20 research outputs found

    On the structure of graphs with forbidden induced substructures

    Get PDF
    One of the central goals in extremal combinatorics is to understand how the global structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected by local constraints. In this thesis we are concerned with structural properties of graphs and hypergraphs which locally do not look like some type of forbidden induced pattern. Patterns can be single subgraphs, families of subgraphs, or in the multicolour version colourings or families of colourings of subgraphs. ErdƑs and Szekeres\u27s quantitative version of Ramsey\u27s theorem asserts that in every 22-edge-colouring of the complete graph on nn vertices there is a monochromatic clique on at least 12log⁡n\frac{1}{2}\log n vertices. The famous ErdƑs-Hajnal conjecture asserts that forbidding fixed colourings on subgraphs ensures much larger monochromatic cliques. The conjecture is open in general, though a few partial results are known. The first part of this thesis will be concerned with different variants of this conjecture: A bipartite variant, a multicolour variant, and an order-size variant for hypergraphs. In the second part of this thesis we focus more on order-size pairs; an order-size pair (n,e)(n,e) is the family consisting of all graphs of order nn and size ee, i.e. on nn vertices with ee edges. We consider order-size pairs in different settings: The graph setting, the bipartite setting and the hypergraph setting. In all these settings we investigate the existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size pairs with sufficiently large order, and also forcing densities of order-size pairs (m,f)(m,f), i.e. for nn approaching infinity, the limit superior of the fraction of all possible sizes ee, such that the order-size pair (n,e)(n,e) does not avoid the pair (m,f)(m,f)

    Clique Factors: Extremal and Probabilistic Perspectives

    Get PDF
    A K_r-factor in a graph G is a collection of vertex-disjoint copies of K_r covering the vertex set of G. In this thesis, we investigate these fundamental objects in three settings that lie at the intersection of extremal and probabilistic combinatorics. Firstly, we explore pseudorandom graphs. An n-vertex graph is said to be (p,ÎČ)-bijumbled if for any vertex sets A, B ⊆ V (G), we have e( A, B) = p| A||B| ± ÎČ√|A||B|. We prove that for any 3 ≀ r ∈ N and c > 0 there exists an Δ > 0 such that any n-vertex (p, ÎČ)-bijumbled graph with n ∈ rN, ÎŽ(G) ≄ c p n and ÎČ â‰€ Δ p^{r −1} n, contains a K_r -factor. This implies a corresponding result for the stronger pseudorandom notion of (n, d, λ)-graphs. For the case of K_3-factors, this result resolves a conjecture of Krivelevich, Sudakov and SzabĂł from 2004 and it is tight due to a pseudorandom triangle-free construction of Alon. In fact, in this case even more is true: as a corollary to this result, we can conclude that the same condition of ÎČ = o( p^2n) actually guarantees that a (p, ÎČ)-bijumbled graph G contains every graph on n vertices with maximum degree at most 2. Secondly, we explore the notion of robustness for K_3-factors. For a graph G and p ∈ [0, 1], we denote by G_p the random sparsification of G obtained by keeping each edge of G independently, with probability p. We show that there exists a C > 0 such that if p ≄ C (log n)^{1/3}n^{−2/3} and G is an n-vertex graph with n ∈ 3N and ÎŽ(G) ≄ 2n/3 , then with high probability G_p contains a K_3-factor. Both the minimum degree condition and the probability condition, up to the choice of C, are tight. Our result can be viewed as a common strengthening of the classical extremal theorem of CorrĂĄdi and Hajnal, corresponding to p = 1 in our result, and the famous probabilistic theorem of Johansson, Kahn and Vu establishing the threshold for the appearance of K_3-factors (and indeed all K_r -factors) in G (n, p), corresponding to G = K_n in our result. It also implies a first lower bound on the number of K_3-factors in graphs with minimum degree at least 2n/3, which gets close to the truth. Lastly, we consider the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze and Martin, where one starts with a dense graph and then adds random edges to it. Specifically, given any fixed 0 < α < 1 − 1/r we determine how many random edges one must add to an n-vertex graph G with ÎŽ(G) ≄ α n to ensure that, with high probability, the resulting graph contains a K_r -factor. As one increases α we demonstrate that the number of random edges required ‘jumps’ at regular intervals, and within these intervals our result is best-possible. This work therefore bridges the gap between the seminal work of Johansson, Kahn and Vu mentioned above, which resolves the purely random case, i.e., α = 0, and that of Hajnal and SzemerĂ©di (and CorrĂĄdi and Hajnal for r = 3) showing that when α ≄ 1 − 1/r the initial graph already hosts the desired K_r -factor.Ein K_r -Faktor in einem Graphen G ist eine Sammlung von Knoten-disjunkten Kopien von K_r , die die Knotenmenge von G ĂŒberdecken. Wir untersuchen diese Objekte in drei Kontexten, die an der Schnittstelle zwischen extremaler und probabilistischer Kombinatorik liegen. Zuerst untersuchen wir Pseudozufallsgraphen. Ein Graph heißt (p,ÎČ)-bijumbled, wenn fĂŒr beliebige Knotenmengen A, B ⊆ V (G) gilt e( A, B) = p| A||B| ± ÎČ√|A||B|. Wir beweisen, dass es fĂŒr jedes 3 ≀ r ∈ N und c > 0 ein Δ > 0 gibt, so dass jeder n-Knoten (p, ÎČ)-bijumbled Graph mit n ∈ rN, ÎŽ(G) ≄ c p n und ÎČ â‰€ Δ p^{r −1} n, einen K_r -Faktor enthĂ€lt. Dies impliziert ein entsprechendes Ergebnis fĂŒr den stĂ€rkeren Pseudozufallsbegriff von (n, d, λ)-Graphen. Im Fall von K_3-Faktoren, löst dieses Ergebnis eine Vermutung von Krivelevich, Sudakov und SzabĂł aus dem Jahr 2004 und ist durch eine pseudozufĂ€llige K_3-freie Konstruktion von Alon bestmöglich. TatsĂ€chlich ist in diesem Fall noch mehr wahr: als Korollar dieses Ergebnisses können wir schließen, dass die gleiche Bedingung von ÎČ = o( p^2n) garantiert, dass ein (p, ÎČ)-bijumbled Graph G jeden Graphen mit maximalem Grad 2 enthĂ€lt. Zweitens untersuchen wir den Begriff der Robustheit fĂŒr K_3-Faktoren. FĂŒr einen Graphen G und p ∈ [0, 1] bezeichnen wir mit G_p die zufĂ€llige Sparsifizierung von G, die man erhĂ€lt, indem man jede Kante von G unabhĂ€ngig von den anderen Kanten mit einer Wahrscheinlichkeit p behĂ€lt. Wir zeigen, dass, wenn p ≄ C (log n)^{1/3}n^{−2/3} und G ein n-Knoten-Graph mit n ∈ 3N und ÎŽ(G) ≄ 2n/3 ist, G_pmit hoher Wahrscheinlichkeit (mhW) einen K_3-Faktor enthĂ€lt. Sowohl die Bedingung des minimalen Grades als auch die Wahrscheinlichkeitsbedingung sind bestmöglich. Unser Ergebnis ist eine VerstĂ€rkung des klassischen extremalen Satzes von CorrĂĄdi und Hajnal, entsprechend p = 1 in unserem Ergebnis, und des berĂŒhmten probabilistischen Satzes von Johansson, Kahn und Vu, der den Schwellenwert fĂŒr das Auftreten eines K_3-Faktors (und aller K_r -Faktoren) in G (n, p) festlegt, entsprechend G = K_n in unserem Ergebnis. Es impliziert auch eine erste untere Schranke fĂŒr die Anzahl der K_3-Faktoren in Graphen mit einem minimalen Grad von mindestens 2n/3, die der Wahrheit nahe kommt. Schließlich betrachten wir die Situation von zufĂ€llig gestörten Graphen; ein Modell, bei dem man mit einem dichten Graphen beginnt und dann zufĂ€llige Kanten hinzufĂŒgt. Wir bestimmen, bei gegebenem 0 < α < 1 − 1/r, wie viele zufĂ€llige Kanten man zu einem n-Knoten-Graphen G mit ÎŽ(G) ≄ α n hinzufĂŒgen muss, um sicherzustellen, dass der resultierende Graph mhW einen K_r -Faktor enthĂ€lt. Wir zeigen, dass, wenn man α erhöht, die Anzahl der benötigten Zufallskanten in regelmĂ€ĂŸigen AbstĂ€nden “springt", und innerhalb dieser AbstĂ€nde unser Ergebnis bestmöglich ist. Diese Arbeit schließt somit die LĂŒcke zwischen der oben erwĂ€hnten bahnbrechenden Arbeit von Johansson, Kahn und Vu, die den rein zufĂ€lligen Fall, d.h. α = 0, löst, und der Arbeit von Hajnal und SzemerĂ©di (und CorrĂĄdi und Hajnal fĂŒr r = 3), die zeigt, dass der ursprĂŒngliche Graph bereits den gewĂŒnschten K_r -Faktor enthĂ€lt, wenn α ≄ 1 − 1/r ist

