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Abstract

One of the central goals in extremal combinatorics is to understand how the global

structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected

by local constraints. In this thesis we are concernedwith structural properties of graphs

andhypergraphswhich locally do not look like some type of forbidden inducedpattern.

Patterns can be single subgraphs, families of subgraphs, or in the multicolour version

colourings or families of colourings of subgraphs.

Erdős and Szekeres’s quantitative version of Ramsey’s theorem asserts that in every

2-edge-colouring of the complete graph on n vertices there is a monochromatic clique

on at least
1
2 log n vertices. The famous Erdős-Hajnal conjecture asserts that forbidding

fixed colourings on subgraphs ensures much larger monochromatic cliques. The con-

jecture is open in general, though a few partial results are known. The first part of this

thesis will be concerned with different variants of this conjecture: A bipartite variant,

a multicolour variant, and an order-size variant for hypergraphs.

In the second part of this thesis we focus more on order-size pairs; an order-size

pair (n, e) is the family consisting of all graphs of order n and size e, i.e. on n vertices

with e edges. We consider order-size pairs in different settings: The graph setting, the

bipartite setting and the hypergraph setting. In all these settings we investigate the

existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size

pairs with sufficiently large order, and also forcing densities of order-size pairs (m, f),

i.e. for n approaching infinity, the limit superior of the fraction of all possible sizes e,

such that the order-size pair (n, e) does not avoid the pair (m, f).

i



ii



Acknowledgements

This thesis is the result of my time in the Discrete Mathematics research group at KIT

and Iwant to thank everyonewhohas shared some time in the groupwithme for always

creating a fruitful environment for interesting (not only mathematical) discussions.

First and foremost I would like to thank my thesis advisor Maria Axenovich for

sparking my interest in graph theory in the first place, for always throwing new inter-

esting problems at me, and for her outstanding supervision and support. I am grateful

for her always open door and ears, for the countless productive brainstorming sessions,

for her great insight and invaluable feedback. Many thanks also to Torsten Ueckerdt

for refereeing this thesis.

I would also like to thank Casey Tompkins, Richard Snyder, Jean-Sébastien Sereni,

Alex Riasanovsky, Jószef Balogh, Felix Christian Clemen and Dhruv Mubayi for their

valuable contributions and the productive collaboration.

A special thanks goes to my good friend Lucas for going through the entire thesis

and providing valuable feedback on both language and content. Many thanks also to

mymother for always supporting me andmaking tea a diolch i’r iaith Gymraeg am fod

mor hyfryd.

iii



iv



Contents

List of Figures viii

List of Tables ix

Introduction 1

Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I The Erdős-Hajnal conjecture 9

Introduction and basic notions . . . . . . . . . . . . . . . . . . . . . . . . 9

1 The bipartite variant of the Erdős-Hajnal conjecture – quantitative version 12

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Specific bounds in the linear regime . . . . . . . . . . . . . . . . . 15

1.2.1 Paths on 6 and 7 vertices . . . . . . . . . . . . . . . . . . 15

1.2.2 Remaining bipartite graphs . . . . . . . . . . . . . . . . . 18

1.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Bipartite independence number in graphswith boundedmaximumdegree 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Related problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Bounds on the size of a largest bihole in bipartite graphs with

maximum degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Proofs of the main theorems . . . . . . . . . . . . . . . . 26

2.3.2 Bounds on the size of a largest bihole for small ∆ . . . . 29

v



2.3.3 Bounds on the size of a largest bihole for large ∆ . . . . 33

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The multicolour version of the Erdős-Hajnal conjecture . . . . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The multicolour EH-property under blow-ups . . . . . . . . . . . 38

3.3 Allowing more colours than used in the forbidden pattern . . . . 40

3.4 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Rainbow triangle and an extra colour . . . . . . . . . . . 42

3.4.2 2-edge-colouredK4 and an extra colour . . . . . . . . . 43

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 The Erdős-Hajnal conjecture for three colours and families of triangles . 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Connections to other results, preliminary results, and more defi-

nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Forbidding one pattern . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Forbidding two patterns . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Two 2-coloured patterns . . . . . . . . . . . . . . . . . . 62

4.5.2 One 2-coloured and one 3-coloured pattern . . . . . . . 63

4.5.3 At least one 1-coloured and no 3-coloured pattern . . . 63

4.5.4 One 1-coloured and one 3-coloured pattern . . . . . . . 65

4.6 Forbidding three patterns . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Three 2-coloured patterns . . . . . . . . . . . . . . . . . 67

4.6.2 Two 2-coloured and one 3-coloured pattern . . . . . . . 69

4.6.3 At least one 1-coloured and no 3-coloured pattern . . . 72

4.6.4 At least one 1-coloured and one 3-coloured pattern . . . 81

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



5 The Erdős-Hajnal conjecture for order-size pairs . . . . . . . . . . . . . . 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Triple systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Forbidden sets of size 1 . . . . . . . . . . . . . . . . . . . 88

5.3.2 Forbidden sets of size 2 . . . . . . . . . . . . . . . . . . . 89

5.3.3 Forbidden sets of size 3 . . . . . . . . . . . . . . . . . . . 92

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II Order-size pairs: absolute avoidability and forcing densities 96

Introduction and basic notions . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Order-size pairs in graphs: absolutely avoidable pairs and forcing densities 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Lemmata and number theoretic results . . . . . . . . . . . . . . . 100

6.3 Proofs of the main theorems . . . . . . . . . . . . . . . . . . . . . 106

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Bipartite order-size pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Realising bipartite order-size pairs as the vertex-disjoint unions

of a biclique and a forest or its complement . . . . . . . . . . . . . 117

7.3 Unavoidable bipartite patterns . . . . . . . . . . . . . . . . . . . . 119

7.4 A characterisation of graphs that bipartite arrow (3, 4) . . . . . . 120

7.5 Density observations in the bipartite setting . . . . . . . . . . . . 130

7.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Order-size pairs in hypergraphs: absolute avoidability and forcing den-

sities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Existence of absolutely avoidable pairs . . . . . . . . . . . . . . . 136

vii



8.3 Density observations . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Order-size pair in hypergraphs: positive forcing density . . . . . . . . . . 149

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Bounds on σ3(6, 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.1 Proof idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.2 Definitions, notations, and construction . . . . . . . . . 151

9.2.3 Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2.4 Proof of the main result . . . . . . . . . . . . . . . . . . . 158

9.3 Conditions for order-size pairs of positive forcing density . . . . 160

9.3.1 Constructions and notations . . . . . . . . . . . . . . . . 160

9.3.2 Proof idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.3.3 Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.3.4 Proof of the main result . . . . . . . . . . . . . . . . . . . 165

9.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Index 166

References 168

viii



List of Figures

1.1 The setH = {P̃5, P6, S1,2,3, P7}. . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 The graph S1,2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 H-good colouring ofK7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 The bipartite graphs At, Bt and B
c
t with 2t vertices in each part . . . . . 119

7.2 Proof of Lemma 7.8,K1,2 ∪K2,1 . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Proof of Lemma 7.8: |N(u1) ∩N(u2)| = 1 . . . . . . . . . . . . . . . . . . 124

7.4 Proof of Lemma 7.8, Cases 1 and 2 . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Proof of Lemma 7.8, Case 2 continued . . . . . . . . . . . . . . . . . . . . 125

7.6 Proof of Lemma 7.8, Case 2 final . . . . . . . . . . . . . . . . . . . . . . . 125

9.1 Illustration of G({2}, n, k). . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2 The sets

m−1⋃
x=0

[
(
x
3

)
,
(
x
3

)
+m] and

m⋃
x=1

[
(
x
3

)
−m,

(
x
3

)
] on the number line. . . . 164

ix



List of Tables

0.1 Bounds on Classical Ramsey numbers . . . . . . . . . . . . . . . . . . . . 8

1.1 Bipartite EH-coefficients from [15] . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Improved bipartite EH-coefficients . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Asymptotic bounds on f(n,∆) for small ∆, n large . . . . . . . . . . . . 23

4.1 Bounds on h2(n,H) for familiesH of one pattern on a triangle . . . . . . 47

4.2 Bounds on h2(n,H) for familiesH of two patterns on triangles . . . . . . 48

4.3 Bounds on h2(n,H) for familiesH of three patterns on triangles

ε(n) = 0 if n ≡ 0 (mod 5), ε(n) = 1 if n ≡ 1, and ε(n) = 2 otherwise;

ε1(n) = 1 if n ≡ 2 (mod 7) and ε1(n) = 0, otherwise. . . . . . . . . . . . 49

x



Introduction

Outline of the thesis

In this thesis, we are concerned with the structure of graphs which do not contain

some given induced pattern. Here a pattern can be a single graph, a family of graphs, a

colouring of some graph or a family of colourings of graphs.

In Part I, we are concerned with different variants of the famous Erdős-Hajnal

conjecture (EH-conjecture for short), which asserts that forbidding any graph H as an

induced subgraph forces a large homogeneous set in the host graph.

Chapter 1: The bipartite version of the Erdős-Hajnal conjecture. It was shown by

Erdős, Hajnal and Pach [60] that the EH-conjecture holds in the bipartite set-

ting. Axenovich, Tompkins and the author [15] (see also Master thesis [125])

characterised for which forbidden induced subgraphs the size of a largest homo-

geneoues set is linear in the number of vertices – except for four open cases. We

will show that for these cases it is also linear.

Chapter 2: Bipartite independence number for bounded maximum degree. Herewe

consider the following natural, yet seemingly not much studied, extremal prob-

lem in bipartite graphs: A bihole of size t in a bipartite graph G with a fixed

bipartition is an independent set with exactly t vertices in each part; in other

words, it is a copy of Kt,t in the bipartite complement of G. Let f(n,∆) be the

largest k for which every (n × n) bipartite graph with maximum degree ∆ in

one of the parts has a bihole of size k. Thus, determining f(n,∆) is the bi-

partite analogue of finding the largest independent set in graphs with a given

number of vertices and bounded maximum degree. It has connections to the

bipartite version of the Erdős-Hajnal conjecture, bipartite Ramsey numbers, and

the Zarankiewicz problem. Ourmain result determines the asymptotic behaviour

of f(n,∆). More precisely, we show that for large but fixed ∆ and n sufficiently

1
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large, f(n,∆) = Θ( log ∆
∆ n). We further address more specific regimes of ∆, espe-

cially when ∆ is a small fixed constant. In particular, we determine f(n, 2) exactly

and obtain bounds for f(n, 3), though determining the precise value of f(n, 3) is

still open. The results are joinedworkwith Axenovich, Sereni and Snyder and are

published in SIAM Journal on Discrete Mathematics, 35(2):1136-1148, 2021 [13].

Chapter 3: The multicolour Erdős-Hajnal conjecture. Here we will look at a multi-

colour version of the Erdős-Hajnal conjecture. Specifically, the most general

multicolour version of the conjecture states that for any fixed integers k, s, s′ and

any s′-edge-colouring c ofKk, there exists ε > 0 such that in any s-edge-colouring

of Kn that avoids c there is a clique on at least nε vertices, using at most s − 1

colours. In particular, we reduce themulticolour EH-conjecture to the case where

the number of colours is equal to or one more than the numbers of colours used

in the forbidden pattern. Most of the results are joint work with Axenovich and

Riasanovsky [12].

Chapter 4: The multicolour EH-conjecture for 3 colours and families of triangles.

Here, we focus on quantitative aspects of the multicolour EH-conjecture in the

case where the number of colours is s = 3, and the forbidden colourings are

on triangles. More precisely, for a family H of triangles, each edge-coloured

with colours from {r, b, y}, Forb(n,H) denotes the family of edge-colourings of

Kn using colours from {r, b, y} and containing none of the colourings from H.
Let h2(n,H) be the maximum q such that any colouring from Forb(n,H) has a

clique on at least q vertices using at most two colours. We provide bounds on

h2(n,H) for all familiesH consisting of at most three triangles. For most of them

our bounds are asymptotically tight. This, in particular, extends a result of Fox,

Grinshpun, and Pach, who determined h2(n,H) for H consisting of a rainbow

triangle. In addition, we prove that for some H, h2(n,H) corresponds to certain

classical Ramsey numbers, smallest independence number in graphs of given odd

girth, or some other natural graph theoretic parameters. The results are joined

work with Axenovich and Snyder and are published in Discrete Mathematics,

345(5):112791, 2022 [14].

Chapter 5: The Erdős-Hajnal conjecture for order-size pairs. We consider a variant

of theErdős-Hajnal problem for r-graphswherewe forbid a family of hypergraphs

described by their orders and sizes. For graphs, we observe that if we forbid in-

duced subgraphs onm vertices and f edges for any positivem and 0 ≤ f ≤
(
m
2

)
,

then we obtain large homogeneous sets. For triple systems, in the first nontrivial

casem = 4, for every S ⊆ {0, 1, 2, 3, 4}, we give bounds on the minimum size of a

homogeneous set in a triple systemwhere the number of edges spanned by every
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four vertices is not in S. For all S we determine if the growth rate is polylogarith-

mic. The results of this chapter are joined work with Axenovich and Mubayi and

appear in the arXiv preprint https://arxiv.org/abs/2303.09578 [11].

In Part II, we are concerned with forbidding as induced subgraphs so called order-size-
pairs: a class of graphs/hypergraphs defined by their orders and sizes. Here we do not

focus on homogeneous sets, but rather on the question howmany large graphs avoid a

given small order-size pair. We focus on the existence of absolutely avoidable pairs (m, f),

i.e. pairs which are not contained in any order size-pair (n, e) for n sufficiently large,

and on the forcing density of a pair (m, f), i.e. for the order n approaching infinity, the

limit superior of the fraction of all possible sizes e, such that the pair (n, e) forces the

pair (m, f). We consider these problems for graphs, bipartite graphs, and hypergraphs.

Chapter 6: Order-size pairs in graphs. We call an order-size pair (m, f) of integers,

m ≥ 1, 0 ≤ f ≤
(
m
2

)
, absolutely avoidable if there is n0 such that for any pair of

integers (n, e) with n > n0 and 0 ≤ e ≤
(
n
2

)
there is a graph on n vertices and

e edges that contains no induced subgraph on m vertices and f edges. Here

we show that there are infinitely many absolutely avoidable pairs. We give a

specific infinite setM such that for any m ∈ M the pair (m,
(
m
2

)
/2) is absolutely

avoidable and show that form ≥ 754 either (m,
⌊(
m
2

)
/2
⌋
) or (m,

⌊(
m
2

)
/2
⌋
− 6m) is

absolutely avoidable. In addition,we show that for anymonotone integer function

q(m), |q(m)| = O(m) there are infinitely many values of m such that the pair

(m,
(
m
2

)
/2+q(m)) is absolutely avoidable. Most of the results are joinedworkwith

Axenovich and have been accepted for publication by Journal of Combinatorics

[16].

Chapter 7: Bipartite order-size pairs: We investigate the existence of absolutely avoid-

able pairs and forcing densities in the bipartite setting. The question whether

there exist absolutely avoidable pairs in this setting remains open, but we show

the existence of infinitely many pairs with forcing density 0 and also infinitely

many pairs with forcing density 1.

Chapter 8: Order-size pairs in hypergraphs. We show that for any r ≥ 3 andm ≥ m0,

either thepair (m,
⌊(
m
r

)
/2
⌋
)or thepair (m,

⌊(
m
r

)
/2
⌋
−m−1) is absolutely avoidable.

We also show that for r ≥ 3 most pairs (m, f) have forcing density 0. Further,

we show that form > r there exists no non-trivial pair (m, f) of forcing density 1

and provide some general upper bounds on the forcing density. The results have

been accepted for publication by Journal of Combinatorics [126].

https://arxiv.org/abs/2303.09578
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Chapter 9: Positive forcing density of order-size pairs in hypergraphs. Answering a

question from Chapter 8, we show that (6, 10) is a pair of positive forcing density

for r = 3 and conjecture that it is the unique such pair. Further, we find necessary

conditions for a pair to have positive forcing density, supporting this conjecture.

The results are joined work with Axenovich, Balogh and Clemen and have been

submitted for publication to SIAM Journal on Discrete Mathematics [10].

Preliminaries

In this Section we will introduce some basic notation, concepts and previously known

results that are used throughout the thesis. Less common notions will be introduced

in the appropriate place within the chapters where they are needed. For a general

introduction to graph theory we refer to the books of Diestel [52] and West [127].

General

For a finite set V and some n ∈ N let

(
V
[n]

)
denote the set of all n-element subsets of

V . For finite sets X and Y let X∪̇Y denote the disjoint union of X and Y and let

X × Y = {(x, y) : x ∈ X, y ∈ Y }. For a positive real number x, let [x] = {0, 1, . . . , bxc}.

For two integers x, y, x ≤ y, we denote by [x, y] the set of all integers at least x and

at most y. For two reals x, y, x ≤ y, we use the standard notation (x, y), [x, y), (x, y], and

[x, y] for respective intervals of reals. For x ∈ R let {x} = x − bxc denote the fractional
part of x, i.e. {x} ∈ [0, 1) and {x} = x (mod 1).

Graphs, bipartite graphs, and hypergraphs

An r-uniform hypergraph, or r-graph G is a pair G = (V,E) where V is the set of vertices
and E ⊆

(
V
[r]

)
is the set of edges of G. The uniformity of G is r, and if r = 2, we refer

to G as a graph. For an r-graph G, let V (G) be the vertex set and E(G) be the edge set

of G. The order of G is |V (G)| and the size of G is |E(G)|. For convenience we write

x1x2 · · ·xr for an edge {x1, x2, · · · , xr} of an r-graph. An r-element subset f ∈
(
V
r

)
with

f 6∈ E is called a non-edge of G. The complement G of G is the r-graph with vertex set

V (G) = V (G) and edge set E(G) =
(
V
[r]

)
\ E(G).

Two r-graphs G and G′ are isomorphic if there is a bĳection f : V (G)→ V (G′), such
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that e ∈
(
V
[r]

)
is an edge inG if and only if f(e) is an edge inG′. All r-graphsG considered

in this thesis are finite, i.e. V (G) is finite and simple, i.e. they contain nomultiple edges,

since E(G) is not a mulitset. Two vertices contained in a common edge are called

adjacent. For a vertex v ∈ V (G) the set N(v) = {u ∈ V (G) \ {v} : u is adjacent to v} is
the neighbourhood of v, and the elements are the neighbours of v. The degree d(u) = dG(u)

of a vertex u in an r-graphG is the total number of edges inG that contain u; we omit the

subscript G if it is clear from the context. A vertex u of an r-graph is isolated if d(u) = 0

and a leaf if d(u) = 1. The minimum degree δ(G) is the smallest and the maximum degree
∆(G) is the largest degree of any vertex in V (G).

For an r-graph G and U ⊆ V (G), F ⊆ E(G) let G[U ] = (U,E(G) ∩
(
U
[r]

)
), G − U =

G[V (G) \ U ], and G − F = (V (G), E(G) \ F ). A subgraph G′ of an r-graph G is an

r-graph with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). G is called a supergraph of G′. We

write G′ ⊆ G. A subgraph G′ of G is induced if G′ = G[V (G′)]. A copy of some r-graph

H in an r-graph G is a subgraph G′ ⊆ Gwhich is isomorphic toH . We call an r-graph

G H-free, if it contains no induced copy of H , i.e. no induced subgraph of G is a copy

of H . For a family of graphs H we say G is H-free if G is H-free for all H ∈ H. The

vertex-disjoint union G1 ∪G2 of two r-graphs G1 and G2 is the r-graph F with vertex

set V = V1∪̇V2, such that F [Vi] = Gi for i = 1, 2. For an r-graph G and an integer n let

nG be the vertex-disjoint union of n copies of G.

Let K
(r)
n denote the complete r-graph or clique on n vertices, i.e. the graph on n

vertices in which all

(
n
r

)
r-sets are edges; for r = 2, we simply write Kn. Note that

for r < n, K
(r)
n is a set of n isolated vertices. The clique number ω(G) of an r-graph

G is ω(G) = max{n : Kr
n ⊆ G}. An independent set or co-clique in an r-graph G is a

set I ⊆ V (G) such that every r-element subset of I is a non-edge. The independence
number α(G) of G is the size of a largest independent set in G. A homogeneous set is a
clique or a co-clique. The size of largest homogeneous set in an r-graph G is denoted

by h(G) = max{α(G), ω(G)}.

In 2-graphs a path of length n, n ≥ 2 consists of n vertices v1, . . . , vn and n− 1 edges

vivi+1, i ∈ [n−1]. We write Pn for the path of length n. For vertices u, v in some graph,

a u-v-path is a path in G starting at u and ending in v. A graph G is connected if for any
two vertices u, v ∈ V (G) there exists an u-v-path.

A cycle of length n, n ≥ 3 consists of n vertices v1, . . . , vn and n edges vivi+1, i ∈ [n],

indices taken modulo n. We write Cn for the cycle of length n. The girth of a graph G,

denoted by girth(G) is the length of a shortest cycle in G. If G contains no cycle, G is

called acyclic or forest, and we write girth(G) =∞. A tree is a connected forest. The odd
girth of G, denoted by girthodd(G), is the length of a shortest cycle of odd length in G.
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If a graph contains no odd cycle, it is bipartite.

Given a positive integer n and some pwith p ∈ [0, 1], G(n, p) denotes the probability

space on alln-vertex graphs that result from independently decidingwhether to include

each of the

(
n
2

)
possible edges with probability p. This model is called the Erdős–Rényi

model of random graphs. We call G ∈ G(n, p) a random graph.

A vertex colouring of an r-graph is a map c : V (G)→ S, where S is a set of colours.

c is a proper colouring if each edge contains at least two vertices of distinct colours.

The chromatic number χ(G) of an r-graph G ist the smallest number of colours used

among all proper colourings of G. An r-graph G is k-partite if there is a partition

V (G) = V1∪̇ · · · ∪̇Vk, sucht that |e ∩ Vi| ≤ 1 for each e ∈ E(G) and i ∈ [k]. A 2-partite

r-graph is also called bipartite.

Bipartite 2-graphs

Let G be a bipartite graph with parts U and V of size m and n respectively, we write

G = ((U ∪̇V ), E),E ⊆ U ×V . We call such a graph an (m×n) bipartite graph. We shall

often depict the sets U and V as sets of points on two horizontal lines in the plane and

callU the top part and V the bottom part. We say that a graph is the bipartite complement
of G if it has the same vertex set as G and its edge set is (U × V ) \ E. We denote the

bipartite complement of a graphG byGc. By ω̃(G) we denote the largest integer t such

that there are A ⊆ U , B ⊆ V with |A| = |B| = t and ab ∈ E for all a ∈ A, b ∈ B, i.e.

A and B form a biclique. By α̃(G) we denote the largest integer t such that there are

A ⊆ U , B ⊆ V with |A| = |B| = t and ab 6∈ E for all a ∈ A, b ∈ B, i.e. A and B form

a co-biclique or a bihole. A homogeneous set in a bipartite graph is a biclique or a bihole.

Let h̃(G) = max{α̃(G), ω̃(G)} denote the size of a largest homogeneous set in G.

For bipartite graphs H = ((U, V ), E) and G = ((A,B), E′), we say that H is an

induced bipartite subgraph of G respecting sides if U ⊆ A, V ⊆ B, and for any u ∈ U ,

v ∈ V , we have uv ∈ E(H) if and only if uv ∈ E(G). We say that a bipartite graph

H = ((U, V ), E) is a copy of a bipartite graph H∗ = ((U∗, V ∗), E∗) if H∗ is isomorphic

to H with isomorphism ϕ : U∗ ∪ V ∗ → U ∪ V such that ϕ(U∗) = U and ϕ(V ∗) = V .

Let Km,n denote the complete bipartite graph with parts of sizes m and n and all

possible edges.
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Extremal graph theory

The extremal number exr(n,G) of a family G of r-graphs is defined as the maximum

number of edges any r-graph on n vertices can have without containing any G ∈ G as

a subgraph. If G = {G}, we write exr(n,G) = exr(n, {G}).

By Tr(n, l) we denote the complete balanced l-partite r-graph on n vertices, i.e. the

l-partite r-graph inwhich each part has size

⌊
n
l

⌋
or

⌈
n
l

⌉
and any r vertices from r distinct

parts form an edge. T2(n, l) is also called the Turán graph.

For r = 2 Turán’s Theorem [122], proved in 1941, tells us that ex2(n,Kt) =

|E(T2(n, t − 1))| =
(
t−2
t−1 + o(1)

) (
n
2

)
. Erdős and Stone proved the following asymp-

totic generalisation: ex2(n,H) =
(
t−2
t−1 + o(1)

) (
n
2

)
for any H with χ(H) = t > 2.

However, for bipartite graphs (i.e. graphs with χ = 2) the Erdős-Stone theorem

does not provide a tight bound; it is known that ex(n,G) = o(n2) for general bipartite

graphs. The Zarankiewicz function z(m,n; s, t) denotes the maximum possible number

of edges in a subgraph of Km,n which does not contain a copy of Ks,t. We write

z(n; t) = z(n, n; t, t) for the symmetric problem. It was proven by Kővári, Sós and

Turán [98] that z(m,n; s, t) < (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m. This was improved

in the diagonal case by Znám [128] to z(n; t) < (t− 1)1/tn2−1/t + 1
2(t− 1)n.

Much less is known for r-graphs with r ≥ 3. For an r-graph H the Turán density is

defined as πr(G) = limn→∞ exr(n,G)

(nr)
, and the currently best known general bounds

on the Turán density are

1−
(
r − 1

m− 1

)r−1

≤ π(Kr
m) ≤ 1−

(
m− 1

r − 1

)−1

,

due to Sidorenko [118] and de Caen [51].

Ramsey Theory

An s-edge-colouring of an r-graphG is a map c : E(G)→ [s]. Amonochromatic subgraph
H is a subgraphH ⊆ G, for which there exists some colour i ∈ [s] such that c(e) = i for

all e ∈ E(H).

Given r-graphsH1, . . . ,Hs, the Ramsey number of (H1, . . . ,Hs) isRr(H1, . . . Hs), the

minimum integer n, such that for any s-edge-colouring of Kn there exists i ∈ [s], such

that there is a monochromatic copy of Hi in colour i. Ramsey’s theorem [114] states
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that this is well-defined. Note that we can also replace a single graph by a family of

graphs in the definition: The Ramsey number Rr({H1, . . . ,Hs}, {K1, . . . Ht}) would

then be the smallest integer n such that in any 2-edge-colouring of Kn there is either a

monochromatic copy of some Hi in colour 1 or a monochromatic copy of some Ki in

colour 2. If all His are complete, we write Rr(k1, . . . , ks) for Rr(Kk1 , . . . ,Kks).

For r = 2 we usually omit the index R2 and simply write R(H1, H2). Table 0.1 lists

some upper and lower bounds on Ramsey numbers for 2-graphs which will be used

throughout the thesis.

Ramsey number Bound Reference

R(k, k)
≥ 2k/2 Erdős [53]

≤ 4k Erdős and Szekeres [65]

R(3, k)
Ω(k2/log k) Kim [93]

O(k2/log k) Ajtai, Komlós, Szemeredi [1]

R(4, k) Ω(k5/2/ log2 k) Bohman [23]

R(C5,Kk) O(k3/2/
√

log k) Caro et al. [39]

R({C3, C4, C5},Kk) Ω((k/ log k)4/3) Spencer [120]

R(3, 3, 3) = 17 Greenwood and Gleason [81]

Table 0.1: Bounds on Classical Ramsey numbers

Note that the upper bound on the diagonal Ramsey number R(k, k) ≤ (1 +

o(1)) 4k

4
√
πk

due to Erdős and Szekeres from 1935 has been improved to R(k, k) ≤
k−(c log k)/(log log k)4k by Conlon [46] in 2009. Very recently, in March 2023, Campos,

Griffiths, Morris and Sahasrabude [33] improved the bound to R(k, k) ≤ (4 − 2−7)k.

However, in this thesis, we will only use the old bound listed in the table.

For r = 3, the best known bounds in the diagonal case are due to Erdős, Hajnal and

Rado [61]. They showed that there exist positive constants c, c′ such that

2cn2 < R3(k, k) < 22c
′n
.



Part I

The Erdős-Hajnal conjecture

Introduction and basic notions

A homogeneous set in an r-graph is a clique or an independent set. We write h(G) for

the size of largest homogeneous set in an r-graph G. In 1935 Erdős and Szekeres [65]

proved that for any 2-graph G of size n we have h(G) ≥ 1
2 log n. On the other hand,

a well-known theorem by Erdős [55] shows that for any n there exists a 2-graph G on

n vertices with h(G) ≤ 2 log n. Erdős and Hajnal [59] conjectured that this behaviour

changes if one only considers H-free graphs G for any fixed graph H .

