16,251 research outputs found

    fMRI biomarkers of social cognitive skills training in psychosis: Extrinsic and intrinsic functional connectivity.

    Get PDF
    Social cognitive skills training interventions for psychotic disorders have shown improvement in social cognitive performance tasks, but little was known about brain-based biomarkers linked to treatment effects. In this pilot study, we examined whether social cognitive skills training could modulate extrinsic and intrinsic functional connectivity in psychosis using functional magnetic resonance imaging (fMRI). Twenty-six chronic outpatients with psychotic disorders were recruited from either a Social Cognitive Skills Training (SCST) or an activity- and time-matched control intervention. At baseline and the end of intervention (12 weeks), participants completed two social cognitive tasks: a Facial Affect Matching task and a Mental State Attribution Task, as well as resting-state fMRI (rs-fMRI). Extrinsic functional connectivity was assessed using psychophysiological interaction (PPI) with amygdala and temporo-parietal junction as a seed region for the Facial Affect Matching Task and the Mental State Attribution task, respectively. Intrinsic functional connectivity was assessed with independent component analysis on rs-fMRI, with a focus on the default mode network (DMN). During the Facial Affect Matching task, we observed stronger PPI connectivity in the SCST group after intervention (compared to baseline), but no treatment-related change in the Control group. Neither group showed treatment-related changes in PPI connectivity during the Mental State Attribution task. During rs-fMRI, we found treatment-related changes in the DMN in the SCST group, but not in Control group. This study found that social cognitive skills training modulated both extrinsic and intrinsic functional connectivity in individuals with psychotic disorders after a 12-week intervention. These findings suggest treatment-related changes in functional connectivity as a potential brain-based biomarker of social cognitive skills training

    Social re-orientation and brain development: An expanded and updated view.

    Get PDF
    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior

    Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention

    Get PDF
    Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined

    COMT Val(158)Met genotypes differentially influence subgenual cingulate functional connectivity in healthy females

    Get PDF
    Brain imaging studies have cons stently shown subgenual Anterior Cingulate Cortical (sgACC) involvement in emotion processing. catechol-O-methyltransferase (COMT) Val(158) and Met(158) polymorphisms may influence such emotional brain processes in specific ways. Given that resting-state fMRI (rsfMRI) may increase our understanding on brain functioning, we integrated genetic and rsfMRI data and focused on sgACC functional connections. No studies have yet investigated the influence of the COMT Val(158)Met polymorphism (rs4680) on sgACC resting-state functional connectivity (rsFC) in healthy individuals. A homogeneous group of 61 Caucasian right-handed healthy female university students, all within the same age range, underwent isfMRI. Compared to Met158 homozygotes, Val(158) allele carriers displayed significantly stronger rsFC between the sgACC and the left parahippocampal gyrus, ventromedial parts of the inferior frontal gyrus (IFG), and the nucleus accumbens (NAc). On the other hand, compared to Val(158) homozygotes, we found in Met(158) allele carriers stronger sgACC rsFC with the medial frontal gyrus (MEG), more in particular the anterior parts of the medial orbitofrontal cortex. Although we did not use emotional or cognitive tasks, our sgACC rsFC results point to possible distinct differences in emotional and cognitive processes between Val(158) and Met(158) allele carriers. Hovvever, the exact nature of these directions remains to be determined

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
    corecore