    Symmetry reduction in convex optimization with applications in combinatorics

    Get PDF
    This dissertation explores different approaches to and applications of symmetry reduction in convex optimization. Using tools from semidefinite programming, representation theory and algebraic combinatorics, hard combinatorial problems are solved or bounded. The first chapters consider the Jordan reduction method, extend the method to optimization over the doubly nonnegative cone, and apply it to quadratic assignment problems and energy minimization on a discrete torus. The following chapter uses symmetry reduction as a proving tool, to approach a problem from queuing theory with redundancy scheduling. The final chapters propose generalizations and reductions of flag algebras, a powerful tool for problems coming from extremal combinatorics

    Optimization Methods for Cluster Analysis in Network-based Data Mining

    Get PDF
    This dissertation focuses on two optimization problems that arise in network-based data mining, concerning identification of basic community structures (clusters) in graphs: the maximum edge weight clique and maximum induced cluster subgraph problems. We propose a continuous quadratic formulation for the maximum edge weight clique problem, and establish the correspondence between its local optima and maximal cliques in the graph. Subsequently, we present a combinatorial branch-and-bound algorithm for this problem that takes advantage of a polynomial-time solvable nonconvex relaxation of the proposed formulation. We also introduce a linear-time-computable analytic upper bound on the clique number of a graph, as well as a new method of upper-bounding the maximum edge weight clique problem, which leads to another exact algorithm for this problem. For the maximum induced cluster subgraph problem, we present the results of a comprehensive polyhedral analysis. We derive several families of facet-defining valid inequalities for the IUC polytope associated with a graph. We also provide a complete description of this polytope for some special classes of graphs. We establish computational complexity of the separation problems for most of the considered families of valid inequalities, and explore the effectiveness of employing the corresponding cutting planes in an integer (linear) programming framework for the maximum induced cluster subgraph problem

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore