476 research outputs found

    Virtual visual cues:vice or virtue?

    Get PDF

    Can ‘action-relevant’ visual cues improve walking performance and reduce freezing of gait in Parkinson’s disease?

    Get PDF
    Documentos apresentados no âmbito do reconhecimento de graus e diplomas estrangeiro

    The Influence of Dopamine Replacement on Movement Impairments During Bimanual Coordination in Parkinson’s Disease (PD)

    Get PDF
    The purpose of the current thesis was to investigate the influence of dopamine replacement on performance during bimanual coordination in individuals with Parkinson’s disease (PD) There has been conflicting research on the cause of movement impairments such as coordination deficits, slowed switching and upper limb freezing that occur during coordinated movements It is unclear whether decreased function of the dopaminergic system after withdrawal from dopamine replacement is responsible for these deficits Healthy age-matched control participants were compared to PD participants in two experiments to determine the movement impairments that occurred during three-dimensional wrist flexion-extension bimanual coordination as a result of PD. In addition, individuals with PD were compared without (‘off’) and with (‘on’) dopamine replacement in both experiments to determine whether modulation of the dopaminergic system influenced coordinated movements. In Experiment 1, continuous bimanual coordination was performed in m-phase (simultaneous wrist flexion and extension) and anti-phase (flexion of one wrist while extending other wrist) with movements externally paced with increasing across seven cycle frequencies (0.75 to 2 Hz). Visual feedback was also manipulated in one of three sensory conditions no vision, normal vision or augmented vision. Visual feedback, phase and cycle frequency manipulation was performed to determine whether other deficits (e.g. sensory and/or attentional deficits) may influence coordinated movements Despite reduced amplitude of movements in both limbs of individuals with PD (PD ‘off’), coordination deficits were not observed in PD compared to healthy control participants. In addition, there was an increased occurrence of upper limb freezing (ULF) when cycle frequency demand was greater Dopamine replacement did increase the amplitude of movements in individuals with PD but did not influence coordination performance or the occurrence of ULF. In Experiment 2, coordinated movements were initiated in either m-phase or antiphase and participants were required to voluntarily switch to the other phase pattern when an auditory cue was presented Trials were performed at one of two cycle frequencies (1 or 2 Hz) and one of two sensory conditions (no vision or normal vision) to determine whether other deficits (e.g. sensory and/or attentional deficits) may influence coordinated movement. In addition, a separate block of trials were performed in anti-phase coordination with an auditory cue that did not require a switch Non-switching trials were included to investigate whether the presence of a distracting cue could evoke ULF comparable to when switching between movements was required PD ‘off’ participants demonstrated slower switching, more delayed responses and deficits in coordination performance when compared to healthy control participants. The increased demand of cycle frequency particularly when initiating anti-phase coordination, after voluntary switching and with the presence of the auditory cue without switching contributed to a large occurrence of ULF in individuals with PD. Dopamine replacement improved the ability to switch between phase patterns but had no overall influence on coordination performance or the occurrence of ULF. Overall, the results of the current thesis demonstrated that dopamine replacement can improve motor symptoms during coordinated movements (e g hypometna and bradykinesia) but does not contribute to coordination performance or ULF in individuals with PD. As a consequence, it was concluded that coordination deficits and ULF are not caused by the dysfunctional dopaminergic system but rather associated to secondary impairment caused by PD. The movement impairments caused by secondary dysfunction of PD were proposed to be associated with increased attentional demands and possible executive dysfunction related to fronto-stnatal pathways that cannot be modulated by dopamine replacement. Thus, treatment of complex movement impairments such as coordination deficits and ULF may benefit from rehabilitation or non-dopamine therapies that focus on the global dysfunction caused by PD

    Does practice of multi-directional stepping with auditory stimulation improve movement performance in patients with Parkinson\u27s disease

