)1
Hence, the result follows.

E.<,<,<K. = 0 - ( 1 ' ) -  CIO·
□

5.3  Trivial Inequalities

The result of this small section is that the inequalities Xi < I, i E are facet 

defining for the complete r-uniform hypergraph cut polytopes, whereas Xi > 

0, i E are not.

T h eo rem  5.4 The trivial inequality

Xi < 1

is facet defining fo r  P c{H l).

Proof-
Let F  = {x E P c{H f)  : Xi =  1}. Suppose there exists bx < bo be facet defining 

for Pc {HO *̂ hat every point x E F  satisfies bx =  60· Since the canonical unit 

vector Ci lies in F , bci =  bi = bo- Let j  be the index of another hyperedge. Then, 

Ci -f- Cj E F, j  ^ i. Hence, + ej satisfies bx -  bo which results in bj = 0, i  7  ̂ i. 

Thus, bx < bo becomes < bo- Since 0 € Pc{Hn)^ 0 < ô- If 60 =  0 then 

bx < bo will become meaningless. Thus, bo > 0. If we scale our last inequality by 

A, we will have the trivial inequality x, < 1. Since bx < bo is facet defining for 

Pc {H :) , s o  is I ,  < 1. D
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a
m
•
•
•
□
r+l

r+l
-o

(a) In a graph (b) In an r-uniform hypergraph

Figure 5.3: Situations defining homogeneous triangular inequalities.

solid lines whereas the negative valued edges are represented by dotted lines in 

the figure. The meaning of the inequality Xi2 — X13 — X23 < 0 is that, whenever 

the edge 12 is in any cut ¿(T ), at least one of the edges 13, 23 should also be in 

the cut 6{A).

Consider the situation illustrated in Figure 5.3(b). There are r + 1 nodes and 

r + l r-uniform hyperedges in the example subhypergraph. Nodes are divided 

into two sets: 5  and . The size of S  is r, and the size of the complementary 

part is less than r. The hyperedges in the cut will take a negative value and the 

hyperedge inside S  will take a positive value in the valid inequality to be formed. 

Assume that the inequality is the following form:

a E
i e labelled +

-  1 ]  Je < 0
e labelled —

where a is a positive real number. The meaning of the above homogeneous 

inequality is that, whenever the hyperedge inside 5  is in a cut ¿(A), at least a  of 

the negative labeled hyperedges should also be in S(A). Let

a
OiS(A) =

5(>!)
a S{A)

where is the number of negative hyperedges in ¿(A ), and is the number 

of positive hyperedges in the cut. The inequality defined above is defining a face
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if

^ — ^min — min CiSiA) — 4-
a t i

In our case, there is just one (+)-labeled hyperedge, i.e., =  1, Vi(A) a  =

Cedin' So, the minimum number of (-)-labeled hyperedges among all cuts i(yl) is 

required,

^min ~ ^T+l,Tl<5<r ’

Corollary 4.2 leads

CUmin — C'rVl,»·  ̂ ~  ( 4  — 1 )  ̂  ̂ ·̂

Hence, we have the following valid inequality:

( r  1 j:Ti2-*'r ^ l2 - " ( r  —l ) ( r + l )  ’ ' * :^2 " ‘( r + l )  ^  6 .

If r =  2 the above inequality is reduces to x u  — Xi3 — a‘23 < 0. For each subset 

of (r +  1) nodes, (r + 1) inequalities of the above form can be constructed.

The following theorem generalizes the result found above. We have r nodes 

in the set 5  and I nodes in the complementary set.

T h eo rem  5.5 Let 1 < / < r — 1. Then the inequality 

C  A I — U
r — 1

is valid fo r  P c {H l) .

-  1 Xl2-. r ~  ^ 1 2 - ( r - l ) ( r + l )  — · · · X l ^ i . . . ( r + l )  ^  0 ·

Proof:
Let S =  { 1 , . . . ,  r}  and S'̂  =  {r + 1 , So,  7 (5’) contains only one 

hyperedge. Thus

«5.4) = r̂nin = ^r+l,r -  1·

By Corollary 4.2, a^in =  ~ 1·

Let the size of S  and be the same, r. Then = 1 or 2. The following 

theorem states the form of the valid inequality in this case.



CHAPTER 5. R-UNIFORM HYPERGRAPH CUT POLYTOPE 69

T h eo rem  5.6  Let r > 3. The inequality

(2“12· • r+ -i ' ( r+ l ) ( r+ 2 ) -  -2r) — 2(xi2...(r-l)(r + l ) ------------- ^ r ( r + 2 ) - 2 r )  <  0.

is valid fo r  Pc(H^).

Proof.

We can divide the set of ¿(A )’s into two classes. Class I consists of the cuts 

that have only one internal hyperedges = 2), and the other class, class II

contains cuts having the two internal hyperedges =  1). By Corollary 4.2,

we have

min Ois(A) = C L -  I, s{A)ei  ̂  ̂ ’

and

imn ds( 
5 { A ) e I l  ^  '

C l,r  -  2

The minimum is the minimum of the two:

^min —

C l, .  -  2

Thus,

. / , C l , . - 2 \
= m in iC ,.,. -  1, -----------k

- 1  = C l, .  -  1.

The inequality in the theorem has the following form:

a . L
t e labelled +

X e \  -  a j X ] Xe < 0
e labelled -

□

Let the size of 5^ is r +  I and keep the set 5  as it is. Then there are r + 1 

hyperedges inside . Let Q:,ii2 denote the value of when A has s i vertices 

in S  and s2 vertices in 5" .̂
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T h eo rem  5 .7  Let r >  3. The inequality

[ ( r - l )  ~  ^ {^ \ 2 - T  +  ar(r + l ) ( r + 2 ) - 2 r  +  ’ ' ' +  a : ( r + 2 ) - ( 2 r  + l ) )  ~  r ( x i 2 . . . ( r - l ) ( r + l )  

• i^ r(r+ 3 )-2r+ l) ^  0· 

is valid fo r  P c{H f).

Proof.
( I  ̂ \ * 7* 1

Since <̂ 01 < Q!io· Moreover, an  = ao2 =  ''— · Furthermore,

ocQs >  o;i(i-i), and a ^  > «i(,_ i), 5 > 3.

Qoi VS Oi02 'O’ 1 +  OlQi VS 1 + Qo2

i!s a
r r + 1 \r — 1J

 ̂ 2r \ 2r -  r  
.r -  1 j i r -  1 ,

2r \ 2 r -  l\ 2
I , I i;5  r  1 . I — — r  vs 1 = >  a o i <  a o 2.r -  1, r — 1 / r + 1

aoi vs a i2 1 + aoi i>5 1 + a i2

iU C )... iUT) + {TO  + iUC) - C)
r + 1

vs

Now, assume that r > 3, then

aoi vs a i 2 ^

2r

u : c )  + U :t )

^  (r + 1) I I r

r + 1

 ̂ 2r \ / 2 r - l \  /2 r - 2 ^

'2r -  1\ /2r -  r

2 4r -  2  ̂ ,
^ -----r H— ;— r r r  1 +  1 = >  aoi <  0:12

r + 1 r(r +  1) 

For r =  3 +> 1 + aoi =  5 < 6 =  1 + a i 2· 

Thus,

V̂ min — 0̂1 {+ ) -
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The above inequalities can be generalized further into clique-clique inequali

ties. Suppose that a complete r-uniform subhypergraph of order k > r is taken 

such that the k vertices is divided into two sets of sizes k l > 0 and k2 > 0. 

In the clique-clique inequality, the hyperedges inside sets AT and K 2  have + 

labels whereas the hyperedges in the cut set S{K1; K 2) have -  labels. Then the 

ineciuality has the following form:

+ a;[7(A'2)]) -  a+,„(a:[(5(AT; A'2)]) < 0

Let. a,nin =  conjecture the following:
^min

C o n jectu re  5 · ! Clique’·clique inequalities

amin(2^[7(AT)]-f x[7(A2)])-a+,„(x[<5(AT;A^2)]) < 0

are valid fo r  P c(H ) when

<̂ 10 k l > k2,

k l  = k2.

Q:oi k l < k2.

5 .5  Congestion Inequalities

Let us consider an r > 3 uniform complete graph of order r -t- 1 whose edges are 

numbered lexicographically. If we label the first two hyperedges with -K and the 

remaining ones with -1, we will have the following inequalities:

a i  <  X i +  X 2 -  x s ------------------  a r r + i  <  A

The situation is illustrated in Figure 5.4. The -)-l labeled hyperedges are indicated 

by solid lines whereas the hyperedges with -1 labels are shown by dashed lines. 

There are only three different cut types as indicated in the figure. Then 

a i — - ( r  — 2) and /?i = max{0, - ( r  -  4)}.

Similarly, if we consider a complete subhypergraph of order r +  2 and label 

the first three hyperedges with -|-1 and the others with -1, we will have

0 ! 2  ^  3^1 -j -  X 2  4 *  X 3  X 4  ■ ■ ■ 3 : o . 5 ( r 4 - 2 ) ( r - | - l )  — ^ 2 ·
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#+=l; #-=r-l #+=2; #.=r+l-2

#+=l; #-=0.5(r+l)r-l #+=2; #-=[0.5(r+2)(r+l)-l]-2 #+=3; #-=0.5(r+2)(r+l)-3

Figure 5.4: Congestion inequalities, r = 4.
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This situation is also illustrated in Figure 5.4. In this case, we have five different 

cut situations which results in a 2 =  5 — 0.5(r + 2)(r + 1) and 2̂ =  0. Hence, we 

have proved the following theorem;

Theorem 5.8

i. Let Di be a complete r uniform subhypergraph o f order r A I o f  a hypergraph 

o f  order n, where 3 < r < n. For any numbering o f  hyperedges o f  D\ 

between I and r + 1, the inequalities

— (r — 2) < xi + X2 — x:i — · · · — .Tr+i < max{0, —(r — 4)} 

are valid fo r  P c{H ).

li. Let D2 be a complete r uniform subhypergraph o f  order r + 2 o f  a hypergraph 

o f  order n, where 3 < r < n — 1. For any numbering o f  hyperedges o f  D2 

between 1 and inequalities

r +  2\
5 — 1 j xi A X2 A X3 — X4 — < 0

are valid fo r  P c{H ).

Corollary 5.2

i. Let D\ be a complete r uniform subhypergraph o f order r A I o f  a hypergraph 

o f  order n, where 2 < r < n. For any numbering o f  hyperedges o f  D\ 

between 1 and r + 1, the inequalities

[r — 2\(̂ xi +  X2) — 2(x3 +  · · · + a;r+i) ^ 0

[r -  l](a;i A X2) -  X3 ------ --- ^r+i > 0

are valid fo r  P c{H ).

a. Let D2 be a complete r uniform subhypergraph o f order rA 2  o f  a hypergraph 

o f  order n, where 2 < r < n — 1. For any numbering o f  hyperedges o f  D2 

between I and inequalities

(r + 2''
- 3 (aji + X2 T ^3) ~ 3{x4 T · · · T x^r+2p < 0
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are valid fo r  P c{H ).

-  1 (x\ +  2̂ +  -̂ 3) — X4 — · · · — ar̂ r+2̂  ^ 0

5.6  Com putational R esults

Our code used in this section solves two AiV -  Complete problems, maximum 

cut (max-cut) and bipartitioning (min-cut), on complete r-uniform hypergraphs. 

VVe report about computational results on random problems. The test set for 

each problem consists of 40 complete 3-uniform and 4-uniform hypergraphs of 

orders 10 and 15. The size of test problems seems to be small at the first glance. 

However, typical values for the case of complete graphs are 20, 30 up to 40. 

There were ‘̂*2°^=780 edges in the case of ri=40. In our case, for instance n=15, 

there are 3̂’j= 4 5 5  and ^ ;̂j ĵ=1365 hyperedges. The edge costs are drawn from 

a uniform distribution of integers between 1 and 999. The experiments are done 

at a 22 MIPS Sun system and Cplex 3.0 is used.

The set of constraints that are considered are tabulated in Table 5.1. We have

Inequality n=10 r=3 n=10 r=4 n=15 r=3 n=15 r=4 ST.
Type Subclass Total ^ Subclass Total ^ Subclass Total # Subclass Total #

k=o 252 k=7 120 k=5 3003 k=7 6435 I
Complete k=9 10 k=9 10 k=14 15 k=14 15 I
Sub- k=7 120 k=7 6435 k=9 5005 ri
hypergraph k=9 5005 k = ll 1365 11

k=l l 1365 k= 13 105 I
Generalized 1=4 840 1=5 1260 1=4 5460 1=5 1.5015 I
Triangle 1=5 2520 1=6 3150 1=5 4  30030 1=6 4  75075 11
Congestion 1=4 2520 1=5 5040 1=4 16380 1=5 4b 60060 11

1=5 5040 1=6 8400 1=5 4  60060 1=6 4b 200200 II
Trivial 120 210 455 1.365 I

I

Eee/fi _() is added to force a cut in bipartitioning. I
4 : These constraints are added up to the limit of Cplex!

Table 5.1: The stages of computation.
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designed three stages. The first stage contains easy-to-list constraints. A quick 

solution is obtained immediately after solving these constraints. In the second 

stage, there are lots of constraints that are checked whether they are satisfied by 

the solution found in the previous run. If an integer solution is not found at the 

end of stage II, we resort to branch and bound. The initial bound is obtained 

from a simple clustering using similarity coefficients followed by an interchange 

routine across the cut of clustering.

Two different Cplex routines are compared in this computational study. The 

first routine is a primal simplex routine. The second routine is based on an 

interior point method, called barrier routine. For the details of these routines, 

the interested reader is referred to [28].

In each problem set, the mean, the minimum and the maximum values for 

the CPU seconds used by the random problems are reported. These are net CPU 

values obtained from the ”sys/times” routine. Furthermore, each test set are 

divided into two subcases in each stage according to the solution characteristics: 

integer and fractional. The CPU times are reported for separately each subcase 

together with the number of problems that are in the subcase. The fractional 

problems are fed into the next stage, and so on. In the third stage, branch and 

bound is performed by using the primal method only.

The results for the both problems are presented in Table 5.2. We have ob

tained integral maximum cut solutions of the 146 test problems out of 160 by 

using the inequalities listed in this study. The percentage integer solutions ob

tained before branch and bound is 91.25 which is quite high. At the end of the 

first stage, more than 80 percent the test problems have integer solutions. By 

adding the inequalities in the second stage, we have obtained 13 integer solutions 

out of 27 problems which is approximately a half. The results for the minimum 

cut problem are as follows. The number of integer solutions before the last stage 

is 122, yielding a percentage of 76.25. This amount is less than that of maximum 

cut problem. Therefore, we need more powerful valid inequalities investigated 

especially for solving the minimum hypergraph bipartitioning. The success ratio
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STAGE CASE NO PRIMAL CPLEX BARRIER CPLEX
Mean 1 Min 1 Max Mean 1 Min 1 Max

Problem: Max-Cut
10,3 Integer 37 25.3198 17..5.500 .55.0167 618..5275 .587.9334 716.0167
10,3 Fractional 3 35.5111 26.1667 28.3833 631.6333 589.4334 653.8000
10,4 Integer 30 81.3272 51.0167 139.7.500 1182.1767 1061.6667 1409.8.500

ONE 10,4 Fractional 10 57.41.50 44.0833 105.0667 1132.1072 1061.8667 1178.4667
15,3 Integer 35 1249.8766 1039.6667 1.596.1833 28197.6867 24305.1881 34196.7.3:33
15,3 Fractional 5 1116.2267 980.4000 1287.4500 34581.3275 26943.6667 39174.3333
15,4 Integer 31 4840.8924 4217.1933 5314.1667 Not Enough Memory!
15,4 Fractional 9 .3.385.8876 2819.7:3.33 ;3966.1200 Not Enough Memory!
10,3 Integer 1 32.5998 32.5998 32.5998 1722.1667 1722.1667 1722.1667
10,3 Fractional 2 30.6251 30.48.34 30.7667 1690.70.58 1514.1919 1867.2197
10,4 Integer 4 68.2000 •50.3500 100.7333 4714.1107 4279.6488 .5481.1763

TWO 10,4 Fractional 6 80.3639 •52.7167 120.9167 4966.2364 4007.1111 5814.6782
15,3 Integer 4 1509.6083 1431.13.33 1645.6333 39967.5687 31988.4667 43109.4983
15,3 Fractional 1 1430.4166 1430.4166 14.30.4166 •30987..5614 •30987..5614 .30987..5614i
15,4 Integer 4 8718.3.3.33 8109.6700 9412.4411 Not Enough Memory! 1
15,4 Fractional 5 8964.6714 8411.9786 9733.4.5.54 Not Enough Memory! |
10.3 Integer 2 105.8995 97.6667 114.1322 Primal Cplex is used!

THREE 10,4 Integer 6 214.1322 196.1967 227.6645 Primal Cplex is used! j
15,3 Integer 1 2412.6667 2412.6667 2412.6667 Primal Cplex is used!

. 15,4 Integer 5 3117.1895 1227.6667 .5414.1969 Primal Cplex is used!
Problem: Min Cut

10,3 Integer 25 23.7381 20.1823 28.5833 622.1871 583.4051 681.7293
10,3 Fractional 15 22.0667 17.5167 30.48.33 628.3202 577.94.56 679.6387
10,4 Integer 27 77.1254 44.2334 86.9864 1174.1971 1064.3718 1512.5464

ONE 10,4 Fractional 13 61.1428 39.2916 87.1197 1166.8202 1060.6409 1473.6667
15,3 Integer 25 987.1924 896.9422 1044..5.501 29147.6504 16067.3333 .36:398.1142
15,3 Fractional 15 953.8667 874.1369 1107.3600 2.5914.2.363 1207.3.8667 39780.4:343
15,4 Integer 26 4514.7794 4109.1411 5096.1778 Not Enough Memory!
15,4 Fractional 14 4689.6882 3987.7486 4909.1881 Not Enough Memory!
10,3 Integer 5 35.1494 31.0086 42.4492 1937.1990 1109.2.524 24.36.3186
10,3 Fractional 10 .38.1966 30.9871 47.1.569 1956.8014 1341.6737 2634.4567
10,4 Integer 4 71.0801 60.0704 87.0203 5410.45.35 3907.2798 6988.0207

TWO 10,4 Fractional 9 76.9743 67.1927 84.3476 5129.3607 4414.1867 5716.1167
15,3 Integer 7 919.1324 881.4715 1096.8167 27616.5129 16372.4033 57241.1178
15,3 Fractional 8 1106.8767 918.1335 1307.4921 27442.8262 19101.1540 448.32.9451
15,4 Integer 3 8419.1695 6518.2470 9711.2742 Not Enough Memory!
15,4 Fractional 11 7867.8766 7105.2460 8801.3967 Not Enough Memory!
10,3 Integer 10 307.1766 37.1000 .567.1922 Primal Cplex is used!