We say that an r-graphH has the Erdős Hajnal-property or simply EH-property if there
is a constant ε = εH > 0 such that every n-vertex H-free r-graph G satisfies h(G) ≥ nε.
Erdős and Hajnal [59] conjectured the following in 1989:

Conjecture 0.1 (Erdős, Hajnal [59]). Any 2-graph has the Erdős-Hajnal property.

In the same paper they investigated perfect graphs, i.e. graphs G for which neither

G nor its complement G contains an induced odd cycle of length at least 5. They were

able to prove that for a perfect graph G, we have h(G) ≥
√
|G|. Thus, one could also

formulate Conjecture 0.1 by asking for a large induced perfect subgraph in any H-free

graph.

The conjecture remains open, see for example a survey by Chudnovsky [43], as

well as [6, 27, 72], to name a few. However, some partial results are known. When

H is a fixed graph and G is an H-free n-vertex graph, Erdős and Hajnal [59] proved

that h(G) ≥ 2c
√

logn
. This was recently improved to h(G) ≥ 2c

√
logn log logn

by Bucić,

Nguyen, Scott, and Seymour [31].

Only very few graphs are known to have the EH-property and the only operation

9
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known to preserve the EH-property, i.e. with which one can build larger graphs with

the EH-property from smaller ones, is the so called blow-up: For a 2-graphH with vertex

set V (H) = {v1, . . . , vk} and any other pairwise vertex-disjoint r-graphs F1, . . . , Fk, we

define the blow-up H(F1, . . . , Fk) as the 2-graph obtained by taking pairwise vertex-

disjoint copies of F1, . . . , Fk with an edge between vertices from Fi and Fj if and only

if vivj ∈ E(H).

Lemma 0.2 (Alon, Pach, Solymosi [6]). If H,F1, . . . , Fk have the Erdős–Hajnal property,
then so does H(F1, . . . , Fk).

All graphs on up to four vertices are known to have the EH-property and the

constants in the quantitative version are known. With Lemma 0.2 one can show that all

but four graphs on 5 vertices also have the EH-property, the remaining ones being the

bull, C5, P5 and P5. For the bull the conjecture was proven to hold by Chudnovsky and

Safra [44], and for C5 it was proven by Chudnovsky, Scott, Seymour and Spirkl [45], so

the only graph on up to 5 vertices for which the conjecture remains open, is P5.

One can also consider a bipartite version of the Erdős-Hajnal conjecture. Here one

asks for a largest homogeneous set, i.e. a biclique or a bihole in a bipartite graph not

containing some forbidden induced bipartite subgraph. For a bipartite graph G, the

size of a largest homogeneous set is denoted by h̃(G) = max{α̃(G), ω̃(G)}. It is implicit

from a result of Erdős, Hajnal and Pach [60] that for any bipartite H with the smaller

part of size k, any H-free bipartite graph G satisfies h̃(G) = Ω(|G|1/k). It was shown

in [15] that for bipartite graphs H containing a cycle, any H-free bipartite graph G

satisfies h̃(G) ∈ o(n), and for all but at most four bipartite graphs H with acyclic H

and bipartite complementHC
, anyH-free bipartite graph satisfies h̃(G) = cn for some

constant c(H). In Chapter 1 we will look at these open cases and in Chapter 2 we

determine the size of a largest bihole in a bipartite graph with bounded maximum

degree, which will lead to improved EH-coefficients for bipartite graphs H with only

one vertex in one part.

Erdős and Hajnal [59] further stated a multicoloured version of Conjecture 0.1

asserting that for any fixed integer k ≥ 3 and for any fixed s′-edge-coloured clique

K on k vertices, for s ≥ s′ ≥ 2, there is a positive constant a = a(K) such that any

s-edge-colouring of a complete graph on n vertices with no copy ofK contains a clique

on Ω(na) vertices using at most s− 1 colours.

In Chapter 3 we will make this precise and reduce the multicolour EH-conjecture

to the case where the number of colours s is equal to or one more than the number

of colours used on the forbidden colouring. We further state a size variant of the
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multicolour EH-conjecture and show that it holds for s ∈ {2, 3} colours. We also

generalise Lemma 0.2 to an arbitrary number of colours.

In Chapter 4 we will investigate the multicolour EH-conjecture for 3 colours and

forbidden patterns on triangles, i.e. we are looking for large 2-coloured cliques in 3-

coloured complete graphs which do not contain some given forbidden colourings on

triangles. In particular, there might be more than one forbidden triangle-colouring.

We show that the Erdős-Hajnal conjecture holds true in this setting. We focus on the

quantitative version of the conjecture and provide asymptotic bounds on the sizes of

the largest 2-edge-coloured cliques for all families of forbidden patterns containing at

most 3 triangle-colourings.

The Erdős-Hajnal conjecture fails for r-graphs, r ≥ 3, already whenH is a complete

graph of size r + 1. Indeed, well-known results on off-diagonal hypergraph Ramsey

numbers show that there are n-vertex r-graphs that do not have a clique on r + 1

vertices and do not have co-cliques on fr(n) vertices, where fr is an iterated logarithmic

function (see [110] for the best known results).

Moreover, the following result (Claim 1.3. in [80]) tells us exactly which r-graphs,

r ≥ 3, have the EH-property. Here D2 is the unique 3-graph on 4 vertices with exactly

2 edges.

Theorem0.3 (Gishboliner, Tomon [80]). Let r ≥ 3. IfF is an r-graph on at least r+1 vertices
and F 6= D2, then there is an F -free r-graph H on n vertices such that h(H) = (log n)O(1).

It is natural to consider the EH-property for families of r-graphs instead of a single

r-graph. We call an r- graph F on m vertices and f edges an (m, f)-graph, we call

the pair (m, f) the order-size pair for F and we say that an r-graph H is (m, f)-free

if it contains no induced copy of an (m, f)-graph. Similarly, we say a pair (m, f) (or

a family of pairs Q = {(m1, f1), . . . , (mk, fk)}) has the EH-property if any (m, f)-free

(or Q-free) r-graph H satisfies h(H) ≥ |H|ε for some ε only depending on (m, f). In

Chapter 5 we show that for r = 2 any order-size pair has the EH-property. We then

fix r = 3 and m = 4 and consider all possible families Q of order-size pairs with these

parameters. For each such Qwe give bounds on h(H) for any Q-freeH and determine

which families Q have the EH-property.
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Chapter 1 The bipartite variant of the Erdős-Hajnal

conjecture – quantitative version

1.1 Introduction

Let Forb(n,H) denote the set of all bipartite graphs with parts of size n which do not

contain a copy of H as an induced bipartite subgraph respecting sides. Recall that we

call a bipartite graph H-free if it does not contain an induced copy of H . Recall that

h̃(G) = min{α̃(G), ω̃(G)} denotes the size of a largest balanced homogeneous set, i.e. a

biclique or a bihole/co-biclique in G. Let

h̃(n,H) = h̃(Forb(n,H)) = min{h̃(G) : G ∈ Forb(n,H)}.

Lemma 1.1. IfH is an induced bipartite subgraph ofK (respecting sides), we have h̃(n,H) ≥
h̃(n,K).

Proof. Any H-free bipartite graph is also K-free by assumption. Thus, we have

Forb(n,H) ⊆ Forb(n,K), and thus, h̃(n,H) = min{h̃(G) : G ∈ Forb(n,H)} ≥
min{h̃(G) : G ∈ Forb(n,K)} = h̃(n,K).

It is implicit from a result of Erdős, Hajnal and Pach [60] that for any bipartite

H with the smaller part of size k, we have h̃(n,H) = Ω(n1/k). If either H or its

bipartite complement Hc
contain a cycle, then it must contain either C4, C6 or C8. A

standard probabilistic argument, see for example [15], shows that in this case we have

h̃(n,H) = O(n1−ε) for some positive ε.

Axenovich, Tompkins and the author [15] addressed the question of when h̃(n,H)

is linear in n. We say that a bipartite graph H is strongly acyclic if neither H nor its

bipartite complement Hc
contain a cycle. They showed that for all but at most four

strongly acyclic graphs H , h̃(n,H) is linear in n. Let

H = {P̃5, P6, S1,2,3, P7},

the set of these four strongly acyclic graphs, given in Figure 1.1.

Theorem 1.2 (Axenovich, Tompkins, Weber [15]). Let H be a strongly acyclic bipartite
graph. If neitherH norH ′ is inH, there is a positive constant c = c(H) such that h̃(n,H) ≥ cn.

Moreover, for several graphs H the value of h̃(n,H) was determined exactly; the
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P̃5 P6 S1,2,3 P7

Figure 1.1: The setH = {P̃5, P6, S1,2,3, P7}.

results are summarised in Table 1.1. Here Mk,k is the bipartite graph with vertex set

{v1, v2}∪̇{s1, . . . , s2k+2}, such that v1 is incident to {s1, . . . , sk, s2k+1}, v2 is incident to

{sk+1, . . . , s2k+1}, and Hk,k = 2K1,k. Then any strongly acyclic bipartite graph with at

most two vertices in its smaller part is an induced subgraph of Mk,k for some k; one

can easily show that any strongly acyclic bipartite graph H with H 6∈ H has at most 2

vertices in its smaller part. P̃3 denotes the (2× 2) bipartite graph which is a P3 and an

isolated vertex. Using Lemma 1.1 one obtains the given bounds.

forbidden H h̃(n,H)

not strongly acyclic o(n)

H ⊆Mk,k ≥ n
30|V (H)|

H ∈ H̃ ?

H ⊆ Hk,k ≥ n
2k

P4 =
⌈
n
3

⌉
2K2 =

⌈
n
2

⌉
P̃3 ≥

⌈
2n
5

⌉
Table 1.1: Bipartite EH-coefficients from [15]

In the remaining part of this chapter we will deal with the four open cases. In

Chapter 2, we will look at large biholes in bipartite graphs with bounded maximum

degree in one part, which will yield the upper bound on h̃(n,H) forH with one vertex

in the smaller part. The results are summarised in Table 1.2.

forbidden H h̃(n,H) Source

H ⊆ K1,k ≥ 1
2

log ∆(H)
∆(H) n Chapter 2, [13]

P7 ≥ n
1013 Proposition 1.5

P6 ≥ n
1013 Corollary 1.9

S1,2,3 ≥ n
6 [2], Proposition 1.10

P̃5 ≥ n
6 Corollary 1.13

Table 1.2: Improved bipartite EH-coefficients
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In particular, the results from Table 1.2 together with Theorem 1.2 imply the follow-

ing:

Theorem 1.3. LetH be a bipartite graph. ThenH is strongly acyclic if and only if there exists
some c = c(H) > 0, s.t. h̃(n,H) ≥ cn.

Scott, Seymour and Spirkl [117] proved the following theorem:

Theorem 1.4 (Scott, Seymour, Spirkl [117]). For every bipartite graph H which is a forest
and every τ with 0 < τ ≤ 1 there exists ε = ε(H) > 0, such that any H-free (n× n) bipartite
graph G with at most (1− τ)n2 edges satisfies α̃(G) ≥ εn.

Note that one can obtain Theorem 1.3 from Theorem 1.4 in the following way: Let

H be a strongly acyclic bipartite graph and let G be any (n× n) bipartiteH-free graph.

If |E(G)| ≤ 1
2n

2
, by Theorem 1.4 we have α̃(G) ≥ ε(H)n. Otherwise, Gc is Hc

-free and

has at most
1
2n

2
edges, so by Theorem 1.4 we have that ω̃(G) = α̃(Gc) ≥ ε(Hc)n.

However, the proof of Theorem 1.4 does not provide any specific constants ε(H).

It uses, amongst others, the existence of hypergraph Ramsey numbers, for which we

have the lower bound Rk(n, n) ≥ tk−1(cn2), where tk(x) is the tower function defined

by t1(x) = x and ti+1(x) = 2ti(x)
. At one step in the proof one iterates over all forests

on a fixed number of vertices, where k is the number of vertices in the forest, and

in each iteration, n is the Ramsey number from the previous step. Even when only

considering strongly acyclic bipartite graphs in H̃ on 6 or 7 vertices, following the proof

of Theorem 1.4 will only give ε−1 > Rk(n, n) for some huge n, which is considerably

weaker than the bounds obtained in the next section.

Note that the notion of large bicliques and co-bicliques in ordered bipartite graphs

with forbidden induced subgraphs corresponds to the notion of submatrices of all 0’s

or of all 1’s in binary matrices with forbidden submatrices. Here orderedmeans that the

vertices in the two parts are ordered according to the rows and columns of thematrices,

thus, one forbidden submatrix only forbids one specific ordering of the corresponding

bipartite graph. A paper by Korándi, Pach and Tomon [96] addresses a similar question

for matrices. In addition, one could interpret bipartite graphs as set systems consisting

of all the neighbourhoods of vertices from one part. Structural properties of these

graphs in terms of VC-dimension of the respective set system in connection to the

Erdős-Hajnal conjecture are addressed for example by Fox, Pach and Suk [72].
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1.2 Specific bounds in the linear regime

The goal of this section is to deal with the four remaining cases P̃5, S1,2,3, P6 and P7.

In particular, we will show that in each of those cases we obtain h̃(n,H) ≥ c(H)n, for

some positive constants c(H), which will then prove Theorem 1.3. Note that P̃5 and P6

are induced subgraphs of S1,2,3 and P7 respectively, so by Lemma 1.1 it suffices to find

positive constants c(S1,2,3) and c(P7), even though these might not be best possible for

c(P̃5) and c(P6).

1.2.1 Paths on 6 and 7 vertices

Proposition 1.5. We have h̃(n, P7) ≥ n
5444·3·25 .

The proof is partly inspired by a result by Bousquet, Lagoutte and Thomassé [27]

on the Erdős-Hajnal conjecture for paths and antipaths. Before we prove the statement,

we need some auxiliary lemmata:

Lemma 1.6. Let G = (A∪̇B,E) be an (n1 × n2) bipartite graph with n1, n2 ≥ 2. Then G
contains either a co-biclique or a connected component with parts of sizes at least n1

3 and n2
3 in

A and B respectively.

Proof. Let, for some index set I , the connected components ofG have partsAi andBi of

sizes ai, bi, respectively, Ai ⊆ A, Bi ⊆ B, i ∈ I . Let Gi = G[Ai∪̇Bi] be the ith connected

component of G.

We can assume that for each i we either have ai <
n1
3 or bi <

n2
3 , since otherwise

there is a connected component with parts of sizes
n1
3 ,

n2
3 .

Then we have ai <
n1
3 and bi <

n2
3 for each i ∈ I : Assume there is i ∈ I s.t. ai ≥ n1

3

or bi ≥ n2
3 , say ai ≥ n1

3 . Then by our assumption above we must have bi <
n2
3 . Hence,

we find a co-biclique with parts Ai, B \Bi of sizes at least n1
3 and

2n2
3 respectively.

Let I1 be the set of indices for which we have
ai
n1
≤ bi

n2
. Let I2 = I \ I1. Let

X1 =
⋃
i∈I1

Ai, Y1 =
⋃
i∈I1

Bi, X2 = A \ A1, Y2 = B \ B2, x1 = |X1|, x2 = |X2|, y1 = |Y1|,

y2 = |Y2|. Consider the co-bicliquewith parts Y1, X2. We can assume that either y1 <
n2
3

or x2 <
n1
3 . If x1 <

n1
3 , then clearly x2 >

2n1
3 , so assume y1 <

n2
3 . Then x1 <

n1
3 since

for each i ∈ I1,
ai
n1
≤ bi

n2
. Thus, in either case we have x2 >

2n1
3 .

Consider a minimal subset I3 ⊆ I2 such that X3 =
⋃
i∈I3

Ai ⊆ X2 has size x3 >
n1
3 .
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Then x3 <
2n1
3 , otherwise for any i ∈ I3, |X3 \ Ai| > 2n1

3 −
n1
3 = n1

3 . In particular, we

could have taken I3 \ {i} instead of I3, contradicting its minimality. Thus, Y3 =
⋃
i∈I3

Bi

has size less than
2n2
3 , since

bi
n2

< ai
n1

for i ∈ I3 ⊆ I2. This implies that X3 and B \ Y3

form a co-biclique with parts of sizes at least
n1
3 and

n2
3 .

Note that
1
3 is best possible: For n1, n2 ≥ 3 take the pairwise disjoint union of 3

bicliques with part sizes in

{⌊
n1
3

⌋
,
⌈
n1
3

⌉
,
⌊
n2
3

⌋
,
⌈
n2
3

⌉}
.

Lemma 1.7. For every k ≥ 2 there exists εk > 0 and ck with 0 < ck ≤ 1, such that every
connected (n1 × n2) bipartite graph G = (U ∪̇V,E) with n1, n2 ≥ 2 satisfies one of the
following:

• There exists a vertex v ∈ A of degree more than εkn2 or a vertex v ∈ B of degree more
than εkn1; or

• for every vertex v, G contains an induced Pk starting at v; or

• G contains a co-biclique with part sizes ckn1 and ckn2.

In particular, we can set ε2 = c2 = 1 and εk =
εk−1

3+εk−1
and ck = ck−1

(1−εk)
3 for k ≥ 3.

Proof by induction on k. For k = 2, the second item trivially holds, sinceG is connected

and thus, every vertex is the endpoint of an edge. Set ε2 = c2 = 1.

If k > 2, let εk =
εk−1

3+εk−1
and ck = ck−1

(1−εk)
3 . Then we have εk = εk−1

(1−εk)
3 , and so

we have ck = εk.

Assume the first item does not hold, i.e. the maximum degree in A is at most εkn2

and the maximum degree in B is at most εkn1. We will show that the 2nd or 3rd item

must hold then.

Let v be any vertex in V (G), w.l.o.g. v ∈ A (for v ∈ B simply swap the roles of

A and B in the proof) and set A′ = A \ {v} and B′ = B \ N(v). Then we have that

a = |A′| = n1 − 1 and b = |B′| ≥ (1 − εk)n2. Then by Lemma 1.6, G[A′∪̇B′] contains
either a co-biclique or a connected component S with parts of sizes n′1 ≥ a/3 ≥ n1−1

3

and n′2 ≥ b/3 = (1−εk)n2

3 . If S is a co-biclique, the third item holds and we are done, so

S is a connected component.

Let w ∈ N(v) be adjacent to S (which exists, by connectivity of G). Consider

the graph G′ = G[S∪̇{w}]. Then the maximum degree in A ∩ V (G′) is still at most

εkn2 = εk−1( (1−εk)n2

3 ) ≤ εk−1n
′
2 ≤ εk−1(n′2 + 1) and the maximum degree in B′ ∩ V (G′)
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is still at most εkn1 = εk−1( (1−εk)n1

3 ) ≤ εk−1n
′
1. Thus, by the induction hypothesis,

either the second or third item holds in G′, which either gives a Pk in G starting at v

(vw and a Pk−1 starting at w) or to a co-biclique with part sizes ck−1
a
3 ≥ ck−1

n1−1
3 ≥

ck−1(1− εk)n1
3 = ckn1 and ck−1( b3 + 1) ≥ ck−1(1− εk)n2

3 = ckn2.

This proves the existence of either a large co-biclique or a vertex of high degree in

P7-free bipartite graphs.

The following lemma is due to Erdős, Hajnal and Pach [60], rephrased and proven

in a slightly more general form by Scott, Seymour and Spirkl [117]. It provides the

existence of either a sparse or a dense subgraph of any H-free bipartite graph.

Lemma 1.8 (Scott, Seymour, Spirkl [117]). Let H be a (k × l) bipartite graph and let ε > 0.
Then there exists γ > 0 with the following property: LetG be anH-free (n×n) bipartite graph
with n > 0 and parts A,B; then there exist an (γn× γn) bipartite subgraphG′ ofG, such that
either

∆(G′) < εγn or δ(G′) > (1− ε)γn.

In particular, γ = min{1
2 , (k + l)−1, (ε/2)k/l} is sufficient.

Now we can finally prove Proposition 1.5.

Proof of Proposition 1.5. Let ε = ε7 from Lemma 1.7. By the recursion given (ε2 = 1,

εk =
εk−1

3+εk−1
for k ≥ 3) we have ε2 = 1, ε3 = 1

4 , ε4 = 1
15 , ε5 = 1

48 , ε6 = 1
147 and

ε7 = 1
544 = c7. Let γ = min{1

2 ,
1
7 , (ε/2)3/4} = (ε/2)3

4 .

Let G be an (n× n) bipartite graph which is P7-free. We want to show that h̃(G) ≥
ε47

3·25n. By Lemma 1.8,G contains a (γn× γn) bipartite subgraphG′ with either ∆(G) <

εγn or δ(G) > (1− ε)γn.

Assume we have ∆(G′) < εγn (in the other case, consider the bipartite complement

G′c. Then since P c7 = P7, G
′c
is P7-free and has ∆(G′c) = γn − δ(G′c) < εγn). By

Lemma 1.6, G′ contains either a connected component S or a co-biclique with parts of

size γn/3. In the latter case we are done, so assume the former. Let G′′ = G′[S].

Then according to Lemma 1.7, G′′ contains a co-biclique with parts of sizes at least

c7γ
1
3n. Thus, in either case we find a large homogeneous set, and in particular, we have

h̃(G) ≥ min

{
1

3
γn,

1

3
c7γn

}
=

1

3
ε7

(ε7/2)3

4
=

ε47
3 · 25

n =
n

5444 · 3 · 25
<

n

1013
.
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Corollary 1.9. We have h̃(n, P6) ≥ n
5444·3·25 .

Proof. SinceP6 is an induced subgraph ofP7, by Lemma 1.1we have h̃(n, P7) ≤ h̃(n, P6).

1.2.2 Remaining bipartite graphs

Let H = S1,2,3 denote the following bipartite graph on 7 vertices:

Figure 1.2: The graph S1,2,3

Proposition 1.10 (Alecu, Atminas, Lozin, Zamaraev [2]). We have h̃(n, S1,2,3) ≥ n
6 .

A partial proof of this proposition appears, with some gaps, in [2]. We give a

complete proof here.

We use a decomposition scheme, using the language from [2, 69], called canonical
decomposition:

We define a good split as the decomposition of a bipartite graph G = (U ∪̇V,E) into

two non-empty bipartite graphsG1 = G[U1∪̇V1] andG2 = G[U2∪̇V2], whereU = U1∪̇U2

and V = V1∪̇V2, such that each of the graphsG[U1∪̇V2] andG[U2∪̇V1] is either complete

or empty.

If we want to canonically decompose a bipartite graph G, we find a good split into

G1 andG2, and then recursively find good splits inG1 andG2. If we cannot find a good

split in a bipartite graph, it is called canonically indecomposable. If we can recursively

decompose a bipartite graph by good splits until all components consist of a single

vertex, the graph is called totally decomposable.

We need the following two characterisations:

Lemma 1.11 (Fouquet et al. [69]). A bipartite graph H is totally decomposable by canonical
decomposition if and only if it is{P7, S1,2,3}-free.

Lemma 1.12 (Alecu et al. [2]). Any canonically indecomposable S1,2,3-free (n× n) bipartite
graph G containing a P7 satisfies h̃(G) ≥ n

4 .
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In the proof of Lemma 1.12 a lemma from Lozin [104] is used, characterising S1,2,3-

free graphs containing a P7. Now we can prove Proposition 1.10.

Proof of Proposition 1.10: LetGbe anS1,2,3-free (n×n)bipartite graph. IfG is canonically

indecomposable, by Lemma 1.11,G contains aP7, so by Lemma 1.12, we have h̃(G) ≥ n
4 .

So assume G is not indecomposable, so we can find a good split and decompose

G = (U ∪̇V,E) into two graphs G1 = G[U1∪̇V1] and G′1 = G[U ′1∪̇V ′1 ]. W.l.o.g. |U1| ≥
|U ′1|. We will recursively decompose Gk into two graphs Gk+1 = Gk[Uk+1∪̇Vk+1] and

G′k+1 = Gk[U
′
k+1∪̇V ′k+1] with |Uk+1| ≥ |U ′k+1| untilGk does not contain a good split, i.e.

until we are left with a canonically indecomposable bipartite graph Gk. Note that we

only further decompose the graphs Gk, never G
′
k. In particular, for any j ∈ [k] we have

U = U ′1∪̇U ′2∪̇ · · · ∪̇U ′k∪̇Uk.

Case 1: |Uk| ≥ 2n
3 . If |Vk| ≥ 2n

3 , then by Lemma 1.12 h̃(G′k) ≥
1
4

2n
3 = n

6 , so assume

|Vk| < 2n
3 . Then we have |V ′1∪̇V ′2∪̇ · · · ∪̇V ′k| >

n
3 , and G[Uk∪̇V ′i ] is either complete

or empty for each i ≤ k. Thus, taking Uk and some of the sets V ′i , we have

h̃(G) ≥ 1
2
n
3 = n

6 .

Case 2: |Uk| < 2n
3 . Since U = U ′1∪̇U ′2∪̇ · · · ∪̇U ′k∪̇Uk, we have |U ′1∪̇ · · · ∪̇U ′k| >

n
3 . Pick the

smallest j s.t. |U ′1| + |U ′2| + · · · + |U ′j | > n
3 . Since |U ′1∪̇U ′2∪̇ · · · ∪̇U ′j∪̇Uj | = n and

by definition of j, we obtain |U ′j |+ |Uj | ≥ 2n
3 and thus, since |Uj | ≥ |U ′j |, we have

|Uj | ≥ n
3 .

Case 2.1: |Vj | ≥ n
6 . Then for i ≤ j, each G[U ′i ∪̇Vj ] is either complete or empty.

Since

j∑
i=1
|U ′i | > n

3 , we find a collection of sets U ′i that span
1
2
n
3 vertices that

form a biclique or a co-biclique with V ′j , i.e. h̃(G) ≥ n
6 .

Case 2.2: |Vj | < n
6 . Then for i ≤ j, each G[Uj , V

′
i ] is either complete or empty.

Since |Uj | ≥ n
3 , and

∣∣∣⋃̇j

i=1V
′
i

∣∣∣ ≥ 5n
6 , wehave h̃(G) ≥ h̃

(
G
[
U ′j∪̇

(⋃̇
i≤jVi

)])
≥

n
6 .

Thus, in any case, we have h̃(G) ≥ n
6 .

Corollary 1.13. We have h̃(n, P̃5) ≥ n
6 .

Proof. Since P̃5 is an induced subgraph of S1,2,3, by Lemma 1.1 and Proposition 1.10 we

obtain
n
6 ≤ h̃(n, S1,2,3) ≤ h̃(n, P̃5).
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1.3 Concluding remarks

While Theorem 1.3 gives a full characterisation for which forbidden bipartite graphs

H the function h̃(n,H) is linear in n, we only know the asymptotic behaviour. The

constants c(H) obtained in Propositions 1.5 and 1.10 are probably far from optimal; an

easy to see upper bound on c(H) for any graph in H̃ is
1
3 , which can be obtained by

taking three pairwise disjoint copies ofKn/3,n/3.

For H ∈ {S1,2,3, P̃5} we have c(H) ≤ n
4 , as can be seen by considering the blow-

up of C8, i.e. the (4m × 4m) bipartite graph G with parts U = U1∪̇U2∪̇U3∪̇U4 and

V = V1∪̇V2∪̇V3∪̇V4, where |Ui| = |Vi| = m for i ∈ [4], and uv with u ∈ Ui, v ∈ Vj

is an edge if and only if j ∈ {i, i + 1} (mod 4). This graph is H-free and satisfies

α̃(G) = ω̃(G) = n
4 . Thus,

n
6 ≤ c(H) ≤ n

4 .

Also, there is no other non-trivial upper bound on any of those constants c(H), so

it would be interesting to exactly determine those constants.
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Chapter 2 Bipartite independence number in graphs with

bounded maximum degree

2.1 Introduction

The problem of finding g(n,∆), the smallest possible size of a largest independent

set in an n-vertex graph with given maximum degree ∆ is not very difficult. Indeed,

one can consider the graph that is the disjoint union of bn/(∆ + 1)c complete graphs

on ∆ + 1 vertices each and a complete graph on the remaining vertices. This shows

that g(n,∆) ≤ dn/(∆ + 1)e. On the other hand, every n-vertex graph of maximum

degree ∆ contains an independent set of size dn/(∆ + 1)e, obtained for example by

the greedy algorithm. Consequently, g(n,∆) = dn/(∆ + 1)e. The situation is more

interesting for regular graphs, see Rosenfeld [116] for a more detailed analysis. The

analogous problem in the bipartite setting is more complex: determining the smallest

possible bipartite independence number of a bipartite graph with maximum degree ∆ is

still unresolved, even for ∆ = 3.