    Get PDF
    Parkinson’s disease (PD) is a debilitating neurodegenerative disorder causing many physical limitations. Rhythmic auditory stimulation (RAS) influences motor complications not alleviated by medicine and has been used to modify straight line walking in this population. However, motor complications are exacerbated during more complex movements including those involving direction changes. Thus immediate RAS effects on direction switch duration (DSD) and other kinematic measures during a multi-directional step task were investigated in PD patients. Long term RAS application was also explored by evaluating functional gait and balance and kinematic step measures before and after 6 weeks of multi-directional stepping either with (Cue, C group) or without (No cue, NC group) RAS use. Evaluations were also administered 1, 4 and 8 weeks after training termination. Kinematic measures were collected during stepping without, then with RAS for the C group and without RAS for the NC group. Step testing/training was performed at slow, normal and fast speeds in forward, back and side directions. Participants with PD switched step direction during the stepping task faster with RAS use before training. Like straight line walking RAS application influenced the more complex task of direction switching and counteracted the well-known bradykinesia in PD. After training both groups improved their functional gait and balance measures and maintained balance improvements for at least 8 weeks. Only the C group retained gait improvements for at least 8 weeks after training termination. Adding RAS resulted in functional benefits not observed in training without it. Kinematic measures compared before and after step training clarified the underlying contributors to functional performances. Both groups reduced the variability of DSD. The C group participants maintained this alteration longer. DSD reduction also occurred after training and was retained for at least 8 weeks for this group. These outcomes further support the advantages of adding RAS to training regiments for those with PD. The current results indicate that RAS effects are not limited to simple activities like straight line walking. Moreover, RAS can be used for improving and maintaining improvements longer in activities involving various forms of transition which present most difficulties for those with PD

    How does the treadmill affect gait in Parkinson’s disease?

    Get PDF
    [Abstract] Parkinson’s disease (PD) is clinically characterized by symptoms of akinesia, rigidity, and resting tremor, which are related to a dopaminergic deficiency of the nigrostriatal pathway. Disorders of gait are common symptoms of PD that affect the quality of life in these patients. One of the main focuses of physical rehabilitation in PD is to improve the gait deficits in the patients. In the last decade, a small number of studies have investigated the use of the treadmill for the rehabilitation of gait in PD patients. Although, the results of these studies are promising, the mechanisms underlying the therapeutic effect of the treadmill in PD are still largely unknown. This paper reviews 10 years of investigation of treadmill training in PD, focusing on the possible mechanisms involved in the therapeutic effect of the treadmill. Understanding these mechanisms may improve the prescription and design of physical therapy programs for PD patients.Ministerio de Ciencia e Innovación; PSI2008-03175Xunta de Galicia; 2009/00

    Optimization Algorithms for Integrating Advanced Facility-Level Healthcare Technologies into Personal Healthcare Devices