THREE 10,4 Integer 9 1918.7295 43.6667 3386.9197 Primal Cplex is used!
15,3 Integer 8 2526.0314 127.1763 5419.8167 Primal Cplex is used!
15,4 Integer 11 7843.4253 819.2161 11075.9150 Primal Cplex is used!

Table 5.2: The results of the computational study on Pc{H^) for n=10,15 and
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during the first stage is which is approximately 65 percent. Among the re

maining problems, we have found 19 integer solutions out of 57 problems in stage 

IV, which is exactly one thirds. The CPU times remain almost unchanged, if the 

objective function is switched from ma.ximization to the minimization.

The simplex method outperforms the barrier method in terms of speed. As 

the number of constraints is increased, the barrier method’s CPU usage jumps up. 

As the number of variables is increased, its time scores get worse. The behavior 

of the primal simplex method against these changes is found to be relatively 

tolerable.



Chapter 6

CELL FORMATION 
PROBLEM

Cell formation i.e., placing machine groups of functionally dissimilar types to

gether to enable the manufacture of a specific range of parts, is acknowledged to 

be the first and major stage in the design of Cellular Manufacturing systems. The 

initial decision made at this stage presides over all the other decisions involved 

in the design process.

Since it was asserted for the first time (Burbidge 1971) [19], the cell formation 

problem has grown into an area in which much research has been conducted. As 

the cell formation problem turns out to be A/'P-Complete [4, 73], a large number of 

cell formation heuristics have been designed to obtain feasible solutions. Various 

ta.xonomies of the cell formation techniques have also been proposed [5, 59, 65, 96].

In this chapter, two new cell formation techniques are developed. One is 

based on the special case of the Boolean R-atic Polytope which is proved to be 

polynomially solvable in Section 4.6. The other technique is based on approx

imating the hypergraph with a graph and breaking this graph into pieces by 

successively solving maximum flow problems. These techniques together with six 

leading cell formation techniques are compared in terms of developed measures in 

different manufacturing environments so as to help establish guidelines to select 

a proper cell formation procedure for a specific situation. A similar study has

78
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been reported by Miltenburg and Zhang [79].

Three ‘quick &: clean’ efficiency indices to evaluate the cell formation solutions 

are suggested in the next section. The first index is the grouping efficiency which 

is focused on the combination of the magnitude of exceptional elements and inner

cell densities. The second is related to inner-cell work-load balances. The last 

index measures the under-utilizations of individual machines.

Finally, to provide a testing ground for evaluating and comparing design tech

niques, a problem generator is developed. The above mentioned techniques are 

evaluated in terms of randomly generated test problems under different scenar

ios. The effects on the proposed efficiency measures from the number of parts, 

shop densities, demand and depreciation cost variations, and manufacturing en

vironments on the cell formation problems are investigated statistically for each 

technique.

6.1 H ypergraph R epresentation

Cell formation problem is defined via hypergraphs such that the machine types 

are represented by vertices of its associated hypergraph, and hyperedges repre

sent parts; or vice versa. A hyperedge is incident to a node in the hypergraph 

representation if there is a routing relationship between the corresponding part 

and machine type pair. Moreover, various weights can be tagged in the hyper

graph representation of the situation. Machine types differ from each other by 

their cost values. Parts are different in their unit profits. The major drawback 

of hypergraph representation is to neglect process sequences.

Cell formation problem can be defined as the minimum hypergraph free par

titioning problem when the nodes of the associated hypergraph is machine types. 

If the number of cells is fixed and the lower and/or upper cell size limits are 

imposed, the definition is termed as multiple partitioning. The special case of 

multiple partitioning where there are only two cells to be formed is called bi

partitioning. The additional restriction of balanced cell sizes defines bisection 

problem. Moreover, there is a variant of multiple partitioning problem in which
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Part Machine set (Machine fraction) Profit Part Machine set (Machine fraction) Profit
1 l(..36), 2(.34), 3(.77) 100 8 4(.24), 9(.74), 10(.63) 50
2 2(.76), 3(.lo) 50 9 2(.24), 4(.42), .5(.32), 9(..52) 25
.3 2(.16), 3(.16), 7(.78) 25 10 6(.09), 7(.46) 75
4 7(.45), 10(.46) 75 11 4(.18), 5(.40), 6(.44) 125
5 7(.73), 8(.60), 9(.96) 125 12 4(.26), 6(.29) 100
6 7(.52), 8(.66), 9(.54), 10(.77) 150 13 4(.12), 5(.20), 6(.24) 50
7 7(..30), 9(..34), 10(.46) 100 14 1(.57), 2(.70), 6(.1.5) 25

Table 6.1: Part information of the example problem.

Machine Usage Number Cost Machine Usage Number Cost
1 0.93 1 33 6 1.21 2 143
2 2.20 3 80 7 3.24 4 91
3 1.08 2 111 8 1.26 2 77
4 1.22 2 100 9 3.10 4 50
5 0.92 1 200 10 2..32 3 71

Table 6.2: Machine type information of the example problem.

number of cells are not fixed, called free partitioning (cell formation) problem. 

The latter formulation is termed as separation problem if the nodes are parts and 

hyperedges represet machine types. Not surprisingly, the cell formation problem 

defined as free partitioning is A/*'P-Hard. In fact, multiple partitioning is AfV- 

Hard. Actually, the hypergraph bipartition problem belongs to AiV-Hard class 

[74].

The manufacturing situation tabulated in Table 6.1 is taken as an exam

ple throughout the discussions. We have ten machine types and fourteen parts. 

Machine type set together with machine fractions, and unit profit as relative dif

ference are associated for each part. Machine fraction value for a machine-part 

pair is the percentage of annual usage of that machine for that part. Further

more, the number of physical machines and relative machine differences (based 

on machine type 4) in annual depreciations, or buying prices, or salvage values, 

etc. are given in Table 6.2. The number of physical machines of a given type 

is calculated as the smallest integer that is greater than the total usage of that
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Figure 6.1: The associated hypergraph of the example cell formation situation.

machine type which is the sum of machine fractions over all parts. The associated 

hypergraph having vertices as machine types is illustrated in Figure 6.1.

6.2  A G eneric Cell Form ation A lgorithm

The cell formation method proposed in this section is to approximate the hyper

graph by graphs so that the cuts are less affected by the approximation. Then 

a Gomory-Hu cut tree of the graph approximation is obtained. Using this tree, 

the minimum cuts between all pair of vertices are calculated easily and partition 

tree is produced. Finally, the cell formation heuristic based on the partition tree 

is stated.

6.2.1 Hypergraph Approximation

The first step of the method used is approximating the hypergraph representation 

by a multi-graph in which there can be more than one edge among two vertices. 

The vertices of the hypergraph and the graph representation coincide. There
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are two ways of representing hyperedges. One method is to use a clique of the 

end-points of a hyperedge. Hence, if two vertices are end-points of more than 

one hyperedge, there will be parallel edges connecting these vertices in the graph 

approximation. Consider Figure 6.2-a. The example hyperedge, 6, connects 

vertices 7, 8, 9, and 10. The clique approximation of hyperedge 6 is given in 

Figure 6.2-b. The second way to represent a hyperedge is to add a superficial 

node and use a star graph having center at this superficial node. A star graph is 

the graph where all edges connects outer nodes to the center node, like an asterix. 

The star approximation of hyperedge 6 is illustrated in Figure 6.2-c.

The most important issue in graph approximation is to assign suitable weights 

to graph edges in such a way that the value of a cut in the hypergraph is almost 

ec[ual to the value of the cut in the graph approximation which is defined by the 

same vertices. Another issue is to interpret the approximation in cell formation 

terms. The proposed solutions for two representation methods are explained one 

by one.
After assuming that the weight of the hyperedge under study is one, a straight

forward way of solving the above problem for clique approximation is to assign 

edge weights as less than one and to try to obtain unity as the value of the cut 

in the clique. Consequently, the weight of every edge in the clique is multiplied 

with the weight of the hyperedge to be approximated by the clique.

There are several attempts to assign weights to clique edges. Charney and 

Plato [23] suggested for a hyperedge having n incident vertices; whereas 

Hanan and Kurtzberg [51] offered In [35], Donath presented a proof that 

better results can be obtained by choosing the weight Hadley [48]

a) Hyperedge b) Clique Approximation c) Star Approximation

Figure 6.2: The two representations.
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Figure 6.3: Donath - Hadley approximation of the hyperedges in various sizes.

proposed the weights (["|] x where [i] ( [ t j)  is the smallest (largest)

integer greater (less) than or equal to t. Hadley discussed the optimality of these 

weights of the clique edges in order to approximate unity as the value of any cut in 

the clique in various norms (/i, /2, and /00)· Actually, Hadley and Donath figured 

the same weights. The clique approximation using their weights is illustrated for 

hyperedges having 3, 4, 5 vertices in Figure 6.3. In this figure, the possible cuts 

and their values are shown. Clearly, this approximation underestimates the cuts 

in hypergraphs.

The following method is used to approximate the hypergraph representing 

a cell formation situation: approximate each hyperedge by the clique using 

Donalth-Hadley weights. Weight each clique (part) by its associated unit profit 

value. Replace all parallel edges belonging to different cliques by single edges 

having weights equal to the total weights of the parallel edges. The graph scaled 

by 4 for the clique approximation of the hypergraph given in Figure 6.1 is illus

trated in Figure 6.4. Consider edge (7,9) having value of 600. It has a weight 

of 1/2*125 from part 5, 1/4*150 from part 6, and 1/2*100 for part 7, having a 

total value of 600/4. Since the graph is scaled by 4, the weight of edge (7,9) in 

the figure is 600.

A different method is proposed for star representation of a cell formation situ

ation. A more direct method of labeling the star edges is used. Each edge in a star 

approximation of a hyperedge describes a relationship between the corresponding
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Figure 6.4: The clique approximation of the example hypergraph.

machine type -  part pair. This relationship is simply the machine fraction due 

to the part under consideration. If a star graph is used for each part, then the 

graph approximation of the whole cell formation situation is actually a bipartite 

graph having edge weights as machine fractions. Considering the difference be

tween machine types, all edges emanating from a node representing a machine 

type are weighed by its relative value in terms of annual depreciation, salvage 

value, initial cost, etc. The star approximation of our example cell formation 

problem is illustrated in Figure 6.5. The cost of the edge between machine type 

3 and part 2 is 17 (=0.16 x 108).

6.2.2 Gomory - Hu Cut Tree

A network flow based method based on the maximum flow - minimum cut theorem 

is used in this heuristic attempt to solve cell formation problern. The minimum 

cuts values for all machine type pairs is needed for stating the heuristic method 

proposed. A naive way of finding the cuts is to solve a maximum flow problem for 

every pair. This algorithm requires the solution of maximum flow problems

assuming there are n machine types. However if Gomory-Hu algorithm is applied
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Figure 6.5: The star approximation of the example hypergraph.

Figure 6.6: First iteration of Gomory-Hu algorithm.

[41] at most (n-1) maximum flow calculations are required for any subset of the 

n machine types.

A brief description of Gomory-Hu algorithm is given on the clique approxi

mation of the example problem. First select two terminal nodes arbitrarily, say 

1 and 10, and do a maximum flow computation on the original graph. This gives
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Figure 6.8: Second iteration of Goinory-Hu algorithm.

a minimum cut Ci,io as indicated in Figure 6.6. This cut is symbolized by two 

circles connected by a link having the value of the cut as in Figure 6.7. This 

network is termed as tree diagram.

Second, from the tree diagram obtained so far, select any circle, say (4,.5,6,7,8,9,10), 

which contains more than two nodes, and do a maximum flow computation be

tween the two terminal nodes (4,10) on a graph derived from the original graph 

in which the nodes (1,2,3) in the unselected circle in the tree diagram is shrunk 

into a single node. This derived graph is flow-equivalent to the original graph in 

finding the maximum flow between 4 and 10. This maximum flow computation 

gives another minimum cut C4,io as illustrated in Figure 6.8. This is also repre

sented symbolically as in Figure 6.9. Note that (4,5,6) is attached to (7,8,9,10) 

since (1,2,3) and (7,8,9,10) are on the same side of € 4,10 with value 700.

After (n -l= 9 ) maximum flow computations, a tree diagram is obtained in
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Figure 6.9: Second link of tree diagram.

Figure 6.10: A Gomory-Hu cut tree of the clique approximation of the example 
problem.

which each vertex in the tree diagram is a node in the original graph as presented 

in Figure 6.10. Note that, the maximum flow computations are being done on 

graphs that are progressively simple than the original graph due to the conden

sation of nodes. The final form of the tree diagram is called a Gomory-Hu cut 

tree. The original graph is flow-equivalent to the Gomory-Hu cut tree.

A Gomory-Hu cut tree of the star representation of the example problem is 

given in Figure 6.11. In this cut tree, the costs of the edges incident to circle 

nodes representing parts can be ignored during bipartitioning the squared node 

set corresponding to machine types. However, their connection should be kept for 

part assignments to the cells defined by the partition. The clique approximation 

is inferior in this sense since it requires a part assignment scheme. A trivial 

scheme is to assign a certain part to the cell among the possible alternatives in 

which the part’s workload is the most. Moreover, if there are m machine types
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Figure 6.11: A Gomory-Hu cut tree of the star approximation of the example 
problem.

and p parts, the clique approximation’s cut tree is obtained by n-1 maximum 

flow computations on a network of order m. On the other hand, the cut tree of 

star representation requires m+p-1 maximum flow computations on a network 

that have m +p  vertices. Therefore, star representation is inferior in terms of 

computational complexity.

6.2.3 Generic Algorithm

In this subsection, a generic algorithm is stated. The name of the algorithm is 

i/ypergraph Approximation -  Cut Tree  (HAP-CUT). The algorithm HAP-CUT 

inputs the cell formation situation, the representation method, and three other 

parameters: a criterion to measure the quality of the solution, and upper limit on 

the sizes of parts in the bipartition. The limit can be such that the parts cannot 

be larger than a prespecified percentage of the size of the set to be bipartitioned.
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Algorithm  HAP-CUT{cell formation problem, representation type, efficiency
criterion, size limit}

51. Approximate the hypergraph representing the cell formation situation.

52. Obtain a Gomory-Hu cut tree of the graph approximation.

53. Sort the cut tree edges associated with machine types in ciscending order of 
values, unmark and store them in a list L. Initially, the solution forest F is 
the Gomory-Hu cut tree.

54. R epeat the following step until there is no edge in the list.

Take the first edge, e, in the list.
Let T be the tree that contains e in the solution forest F.
Let Ti and T2 be the two subtrees obtained from the deletion of e from T.

i f  ^  ^ size limit and > size limit then size *— true
else size e- false

i f  give-efficiency(F\r U Ti U T2) > give-efficiency(T) then efficiency <— true
else  efficiency false

i f  size and efficiency then delete e from L
F  ^  F \ T ( J T i OT2

else i f  noi(size) and efficiency and e is unmarked 
then delete e from L 

mark e
insert e into L (at the end) 

else delete e from L

55. The cell formation solution is F.

In the first step, a hypergraph representing the cell formation situation is 

represented by a graph. Second step involves (n-1) maximum flow computations 

required for forming a Gomory-Hu cut tree which is flow equivalent to the graph 

representation. In the next initialization step, the edges dedicated to the squared 

nodes representing machine types are sorted in descending order. They are ini

tially unmarked. Fourth step is the main body of HAP-CUT. During this step, 

every edge in the cut tree is scanned at most twice. A second chance is given to 

the edge whose removal from the cut tree improves the efficiency criterion and 

unfortunately violates size limit.
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Figure 6.12: HAP-CUT{Example,clique,maximize number of partitions,80%}.

Two examples are given for illustration purposes. One is HAP-CUT{Tablel, 

clique, maximize number of partitions, 80 %} which is given in Figure 6.12. In 

this example, the solution is 10 partitions of size one. Another example is HAP- 

C U TjTablel, star, any-criterion, 60 %} whose cut tree is given in Figure 6.11. 

No matter what an efficiency criterion is specified, the solution is of the form 

given in Figure 6.13.

The time complexity of HAP-CUT is determined by the second step, assuming 

calculation of efficiency values has a lower time complexity. If the algorithm by 

Melhorn et al. is used for determining the multi-terminal flows in the second 

step, the computational complexity of HAP-CUT is In the case of

clique approximation, n = m, whereas n = m -f p in star representation.

The clique approximation version of HAP-CUT was coded in Fortran on a 

SUN/Unix platform and several runs for 85 machine types and 1200 parts were 

made. The mean time value obtained from adding user time and system time 

elapsed on the behalf of user which is determined from the system function time
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Figure 6.13: HAP-CUT{Example,.star,any-criterion,60%}.

was 21.421 seconds, whereas the shortest run took 21.00 seconds and the longest 

one took 21.94 seconds. These run times seem to be attractive.