Recall that a bihole of size k in a bipartite graph G = (A∪̇B,E) with a given biparti-

tion A,B, is a pair (X,Y ) with X ⊆ A, Y ⊆ B such that |X| = |Y | = k, and such that

there are no edges of G with one endpoint in X and the other endpoint in Y . Thus,

the size of the largest bihole can be viewed as a bipartite version of the usual indepen-

dence number. This chapter is devoted to studying the behaviour of this function. We

write log for the natural logarithm.

Definition 2.1. Let f(n,∆) be the largest integer k such that any (n × n) bipartite graph
G = (A∪̇B,E) with d(a) ≤ ∆ for all a ∈ A contains a bihole of size k. Let f∗(n,∆) be the
largest integer k such that any (n× n) bipartite graph G with ∆(G) ≤ ∆ contains a bihole of
size k.

While f(n,∆) is defined by restricting themaximumdegree in one part of the graph,

f∗(n,∆) is its ‘symmetric’ version. Observe that f(n,∆) ≤ f∗(n,∆) for any natural

numbers n and ∆ for which these functions are defined.

Theorem 2.2. There exists an integer ∆0 such that if ∆ ≥ ∆0 and n > 5∆ log ∆, then

f∗(n,∆) ≥ f(n,∆) ≥ 1

2
· log ∆

∆
n.

The proof of Theorem 2.2 follows by first determining the value of f(n, 2) (see

Theorem 2.6) and then reducing the general problem of bounding f(n,∆) by applying
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the bound on f(n, 2) in conjunction with a probabilistic argument. A slightly weaker

bound was obtained by Feige and Kogan, [66]. They proved that f(n,∆) ≥ cn log ∆/∆,

for any constant c < 1/2. The proof is a very similar probabilistic approach to the

one used here, but instead of looking for a subset of vertices inducing a graph with

maximum degree at most 2 in A, the authors immediately look for a bihole. Thus, our

Theorem 2.2 is a modest improvement of this result giving a constant term equal to

1/2; this has been improved recently by Chakraborti [41] to (1 − ε), see Theorem 2.17

in Section 2.4.

Theorem 2.3. For any ε ∈ (0, 1) there is an integer ∆0 = ∆(ε) such that if ∆ ≥ ∆0 and
n ≥ ∆, then

f(n,∆) ≤ (2 + ε) · log ∆

∆
n.

In addition, there is a constant c such that f∗(n,∆) ≤ c log ∆
∆ n.

Theorems 2.3 and 2.2 thus determine f(n,∆) asymptotically for sufficiently large,

but fixed ∆ and growing n. We state this concisely in the following corollary.

Corollary 2.4. For every ε ∈ (0, 1) there exists an integer ∆0 = ∆0(ε) such that the following
holds. For any ∆ ≥ ∆0 there is N0 = N0(∆) such that for any n ≥ N0,

1

2
· log ∆

∆
n ≤ f(n,∆) ≤ (2 + ε) · log ∆

∆
n.

Corollary 2.5. There is a ∆0 such that if ∆ ≥ ∆0, then f∗(n,∆) = Θ
(

log ∆
∆ n

)
.

There is a gap between the lower bound in Theorem 2.2 (and also the improvement, see

Theorem 2.17) and the upper bound in Theorem 2.3. We leave the closing of this gap

as an open problem; see Section 2.4.

Given Corollary 2.4, it is natural to consider the behaviour of f(n,∆) when ∆

is small. In this case, we have only the following modest results. The bounds are

obtained as corollaries of general bounds that become less and less precise as ∆ grows;

see Table 2.1 and Section 2.3.2 for more explicit values.

Theorem 2.6. For any ∆ ≥ 2 and any n ∈ N we have f(n,∆) ≥ bn−2
∆ c. Moreover, for any

n ∈ N we have f(n, 1) = bn/2c, f(n, 2) = dn/2e − 1, and there exists n0 such that if n > n0,
then 0.3411n < f(n, 3) ≤ f∗(n, 3) < 0.4591n.

We also consider the other end of the regime for ∆, when ∆ is close to n. In

particular, when ∆ is linear in n, say ∆ = n − cn, it follows from Theorem 2.3 that

f(n, n− cn) = O(log n). Furthermore, it is not too difficult to show that f(n, n− cn) =



2. Bipartite independence number in graphs with bounded maximum degree 23

∆ Lower bound Upper bound

3 0.34116 0.4591

4 0.24716 0.4212

5 0.18657 0.3887

6 0.14516 0.3621

7 0.11562 0.3395

8 0.09384 0.3201

9 0.07735 0.3031

10 0.06459 0.2882

Table 2.1: Explicit asymptotic lower and upper bounds on f(n,∆), divided by n,
obtained for small values of ∆, for n large enough.

Ω(log n) (see Proposition 2.15 for details). When ∆ is much larger (i.e. ∆ = n − o(n)),

bounding f(n,∆) bears a strong connection to the Zarankiewicz problem, which will

be discussed in the next section, and we are able to obtain the following result. We

formulate it in terms of a bound on the degrees guaranteeing a bihole of constant size t.

Let

∆n(t) := max{q : f(n, q) = t}.

Theorem 2.7. Let t ≥ 4 be an integer. There is a positive constant C and an integer N0 such
that if n > N0, then n−Cn1−1/t ≤ ∆n(t) ≤ n−Cn1− 2

t+1 . In addition there is an integerN0,
such that if n > N0, then ∆n(2) = n− n1/2(1 + o(1)) and ∆n(3) = n− n2/3(1 + o(1)).

The main results of this chapter are joined work with Axenovich, Sereni and Sny-

der [13].

This chapter is structured as follows. We describe connections between the func-

tion f(n,∆), classical bipartite Ramsey numbers, and the Erdős-Hajnal conjecture in

Section 2.2. We prove Theorems 2.2 and 2.3 in Section 2.3.1 and prove Theorem 2.6 and

establish the values for Table 2.1 in Section 2.3.2. We prove Theorem 2.7 in Section 2.3.3.

Section 2.4 provides concluding remarks and open questions.

2.2 Related problems

The function f(n,∆) is closely related to the bipartite version of the Erdős-Hajnal

conjecture, bipartite Ramsey numbers, and the Zarankiewicz function.

Note that f(n,∆) for∆ sublinear in n corresponds to h̃(n,H) forH a bipartite graph

with one vertex in one part of degree ∆ + 1. Indeed, a bipartite graph not having a
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star with ∆ + 1 leaves is a graph with vertices in one part having degrees at most ∆.

Note that in our bipartite version of the Erdős-Hajnal conjecture we respect sides, so

H can also have an arbitrary number of isolated vertices in the larger part. In such

an H-free graph G with degree at most ∆ in one part there are clearly no complete

bipartite graphs with ∆ + 1 vertices in each part, so the largest homogeneous set is a

bihole, as ∆ is sublinear in n. Its size is thus determined by f(n,∆).

Furthermore, the parameter f(n,∆) bears a connection to bipartite Ramsey num-

bers. If H1 and H2 are bipartite graphs, then the bipartite Ramsey number br(H1, H2)

is the smallest integer n such that any red-blue colouring of the edges of Kn,n pro-

duces a red copy of H1 or a blue copy of H2 respecting sides. Thus, if f(n,∆) = k,

then br(K1,∆+1,Kk,k) = n. For results on bipartite Ramsey numbers, see Caro and

Rousseau [40], Thomason [121], Hattingh and Henning [87], Irving [89], and Beineke

and Schwenk [21].

Finally, considering the bipartite complement, determining f(n,∆) is related to the

Zarankiewicz problem in bipartite graphs. Recall that z(n; t) denotes the maximum

number of edges in a subgraph ofKn,n with no copy ofKt,t. Finding a large bihole in a

bipartite graph is the same as finding a large copy of Kt,t in the bipartite complement,

where the bipartite complement has large minimum degree on one side (this is spelled

out more carefully in Section 2.3.3). There is some literature on the Zarankiewicz

problem for t large (see, for example, Balbuena et al. [19, 20], Čulík [49], Füredi and

Simonovits [77], Griggs and Ouyang [82], and Griggs, Simonovits and Thomas [83]).

However, most of these results address the case when t is close to n/2, or when the

results do not lead to improvements on our bounds.

2.3 Bounds on f(n,∆)

In this section we establish upper and lower bounds on f(n,∆) for various ranges of

∆. First, we establish the exact value of f(n, 2) that is used in other results. Then, we

treat the case when ∆ is fixed but large. We then move on to the case when ∆ is a small

fixed constant, and finally, when ∆ is large, i.e. close to n.

Lemma 2.8. For every positive integer n, we have f(n, 2) = dn/2e − 1.

Proof. To see that f(n, 2) < n/2, simply consider an even cycle C2n on 2n vertices. It

remains to establish the lower bound. LetH = (A∪̇B,E) be an (n× n) bipartite graph

where the degree of each vertex in A is at most 2. Note that we may assume without

loss of generality that the degree of each vertex inA is exactly 2. Consider the auxiliary
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multi-graph G with vertex set B, in which two vertices are adjacent if and only if they

have a common neighbour inH . Consequently, there is a natural bĳection between the

edges of G and A, and thus, G has n vertices and n edges. We assert that G contains

a set E′ of edges and a set V ′ of vertices each of size dn/2e − 1, and such that no edge

in E′ has a vertex in V ′. Note then that this pair of sets corresponds to parts of a bihole

in H of size dn/2e − 1, thus proving that f(n, 2) ≥ dn/2e − 1. The rest of the proof is

devoted to proving the above assertion.

To this end, we consider the (connected) components of G: a component C is dense
if |E(G[C])| ≥ |C|. Let S1, . . . , Sk be the components of G, enumerated such that

S1, . . . , Sm are dense and the others are not. Note that we must have at least one dense

component, so m ≥ 1, and it could be that all components are dense. Let x be the

number of components of G that are not dense, that is, x := k −m ∈ {0, . . . , k − 1}.
Let v and e be the number of vertices and edges, respectively, in the union of all dense

components ofG. Then the total number of edges in non-dense components ofG is n−e
and the total number of vertices in these components is n− v. In addition, the number

of vertices in non-dense components is at least the number of edges plus the number

of components. Thus, n− v ≥ n− e+ x, so x ≤ e− v.

LetG′ be a subgraph ofGwith precisely dn/2e−1 edges and consisting of S1, . . . , Sq

and a connected subgraph of Sq+1, for some q ∈ {0, . . . , k−1}. In particular, if S1 has at

least dn/2e − 1 edges, then G′ is a connected subgraph of S1. It suffices to show that G′

has at most bn/2c + 1 vertices, since we can then choose a set V ′ of dn/2e − 1 vertices

in V (G) \ V (G′), which along with E′ := E(G′) will form the sought pair (V ′, E′). To

this end, first notice that ifG′ has atmost one non-dense component, then the number of

vertices ofG′ is at most |E′|+1, which is at most dn/2e ≤ bn/2c+1, as desired. Suppose

now that G′ has more than one non-dense component. It follows that G′ contains all

dense components of G. Let x′ be the number of non-dense components of G′. Then

x′ ≤ x. The number of edges in dense components of G′ is e, and thus, the number of

edges in non-dense components ofG′ is dn/2e − 1− e. This implies that the number of

vertices in non-dense components ofG′ is atmost (dn/2e−1−e)+x′ ≤ (dn/2e−1−e)+x.

Adding the number v of vertices in dense components of G and the number of vertices

in non-dense components ofG′, we see that the total number of vertices inG′ is at most

v + ((dn/2e − 1− e) + x) ≤ dn/2e − 1 ≤ bn/2c+ 1. This concludes the proof.
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2.3.1 Proof of Theorems 2.2 and 2.3

The upper bound given in Theorem 2.3 comes from suitably modifying a random

bipartite graph G ∈ G
(
n, n, ∆

n

)
. The idea of the proof of the lower bound given in

Theorem 2.2 is as follows. Let G = (A∪̇B,E) be an (n × n) bipartite graph with

d(x) ≤ ∆ for every x ∈ A. We choose an appropriate parameter s and choose a subset

S of B uniformly at random from the set of all s-element subsets of B and consider

the set T of vertices in A that have at least ∆− 2 neighbours in S. Lemma 2.8 can then

be applied to the bipartite graph induced on parts (T,B \ S), as in this bipartite graph

every vertex in T has degree at most 2. Intuitively, the set T should be “large enough”

to guarantee a large bihole in G. Floors and ceilings, when not relevant, are ignored in

what follows. We start by establishing the lower bound, that is Theorem 2.2.

Proof of Theorem 2.2. Consider an arbitrary bipartite graph with parts A and B each of

size n so that the degrees of vertices in A are at most ∆. Up to adding edges arbitrarily,

we may assume without loss of generality that each vertex in A has degree exactly ∆.

Choose a subset S of B of size (1 − 2x)n − 2 randomly and uniformly among all such

subsets, where x := 1
2

log ∆
∆ . We assume that n > 5∆ log ∆ and ∆ ≥ ∆0 is chosen

large enough to satisfy the last inequality in the proof. Let X be the random variable

counting the number of vertices in Awith at least ∆− 2 neighbours in S. Then

E[X] ≥ n · h(x, n,∆),

where h(x, n,∆) denotes the probability that an arbitrary vertex in A has exactly ∆− 2

neighbours in S. Since we may assume that every vertex in A has degree exactly ∆, we

have

h(x, n,∆) =

(
∆

∆− 2

)(
n−∆

(1− 2x)n−∆

)(
n

(1− 2x)n− 2

)−1

.

Observe that if E[X] ≥ 2xn + 2, then there is a set A′ of at least 2xn + 2 vertices in

A, each sending at most 2 edges to B \ S. Since |B \ S| = 2xn+ 2, Lemma 2.8 implies

that there is a bihole between A′ and B \ S of size at least xn. Thus, it is sufficient to

prove that h(x, n,∆) ≥ 2x+ 2/n. Let us now verify this inequality.

Recall that x = 1
2

log ∆
∆ . Let α = 1 − 2x, so α = 1 − log ∆

∆ = ∆−log ∆
∆ ∈ (0, 1). Note

that αn ≥ ∆ since n ≥ 5∆ log ∆. Let β = 1
α − 1. Then β = log ∆

∆−log ∆ . We have

h(x, n,∆) =

(
∆

∆−2

)(
n−∆

(1−2x)n−∆

)(
n

(1−2x)n−2

) , i.e.
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h(x, n,∆) =

(
∆

∆−2

)(
n−∆

(1−2x)n−∆

)(
n

(1−2x)n−2

)
=

(
∆

2

)∆−1∏
j=2

(
αn− j
n− j

)
·
[

(2xn+ 2)(2xn+ 1)

n(n− 1)

]

>

(
∆

2

)∆−1∏
j=2

(
αn− j
n− j

)
· (2x)2

=

(
∆

2

)
(2x)2α∆−2

∆−1∏
j=2

(
1− βj

n− j

)

≥
(

∆

2

)
(2x)2α∆−2

(
1− β∆

n−∆

)∆−2

(2.1)

≥
(

∆

2

)
(2x)2α∆

(
1− β∆

n−∆

)∆

, (2.2)

where (2.1) holds because the function j 7→ βj
n−j is increasing, as β > 0. Now, express-

ing β in terms of ∆, we note that

β∆

n−∆
≤ ∆ log ∆/(∆− log ∆)

5∆ log ∆−∆
=

log ∆

(5 log ∆− 1)(∆− log ∆)
≤ 1,

and therefore Bernoulli’s inequality can be applied to (2.2). It follows that

h(x, n,∆) >

(
∆

2

)
(2x)2(1− 2x)∆

(
1− ∆2 log ∆

(∆− log ∆)(n−∆)

)
≥
(

∆

2

)
(2x)2(1− 2x)∆

(
1− 4∆ log ∆

n

)
(2.3)

≥
(

∆

2

)
(2x)2(1− 2x)∆ 1

5
, (2.4)

where (2.3) follows since
1

n−∆ < 2
n and log ∆ < ∆/2, and (2.4) holds since n > 5∆ log ∆.

Now, note that (1−2x)∆ =
(

1− log ∆
∆

)∆
≥ 1

2e
− log ∆

∆
·∆ = 1

2∆ . Thus, from (2.4) we obtain

h(x, n,∆) >

(
∆

2

)
(2x)2 1

10∆
= (2x)

(∆− 1) log ∆

20∆
.

Finally, to bound the right-hand side of the above inequality from below, observe that

(2x)
(∆− 1) log ∆

20∆
≥ (2x)

(
1 +

1

40
log ∆

)
= 2x+

log2 ∆

40∆
≥ 2x+

2

5∆ log ∆
≥ 2x+

2

n
,

where these inequalities hold for sufficiently large ∆. Accordingly, h(x, n,∆) > 2x+ 2
n ,

which concludes the proof of Theorem 2.2.
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To prove Theorem 2.3 we shall need to use Chernoff’s bound. Specifically, we use

the following version (see [90], Corollary 21.7, p.401, for example).

Lemma 2.9 (Chernoff’s bounds). Let X be a random variable with distribution Bin(N, p)

and δ ∈ (0, 1). Then

P[X ≥ (1 + δ)EX] ≤ exp

(
−δ

2

3
EX
)

and (2.5)

P[X ≤ (1− δ)EX] ≤ exp

(
−δ

2

2
EX

)
. (2.6)

Proof of Theorem 2.3. Let ε′ ∈ (0, 1) be arbitrary and let ε := ε′/8. We shall assume that

∆ ≥ ∆0(ε) is sufficiently large such that our inequalities hold. In particular, we assume

that ∆ ≥ 27. Suppose that n ≥ 3∆
5 log(∆/2) . Set N := (1 + ε)n and ∆′ := (1 − ε)∆, so

in particular ∆′ ≥ 13.5. We consider first H ∈ G
(
N,N, ∆′

N

)
, that is, H is a random

(N ×N) bipartite graph with parts A and B, where each edge abwith a ∈ A and b ∈ B
is chosen independently with probability ∆′/N . We first establish that the random

graph H contains no “large” biholes with fairly large probability. In the following, for

subsets X ⊆ A and Y ⊆ B, let e(X,Y ) denote the number of edges with one endpoint

in X and the other in Y .

(A). With probability at least 0.75, any two subsets X ⊂ A and Y ⊂ B with |X| = |Y | =
2N log ∆′

∆′ satisfy e(X,Y ) > 0.

Proof. Set m := 2N log ∆′

∆′ and note that m is therefore at least
6
5 . Suppose that X ⊂ A

and Y ⊂ B both have sizem. Then

P[e(X,Y ) = 0] =

(
1− ∆′

N

)m2

.

Let p be the probability that there is a pair (X,Y ), withX ⊂ A and Y ⊂ B, |X| = |Y | =
m, such that e(X,Y ) = 0. Forming a union bound over all possible pairs of sets of size

m, we have

p ≤
(
N

m

)2(
1− ∆′

N

)m2

≤
(
Ne

m

)2m

e−
∆′m2

N =

(
∆′e

2 log ∆′
e− log ∆′

)2m

=

(
e

2 log ∆′

)2m

≤ 0.25.

Here,weused the standardestimates

(
t
k

)
≤
(
t·e
k

)k
, 1−x ≤ e−x, the fact that (e/2 log ∆′) <

0.53 because ∆′ ≥ 13.5, as well as the inequality 2m ≥ 12
5 . This establishes (A). �

Now, let g(ε) = 2 log
(

4(1+ε)
3ε

)
. We shall show that, with probability sufficiently large
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for our purposes, at least n of the vertices of A have degree at most ∆′ +
√

3g(ε)∆′.

(B). With probability greater than 0.25, the number of vertices v ∈ A with more than ∆′ +√
3g(ε)∆′ neighbours in B is at most ε

1+εN .

Proof. We use standard concentration inequalities to show that the degree of every

vertex in A is approximately ∆′. For each vertex v ∈ A, let Xv be the degree of v in H .

Noting that E[Xv] = ∆′, we apply (2.5) from Lemma 2.9 with δ :=
√

3g(ε)/∆′ < 1 to

obtain

P[Xv ≥ (1 + δ)∆′] ≤ exp

(
−

(
√

3g(ε)/∆′)
2

3
∆′

)
= e−g(ε) = (0.75)2

(
ε

1 + ε

)2

< 0.75 · ε

1 + ε
.

LettingX be the random variable counting those vertices v ∈ AwithXv ≥ (1+δ)∆′, by

Markov’s inequality, we deduce that P[X ≥ ε
1+εN ] < 0.75, thereby establishing (B). �

It follows from (A) and (B) that with positive probability, H has no large biholes,

and at least N − ε
1+εN = n of the vertices in A have degree at most ∆′ +

√
3g(ε)∆′ ≤

1
1−ε∆

′ = ∆, which holds for sufficiently large ∆ depending on ε. We now fix such a

graph H . We can thus choose a subset A′ of A of size n such that every vertex in A′

has degree at most ∆ in H . Now, arbitrarily choosing a subset B′ of B of size n, we

know that the subgraph H ′ of H induced by A′∪̇B′ is an (n × n) bipartite graph with

maximum degree ∆ on one side and without a bihole of size larger than

2(1 + ε)n

(
log(∆′)

(1− ε)∆

)
< (2 + 8ε)

(
log ∆

∆

)
n = (2 + ε′)

(
log ∆

∆

)
n.

In order to obtain an upper bound on f∗(n,∆), all that is required is to make the

example obtained above have boundedmaximumdegree in both parts. Thus, it suffices

to apply Chernoff’s inequality to all vertices (instead of just the vertices in A). We may

have to remove more vertices after doing this, but the loss will only be reflected in the

constant. This completes the proof of Theorem 2.3.

2.3.2 Bounding f(n,∆) for small ∆

We have already established a part of Theorem 2.6 via Lemma 2.8. Namely, we showed

that f(n, 2) = dn/2e − 1. It is not hard to see that f(n, 1) = bn/2c. Thus, our aim in

this section is to investigate the behaviour of f(n, 3) more closely, and to complete the
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proof of Theorem 2.6. First, let us note the following lower bound on f(n,∆), valid for

all integers n and ∆ greater than 1. In the following, for a vertex subset X of a graph

let N(X) be the neighbourhood of X , i.e. N(X) =
⋃
x∈X N(x).

Proposition 2.10. If n and ∆ are two integers greater than 1, then f(n,∆) ≥
⌊
n−2
∆

⌋
.

Proof. We shall prove this by induction on ∆ with the base case ∆ = 2 following from

Lemma 2.8. Let H = (A∪̇B,E) be an (n × n) bipartite graph, such that the degree of

each vertex in part A is equal to ∆, ∆ ≥ 3.

Consider a setX of b(n− 2)/∆c vertices in B. If |N(X)| ≤ n− b(n− 2)/∆c, thenX
and A \N(X) form a bihole with at least b(n− 2)/∆c vertices in each part. Otherwise,

|N(X)| > n − b(n − 2)/∆c. Let G′ := G[N(X)∪̇(B \X)]. Then each of the parts of G′

has size at least n− b(n− 2)/∆c ≥ n− (n− 2)/∆ and the maximum degree of vertices

of N(X) in G′ is at most ∆ − 1. Thus, by induction G′ has a bihole of size at least⌊
1

∆−1(n− (n− 2)/∆− 2)
⌋

=
⌊
n−2
∆

⌋
.

It follows from the above proposition that f(n, 3) ≥ b(n− 2)/3c. However, this

lower bound can be improved slightly by choosing a random subset of B and consid-

ering the neighbourhood of this set in A, similarly as in the proof of the lower bound

in Theorem 2.2.

Lemma 2.11. If n and ∆ are two integers greater than 1, then f(n,∆) ≥ f(bξnc,∆ − 1),
where ξ = ξ(∆) is a solution to the inequality 1− ξ∆ ≥ ξ.

Proof. For simplicity we omit floors in the following. Let G be a bipartite graph with

partsA andB each of size n such that the vertices inA have degrees at most∆. We shall

show that there is a set S ⊂ B, such that |S| = (1−ξ)n and such that |N(S)| ≥ ξn. To do
this, we shall choose S randomly and uniformly out of all subsets of B of size (1− ξ)n
and show that the expected number X of vertices from A with at least one neighbour

in S is at least ξn. Indeed, if p is the probability for a fixed vertex in A not to have a

neighbour in S, then

p =

(
n−∆

(1−ξ)n
)(

n
(1−ξ)n

) .
Using the identity

(
n−l
k

)
/
(
n
k

)
=
(
n−k
l

)
/
(
n
l

)
, we see that p =

(
ξn
∆

)
/
(
n
∆

)
. Now, using the

inequality

(
δn
r

)
≤ δr

(
n
r

)
, which is valid for every δ ∈ (0, 1), we find that

p =

(
ξn
∆

)(
n
∆

) ≤ ξ∆.
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Thus, E[X] = n(1−p) ≥ n(1−ξ∆) ≥ nξ by our choice of ξ. Consequently, with positive

probability |N(S)| ≥ ξn. We also have |B \S| = ξn. Since each vertex ofN(S) sends at

most ∆− 1 edges to B \ S, it follows that there is a bihole between N(S) and B \ S of

size f(ξn,∆− 1). This completes the proof.

Wemake explicit some lower bounds obtained using Lemma 2.11 (and Lemma 2.8).

Corollary 2.12. There exists N0 such that if n ≥ N0, then f(n, 3) > 0.34116n, f(n, 4) >

0.24716n, f(n, 5) > 0.18657n, and f(n, 6) > 0.14516n.

The next natural step regarding small values of ∆ is to evaluate how good the

bounds written in Corollary 2.12 are. The following upper bounds are obtained by

analysing the pairing model (also known as the configuration model) to build random

regular graphs, tailored to the bipartite setting.

Lemma 2.13. Let ∆ be an integer greater than 2, and assume that β ∈ (0, 1/2) is such that

(1− β)2∆(1−β)

β2β(1− β)2(1−β)(1− 2β)∆(1−2β)
< 1.

Then there exists N0 = N0(β) such that for every n > N0 we have f(n,∆) ≤ f∗(n,∆) < βn.
In particular, for n sufficiently large there exists a ∆-regular (n × n) bipartite graph with no
bihole of size at least βn.

Proof. We shall work with the configuration model of Bollobás [25] suitably altered

to produce a bipartite graph. Fix an integer n and consider two sets of ∆n (labelled)

vertices each: X = {x1
1, . . . , x

∆
1 , . . . , x

1
n, . . . , x

∆
n } and Y = {y1

1, . . . , y
∆
1 , . . . , y

1
n, . . . , y

∆
n }.

Choose a perfect matching F between X and Y uniformly at random. We call F a

pairing.

Given a pairing F , for each i ∈ {1, . . . , n} the vertices x1
i , . . . , x

∆
i are identified with

a new vertex xi, and similarly the vertices y1
i , . . . , y

∆
i are identified with a new vertex yi.

This yields a multi-graph G′. We prove that with positive probability G′ is a simple

graph. To see why this holds, first notice that the total number of different pairings

is (∆ · n)!. Second, each fixed (labelled) ∆-regular (n × n) bipartite graph arises from

precisely (∆!)2n
different pairings (because for each vertex xi we can freely permute

the vertices {x1
i , . . . , x

∆
i }). Third, McKay, Wormald and Wysocka [106] proved that the

number of different labelled ∆-regular (n× n) bipartite graphs is

(1 + o(1)) exp

(
−(∆− 1)2

2
· ((∆− 1)2 + 1)

)
(∆ · n)!

(∆!)2n ,
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which is at least c (∆·n)!
(∆!)2n for some c > 0. Combining these three facts, we find that

P[G′ is a graph] ≥ c > 0, as announced.

Now, fix k = k(n) = β · n for some β ∈ (0, 1). For each i ∈ {1, . . . , n}, set Xi :=

{x1
i , . . . , x

∆
i } and Yi := {y1

i , . . . , y
∆
i }. Fixing a family of k sets X = {Xi1 , . . . , Xik} and

also Y = {Yi1 , . . . , Yik}, letW (X ,Y) be the event that the union U of the sets in X ∪ Y
spans no edge in F (and thus, corresponds to a bihole in G′). Let us now find the

probability of W (X ,Y). There are 2∆k edges incident to vertices in U . The number

of ways to choose these 2∆k edges is as follows: if the edge is incident to a vertex

in

⋃k
j=1Xij , then its other vertex must belong to Y \

⋃k
j=1 Yij , and hence there are

(∆n−∆k) · · · (∆n− 2∆k + 1)

different ways of choosing the edges incident to a vertex in

⋃k
j=1Xij . The situation is

analogous for edges incident to

⋃k
j=1 Yij , yielding a total of (∆n−∆k)2 · · · (∆n−2∆k+

1)2
ways to choose the 2∆k edges incident to a vertex in U . For each such choice there

are (∆n− 2∆k)! ways to choose the remaining edges, for a total of (∆n− 2∆k)! · (∆n−
∆k)2 · · · (∆n− 2∆k + 1)2

different pairings in which U spans no edge. It follows that

P(W (X ,Y)) =
(∆n− 2∆k)! · (∆n−∆k)2 · · · (∆n− 2∆k + 1)2

(∆n)!
=

((∆n−∆k)!)2

(∆n)!(∆n− 2∆k)!
.