    Get PDF
    Healthcare is one of the most important services to preserve the quality of our daily lives, and it is capable of dealing with issues such as global aging, increase in the healthcare cost, and changes to the medical paradigm, i.e., from the in-facility cure to the prevention and cure outside the facility. Accordingly, there has been growing interest in the smart and personalized healthcare systems to diagnose and care themselves. Such systems are capable of providing facility-level diagnosis services by using smart devices (e.g., smartphones, smart watches, and smart glasses). However, in realizing the smart healthcare systems, it is very difficult, albeit impossible, to directly integrate high-precision healthcare technologies or scientific theories into the smart devices due to the stringent limitations in the computing power and battery lifetime, as well as environmental constraints. In this dissertation, we propose three optimization methods in the field of cell counting systems and gait-aid systems for Parkinson's disease patients that address the problems that arise when integrating a specialized healthcare system used in the facilities into mobile or wearable devices. First, we present an optimized cell counting algorithm based on heuristic optimization, which is a key building block for realizing the mobile point-of-care platforms. Second, we develop a learning-based cell counting algorithm that guarantees high performance and efficiency despite the existence of blurry cells due to out-focus and varying brightness of background caused by the limitation of lenses free in-line holographic apparatus. Finally, we propose smart gait-aid glasses for Parkinson’s disease patients based on mathematical optimization. ⓒ 2017 DGISTopenI. Introduction 1-- 1.1 Global Healthcare Trends 1-- 1.2 Smart Healthcare System 2-- 1.3 Benefits of Smart Healthcare System 3-- 1.4 Challenges of Smart Healthcare. 4-- 1.5 Optimization 6-- 1.6 Aims of the Dissertation 7-- 1.7 Dissertation Organization 8-- II.Optimization of a cell counting algorithm for mobile point-of-care testing platforms 9-- 2.1 Introduction 9-- 2.2 Materials and Methods. 13-- 2.2.1 Experimental Setup. 13-- 2.2.2 Overview of Cell Counting. 16-- 2.2.3 Cell Library Optimization. 18-- 2.2.4 NCC Approximation. 20-- 2.3 Results 21-- 2.3.1 Cell Library Optimization. 21-- 2.3.2 NCC Approximation. 23-- 2.3.3 Measurement Using an Android Device. 28-- 2.4 Summary 32-- III.Human-level Blood Cell Counting System using NCC-Deep learning algorithm on Lens-free Shadow Image. 33-- 3.1 Introduction 33-- 3.2 Cell Counting Architecture 36-- 3.3 Methods 37-- 3.3.1 Candidate Point Selection based on NCC. 37-- 3.3.2 Reliable Cell Counting using CNN. 40-- 3.4 Results 43-- 3.4.1 Subjects . 43-- 3.4.2 Evaluation for the cropped cell image 44-- 3.4.3 Evaluation on the blood sample image 46-- 3.4.4 Elapsed-time evaluation 50-- 3.5 Summary 50-- IV.Smart Gait-Aid Glasses for Parkinson’s Disease Patients 52-- 4.1 Introduction 52-- 4.2 Related Works 54-- 4.2.1 Existing FOG Detection Methods 54-- 4.2.2 Existing Gait-Aid Systems 56-- 4.3 Methods 57-- 4.3.1 Movement Recognition. 59-- 4.3.2 FOG Detection On Glasses. 62-- 4.3.3 Generation of Visual Patterns 66-- 4.4 Experiments . 67-- 4.5 Results 69-- 4.5.1 FOG Detection Performance. 69-- 4.5.2 Gait-Aid Performance. 71-- 4.6 Summary 73-- V. Conclusion 75-- Reference 77-- 요약문 89본 논문은 의료 관련 연구시설 및 병원 그리고 실험실 레벨에서 사용되는 전문적인 헬스케어 시스템을 개인의 일상생활 속에서 사용할 수 있는 스마트 헬스케어 시스템에 적용시키기 위한 최적화 문제에 대해 다룬다. 현대 사회에서 의료비용 증가 세계적인 고령화에 따라 의료 패러다임은 질병이 발생한 뒤 시설 내에서 치료 받는 방식에서 질병이나 건강관리에 관심있는 환자 혹은 일반인이 휴대할 수 있는 개인용 디바이스를 이용하여 의료 서비스에 접근하고, 이를 이용하여 질병을 미리 예방하는 방식으로 바뀌었다. 이에 따라 언제, 어디서나 스마트 디바이스(스마트폰, 스마트워치, 스마트안경 등)를 이용하여 병원 수준의 예방 및 진단을 실현하는 스마트 헬스케어가 주목 받고 있다. 하지만, 스마트 헬스케어 서비스 실현을 위하여 기존의 전문 헬스케어 장치 및 과학적 이론을 스마트 디바이스에 접목하는 데에는 스마트 디바이스의 제한적인 컴퓨팅 파워와 배터리, 그리고 연구소나 실험실에서 발생하지 않았던 환경적인 제약조건으로 인해 적용 할 수 없는 문제가 있다. 따라서 사용 환경에 맞춰 동작 가능하도록 최적화가 필요하다. 본 논문에서는 Cell counting 분야와 파킨슨 환자의 보행 보조 분야에서 전문 헬스케어 시스템을 스마트 헬스케어에 접목시키는데 발생하는 세 가지 문제를 제시하고 문제 해결을 위한 세 가지 최적화 알고리즘(Heuristic optimization, Learning-based optimization, Mathematical optimization) 및 이를 기반으로 하는 시스템을 제안한다.DoctordCollectio

    Effect of visual feedback on the occipital-parietal-motor network in Parkinson's disease with freezing of gait.