6 .3  Sequential Identifying the B est M anufac

turing Cell

The problem of identifying the best manufacturing cell is the grouping of the 

machines and parts into one cell such that the profit obtained from the cell is 

maximized. The cost of a cell over a period of time can roughly be measured with 

the total cost of the machines that form the cell. On the other hand, the gain of 

a cell over the same time period can be calculated as the total revenue obtained 

from the parts produced in the cell. Thus, the profit of a cell is the total revenue 

of the parts produced minus the total cost of its machines. Then the problem 

of identifying the best manufacturing cell is to form the cell with the maximum 

profit value.

There are two entity sets in this problem. The machine set M  contains m
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machine types each having costs c,, i = 1 , . . . ,  m. The set of parts P  consists of 

p parts having revenue values dj, j  =  There is a routing relationship

between these two sets. Let us define ej as the set of machine types that are used 

in the fabrication of part j .  The relation is from the part set to the subsets of 

the machine set. Let kj = \ej\ denote the number of distinct machines that part 

j  visits.
Let 5  be a subset of machines, or equivalently a subset of nodes in the hyper

graph representation. The set of parts that can be produced with this machine 

set, or equivalently the set of internal hyperedges with respect to S  is denoted by 

7(5'). The problem of identifying the best manufacturing cell is combinatorially 

formulated as below:

- ejeMS) ies
Let X,  be a decision variable that indicates whether machine i is in the cell 

or not. Similarly, let yj be a decision variable controlling whether part j  can 

be produced in the cell or not. Consequently, the mathematical programming 

formulation of the problem is as follows:

Max.
s.t.

Vj — ' ¿̂2 ■ · · · ■ îl;

Xi  =

Vj =

1, ¿ € 5

0, otherwise

1, e_,· € 7 (5 ) 

0, otherwise

; = l, . . . ,p ej = {¿1,^2,...,û^} 

f = 1, . . . ,  m

This formulation is ^'P-Hard. Pleaise recall from Chapter 4 that the above 

nonlinear constraints yj =  can be replaced by linear constraints 0 < t/j <

X. < 1, and ^ ~ 1) + Vi where i € ey If all machine costs, c,’s, and all

part revenues d/s are nonnegative then the objective function does the job of the 

second set of constraints T.Xi <  (r -  1) + yj. This yields the formulation given
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below:

Maximize djyj - CiXi 

subject to:

y j < X i  Vi € Cj, V; =  1,, 
X,· < 1 ,  Vi =  1 , . . . ,  m 

Vj — 0) · · · iP

The problem of identifying the best cell is polynomially solvable by Corollary 4.2.

A new heuristic for the cell formation problem can be developed by sequen

tially solving the problem of identifying the best manufacturing cell. First, the 

best manufacturing cell is identified. After the machine requirements of the best 

cell is calculated, the required number of machines of each type is assigned to 

this cell. Next, the identification of the current best manufacturing cell is done 

by solving the problem on the remaining machines and parts. These iterations 

terminate when there is no profitable cell left. All of the remaining machines are 

grouped together forming the remainder cell. Any unassigned part can either be 

manufactured in the remainder cell or subcontracted or assigned to one of the 

cells formed.

Various Cplex 3.0 alternative Linear Programming routines can be used for 

solving the problem of identifying the best manufacturing cell. These are standard 

primal simplex, dual simplex, barrier method and a hybrid barrier module. A 

computational study is carried out for choosing the method to be used for cell 

formation. In this study, ten randomly generated problems are solved for each 

machine-part pair. The time statistics are given in Table 6.3. The barrier method 

is considered as the best among all. It statistically dominates all other methods 

in almost all of the cases, i.e., it has the lowest mean value and has the lowest 

variance. The barrier method is approximately 18 percent better that the second 

best method as the mean values are considered.

The new algorithm for cell formation is termed as Sequential /dentifying the 

B est Manufacturing CeW, SIBC:
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M
Primal

Mean Std. Dev.
Dual

Mean Std. Dev.
Barrier

Mean Std. Dev.
Hybrid

Mean Std. Dev.
25
30
35
40
45

50
60
70
80
90

50 100
55 110
60 120 
65 130
70 140
75 150
80 160

0.2183
0.3133
0.4266
0.5583
0.7033
0.8533
1.0816
1.2683
1.4766
1.70.50
1.9916
2.3049

0.01.38
0.0.339
0.0317
0.0.367
0.0276
0.0331
0.0.556
0.0630
0.06.50
0.0875
0.1272
0.11.54

0.2183
0.3166
0.4416
0.5683
0.7083
0.8666
1.0850
1.2916
1.5116
1.7750
2.0616
2.3400

0.0189
0.0307
0.0260
0.0397
0.0281
0.0387
0.0456
0.0533
0.0767
0.0624
0.1229
0.1302

0.1899
0.2666
0.3516
0.4616
0.5900
0.7100
0.8899
1.0450
1.2.549
1.4.350
1.6750
1.9433

0.0185
0.0223
0.0203
0.0258
0.0249
0.0238
0.0302
0.0380
0.0826
0.0844
0.0696
0.1227

0.2166
0..30.50
0.4166
0.5466
0.6916
0.8550
1.06.33
1.2900
1..5400
1.7983
2.1183
2.1300

0.02.58
0.0298
0.0316
0.0439
0.0436
0.0441
0.0697
0.0955
0.1252
0.1440
0.1.571
0.1.390

Table 6.3: Time comparison of the four alternative methods in Cplex3.0.

Algorithm SIBC {cell formation problem, LP routine, threshold}

50. k = l.

51. Identify the current best manufacturing cell using an LP optimizer. Let Zk 
be the objective value and x*', be the current optimal solution.

52. I f  Zk > 0  or > threshold then Form cell.
¿̂ 1 = 1

otherwise Go to S5.

53. Calculate the physical machine requirements of the current cell.
Remove the parts in the cell, i.e., remove Vj such that yj =  1.
Remove the machine types that have no physical machines left.

54. k ^  k A 1.
Go to SI.

55. Form the remainder cell.
Reassign the remaining parts to the cells 1 , . . .  ,k  and the remainder cell.

56. Calculate efficiency measures.

In order to illustrate the execution of the above algorithm, our example prob

lem is fed to the algorithm. The first iteration is presented in Figure 6.14. Ma

chine costs and part revenues are shown in the figure. The Cplex solution states
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3 3

Figure 6.14: First iteration of SIBC{Example,netflo,2/3}.

the first cell is composed of machines 7, 8, 9, and 10. This cell is dedicated to 

the manufacture of parts 4, 5, 6, and 7. The profit of the cell is 450-289=161>0. 

In this cell, there are 2 machines of type 7, 2 machines of type 8, 2 machines of 

type 9, and again 2 machines of type 10. The second iteration is illustrated in 

Figure 6.15. The LP solution says that machine types 1, 2, and 3 are grouped 

together with a cost of 224 units, and parts 1 and 2 are produced in this cell. 

Since the revenue-cost ratio is slightly greater that 2/3, this cell is formed with 

a single machine of type 1, 2 machines of type 2 and a single machine of type 3. 

The remainder cell consists of machines 2, 3, 4, 5, 6, 7, 9, and 10. The parts 3, 

8, 9, 10, 11, 12, 13 are assigned to be produced in the remainder cell. Part 14 is 

either assigned to the first cell or to the remainder cell.

6 .4  Efficiency M easures

The evaluation of cell formation solutions is a vital issue in the design of Cellular 

Manufacturing systems. Although a number of techniques have already been
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Figure 6.15; Second iteration of SIBC{Example,netflo,2/3}.

developed, the evaluation of cell formation solutions has remained somewhat 

qualitative [4, 20, 21, 96, 97]. Some of the commonly used quantitative efficiency 

measures are the number of inter- and inner-cell moves, the number and cost 

of duplicated equipment, the number of parts removed from the system, and 

machine utilizations [3, 5, 20, 21, 69, 70, 71, 79, 85, 86, 92, 94]. In particular, 

cell formation techniques have usually been compared in relation to the number 

of exceptional elements generated in the solutions [5, 20, 79, 94, 96].

A modelling tool for cell formation is the machine-part incidence matrix, the 

rows of which correspond to machine types and the columns to parts. Each 

element of the incidence matrix is ‘one’ if there exists a routing relation between 

the associated column and row, otherwise it is ‘zero’. The objective of the cell 

formation problem is to obtain a block-diagonal structure in the incidence matrix. 

The resulting diagonal blocks represent the manufax:turing cells. Desirable cell 

formation solutions are the ones in which all parts complete all of their operations 

in their assigned cell. For such solutions, there is no inter-cell movement of parts. 

Exceptional elements are the entries of the incidence matrix that do not belong
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to any diagonal block preventing the solution from being a desirable one. They 

are actually connections inbetween the end-points of the hyperedges in the cut 

set.

It is also possible to use work-load matrices in solving cell formation problems 

as they contain considerably more information than incidence matrices. Each en

try of a work-load matrix represents the percentage of machine capacity allocated 

to the corresponding operation. The sum of the elements of a specific row of a 

work-load matrix indicates the number of machines desired of that type. Work

load matrix enables user to deal with individual machines instead of machine 

types. Hence, more than one cell can have the same machine type. Furthermore, 

if the workload of an exceptional element is high enough, a machine of the corre
sponding type will be inserted into the corresponding part’s cell. Thus, the use of 

work-load matrices provides an opportunity to eliminate some of the exceptional 

elements [59].

The efficiency of each cell formation solution can be measured from its work

load matrix. Three efficiency indices with assumed values between zero and one 

are suggested for evaluating the solutions. The first measure is the modified 

grouping efficiency which penalizes exceptional elements and considers inner-cell 

densities. This measure is an extended version of what Chandrasekharan and 

Rajagopalan reported [20, 21] whereas the remaining two are developed within 

the scope of this study. The second measure pertains to the inner-cell load bal

ances. The third measure focuses on under-utilizations of individual machines. 

Discussion of these efficiency measures requires some notation and definitions: 

i : machine type index (f = 1, · · ·, T ), 

j  : part index (; = 1 , . . . ,P ) ,  

k : cell index (A: = 1 , . . . ,  A'),

C M (k) : index set of machine types that are assigned to cell k,

C P {k ) : index set of parts that are assigned to cell k,

A C {j)  : index of cell to which part j  is assigned,

AVj : annual production volume of part j  {units}.
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S T ij : total standard times of operations of part j  on machine type i {time- 
units/unit},

Ci : annual availability of machine type i {time-units/machine},

W L ij : annual work-load on machine type i induced by part j  {machine-fraction},

WL -  ^

r f  't,, : total usage of machines of type i in cell k (machine-fraction),

T U ,,=  E
jecp{k)

Nkj : number of machines of type i in cell k (machines),

Nk, = \TUk,]

Sk : number of different machine types in cell k, .

O C i  : annual operating cost (including depreciation) of a machine of type i 

{$/machine},

TW^L C j  : total work-load cost of part j  {$},

T

I
i=l

TWLCj  = E  X OC,

W C C j  : work-load cost of part j  in its assigned cell {$ ),

W C C j  =  E  X  O C i
i e C M { A C { j ) )

W L C E j : work-load cost of exceptional elements belonging to part j  {$},
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WLCE, = TWLCj -  WCC,

F Pij : field potential value of clustering both part j  and machine type i into the 

same cell {$^}. It is an artificial weight given to each entry of the work-load ma

trix which represents the solution. The cissociated weight is the multiplication of 

column and row weights. Here it is cissumed that machine types differ from each 

other in terms of total annual operating costs whereas parts are differentiated by 
means of total work-load costs:

F R  . = TWLC j X OC. X A'.4C0).,·

: assignment potential of clustering both part j  and machine type i into the 

same cell. It is the associate«! field potential value incurred only if both machine 

type and part are assigned to the same cell.

A F . =
Í FPi,j if W L,,j > 0, 

0 otherwise.

M W Lk,i '■ mean percent workload on machines of type i assigned to cell k {% },

100
= — X WLi,j

j e c P { k )

M C Lk ■ mean percent cell-load in cell ¿

MCLk =  ^ x  E  MWLk,i
i € C M ( k )

UUk,i ' total under-utilization of machine type i in cell k {machine-fraction},
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HUk,, =  Nk,i -  TUk,i

Each element WLi^ of the work-load matrix is nothing but a machine frac

tion value used in facilities planning. It has a nonnegative real value representing 

the number of machines of type i needed for carrying out the related annual to

tal manufacturing operations of part j .  Machine types are different in terms of 

costs. It is unrealistic to treat a cheap machine and an expensive one similarly. 

Specifically, an exceptional element due to an assembly bench can be eliminated 

simply by duplicating it. However, this is certainly not the case with CNCs. Fur

thermore, two different machine types of the same initial cost may have different 

operating expenses. Therefore, rows of the work-load matrix are differentiated 

from each other in terms of total annual operating cost of all machines of the 

corresponding type. Similarly, each part is different considering product volumes 

and manufacturing expenses. In this analysis, we solely consider machine oper

ating costs, including depreciation and direct labor, in manufacturing expenses 

and ignore direct material costs. But these terms can easily be incorporated into 

cost expressions. Hence, each column of the matrix has different ranks equal to 

the total work-load cost of the corresponding part.

Modified grouping efficiency is a combined measure made up of two parts. 

The first part measures the inter-cell work-load created by exceptional elements. 

Inter-cell flow efficiency, p i, is defined as the complementary normalized cost of 

all exceptional elements:

e L · w l c e ,
/ii = 1 -

Z ^^.TW LC,
(6.1)

The second part of the modified grouping efficiency is a weighed estimate of 

the inner-cell densities. Each block-diagonal entry in the work-load matrix is 

weighed by multiplying the column and row weights. Consequently, a potential 

field is defined for each diagonal block representing a manufacturing cell. The 

estimated density of a cell is the normalized total potential in this field. Therefore,
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inner-cell efBciency, ^2, of any cell formation solution is defined as:

=
zeCMjACU)) AP,,j 

11j=i 12ieCM[AC{j)) FPi,j
(6 .2)

There are two extreme celt formation situations. One is the cell system which 

contains small, dense cells and a lot of exceptional elements. This situation which 

maximizes inner-cell density measure //2 is penalized by inter-cell flow efficiency 

yui. The other is the cell system with large, sparse cells without exceptional 

elements. This situation which maximizes //.1 is penalized by /¿2. Hence, inter

cell flow efficiency .̂Lı and inner-cell density //2 are inversely proportional such 

that each of which penalizes one extreme whereas the other improves.

Grouping efficiency, (.1, is defined as the convex combination of inter-cell flow 
and inner-cell efficiencies:

=  a X /ij + (1 — a) X ^2- G [0,1] (6.3)

The parameter a  can be interpreted as an indication of whether inner-cell effi

ciencies or inter-cell flows are more important to the decision maker. A large 

value of a  gives more weight to exceptional elements. As a approaches unity, 

there emerges a tendency to eliminate all exceptional elements and the trivial 

cell formation solution turns out to be a single big cell, that is a job shop system. 

On the other hand, a very small a  value indicates that inner-cell efficiency is 

more important than inter-cell flow efficiency, which makes a solution with high 

number of small-sized dense cells acquire the best value among all cell forma

tion alternatives. That is the reason why moderate values of a  are suggested to 

calculate the modified grouping efficiency.

Work-load balance measure, ¿d, shows the degree of machine load balance in 

each cell. It is an important measure if other resources in a cell like personnel are 

shared. On the other hand, balanced cells have better performances especially 

in J IT  systems. If all machines in each cell are evenly loaded, then the work

load balance index takes a value very close to one. This measure considers the 

squared machine work-load deviations from the mean cell work-load. If there 

are more than one individual machine of the same type in a cell, the squared
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deviation is adjusted accordingly. Furthermore, the squared deviation due to a 

machine type is weighed by the associated operation cost. The weighed squared 

deviations are first calculated for all machine types in each cell, then they are 

added and normalized. Hence this efficiency measure is defined as the normalized 

sum of square of the weighed deviations between the mean cell load and individual 

machine loads:

\
E L ·  EieCM(k){MWLk,^ -  M CLkY  x yv,,. x OC.

(6.4)
lOOOO X Z L ·  E^eCMW x OC.

The third efficiency measure, 7 , shows the relative weighed under-utilization 

levels of the individual machines. Individual machine under-utilizations are mul

tiplied by the associated annual operating costs and normalized to find the case 
dependent under-utilization index:

E ieC M (k )  CUk, i  X  O C j  

E L ·  EieCM{k) OC,
(6.5)

This index includes the initial under-utilizations of machines before cell forma

tion. The real under-utilization index should indicate the amount of relative 

under-utilizations created due to cell formation. The last efficiency index is calcu

lated as the complement of the relative utilization of the cells scaled by maximum 

utilization:

7 = 1 - 1 - 7 (6.6)
1 -  'Kj s

where 7^5 is the initial under-utilizations of the machines in the original job shop. 

Actually, 7 indicates the ratio between the reduction in average utilization due to 

Cellular Manufacturing (i.e., 7  — 775) divided by the original average utilization 

level (i.e., 1 -  ■yjs)·
The solution can be freed of exceptional elements by machine duplication and 

addition. In the case of machine duplication, the number of individual machines of 

type i assigned to cell k, Nk,i, is increased by one. This increases the field potential 

value of all parts assigned to cell k along row i. Consequently, zero entries in row 

i are penalized more in the denominator of (6.2), decreasing fi2· When machine 

type i is added into the cell k, a new row is created. The zero elements in



CHAPTER 6. CELL FORMATION PROBLEM 103

this row decrease ¡.12· On the other hand, the presence of exceptional elements 

creates inter-cell work-loads and clearly decreases fii. Both machine duplication 

or addition and creation of inter-cell flows do affect the mean percent work-loads. 

However, the influence on ^ is too complex to investigate analytically. In the 

case of machine addition due to an exceptional element belonging to part j ,  the 

numerator of (6.5) is increased by OC{ x {{W L ij]  -  WLi^j) and the denominator 

by OCi. It may decrease as well as increase the under-utilization index 7 . If 

bottleneck machine i is duplicated then the under-utilization of that machine 

type is increased leading to an overall increase in 7 , hence in 7 . If we keep the 

exceptional elements and create inter-cell work-loads, the numerator of (6.5) will 
be increased. Therefore, 7 will be increased as w’ell.