LetW =
⋃
X ,YW (X ,Y) be the event that F contains a bihole of size k. Taking the

union bound over all

(
n
k

)2
choices of (X ,Y), we find that

P(W ) ≤
(
n

k

)2 ((∆n−∆k)!)2

(∆n)!(∆n− 2∆k)!
. (2.7)

Using Stirling’s approximation,

√
2πn

(n
e

)n
exp

(
− 1

12n+ 1

)
≤ n! ≤

√
2πn

(n
e

)n
exp

(
− 1

12n

)
,

in (2.7), and ignoring the exponential factors (they canbebounded fromaboveby exp(1/(cn))

for some positive constant c, and hence be made arbitrarily close to 1), we thus obtain(
n

k

)2

≈ 1

2πβ(1− β)n

(
1

β2β(1− β)2(1−β)

)n
and

(∆n−∆k)!2

(∆n)!(∆n− 2∆k)!
≈ 1− β√

1− 2β

(
(1− β)2∆(1−β)

(1− 2β)∆(1−2β)

)n
.
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Hence, if

(1− β)2∆(1−β)

β2β(1− β)2(1−β)(1− 2β)∆(1−2β)
< 1,

then P(W )→ 0 as n→∞. Thus, with positive probabilityG′ is a ∆-regular graph with

no bihole of size at least k = βn (for n sufficiently large), as stated.

Performing explicit computations in Lemma 2.13 for specific values of ∆ yields the

following bounds (see also Table 2.1).

Corollary 2.14. There exists N0 such that if n ≥ N0, then f∗(n, 3) < 0.4591n, f∗(n, 4) <

0.4212n, f∗(n, 5) < 0.3887n, and f∗(n, 6) < 0.3621n.

In particular, one sees that f(n, 3) ≤ f∗(n, 3) < 0.4591n for sufficiently large n.

Thus, combined with our earlier work, it follows that 0.3411n < f(n, 3) < 0.4591n. It

would be very interesting to improve either the lower or upper bound.

2.3.3 Bounding f(n,∆) when ∆ is large

In this section we address the behaviour of f(n,∆) for large ∆ and prove Theorem 2.7.

Before doing so, let us note the following simple result, which shows that Theorem 2.3

is tight (up to constants) when ∆ is linear in n.

Proposition 2.15. For any ε ∈ (0, 1) there is a constant c = c(ε) such that for n sufficiently
large f(n, (1− ε)n) ≥ c log n.

Proof. Let ε ∈ (0, 1). To show the lower bound on f(n, (1 − ε)n), consider an (n × n)

bipartite graphGwith partsA,B, such that d(x) ≤ (1− ε)n for every x ∈ A. LettingGc

be the bipartite complement ofG, we see thatGc has at least εn2
edges. The result then

follows from the fact that for any ε ∈ (0, 1) and sufficiently large n, any (n×n) bipartite

graph with εn2
edges contains aKt,t where t = c log n for some constant c = c(ε). This

can be proved using the standardKővári-Sós-Turán [98] double counting argument.

Therefore, the behaviour of f(n,∆) is clear whenever ∆ is linear, aside from more

precise estimates of the constants involved. What happens when ∆ is very large, more

precisely, when ∆ = n− o(n)? This is partly addressed in Theorem 2.7, which we now

prove.
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Proof of Theorem 2.7. Recall that the classical Zarankiewicz number, z(n; t), is the largest

number of edges in an (n × n) bipartite graph that contains no copy of Kt,t. Assume

first that t ≥ 4.

The lower boundon∆n(t) follows fromstandard bounds onZarankiewicz numbers.

Indeed, z(n; t) ≤ Cn2−1/t
for some constant C = C(t), see for example [98]. Thus, any

(n × n) bipartite graph on at least Cn2−1/t
edges contains a copy of Kt,t, and so any

(n × n) bipartite graph on at most n2 − Cn2−1/t
edges contains a bihole of size t. In

particular, any (n × n) bipartite graph with maximum degree at most n − Cn1−1/t

contains a bihole of size t. So the announced lower bound in Theorem 2.7 holds.

To determine the stated upper bound on ∆n(t), we shall prove the existence of

a Kt,t-free bipartite (n × n) graph with the additional constraint that the minimum

degree of vertices (on one side) is large. For that, we shall alter the standard random

construction used to prove lower bounds on Zarankiewicz numbers. For a graph F ,

we shall carefully control X = XF , the total number of copies of Kt,t in F , as well as

X(v) = XF (v), the number of copies ofKt,t containing a vertex v in F .

LetN := 2n and p := cN−2/(t+1)
, for a constant c to be determined later. Consider a

bipartite binomial random graph G′ ∈ G(N,n, p) with parts A and B of sizes N and n,

respectively. By Markov’s inequality, P[X ≥ 2E[X]] ≤ 1/2. Since d(v), for v ∈ A,

is distributed as Bin(n, p), Chernoff’s inequality (2.6) from Lemma 2.9 with ε := 1/2,

implies that with high probability, every vertex v ∈ A has degree at least pn/2. So with

positive probability we have X ≤ 2E[X] = 2
(
N
t

)(
n
t

)
pt

2 ≤ 2
(
N
t

)2
pt

2
and d(v) ≥ pn/2 for

every v ∈ A.

Fix a bipartite graphGwith these properties, i.e.G is a bipartite graph with partsA

andB, the numberX = XG of copies ofKt,t satisfiesX ≤ 2
(
N
t

)2
pt

2
and d(v) ≥ pn/2 for

every v ∈ A. Observe that there are fewer thann vertices v inAwithX(v) > 2t
n 2
(
N
t

)2
pt

2
.

Indeed, otherwise X ≥ n4t
n

(
N
t

)2
pt

2
/t, a contradiction.

Let A′ ⊂ A be a set of n vertices such that X(v) ≤ 2t
n 2
(
N
t

)2
pt

2
for all v ∈ A′. Let H ′

be the subgraph ofG induced byA′∪̇B. Finally, letH be obtained fromH ′ by removing

an edge from each copy of Kt,t. Thus, H has no copies of Kt,t. It remains to check

that the degrees of vertices in A are sufficiently large. Indeed, for any v ∈ A, we have

dH(v) ≥ dH′(v)−X(v), i.e.
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dH(v) ≥ dH′(v)−X(v)

≥ np/2− 4t

n

(
N

t

)2

pt
2

≥ Np/4− 4t

n
N2tpt

2

≥ c

4
N1− 2

t+1 − 4t

n
N2tpt

2

> (c/4− 4tct
2
)n1− 2

t+1

≥ 1

16
n1− 2

t+1 ,

where the last inequality holds for c = 1/2. This concludes the proof of the general

upper bound for t ≥ 4.

Now, let t = 2or t = 3. Wehave z(n; 2) = (1 + o(1))n3/2
and z(n; 3) = (1 + o(1))n5/3

.

For the former, the upper bound on z(n; 2) is due to Reiman [115] and the lower bound

is due to Erdős, Renyi and Sós [63], and independently Brown [30]. For the latter,

the lower bound is due to Brown [30] (with an improvement by Alon, Rónyai and

Szabó [8]), and the upper bound is due to Füredi [76]. In fact, the constructions giv-

ing lower bounds on z(n; 2) and z(n; 3) are almost regular and therefore show that

there are (n× n) bipartite graphs with noK2,2 (noK3,3) with minimum degree at least

(1 + o(1))n1/2
(at least (1 + o(1))n2/3

), respectively. This completes the proof.

2.4 Concluding remarks

We have made progress in determining the asymptotic behaviour of f(n,∆). However,

we could not obtain better bounds for small ∆. The most glaring open problem is the

case ∆ = 3.

Open Problem 2.16. Determine the value of f(n, 3) for n sufficiently large.

Wewere able to show that for any ε ∈ (0, 1) and fixed (but large)∆, if n is sufficiently

large, then

1

2
· log ∆

∆
n ≤ f(n,∆) ≤ (2 + ε) · log ∆

∆
n.

It would be interesting to close the gap between these two bounds.

Chakraborti [41] considered a similar problem, replacing maximum by average

degree, and proved the following:
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Theorem 2.17 (Chakraborti [41]). For every ε ∈ (0, 1) there exists ∆0 = ∆0(ε), such that the
following holds: For each ∆ ≥ ∆0, there existsN0, such that for any n ≥ N0, ifG is an (n×n)

bipartite graph with average degree ∆ ≥ ∆0, then G contains a bihole of size (1− ε) log ∆
∆ n.

Clearly any (n × n) bipartite graph with maximum degree ∆ in one part also has

average degree at most ∆, which means that for any ε ∈ (0, 1) and fixed (but large) ∆,

if n is sufficiently large, then

(1− ε) · log ∆

∆
n ≤ f(n,∆) ≤ (2 + ε) · log ∆

∆
n.

Open Problem 2.18. Close the gap between the lower and upper bounds from Theorem 2.17
and Theorem 2.3, respectively.
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Chapter 3 The multicolour version of the Erdős-Hajnal

conjecture

3.1 Introduction

In this and the following chapter, we will consider the multicolour version of the

Erdős-Hajnal conjecture, which asserts that for any fixed integer k ≥ 3 and for any

fixed s′-edge-coloured cliqueK on k vertices, for s ≥ s′ ≥ 2, there is a positive constant

a = a(s,K) such that any s-edge-colouring of a clique on n vertices with no copy ofK

contains a clique on Ω(na) vertices using at most s− 1 colours. We will make this more

precise with the following definitions.

We shall consider edge-colourings of complete graphs using colours in [s] for some

integer s. An s-edge-colouring c of the complete graph Kn on vertex set [n] is a map

c :
(

[n]
2

)
→ [s]. We denote by |c| the number of colours from [s] for which c−1

is not

empty. Note that an s-edge-colouring c ofKn can be seen as an edge-partition ofG into

s colour classes, i.e.Kn = G1 ∪ · · · ∪Gs, where Gi corresponds to a maximal subgraph

of Kn whose edges are assigned colour i under c. Here Gi can be an empty graph if

|c| < s.

For an s-edge-colouring c of Kn and an s′-edge-colouring c′ of Kk, we say that c is

c′-free if c does not contain a copy of c′, i.e. for any V ⊆ [n] such that |V | = k and for

any bĳection φ : V → [k], there are two vertices x, y ∈ V such that c(xy) 6= c′(φ(x)φ(y)).

Typically we assume that k is fixed and n is large, i.e. the c′-free property is a local

condition on the colouring. One can think of the colouring c′ as a forbidden colour

pattern. One of the key questions considered is how the local restrictions impact global

properties, in particular how large the homogeneous number must be:

A homogeneous set in an s-edge-colouring c of Kn is a set X ⊆ [n] that has a colour

“missing”, i.e. |{c(xy) : x, y ∈ X}| < s. The size of a largest homogeneous set of

c is denoted by hs−1(c) (since at most s − 1 colours are used on the homogeneous

set), or if the number of colours is clear from the context, simply h(c). Note that

any homogeneous set is an independent set in some colour class Gi, i ∈ [s]. Thus,

we have h(c) = max
i∈[s]

α(Gi). For an s-edge-colouring c′ of Kk, k ≤ n, we also define

hs−1(n, c′) = min{h(c) | c is a c′-free s-edge-colouring ofKn}.

Note that for s = 2 one colour of c corresponds to the edges of some n-vertex graph

G and the other colour corresponds to the edges of G. Then in particular, we have
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h(c) = max{α(G), ω(G)}, which coincides with the definition of a homogeneous set in

2-graphs.

Definition 3.1. Let c′ be an s′-edge-colouring of Kk and let s ≥ s′. If there is a positive
constant ε = ε(c′, s) and a constant C > 0, such that any c′-free s-edge-colouring c of Kn

satisfies h(c) ≥ Cnε, we say that c′ has the EH-property for s colours. We call ε(c′, s) the
EH-exponent for c′ and s colours if it exists.

Conjecture 3.2 (Erdős, Hajnal [59]). Let k, s′ be integers with k, s′ ≥ 2. Then for any s ≥ s′,
any edge-colouring c′ ofKk with |c′| = s′ has the EH-property for s colours.

On could extend the arguments in [59] from two colours tomultiple colours to show

that in the above setting h(n, c′) = Ω(n
√

logn).

Note that c′ might not use all colours in [s] and it is not immediately obvious

whether a larger number of colours in the edge-colouring of the host clique forces

larger homogeneous sets. We show that we can reduce the problem to the case when

the number of colours in the edge-colouring of a large clique is the same or one larger

than the number of colours in the forbidden pattern c′. The following is joint workwith

Axenovich and Riasanovsky [12].

Theorem 3.3. Let c′ be an edge-colouring of a clique and s be an integer with s > |c′|. Then c′

has the EH-property for s colours if and only if c′ has the EH-property for s+ 1 colours.

Corollary 3.4. Let c′ be an s′-edge-colouring of a clique. Then the EH-conjecture holds for c′

if and only if c′ has the EH-property for s′ and s′ + 1 colours.

This chapter is structured as follows. We extend Lemma 0.2 by Alon, Pach, and

Solymosi [6] on graph blow-ups to a multicoloured version in Section 3.2. We prove

Theorem 3.3 and Corollary 3.4 in Section 3.3. In Section 3.4 we consider two special

cases of edge-colourings c of small cliques and forbid them as sub-colourings. We show

that for those two cases allowing an additional colour in the c-free edge-colouring does

not necessarily yield a larger homogeneous set. We state some concluding remarks and

open problems in Section 3.5.

3.2 The multicolour EH-property under blow-ups

For an edge-coloured cliqueH with vertex set V (H) = {v1, . . . , vk} and edge-coloured

cliques F1, . . . , Fk, we define the blow-up H(F1, . . . , Fk) as the edge-coloured clique

obtained by taking pairwise vertex-disjoint copies of F1, . . . , Fk and colouring the edge
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between a vertex of the copy of Fi and a vertex of the copy of Fj according to the colour

of vivj in H for any edge vivj of H .

The following theorem is a straightforward generalisation of Lemma 0.2 by Alon,

Pach, and Solymosi [6] for 2-edge-coloured graphs.

Theorem 3.5. If edge-coloured cliques H,F1, . . . , Fk have the EH-property for s colours, so
does the blow-up H(F1, . . . , Fk).

Proof. Let H , F be edge-coloured cliques having the EH-property for s colours with

exponents ε(H) and ε(F ), respectively. Let V (H) = {v1, . . . , vk} and for simplicity

write G = H(F ) = H(F,K1, . . . ,K1) for the blow-up of H where we only replaced the

vertex v1. Let the resulting colouring be c. Note that it suffices to prove that H(F ) has

the EH-property for s colours, since we can just replace one vertex of H by a clique Fi

at a time, and each blow-up will have the desired property.

Let s′ be the number of colours used in H(F ), and for s ≥ s′ let c be an s-edge-

colouring ofKn that is H(F )-free for n sufficiently large. Let

δ = δ(H,F ) =
ε(F )ε(H)

ε(H) + kε(F )
.

We shall show that h(c) ≥ nδ.

Let m := nδ/ε(H)
. Assume first that some subset U ⊂ V (G) of size m contains no

copy of H under c. Then, since H has the EH-property for s colours, we know that

there is a homogeneous set of size at least mε(H) ≥ nδ in U , so we are done. Thus, we

can assume that each subset of V (G) of sizem contains a copy ofH . It implies that the

number #H of copies of H in G satisfies

#H ≥
(
n

m

)(
n− |H|
m− |H|

)−1

=
n!

(n−m)!m!

(n−m)!(m− k)!

(n− k)!
=
n!(m− k)!

m!(n− k)!
. (1)

Here, we use the fact that there are

(
n
m

)
ways to choose subsets of sizem in V (G), each

of them containing a copy of H . If we fix a copy of H , there are

(n−|H|
m−|H|

)
sets of size m

containing that copy.

Consider the set XH of ordered k-tuples (v′1, . . . , v
′
k) of vertices in G such that they

induce a copy of H with vertices v′1, . . . , v
′
k playing the roles of v1, . . . , vk, respectively.

Consider the set XH0 of ordered (k − 1)-tuples (v′2, . . . , v
′
k) of vertices in G such that

they induce a copy of H0 = H[v2, . . . , vk] with vertices v′2, . . . , v
′
k playing the role of

v2, . . . , vk, respectively, in some copy of H on vertex set {v′1, . . . , v′k}. We have that
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|XH0 | ≤ n(n − 1) . . . (n − k + 2) = n!/(n − k + 1)! since we can embed the first vertex

in at most n ways, the second in at most n − 1 ways, and so on. On the other hand,

|XH | ≥ #H . Thus, there is an ordered tuple (v′2, . . . , v
′
k) of vertices in G and a setW of

at least |XH |/|XH0 | vertices in V (G)−{v′2, . . . , v′k} such that for any w ∈W the vertices

w, v′2, . . . , v
′
k induce a copy of H and play the roles of v1, v2, . . . , vk, respectively. In

addition, since G is H(F )-free, G[W ] is F -free. Since F has the EH-property,

h(G[W ], c) ≥ |W |ε(F )

≥
(
|XH |
|XH0 |

)ε(F )

≥
(

#H

n!/(n− k + 1)!

)ε(F )

≥
(
n!(m− k)!

m!(n− k)!

(n− k + 1)!

n!

)ε(F )

≥
(

n− k + 1

m(m− 1) · · · (m− k + 1)

)ε(F )

≥
( n

mk

)ε(F )

≥ nε(F )(1−kδ/ε(H))

≥ nδ.

This implies that h(c) ≥ h(G[W ]) ≥ nδ.

We also state a slight variant of the blow-up lemma applied to families of graphs.

LetH be an edge-colouring of a clique on vertices v1, . . . , vk and F be a family of edge-

coloured cliques. Thenwedefine theblow-upH(F) to be the family {H(F,K1, . . . ,K1) :

F ∈ F}. Running almost identical to the previous lemma proof, we have

Theorem 3.6. If an edge-coloured clique H and a family of edge-coloured cliques F have the
EH-property for s colours, so does the blow-up H(F).

3.3 Allowing more colours than used in the forbidden pattern

Proof of Theorem 3.3. Let c′ be an edge-colouring of a clique, let s be an integer with

s > |c′| and let n be a sufficiently large integer.

“⇒”: Assume that for any c′-free s-edge-colouring c ofKn we have h(c) ≥ nε for some

ε > 0. Now let c′′ be a c′-free (s+ 1)-edge-colouring ofKn. We want to show that

h(c′′) ≥ nε as well.
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Since s > |c′|, there exists a colour a ∈ [s] which is not used in c′. The colour s+ 1

is also not used in c′. Now recolour all edges of colour s + 1 in c′′ with colour a

and call the resulting colouring c′′′. Then c′′′ is an s-edge-colouring of Kn which

is c′-free, since the edges having colours from c′ are the same in c′′ and c′′′. Thus,

by our assumption there is a homogeneous set X in Kn under c′′′ of size at least

nε.

In particular, X avoids some colour a′ ∈ [s] under c′′′. If a′ 6= a, then X avoids a′

under c′′′, then X also avoids a′ under c′′. If a = a′, then X avoids a and s + 1

under c′′. Thus, in any case, X is a homogeneous set under c′′. In particular,

h(c′′) ≥ nε.

“⇐”: Assume that for any c′-free (s + 1)-edge-colouring c of Kn we have h(c) ≥ n3ε

for some ε > 0. Now let c′′ be a c′-free s-colouring of Kn. We want to show that

h(c′′) ≥ nε.

We shall construct an (s+ 1)-edge-colouring c′′′ of Kn as follows: Recolour each

edge from c′′ with colour s + 1 with probability
1
2 , and leave the colour from c′′

with probability
1
2 . Since the colour s+ 1 is not used in c′, the new colouring c′′′

is c′-free, and thus, by assumption, h(c′′′) ≥ n3ε
. Now assume h(c′′) < nε. Then

under c′′ every set Y ⊆ V (Kn) of size |Y | = nε contains at least one edge of each

colour in [s].

Using the properties of a random graph G ∈ G(n, 1
2), for any δ > 0 and n

sufficiently large, any subset of n2δ
vertices in Kn has an edge of colour s + 1

under c′′′ with probability approaching 1 as n grows. On the other hand, we

know that in c′′ each subset Y ⊆ V (Kn) of size |Y | = nε induces an edge of colour

i for each i ∈ [s]. Thus, using Turán’s theorem [122], a given subset X ⊆ V (Kn)

of size |X| = n2ε
induces at least x = Ω

((
n2ε

2

)
1
nε

)
= Ω(n3ε) edges of colour i, for

any i ∈ [s], under the colouring c′′.

The probability that all these edges of colour i are recoloured with s+ 1 is at most

(1/2)x. Thus, the probability that some subset of n2ε
vertices misses some colour

from [s] under c′′′ is at most

p =

(
n

n2ε

)
s(1/2)x ≤ 2n

2ε logn−n3ε
.

We see that p approaches zero as n grows. Therefore, with high probability, all

subsets of n2ε
vertices induce edges of all colours under c′′′. Thus, with high

probability h(c′′′) < n2ε
, a contradiction to our assumption that h(c′′′) ≥ n3ε

.
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3.4 Special cases

Corollary 3.4 shows that for an integer s and an edge-colouring c of a clique using all

colours from [s], one only needs to check whether c has the EH-property for s and

for s + 1 colours. Intuitively one might think that having an extra colour in the host

graph allows for larger homogeneous sets. In this section we will consider two special

colourings, for s = 2 and s = 3 colours, which each have the EH-property for s colours.

In both cases we do not know if they still have the EH-property for s+ 1 colours, but in

both cases we can show, that the size of a largest homogeneous set does not grow with

an extra colour, in the second case it is strictly smaller.

3.4.1 Rainbow triangle and an extra colour

Consider the rainbow triangle, i.e. the 3-edge-colouring c ofK3 in which the edges have

colours 1, 2 and 3. The structure of c-free 3-colourings of cliques is known and is called

a Gallai colouring [79, 86]. It is known that c has the EH-property for 3 colours, see for

example [70], see also Theorem 4.7. In particular, we have

h2(n, c) ∈ Θ
(
n1/3 log2 n

)
.

Next, we shall give a construction, providing an upper bound on the size of largest

homogeneous set in any c-free 4-colouring of Kn. We will show that h3(n, c) ∈
O(h2(n, c)).

The lexicographic product c′ × c′′ of two edge-colourings c′ of K ′ and c′′ of K ′′ is

the edge-colouring of the blow-up K ′(K ′′,K ′′, . . . ,K ′′) as defined in Section 3.2. For a

given colouring c′ of some clique K and some colours i1, i2, i3, we denote by Sc
′
ijk the

size of largest clique inK that only uses colours from {i, j, k} under c′. It is easy to see

that Sc
′×c′′
ijk = Sc

′
ijk · Sc

′′
ijk.

Lemma 3.7. We have h3(n, c) ≤ O(n1/3 log2 n).

Proof. Let ci, i ∈ [3] be a 3-edge-colouring of Kn1/3 using colours [4] \ {i}, satisfying
h2(ci) ∈ O(log n). Note that such colourings exist and could be chosen by randomly

assigning one of the three colours to each edge uniformly. Also note that ci is c-free

for i ∈ [3]. Let c4 = c1 × c2 × c3 be the lexicographic product of c1, c2 and c3, i.e. a

4-edge-colouring ofKn. This is a construction very similar to one used in [70].

Claim: c4 is c-free and h3(c4) ≤ O(n1/3 log2 n).
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Consider first c2 × c3. Since none of the ci’s contains c, we only need to consider

triangles T in c′ that have two vertices in some c3-coloured clique K, and another

vertex in a different c3-coloured clique K ′. But since the edges between two different

c3-coloured cliqued all have the same colour, T is not rainbow. Thus, c2 × c3 is c-free.

Similarly, we conclude that c4 = c1 × (c2 × c3) is c-free.

For the size of a largest homogenous set in c4 consider the following:

Sc4123 = Sc1123 · S
c2
123 · S

c3
123 = O(log n)O(log n)O(log n),

Sc4124 = Sc1124 · S
c2
124 · S

c3
124 = O(log n)O(log n)n1/3,

Sc4134 = Sc1134 · S
c2
134 · S

c3
134 = O(log n)n1/3O(log n) and

Sc4234 = Sc1234 · S
c2
234 · S

c3
234 = n1/3O(log n)O(log n).

Since h3(c4) = max{Sc4ijk : {i, j, k} ⊆ [4], |{i, j, k}| = 3}, we have that h3(c4) ≤
O(n1/3 log2 n).

3.4.2 2-edge-colouredK4 and an extra colour

Let c be the 2-edge-colouring of K4 in which each colour class induces P4. Note that c

having the EH-property for 2 colours is equivalent to P4 having the EH-property. Any

P4-free graph is a co-graph (see for example [22, 48] for properties of co-graphs), which

is in particular a perfect graph, and thus, by a Theorem of Erdős and Hajnal [59], any

P4-free graph G contains a homogeneous set of size

√
|V (G)|. In particular, we have

h1(n, c) = n1/2
.

We will show that h2(n, c) < h1(n, c).

Lemma 3.8. There exists a 3-edge-colouring c′ of Kn which is c-free which satisfies h2(c′) ≤
O(n2/5 log9/5 n).

Proof. By Bohman’s [23] upper bound on the Ramsey number R(4, t) = Ω(t5/2/ log2 t),

we know that for n sufficiently large there exists a graphH on n vertices with ω(H) < 4

and α(H) < Cn2/5 log4/5 n, for some positive constant C.

Define a 3-edge-colouring ofKn with colours in [3] on the vertex set ofH as follows:

the edges not inH are coloured 3, and each edge ofH is coloured 1 with probability 1/2

and 2 with probability 1/2. Note that in this colouring each K4 has an edge of colour

3, and therefore there is no copy of c.
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Claim: With positive probability h2(c′) = O(n2/5 log9/5 n).

Letting q(n) = 8α(H) log(n), we shall show that any set of q(n) vertices induces

edges of all three colours under c′. LetX be a fixed set of q(n) vertices. Then by Turán’s

theorem [122], any graph G on n vertices with α(G) < r has at least 1
r

(
n
2

)
edges. Thus,

the number of edges induced by X in H is at least

eX =
1

α(H)

(
q(n)

2

)
≥ q2(n)

4α(H)
.

Then the probability thatX induces only edges of colours 2 and 3 in c′ or thatX induces

only edges of colours 1 and 3 in c′ is at most

pX ≤ 2 · 2−eX ≤ 2 · 2−q2(n)/4α(H).

Using the union bound over all q(n)-element subsets of [n], we have that the probability

that c′ contains a q(n)-vertex set inducing edges of only two colours is at most(
n

q(n)

)
pX ≤ nq(n)21−q2(n)/4α(H) = 2(q(n) logn+1−q2(n)/4α(H))

= 2(8α(H) log2(n)+1−16α(H) log2(n))

< 1,

using the definition of q(n). Thus, with positive probability there is a desired colouring.

We remark that we did not attempt to optimise any of the constants involved.

3.5 Concluding remarks

The multicolour Erdős-Hajnal conjecture is concerned with the existence of large ho-

mogeneous sets in edge-coloured cliques that do not contain a copy of a given colouring

on small subcliques. It could be that the number of colours used in a large clique is

strictly larger than the number of colours used in a forbidden subclique-colouring. Al-

though intuitively it seems that having more colours on a large clique allows for larger

homogeneous sets, no formal proof of this is known and it is actually not clear whether

it is true.

We showed that the multicolour EH-conjecture could be reduced to the situation

when the large clique uses the same set of colours as the forbidden colouring or maybe
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one more. This brings us to the following special cases, in a sense smallest, for which

the EH-conjecture is known to be true for the number of colours used in the forbidden

colouring, but not any more once additional colours are allowed. In Section 3.4 we

provided upper bounds on hs(n, c) for those two colourings, which show, that the

size of a largest homogeneous set in large c-free edge-colourings does not grow when

allowing an extra colour, in the second case it even decreases. We still do not know if

those two colourings have the EH-property for s+ 1 colours at all:

Open Problem 3.9. Does the 2-edge colouring ofK4 in which each colour class is isomorphic
to P4 have the EH-property for 3 colours?