    Get PDF
    Freezing of gait (FOG) is an elusive phenomenon that debilitates a large number of Parkinson's disease (PD) patients regardless of stage of disease, medication status, or deep brain stimulation implantation. Sensory feedback cues, especially visual feedback cues, have been shown to alleviate FOG episodes or even prevent episodes from occurring. Here, we examine cortical information flow between occipital, parietal, and motor areas during the pre-movement stage of gait in a PD-with-FOG patient that had a strong positive behavioral response to visual cues, one PD-with-FOG patient without any behavioral response to visual cues, and age-matched healthy controls, before and after training with visual feedback. Results for this case study show differences in cortical information flow between the responding PD-with-FOG patient and the other two subject types, notably, an increased information flow in the beta range. Tentatively suggesting the formation of an alternative cortical sensory-motor pathway during training with visual feedback, these results are proposed as subject for further verification employing larger cohorts of patients

    A wearable biofeedback device to improve motor symptoms in Parkinson’s disease

    Get PDF
    Dissertação de mestrado em Engenharia BiomédicaThis dissertation presents the work done during the fifth year of the course Integrated Master’s in Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the University of Minho. For validation purposes and data acquisition, it was developed a collaboration with the Clinical Academic Center (2CA), located at Braga Hospital. The knowledge acquired in the development of this master thesis is linked to the motor rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also to be used as a clinical decision support tool for the classification of the motor disability level. This system provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. The system is based on a user- centered design, considering the end-user driven, multitasking and less cognitive effort concepts. This manuscript presents all steps taken along this dissertation regarding: the literature review and respective critical analysis; implemented tech-based procedures; validation outcomes complemented with results discussion; and main conclusions and future challenges.Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração com Clinical Academic Center (2CA), localizado no Hospital de Braga. Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica implementados; resultados de validação complementados com discussão de resultados; e principais conclusões e desafios futuros

    INFLUENCE OF PLANNING RESOURCES ON GAIT CONTROL IN PARKINSON’S DISEASE

    Get PDF
    Movement disturbances in individuals with Parkinson’s disease (PD) have been associated with difficulties to plan complex actions. Performance of simple and complex actions overloads resources for individuals with Parkinson’s disease (PD). However, it is unclear if central resources required to plan gait adjustments while walking exacerbate gait disturbances of patients with PD. More specifically, it is unclear how gait impairments, sensory processing, and the dopaminergic system influence the load on processing resources (e.g. cognitive load) during the planning of step modifications. In order to investigate the relative influence of these factors on cognitive load and its impact on gait control, three experiments were conducted that utilized a naturalistic gait task, which challenged planning resources during obstacle avoidance. While the tasks were being performed, dual task interference on gait, and dual task performance were assessed in order to estimate participants’ cognitive load during these tasks. Gait control during obstacle approach and crossing were also evaluated to observe dual task interference on steps known to demand greater planning. In experiment 1 (chapter 2), the influence of gait impairments on planning resources was investigated. The results of this study demonstrated that the planning of gait adaptations in participants with freezing of gait (PD-FOG) resulted in a greater increase in cognitive load, relative to participants with more preserved gait PD-nonFOG (same disease severity without severe gait impairments). The influence of sensory processing on movement planning was investigated in experiment 2 (chapter 3). The results of this study revealed that removal of visual feedback of self-motion affected gait control when the planning of gait adjustments was necessary for successful crossing. In addition, PD patients prioritized walking over the secondary task when visual feedback was reduced, in order to compensate for impaired proprioceptive processing. Lastly, experiment 3 investigated the influence of the dopaminergic system on gait adjustments. The results of this study revealed that dopaminergic replacement partially decreased the effect of cognitive load on gait and drastically improved gait velocity as participants approached obstacles. This study also demonstrates that the cognitive load and the dopaminergic impairments in PD, did not force patients to rely more than healthy participants, on visual information from obstacle as to correct step adjustments. In sum, the current thesis suggests that increases in cognitive load during the planning of gait adaptations causes gait impairments, in individuals with PD. These increases in cognitive load appear to be associated with impaired sensorimotor processing during gait. Dopaminergic activity modulated sensorimotor processing during movement planning and partially the cognitive load caused by movement planning. Finally, the results of these studies suggest that the complexity to plan gait adjustments, while walking, overtax processing resources of individuals with PD causing some observable gait impairments

    A new approach to study gait impairments in Parkinson’s disease based on mixed reality