+ + + + + +
+ + -f + + +
+ + + + -f -h
+ + + + + +
+ + -f + + +

o) K  = 1
ytil = 1, H2 = 1,

P =  1
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■ + + + ■
+ -1- -f

+ + +
+ -f -1-

- + + + .

d) K 2
Pi = 1, P2 =  1,

P---- 1
7 =. 1 / 2 , 7 =  0

■ + + -f ■ -h -f + -1-
-1- + + + + +

+ -f + + + +
-f + 3- -1- + + +

+ + + - + + +

6) A' = 1 c) A = 2
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■ + -1- ■ -1- + +
+ + -h + -l· -1-

+ + + + + +
+ + + + + + +

. + + . + +

e) K = 2
Pi = 1, P2 = 13/15, 

(3 = 0.917 
7 = 17/30, 7 = 0

f ) K = 2
Pi = 13/15, P2 = 13/15, 

¡3 = 0.921
7 = 17/30, 7 = 2/15

Figure 6.16: Some examples of efficiency values.

The scores of the three efficiency indices represent the quality of the cell
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¡j.\ = 0.938 /.ii = 0.818 /<1 = 0.938 = 0.818
/¿2 = 0.873 fi2 = 0.958 ¡.12 -  0.583 2̂ = 0.853

Figure 6.17; Effect of part and machine type weights on grouping efficiency values.

formation solution on a quantitative scale. A number of examples showing the 

effectiveness of the indices are given in Figures 6.16, 6.17, and 6.18. The

cases in F’igure 6.16 represent solutions to six different but simple cell formation 

situations where parts, machines, and operations are assumed to be the same.

In the example, it is also presupposed that each machine has a capacity of six 

operations. In the first two cases, the cell formation solution is a single cell, 

the original job shop. For the rest, there are two cells in the solutions: cell-one 

contains the top two machine types and the leftmost three parts, whereas cell-two 

is composed of the bottom three machine types and is dedicated to fabricate the 

rightmost three parts. In cases a,b,d and e, there are no exceptional elements.

However, both cases c and f have two exceptional elements in their solutions. The 

cells formed in cases a, c and d are full-dense cells, whereas the other cases have 

solutions with relatively sparse cells. The effect of differences in machine types 

and parts on grouping efficiency values is investigated in Figure 6.17. which 

contains four cases in which all operations are the same. The only difference is 

due to part and machine type weights, resulting in different grouping efficiency 

values. In the last example, the operations are different in the two cases but the 

machine type weights and the cell formation solution are the same. The effect on 

work-load balance and under-utilization measures is presented in Figure 6.18.
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Figure 6.IS: Effect of work-loads on balance and under-utilization measures.

The above explained efficiency indices are quite effective in evaluating the cell 

formation solutions as can be seen from the examples. .A.U three efficiency indices 

are more powerful when applied to real life situations. These measures are simple 

and rough enough to use in the initial phases of the design process. The data 

for the calculation of the efficiency measures are present when a manufacturing 

system is to be designed. The standard times and operation sequences, rough 

estimates of annual demand figures and machine costs constitute the input to 

the initial phases of designing Cellular Manufacturing systems. Our efficiency in

dices make use of these data to determine the relative weights of parts, machine 

types and operations. Although originally developed for a Cellular Manufac

turing environment, these indices can well be applied to other manufacturing 

environments.
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6.5 O ther Cell Form ation Techniques Evalu

ated

Some of the cell formation techniques cited in the literature have been developed 

by academic researchers while others have emerged as a result of practical ap

plications. Moreover, computer implementation of earlier techniques is usually 

rather painstaking as they are not mathematically oriented. At any rate, most of 
the techniques proposed for the cell iormation problem are of little value for thev 

ignore performance criteria, which are important in achieving satisfactory solu

tions. What is more, most procediures for manufacturing cells generate different 

solutions to the same cell formation problem depending on the form of input.

A subset of six analytical cell formation techniques which require routing 

information between machine types and parts is selected for a detailed anal

ysis. Although these techniques consider neither possible routing alternatives 

nor operation sequences, the resulting solutions are independent of any special 

block-diagonal structure embedded in the input data. As a result, each technique 

generates a unique solution to the same problem fed in different input formats. 

Moreover, they are computationally efficient. If a solution with a perfect block- 

diagonal structure is found possible, then all of these techniques will generate 

this ideal cell formation solution with absolutely no exceptional elements.

The techniciues selected for further analysis and comparison are lattice-theoretic 

combinatorial grouping (COMBGR . modified rank order clustering (MODROC). 

machine-component cell formation > M.\CE). and authin-cell utilization based 

clustering (WUBC), cost analysis algorithm (C.A..A), and rero-one data -  ¿deal- 

seed algorithm for clustering (ZODIACi.

Of these, COMBGR and MACE consider only the machine grouping problem. 

COMBGR uses set inclusion and joint set union methods whereas MACE em

ploys similarity coefficients. Subsequent to the identification of machine clusters, 

parts are assigned to the cells in both techniques. However, part and machine 

assignments are considered simultaneously and/or subsequently in MODROC, 

WUBC, CAA, and ZODIAC. MODROC is a reordering method applied to the
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machine-part incidence matrix. WUBC and CAA are searching algorithms on 

the graph generated by parts and machines as vertices and routing relationships 

as edges. ZODIAC is the only seed clustering technique reported in the literature.

COMBGR, MACE and MODROC, on the other hand, are hierarchical tech

niques. Initially candidate cells are generated and subsequently merged into 

larger cells. One common feature of these techniques is that the candidate cell 

decision of the first stage directly affects the final solution. If a machine-part 

pair is clustered initially in a particular cell, the assignment in the final solution 

will be the same cell. Other techniques are non-hierarchical in that a machine- 

part pair previously grouped could possibly be reassigned to a different cell. A 

summary of the features of these techniques is described next. For more detailed 

analysis and critique of these techniques, see [59].

COMBGR is a lattice-theoretic hierarchical grouping algorithm developed by 

Purcheck [82, 85, 86]. The basic advantage of COMBGR is that it generates cell 

formation solutions without any exceptional elements. However, proposed cells 

are relatively large so they cause more or less the same drawbacks encountered in 

job shops. This algorithm divides parts into two classes- hosts and guests. Hosts 

are the parts whose machine set is not contained in the respective machine sets of 

any other part. Hosts constitute the minimal independent set in terms of routing 

relations. Initially, cells are identified in such a way that each host represents a 

candidate cell. In other words, a candidate cell is constructed by clustering all 

machines used by the corresponding host. Candidate cells are merged successively 

until the original job shop is obtained. Each merge iteration creates an alternative 

cell formation solution.

MACE is another hierarchical, machine-grouping cell formation technique 

[94]. It uses measures of similarity showing the degree to which a set of parts 

can be processed on a pair of machines. MACE groups machines only if their 

similarity coefficient are greater than a prespecified value. During the first stage, 

the technique generates initial machine clusters, each representing a candidate 

cell. Consequently, the candidate cells are successively joined by using similarity 

coefficients. The last stage of MACE involves part assignments to the final cells.
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MODROC is based on the original Rank Order Clustering (ROC) technique 

[64]. The ROC algorithm treats each row or column of the machine-part incidence 

matrix as a binary word. Integer equivalents of binary words are calculated 

and rows and columns are reordered successively in descending order of integer 

equivalents. A ROC iteration consists of a row reordering followed by a column 

reordering. Those iterations are terminated when no change is encountered. This 

algorithm was altered [65] by utilizing a new data structure and a new sorting 

mechanism. Yet another modification was offered later by Chandrasekharan and 

Rajagopalan [21]. They used King’s iterations twice to obtain an incidence matrix 

containing a rectangular block of ‘ones’ at its top-left corner. This rectangular 

block represents a candidate cell. The corresponding columns of the candidate cell 

are all eliminated from the incidence matrix and the procedure resumes. After all 

candidate cells are formed, they are merged successively until the final solution is 

attained. A similarity coefficient method is applied to assist this merging process.

WUBC is a graph searching cell formation technique [5] by Ballakur and 

Steudel. WUBC induces a breadth-first search on the graph generated by the 

routing relationships between parts and machine types. A key machine type is 

selected eis the root in the search and all parts routed through the key machine 

type are examined. These parts are either admitted to the cell generated by the 

key machine type or remain in their previously assigned cells. The parts that are 

not previously assigned are automatically included in the cell when examined for 

the first time. Consequently, all machine types related to the admitted parts are 

examined in this process. Machine types are added to the cell if their within-cell 

work-loads due to the parts already assigned exceed a prespecified level. Upon 

completion of each search, the required number of machines of each type are 

allocated to the cell based on the within-cell utilizations. Next, another search is 

initiated after selecting a new key machine type among the remaining machines. 

Finally, a rem ainder cell is formed by bringing all left-over machines together. All 

the previously assigned parts may be reassigned to the remainder cell provided 

that it is not empty. Conversely, unassigned parts, if any, are included in the 

remainder cell.
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Like WUBC, CAA (Kusiak and Chow) [70] is a graph searching cell forma

tion technique. However, it focuses on parts rather than machines in defining 

the root during the search process. CAA initiates a breadth-first search on the 

machine-part graph. Each search identifies a different cell. During the search, 

an admit/reject decision is made for all parts except for the root. A rejection 

eliminates the part under consideration from the analysis. A part is admitted 

to the cell unless it increases the number of machine types above a prespecified 

value. The search continues until there are no parts to be assigned to the cell. 

The next cell is constructed by taking another key part as the root. This process 

ceases when all the parts have been either assigned to a cell or rejected from the 

analysis.

ZODIAC is a seed clustering cell formation technique [20, 22] by Chan- 

drasekharan and Rajagopalan. The parts and machine types are treated indepen

dently in the initial phase. Rows of the machine-part incidence matrix represent 

machine types in binary vector format. Similarly, the binary vector for a specific 

part can be obtained from the corresponding column. Parts and machine types 

are clustered separately by means of seeds, where a seed is a binary vector. Part 

and machine clusters are then assigned to each other by the use of similarity 

coefficients. Consequently, each assignment produces a cell.

In addition to the evaluation of these techniques, various modifications and 

extensions to the original algorithms are made in order to bring them into the 

same state so that a sound comparative analysis becomes possible. To illustrate, 

most of the selected techniques are designed to operate on the incidence ma

trix, which means they do not recognize individual machines of the same type. 

These techniques are altered to enjoy the advantage of using work-load and cost 

information. Other modifications and extensions are as follows:

COMBGR’s set partitioning scheme is modified to improve the quality and 

number of alternative cell formation solutions. COMBGR joins each candidate 

cell with at least one other cell, and this puts an artificial condition on the can

didate cell in each merging iteration. Besides, it is sometimes beneficial to keep 

a candidate cell untouched. Part assignments are not considered in the original
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COMBGR. Hence, we propose a part assignment scheme for COMBGR which 

is optimal in terms of grouping efficiency when all parts, machines and opera

tions are identical. COMBGR performs merging iterations sequentially until the 

original shop is obtained. In the meantime, the inner-cell efficiency value of the 

alternative solutions is getting worse since the proposed cells are getting larger. 

There is no need to iterate further if the machine requirements for all types are 

met. This can be considered as a sensible stopping criterion. Another stopping 

criterion we suggest is the minimum machine-difference between the candidate 

cells to be merged. If this value exceeds a prespecified threshold, the merging of 

candidate cells is interrupted. This threshold value should be determined by tak

ing the trade-off between extra investment cind inner-cell densities into account.

After initial candidate cells are identified, MODROC merges one pair of can

didate cells at a time. Therefore, MODROC’s cell formations during the final 

iterations usually contain one large cell and a number of small ones. Naturally, 

the big cell attracts nearby small cells, which reduces the quality of cell formation 

since the resulting large cell decreases the inner-cell density. The following merg

ing scheme is proposed to overcome this drawback and to reduce total number 

of merging iterations. All pairs of cells with similarity coefficient values greater 

than a specified value are picked in each merging iteration so that more than 

one cell-pair merging take place. The threshold for similarity coefficients can 

be determined as a prespecified percentage of the maximum similarity value of 

the current pairs. If the number of independent pairs of candidate cells exceeds 

another prespecified value such as a percentage of number of current candidate 

cells, the threshold is increased for the current iteration. Each merging iteration 

generates an alternative cell formation. As in the case of COMBGR, we offer the 

grouping efficiency measure as the sole criterion for picking the best cell formation 

solution alternative pertaining to the machine availabilities.

The part assignment scheme suggested by MACE leads to a large number 

of exceptional elements. Therefore, a superior part assignment scheme using 

work-load cost fractions is proposed. The work-load cost fraction of a part is 

the percentage of its total work-load cost that is allocated to its assigned cell.
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For each part, the cell with the highest work-load cost fraction is selected for 

assignment. Two threshold values for similarity coefficients are introduced in 

merging machines. After the pair with maximum similarity is picked, two passes 

are made to configure the candidate cell. If the similarity values between a 

candidate machine and the selected pair are higher than the first threshold value, 

the candidate machine is joined to the cell identified by the selected pair. This 

operation is carried out for all the machines other than the selected pair. During 

the second pass, candidates with similarities to all machine types in the current 

composition of the cell exceeding the second threshold value are joined. The next 

pair is chosen among the remaining candidate cells and the two paisses are carried 

out again. The MACE technique can alternatively use three different similarity 

coefficients whose individual effects are explained in the above mentioned study. 

The original version of MACE refers to the machines of the cells without any part 

assignments as “blocking machines”, nevertheless, it lacks a convenient method 

to handle them. Hence, such a method is also suggested.

When a part is rea.ssigned by WUBC, work-loads of the related machine types 

in the part’s previous cell are affected. A decrease in the work-load of a machine 

type might give rise to a decrease in the number of machines of that type, even 

to the removal of the type. This influences the cell-parts still having loads on the 

removed machines. If such a part has operations in another cell, it will naturally 

be reassigned. The new part assignment could lead to new work-load decreases. 

Therefore, WUBC is altered accordingly. Moreover, alternative measures for 

selecting either the key machine type or part assignments are evaluated. The 

machine type with the highest total work-load is found to be the best candidate 

for the the key machine type and the cell in which a part has the maximum work

load percentage is found to be the best cell to assign. The same study reveals 

that 0.60 is the best value for the cell admission factor.

As for CAA, an alternative rule to select the key part is suggested. The part 

with the highest total work-load cost is offered as the key part. CAA expands cells 

only by examining the costs of allowable non-key parts which do not increase the 

cell size above an upper limit. This method usually prevents similar parts from
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joining the cell. Therefore, the following method is introduced. First, allowable 

non-key parts are examined for extra machine requirements. If the number of 

machines needed for a non-key part is less than the cell admission factor, then 

that part is considered as a candidate. The cell admission factor is defined as the 

ratio of the maximum number of extra machines needed to the current cell size. 

Secondly, the set of machine requirements for each candidate part is examined to 

see whether it contains the machine r equirement set of other candidates. The 

cost of such candidates should be taken into account whenever a non-key part 

is selected for cell admission. After each cell is formed, the required number 

of individual machines of each type is calculated. If there are any remaining 

machines, then their corresponding types might be considered in the formation 

of future cells to prevent some parts from being rejected totally. Rejected parts 

are suggested to be reassigned to the already formed cells. For the assignment, 

the cells with the maximum work-load are proposed. Furthermore, the effects of 

the cell admission factor and the cell size upper limits are investigated. Results 

indicate that a cell admission factor of 0.20 is satisfactory, and the upper limit 

on the cell size should be of the minimum value which is the number of ‘ones’ in 

the most dense column of the incidence matrix.

ZODIAC chooses an arbitrary representative seed from each group, which may 

fail to represent the corresponding cluster. The most dense binary vector in each 

cluster is offered as the first representative seed. The remaining representative 

seeds can be determined in such a way that they will be distant from all current 

seeds. First, the candidates with the maximum distance from all the seeds become 

representative seeds. The maximum distance is controlled by machine difference 

factor, and this factor is decreased by a threshold percentage for the next set 

of representative seeds. Moreover, the steps of ZODIAC are resynchronized to 

improve the quality of solutions and to accelerate the algorithm.

Furthermore, the selected techniques make use of fine tuning variables such as 

threshold values. With the help of the efficiency indices described in the previous 

section, the alternatives are evaluated and the best combinations of fine tuning 

values are identified. Yet the reader should refer to the original study [59] for a
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detailed analysis of the extensions, modifications and the improvements offered. 
The modified algorithms used in the analysis are listed below:

Algorithm {COMBGR}

S-1. Input part routing codes, number of machines in the job shop, and maximum 
machine-difference limit;

S-2. Compute sizes and code significances of parts.
Sort parts by size in decreasing order.
Order parts of the same size by code significance in descending order;

S-3. Find hosts and guests, construct hospitality and flexibility relationships.
Identify initial candidate cells characterized by hosts.
Assign parts;

S-4. Calculate size of minimal machine-differences between cells.
If minimal machine-difference size > maximum machine-difference limit, jump 
to S-6,
Compute set combination sizes, forward and inverse relations,
Assign priorities;

S-5. Form super-hosts.
Calculate total machine requirements,
If total machine requirements < total number of machines, jump to S-6,
Replace hosts by superhosts.
Return back to S-4;

S-6. Output the solution.
Calculate efficiency measures;

end {COMBCR}.

Algorithm {MODROC}

S-1. Input incidence matrix, machines in the job shop, lower limit on similarity coef
ficient, upper limit on number of independent parts, and aspiration level a;

S-2. Make two ROC iterations on the incidence matrix;

S-3. Identify the largest top-left block o f ‘ones’.
Determine the candidate cell.
Slice the corresponding columns in the incidence matrix,
If the resultant incidence matrix is not empty, return back to S-2;

S-4. If total machine requirement < total number of machines, save the solution,
If number of cells is equal to one, go to S-6,
Generate similarity coefficient matrix.
Choose independent pairs of cells having higher similarities than the lower limit. 
If number of independent pairs is zero, save the solution and go to S-6;

S-5. Merge cells.
Join part families.
Return back to S-4;
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S-6. Based on oc, choose the solution with the highest grouping efficiency value among 
all cell formation proposals,
Output the solution,
Calculate efficiency measures;

end { MODROC}.