Open Problem 3.10. Does the rainbow triangle have the EH-property for 4 colours?
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Chapter 4 The Erdős-Hajnal conjecture for three colours

and families of triangles

4.1 Introduction

In this chapter, we will consider the multicolour version of the Erdős-Hajnal conjecture

for s = 3 colours and forbidden families of colourings on triangles. We use the

definitions and notations from Section 3, but reproduce them here for this special case.

We say that a clique K ′ edge-coloured with a colouring c contains a copy of (or

simply contains) a clique K on vertex set {1, . . . , k} with an edge-colouring c′, if there

is a set of k vertices {v1, . . . , vk} inK ′ and a bĳection φ : {1, . . . , k} → {v1, . . . , vk} such
that c′(ij) = c(φ(i)φ(j)), for all i, j, 1 ≤ i < j ≤ k.

In this chapter, to avoid confusion, we will use the term pattern for a forbidden

colouring of a subgraph, so the term colouring will refer to the colouring of a larger

graph in which we forbid certain patterns. We consider the case when the number of

colours is three and the forbidden patterns are imposed on triangles, but there could

be more than one forbidden pattern. Specifically, we investigate all sets of at most three

patterns. We provide all our results in the Tables 4.1, 4.2, 4.3. One can immediately see

from Table 4.1 that the Erdős-Hajnal conjecture holds true in this setting. We focus on

the quantitative version of the conjecture and provide asymptotic bounds on the sizes

of the largest 2-edge-coloured cliques.

All of the colourings considered here use colours r, b, and y, corresponding to ‘red’,

‘blue’, and ‘yellow’. The complete graph on n vertices is denoted by Kn. We call an

edge-coloured complete graphKk using at most two colours on its edges a two-coloured
k-clique. We also call the set of vertices of a two-coloured clique a two-coloured set. For
a family H of patterns using colours r, b, y, we define the class of H-free edge-colourings
ofKn as a family using colours r, b, y, and containing none of the patterns fromH. We

denote the family of allH-free edge-colourings by Forb(n,H).

For an edge-colouring c, let

h2(c) = max{k ∈ N | c contains a two-coloured k-clique}, and

h2(n,H) = min{h2(c) | c ∈ Forb(n,H)}.

In particular, each edge-colouring of Kn using three colours and not containing
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patterns from H contains a clique on h2(n,H) vertices using at most two colours. In

addition, there is anH-free colouring with every clique on more than h2(n,H) vertices

using all three colours.

We consider all sets H of at most three patterns on triangles using colours from

{r, b, y}. We also write, for example, rrb to represent a colouring of a triangle with one

blue and two red edges. These patterns are rrr, bbb, yyy, rrb, rry, bbr, bby, yyr, yyb, rby.

Note that if for two families H,H′ there is a permutation π of colours, such that H′ is
obtained by applying π to each pattern in H, we have h2(n,H) = h2(n,H′). If for two

sets of avoiding patterns, H and H′, we have that H ⊆ H′, then h2(n,H) ≤ h2(n,H′).
Indeed, this holds since anyH′-free colouring is also anH-free colouring.

Two of the entries of our tables are expressed in terms of functions f(n) and g(n)

that are interesting in their own right. For a graph G, let G2
be the square of G, i.e. the

graph on the same vertex set as G with two vertices adjacent if and only if they are at

distance at most 2 in G. Let

f(G) = max{α(G), ω(G2)} and f(n) = min{f(G) : |G| = n, ω(G) = 2}.

Further, recall that the odd girth, girthodd(G), of a graph G is the length of a shortest

odd cycle in G. Let

g(n) = min{α(G) : |G| = n, girthodd(G) ≥ 7}.

H h2(n,H) Results

{ } Θ(n1/3 log2 n) [70]

{ } Θ(
√
n log n) Lemma 4.1.1

{ } d
√
ne Lemma 4.1.2

Table 4.1: Bounds on h2(n,H) for familiesH of one pattern on a triangle

The main results of this chapter are joined work with Axenovich and Snyder [13].

This chapter is structured as follows. We give classical and preliminary results

and more definitions in Section 4.2. Section 4.3 contains most of the constructions we

use, and hence yields the upper bounds on h2(n,H) listed in Tables 4.1, 4.2, 4.3. The

remaining part of this chapter provides lemmata and their proofs for the corresponding

lower bounds on h2(n,H). Section 4.7 provides final remarks and open questions.

We remark that ‘log’ for us always denotes the base 2 logarithm.
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H h2(n,H) Results

{ , }, { , }, { , },
d
√
ne Lemma 4.2.1

{ , }
{ , } Θ(

√
n) Lemma 4.2.2

{ , }, { , }, { , } Θ(
√
n log n)

Lemmata 4.2.3,

4.2.6

{ , }
Ω(
√
n log n), O(

√
n log3/2 n) Lemma 4.2.5

f(n) ≤ h2(n,H) ≤ 2f(n) Lemma 4.2.4

{ , } Ω(n2/3 log−3/2 n), O(n2/3
√

log n) Lemma 4.2.7

Table 4.2: Bounds on h2(n,H) for familiesH of two patterns on triangles

4.2 Connections to other results, preliminary results, and more defini-

tions

The conclusion of themulticolour Erdős-Hajnal conjecture could be restated as: there is

a positive constant a = a(K) such that in any s-edge-colouring of a clique on n vertices

with no copy of K there is a colour class with independence number Ω(na). Thus,

the multicolour Erdős-Hajnal conjecture not only extends the respective conjecture for

graphs, but puts the problem in the framework of Ramsey problems defined through

some parameter p, where one seeks a largest clique coloured with a fixed number

of colours, such that the parameter p of each colour class is bounded by a given

number. For example, the classical Ramsey theorems are stated for the parameter p

being equal to the clique number, while the Erdős-Hajnal conjecture has a formulation

as a Ramsey number with parameter p, for p equal to the independence number; see

other papers [7,42,62,75,78,91,94,105,107], where Ramsey problems with parameter p

have been considered for p equal to the diameter, theminimumdegree, the connectivity,

and the chromatic number. Fox, Grinshpun and Pach [70] addressed themulticoloured

Erdős-Hajnal conjecture when K is a rainbow triangle, i.e. a complete graph on 3

vertices edge-coloured using three distinct colours. Among other results, they proved

that any such colouring with s = 3 colours contains a clique using at most 2 colours

that has order at least Ω(n1/3 log2 n). Moreover, they showed that this bound is tight.

For a given colouring c in r, b, y, we denote by Scrb, S
c
ry, and S

c
by the size of a largest

clique using only colours from {r, b}, only from {r, y}, and only from {b, y}, respectively.
A pattern is monochromatic if only one colour occurs, i.e. rrr, bbb or yyy. For a subset of

colours, e.g., {r, b}, we say that a graph with all edges coloured r or b is a red/blue graph
(or a blue/red graph). If this graph is a clique, we refer to it as a red/blue clique.
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H h2(n,H) Results

{ , , }, { , , } d
√
ne Lemma 4.3.1

{ , , }, { , , } dn/2e
Lemmata 4.3.2,

4.3.3

{ , , } dn/2e+ 1 Lemma 4.3.5

{ , , }, { , , } Ω(
√
n), O(

√
n log n)

Lemmata 4.3.4,

4.3.6

{ , , } Θ(n2/3) Lemma 4.3.7

{ , , } noH-free col. for n ≥ 17 [81]

{ , , } Ω(
√
n log n), O(

√
n log3/2 n) Lemma 4.3.9

{ , , } 2 bn/5c+ ε(n) Lemma 4.3.10

{ , , } d(n− 1)/3e ≤ h2(n,H) ≤ 2 dn/5e Lemma 4.3.12

{ , , }, { , , },
dn/2e

Lemmata 4.3.13

{ , , } 4.3.21, 4.3.23

{ , , } Ω(
√
n log n), O(

√
n log3/2 n) Lemma 4.3.14

{ , , } Ω(
√
n log n), O(n2/3

√
log n) Lemma 4.3.15

{ , , }
Ω(n2/3 log1/3 n), O(n3/4 log n) Lemma 4.3.18

g(n) ≤ h2(n,H) ≤ 2g(n) Lemma 4.3.17

{ , , } Ω(n2/3 log−1/3 n), O(n2/3
√

log n) Lemma 4.3.19

{ , , } Θ(
√
n log n) Lemma 4.3.20

{ , , } d3n/7e+ ε1(n) Lemma 4.3.22

{ , , } Ω(n3/4 log−3/2 n), O(n3/4
√

log n) Lemma 4.3.24

{ , , }, { , , },
Ω(n2/3 log−2 n), O(n2/3

√
log n) Lemma 4.3.25

{ , , }

Table 4.3: Bounds on h2(n,H) for familiesH of three patterns on triangles

ε(n) = 0 if n ≡ 0 (mod 5), ε(n) = 1 if n ≡ 1, and ε(n) = 2 otherwise;

ε1(n) = 1 if n ≡ 2 (mod 7) and ε1(n) = 0, otherwise.

If a pattern is not rainbow, the colour used on more than one edge is called the

majority colour. For any given colour, e.g., red, we say that a vertex v has red degree k if

it is incident to exactly k red edges. We denote by Nr(v) the red neighbourhood of v, the

set of all vertices joined to v by edges coloured red.

For positive integers k and `, we let R(k, `) denote the usual Ramsey number for

cliques, i.e. the smallestN such that no matter how the edge set ofKN is coloured with

red and blue, there is a redKk or a blueK` in this colouring. For graphs F and F ′, we

letR(F, F ′) denote the graph Ramsey number of F and F ′, i.e. the smallestN such that
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no matter how the edge set of KN is coloured with red and blue, there is a red copy

of F or a blue copy of F ′ in this colouring. Here a copy of F is a graph isomorphic to

F . This definition easily extends to the case when either F or F ′ is replaced by a finite

family of graphs. As usual, we let V (G), E(G), χ(G), α(G), ω(G), and ∆(G) denote

the vertex set, edge set, chromatic number, independence number, clique number, and

the maximum degree of a graph G, respectively. For a clique with vertex set V , we

say that |V | is the size of the clique, and we often write “a clique V " instead of “a clique

on the vertex set V ". Most of the colourings we define in Section 4.3 are obtained

by ‘blowing up’ other colourings. We make this precise as follows. Suppose c is an

edge-colouring ofKk on vertex set [k] and let V1, . . . , Vk be non-empty, pairwise disjoint

sets. The (V1, . . . , Vk)-blow-up of c is the edge-colouring of the complete k-partite graph

with parts Vi for i ∈ [k], such that all edges between Vi and Vj have colour c(ij) for all

1 ≤ i < j ≤ k. See also Section 3 for more on blow-ups of colourings.

Observation 4.1. Let c1, c2 be 3-edge-colourings ofKn1 ,Kn2 . Now let V1, . . . , Vn1 be vertex-
disjoint sets of size |Vi| = n2 each and consider the (V1, . . . , Vn1)-blow-up of c1, where each Vi
is coloured according to c2. Let the resulting colouring be c. Then we have Sck = Sc1k · S

c2
k for

any k ∈ {rb, ry, by}.

A graph is triangle-free if it does not contain K3 as a subgraph. We shall need some

results about triangle-free graphs and certain Ramsey numbers.

Theorem 4.2 (Kim [93]). For every sufficiently large n ∈ N there exists a triangle-free graph
G on n vertices with α(G) ≤ 9

√
n log n.

The following result gives a corresponding lower bound for the independence

number of triangle-free graphs:

Theorem 4.3 (Ajtai et al. [1]). For any integer t ≥ 3, we have R(3, t) = O(t2/log t). That is,
there is a constant C, such that in any red/blue edge-colouring ofKn with n = Ct2/log t there
is either a redK3 or a blueKt.

Translating the above theorem into the language of independent sets in triangle-free

graphs, we have:

Corollary 4.4. For any triangle-free graph G on n vertices, α(G) = Ω(
√
n log n).

The following result provides an upper bound on the chromatic number of any

n-vertex triangle-free graph.

Theorem 4.5 (Poljak, Tuza [113]). For any triangle-free graph G on n vertices, χ(G) ≤
4
√
n/ log n.
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We shall also need some known bounds on Ramsey numbers listed in Table 0.1 in

the Preliminaries.

Observation 4.6. A lower bound on some Ramsey numberR(s, t) corresponds to the existence
of a 2-edge-colouring ofKn with no redKs and no blueKt. For example,R(3, k) = Ω(k2/log k)

gives the existence of a red/blue edge-colouring of Kn with no red K3 and no blue Kt for any
t > C

√
n log n for some constant C.

Recall that a pattern containing all three colours r, b, and y is called rainbow. Colour-
ings not containing rainbow triangles are called Gallai colourings. We will need the

following fundamental theorem, which asserts that Gallai colourings have a specific

structure.

Theorem 4.7 (Gallai [79]). In any Gallai colouring of the complete graph on at least two
vertices, the vertex set can be partitioned into at least two non-empty parts such that

• for any two distinct parts, all edges between them are of the same colour;

• the total number of colours used between parts is at most two.

4.3 Constructions

Here we will list some explicit or probabilistic 3-edge-colourings of Kn which are H-
free for certain families, which we will then refer to in order to prove upper bounds

on h2(n,H). We describe the colourings and bound the size of a largest 2-coloured

set for each of them. The constructions are ordered by increasing order of magnitude

of h2. For each constructed colouring c an upper bound on h2(c) is established. We

remark that these upper bounds are asymptotically tight, but since these facts are not

needed for our results, we omit proofs. Some of the constructions are explicit and

give exact bounds, while others rely on probabilistic/Ramsey results, and therefore

only give asymptotic bounds. Lastly, in each construction where we obtain asymptotic

upper bounds, divisibility conditions are ignored, and floors and ceilings are omitted

for simplicity of presentation.

Construction 2.1 (d
√
ne, none of , , , )

Let n ≥ 3 be an integer, and assume first that n = m2
for some integerm. Let the vertex

set be {vij : i, j ∈ [m]}, a set ofm2
vertices. Define the colouring c of E(V ) as follows:
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c(vikvjl) =


red if i = j, k 6= l,

blue if i 6= j, k = l,

yellow if i 6= j, k 6= l.

The red graph is the disjoint union ofm cliques of sizem, wherem ≥ 2. The same

holds for the blue graph. It is not difficult to see that this colouring contains none of

the stated patterns.

Claim: h2(c) ≤ d
√
ne.

Proof. Let Vi = {vik | k ∈ [m]}, Ui = {vji | j ∈ [m]}, i ∈ [m]. Any blue/yellow clique can

use at most one vertex of any given Vi, any red/yellow clique can use at most one vertex

of any given Uj , so we have Scby, S
c
ry ≤ m. In fact, it is not hard to find blue/yellow and

red/yellow cliques of size m, so Scby = Scry = m. Assume there is a red/blue clique of

size m + 1. Then it uses two vertices x, y ∈ Vi and one vertex z ∈ Vj for some i 6= j

(here we are using m ≥ 2). But then z can have a blue edge to at most one of {x, y}, a
contradiction. Thus, we have Scrb, S

c
ry, S

c
by ≤ m =

√
n.

Now let n ∈ N be arbitrary and take the smallest m ∈ N, such that n ≤ m2
. Note

thatm = d
√
ne. Take the construction described above withm2

vertices and arbitrarily

remove m2 − n vertices. Then the size of a largest two-coloured clique is still at most

m = d
√
ne.

Construction 2.2 (O(
√
n), none of , )

Let k =
√
n. By Bohman’s [23] result R(4, t) = Ω(t5/2/ log2 t) and observation 4.6, we

may consider a blue/yellow edge-colouring of Kk (for sufficiently large n) with no

yellow clique of size 4 and no blue clique of size larger than Ck2/5 log4/5 k, for some

constant C. Call this colouring c′. Now, let V1, . . . , Vk be pairwise vertex-disjoint sets

of size

√
n each and consider the (V1, . . . , Vk)-blow-up of c′. Inside each Vi colour the

edges in red/yellow with no yellow clique of size 4 and no red clique on more than

Ck2/5 log4/5 k vertices. Call the resulting colouring c.

Observe that any triangle in this colouring contains edges from either one Vi (in which

case it is coloured in red and yellow), from two distinct Vi’s (in which case it is a

bbr, bby, yyr or yyy triangle), or from three distinct Vi’s (then it uses only colours blue

and yellow). Thus, there are no rby, rrb triangles.
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Claim: h2(c) = O(
√
n).

Proof. Note that any red/blue clique must be the blow-up of a blue clique in c′ with red

cliques inside each Vi. By construction, we then have Scrb ≤ (C(
√
n)2/5 log4/5(

√
n))2 ≤

√
n, for sufficiently large n. For red/yellow and blue/yellow cliques we have Scby, S

c
ry ≤

3 ·
√
n.

Construction 2.3 (O(
√
n log n), none of , , )

By Theorem 4.2, for n large enough there is a triangle-free graph G on n vertices with

α(G) ≤ 9
√
n log n. By Theorem 4.5, we have that χ(G) ≤ 4

√
n/ log n. Consider a

partition of V (G) into χ(G) independent sets V1, . . . , Vχ(G) (each of size at most α(G)).

Now consider the following 3-edge-colouring c ofKn. Fix a copy ofG inKn and colour

it red, then colour all edges with both endpoints in the same Vi blue and all remaining

edges (between two different Vi’s that are not in G) yellow.

Observe that the blue graph is a disjoint union of cliques and the red graph is triangle-

free, so there are no rrr, bbr or bby triangles.

Claim: h2(c) = O(
√
n log n).

Proof. A blue/yellow clique in this colouring corresponds to an independent set in G,

i.e. we have Scby = α(G) ≤ 9
√
n log n. Since a red/yellow clique contains at most one

vertex from any Vi, we have Scry ≤ χ(G) ≤ 4
√
n/ log n. A red/blue clique contains

vertices from at most two Vi’s, since otherwise there is a red triangle in G, i.e. we have

Scrb ≤ 2α(G) ≤ 18
√
n log n.

Construction 2.4 (O(
√
n log n), none of , , )

Take k =
√
n log n and consider a blue/yellow edge-colouring c′ of Kk without a

monochromatic clique of size more than 2 log k, which exists by the bound on the

Ramsey number R(t, t) ≥ 2t/2. Let V1, . . . , Vk be pairwise vertex-disjoint sets each of

size n/k =
√
n/ log n, and consider the (V1, . . . , Vk)-blow-up of c′. Colour every edge

with both endpoints in Vi red for each i ∈ [k]. Let us denote by c the resulting colouring.

Observe that each triangle in c is either monochromatic red with all vertices in Vi,

i ∈ [k], a bbr or yyr triangle (one edge in a red clique and two edges of the same colour

to another clique), or one of bbb, bby, yyy, yyb (vertices from three different red cliques).
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Claim: h2(c) = O(
√
n log n).

Proof. Any blue/yellow clique contains at most one vertex from each Vi, i.e. we have

Scby = k =
√
n log n. Any red/blue (red/yellow) clique in c corresponds to a blue

(yellow) clique in c′, sowehaveScrb = Scry ≤ (n/k)·2 log k =
√
n/ log n·2 log(

√
n log n) ≤

2
√
n log n.

Construction 2.5 (O(
√
n log n), none of , , )

Let k =
√
n log n. Consider a red/blue edge-colouring c′ of Kk without a monochro-

matic clique of size larger than 2 log k. Such a colouring exists by the bound on the

Ramsey number R(t, t) ≥ 2t/2. Take m = n/k pairwise vertex-disjoint copies of Kk

each coloured according to c′ with vertex sets V1, . . . , Vm. Colour every edge between

Vi and Vj yellow for all distinct i, j ∈ [m]. Call the resulting colouring c.

Observe that each triangle in c is either coloured in red and blue (all vertices are in the

same Vi), or contains at least two yellow edges (vertices in at least two different Vi’s).

Claim: h2(c) = O(
√
n log n).

Proof. Any red/blue clique contains vertices from atmost one Vi, so S
c
rb = k =

√
n log n.

Any red/yellow (blue/yellow) clique contains at most 2 log k vertices from each Vi, so

we have Scry, S
c
by ≤ (n/k) · 2 log k =

√
n/ log n · log(

√
n log n) ≤ 2

√
n log n.

Construction 2.6 (O(
√
n log3/2 n), none of , , , )

From the lower bound on R(3, t), consider a triangle-free graph H with vertex set [n]

and independence number at most 9
√
n log n. Define c, a colouring of the edges of a

complete graph on vertex set [n] as follows: the edges not inH are coloured yellow, and

each edge ofH is coloured red with probability 1/2 or blue with probability 1/2. Note

that in this colouring each triangle has a yellow edge, and therefore contains none of

the stated patterns.

Claim: With positive probability h2(c) = O(
√
n log3/2 n).

Proof. Letting q(n) = 80
√
n log3/2 n, we shall show that any set of q(n) vertices induces

edges of all three colours. Let X be a fixed set of q(n) vertices.
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Now we use Turán’s theorem [122], which tells us that a graph G on n vertices with

α(G) < r has at least
1
r

(
n
2

)
edges. Since α(G[X]) < 10

√
n log n, the number of edges

induced by X in H is at least

eX =
1

10
√
n log n

(
q(n)

2

)
≥ q2(n)

4 · 10
√
n log n

.

Then the probability thatX induces only yellow and blue edges in c or thatX induces

only yellow and red edges in c is at most

pX ≤ 2 · 2−eX ≤ 2 · 2−q2(n)/40
√
n logn.

Using the union bound over all q(n)-element subsets of [n], we have that the probability

that c contains a q(n)-vertex set inducing edges of only two colours is at most(
n

q(n)

)
pX ≤ nq(n)21−q2(n)/40

√
n logn = 2(q(n) logn+1−q2(n)/40

√
n logn) < 1,

using the definition of q(n). Thus, there is a desired colouring with positive probability

(we remark that we did not attempt to optimize the constants here).

Construction 2.7 (O(n2/3), none of , , , )

Consider n1/3
pairwise vertex-disjoint red cliques of size n1/3

each and colour all edges

in-between blue. This is a red/blue edge-colouring of Kn2/3 . Consider n1/3
pairwise

vertex-disjoint copies of Kn2/3 each coloured as above, and colour all remaining edges

yellow. Call the resulting colouring c.

Observe that the red graph is a disjoint union of cliques, so any triangle contains either

3, 1 or 0 red edges, if it has its vertices in 1, 2 or 3 different red cliques respectively, so

there is no triangle containing exactly two red edges. Assume there are vertices u, v, w,

such that c(uv) = b and c(vw) = y. Then u and v are in the same red/blue clique and

w is in a different red/blue clique, so c(uw) = y, and there are no rby, bby triangles.

Claim: h2(c) = O(n2/3).

Proof. It is not difficult to see that Scrb = O(n2/3). Note that any red/yellow clique

contains vertices from at most one red clique inside each copy ofKn2/3 . Since each red

clique has size n1/3
and there are n1/3

copies of Kn2/3 , we obtain Scry = O(n2/3) (see

Observation 4.1). Finally, any blue/yellow clique contains at most one vertex from each
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red clique inside every copy ofKn2/3 . Since there are n1/3
red cliques inside eachKn2/3 ,

we have Scby = O(n2/3).

Construction 2.8 (O(n2/3
√

log n), none of , , , )

Let k = n2/3
√

log n. From the lower bound on R(3, t)/Observation 4.6 consider a

red/blue edge-colouring c′ ofKk with no redK3 and no blueKt for any t > 9
√
k log k.

Let V1, . . . , Vk be pairwise disjoint sets each of size n/k, and consider the (V1, . . . , Vk)-

blow-up of c′. Colour all edges with both endpoints in Vi yellow for each i ∈ [k] and

call the resulting colouring c.

Observe that each triangle is either yyy (all vertices in the same Vi), yrr or ybb (one edge

within a Vi and two edges to a different Vi) or one of rrb, bbr, bbb (all vertices in different

Vi’s).

Claim: h2(c) = O(n2/3
√

log n).

Proof. Since any red/blue clique can contain at most one vertex from each Vi, we have

Scrb = k. Further, as c′ contains no red triangle, we obtain Scry ≤ 2 · (n/k). Lastly, as c′

contains no blue Kt for any t > 9
√
k log k, we have that Sby ≤ 9

√
k log k · (n/k). Thus,

by our choice of k it follows that max{Scrb, Scry, Scby} ≤ Cn2/3
√

log n, for some constant

C.

Construction 2.9 (O(n2/3
√

log n), none of , , , )

Let k = n1/3/
√

log n and consider the trivial edge-colouring c′ of Kk where every

edge is coloured blue. Let V1, . . . , Vk be pairwise vertex-disjoint sets of size n/k each

and consider the (V1, . . . , Vk)-blow-up of c′. From the lower bound on R(3, t), there

is a red/yellow edge-colouring c′′ of Kn/k with no red K3 and no yellow Kt for any

t > 9
√

(n/k) log(n/k) and sufficiently large n. Colour the edges inside Vi according to

c′′ for all i ∈ [k], and call the resulting colouring c.

Observe that each triangle is either one of yyy, yyr or rry (all vertices in the same Vi),

one of bbr, bby (vertices in two different Vi’s) or bbb (vertices in three different Vi’s).

Claim: h2(c) = O(n2/3
√

log n).

Proof. First, note that any red/yellow clique can contain vertices from at most one of

the Vi’s. It easily follows that Scry = n/k. Furthermore, using the bounds on the sizes
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of red and yellow cliques inside any given Vi, we obtain Scby ≤ k · 9
√

(n/k) log(n/k),

and Scrb ≤ 2k. Thus, our choice of k implies that max{Scrb, Scry, Scby} ≤ Cn2/3
√

log n, for

some constant C.

Construction 2.10 (O(n2/3
√

log n), none of , , , )

Let k = n2/3
√

log n and consider m = n/k pairwise vertex-disjoint copies of Kk with

vertex sets V1, . . . , Vm where Vi = {vi1, . . . , vik} for each i = 1, . . . ,m. Let c′ be an

edge-colouring of Kk in red/yellow with no red K3 and no yellow clique larger than

9
√
k log k. Colour the cliques induced by Vi according to c′ for each i = 1, . . . ,m. For

i 6= j colour the edge visvjt blue if s = t and yellow otherwise. Call this final colouring

c.

Observe that there is no rrr and no rrb triangle since c′ contains no red K3, and any

two incident red edges are completely contained in some Vi, which contains no blue

edges. Similarly, any two incident blue edges are contained in a blue clique, so there

are no bbr and no bby triangles.

Claim: h2(c) = O(n2/3
√

log n).

Proof. Consider the sets Ut = {vit : i = 1, . . . ,m} for t = 1, . . . , k. Observe that any

red/yellow clique can contain at most one vertex from each Ut. Therefore, we obtain

Scry ≤ k. From our bound on the sizes of largest yellow cliques in each Vi, it follows that

Scby ≤ (n/k) · 9
√
k log k. Lastly, since there is no clique using both red and blue edges,

there is no red triangle and each blue clique has size n/k, so we have that Scrb = n/k.

Thus, our choice of k implies max{Scrb, Scry, Scby} ≤ Cn2/3
√

log n for a constant C.

Construction 2.11 (O(n3/4
√

log n), none of , , , )

Let k =
√
n. By the lower bound on R(3, t), take a blue/yellow edge-colouring c′ ofKk

with no blue K3 and no yellow clique of size greater than 9
√
k log k. Let V1, . . . , Vk be

pairwise vertex-disjoint sets each of size n/k and consider the (V1, . . . , Vk)-blow-up of

c′. Colour each Vi in red/yellow with no red K3 and no yellow clique of size greater

than 9
√

(n/k) log(n/k). Let the resulting colouring be c.

Note that c contains neither a monochromatic red triangle nor a monochromatic blue

triangles, since c′ contains no blueK3 and the colouring inside each Vi contains no red
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K3. Since the Vi’s contain no blue edges, there is no rrb triangle, and it is easy to see

that there is no rainbow triangle in c.

Claim: h2(c) = O(n3/4
√

log n).

Proof. As there is no blue K3 in c′, any red/blue clique contains vertices from at most

two of the Vi’s, and since there is no red K3 inside the V ′i s, we see that Scrb ≤ 4.

Moreover, since yellow cliques in each Vi have size at most 9
√

(n/k) log(n/k) and the

edges between any two distinct Vi and Vj are coloured in blue/yellow, we obtain Scby ≤
k · 9

√
(n/k) log(n/k). Finally, since any yellow clique in c′ has size at most 9

√
k log k, it

follows that Scry ≤ 9
√
k log k · (n/k). By our choice of k we have max{Scrb, Scby, Scry} ≤

Cn3/4
√

log n, for some constant C.