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (especialização em Eletrónica Médica)Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD onset is at 55 years-old on average, and its incidence increases with age. This disease results from dopamine-producing neurons degeneration in the basal ganglia and is characterized by various motor symptoms such as freezing of gait, bradykinesia, hypokinesia, akinesia, and rigidity, which negatively impact patients’ quality of life. To monitor and improve these PD-related gait disabilities, several technology-based methods have emerged in the last decades. However, these solutions still require more customization to patients’ daily living tasks in order to provide more objective, reliable, and long-term data about patients’ motor conditions in home-related contexts. Providing this quantitative data to physicians will ensure more personalized and better treatments. Also, motor rehabilitation sessions fostered by assistance devices require the inclusion of quotidian tasks to train patients for their daily motor challenges. One of the most promising technology-based methods is virtual, augmented, and mixed reality (VR/AR/MR), which immerse patients in virtual environments and provide sensory stimuli (cues) to assist with these disabilities. However, further research is needed to improve and conceptualize efficient and patient-centred VR/AR/MR approaches and increase their clinical evidence. Bearing this in mind, the main goal of this dissertation was to design, develop, test, and validate virtual environments to assess and train PD-related gait impairments using mixed reality smart glasses, integrated with another high-technological motion tracking device. Using specific virtual environments that trigger PD-related gait impairments (turning, doorways, and narrow spaces), it is hypothesized that patients can be assessed and trained in their daily challenges related to walking. Also, this tool integrates on-demand visual cues to provide visual biofeedback and foster motor training. This solution was validated with end-users to test the identified hypothesis. The results showed that, in fact, mixed reality has the potential to recreate real-life environments that often provoke PD-related gait disabilities, by placing virtual objects on top of the real world. On the contrary, biofeedback strategies did not significantly improve the patients’ motor performance. The user experience evaluation showed that participants enjoyed participating in the activity and felt that this tool can help their motor performance.A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais comum depois da doença de Alzheimer. O início da DP ocorre, em média, aos 55 anos de idade, e a sua incidência aumenta com a idade. Esta doença resulta da degeneração dos neurónios produtores de dopamina nos gânglios basais e é caracterizada por vários sintomas motores como o congelamento da marcha, bradicinesia, hipocinesia, acinesia, e rigidez, que afetam negativamente a qualidade de vida dos pacientes. Nas últimas décadas surgiram métodos tecnológicos para monitorizar e treinar estas desabilidades da marcha. No entanto, estas soluções ainda requerem uma maior personalização relativamente às tarefas diárias dos pacientes, a fim de fornecer dados mais objetivos, fiáveis e de longo prazo sobre o seu desempenho motor em contextos do dia-a-dia. Através do fornecimento destes dados quantitativos aos médicos, serão assegurados tratamentos mais personalizados. Além disso, as sessões de reabilitação motora, promovidas por dispositivos de assistência, requerem a inclusão de tarefas quotidianas para treinar os pacientes para os seus desafios diários. Um dos métodos tecnológicos mais promissores é a realidade virtual, aumentada e mista (RV/RA/RM), que imergem os pacientes em ambientes virtuais e fornecem estímulos sensoriais para ajudar nestas desabilidades. Contudo, é necessária mais investigação para melhorar e conceptualizar abordagens RV/RA/RM eficientes e centradas no paciente e ainda aumentar as suas evidências clínicas. Tendo isto em mente, o principal objetivo desta dissertação foi conceber, desenvolver, testar e validar ambientes virtuais para avaliar e treinar as incapacidades de marcha relacionadas com a DP usando óculos inteligentes de realidade mista, integrados com outro dispositivo de rastreio de movimento. Utilizando ambientes virtuais específicos que desencadeiam desabilidades da marcha (rodar, portas e espaços estreitos), é possível testar hipóteses de que os pacientes possam ser avaliados e treinados nos seus desafios diários. Além disso, esta ferramenta integra pistas visuais para fornecer biofeedback visual e fomentar a reabilitação motora. Esta solução foi validada com utilizadores finais de forma a testar as hipóteses identificadas. Os resultados mostraram que, de facto, a realidade mista tem o potencial de recriar ambientes da vida real que muitas vezes provocam deficiências de marcha relacionadas à DP. Pelo contrário, as estratégias de biofeedback não provocaram melhorias significativas no desempenho motor dos pacientes. A avaliação feita pelos pacientes mostrou que estes gostaram de participar nos testes e sentiram que esta ferramenta pode auxiliar no seu desempenho motor
    corecore