Algorithm {WUBC}

S-1. Input work-load matrix, cell admission factor, cell size upper limit, number of 
machines of each type, rule for key machine type selection, rule for part assign
ments;

S-2. Select key machine type according to the inputed rule,
If there is no key machine type, then go to S-10,
Insert key machine type into the FCFS queue,
Add key machine type into cell;

S-3. Examine aU parts routed through the key machine type.
If the examined part is not already assigned, then assign the part;
If the examined part has a higher part assignment value in this cell, then mark 
the part;

S-4. Evaluate all non-key machine types in the routings of marked or assigned parts. 
If non-key type is neither admitted nor rejected and its WLF > CAF, then admit 
the non-key type, otherwise reject;

S-5. Insert all single machine admitted non-key types into the FCFS queue.
Delete the top machine type from the FCFS queue.
If FCFS queue is not empty, then set the new key as the top element of the queue 
and go to S-3;

S-6. If there is at least one machine type other than the key in the cell, go to S-7, 
Erase marks on parts.
Release machines of the key type in this cell.
Prevent this type from being a key in further iterations.
Go to S-2;

S-7. Compute WCU of all admitted machine types due to marked parts.
List admitted machine types in decreasing order of WCU values.
Assign admitted machine types in this order untU CSUL is reached;

S-8. Examine all marked parts.
Assign a marked part if it has a higher part assignment value in this cell;

S-9. If there is no part assigned to the cell, then discard the cell.
Otherwise, for assigned marked parts, update the work-loads of the corresponding 
machine types in previous cells, release them if necessary.
Erase marks on parts.
Go to S-2;

S-10. Add aU left-over machines into the remainder cell.
Examine all parts for possible reassignment to the remainder cell;

S-11. If there is no part assignment to the remainder cell, then go to S-12,
For reassigned parts, update work-loads of the corresponding machine types in 
previous cells.
If there is a machine release, then go to S-10;
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S-12. Output solution,
Calculate efficiency measures:

end {WUBC}.

Algorithm {CAA}

S-1. Input work-load matrix (WL), cell admission factor (CAF), total work-load costs 
for parts (TWLC), and number of machines of each type,
Compute CSUL;

S-2. Select the key part,
Assign the key part to the cell,
Add aU machine types related to the key part into the cell;

S-3. Find candidate parts.
If there is no candidate part, then go to S-5,
Investigate set inclusion relations between extra machine requirement of candi
date parts.
Update cost of candidate parts;

S-4. Find the candidate part having the maximum cost.
Expand the cell,
If CSUL is not reached, then go to S-3;

S-5. Calculate number of machines for each type in the ceU,
If there are left-over machines go to S-2;

S-6. Assign rejected parts;

S-7. Output solution,
Calculate efficiency measures;

end {CAA}.

Algorithm {MACE}

S-1. Input similarity coefficient type, threshold value, number of machines in the Job 
shop;

S-2. Compute TNC{^ TFCi^
Calculate similarity coefficients of the selected type;

S-3. Select the machine pair with the maximum similarity.
Examine the closest machines,
Form a candidate cell;

S-4. Repeat S-3 until no more machine type is left;

S-5. Compute inter-cell flows.
Replace machines by candidate cells.
Calculate similarity coefficients between candidate cells (SCTFkj)^
Repeat S-3 until no more candidate cells are left;

S-6. Assign parts.
Check the existence of blocking machines.
If there exists blocking machines, relocate them;
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S-7. Output the solution,
Calculate efficiency measures;

end {MACE}.

Algorithm (ZODIAC)

S-1. Input machine-part incidence matrix, weighting factor q, threshold value for rep
resentative seeds.
Calculate maximum allowable number of cells, A*,
Set K  ^  A·;

S-2. Choose K  artificial seeds for columns,
Cluster columns,
Choose representative seeds for columns,
Cluster columns;

S-3. Find number of non-null column clusters, K c,
Modify K  r -  K c ,
Repeat S-2 for rows.
Find number of non-null row clusters, K r ]

S-4. Modify K  ^  M in {K R ,K c},
If K r ^ K c ,  then go to S-2,
Reorder rows and columns in the order of cluster membership;

S-5. Compute similarity coefficients.
Allocate part clusters to machine clusters.
Reorder columns according to the new order of clusters;

S-6. Compute clustering efficiency C relative efficiency r̂ ,
If R̂ = 1, then go to S-11,
Set i  ^  C,

S-7. Generate ideal seeds for machine clusters.
Cluster rows.
Modify K  ^  K r ,
Generate ideal seeds for part clusters,
Cluster columns,
Modify K  ^  M in {K R ,K c),
Generate representative seeds for part clusters.
Cluster columns.
Modify K  ^  M in{KR, K c } ,
Generate ideal seeds for machine clusters.
Cluster rows;

S-8. If K r 7̂  K c ,  then go to S-9,
Generate ideal seeds for part clusters,
Cluster columns,
If K r 7̂  K c ,  then go to S-7,
Go to S-10;

S-9. Replace columns by rows,
Repeat S-7,
If K r 7̂  K c ,  then go to S-7;
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S-10. Reorder columns according to the new order of clusters, 
Compute  ̂ and 
If = 1, then go to S-11,
If i  < ,̂ then revert to the earlier grouping and go to S-11, 
Replace  ̂ C
Liquidate the smallest block (optional).
Go to S-7;

S-11. Output solution.
Calculate efRciency measures;

end {ZODIAC}.

6 .6  Problem  G enerator

In order to provide a critical analysis of the cell formation techniques, the evalu

ation should be based on common test problems representing real life situations 

rather than specific, small-sized test problems. A random problem generator is 

used to evaluate and compare the existing cell formation techniques. The problem 

generator initially produces a machine-part incidence matrix and then generates 

operation sequences and standard times for each and every part. Thereafter, 

annual operating costs, availabilities of machine types, and annual demands of 

parts, which determine the work-load matrix, are created. The number of indi

vidual machines of each type and total work-load cost of each part are computed 

from the work-load matrix. Finally, the efficiency measures for the generated 

shop are calculated.

The incidence matrix indicates the size and the density of the original shop, 

and the place of the generated shop in the manufacturing spectrum. The manu

facturing spectrum has two boundaries: ideal job shop and ideal Cellular Manu

facturing shop. In an ideal job shop, all parts do use all machines. On the other 

hand, ideal Cellular Manufacturing shop involves mutually separated and there

fore independent cells. Four parameters are required to construct a machine-part 

incidence matrix. The first two, the number of parts and the number of ma

chine types in the system, are size parameters showing the size of the shop to 

be generated. The other two are shape parameters. One is the density which is 

actually the ratio of ‘ones’ in the incidence matrix to the total area. The last
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parameter is dumpiness which identifies the location of the generated shop on the 

manufacturing spectrum. The dumpiness parameter shows the degree of possi

ble block-diagonalization in the machine-part incidence matrix. This parameter 

always takes positive values. An ideal job shop can be realized by specifying the 

density parameter as one. Ideal Cellular Manufacturing systems can be generated 

by assigning low values such as 0.10 to the density parameter, and high values 
such as 1000 to the dumpiness paxameter.

A detailed analysis of the clumpiness parameter requires the definition of 

inner-cell density and off-diagonal density. These definitions are used only in 

explaining the random problem generation module, and they are not general def

initions that apply to cell formation problems. Let,

T  ; number of machine types (number of rows of incidence matrix),

P : number of parts (number of columns of incidence matrix),

к : number of imaginary cells (number of possible diagonal blocks in incidence

matrix),

c : dumpiness parameter,

d : overall density of the shop (density of incidence matrix), 

di : inner-cell density of imaginary cells (density of block-diagonal area in inci

dence matrix),

do : density of exceptional elements (density of off-diagonal area in incidence 

matrix),
t : average number of different machine types per cell, 

p : average number of different parts per cell.

The number of ‘ones’ in the incidence matrix, E , can be calculated in the 

following two ways:
E  = T  X P X  d,

E  = {k X  t X  p )  X  d{ + {{T  X  P) — (k X  i  X  p ) )  X  do-

If full block diagonal machine part incidence matrix is square, the overall density 

d is exactly the inverse of the number of diagonal blocks k. With this particular
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c d do d[ C d do d[
0.10 0.1000 0.1000 0.10 0.0166 0.8500

1 0.15 0.1500 0.1.500 6 0.15 0.0250 0.8583
0.20 0.2000 0.2000 0.20 0.0.333 0.8687
0.10 0.0500 0.5500 0.10 0.0143 0.8714

2 0.15 0.0750 0.5750 7 0.15 0.0214 0.8786
0.20 0.1000 0.6000 0.20 0.0286 0.8857
0.10 0.0333 0.7000 0.10 0.0125 0.8875

3 0.15 0.0500 0.7167 8 0.15 0.0188 0.8938
0.20 0.0667 0.7333 0.20 0.0250 0.9000
0.10 0.0250 0.7750 0.10 0.0111 0.9000

4 0.15 0.0375 0.7875 9 0.15 0.0167 0.9056
0.20 0.0500 0.8000 0.20 0.0222 0.9111
0.10 0.0200 0.8200 0.10 0.0100 0.9100

5 0.15 0.0.300 0.8300 10 0.15 0.0150 0.9150
0.20 0.0400 0.8400 0.20 0.0200 0.9200

Table 6.4: Effect of shape parameters on inner-cell and off-diagonal densities.

situation in mind, if we assume that the number of imaginary cells is inversely

proportional to the overall density i.e., k =  from the above equations we have

d  —  d  X  d [  +  { I  —  d )  X  d o ,

which can be solved for do and dj by introducing a new parameter c as:

l - d
do = -  , c

d[ = 1 —

Thus, the dumpiness parameter and the overall density give rise to inner-cell 

and off-diagonal densities. The effect of the shape parameters on the densities is 

illustrated in Table 6.4. It can be observed from the table that the effect of the 

dumpiness parameter on both of the individual densities is more significant than 

that of the overall density. Some examples of the generated incidence matrices 

in relation to various dumpiness values are given in Figure 6.19.

Once density and dumpiness values and the sizes of the problem axe set, the 

incidence matrix can well be generated according to inner-cell and off-diagonal



1 1 l

l 1
1 ı l
111 1 1 1 1  

1
11
1

i l
1

11
1 1 1 1 1  

1 1

1 1 1 
1 1 1 1

1 1 1 
1

l 1

1
1

1 1
1 1 1 1  1 

11 11 1 1  
1 1  1 1  11 1 1 1 1 1  11 1 1 1 1

11 1 
1

1 l 11
1

1
1

1 11 11 1
111

1

1 1  11 
11 1 1 1  

1 1 1 
1 1

1 1 1 1  
1 11 1 

1 1 1 
11 11

1
1

1
11

1 1 1
11

1

1 1 1 1 1 11 
1

1 1 
1 1

1

1 1 11 1 1 1 

1

1
1 1  1 1  

1 1

1
1
1 1 

1

1 1 
1 1 1 

1
11

1

1 1

1 1 

1

1 1

11 1 1 
1

1 1 1 
1 1 1  1 1

11
1 1  1 1

1
1 1 
11

1 1 

1

1 1 
1 1 1  1

1
1 1

1 1 
1

1 1 
1

1 1 
11

1 1 
1 1 111

1

1 1 1
1 1

1 1
1

1 1
1 1

1 1]
1

1
11 1

1 1
1 1

11 1 1
1 1

11 1 1
1 1

1 ]l 1
11 1 l

1 1 1 n
1 1 1

1
1

1
1

1
1 1 1

1 1 1 1
1 1

1 1 1
1 1

1
1 11 1 1

1 1 11
1

1
1

1

1

111 11 1
1 1 1
1

1

1

1
1
1

11 1

1 1 
11

1 1 
1 1

1

1 1

11

1 1

1
11
11

1 1 1
1 1

1111
11

1 11 
1

1 1  1 1

1 1 1 
111 11 1 

1 1 1 
1 1

1 r   ̂ ^

1
1 1

11 1
1 1 1 1  1 

1 1 
1 1 1

1
1 1

1

1

11 1 1
1 1

1 1
11

1 11 
1

1

1
11 1 1 

1 1

a) Clurnpiness=l

1 11 
1 1 

1111
111

1 1 
11 111 1 
1 1 1 

1 1 1 
11 11

1 1111 1 
11 11

111

1 1

1 1
1

1 1
1 1 

1

1
1

11
1

1
1

111 
1111 1

11 11 1 11111 1 1111 
11 11111 11 

1 1  11 1 111 1 
1 11 111 11 1 1

1
1 1

1
11

11

1

1

1 1
1

1
1

1 1

1

1 1 

1
1 1

1 1
1

1
1

1

11

1

1
11 11 1111 1 1 

1

1

1 1 

1

l

1

1

1 1

1

1 1 11 
1

1 1 
1

11

11
1 1 1

1 1 1 1  
1 1 1

1 1 1
1 1111 11111 

11111 1111 111 1
1 11 111 

1 1
11 1111 1

1 1 1111 1 1 1 1 1 İl l in
1 1 11 11 

1 1111 1
1 1 1 11

1 11 1 1 1 1
1 1111 1 11

1
1 1 1 

1 1

1

1 1 

11
1

1 1
1 1 

1

1 1

1 1
1 1

1 1111 11 
1 11 11 11 
1 1111 

İl l in 1 
111 1 11 1 1

1 1 1 
1

1 1

1
1 1

1 1 
1

1

1 1

11

1 1

1 11 
1

1

1 1

1

1 11 1 1 1 11 1 1 111 11
111 1 1 111 1 1111 
1 111  111  1 11 11 

1 1 1  11 11 11 11 1 11 
11111 1 111 111 1 1 

 ̂ 1 1 1 1 11 11 111 
1 1 111 1 1 1 111 1 

1 1 1 1 1  İl l in  111 1 1 1
1 1 1 1 111 111 11 

, 1 11 111 1 İ l l in 1
1 111 1 11 11 11 

1 1 11 111 1 1 1 11 11

b) Clumpiness==2

120



lllll 
l 1 1
i l l i n

İ l l i n
l İ l i l

İ l i n i  
1 111 
11 1 n 11 ı nn n  111 

111

1

1

1 11 1 
11 
111 

n n

1
11

1 1

1 11 n  l l l l l  l i n i n  
i n i n i n  l i n i n
I n n  l 111 lII nı n ı l 1 n
i l l i n  l l l l l  n n  1l

1 1 1

1 l i n i n i n i  
n n n n ı ı  n ı

111 111

1 1
1 1 11 

1111 1 
1111

1
11111111 n n ııı 
l i n i n i  
11 1 111 
1111 111

1 1

1111111 111 
İli lin 11
lllll 11 11 
11 1 l ll l l
İl lin 1111 
İll in 1111

1 1

1 11 1 1

1 1

11

İl l in
İll in
İll in

1111 l l l l l  11 l i n i n  
111  1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1  111  1 
1 1 1111 İl l in 11 1 11

ll l l l  11 111 1111 1 1 1
11 1 111111 11 İl l in  
1 1 111 111 l i n i n i n  

1 111  1 1 1 1 1 1 1 1 1 1 1 1 1 1  11 
11 111 1 1111 1111 11 
11 11 111 111 1 İ l i n i n
1 1111111111 111 1 l l l l l  
1 11 111 111 11 1111 11

c) Clumpiness=4

1

1

1 1
İl l in  
İll in  
İl l in  
1 1111 
11 1 
l ll ll
İ ll in  
11 ı n  

111 1 
11 1 
111 

1111 
1111

l 11 İl i n i n  l i n i n  
1111111111 n n ı ı ı
1 1111 l l ll l  11 1
İl lin 11111111111 
l i n i n  1111111111 1

1 1111111111111 
1111111111111111

l i n i n  
1 111 
İl l in

lll l l

1 1

1

1 1

İlini n  
1 l i n in  

İ lini n 1
İl in in  1
İ lini n

l i n i n  111 1 1
11111111111
İ l in in  11 1
1111 İl l in  
11111111111 
İllin 1111

11 11 1111 1111111111111111 
1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1  
1111111111111111 İl l in  
1 İl l in  11111111111 11 

İ l i n i n  İ l i n i n  1 1 11 
111111111111111111111111 
1 1 111 111111111111111  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  111  
İli ni  İl l in l l l l l  11 
111111111111111 İ l i n i n  

1 1 11111111111111 l i n i n
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  11

d) Clumpiness=9
Figure 6.19: Effect of dumpiness on generated incidence matrices.
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densities. After determining the number of imaginary cells k, the average number 

of different machine types ( i  = T ■ d) and parts (p = P -d) in each imaginary cell 

is calculated. Then the imaginary diagonal blocks are generated in random with 

sizes around these average values without changing T  and P  limits. For each 

entry of the incidence matrix, a random number between 0 and 1 is generated, 

and if it is less than the inner-cell (or off-diagonal) density then the element will 

be 1; if not, it will be 0. Finally, the rows aiid columns of the incidence matrix 

are permuted randomly to eliminate a trivial cell formation solution.

Subsequent to the incidence matrix, a corresponding work-load matrix is 
formed. At this stage, standard times and annucil demands of parts are gen

erated. In the meantime, annual available capacities of machine types are pro

duced. Afterwards, the work-load matrix is computed. Finally, the number of 

machines of each type and total work-load costs of each part are calculated from 
the work-load matrix.

6 .7  Exp erim ental Design

In the thesis, the performance of the selected cell formation techniques are tested 

under randomly generated conditions. In order to reduce the size of the experi

ment, some input parameters of the generator are fixed. The varying factors in 

the experiment are the number of parts, density of the shop, dumpiness, demand 

of parts, and machine operating costs.