Construction 2.12 (2
⌊
n
5

⌋
+ ε, none of , , , )

Consider the red/blue colouring c′ of K5 with no monochromatic triangle. Let n ≥ 5

be an integer, take

⌈
n
5

⌉
pairwise vertex-disjoint copies of K5 coloured according to c′,

and delete some vertices from one of these copies to make sure that the total number of

vertices is n. Finally, colour all remaining edges between these copies yellow. Denote

by c the resulting colouring.

Observe that there are no monochromatic red or blue triangles and that each triangle

contains either no yellow edges (if it is contained in a red/blue K5) or at least two

yellow edges (if it contains vertices of at least two distinct red/blueK5’s.)

Claim: h2(c) ≤ 2
⌊
n
5

⌋
+ ε,where ε = 0 if n ≡ 0 (mod 5), ε = 1 if n ≡ 1, and 2 otherwise.

Proof. The largest red/blue clique has size 5, and any red/yellow or blue/yellow clique

contains at most two vertices from each of the bn/5c copies ofK5 and at most ε vertices

from the remaining vertices, so we obtain Scby, S
c
ry ≤ 2

⌊
n
5

⌋
+ ε.

Construction 2.13 (≤ 2
⌈
n
5

⌉
, none of , , , )

Consider the red/blue colouring c′ of K5 with no monochromatic triangle. Let n ≥ 5

be an integer and let V1, . . . , V5 be pairwise disjoint sets of sizes

⌈
n
5

⌉
or

⌊
n
5

⌋
such that∑5

i=1 |Vi| = n. Consider the (V1, . . . , V5)-blow-up of c′ and colour every edge within Vi

yellow for i = 1, . . . , 5. Denote by c the resulting colouring.
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Observe that there is no monochromatic red or blue triangle in c and that the yellow

graph forms a disjoint union of cliques, so there is no triangle with exactly two yellow

edges.

Claim: h2(c) ≤ 2
⌈
n
5

⌉
.

Proof. The largest red/blue clique has size 5, and any red/yellow or blue/yellow clique

contains at most two of the parts Vi’s, so we obtain Scby, S
c
ry ≤ 2

⌈
n
5

⌉
.

Construction 2.14 (≤
⌈

3n
7

⌉
+ 1, none of , , , )

Consider K7 with vertex set {v0, . . . , v6}. Define a red/blue/yellow edge-colouring c′

ofK7 as follows. For distinct i, j ∈ {0, . . . , 6} set

c′(vivj) =


b, if i− j = ±1 (mod 7),

y, if i− j = ±2 (mod 7),

r, if i− j = ±3 (mod 7),

see Figure 4.1 for an illustration.

Figure 4.1: H-good colouring ofK7

Note that c′ contains nomonochromatic blue or red triangles, since the blue and red

graph form 7-cycles. Since vertices at distance 2 along the cycle are coloured yellow,

c′ contains no bbr triangles. Finally, consider triangles containing two incident yellow

edges. By symmetry, we may assume that the vertices of this triangle are 0, 2, and 5.

Then since 5− 2 = 3, the third edge must be red. Thus, there are no yyb triangles in c′.

Now, let n ≥ 7 be an integer and let V0, . . . , V6 be pairwise disjoint vertex sets

V0, . . . , V6 of sizes x =
⌊
n
7

⌋
or w =

⌈
n
7

⌉
such that

∑6
i=0 |Vi| = n. The parts of sizes x

and w are arranged cyclically according to the following orders depending on when

n is 0, 1, 2, 3, 4, 5, 6 modulo 7, respectively: xxxxxxx, wxxxxxx, wxwxxxx, wwxxwxx,

wwxxwwx, wwwwwxx, wwwwwwx. Consider the (V0, . . . , V6)-blow-up of c′ and colour
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every edge within Vi yellow for i = 0, . . . , 6. Call the resulting colouring c, and note

that c still does not contain any of the stated patterns.

Claim: h2(c) ≤
⌈

3n
7

⌉
+ ε1(n), where ε1(n) = 1 if n ≡ 2 (mod 7) and ε1(n) = 0,

otherwise.

Proof. If some clique contains vertices from four different Vi’s, then it induces all three

colours. Thus, any two-coloured clique contains vertices from at most three different

Vi’s. To prove the upper bound we may assume n is not divisible by 7. Let us call a

partition set Vi big if it has sizew, and otherwise small. Write n = 7x+r for non-negative

integers x, r with 1 ≤ r ≤ 6. Given our distribution of sizes, it is not difficult to check

that any 2-coloured clique contains vertices from at most one big set if r = 1, at most

two big sets if 2 ≤ r ≤ 4, and at most three big sets if r = 5, 6. Thus, if r = 1 the

largest 2-coloured clique has size 2x+w = 3x+ 1 = d3n/7e. If r = 3, 4, then the largest

2-coloured clique has size 2w + x = 3x+ 2 = d3n/7e. If r = 5, 6, the largest 2-coloured

clique has size 3w = 3x + 3 = d3n/7e. Lastly, suppose r = 2. The largest 2-coloured

clique has size 2w + x = 3x + 2. On the other hand, d3n/7e = d3x+ 6/7e = 3x + 1.

Hence, the largest 2-coloured clique has size d3n/7e + 1. This completes the proof of

the claim.

Construction 2.15 (

⌈
n
2

⌉
, none of , , , , , , )

Consider the following 3-edge-colouring c of Kn: take disjoint blue cliques V1, V2 of

sizes

⌊
n
2

⌋
and

⌈
n
2

⌉
, put a maximum red matching in between and colour all other edges

yellow.

Observe that each triangle is either monochromatic blue (if it is contained in V1 or V2)

or one of rby, yyb (if it has w.l.o.g. one vertex in V1 and two in V2).

Claim: h2(c) ≤
⌈
n
2

⌉
.

Proof. The vertex set of any blue/red clique of size at least 3 is contained in either V1 or

V2, and thus, Scrb ≤
⌈
n
2

⌉
. Any red/yellow clique contains at most one vertex from each

of Vi’s, i = 1, 2, so we have Scry = 2. Consider a largest blue/yellow clique X . Then

it has x1 vertices in V1, each one has a red neighbour in V2, so X can contain at most

|V2| − x1 vertices in V2, i.e. we have Scby ≤ |V2| =
⌈
n
2

⌉
.
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Construction 2.16 (

⌈
n
2

⌉
+ 1, none of , , , , , )

Consider the following 3-edge-colouring c ofKn for n ≥ 3: Take a red clique V1 of size⌈
n
2

⌉
and vertex-disjoint from it a blue clique V2 of size

⌊
n
2

⌋
and colour all edges between

V1 and V2 yellow.

Observe that each triangle is either monochromatic red or blue (if it is contained in V1

or V2) or one of yyr, yyb (if it has vertices in both V1 and V2).

Claim: h2(c) ≤
⌈
n
2

⌉
+ 1.

Proof. Any red/blue clique contains only vertices from either V1 or V2. Any red/yellow

clique contains at most one vertex from V2 and any blue/yellow clique contains at most

one vertex from V1, so we have max{Scrb, Scry, Scby} ≤ |V1|+ 1.

4.4 ForbiddingH with |H| = 1

We start with forbidding only one pattern, i.e. up to swapping colours we only need

to consider 3 families H ∈ {{ }, { }, { }}. According to Fox et al. [70], if H = { },
then h2(n,H) = Θ(n1/3 log2 n).

Lemma 4.1.1. LetH = { }. Then we have h2(n,H) = Θ(
√
n log n).

Proof. Consider an arbitrary red/blue/yellow edge-colouring c of Kn that has no red

triangle. By the upper bound on the Ramsey number R(3, k) (Theorem 4.3) we see

that c contains a blue/yellow Kk with k = Ω(
√
n log n), so h2(n, {rrr}) = Ω(

√
n log n).

Moreover, Construction 2.3 shows that h2(n, {rrr}) = O(
√
n log n).

Lemma 4.1.2. LetH = { }. Then we have h2(n,H) = d
√
ne.

Proof. For the lower bound, let c be an H-free red/blue/yellow edge-colouring of Kn.

Let ∆r be the maximum red degree in c. If ∆r ≥ b
√
nc, there exists a vertex vwhich has

a red neighbourhood Nr(v) of size at least b
√
nc. Note that this neighbourhood does

not contain a blue edge, since together with v that would create an rrb triangle. Thus,

Nr(v)∪ {v} spans a red/yellow clique of size at least b
√
nc+ 1 ≥ d

√
ne. Otherwise, we

have ∆r ≤ b
√
nc − 1 and so the graph induced on red edges may be vertex-coloured

with b
√
nc colours. One colour class has size at least dn/ b

√
nce ≥ d

√
ne. This forms

a blue/yellow clique of size at least d
√
ne as required. Finally, the upper bound on

h2(n,H) follows from Construction 2.1.
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4.5 ForbiddingH with |H| = 2

Proposition 4.2. Any familyH consisting of two distinct patterns can be obtained by applying
a colour permutation to all patterns in one of the following families:

• { , }, { , }, { , }, { , },

• { , },

• { , }, { , }, { , }, { , },

• { , }.

Proof. We split the cases according to rainbow and monochromatic patterns:

• H contains no rainbow and no monochromatic pattern.

Case 1: the majority colour is the same, i.e. w.l.o.g. .

Case 2: the majority colour is different, say red and blue.

Case 2.1: non-majority colours are both not yellow, i.e. .

Case 2.2: yellow is a non-majority colour in one pattern, i.e. .

Case 2.3: yellow is a non-majority colour in both patterns, i.e. .

This gives us , , , .

• H contains a rainbow but no monochromatic triangle, w.l.o.g. .

• H contains a monochromatic triangle and no rainbow triangle, w.l.o.g. . Then

the second pattern is , , or .

• H contains a monochromatic triangle and a rainbow triangle w.l.o.g. , .

This completes the proof.

4.5.1 H contains no rainbow and no monochromatic pattern

Lemma 4.2.1. Let H ∈ {{ , }, { , }, { , }, { , }}. Then we have h2(n,H) =

d
√
ne.

Proof. For the lower bound note that we have {rrb} ⊆ H or {rry} ⊆ H for all of

these families. Thus, by h2(n, {rrb}) = h2(n, {rry}) and Lemma 4.1.2, we obtain

h2(n,H) ≥ h2(n, {rrb}) = d
√
ne. The upper bound follows from Construction 2.1.
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4.5.2 H contains a rainbow but no monochromatic pattern

Lemma 4.2.2. LetH = { , }. Then we have h2(n,H) = Θ(
√
n).

Proof. The lower bound follows from Lemma 4.1.2: h2(n,H) ≥ h2(n, {rrb}) ≥ d
√
ne.

The upper bound follows from Construction 2.2.

4.5.3 H contains a monochromatic but no rainbow pattern

Since our forbidden family contains amonochromatic triangle, by Lemma 4.1.1we have

the lower bound h2(n,H) ≥ h2(n, {rrr}) = Ω(
√
n log n).

Lemma 4.2.3. LetH ∈ {{ , }, { , }}. Then we have h2(n,H) = Θ(
√
n log n).

Proof. Since{rrr} ⊆ H, Lemma4.1.1 implies thath2(n,H) ≥ h2(n, {rrr}) = Ω(
√
n log n).

The upper bound follows from Construction 2.3.

Recall, that for a graphG, f(G) = max{α(G), ω(G2)} and f(n) = min{f(G) : |G| =
n, ω(G) = 2}. The following lemma shows that determining the value of f(n) is closely

linked to determining the value of h2(n,H), whereH = { , }.

Lemma 4.2.4. LetH = { , }. Then f(n) ≤ h2(n,H) ≤ 2f(n).

Proof. For the upper bound consider a triangle-free graph G on n vertices such that

f(G) = f(n), i.e. α(G) ≤ f(n) and ω(G2) ≤ f(n). Colour the edges of G red, colour

each edge from E(G2) \E(G) yellow, and colour all remaining edges blue. We see that

there are no red triangles and any two adjacent red edges form an rry triangle. Note

that Sby = α(G) ≤ f(n), Scry = ω(G2) ≤ f(n) and Scrb ≤ 2α(G) ≤ 2f(n). Here, the

statement on Scrb holds since in any red/blue clique, the red graph forms a matching.

For the lower bound, consider an arbitraryH-free colouring c ofKn. LetG be the red

graph. Then Sby = α(G). Since there is no rrb triangle, each triangle containing two red

edges is an rry triangle, so Scry ≥ ω(G2). Thus, h2(c) ≥ max{α(G), ω(G2)} ≥ f(n).

Lemma 4.2.5. LetH = { , }. Then we have

h2(n,H) = Ω(
√
n log n) and h2(n,H) = O(

√
n log3/2 n).
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Proof. The lower bound follows from the lower bound on h2(n, {rrr}), Lemma 4.1.1.

The upper bound follows from Construction 2.6.

Lemma 4.2.6. LetH = { , }. Then we have h2(n,H) = Θ(
√
n log n).

Proof. The lower bound follows from the lower bound on h2(n, {rrr}), Lemma 4.1.1.

The upper bound follows from a result by Guo and Warnke [84], that implies

that there are two edge-disjoint triangle free subgraphs G and G′ of Kn, each with

independence number at most c
√
n log n. We colour the edges of G, the edges of G′

blue and the rest of the edges yellow. Then Scyr = α(G′) ≤ c
√
n log n, Scyb = α(G) ≤

c
√
n log n, and Scrb ≤ 6 since red and blue graphs are triangle-free.

Here, we include a proof of a slightly weaker bound (h2(n,H) = O(
√
n log n)),

which is easily obtained by random packing:

We shall find two edge-disjoint triangle-free graphs each with sufficiently small inde-

pendence number. We shall colour the edges of one of them red, the other one blue,

and the rest of the edges yellow. Then the largest bicoloured clique will have size at

most the size of the largest independence set of each of these triangle-free graphs.

As we cannot directly guarantee that the desired packing exists, we shall deal with

a small overlap. Consider a graph G on a vertex set [N ] that is triangle-free, such

that α(G) = O(
√
N logN). In particular, we have that ∆(G) = O(

√
N logN) and

|E(G)| = O(N3/2
√

logN). The following claim asserts that we can find a copy G′ of G

on vertex set [N ] such that |E(G)∩E(G′)| is small. A similar proof appears in Konarski

and Żak [95], but we include the short proof for convenience of the reader.

Claim 1: There is a copyG′ ofG on vertex set [N ] such that |E(G)∩E(G′)| ≤ |E(G)|2/
(
N
2

)
.

Proof of Claim 1: Consider a permutation π : [N ] → [N ] chosen uniformly at random

and apply it to G. Let Eπ = {π(u)π(v) : uv ∈ E(G)}. For each edge e ∈ E(G) we say

that e is bad if e ∈ Eπ, and we let X be the random variable counting bad edges. For

each edge e = uv ∈ E(G) there are 2|E(G)|(N − 2)! permutations that can make e bad.

Hence

P(e is bad) =
2|E(G)|(N − 2)!

N !
=
|E(G)|(

N
2

) .

Thus, E[X] = |E(G)|2/
(
N
2

)
, and so there is a permutation σ such that

|E(G) ∩ Eσ| ≤
|E(G)|2(

N
2

) . �
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Consider the union of Gwith its isomorphic image G′ on [N ] granted by the above

Claim. Since |E(G)| = O(N3/2
√

logN), we obtain |E(G) ∩ E(G′)| ≤ |E(G)|2/
(
N
2

)
=

O(N logN). LetG′′ be the graph on [N ] with edge setE(G)∩E(G′). Then it has at least

N/2 vertices with degree O(logN). These vertices induce a graph with independence

number at least Ω(N/ logN), so α(G′′) = Ω(N/ logN). Let X be a largest independent

set in G′′, and let N be selected such that n = |X|. In particular, n = Ω(N/ logN),

and N = O(n log n). Now, colour the edges of G[X] red, edges of G′[X] blue and the

rest yellow. We see that Srb ≤ 5 since there are no red and no blue triangles. We have

that Sby ≤ α(G) since any blue/yellow clique corresponds to an independent set in G.

Thus,

Sby = O(
√
N logN) = O(

√
n log n log(n log n)) = O(

√
n log n),

and the lemma follows.

4.5.4 H contains a rainbow and a monochromatic pattern

Lemma 4.2.7. Let H = { , }. Then h2(n,H) = Ω(n2/3/ log3/2 n) and h2(n,H) =

O(n2/3
√

log n).

Proof. The upper bound follows from Construction 2.8.

For the lower bound, consider an arbitrary H-free colouring c of Kn. Consider the

vertex sets of red components, which we refer to as blobs. Note that all edges between

any two blobs are of the same colour, either blue or yellow, otherwise there is a rainbow

triangle in c. Since the colouring induced by each blob is Gallai, by Theorem 4.7we have

that each blob is a disjoint union of setswhichwe call sub-blobs, so that all edges between

any two sub-blobs are of the same colour and the total number of colours between sub-

blobs is at most 2. Note that since each blob is a red connected component, one of the

colours between sub-blobs must be red and another is blue or yellow. Note also that

each sub-blob spans a blue/yellow clique. Otherwise, there is a red triangle in c.

We shall delete some vertices of the graph such that c restricted to the remaining

part is easier to analyse. Specifically, we will end up with a colouring c′′ of a complete

graph on at least C ′′n/ log2 n vertices (for some constant C ′′) in which all blobs contain

the same number of sub-blobs and all sub-blobs overall have the same size. In addition,

this colouring will have only red and blue edges between sub-blobs of any given blob.

We can assume that each blob has at least two vertices because if there are at least

n/2 blobs of size 1, they correspond to a blue/yellow clique on at least n/2 vertices.
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It could be assumed, without loss of generality, that non-red edges between sub-blobs

of any given blob are blue. Indeed, either at least n/4 vertices are spanned by blobs

with red/blue between the sub-blobs or at least n/4 vertices are spanned by blobs with

red/yellow between sub-blobs. Let us assume the former.

We shall split the sub-blobs according to sizes. Let Xi be the union of all sub-blobs

of sizes from 2i to 2i+1 − 1, i = 0, . . . , log n. Consider i for which Xi is largest, i.e.

|Xi| ≥ 1
4n/ log n. Delete at most half of the vertices from sub-blobs in Xi so that all of

them are of the same size, and call the resulting setX ′i. Now, consider a colouring c′ that

is the restriction of c to X ′i. We see that c′ has the same structure as c but with all sub-

blobs of the same size and total number of vertices n′ ≥ 1
8n/ log n. Let k be the size of

each sub-blob. If k > n2/3
we are done since each sub-blob spans a blue/yellow clique,

and then Sby > n2/3
. Thus, k < n2/3

. Let Yj be the union of blobs each having sizes

from 2j to 2j+1− 1, j = 0, . . . , log n′. Consider Yj of largest size so that |Yj | ≥ n′/ log n′.

By deleting at most half of the vertices in Yj we can assume that all blobs in Yj have

the same number of vertices, and hence exactly the same number of sub-blobs. Denote

the number of sub-blobs by `. Again, by restricting c′ to the resulting set, we have an

H-free colouring c′′ on n′′ ≥ C ′′n/ log2 n vertices (for some constant C ′′) with each blob

having ` sub-blobs and each sub-blob having k vertices. Recall that k < n2/3
.

Now we shall analyse c′′. Since the red graph is triangle-free, each blob has a

blue/yellow clique of order at least C
√
` log ` · k for some constant C > 0, by Corol-

lary 4.4. Taking a union of these cliques over all blobs, we see that

Sby ≥ C
√
` log ` · k · n′′/k` = C

√
log ` · n′′/

√
` ≥ CC ′′

√
log `/` · n/(log2 n).

Thus, if ` < n2/3
, we are done as in this case Sby ≥ C ′n2/3/ log3/2 n, for some constant

C ′. Thus, ` ≥ n2/3
. However, in this case pick a blob and pick a vertex from each

sub-blob of this blob. This gives a red/blue clique on ` ≥ n2/3
vertices.

4.6 ForbiddingH with |H| = 3

Proposition 4.3. Any family H consisting of 3 distinct patterns can be obtained by applying
a colour permutation to all patterns in one of the following families:

• { , , }, { , , }, { , , }, { , , },

• { , , }, { , , }, { , , }, { , , },

• { , , }, { , , }, { , , }, { , , },



4. The Erdős-Hajnal conjecture for three colours and families of triangles 67

• { , , }, { , , }, { , , }, { , , },
{ , , }, { , , }, { , , }, { , , }, { , , },

• { , , }, { , , }, { , , }, { , , }.

Proof. We split the cases according to rainbow and monochromatic patterns:

• H contains no rainbow and no monochromatic triangle.

Case 1: exactly two patterns have the same majority colour, w.l.o.g. , third

pattern has different majority colour, say blue. Then the third pattern is either

or .

Case 2: patterns have different majority colour, w.l.o.g, rr∗, bb∗, yy∗.
Then either all non-majority colours are distinct, w.l.o.g. , , , or there are

only two different non-majority colours, w.l.o.g , , .

• H contains a rainbow and a no monochromatic pattern. Then, the other two

patterns are listed in the first item of the proof of Proposition 4.2.

• H contains a monochromatic and no rainbow pattern.

Case 1: There are at least two monochromatic patterns, say we have . Then

all the options for the thirdpatternup topermutationof patterns are , , , .

Case 2: There is onlyonemonochromaticpattern, say and twonon-monochromatic

patterns. We have the following cases:

Case 2.1: Both non-monochromatic triangles have majority colour red: .

Case 2.2: Exactly one non-monochromatic triangle has majority colour red,

w.l.o.g. . Then all the options for the 3rd pattern are , , , .

Case 2.3: None of the non-monochromatic triangles hasmajority colour red. Then

they either have the same majority colour, w.l.o.g. , or we have bb ∗ yy∗.
Then either both non-majority colours are red ( ), exactly one non-majority

colour is red (w.l.o.g. ) or no non-majority colour is red ( ).

• H contains a rainbow and a monochromatic pattern, w.l.o.g., and . Then the

third pattern either has a red majority colour, or other majority colour, say blue.

This gives the following options for the third pattern: , , , .

This completes the proof.

4.6.1 H contains no rainbow and no monochromatic pattern

Lemma 4.3.1. LetH ∈ {{ , , }, { , , }}. Then we have h2(n,H) = d
√
ne.
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Proof. The lower bound follows from Lemma 4.1.2 since h2(n,H) ≥ h2(n, {rrb}) =

d
√
ne . The upper bound follows from Construction 2.1.

Lemma 4.3.2. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
.

Proof. The upper bound follows from Construction 2.15.

For the lower bound, let c be anH-free edge-colouring ofKn.

Case 1: There is a red triangle in c.

Let the vertex set of a red triangle be {u, v, w}. Then there cannot be a blue edge adjacent

to the triangle. Assume the contrary, i.e. there is a blue edge au. Then av cannot be red

or blue, since then uva would induce an rrb or a bbr triangle respectively, i.e. av has to

be yellow. The same holds for aw, but then vwa forms a yyr triangle, a contradiction.

Assume there is a blue edge xz in the graph. Since each of x and z send only red and

yellow edges to {u, v, w}, and each of x and z send at most one yellow edge to {u, v, w},
x and z have a common red neighbour in {u, v, w}, say u. But then uxz is a rrb triangle,
a contradiction. Thus, if the graph contains a red triangle, it contains no blue edge and

hence, we have a red/yellow clique of size n.

Case 2: c contains no red triangle.

We show that in this case the red graph is bipartite. We need to show that there is

no red odd cycle. Assume the contrary, and let v1v2 · · · vkv1 (k ≥ 5) be a shortest red

odd cycle. Then we cannot have any red chord of the cycle, since that would create a

shorter red odd cycle. Assume there is an index i such that v1vi and v1vi+1 have the

same colour. But then v1vivi+1 create a bbr or a yyr triangle. Also, the edge v1v3 has to

be yellow, since otherwise v1v2v3 creates a bbr triangle. Similarly, v1vk−1 is yellow. But

then, combining these two facts we obtain that all edges of the form v1vi with i odd are

yellow, including v1vk−2. Then vk−2vk−1v1 forms a yyr triangle, a contradiction.

Thus, we have no odd red cycle, so the red graph is bipartite. But then in any

bipartition there is a bipartite class of size at least

⌈
n
2

⌉
in which only colours blue and

yellow appear. Hence, we have a 2-coloured set of size

⌈
n
2

⌉
.

Lemma 4.3.3. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
for n 6= 7 and h2(7,H) =

3.

Proof. The upper bound follows from Construction 2.15.

For the lowerbound, let cbeanH-free colouringofKn onavertex setV . Assumefirst

that there is amonochromatic triangle. Because of symmetry on forbidden patterns, we
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may assume that there is a red triangle. LetR be a largest red clique in c. Then |R| ≥ 3.

Note that every vertex not in R sends a yellow or a blue edge to R. Then every vertex

outside of R sends at most one yellow edge to R (otherwise we have a yyr triangle). In

addition, no vertex outside of R sends both red and blue edges to R, otherwise we get

an rrb triangle.

Thus, V − R = O ∪ P , where O is the set of vertices in V − R such that each edge

between O and R is yellow or red and P is the set of vertices in V − R such that each

edge between P and R is yellow or blue. Note that O and P are disjoint.

Every vertex from O sends |R| − 1 red edges to R. Then any two vertices in O have

a common red neighbour in R, and hence there cannot be a blue edge induced by O.

Similarly, any two vertices in P have a common blue neighbour in R and hence, there

cannot be a yellow edge induced by P .

Thus, we have either |P | ≥
⌈
n
2

⌉
which yields a red/blue clique of size

⌈
n
2

⌉
or

|R ∪O| ≥
⌈
n
2

⌉
, which is a red/yellow clique of desired size.

It remains to deal with the case where we have no monochromatic triangle. In this

case, the red neighbourhood of any vertex induces a yellow clique, the blue neighbour-

hood induces a red clique, and the yellow neighbourhood induces a blue clique, so

the maximum degree at each vertex must be at most 6, i.e. we only need to consider

colourings ofKn with n ≤ 7.

For n = 7 every vertex must have degree 2 in any colour, so each colour class is a

2-factor. Since there is no monochromatic triangle, each colour class must be a C7 and

up to isomorphism there is a unique such colouring (see also Construction 2.14). One

can create such a colouring by ordering the vertices cyclically and colouring an edge

with vertices at distance 1, 2, 3 along the cycle yellow, red, and blue respectively. In this

colouring the largest 2-coloured clique has size 3.

For n ≤ 6, observe that there is no red C5, otherwise all other edges induced by

the vertex set of this C5 are yellow since there are no rrr and no rrb triangles. But

then there is a yyr triangle. Thus, the red graph has no odd cycles and so is bipartite.

Therefore, the blue/yellow graph contains a clique of size

⌈
n
2

⌉
.

4.6.2 H contains a rainbow but no monochromatic pattern

Lemma 4.3.4. Let H = { , , }. Then we have h2(n,H) = Ω(
√
n) and h2(n,H) =

O(
√
n log n).
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Proof. By Lemma 4.2.2 we obtain h2(n,H) ≥ h2(n, {rrb, rby}) = Ω(
√
n). The upper

bound follows from Construction 2.4.

Lemma 4.3.5. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
+ 1.

Proof. For the lower bound, let c be anH-free colouring ofKn. Assume there is a vertex

v incident to a red edge vx and a blue edge vy. But then the edge xy cannot be coloured.

Thus, w.l.o.g at least

⌈
n
2

⌉
vertices are not incident to a red edge. Taking a maximum

set of vertices not incident to a red edge and an arbitrary additional vertex (if it exists)

creates a blue/yellow clique, i.e. we have h2(n,H) ≥
⌈
n
2

⌉
+ 1.

The upper bound follows from Construction 2.16.

Lemma 4.3.6. Let H = { , , }. Then we have h2(n,H) = Ω(
√
n) and h2(n,H) =

O(
√
n log n).

Proof. By Lemma 4.2.2 we obtain h2(n,H) ≥ h2(n, {rrb, rby}) = Ω(
√
n). The upper

bound follows from Construction 2.5.

Lemma 4.3.7. LetH = { , , }. Then we have h2(n,H) = Θ(n2/3).

Proof. For the lower bound consider an H-free edge-colouring c of Kn on vertex set

V . Consider a partition of V into sets A1, . . . , Am such that A1 is maximum sized red

clique in c, and for each i ≥ 2, Ai is a maximum sized red clique in c contained in

V − (A1 ∪ · · · ∪ Ai−1). Note that |Ai| = 1 is allowed here. Moreover, for each i 6= j

there is at least one non-red edge between Ai and Aj . We shall show that either there

is a 2-coloured clique of a desired size or there are at least n/2 vertices such that the

colouring restricted to these vertices is formed by pairwise vertex-disjoint red cliques

such that between any two such cliques all edges are blue or all edges are yellow.

