1,303 research outputs found

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Smart House and its Possibilities

    Full text link
    Данная статья посвящена концепции «умный дом», которая все чаще начинает появляться в наших домах. Функции данной системы разнообразны, начиная от обычного оповещения на телефон, заканчивая системой автоматического контроля подходящего вам микроклимата. Главное достоинство данной концепции заключается в полной автоматизации управления вашего дома

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    Smarter grid through collective intelligence: user awareness for enhanced performance

    Get PDF
    This paper examines the scenario of a university campus, and the impact on energy consumption of the awareness of building managers and users (lecturers, students and administrative staff).Peer ReviewedPostprint (published version

    Next Generation of Energy Residential Gateways for Demand Response and Dynamic Pricing

    Get PDF
    Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings

    HOME ENERGY MANAGEMENT SYSTEM FOR DEMAND RESPONSE PURPOSES

    Get PDF
    The growing demand for electricity has led to increasing efforts to generate and satisfy the rising demand. This led to suppliers attempting to reduce consumption with the help of the users. Requests to shift unnecessary loads off the peak hours, using other sources of generators to supply the grid while offering incentives to the users have made a significant effect. Furthermore, automated solutions were implemented with the help of Home Energy Management Systems (HEMS) where the user can remotely manage household loads to reduce consumption or cost. Demand Response (DR) is the process of reducing power consumption in a response to demand signals generated by the utility based on many factors such as the Time of Use (ToU) prices. Automated HEMS use load scheduling techniques to control house appliances in response to DR signals. Scheduling can be purely user-dependent or fully automated with minimum effort from the user. This thesis presents a HEMS which automatically schedules appliances around the house to reduce the cost to the minimum. The main contributions in this thesis are the house controller model which models a variety of thermal loads in addition to two shiftable loads, and the optimizer which schedules the loads to reduce the cost depending on the DR signals. The controllers focus on the thermal loads since they have the biggest effect on the electricity bill, they also consider many factors ignored in similar models such as the physical properties of the room/medium, the outer temperatures, the comfort levels of the users, and the occupancy of the house during scheduling. The DR signal was the hourly electricity price; normally higher during the peak hours. Another main part of the thesis was studying multiple optimization algorithms and utilizing them to get the optimum scheduling. Results showed a maximum of 44% cost reduction using different metaheuristic optimization algorithms and different price and occupancy schemes

    Deploying the ICT architecture of a residential demand response pilot

    Get PDF
    The Flemish project Linear was a large scale residential demand response pilot that aims to validate innovative smart grid technology building on the rollout of information and communication technologies in the power grid. For this pilot a scalable, reliable and interoperable ICT infrastructure was set up, interconnecting 240 residential power grid customers with the backend systems of energy service providers (ESPs), flexibility aggregators, distribution system operators (DSOs) and balancing responsible parties (BRPs). On top of this architecture several business cases were rolled out, which require the sharing of metering data and flexibility information, and demand response algorithms for the balancing of renewable energy and the mitigation of voltage and power issues in distribution grids. The goal of the pilot is the assessment of the technical and economical feasibility of residential demand response in real life, and of the interaction with the end-consumer. In this paper we focus on the practical experiences and lessons learnt during the deployment of the ICT technology for the pilot. This includes the real-time gathering of measurement data and real-time control of a wide range of smart appliances in the homes of the participants. We identified a number of critical issues that need to be addressed for a future full-scale roll-out: (i) reliable in-house communication, (ii) interoperability of appliances, measurement equipment, backend systems, and business cases, and (iii) sufficient backend processing power for real-time analysis and control

    Time programmable smart devices for peak demand reduction of smart homes in a microgrid

    Get PDF
    Abstract: Increasing electricity access through Microgrids for rural areas is often faced with the challenge of increased peak demand through increased electricity demand as more electronic devices will be acquired by the consumers and more small businesses will spring up in the community. If not taken care of, this leads to additional cost of incurring higher peaker plants to meet the peak demand, and the burden of the cost of peaker plants are consequentially transferred to the consumers. Since this load is generated by the consumers, it is most desirable to control the peak demand from the consumers’ side. Therefore, a method of Time Programmable Smart Devices (TPSD) with an efficient Electricity Use Plan (EUP) is proposed in this paper by introducing appliance working knowledge and improving load shifting technique of Demand Side Management for peak demand reduction in a rural Microgrid. This method yielded lower morning and evening peaks, a lower peak-to-peak difference than those available in literature, and a peak period shift from the traditional peak period to traditional off-peak period. These lead to financial savings, reduced cost of peaker plants and a safer environment from less greenhouse gases emissions
    corecore