A summary of the factors and their levels in the experimentation is presented 

in Table 6.5. Working of the techniques under different problem sizes are ana

lyzed by setting the number of parts to two levels. Both of the shape parameters 

which affect the type of the shop being generated are altered at different levels. 

The selected densities are based on the results of example problems and specific 

implementations in the literature. Densities between 0.10 and 0.20 are found to 

represent different scenarios adequately. Small values for the dumpiness param

eter change the shape of incidence matrices substantially. However, the greater 

the dumpiness value, the smaller the change in the shape. Therefore, the levels
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F A C T O R S V A L U E S #
Size
P aram eters

Number of machine types T = 50 1
Number of parts P  = 100,150

Shape
P aram eters

Density d=  .10,.15, .20 3
Clumpiness c  =

D istribution
P aram eters

Annual part 
demands

High variance U 50;4050
2Low variance U 1050;30501

Annual machine 
operating cost

High variance 
Low variance

f/[lO0; lOOlOOJ 
U[25050;75050] 2

Total number o f  se le c ted  PF/MG-F techn iques 8

Table 6.5: Factors of the experiment.

ALGORITHM FACTOR VALUE
COMBGR Maximum machine difference lim it 7
MODROC Lower lim it on similarities 0.75

Upper lim it on independent pairs 5
MACE Threshold values 0.10

Job shop like S C T F
Intermediate ~PNC
Ideal CM like SC

-----ZODIAC Weighting factor 0.50
Threshold value 7

-------WUEC Cell admission factor 0.60
Cell size upper lim it 50
Key machine selection rule A4
Part assignment rule B2

UAA Cell admission factor 0.20
Extra factor on cell size limit 0

HAPCUT Approximation type Clique
Threshold value (J75

ETEC Cplex routine Barrier
Threshold value (LSD

Table 6.6: The best fine tuning values of cell formation techniques.

considered are 1, 2, 4, and 9. The effect of these values on a specific incidence 
matrix is illustrated in Figure 6.19. Finally, both demand and operating cost 
factors are analyzed at two levels, high variance and low variance.

Each of the eight selected techniques requires specific parameter settings. The 
best fine-tuned values of these parameters are illustrated in Table 6.6. In the



CHAPTER 6. CELL EORMATION PROBLEM 125

evaluation process, each technique is analyzed under 96 different scenarios. Ten 

different statistically independent cell formation problems are generated for each 

combination of the factors. Hence, the number of runs in the experimentation 
amounts to 7680:

10 x 8 x 2 x 3 x 4 x 2 x 2  = 7680.

6.8  R esults and Discussion

For each combination of the factors, the work-load balance index, the under

utilization index, and the modified grouping efficiency index, which is determined 

by inter-cell flow efficiency and inner-cell density, are computed. The analyses of 

variance (ANOVA) for all efficiency measures are listed in Tables 6.7, 6.8, 6.9, 

and 6.10. The significance level for all tests is 0.05. In the tables, the statistically 

significant factors are shown by boldface letters. ANOVA tables for each measure 

are analyzed as follows:

The ANOVA analysis for inter-cell flow is presented in Table 6.7. According 

to the test, the main effects of of all the factors except for the operating cost 

are considerably significant. The main effects of the algorithms and dumpiness 

together with their cross effect are the most significant. Furthermore, almost all 

of the 2-way, 3-way and 4-way interaction of the algorithms, the number of parts, 

density and dumpiness are statistically significant.

The same conclusions can be drawn for inner-cell density as can be seen 

from Table 6.8. The main effects of algorithms, number of parts, density and 

dumpiness are significant together with their cross effects. One should notice the 

small error sum of squares in the two parts of the modified grouping measure. 

This indicates that the factors and their interactions explain 96.63 % of the 

variability in inter-cell flow, and 97.17 % in inner-cell density measure.

According to the ANOVA analysis given in Table 6.9, the main effects of all 

the factors except for the operating cost on the work-loeid balance measure are 

considerably significant. The main effects of the algorithms, the number of parts
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"Source”

X

y
z
t
u
V

xy
xz
xt
XU
XV
yz
yt

yu
yv
zt
zu
zv
tu
tv

uv
xyz
xyt

xyu
xyv
xzt
xzu
xzv
xtu
xtv

xuv
yzt
yzu
yzv
ytu
ytv

yuv
ztu
ztv
zuv
tuv

xyzt
xyzu
xyzv
xytu
xytv

xyuv
xztu
xztv
xzuv
xtuv
yztu
yztv
yzuv
ytuv
ztuv

xyztu
xyztv
xyzuv
xytuv
xztuv
yztuv

xyztuv
ERROR

Sum of Square Dof Mean Square
■1296211.3-25 

7658.687 
24.029 

107.768 
2920.325 

256134.565 
18763.025 
2032.187 
377.386 

129320.044 
5129826.222 

51.682 
31.268 

2428.057 
483.837 

4.688 
16.537 

141.311
19.860
37.860 

25371.433
91.019

295.797
12622.086
11467.137

39.052 
245.783 
627.080 
193.169 
321.381

165912.384
6.863
4.774

30.636
32.228
23.357

5687.348
5.664

34.576
23.408
47.456 
21.737

248.431
197.855
196.743
357.438

38085.928
219.002
173.171
283.577
398.604
37.053 
42.523

120.228
19.225
92.456 

100.235 
146.674 
473.997 
602.671 
435.105 
107.696 
705.782

93066.661

1 
1 
1 
1
2 
3

15
15
15
23
31
3
3
5
7
3
5
7
5
7

11
31
31
47
63
31
47
63
47
63
95
7

11
15
11
15
23
11
15
23
23
63
95

127
95

127
191
95

127
191
191
23
31
47
47
47

191
255
383
383
383
95

767
6911

185173.046
76.58.687

24.029
107.768

1460.162
8.5378.188
1250.868
135.479
25.159

5622.611
165478.265

17.227
10.423

485.611
69.120
1.563
3.307

20.187
3.972
5.409

2306.494
2.936
9.542

268.555
182.018

1.260
5.229
9.954
4.110
5.101

1746.446
0.980
0.434
2.042
2.930
1.557 

247.276
0.515
2.305 
1.018 
2.063 
0.345 
2.615
1.558 
2.071 
2.814

199.403
2.305 
1.364 
1.485 
2.087 
1.611 
1.372
2.558 
0.409 
1.967 
0.525 
0.575 
1.238 
1.574 
1.136 
1.134 
0.971

13.466

V Value
13750.691

568.723
1.784
8.003

108.430
6340.065

92.888
10.060
1.868

417.527
12288.185

1.279
0.774

36.061
5.133
0.116
0.246
1.499
0.295
0.402

171.277
0.218
0.709

19.943
13.516
0.094
0.388
0.739
0.305
0.379

129.689
0.073
0.032
0.152
0.218
0.116

18.362
0.038
0.171
0.076
0.153
0.026
0.194
0.116
0.154
0.209

14.807
0.171
0.101
0.110
0.1550.120
0.102
0.190
0.030
0.146
0.039
0.043
0.092
0.117
0.084
0.084
0.072
1.000

T,dof,OQ
3.84
3.84
3.84
3.00 
2.60
1.67
1.67
1.67
1.53
1.45 
2.60 
2.60 
2.21
2.01 
2.60 
2.21 
2.01 
2.21 
2.01
1.79
1.45
1.45
1.37
1.32
1.45
1.37
1.32
1.37
1.32
1.27 
2.01
1.79
1.67
1.79
1.67
1.53
1.79
1.67
1.53
1.53
1.32
1.27 
1.22
1.27 
1.22
1.15
1.27 
1.22
1.15
1.15
1.53
1.45
1.37
1.37
1.37
1.15
1.10
1.07
1.07
1.07
1.27 
1.05 
1.01

Algorithms
Demand

y:
u:

Number of Parts 
Density

z: Operating Cost 
v: Clumpiness

T ab le  6 .7 : A nalysis of V arian ce tab le  for inter-cell flow.
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x:
t:

Algorithms
Demand

y:
u:

Number of Parts 
Density

Source Sum of Square ■"Dof IVleari Square V Value  ̂dof .00
X 2942538.124 7 WJ62..589 2L5.50.822 ■■■ l i ) l
y 1860.267 1 1860.267 95.371 3.84
z 60.140 1 60.140 3.083 3.84
t 46.932 1 46.932 2.406 3.84

u 40892.650 2 20446.325 1048.226 3.00
V 467271.209 3 155757.070 7985.232 2.60

xy 1776.568 15 118.438 6.072 1.67
xz 1673.157 15 111.544 5.719 1.67
xt 1211.896 15 80.793 4.142 1.67
XU 115172.338 23 5007.493 256.720 1.53
XV 7969878.644 31 257092.859 13180.438 1.45
yz 83.424 3 27.808 1.426 2.60
yt 100.851 3 33.617 1.723 2.60

yu 1076.548 5 215.310 11.038 2.21
yv 2267.108 7 323.873 16.604 2.01
zt 11.709 3 3.903 0.200 2.60
zu 156.524 5 31.305 1.605 2.21
zv 140.930 7 20.133 1.032 2.01
tu 56.253 5 11.251 0.577 2.21
tv 347.566 7 49.652 2.546 2.01
uv 18628.770 11 1693.525 86.822 1.79
xyz 434.293 31 14.009 0.718 1.45
xyt 331.819 31 10.704 0.549 1.45

xyu 16088.389 47 342.306 17.549 1.37
xyv 18383.902 63 291.808 14.960 1.32
xzt 446.530 31 14.404 0.738 1.45
xzu 427.204 47 9.089 0.466 1.37
xzv 1212.707 63 19.249 0.987 1.32
xtu 946.475 47 20.138 1.032 1.37
xtv 1511.570 63 23.993 1.230 1.32

xuv 130354.701 95 1372.155 70.347 1.27
yzt 8.806 7 1.258 0.064 2.01
yzu 273.372 11 24.852 1.274 1.79
yzv 259.624 15 17.308 0.887 1.67
ytu 30.187 11 2.744 0.141 1.79
ytv 148.274 15 9.885 0.507 1.67

yuv 1179.196 23 51.269 2.628 1.53
ztu 257.600 11 23.418 1.201 1.79
ztv 221.201 15 14.747 0.756 1.67
zuv 296.790 23 12.904 0.662 1.53
tuv 267.927 23 11.649 0.597 1.53

xyzt 202.226 63 3.210 0.165 1.32
xyzu 942.196 95 9.918 0.508 1.27
xyzv 827.816 127 6.518 0.334 1.22
xytu 702.836 95 7.398 0.379 1.27
xytv 1075.566 127 8.469 0.434 1.22

xyuv 37612.908 191 196.926 10.096 1.15
xztu 737.450 95 7.763 0.398 1.27
xztv 945.676 127 7.446 0.382 1.22
xzuv 2432.935 191 12.738 0.653 1.15
xtuv 1760.887 191 9.219 0.473 1.15
yztu 18.365 23 0.798 0.041 1.53
yztv 76.109 31 2.455 0.126 1.45
yzuv 159.378 47 3.391 0.174 1.37
ytuv 388.249 47 8.261 0.423 1.37
ztuv 355.967 47 7.574 0.388 1.37

xyztu 677.528 191 3.547 0.182 1.15
xyztv 1283.046 255 5.032 0.258 1.10
xyzuv 2035.406 383 5.314 0.272 1.07
xytuv 2006.940 383 5.240 0.269 1.07
xztuv 1764.208 383 4.606 0.236 1.07
yztuv 616.940 95 6.494 0.333 1.27

xyztuv 2102.701 767 2.892 0.148 1.05
ERROR 134803.478 6911 19.506 1.000 1.01

v: dumpiness

Table 6.8: Analysis of Variance table for inner-cell density.
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x: Algorithms y: Number of Parts 
t: Demand u: Density

z; 
v: Cl

Op·

Source Sum of Square Dof Mean Square b' Value ^ dof,CO
X ШШТ7ТТ 7 27881.968 3281.587 2.01
У 5166.960 1 5166.960 608.129 3.84
z 13.405 1 13.405 1.578 3.84
t 175.397 1 175..397 20.643 3.84
u 4558.743 2 2279.372 268.272 3.00

V 322.186 3 107.395 12.640 2.60
xy 2247.515 15 149.834 17.635 1.67
xz 586.653 15 39.110 4.603 1.67
xt 137.128 15 9.142 1.076 1.67

XU 10701.985 23 465.304 54.764 1.53
XV 785507.692 31 25338.958 2982.286 1.45
yz 46.759 3 15.586 1.834 2.60
yt 46.834 3 15.611 1.837 2.60
yu 41.464 5 8.293 0.976 2.21
yv 550.066 7 78.581 9.249 2.01
zt 22.897 3 7.632 0.898 2.60

zu 191.819 5 38.364 4.515 2.21
zv 62.834 7 8.976 1.056 2.01
tu 61.332 5 12.266 1.444 2.21
tv 224.256 7 32.037 3.771 2.01
uv 438.815 11 39.892 4.695 1.79

xyz 501.567 31 16.180 1.904 1.45
xyt 159.967 31 5.160 0.607 1.45

xyu 2059.063 47 43.810 5.156 1.37
xyv 3224.510 63 51.183 6.024 1.32
xzt 341.387 31 11.012 1.296 1.45

xzu 656.363 47 13.965 1.644 1.37
xzv 830.414 63 13.181 1.551 1.32
xtu 218.130 47 4.641 0.546 1.37
xtv 1370.404 63 21.752 2.560 1.32
xuv 6979.617 95 73.470 8.647 1.27
yzt 37.852 7 5.407 0.636 2.01
yzu 138.777 11 12.616 1.485 1.79
yzv 145.181 15 9.679 1.139 1.67
ytu 84.750 11 7.705 0.907 1.79
ytv 73.974 15 4.932 0.580 1.67
yuv 280.851 23 12.211 1.437 1.53
ztu 35.097 11 3.191 0.376 1.79
ztv 114.590 15 7.639 0.899 1.67
zuv 95.327 23 4.145 0.488 1.53
tuv 357.447 23 15.541 1.829 1.53
xyzt 270.999 63 4.302 0.506 1.32
xyzu 961.001 95 10.116 1.191 1.27
xyzv 641.922 127 5.055 0.595 1.22
xytu 335.418 95 3.531 0.416 1.27

xytv 1417.793 127 11.164 1.314 1.22
xyuv 2853.200 191 14.938 1.758 1.15
xztu 317.445 95 3.342 0.393 1.27

xztv 1476.052 127 11.622 1.368 1.22
xzuv 933.455 191 4.887 0.575 1.15
xtuv 1591.241 191 8.331 0.981 1.15
yztu 28.447 23 1.237 0.146 1.53
yztv 58.882 31 1.899 0.224 1.45
yzuv 155.623 47 3.311 0.390 1.37
ytuv 132.388 47 2.817 0.332 1.37
ztuv 964.644 47 20.524 2.416 1.37
xyztu 326.978 191 1.712 0.201 1.15
xyztv 258.856 255 1.015 0.119 1.10
xyzuv 763.974 383 1.995 0.235 1.07
xytuv 1049.152 383 2.739 0.322 1.07

xztuv 7262.543 383 18.962 2.232 1.07
yztuv 245.045 95 2.579 0.304 1.27

xyztuv 1763.350 767 2.426 0.285 1.05
ERROR 58719.230 6911 8.496 1.000 1.01

umpiness

T ab le  6 .9 : A nalysis o f V arian ce  ta b le  for w ork-load b alan ce.
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Source Sum of Square Dof Mean Square F Value  ̂dof ,oc

X 330512.3̂ 58 7 47216.048 6120.899 2.01
y 26440.470 1 26440.470 3427.637 3.84
z 647.499 1 647.499 83.939 3.84
t 184.364 1 184.364 23.900 3.84
u 8080..348 2 4040.174 523.752 3.00
V 41721.21.5 3 13907.072 1802.857 2.60

xy 25997.978 15 1733.199 224.685 1.67
xz 997.5.52 15 66.503 8.621 1.67
xt 711.559 15 47.437 6.150 1.67
XU 42211.504 23 1835.283 237.919 1.53
XV 750380.379 31 24205.819 3137.945 1.45
yz 21.869 3 7.290 0.945 2.60
yt 0.632 3 0.211 0.027 2.60

yu 3900.875 5 780.175 101.139 2.21
yv 1444.030 7 206.290 26.743 2.01
zt 65.599 3 21.866 2.835 2.60
zu 29.518 5 5.904 0.765 2.21
zv 429.998 7 61.428 7.963 2.01
tu 705.039 5 141.008 18.280 2.21
tv 386.802 7 55.257 7.163 2.01
uv 10066.521 11 915.138 118.635 1.79

xyz 762.764 31 24.605 3.190 1.45
xyt 695.404 31 22.432 2.908 1.45
xyu 13280.047 47 282.554 36.629 1.37
xyv 13216.581 63 209.787 27.196 1.32
xzt 175.900 31 5.674 0.736 1.45
xzu 299.943 47 6.382 0.827 1.37
xzv 1539.209 63 24.432 3.167 1.32
xtu 1709.953 47 36.382 4.716 1.37
xtv 1.548.315 63 24.576 3.186 1.32
xuv 41187.286 95 433.550 56.204 1.27
yzt 5.758 7 0.823 0.107 2.01
yzu 37.599 11 3.418 0.443 1.79
yzv 686.742 15 45.783 5.935 1.67
ytu 239.044 11 21.731 2.817 1.79
ytv 306.227 15 20.415 2.647 1.67
yuv .3551.337 23 154.406 20.017 1.53
ztu 6.988 11 0.635 0.082 1.79
ztv 123.242 15 8.216 1.065 1.67
zuv 262.048 23 11.393 1.477 1.53
tuv 1826.725 23 79.423 10.296 1.53
xyzt 179.114 63 2.843 0.369 1.32
xyzu 675.066 95 7.106 0.921 1.27

xyzv 1741.333 127 13.711 1.777 1.22
xytu 1343.768 95 14.145 1.834 1.27
xytv 2407.259 127 18.955 2.457 1.22
xyuv 37595.838 191 196.837 25.517 1.15
xztu 1039.980 95 10.947 1.419 1.27
xztv 854.700 127 6.730 0.872 1.22

xzuv 2352.984 191 12.319 1.597 1.15
xtuv 4076.265 191 21.342 2.767 1.15
yztu 0.313 23 0.014 0.002 1.53
yztv 43.690 31 1.409 0.183 1.45

yzuv 576.931 47 12.275 1.591 1.37
ytuv 968.751 47 20.612 2.672 1.37
ztuv 177.651 47 3.780 0.490 1.37

xyztu 805.909 191 4.219 0.547 1.15
xyztv 662.554 255 2.598 0.337 1.10

xyzuv 3821.731 383 9.978 1.294 1.07
xytuv 3433.558 383 8.965 1.162 1.07
xztuv 1474.428 383 3.850 0.499 1.07
yztuv 171.425 95 1.804 0.234 1.27

xyztuv 2054.902 767 2.827 0.366 1.05
ERROR 53310.810 6911 7.714 1.000 1.01 1

x: Algorithms y: Number of Parts z: 0 aerating Cost
t: Demand u: Density v: C umpmess

T ab le 6 .1 0 : A nalysis of V arian ce  ta b le  for u n d er-u tilization s.
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and density are the most significant ones. Another sources of variation are due 

to the cross effect of the algorithms and dumpiness, and due to the cross effect 

of algorithms and density. The other significant factors detected by means of the 

T  test have relatively small effects on work-load balances. The factors and their 

indicated interactions explain only 82.74 % of the variability in the randomly 

generated problems.