First, assume there is a blue edge uv with u ∈ Ai and v ∈ Aj , for some i 6= j.

Then every edge between Ai and Aj incident to u or v must be blue, since otherwise a

rainbow or rrb triangle is formed. Assume there is an edge wz with w ∈ Ai and z ∈ Aj
that is not incident to uv. If wz is red, then uz cannot be coloured without forming a

forbidden pattern. Similarly, wz cannot be yellow. It follows that if there is a blue edge

between any Ai and Aj , then all edges between Ai and Aj must be blue.

We claim that for each Ai, either Ai sends red/yellow edges to every other Aj , or

Ai sends only blue/yellow edges to every other Aj . Suppose otherwise, so that there

is i, j, k ∈ [m] such that all edges between Ai and Aj are blue, and all edges between Ai

and Ak are red/yellow and there is at least one red edge. We assume first that k < i.
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In this case, Ak was chosen as a largest clique before Ai. There must be at least one red

and at least one yellow edge between Ak and Ai, so there exist vertices u, v, w such that

v ∈ Ai, u,w ∈ Ak, and c(uv) = r and c(vw) = y. Pick a vertex z ∈ Aj . Then zv is blue,
so we cannot use blue between Aj and Ak: otherwise vzw is a bby triangle. Similarly,

we cannot colour zw red, because then vzw is a rainbow triangle. It follows that zw

is yellow. But then we cannot colour zu without forming an rrb or rainbow triangle.

The argument is similar if i < k. Indeed, in this case we find vertices u, v, w such that

v ∈ Ak, u,w ∈ Ai and c(vw) = r and c(vu) = y. Pick a vertex z ∈ Aj and note that both

uz and uw are blue. In this case, note that if vz is red, then vzw is an rrb triangle. If it is

blue, then uvz is a bby triangle, and if it is yellow, then vzw is a rainbow triangle. This is

a contradiction. Therefore, we say thatAi is of Type I if it sends only blue/yellow edges

to all other Aj ’s. Otherwise, we say that Ai is of Type II.

Given the above, we can now break the proof into two cases:

Case 1: There are at least n/2 vertices in cliques of Type II. In this case, we have a

red/yellow clique of size at least n/2.

Case 2: At least n/2 vertices are in cliques of Type I. Relabel and denote by V1, . . . , Vk

the red cliques of Type I. Recall that all edges between Vi and Vj , i 6= j must be blue or

all of themmust be yellow. Thenwe denote by c(Vi, Vj) the colour of the edges between

Vi and Vj .

Note that k < n2/3
, otherwise we have a blue/yellow clique of that size.

Let I ⊆ [k] be the subset of indices such that |Vi| ≥ 1
4n

1/3
iff i ∈ I. Split each Vi, i ∈ I

into disjoint sets Bi,j and Ci, j = 1, . . . ,mi, with |Bi,j | = 1
4n

1/3
and |Ci| < 1

4n
1/3

. Then

we have ∑
i∈I
|Ci|+

∑
i 6∈I
|Vi| <

1

4
n1/3n2/3 =

n

4
.

Thus, there are s > n/2−n/4
n1/3/4

= n2/3
sets Bi,j . Consider a blue/yellow edge-colouring c′

ofKs with vertex set {Bi,j : i ∈ I, j ∈ [mi]}where

c′(Bi,j , Bi′,j′) =

c(Vi, Vi′), i 6= i′

blue, i = i′.

Then in c′, there is no bby triangle, so in c′ there is a monochromatic set of size at least

√
s. Indeed, the blue graph in c′ is a pairwise vertex-disjoint union of cliques, so either

one of these cliques has at least

√
s vertices, or there are at least

√
s such cliques and

thus, there is a yellow clique on

√
s vertices. Such a blue clique in c′ corresponds to a

blue/red clique in c, such a yellow clique in c′ corresponds to a red/yellow clique in c
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of size

√
s|Bi,j | >

√
n2/3n1/3/4 = n2/3/4 in c.

The upper bound follows from Construction 2.7.

4.6.3 H contains a monochromatic but no rainbow pattern

Lemma 4.3.8. LetH = { , , }. Then there is noH-free colouring for n ≥ 17.

Proof. Weknow that theRamseynumberR(3, 3, 3) = 17, so there is no edge-3-colouring

ofKn without a monochromaticK3 for n ≥ 17.

Lemma 4.3.9. Let H = { , , }. Then h2(n,H) = O(
√
n log3/2 n) and h2(n,H) =

Ω(
√
n log n).

Proof. The lower bound holds since h2(n,H) ≥ h2(n, {rrr}) = Ω(
√
n log n). The upper

bound follows from Construction 2.6.

Lemma 4.3.10. Let H = { , , }. Then h2(n,H) = 2
⌊
n
5

⌋
+ ε, where ε = 0 if n ≡ 0

(mod 5), ε = 1 if n ≡ 1 (mod 5), and ε = 2 otherwise.

Proof. To see the lower bound, consider anH-free colouring ofE(Kn). Observe that the

red degree of every vertex is at most 2. Indeed, since there are no rry or rrr triangles,

the entire red neighbourhood of a given vertex must induce a blue clique. But as there

is no blue triangle, each red neighbourhood has at most 2 vertices. Thus each red

component is either a path or a cycle of length at least 4. Among all such red graphs,

the one with the smallest independent set is a union of pairwise vertex-disjoint C5’s,

and if n is not divisible by 5, a component on at most 4 vertices. This matches exactly

the Construction 2.12 and gives a blue/yellow clique of size at least 2 bn/5c+ ε.

The upper bound follows from Construction 2.12.

Lemma 4.3.11. If a family H contains three patterns with different majority colours, then
h2(n,H) ≥

⌈
n−1

3

⌉
.

Proof. Consider an H-free colouring c and an arbitrary vertex v. Let Nr, Nb, and Ny be

the red, blue, and yellow neighbourhoods of v, respectively. Then we see that each of

these sets induces a 2-coloured clique. Since at least one of the sets Nr, Nb, Ny has size

at least

⌈
n−1

3

⌉
, the result follows.

Lemma 4.3.12. LetH = { , , }. Then
⌈
n−1

3

⌉
≤ h2(n,H) ≤ 2

⌈
n
5

⌉
.
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Proof. The lower bound follows from Lemma 4.3.11. The upper bound follows from

Construction 2.13.

Lemma 4.3.13. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
.

Proof. For the lower bound, let c be an H-free colouring of Kn. Then there are no two

adjacent red edges, so the red graph forms amatching, i.e. there is a blue/yellow clique

of size

⌈
n
2

⌉
. The upper bound follows from Construction 2.15.

Lemma 4.3.14. Let H = { , , }. Then h2(n,H) = Ω(
√
n log n) and h2(n,H) =

O(
√
n log3/2 n).

Proof. For the lower bound, by Lemma 4.1.1 we have : h2(n,H) ≥ h2(n, {rrr}) =

Ω(
√
n log n). The upper bound follows from Construction 2.6.

Lemma 4.3.15. Let H = { , , }. Then h2(n,H) = Ω(
√
n log n) and h2(n,H) =

O(n2/3
√

log n).

Proof. For the lower bound, by Lemma 4.1.1 we have : h2(n,H) ≥ h2(n, {rrr}) =

Ω(
√
n log n). The upper bound follows from Construction 2.10.

Although there is a gap between the lower and the upper bound in Lemma 4.3.15,

we are able to prove the following lemma concerning the structure of colourings with

no patterns in { , , }.

Lemma 4.3.16. Let H = { , , } and let c be an H-free colouring of Kn. Then either
h2(c) = Ω(n2/3 log1/3 n) or at least n/4 vertices span pairwise vertex-disjoint blue cliques with
only red/yellow edges between them, with the red graph forming a matching between any two
distinct blue cliques.

Proof. Let c be an H-free colouring of Kn. Start by partitioning the vertex set into

blue/red cliques by greedily picking a maximal red/blue clique at each step. Let C be
the set of these cliques. Note that there is a yellow edge between any two cliques from

C. Within each clique the red graph is a matching and the red edges between any two

components also form a matching (otherwise we have rrb or rrr triangles). Let C′ be
the set of cliques from C on at least 4 vertices each.

Assume first that at least n/2 vertices are spanned by cliques from C′. We shall show

first that there is no blue edge between any two cliques from C′. Assume U, V ∈ C′ with

|U | ≥ |V | and there is a blue edge u′v, u′ ∈ U , v ∈ V . If there is a yellow edge u′′v,
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for some u′′ ∈ U , then u′u′′ must be red (since otherwise u′u′′v is a bby triangle). Let

u ∈ U − {u′, u′′}. Since red forms a matching within U , we have c(u′′u) = c(u′u) = b.

Then uv cannot be blue (u′′uvwould induce a bby triangle), and it cannot be yellow (u′vu

would induce a bby triangle), so itmust be red. Since this holds for each u ∈ U−{u′, u′′},
wemust have |U | ≤ 3, for v cannot have two red neighbours in U , a contradiction to our

assumption that |U | ≥ 4. Thus, the assumption that there is a yellow edge is wrong, so

all edges from v to U are blue or red. But then U ∪ {v} would form a larger red/blue

clique and contradict how we greedily chose C. Thus, between any two cliques from C′

there is no blue edge and red forms a matching between any two cliques from C′. Thus
our structural result follows by choosing at least half the vertices from each clique of C′

so that these vertices induce a blue clique.

Now assume that at least n/2 vertices are spanned by cliques from C−C′, i.e. cliques
of size at most 3 each. We have that |C − C′| ≥ n/6. Each of the cliques from C − C′

either spans a blue triangle or not. Let C′′ ⊆ C − C′ be the set of cliques forming blue

triangles. We distinguish the following cases:

Case 1: |C′′| ≥ n/12. Since there is a yellow edge between any two cliques from C,
there can’t be a blue edge between any two members of C′′, otherwise we create a bby

triangle. Thus, we can pick one vertex from each member of C′′ and have a red/yellow

clique of size at least n/12 ∈ Ω(n2/3).

Case 2: |C′′| < n/12, i.e. at least n/12 cliques from C −C′ do not span a blue triangle.

LetG be the subgraph spanned by vertices of C− (C′∪C′′) with the inherited colouring.

Assume that G contains a blue C5. Then all edges within this cycle must be red (no

blue K3, no bby triangle), so we have a red/blue K5, which contains an rrb triangle,

a contradiction. Thus, the blue subgraph of G is C5-free, and since R(C5,Kk) =

O(k3/2/
√

log k) we have a red/yellow clique of a desired size.

Recall that g(n) is a smallest possible independence number of an n-vertex graph

that has no cycles of length 3 and no cycles of length 5, i.e. that has an odd girth at least

7.

Lemma 4.3.17. We have that g(n) ≤ h2(n, { , , }) ≤ 2g(n).

Proof. For the upper bound, let G be an n-vertex graph with odd girth at least 7 and

independence number g(n). Colour its edges red, the edges corresponding to pairs of

vertices at distance two in G yellow, and all remaining edges blue. Clearly, we have

no rrr and no rrb triangles. Assume that there is a yyr triangle. Since vertices of any

yellow edge are endpoints of a red path of length 2, we see that a yyr triangle implies
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the existence of an rrr triangle, or a red cycle of length 5. Note that Syb = α(G) = g(n).

Consider a largest yellow/red clique X . We see that since the yellow colour class is

induced P3-free inX , the yellow edges form disjoint cliques inX , and there are at most

two of them since there are no red triangles. So, X contains a yellow clique on at least

|X|/2 vertices, i.e. |X|/2 ≤ α(G) = g(n), thus, Sry = |X| ≤ 2g(n). Similarly, let Y be

a largest red/blue clique. The red edges in it must form a matching, so there is a blue

clique of size at least |Y |/2, in particular |Y |/2 ≤ α(G) = g(n). Thus, Srb = |Y | ≤ 2g(n).

For the lower bound, consider an {rrr, rrb, yyr}-free colouring of a complete graph

on n vertices. The red graphG does not have 5-cycles because otherwise all other edges

induced by the vertices of that cycle must be yellow, forcing a yyr triangle. Thus, the

red graph has odd girth at least 7. We have that Sby = α(G) ≥ g(n).

Lemma 4.3.18. Let H = { , , }. Then h2(n,H) = Ω(n2/3 log1/3 n) and h2(n,H) =

O(n3/4 log n).

Proof. By Lemma 4.3.17 it is sufficient to bound g(n).

By Caro et al. [39], we have R(C5,Kt) ≤ C t3/2√
log t

, i.e. any C5-free graph on n vertices

has independence number at least C ′n2/3 log1/3 n. Thus, g(n) ≥ C ′n2/3 log1/3 n.

By a result by Spencer [120] we have R({C3, C4, C5},Kt) ≥ C (t/log t)4/3
for some

positive constant C, i.e. for n sufficiently large there exists a graphG on n vertices with

no C3, C4, C5 and α(G) ≤ C ′n3/4 log n. Thus, g(n) ≤ C ′′n3/4 log n.

Lemma 4.3.19. LetH = { , , }. Then we have

h2(n,H) = Ω(n2/3/ log1/3 n) and h2(n,H) = O(n2/3
√

log n).

Proof. For the lower bound, let c be anH-free colouring ofKn, and let the vertex set be

V .

We shall argue that either our lower bound holds or there is a subset of at least n/4

vertices that is a pairwise disjoint union of red/yellow cliques with only blue edges in

between. We shall conclude by showing that such a colouring has a large 2-coloured

clique of a desired size.

Consider a maximal blue clique B. Then each vertex in V − B sends either a red

or a yellow edge to B. Moreover, each vertex in V − B sends at most one red and at

most yellow edge to B. Let V1 be the set of vertices in V −B that send red edges to B.

Then these edges form a family Q of pairwise vertex-disjoint stars with centres in B.
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Note that there is no red odd cycle in V1. Indeed, otherwise this cycle contains vertices

from three distinct stars from Q. In particular, there is a vertex v in one star from Q in

V1 that sends red edges in V1 to two distinct stars from Q, say with centres w1, w2 ∈ B.

Then w1v and w2v are yellow, so vw1w2 is a yyb triangle, a contradiction. So, if V1 has

Cn vertices then the red graph induced by V1 has an independent set of size at least

Cn/2. This gives Syb ≥ Cn/2. So, we can assume that |V1| < Cn. We can also assume

that |B| < Cn. So, let V2 = V − (B ∪ V1). Thus, |V2| > n/2 (by taking C = 1/4).

Now, there are only yellow and blue edges between V2 and B and moreover the

yellow edges among those form pairwise vertex-disjoint stars with centres in B. Let

R1, . . . , Rm be the intersections of the vertex sets of these stars and V2. In particular, V2

is the union of the Ris. Note that there are no yellow edges between Ri’s and there are

no blue edges within Ri’s, otherwise we obtain a byy triangle.

There is no vertex v ∈ V2 that sends a red edge to two different Ri’s: assume the

contrary, i.e. we have red edges w1v and w2v with w1, w2 belonging to different Ri’s.

But then w1w2 connects two different Ri’s, but can be neither red nor blue without

creating a forbidden pattern, a contradiction. Thus, the red graph whose edges have

endpoints in differentRi’s is bipartite. Let V3 ⊆ V2 be a larger part of such a bipartition

(i.e. |V3| ≥ n/4) and let Ti = Ri ∩ V3. Then the Ti’s are red/yellow and all edges in

between are blue.

The remaining part of the proof shows that in any colouring c′ of Kn that is

formed by pairwise vertex-disjoint red/yellow cliques T1, . . . , Tm with all edges be-

tween them blue has a large bi-coloured clique. This will imply the lower bound

h2(c) = Ω(n2/3/(log1/3 n)). The logarithmic factors here could probably be improved.

We shall split the Ti’s according to sizes. Let Xi be the union of all Tj of sizes from

2i to 2i+1 − 1, where i = 0, . . . , log n. Consider a largest Xi, i.e. |Xi| ≥ |V3|/ log n ≥
n/(4 log n). Delete at most half the vertices from each Tj inXi such that all members Tj

of Xi have the same size, say k. Let the resulting set be X ′. Let c′ be the colouring that

results from restricting c toX ′. Then c′ consists of red/yellow cliques of the same size k

and only blue edges in between. In addition, |X ′| ≥ n/(8 log n). Then we have Sry ≥ k.
Moreover, since the red graph is triangle-free, Corollary 4.4 implies that we may find a

yellow clique of size C
√
k log k inside each of the red/yellow cliques. Hence,

Sby ≥ C
√
k log k

|X ′|
k
≥ C ′ n

log n

√
log k

k
.

If k ≤ n2/3/ log1/3 n, then Sby ≥ C ′′n2/3/ log1/3 n. Otherwise, we get a large red/yellow

clique, which concludes the proof.
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The upper bound follows from Construction 2.9.

Lemma 4.3.20. LetH = { , , }. Then we have h2(n,H) = Θ(
√
n log n).

Proof. For the lowerboundbyLemma4.1.1wehaveh2(n,H) ≥ h2(n, {rrr}) = Θ(
√
n log n).

The upper bound follows from Construction 2.3.

Lemma 4.3.21. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
.

Proof. For the lower bound, let c be anH-free colouring ofKn. Assume that c contains

a red odd cycle. Let v1 · · · vkv1, k ≥ 5 be a shortest odd red cycle. First let k ≥ 7.

Without loss of generality, we have c(v1v3) = b. Then c(v1v4) = y, since otherwise

v1, v3, v4 induce a bbr triangle. Thus, we have c(v1vi) = b for i odd and c(v1vi) = y for

i even, and thus, c(v1vk−1) = y. Since c(v1v3) = b, we also have c(v3vk) = y, and hence

c(v3vk−1) = b. Thus, we must have c(vk−1v2) = y, since otherwise v2, v3, vk−1 induce a

bbr triangle, but then v1, v2, vk−1 induce a yyr triangle, a contradiction.

If k = 5, w.l.o.g. we have c(v1v3) = b. Then we must have c(v1v4) = y = c(v3v5),

since otherwise v1, v3, v4 or v1, v3, v5 induce a bbr triangle. But then we must have

c(v2v4) = b = c(v2v5), since otherwise v1, v2, v4 or v2, v3, v5 induce a yyr triangle. But

then v2, v4, v5 induce a bbr triangle, a contradiction.

Thus, the red graph is bipartite, so c contains a blue/yellow clique of size at least

⌈
n
2

⌉
.

The upper bound follows from Construction 2.15.

Lemma 4.3.22. Let H = { , , }. Then we have h2(n,H) =
⌈

3n
7

⌉
+ ε1(n), where

ε1(n) = 1 if n ≡ 2 (mod 7), and ε1(n) = 0 otherwise.

Proof. The upper bound follows from Construction 2.14.

For the lower bound, let c be anH-free colouring of a n-vertex graph on a vertex set

V . Assume first that there is a blue clique B of size |B| ≥ 3. Then each vertex not in

B sends at most one yellow edge to B (otherwise we have a yyb triangle) and no vertex

not in B sends both blue and red edges to B (otherwise we have a bbr triangle). Let

A be the set of vertices from V − B that send only blue and yellow edges to B and let

O = V −B−A, i.e. each vertex fromO sends a red edge to B. Then, in particular, each

vertex fromO sends no blue edges toB, thus, it must send at least two red edges and at

most one yellow edge to B. Thus for any two vertices of A there is a vertex in B joined

to both of them with blue edges. Similarly, for any two vertices of O there is a vertex

in B joined to both of them with red edges. Then A induces no red edges and neither
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does O. Note that B,A and O span the whole graph; B ∪A induces no red edge and O

contains no red edge. Then Scby ≥ max{|B ∪A|, |O|} ≥
⌈
n
2

⌉
.

Thus, we can assume that both the red and blue graph are triangle-free. We shall

show that the blue graph has a special structure, in particular it must be a blow-up of

a cycle on 7 vertices.

If the blue graph contains no odd cycle, then it is bipartite and hence Sry ≥
⌈
n
2

⌉
.

Thus, we can assume that there is a blue odd cycle. The blue graph also does not contain

a cycle length 5 since otherwise all other edges spanned by the vertices of this cycle

are yellow, producing a yyb triangle. Assume the shortest blue odd cycle has length

k ≥ 9. Let C = Ck = v1 . . . vkv1 be a shortest blue odd cycle with k ≥ 9. Then C has

no blue chord, otherwise there is a shorter blue odd cycle. Fix a vertex, v1, and order

chords incident to v1 as they appear on the cycle, i.e. v1v3, v1v4, . . . , v1vk−2. Each chord

is red or yellow. There are no two consecutive yellow chords, otherwise we have a yyb

triangle. We have that v1v3 and v1vk−2 are yellow, otherwise there is a bbr triangle. In

addition v1v4 is red, otherwise there are two consecutive yellow chords. Assume that

there are two consecutive red chords incident to v1. Let these chords be, without loss of

generality, v1vi and v1vi+1, for i > 4. Then v4vi and v4vi+1 must be yellow, resulting in

a yyb triangle. Thus, the chords incident to v1 must have alternating colours yry . . . ry.

However, this is impossible since the number of such chords is even.

Thus, a shortest blue odd cycle has length 7. Let the vertex set of such a 7-cycle be

Y = {v1, . . . , v7}. Then c(vivj) = y if vi and vj are at distance two on C and c(vivj) = r

if vi and vj are at distance three on C.

Let x ∈ V −Y . Note that x can send at most 3 yellow edges to Y , otherwise we have

a yyb triangle. Assume x sends no blue edge to Y . Then it sends at least four red edges

to Y , whose endpoints contain two vertices at distance 3 on C, which creates an rrr

triangle, a contradiction. Thus, x sends at least one blue edge to Y . Assume x sends

exactly one blue edge to Y , say to v1. Then xv2 and xv7 must be yellow. Then xv3 and

xv6 must be red. But this implies that xv3v6 forms an rrr triangle, a contradiction. Note

that x sends at most two blue edges to C, otherwise there is a shorter blue odd cycle.

Since x sends at least one, at most two, and not exactly one blue edge to Y , x sends

exactly two blue edges to Y . The endpoints of these two edges must be at distance 2

on the cycle, otherwise there is a shorter odd cycle. Without loss of generality, let these

endpoints be v2, v7. Consider a blue cycle xv2v3 · · · v7x. It must have the same colour

structure as C, i.e. in particular x “mimics" v1, i.e. c(xvi) = c(v1vi) for all vi ∈ Y − {v1}.
Since x was chosen arbitrarily outside of any blue cycle, we have that each vertex in

V −Y “mimics" some vertex onC and thus, the colouring contains a spanning blow-up
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of a colouring c restricted to Y .

More specifically, we have that V is a disjoint union of parts V0, . . . , V6 such that for

any i, j ∈ {0, 1, . . . , 6}, with i, j, and any x ∈ Vi, z ∈ Vj , c(xz) = b if |i− j| = 1 (mod 7),

c(xz) = y if |i− j| = 2 (mod 7), c(xz) = r if |i− j| = 3 (mod 7). All the edges induced

by each Vi are yellow. That is, we have a colouring with a structure as in Construction

2.14 (where the Vi’s have variable sizes).

For each i = 0, . . . , 6, let Ui = Vi ∪ Vi+1 ∪ Vi+2 and Wi = Vi ∪ Vi+2 ∪ Vi+4 (indices

computed modulo 7). Then each Ui spans a blue/yellow clique and each Wi spans a

red/yellow clique. We have that |W0|+ · · ·+ |W6| = 3n, thus, there isWi of size at least

d3n/7e. This proves the lower bound, except when n ≡ 2 (mod 7).

So let n ≡ 2 (mod 7), i.e. n = 7k + 2 for an integer k. We shall show that there is a

2-coloured clique of size at least d3n/7e+ 1. In order to do so, we first shall show that

the sets Vi’s pairwise differ in size by at most 1.

If there is an index i′, such that |Wi′ | ≥ d3n/7e+ 1, we are done, so assume |Wi| ≤
d3n/7e for i = 0, . . . , 6. Nowassume there is an index i′ such that |Wi′ | ≤ b3n/7c−1. But

thenwe have

∑6
i=0 |Wi| ≤ b3n/7c−1+6 d3n/7e = b3(7k + 2)/7c−1+6 d3(7k + 2)/7e =

21k + 5 < 21k + 6 = 3n, a contradiction. Thus, |Wi| and |Wj | differ by at most 1 for

0 ≤ i < j ≤ 6. Similarly, all Ui’s differ in size by at most 1.

Note thatWi ∩Wi+2 = Vi+2 ∪ Vi+4 for i = 0, . . . , 6 (indices computed modulo 7), so

the symmetric differenceWi4Wi+2 = Vi ∪ Vi+6. By the above observation, that means

in particular that |Vi−1| and |Vi| differ by at most 1, for each i = 0, 1, . . . , 6. Similarly,

by considering two consecutive Ui’s, we see that |Vi| and |Vi+3| differ in size by at most

1. Then it is clear that ||V0| − |V2|| ≤ 2. Assume that |V0| = t and |V2| = t + 2, for

some t. Then |V1| = t + 1 and |V3| ≥ t + 1. Thus, |U1| ≥ 3t + 4 that implies that

3t + 3 ≤ |U6| = |V6| + t + t + 1, that in turn implies that |V6| ≥ t + 2. This contradicts

the fact that |U6| and |U0| differ by at most 1. It shows that ||Vi| − |Vi+2|| ≤ 1. Together

with the fact that ||Vi| − |Vi+1|| ≤ 1 and ||Vi| − |Vi+3|| ≤ 1, we see that any two set Vi, Vj ,

i, j ∈ {0, 1, . . . , 6} differ in size by at most 1. Thus, Vi’s have sizes either dn/7e or bn/7c.
Since n = 7k + 2, there are exactly two parts Vi, Vj of sizes dn/7e. No matter how they

are located, there is a third part Vg such that Vi ∪ Vj ∪ Vg is eitherWm or Um for some

m. This gives a two-coloured clique on 2 dn/7e+ bn/7c = d3n/7e+ 1 vertices.

This concludes the proof.

Lemma 4.3.23. LetH = { , , }. Then we have h2(n,H) =
⌈
n
2

⌉
.
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Proof. For the lower bound let c be an H-free colouring. Let v be an arbitrary vertex

and denote by Nr, Nb, Ny its red, blue and yellow neighbourhoods, respectively.

ThenNr does not contain a red edge, so it must induce amonochromatic clique that

is either blue or yellow. Without loss of generality, we assume it is blue (a symmetric

argument deals in the case when it is yellow).

Between Nb and Ny there cannot be a single blue or yellow edge, so between them

we have a complete bipartite red graph. Thus, Nb and Ny cannot induce red edges,

so Nb induces a monochromatic blue and Ny a monochromatic yellow clique. Now

consider the bipartite graph between Nr and Ny. There can be no incident blue and

yellow edges and each vertex inNy sends atmost one yellow edge toNr and each vertex

in Nr sends at most one blue edge to Ny. Likewise in the bipartite graph between Nb

and Nr, the yellow edges form a matching and no vertex is incident to both blue and

yellow.

If one of the sets Nr, Nb, Ny contains at most 1 vertex, then the larger of the other

two sets together with v is a 2-coloured a clique of size at least dn/2e, as required.

So we may assume that each of the sets Nr, Nb, Ny contains at least 2 vertices. We

consider two cases:

Case 1: There is a vertex w∗ ∈ Nr that sends only yellow edges to Ny.

Every vertex inN∗r := Nr−{w∗} sends only red edges toNy (otherwise, we obtain

either a yyb or bby triangle). This implies that there are no red edges between

N∗r and Nb: if otherwise, we obtain a monochromatic red triangle with vertices

in N∗r , Nb, and Ny, using the fact that the bipartite graph with parts Nb and

Ny is entirely red. Moreover, since the yellow edges between N∗r and Nb form a

matching, we have that all edges betweenN∗r andNbmust be blue. Now, consider

the sets V1 = N∗r ∪Nb ∪ {v} and V2 = {w∗} ∪Ny ∪ {v}. Note that V1 is a red/blue

clique and V2 is a red/yellow clique. One of them must have size at least dn/2e,
completing the proof in this case.

Case 2: No vertex in Nr sends only yellow edges to Ny.

Since no blue and yellow edges are incident in the bipartite graph between Nr

and Ny, every vertex in Nr sends at least one red edge to Ny. Now the proof is

similar to the previous case: we have that no edges between Nr and Nb are red

(otherwise, we obtain a monochromatic red triangle). Hence, as before all edges

betweenNr andNb are blue. SoNr ∪Nb∪{v} is a red/blue clique and {v}∪Ny is

a yellow clique. One of these two sets has size at least dn/2e, and this completes
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the proof of the lower bound.

The upper bound follows from Construction 2.15 with red and yellow swapped.