The ANOVA analysis for under-utilization is presented in Table 6.10. The 

majority of the rows are found to be statistically significant. All of the 1- 

way, 2-way, 3-way and even 4-way interactions of the algorithms, the number of 

parts, density and dumpiness have a considerable variation effect on the under

utilization measures. The other significant factors detected by means of the ^  

test have relatively small effects on under-utilizations. The factors and associated 

interactions explain 94.07 % of the variability in under-utilization values.

The results of pairwise compajisons among the factor levels are obtained by 

using Sheffee-type simultaneous 95 % confidence intervals. Since the number 

of parts, machine operating costs and demand factors have only two levels, the 

existing sources of variations are clearly due to these two. Table 6.11 presents the 

estimated mean differences for the factor levels i and j .  The 95 % confidence 

interval for these mean differences can be obtained from L ij  ±  E, where €  stands 

for the error term and is given in the parenthesis for each factor. As an example, 

the mean inter-cell flow index difference between COMBGR and MODROC is 

considered. From the table, the 95% confidence interval for this difference is 

26.9375±0.6283 which is (26.3092,27.5658). Since the confidence interval does 

not contain zero, a statistical difference is observed between the inter-cell flow 

efficiency means of COMBGR and MODROC. The other factors at each efficiency 

measure can be interpreted similarly. From this analysis, it is observed that only 

few pairwise comparisons prove insignificant and these are indicated in boldface 

letters in the table.

As a summary, the main sources of variation in all of the efficiency measures 

are due to the algorithms, dumpiness, the number of parts, density and their 

interactions. The ANOVA tables indicate that the levels of these factors and



their interactions do have different means. However, they do not identify the 

levels of the factors which are significantly different than the others. In order to 

illustrate such differences, the mean values of these levels are plotted in Figures 

6.20, 6.21, and 6.22.

A summary of the important findings for each technique is given below:

1. CAA is the most insensitive technique regardless of the factors. Only a 

slight increase in the grouping efficiency value is observed as we increase 
dumpiness.

2. Because COMBGR generates solutions with no exceptional elements, ma
chine duplications occur and this leads to:

• 100% inter-cell flow efficiency;

• low inner-cell density measures;

• low work-load balance values;

• high machine under-utilization values.

3. MACE creates

• large number of small sized cells in low dumpiness values;

• grouping efficiency values that are insensitive to alpha changes in the 

case of high dumpiness values;

• good work-load balances;

• high under-utilization figures in low dumpiness values;

4. It has been observed that MODROC solutions depend heavily on the first 

two ROC iterations. The presence of exceptional elements affects final 

merging iterations leading to solutions with:

• low grouping efficiency values for low dumpiness and moderate values 

for high dumpiness values;
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• satisfactory work-load balance and under-utilization scores, but not 
the best;

• sensitivity to an introduction of new parts into manufacturing envi
ronment.

5. WUBC behaves like COMBGR except that it allows the existence of ex

ceptional elements. WUBC provides solutions with:

• close grouping efficiency values for low dumpiness and worse for high 

dumpiness values;

• higher work-load balance values due to clustering based on work-loads; 

better machine utilization mecisures.

6. Since ZODIAC is designed to generate a perfect block-diagonal structure, 

the technique does not perform well for low dumpiness values. For high 

dumpiness values, the solutions generated by ZODIAC have:

• robust grouping efficiency values in changing a  values;

• best grouping efficiency values;

• high work-load balance measures;

• low machine under-utilizations.

7. HAPCUT has flat efficiency plots which shows a good balance of the inner

cell density and the inter-cell flow efficiency. HAPCUT

• performs relatively well in terms of the modified grouping efficiency 

when the density is high and a  has moderate values. When the dumpi

ness increases, the plot shifts upwards.

• its modified efficiency scores are almost insensitive to density changes, 

and it is robust in changes in the number of parts.

• has reasonable work-load balance scores. When the number of parts 

is increased, the variability of the work-load balance is increased.
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• has relatively high under-utilization values. They are increased as 
dumpiness increases.

8. SIBC has low inner-cell density values as compared to inter-cell flow values.

As dumpiness increases, the slope its efficiency plot reduces. SIBC

• has a good performance in terms of the modified grouping efficiency 

in low dumpiness values especially in cases dumpiness is equal to 2.

• has lower inter-cell flow values when the number of parts is increased.

• has better work-load balance values when the number of parts is in

creased.

• has lower under-utilization values when the dumpiness is increased. 

As the number of parts is is increased, the under-utilization scores 

are worse off. If the density decreases, the under-utilization scores are 
better off. increased.

The best cell formation technique suggested for each combination of the shape 

parameters in terms of the grouping efficiency measure are presented in Table 

6.12. The best technique for each dumpiness-density pair is extracted from the 

associated plot. The techniques with results very close to the best score are 

also included in the related entry in the table. Similarly, the best cell formation 

techniques in terms of the work-load balance measure and the under-utilization 

values are given in Table 6.13.

In relation to the grouping efficiency, MACE seems to be the best technique 

for low dumpiness values if inner-cell densities are considered more critical than 

inter-cell flow efficiencies. As dumpiness increased a bit, HAPCUT joins MACE. 

COM BGR and WUBC are the best when inter-cell flows gain importance. As 

dumpiness increases, ZODIAC dominates the other techniques, even at moderate 

to high a  values. Nevertheless, COMBGR is still the best alternative provided 

that the presence of exceptional elements are totally undesirable. If the two 

extremes are in balance i.e., inner-cell densities and inter-cell flows are equally 

important, ZODIAC and SIBC should be preferred. Hence, MACE, COMBGR,



and WUBC are the best for low dumpiness whereas ZODIAC and HAPCUT and 
SIBC are the best for high dumpiness values.

The cell formation solutions generated by COMBGR and CAA are inferior 
in terms of work-load balances. The other four techniques except HAPCUT 
and SIBC, however, perform reasonably well. In almost all of the Ccises, WUBC 
performs best in terms of the under-utilization. In addition to WUBC, MODROC 
and ZODIAC generate good cell formation solutions in terms of under-utilization 
measure. For high dumpiness values, MACE appears to have a good performance.



Inter-cell flow Inner-cell d en sity W ork-load  b a lan ce U n d er-u tiliza tio n
ALGORITHM (0.6283) (0.7561) (0.4991) (0.4755)

COMBGRvsMODROC
COMBGRvsWUBC
COMBGRvsCAA

COMBGRvsMACE
COMBGRvsZODIAC
COMBGRvsHAPCUT

COMBGRvsSIBC
MODROCvsVVUBC
MODROCvsCAA

MODROCvsMACE
MODROCvsZODIAC
MODROCvsHAPCUT

MODROCvsSIBC
WUBCvsCAA

WUBCvsMACE
WUBCvsZODIAC
WUBCvsHAPCUT

WUBCvsSIBC
CAAvsMACE

CAAvsZODIAC
CAAvsHAPCUT

CAAvsSIBC
MACEvsZODIAC
MACEvsHAPCUT

MACEvsSIBC
ZODIACvsHAPCUT

ZODIACvsSIBC
HAPCUTvsSIBC

100.000- 73.062
100.000- 96.010:
100.000- 76.260=
100.000- 64.385=
100.000- 64.938=
100.000- 70.771=
100.000- 88.937=
73.062- 96.010=
73.062- 76.260=
73.062- 64.385
73.062- 64.938=
73.062- 70.771=

73.062- 88.937=
96.010- 76.260=
96.010- 64.385=
96.010- 64.938=
96.010- 70.771=
96.010- 88.937=
76.260- 64.385=
76.260- 64.938=
76.260- 70.771=

76.260- 88.937=
6 4 . 3 8 5 -  6 4 . 9 3 8 = -

64.385- 70.771= 
64.38.5-88.937=
64.938- 70.771=
64.938- 88.937= 
70.771-88.937=·

26.938131.417- 48.000=
: 3.990 I 31.417-22.896= 
23.740|31.417-58.438=- 
35.615|31.417-73.510= 
35.062|31.417-81.240=
29.229131.417- 74.750= 
11.063|31.417-55.271= 
22.948148.000-22.896=

-3.198 ¡48.000-58.438=·
: 8.677 148.000-73.510=·
: 8.125 148.000-81.240=- 
: 2.292 ¡48.000-74.750=· 
-15.875148.000-55.271= 
19.750 ¡22.896-58.438=- 
31.625 ¡22.896-73.510=- 
31.072 ¡22.896-81.240=- 
25.239 ¡22.896-74.750=- 
7.073 ¡22.896-55.271=- 
11.875 ¡58.438-73.510=- 
11.332¡58.438-81.240=- 
5.489 158.438-74.750=- 
•12.677 ¡ 58.438-55.271= 
0.553 ¡73.510-81.240= 

-6.386 ¡73.510-74.750= 
•24.552 ¡73.510-55.271=
- 5.833 ¡ 81.240-74.750= 
29.999 ¡81.240-55.271= 
18.166 ¡74.750-55.271=

16..584|72.864-86.438=-13.573 
8.521 |72.864-86.417=-13.552 

-27.0211 72.864-78.458=- 5.594 
-42.094¡72.864-86.646= -13.78 
-49.823 ¡72.864-85.458= -12.59 
-43.333¡72.864-76.938= -  4.073 
-23.854¡72.864-78.677= -  5.813 
25.1051 86.438-86.417= 0.021 
-10.4371 86.438-78.458= 7.979 
-25.5101 86.438-86.646= -  0.208 
-33.239¡ 86.438-85.458= 0.979 
-26.750 ¡ 86.438-76.938=9.500
- 7.2701 86.438-78.677= 7.760 
-35.5421 86.417-78.458= 7.958 
-50.6l5j 86.417-86.646= -  0.229 
-58.344¡ 86.417-85.458=0.689 
-51.914¡ 86.417-76.938= 9.209 
-32.435¡ 86.417-78.677= 7.470 
-15.072¡ 78.458-86.646=- 8.188 
-22.802¡ 78.4.58-85.458= -7.000 
■16.312¡ 78.458-76.938= 1.520
3.167 I 78.458-78.677=- 0.219

- 7.730¡ 86.646-85.458= 1.188
- 1.240) 86.646-76.938= 9.708 
18.239 ¡ 86.646-78.677=7.969 
6.490 ¡ 85.458-76.938= 8.520 
25.969 ¡ 85.458-78.677=6.871 
19.479 ¡ 76.938-78.677=- 1.739

21.729- 8.12.5= 13.60-4
21.729- 6.073= 15.656
21.729- 15.021= 6.70i<
21.729- 16.292= 5.438
21.729- 14.635= 7.094 

21.729-26.833= - 5.10‘
2 1 . 7 2 9 -  2 1 . 5 9 4 =  0 . 1 3 5

8.125-6.073= 2.0.52
8.125- 15.021= -  6.896
8.125- 16.292=- 8.167
8.125- 14.635=-6.510
8.125- 26.833=-18.708
8.125- 21.594= -13.469
6.073- 15.021= -  8.948
6.073- 16.292= -10.219
6.073- 14.635=- 8.562
6.073- 26.833=-20.760
6.073- 21.594=-15.521
15.021- 16.292=- 1.271

1 5 . 0 2 1 -  1 4 . 6 3 5 =  0 . 3 8 6

15.021- 26.833=-! 1.814
15.021- 21.594=-6..573 
16.292-14.635= 1.657

16.292- 26.833=-10..54I
16.292- 21.594=-5.302
14.635- 26.833=-12.19>
14.635- 21.594=-6.959 
26.833-21.594= 5.239

# PARTS
100 vs 150 78.297- 80.294= -1.997)55.198 -56.182= -0.984) 80.667 -82.307= 1.640 18.143 -14.432= 3.711

OPER. COST
Low vs High 79.351 -79.240= 0.111 ) 55.779 -55.602= 0.177 ) 81.445 -81.529= -0.084 15.997 -16.578= -0.58:
DEMAND

Low vs High 79.177 -79.414= 0.237 ) 55.612 -55.768= -0.156)81.336 -81.638= -0.302 16.443 -16.133= 0.310
DENSITY (0.3847) (0.4630) (0.3056) (0.2912)
10 vs 15 
10 vs 20 
15 vs 20

80.129- 79.102=
80.129- 78.656= 
79.102-78.656=

1.027 ) 52.859-55.699=-2.840 ) 80.422-81.820=-!.398 
1.473 ¡ 52.859-58.512=-5.652 ¡ 80.422-82.219=-1.797 
0.445 ¡ 55.699-58.512=-2.812 ¡ 81.820-82.219=-0.399

17.738- 15.574= 2.164
17.738- 15.551= 2.188
15,574-15.551= 0.023

CLUMPINESS (0.4443) (0.5347) (0.3529) (0.3362)
1 vs 2 
1 vs 4
1 vs 9
2 vs 4 
2 vs 9 
4 vs 9

72.401- 72.750=-
72.401- 82.406=-
72.401- 89.625=-
72.750- 82.406=
72.750- 89.625=· 
82.406-89.625=

0.349 ) 45.630-47.469=- 1.839) 81.740-81.396= 0.344 
10.005¡45.630-59.396=-13.766) 81.740-81.255= 0.485 
17.224 ¡45.630-70.266=-24.636¡ 81.740-81.557= o.i83 
9.656 ¡47.469-59.396=-! 1.927¡ 81.396-81.255= o.i4i 

16.875 ¡47.469-70.266=-22.797¡ 81.396-81.557=- 0.16I 
7.219 ¡59.396-70.266=-10.870¡81.255-81.557= -  0.302

19.677- 17.776= 1.901
19.677- 14.677= 5.000
19.677- 13.021= 6.656
17.776- 14.677= 3.099
17.776- 13.021= 4.75.5
14.677- 13.021= 1.656

4|k; The mean 
4»: The mean

difference of the two 
difference of the two

factor levels is 
factor levels is

significant.
insignificant.

Table 6.11; Estimated mean differences for the factor levels.



GROUPING EFFICIENCY
# p a r t s »  10O .d e n a l ty · ·  10* * /^ .c lu m p l n « s · »  1

GROUPING EFFICIENCY

GROUPING EFFICIENCY
» p a r t s «  10O .d a n s i t y «  10® / i ,c lu m p jn ·

GROUPING EFFICIENCY
» p a r t s «  10O .d a r t s i t y «  1 S * K ^ .c lu m p in « s s «  1

A 4- R H A
GROUPING EFFICIENCY
» p a r t s «  10O .d a n a t t y «  10* > ^ .c lu m p ln a s s«0

GROUPING EFFICIENCY
» p a r t s «  10O .d o n a i t y «  16*9& .c l u m p i n s s s«2

136



GROUPING EFFICIENCY
#partsu- 10 O,density·· 1 5 '̂ ,̂dumpiness—4

GROUPING EFFICIENCY

GROUPING EFFICIENCY
»parts— 10 O.density—2 0 *5̂ .dumpiness—1

ALPHA
GROUPING EFFICIENCY
#pa Its— 10 O.density—2 0 *̂ .dumpiness—

ALPHA
GROUPING EFFICIENCY
Sparta— 10 O.denstty—2 0 .̂dumpiness—O

137



GROUPING EFFICIENCY GROUPING EFFICIENCY

GROUPING EFFICIENCY
# p a ir ts> i 1 S O .d e n a ity i-i  l O ^ . c l u m p i n · · *

0.0 O.Z O .A 0.0
ALPHA

GROUPING EFFICIENCY
# p « r t s ~  1 S O ,d « n s i t y · -  15% ,c l u m p l n

0.8 1.0
ALPHA

GROUPING EFFICIENCY
# p a rt» M  1 S O .d a n s ity M  i S % ,o t u m p i n a a a —2

138



GROUPING EFFICIENCY
# p tt r t9··  1 50,d e n s i t y «  1 S % ,c l u m p i n o s s a «4

GROUPING EFFICIENCY

#p«uts— 1 5 0 .d«n«ity—20*H>,olump<n«as« 1

GROUPING EFFICIENCY
# p « r t a >-1 S0,d * r t « l t y « 20'9C .c lu m p < n « « a ia2

«part·— 1 SO.dartstty—20^.clum p<n···—O

Figure 6.20: Effects dumpiness, density, number of parts and algorithms on 
grouping efficiencies.
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Figure 6.21: Effects dumpiness, density, number of paxts and dgorithms on 
work-load balances.
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Number of parts = 100
CL. DENS. GROUPING EFFIC IEN C Y =  f(a)
(c) (d) 0.0 0.11 0.2 0.3 1 0.4 1 0.5 1 0.6 1 0.7 1 0.8 1 0.9 |1.0

0.10 C C 1 c C 1 C 1 c 1 H ,c 1 H,B, F B ,F ,E B ,F  |B,F
1 0.15 C C 1 c C c C,H 1 H 1 H ,B,E B,H ,E B ,E  |B,E

0.20 C C 1 c c 1 c |H,G,C| H 1 H ,B,E B,E,H B ,E  ¡B,E
0.10 . C,G C,G|C,G C,G 1 G,C 11 G,C |B,H,G,C| B B B 1 B

2 0.15 F F 1 F F,C,H,G| H H 1 H 1 B,H ,E B,E B,E |B,E
0.20 F F 1 F G,F,H 1 H,G 1 H 1 H 1 H,B B B 1 B
0.10 C,G C,G|C,G C,G 11 C,G 1 C 1 c 1 B ,c B B 1 B

4 0.15 F F 1 F F F F F,H 1 H ,F,B B,H B B
0.20 F,G F,G|F,G F,G 11 F,G I F,G 1 F,G |B,F,A,H B B 11 B
0.10 F F 1 F F,C  1 F,C  1 F,C  1 C ,F 1 C ,F C ,F B 11 B

9 0.15 F F 1 F F F 1 F i F 1 F F,C ,B B B
0.20 F,G F,G|F,G F,G,H 1 F,H,G |H,F,G| H,F,G H B,H ,E B 1 B

Number of parts =  150
CL. DENS. GROUPING EFFIC IEN C Y =  f(a)
(c) (d) 0.0 0.11 0.2 0.3 1 0.4 1 0.5 1 0.6 1 0.7 0.8 0.9 11.0

0.10 C C 1 c c  1 C 1 c 1 c 1 H H B,H,E|B,E
1 0.15 C C 1 c c  1 C 1 H !1 H 1 H H ,B,E B ,E  |B,E

0.20 C C 1 c c  1 c  1H,G 11 H 1 H ,B,E B,E,H B ,E  |B,E
0.10 G,C G,C1G,C G,C 1 G,C 1 G,C |H,B,G,C| B B B 1 B

2 0.15 F F 1 F F |H,F,C,G| H 1I  B,H ,E 1 B ,E B ,E B ,E  |B,E
0.20 F F |F,G G ,F 1 G,H 1 H 1 H ,B,E 1 B,E,H B ,E B ,E  |B,E
0.10 F F |F,C C ,F  1 C ,F  1 C ,F  1 C ,F |C,F,B,A B B 1 B

4 0.15 G ,F F,G|F,G F,G  1 F  1 F F,A 1 F,A ,B B B 1 B
0.20 C,F,G F,G|F,G F,G  1 F  1 F 1 F 1 B ,F ,A B B 1 B
0.10 F F 1 F F,C  1 F,C  1 F,C  1 C ,F 1 C ,F C ,F B ,c  1 B

9 0.15 F F 1 F F 1 F 1 F F 1 F F,C ,B B 1 B
0.20 F F 1 F F 1 F 1 F 1 F 1 B ,F ,A B B 1 B

A: CAA 
E: WUBC

B; COMBGR 
F: ZODIAC

C: MACE 
G: HAPCUT

D: MODROC 
H: SIBC

Table 6.12: Best cell formation techniques in terms of grouping efficiencies.



CL.
(c)

DENS.
(d)

# part
WORKLOAD

BALANCE

s = 100
UNDER

UTILIZATION

# part 
WORKLOAD 

BALANCE

s = 150
UNDER

UTILIZATION

1
0.10 C F,E C D
0.15 f ,e ,d E D,E D,E
0.20 D,E D,E D,E D,E

2
0.10 F,D,E,C E F,E,D,C E,D
0.15 F,E,D,H D,E D,E,F,H D
0.20 D,E E,D E,D E

4
0.10 F E,C F,C E
0.15 F,E D,E F,E,C F
0.20 f ,e ,d E F,E C

9
0.10 F,D,C D F,C,D F,C
0.15 D,C F,E F,C,E,D D,C,E
0.20 F,C,D,E F,E F,C,D,E D,E,F,C

A: CAA 
E: WUBC

B: COMBGR 
F: ZODIAC

C: MACE 
G: HAPCUT

D: MODROC 
H; SIBC

Table 6.13: Best cell formation techniques in terms of work-load balance and 
under-utilizations.



Chapter 7

CONCLUSIONS

This chapter provides an account of the contributions of this dissertation research 

and discusses the directions for future research.

7.1 Contributions

The primary concern of this study was to design methods for obtaining optimal so

lutions to the hypergraph partitioning problems using polyhedral combinatorics. 

Hypergraph partitioning arises from practical problems such as circuit partition

ing in VLSI design and cell formation in Cellular Manufacturing systems. The 

summary of the findings in this dissertation work is given below.

Hypergraph partitioning problems were defined and a review of state-of-the- 

art in partitioning techniques was provided. This reveals that polyhedral tech

niques are successful in graph partitioning and they remain untouched in the case 

of hypergraph partitioning.

Two polytopes were defined on r-uniform hypergraphs: the first for solving 

the problem of identifying the best subhypergraph, and the second for solving 

hypergraph bipartitioning and max-cut problems. Moreover, any manufacturing 

system can be represented by hypergraphs.

The Boolean R-atic polytope RP(H ^) is the convex hull of the incidence 

vectors of vertex induced subhypergraphs in a complete r-uniform hypergraph.

144
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Each hypergraph can be transformed into an r-uniform hypergraph in such a way 

that the end-points of all hyperedges are increased to (r) terminal nodes by adding 

at most (r-1) pseudo vertices. The vertex induced subhypergraphs are invariant 

under this transformation if all of the pseudo nodes are kept among the selected 

vertices in the r-uniform hypergraph. This transformation enables us to operate 

on r-uniform hypergraphs where each hyperedge connects r vertices. A number 

of facet defining inequalities were found and two families of valid inequalities 

were investigated. The problem of identifying the best manufacturing cell is a 

polynomially solvable instance of the problem defined. The experimental study 

showed that the inequalities presented throughout the thesis are enough to deal 
with real applications.

The Complete R-uniform Hypergraph Cut polytope Pc(H^) is the convex 

hull of the incidence vectors of cuts in a complete r-uniform hypergraph R- 

uniformity is necessary to have simplicity. Any hypergraph can be theoretically 

transformed to a complete r-uniform hypergraph by adding pseudo nodes and 

extra r-uniform hyperedges. However, this transformation increases the order of 

the original hypergraph. This polytope was proved to be full dimensional. Various 

families of valid inequalities were proposed and examined for both maximum cut 

problems and bipartitioning problems. The results indicated that the inequalities 

are effective especially in the case of solving maximum cut problems in r-uniform 

hypergraphs.

Any manufacturing system consisting of machines and parts and their rout

ing relationships can be represented as a hypergraph. Based on this abstract 

structure, a formal definition to the cell formation problem was given as free par

titioning. Two cell formation techniques were proposed by means of this formal 

definition.
The first cell formation method attempts to solve underlying hypergraph par

titioning problem by approximating the hypergraph with a graph. Various ap

proximation schemes were investigated. Moreover, a search algorithm operating 

on the approximated graph was developed. The edgorithm makes use of a new 

kind of similarity coefficient that is based on the values of the minimum cuts
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between a pair of machine types in the graph. The algorithm incorporates a 

well known multiterminal flow algorithm to determine the similarity coefficient 

values. The algorithm was designed to be as flexible as possible. It is possible 

to obtain wide range of cell formation alternatives by changing size limits. It is 

also possible to add any kind of efficiency criterion to direct the algorithm. The 

algorithm is quite simple and easy to code if a standard maximum flow code is 

linked. Furthermore, its low time complexity enables it to be used in real life 

situations.

Another cell formation technique was developed by sequentially solving the 

problem of identifying the best manufacturing cell. First, the best manufacturing 

cell is identified. After the machine requirements of the best cell is calculated, 

the required number of machines of each type is assigned to this cell. Next, 

the identification of the current best manufacturing cell is done by solving the 

problem on the remaining machines and parts. These iterations terminate when 

there is no profitable cell left. All of the remaining machines are grouped together 

forming the remainder cell. Any unassigned part can either be manufactured in 

the remainder cell or subcontracted.

The two new cell formation techniques were compared with the six well-known 
algorithms. Some basic guidelines were provided for the evaluation and the selec

tion of a cell formation technique under different situations. All the techniques 

were implemented and tested via large problems representing the real life situa

tions. The results were statistically analyzed. The algorithms, number of parts 

in the system, shop density and characteristics of the manufacturing environment 

were found to be effective factors in terms of the efficiency measures developed. 

The best cell formation techniques in terms of each measure were listed accord

ing to the mean results of the effective factors. It is hoped that our results will 

warn the potential user of the weaknesses pertaining to a particular technique. 

Our comparative analysis indicated that the efficiency indices which are easy to 

calculate provided that the work-load matrix is available, are quite powerful in 

evaluating a cell formation solution.
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7.2 Future R esearch

Based on the results on the two polytopes of r-uniform hypergraphs, future re

search can be conducted on the cut polytope of general hypergraphs. For in

stance, every facet defining inequality of Pc(H^) also defines a facet of general 

hypergraph cut polytope P c{H ), if H  is any subhypergraph of /7̂  containing the 

supporting hypergraph of the inequality, or if H  is any hypergraph containing

K -
There is a wide research area for polyhedral combinatorics applications on 

other hypergraph partitioning problems. A hypergraph equicut polytope can be 

defined to analyze bisection problem in hypergraphs. A hypergraph ¿-cut poly

tope can be defined for multiple hypergraph partitionings. Finally, a hypergraph 

free cut polytope can be defined to study free partitionings in hypergraphs. The 

findings can be implemented to attack real life problems encountered in VLSI 
design and manufacturing systems.

Karmarkar’s projective algorithm has increased researchers’ interest to the 

interior point methods. Karmarkar [60] combined well known nonlinear opti

mization techniques such as penalty and barrier methods, projective transforma

tion and devised a polynomial algorithm for linear programming. Interior point 

methods for integer programming have been initiated by the pioneering work 

due to Hillier [52] in 1969. In the first stage of Hillier’s algorithm, a feasible 

integer interior point of the polytope of equality constraints is obtained. If one 

such interior integer point is found (not guaranteed), a line search is conducted 

by rounding off the points on the line segment going from this interior integer 

point to the optimal solution of linear programming relaxation. Karmarkar et 

al. developed and experimented a general interior point approach to 0-1 integer 

programming feasibility problem [57, 58, 61]. A sequence of interior points are 

generated such that each consecutive point reduces the value of a non-convex po

tential function. The results obtained were promising. Designing integer interior 

point based algorithms for hypergraph partitioning problems is another possible 

research direction.
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The most recent tendency in very large-scale linear programming is to combine 

interior point and simplex methods [12, 50, 75]. Comparative studies in both 

methods state that interior point methods approach fast to the optimal solution 

during the first iterations. However, a considerable amount of time is spent to 

be in the neighborhood of the optimal solution so that the interior point method 

is stopped. On the other hand, simplex based methods converge slowly to the 

optimal extreme point in the beginning iterations. Simplex methods hit the 

optimal solution very fast as soon as they approach to the optimal solution. 

This lead to the development of hybrid procedures where interior point methods 

are applied first for few iterations, followed by the application of the simplex 

method. The difficulty of a hybrid method is the identification of the initial basis 

of the simplex method. Each application reported a way to handle this difficulty. 

Developing hybrid procedures for hypergraph partitioning problems are among 

the possible research directions to extend this dissertation research.

Research on the cell formation problem is far from complete. The new cell 

formation techniques are needed. It is worth to establish a comprehensive testing 

basis for new cell formation «ilgorithms, and to pick up the most appropriate cell 

formation technique to employ in a particular instance. Furthermore, the effi

ciency measures suggested to evaluate the techniques, and the problem generation 

require even more exquisite analysis so as to study the cell formation problem 

from the widest possible perspective implementing a multi-criteria approach, and 

measure the sensitivity of a technique for different exogenous variables and pro

vide feasible boundaries accordingly. It is quite important to identify the most 

promising cell formation approaches for future developments.



Appendix A

In the appendix, the conventions used in graph theory, polyhedral combinatorics 

and linear programming are presented. The details can be found in [81, 84, 
87, 99] for linear programming and polyhedral theory, and in [11, 80] for graph 

and hypergraph theory. We also use in this dissertation well known notions of 

complexity theory about which an introduction can be found in [39].

A .l  G raph Theory

Let us define a graph G=(V, E) of order n where V =  { 1, . . .  ,n}  and i j  G E  

Wij ^  0; the weight Wij is associated to the edge i j .  If H =(W .,F) is a graph 

with W C V and F  C E, then H  is called a subgraph of G. V {F )  denotes the 

set of nodes of G that occur at least once as an endnode of an edge in F  G E. 

Similarly, E {W ) denotes the set of all edges of G with both endnodes in W  C  V . 

If S', T  C V and 5'n T =0 then (S : T) =  {uv ^ E  : u E S ,v E T }  denotes the set 

of edges with one endnode in S  and the other in T. A cut S{S), where S' C  K is 

the set of edges having only one end in S; i.e., 6 {S )= {ij E E :  i E S, j  E V\ S } . 

We write ¿(u), instead of ¿({u }), for u € 1̂  and call ¿(u) the star  of v. The 

cardinality of the star of a node v is termed as its degree. If u is a node of a 

graph G, then G \v  denotes the subgraph of G  obtained by removing node v and 

all edges incident to v from G. Similarly, G + v denotes the graph obtained by 

adding a new vertex v and edges between all vertices in G and the new vertex v.

A path p in (7 is a sequence of edges ei, C2, . . . ,  such that =  voV\,e2 —
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. . . , 6k  = Vk-iVk and such that u, / vj for i ^  j .  The nodes vq and Vk are 

the endnodes of p. If Ck+i = VkVo G E , then the sequence is ei, C2, . . . ,  e ,̂ is 

called a cycle. If p is a cycle, and uv is an edge o i E \ p  with ti,n € V(p), then 

uv is called a chord of p. A cycle with three edges is called a triangle. A graph is 

called a bicycle k-wheel if G consists of a cycle of length k and two nodes that are 

adjacent to each other and to every node in the cycle. An example is illustrated 

in Figure 3.1.

A graph G is called complete if every two different nodes of G  are linked by an 

edge. The complete graph with n nodes is denoted by Kn- A clique is a subgraph 

of a graph that is complete. A clique is not necessarily a maximal complete 

subgraph. A set A of edges in a graph G={V, E) is called a clique partitioning of 

G if there is a partition o i V=W i U W2 U ■ ■ ■ U Wp upon the removal of A such 

that the subgraph induced by Wi is a clique for ¿= 1, . . .  ,p. In case G is complete, 

every partition of the node set of G induces a clique partitioning.

A graph is called bipartite if its node set can be partitioned into two nonempty, 

disjoint sets Vi and V2 such that no two nodes in Vj and no two nodes in V2 are 

linked by an edge. If | Vi |=p, | V2 \=q and G is a majcimai bipartite graph, it is 

denoted by A'p,,.

A graph G is contractible to G if G can be obtained from G by a sequence of 

elementary contractions, in which a pair of adjacent vertices is identified by one 

of them and all other adjacencies between vertices are preserved. Multiple edges 

arising from the identification are replaced by single edges.

A .2 Linear and Integer Program m ing

A vector a: € is called a linear combination of the vectors G K” if

for some A G x =  K^'· If additionally A,· =  1, then x is called

affine combination. Moreover, if A > 0, then x is convex combination. Given a 

set S C M", 5  7  ̂ 0, we denote by con v{S) the convex hull of S, i.e., the set of 

all vectors in that are convex combination of the vectors in S. A set 5  C R” 

is called linearly independent (respectively, affinely independent) if there exists
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no subset { x \ . . .  ,Xk} of S and A G A / 0 (respectively, A, =  1) such 

that J2L·ı — 0· The dimension of a set S C denoted by dim[S), is the 
cardinality of a maximal affinely independent subset of S minus one.

A set P C is called a 'polyhedron if P is the solution set of linear inequalities, 

i.e., P  = {x 6 K" I Ax < b}. A bounded polyhedron is called a polytope. If 

a 6 M" \ {0} and a  G K, then the polyhedron {x G K” | ax < a  } is called a 

halfspace., and the polyhedron {x G M" | ax = a  } is called a hyperplane. If the 
dimension of P  C M" is n we say that the polyhedron is full dimensional.

Let P C M" be a polyhedron. An inequality ax < a  is called valid for P  if 

P  C {x G K" I ax < q; }. We denote by EQ{P, ax < a) =  {x G P  | ax = a } .  A 

set P  C P  is called face of P , if there exists an inequality ax < a  which is valid 

for P  and F  = EQ{P,ax < a). We say also that E  is the face defined (induced) 
by ax < a. A face F  is called nontrivial if P  / 0  and F  ^ P. A facet is a 

maximal nontrivial face. If the face induced by the inequality ax < a  is a facet, 

we say that ax < a  is facet defining.
The problem of minimizing (or maximizing) a linear function cx over a polyhe

dron P  is called Linear Programming problem, or simply Linear Program. Linear

Programs are often written in the form 
Max cx

s.t. Ax < b
or

Min cx

s .t .  Ax < b

The function cx is called objective function. A vector x* is called the maximal 
(respectively, minimal) solution if Ax* < b and cx < cx* (respectively, cx > cx*) 

for all X  G  M ”  with Ax < b. There is an integer version of Linear Programming 

Problem, defined as

Min cx 

s.t. Ax < b 
X integral

Max cx

s.t. Ax < b or

X in t e g r a l

and is called Linear Integer Programming Problem. The Linear Program ob

tained from the problem above by dropping the integrality constraint is called 

LP Relaxation.
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