4.6.4 H contains a monochromatic and a rainbow pattern

Lemma4.3.24. LetH = { , , }. ThenΩ(n3/4/ log3/2 n) = h2(n,H) = O(n3/4
√

log n).

Proof. For the lower bound, consider an H-free colouring c of Kn. The structure of c

is very similar to the structure of {rrr, rby}-free colourings. Consider red components

and call their vertex sets blobs. Assume that each blob has at least three vertices.

This assumption can be done since if there are at least n/2 vertices spanned by red

components on at most two vertices, these vertices contain a blue/yellow clique on at

least n/4 vertices. Since the colouring is Gallai, Theorem 4.7 implies that each blob is a

union of sets (which we refer to as sub-blobs) with all edges between any two sub-blobs

of the same colour and such that the set of colours between all sub-blobs is either {r, b}
or {r, y}. Moreover, each sub-blob sends only red edges to some other sub-blob of its

blob. All edges between any two blobs are of the same colour, either blue or yellow,

otherwise there is a rainbow triangle. Lastly, there are no red edges contained in any

sub-blob, because otherwise we obtain a monochromatic red triangle.

As in the lemma on {rrr, rby}-free colourings, (Lemma 4.2.7) we can assume that

for some constant C ′′ there is a subset of n′ ≥ C ′′n/ log2 n vertices such that all sub-

blobs have the same size, k, and all blobs contain the same number, `, of sub-blobs.

Assume first that at least half the vertices are spanned by blobs with blue/red between

sub-blobs. Then, since the red and blue graph are both triangle-free, there are at most 5

sub-blobs in each blob, and each sub-blob is blue/yellow. By taking a largest sub-blob

in each such blob, we see that Sby ≥ n′/10 = Ω(n/ log2 n).

Now, assume that at least half the vertices are spanned by blobs with red/yellow

between sub-blob. All edges between blobs are yellow or blue and all sub-blobs are

blue/yellow. As the red graph is triangle-free, applying Corollary 4.4 yields that there

are at least C
√
` log ` sub-blobs in each blob, such that there are only yellow edges

between them. By taking the union of these sets over all blobs we have that

Sby ≥ C
n′

k`

√
` log ` · k = C

n′
√

log `√
`

.

If ` <
√
n then Sby = Ω(n3/4/ log3/2 n). Otherwise, ` ≥

√
n. By picking a yellow
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clique from each sub-blob and selecting a set of blobs with only yellow edges between

them (using Corollary 4.4 again, and the fact that the red and blue graphs are both

triangle-free), we have

Sry ≥ C ′ · `
√
k log k

√
n′/(k`) log(n′/(k`)) = Ω(

√
`n′) = Ω(n3/4/ log n).

The upper bound follows from Construction 2.11.

Lemma 4.3.25. LetH ∈ {{ , , }, { , , }, { , , }}.
Then h2(n,H) = Ω(n2/3/ log3/2 n) and h2(n,H) = O(n2/3

√
log n).

Proof. The lower bound follows from Lemma 4.2.7: h2(n,H) ≥ h2(n, {rrr, rby}) =

Ω(n2/3/ log3/2 n).

For the upper bound in caseH ∈ {{rby, rrr, bbr}, {rby, rrr, bby}}, we use Construc-

tion 2.8with blue and yellow swapped. For the upper bound in caseH = {rby, rrr, rrb}
we use Construction 2.9.

4.7 Concluding remarks

We have determined h2(n,H) asymptotically up to logarithmic factors for nearly all

families H of at most three patterns. Aside from improving logarithmic factors, there

are two major gaps left. First, for the family H0 := { , , } we were able to show

that (see Lemma 4.3.15)

Ω(
√
n log n) = h2(n,H0) = O(n2/3

√
log n).

We believe that the upper bound is the correct answer (up to logarithmic terms).

Our second gap comes from the familyH1 := { , , }. We showed that h2(n,H1)

is related to the function g(n) defined as the smallest independence number of an n-

vertex graph of odd girth at least 7:

g(n) = min{α(G) : |G| = n and G is {C3, C5}-free}.

In particular, we showed that g(n) ≤ h2(n,H1) ≤ 2g(n). It follows that good bounds

on the Ramsey number R({C3, C5},Kn) translate to good bounds on h2(n,H1). Us-

ing known results on the Ramsey numbers R(C5,Kn) and R({C3, C4, C5},Kn), by
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Lemma 4.3.18 we have

Ω(n2/3 log1/3 n) = h2(n,H1) = O(n3/4 log n).

A consequence of the work of Bohman and Keevash [24] and Warnke [124] is that

the C5-free process with high probability terminates in a graph whose independence

number is Θ(n3/4 log3/4 n). We suspect that the behaviour of the independence number

does not change much if one forbids triangles in addition to C5’s. Thus, we conjecture

that our upper bound on h2(n,H1) is close to the truth:

Conjecture 4.8.

g(n) = Ω(n3/4)

and thus,
h2(n, { , , }) = Ω(n3/4).

From our reduction to the function g(n), this would follow from the corresponding

upper bound on R({C3, C5},Kn). This is likely to be challenging, however, as cycle-

complete Ramsey numbers are widely openwhen the cycle lengths are small and fixed.

Lastly, we decided to stop our investigation at three forbidden patterns. Forbidding

more patterns in many cases makes the problem of finding large 2-coloured cliques

simple. For this reason (and also for the sake of brevity) we did not pursue this line

further. Still, one of course may consider families of forbidden patterns of size four and

larger.
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Chapter 5 TheErdős-Hajnalconjecture fororder-size pairs

5.1 Introduction

In this chapter, we consider families determined by a given set of orders and sizes.

Several special cases of this havebeen extensively studiedover the years (see for example

Erdős andHajnal [58]). For 0 ≤ f ≤
(
m
r

)
, we call an r-graphF onm vertices and f edges

an (m, f)-graph and we call the pair (m, f) the order-size pair for F . Say thatH is (m, f)-

free if it contains no induced copy of an (m, f)-graph. If Q = {(m1, f1), . . . , (mt, ft)},
say that H is Q-free if H is (mi, fi)-free for all i = 1, . . . , t.

Definition 5.1. Given r ≥ 2 and Q = {(m, f1), . . . , (m, ft)}, let h(n,Q) = hr(n,Q) be the
minimum of h(H), taken over all n-vertexQ-free r-graphsH . Say thatQ has the EH-property
if there exists ε = εQ > 0 such that h(n,Q) > nε.

For example h3(n, {(4, 0), (4, 2)}) = kmeans that any n-vertex 3-graph in which any

4 vertices induce 1, 3, or 4 edges has a homogenous set of size k, and there is an r-graph

H as above with h(H) = k. We may omit the subscript r in the notation hr(n,Q) if it is

obvious from the context. When Q = {(m, f)} we use the simpler notation h(n,m, f)

instead of h(n, {(m, f)}). Let us make two simple observations:

hr(n,Q) ≤ hr(n,Q′) if Q ⊆ Q′, (5.1)

hr(n,Q) = hr(n,Q) where Q =

{(
m,

(
m

r

)
− f

)
: (m, f) ∈ Q

}
. (5.2)

Our first result concerns 2-graphs, where we show that forbidding a single order-size

pair already guarantees large homogeneous sets.

Proposition 5.2. For any integersm, f withm ≥ 2 and 0 ≤ f ≤
(
m
2

)
there exists c > 0 such

that h2(n,m, f) > cn1/(m−1).

It seems a challenging problem to give good upper bounds on h2(n,m, f). For

example, determining h2(n,m,
(
m
2

)
) is equivalent to determining off-diagonal Ramsey

numbers.

Our remaining results are in the hypergraph case r = 3 and m = 4. We shall

be considering sets Q of pairs (4, i) for i ∈ {0, 1, 2, 3, 4}. We do not need to consider
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sets Q that contain both (4, 0) and (4, 4) because Ramsey’s theorem guarantees that for

sufficiently large n we cannot avoid both of them. Using complementation (5.2), this

leaves us with the following sets:

• {(4, 0)}, {(4, 1)}, {(4, 2)};

• {(4, 0), (4, 1)}, {(4, 0), (4, 2)}, {(4, 0), (4, 3)}, {(4, 1), (4, 2)}, {(4, 1), (4, 3)}; and

• {(4, 0), (4, 1), (4, 2)}, {(4, 0), (4, 1), (4, 3)}, {(4, 0), (4, 2), (4, 3)}, {(4, 1), (4, 2), (4, 3)}.

We address h(n,Q) for each of these choices of Q.

We quickly obtain bounds for the first case using results in Ramsey theory (note

again that h(n, 4, f) = h(n, 4, 4 − f)). Recall that the Ramsey number Rk(s, t) is the

minimum n such that every red/blue edge-colouring of the complete n-vertex k-graph

yields either a monochromatic red s-clique or a monochromatic blue t-clique. It is

known [47] that 2ct log t ≤ R3(4, t) ≤ 2c
′t2 log t

. This yields positive constants c and c′,

such that

c′
(

log n

log log n

)1/2

< h3(n, 4, 0) < c
log n

log logn
. (5.3)

Amore recent result of Fox andHe [71] constructs n-vertex 3-graphswith every four

vertices spanning atmost two edges and independence number atmost c log n/ log log n.

Together with (5.1) this yields positive a constant c, such that

h3(n, 4, 1) ≤ h3(n, {(4, 0), (4, 1)}) < c
log n

log log n
. (5.4)

For the remaining cases when |Q| = 1 we obtain bounds using recent results by

Fox and He [71] and by Gishboliner and Tomon [80]. Recall that f(n) = (1 + o(1))g(n)

means that there is a function e(n) such that lim
n→∞

e(n)→ 0 and f(n) = g(n) + e(n)g(n).

Proposition 5.3. There are positive constants c1, c2 such that

h3(n, 4, 1) > c1

(
log n

log logn

)1/2

(5.5)

and
nc2 < h3(n, 4, 2) < (1 + o(1))n1/2. (5.6)
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It is unclear if either bound for h(n, 4, 1) above represents the correct order of

magnitude, but the lower bound certainly seems far off; we leave this as an open

problem, see Section 5.4.

Our next results address the case when |Q| = 2. For the first case we have constants

c, c′ > 0 such that

c
log n

log log n
< h3(n, {(4, 0), (4, 1)} < c′

log n

log log n
.

The lower bound follows (after applying (5.2)) from an old result of Erdős and Haj-

nal [58]. This is the first instance of a (different) conjecture of Erdős and Hajnal [58]

about the growth rate of generalized hypergraph Ramsey numbers that correspond

to our setting of h(n,Q), where Q = {(m, f), (m, f + 1), . . . , (m,
(
m
r

)
)}. Recent results

of Mubayi and Razborov [109] on this problem determine, for each m > r ≥ 4, the

minimum f such that hr(n,Q) < c loga n for some a and Q = {(m, f), . . . , (m,
(
m
r

)
)}.

When r = 3, the minimum f was determined by Conlon, Fox and Sudakov [47] for m

being a power of 3 and for growingm, as well as some other values.

For the second case when |Q| = 2, we have h3(n, {(4, 0), (4, 2)}) > nc as follows

immediately from (5.1) and (5.6). However, the value of c obtained from [80] is very

small (less than 0.005). We improve this below to 1/5 and also obtain bounds for the

other cases.

Theorem 5.4. There is a positive constant c1 such that for n > 5

h3(n, {(4, 0), (4, 2)}) > c1 n
1/5, (5.7)

h3(n, {(4, 0), (4, 3)}) > c1 n
1/3, (5.8)

c1(n log n)1/3 < h3(n, {(4, 1), (4, 2)}) < (1 + o(1))n1/2, and (5.9)

1

2
log n ≤ h3(n, {(4, 1), (4, 3)}) < 4(log n)2.

We note the upper bound

h3(n, {(4, 0), (4, 2)}) ≤ h3(n, {(4, 0), (4, 1), (4, 2)}) < c
√
n log n
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that we will see below. Apart from this we were not able to obtain non-trivial upper

bounds in (5.7) or (5.8). Improving the bounds in (5.7), (5.8) and (5.9) seems to be an

interesting open problem; see Section 5.4.

Finally, we consider the casewhen |Q| = 3. IfQ = {(4, 0), (4, 1), (4, 2)}, then aQ-free

3-graph is a partial Steiner triple system (STS), and it is well known [28, 57, 112] that

the minimum independence number of an n-vertex partial STS has order of magnitude

√
n log n. Thus, h3(n,Q) has order of magnitude

√
n log n. If Q = {(4, 1), (4, 2), (4, 3)},

and n ≥ 4, then it is a simple exercise to show that any Q-free 4-graph on at least four

vertices is a clique or co-clique and therefore h3(n,Q) = n for n ≥ 4. The two remaining

cases are covered below.

Theorem 5.5. Let n ≥ 4. Then h3(n, {(4, 0), (4, 2), (4, 3)}) = n− 1 and

h3(n, {(4, 0), (4, 1), (4, 3)}) =

n
2 if n ≡ 0 (mod 6),

dn+1
2 e if n 6≡ 0 (mod 6).

The main results of this chapter are joint work with Axenovich and Mubayi [11].

This chapter is structured as follows. In Section 5.2 we prove Proposition 5.2 and in

Section 5.3 we prove our results for triple systems. Section 5.4 provides final remarks

and open questions.

5.2 Graphs

In this section we prove Proposition 5.2. For a graph G, let ω(G) and α(G) denote the

size of a largest clique and co-clique, respectively.

Proof of Proposition 5.2. We shall use induction on m with basis m = 2. In this case

f ∈ {0, 1}. Note that h(n, 2, 0) = h(n, 2, 1) = n = n1 = n1/(m−1)
, since forbidden

graphs are either a non-edge or an edge. Consider an (m, f)-free graphG on n vertices,

m ≥ 3, and assume that the statement of the proposition holds for smaller values of

m. We can also assume that G is not a complete graph, an empty graph, a cycle, or

the complement of a cycle, since we are done in these cases. Consider ∆ and ∆, the

maximum degree of G and of the complement G of G, respectively. Using Brooks’

theorem [29], the chromatic number of G and of G is at most ∆ and ∆, respectively.

Thus, α(G) ≥ n/∆ and ω(G) ≥ n/∆. Therefore, we can assume that ∆ ≥ n(m−2)/(m−1)

and ∆ ≥ n(m−2)/(m−1)
, otherwise we are done. Thus, there is a vertex with at least
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n(m−2)/(m−1)
edges incident to it and there is a vertex with at least n(m−2)/(m−1)

non-

edges incident to it.

Assumefirst that f ≤ m−1. Consider a vertex vwith at leastn(m−2)/(m−1)
non-edges

incident to it, i.e. with a set X of vertices each non-adjacent to v, |X| ≥ n(m−2)/(m−1)
.

Since G is (m, f)-free, G[X] is (m − 1, f)-free. Thus, by induction h(G) ≥ h(G[X]) ≥
|X|1/(m−2) ≥ n1/(m−1).

Now assume that f ≥ m. Consider a vertex v with at least n(m−2)/(m−1)
edges

incident to it, i.e. with a set X of vertices each adjacent to v, |X| ≥ n(m−2)/(m−1)
. Since

G is (m, f)-free,G[X] is (m−1, f−(m−1))-free. Thus, by induction h(G) ≥ h(G[X]) ≥
|X|1/(m−2) ≥ n1/(m−1).

5.3 Triple systems

In this section we prove Proposition 5.3, Theorem 5.4 and Theorem 5.5. We will need

the following notions and result for our proofs. For an r-graphH and one of its vertices

v, we define the link graph of v to be the (r−1)-graphL(v)whose vertex set is V (H)\{v}
and edge set is {e ⊆ V (H) \ {v} : e ∪ {v} ∈ E(H)}. When denoting edges in 3-graphs,

we often shall omit parentheses and commas, for example instead of writing {x, y, z}
we simply shall write xyz. For a 2-graph G, let L(G) be the 3-graph with vertex set

V (G) ∪ {v}, v 6∈ V (G) and edge set {uvw : uw ∈ E(G)}. Finally, when we consider a

3-graphH , the link graph of a vertex u ∈ V (H) restricted to a vertex set S, denoted LS(u)

is a graph on vertex set S and edge set {vw : v, w ∈ S, uvw ∈ E(H)}. A clique on s

vertices is denotedKs.

We shall use the following theorem.

Theorem 5.6 (Fox, He [71], Thm. 1.4). For all t, s ≥ 3, any 3-graph on more than (2t)st

vertices contains either a co-clique on t vertices or L(Ks).

5.3.1 Forbidden sets of size 1

Proof of Proposition 5.3.

Case 1: Q = {(4, 1)}.
To prove the lower bound on h(n, 4, 1), we shall consider the complementary

setting and an arbitrary n-vertex (4, 3)-free 3-graph H . We shall apply Theo-

rem 5.6 with largest possible t = s such that (2t)st < n. In this case t = s ≥
c(log n/ log log n)1/2

. IfH has a co-clique of size t, then h(H) ≥ t andwe are done.
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OtherwiseH contains a subgraph isomorphic to L = L(Ks). Let V (L) = {v}∪V ,

where all edges are incident to v, v 6∈ V . Note that V induces a clique in H ,

otherwise v and three vertices of V not inducing an edge give a (4, 3)-subgraph.

Thus, h(H) ≥ s− 1. In each case h(H) ≥ c(log n/ log logn)1/2
.

Case 2: Q = {(4, 2)}.
The lower bound on h(n, 4, 2) follows froma result of Gishboliner andTomon [80].

The upper bound is obtained by taking an affine plane of order q. More precisely,

given a sufficiently large n, choose a prime q such that n1/2 < q ≤ n1/2 + n0.29
;

such q exists by density results about primes (see, e.g., [17]). Let A(2, q) be the

affine plane of order q. Let H be the 3-graph whose vertex set is some n-element

subset of the point set of A(2, q), and whose edge set is the set of triples that are

contained in some line in A(2, q). Let S be a set of four vertices in H . If two lines

each contain at least three points in S, then they have two points in common,

which is impossible, hence at most one line contains at least three points in S.

This means that S induces 0, 1 or 4 edges, and consequently, H is (4, 2)-free. The

largest clique in H is the vertex set of a line, and has size at most q. The largest

co-clique inH is a cap set inA(2, q) which is well known to have size at most q+2.

Hence h(H) ≤ q + 2 < n1/2 + n0.3
for sufficiently large n.

5.3.2 Forbidden sets of size 2

We will need the following special cases of results of de Caen [51] on the hypergraph

Turán problem and of Kostochka, Mubayi, and Verstraëte [97] on independent sets in

sparse hypergraphs.

Theorem 5.7 (de Caen [51]). Suppose that n > k ≥ 3 and H is an n-vertex 3-graph with
more than (1−

(
k−1

2

)−1
)(n3/6) edges. Then H contains a clique of size k.

Theorem 5.8 (Kostochka, Mubayi, Verstraëte [97]). Suppose thatH is an n-vertex 3-graph
in which every pair of vertices lies in at most d edges, where 0 < d < n/(log n)27. ThenH has
an independent set of size at least c

√
(n/d) log(n/d) where c is an absolute constant.

Proof of Theorem 5.4.

Case 1: Q = {(4, 0), (4, 2)}.
Using complementation,we consider a {(4, 2), (4, 4)}-free 3-graphH onnvertices.

Assume n is sufficiently large. We shall show that h(H) ≥ Cn1/5
, for some

constant C > 0. For a vertex v in H , let K be a clique in the link graph L(v)

of v. Then K is a co-clique in H , for an edge within K in H together with v
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yields a 4-clique in H . We will use this observation repeatedly. Suppose that the

complement ofH has (1−γ)(n3/6) edges for some 0 < γ < 1 and k ≥ 3 is defined

via

1(
k
2

) ≤ γ < 1(
k−1

2

) .
Then by Theorem 5.7, H has a co-clique of size at least k. If k > n1/5

, then we

are done so assume from now that k < n1/5
. As H has at least γn3/6 − n2/2

edges, by averaging, H has two vertices v, w whose common neighbourhood S

has size at least γn − 4. If LS(v) has an induced C4, then it induces a 4-clique in

H , for otherwise we obtain a (4, 2)-subgraph in H . Hence LS(v) has no induced

C4 and by known results (see, e.g. [85]) it has a homogeneous set T of size at least

c|S|1/3. If T is a clique in LS(v), then by our observation, T is a co-clique in H .

If T is a co-clique in LS(v), then T is a clique in LS(w) for otherwise we obtain

a (4, 2)-subgraph in H with v, w and two vertices in T . Again the observation

implies that T is a co-clique in H . Hence in both cases T is a co-clique in H and

h(H) ≥ |T | ≥ c|S|1/3 ≥ (c/2)(γn)1/3
. Since k < n1/5

, we have γ > n−2/5
and

h(H) > (c/2)n1/5
completing the proof.

Case 2: Q = {(4, 0), (4, 3)}.
We shall again consider the complementary case. Suppose thatH is a 3-graph on

n vertices that is {(4, 1), (4, 4)}-free. We will prove that h(H) ≥ n1/3
. Let y be an

arbitrary vertex of H and consider the link graph L(y) of y.

Assume that there is an induced 2K2 in L(y), i.e. that there is a set X of four

vertices inducing exactly two disjoint edges in L(y). Any three vertices in X

form an edge in H , otherwise these three vertices and y span exactly one edge in

H , a contradiction. Thus, X spans exactly 4 edges in H , a contradiction. Thus,

L(y) is 2K2-free. In the graph case it is known, that 2K2 has the Erdős-Hajnal

property, and in particular that any n-vertex graph with no induced 2K2 contains

a homogeneous set of size cn1/3
(see e.g. [85]). Thus, h(L(y)) ≥ cn1/3

.

Note that a 3-vertex clique in L(y) is not an edge in H , since otherwise there is

a 4-clique in H . Similarly, a 3-vertex co-clique in L(y) is not an edge in H , since

otherwise together with y it induces a (4, 1)-subgraph of H . Thus, any set of

vertices that is a clique in L(y) or an independent set in L(y) is an independent

set in H . Thus, h(H) ≥ h(L(y)) ≥ cn1/3
completing the proof.

Case 3: Q = {(4, 1), (4, 2)}.
We now prove c1(n log n)1/3 ≤ h(n, {(4, 1), (4, 2)}) = h(n, {(4, 3), (4, 2)}) ≤ n1/2 +

cn0.3. The upper bound follows immediately from the construction used in the

upper bound in (5.6) so we turn to the lower bound. Using (5.2), consider an
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n-vertex 3-graphH that is {(4, 2), (4, 3)}-free where n is sufficiently large. Let u, v

be a pair of vertices in H whose common neighbourhood S has maximum size

d > 0. Given vertices x, y ∈ S, the edges xyu and xyv are both inH else {u, v, x, y}
induces a (4, 2) or (4, 3)-graph. Next, any three vertices x, y, z ∈ S, must form

an edge of H otherwise {u, x, y, z} induces a (4, 3)-graph. Therefore S induces a

clique inH of size d. If d > n0.4
, say, then we are done as h(H) ≥ d. Recalling that

n is large enough, we may assume that d ≤ n0.4 < n/(log n)27
. Now Theorem 5.8

yields a co-clique in H of size at least c
√

(n/d) log n for some positive constant c.

Consequently, there is a constant c′ such that

h(H) ≥ max {d, c
√

(n/d) log n} > c′ (n log n)1/3.

Replacing c′ by a possibly smaller constant c1 yields the result for all n > 4.

Note that the set of maximal cliques in any {(4, 2), (4, 3)}-free 3-graphH forms a

linear (maybe non-uniform) hypergraphH. Thus, determining h(H) amounts to

finding max{t, |X|}, where t is the size of a largest hyperedge and X is a largest

set of vertices inH with no three in the same hyperedge.

Case 4: Q = {(4, 1), (4, 3)}.
Finally, we prove

1
2 log n ≤ h(n, {(4, 1), (4, 3)}) ≤ 4(log n)2

. For the lower bound

let H be an n-vertex Q-free 3-graph. Pick a vertex v in H and consider its link

graph L(v). Since R2(t, t) < 4t−1
(see Erdős and Szekeres [65]), we see that L(v)

has a clique or co-cliqueK of size at least
1
2 log n. In the first case,K is a clique in

H , else we find a (4, 3)-subgraph inH , and in the second case,K is a co-clique in

H , else we find a (4, 1)-subgraph in H .

We now turn to the upper bound. Let χ be a red/blue colouring of an n-vertex

complete graph on vertex set V in which every monochromatic clique has size at

most 2 log n. Such a colouring exists by the classical result of Erdős [53]. LetH be

the 3-graph on vertex set V whose edge set consists of all triples of vertices that

induce a triangle with one or three red edges under χ.

Consider four vertices x, y, z, and w of H and assume that xyz is an edge in H .

Then the triangle xyz has one or three red edges under χ. Assume that xy is

red. We need to treat two cases when xz and yz are blue and when xz and yz are

red. In each of these cases, consider the fourth vertex w and possible colours on

the edges from w to x, y and z. In each of these cases {x, y, z, w} induces exactly
two or exactly four edges. Thus, any four vertices ofH induce none, two, or four

edges. So, H is Q-free. Consider a homogeneous set S in H . If it is a clique, all

triangles with vertices in S have exactly one or three red edges under χ. Thus, the
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graph induced by S is a pairwise vertex-disjoint union of red cliques. Either one

of these red cliques has size at least

√
|S| or, by taking a single vertex from each

of these red cliques we see that there is a blue clique of size at least

√
|S| under χ.

Since each monochromatic clique in the colouring χ has size at most 2 log n, we

have that |S| ≤ 4(log n)2
. Similarly, if S is an independent set in H , all triangles

with vertices in S have exactly one or three blue edges under χ and again we get

that |S| ≤ 4(log n)2
.

5.3.3 Forbidden sets of size 3

We will need the following structural characterization of Q-free 3-graphs for Q =

{(4, 1), (4, 3), (4, 4)}.

Theorem 5.9 (Frankl, Füredi [74]). Let H be an {(4, 1), (4, 3), (4, 4)})-free 3-graph. Then
H is isomorphic to one of the following 3-graphs:

1. A blow-up of the 6 vertex 3-graphH ′ with vertex set V (H ′) = [6] and edge set E(H ′) =

{123, 124, 345, 346, 561, 562, 135, 146, 236, 245}. Here for the blow-up we replace every
vertex of H ′ by an independent set, and whenever we have 3 vertices from three distinct
of those sets, they induce an edge if and only if the corresponding vertices in H ′ do.

2. The 3-graph whose vertices are the points of a regular n-gon where 3 vertices span an edge
if and only if the corresponding points span a triangle whose interior contains the centre
of the n-gon.

Proof of Theorem 5.5.

Case 1: Q = {(4, 1), (4, 3), (4, 4)}.
We are to prove that

h(n, {(4, 0), (4, 1), (4, 3)}) = h(n,Q) =

n
2 if n ≡ 0 (mod 6)

dn+1
2 e if n 6≡ 0 (mod 6).

First, let us prove that the second 3-graph H in Theorem 5.9 has independence

number exactly d(n+ 1)/2)e. Assume the vertex set is [n] and the vertices are

labelled by consecutive integers in clockwise orientation. The lower bound is by

taking d(n+ 1)/2)e consecutive vertices on the n-gon and noting that no three

of them contain the centre in their interior. For the upper bound, let us see

how many vertices can lie in an independent set containing 1. When n is odd,

the triangle formed by {1, i, (n − 1)/2 + i} contains the centre and hence is an
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edge. Therefore we may pair the elements of [n] \ {1} as (2, (n + 3)/2), (3, (n +

5)/2), . . . , ((n+ 1)/2, n) and note that each pair can have at most one vertex in an

independent set containing 1. Hence the maximum size of an independent set

containing 1 is at most (n+1)/2 and by vertex transitivity ofH , the independence

number of H is at most (n + 1)/2. For n even we consider the n/2 − 1 pairs

(2, n/2 + 1), (3, n/2 + 2), . . . , (n/2, n − 1) and add the vertex n to get an upper

bound n/2 + 1 = d(n+ 1)/2)e.

Next we observe that the 6-vertex 3-graph H ′ in Theorem 5.9 has independence

number exactly 3 (we omit the short case analysis needed for the proof). Hence if

we blow-up each vertex of H ′ into sets of the same size, then we obtain n-vertex

3-graphs with independence number exactly n/2 whenever n ≡ 0 (mod 6). This

concludes the proof of the upper bound.

For the lower bound, let H be Q-free. Then by Theorem 5.9, H is isomorphic

to one of the two graphs described in Theorem 5.9. If H is isomorphic to the

second graph, then we have already shown that its independence number is at

least (n + 1)/2, so assume that H is isomorphic to the blow-up of the 6-vertex

10-edge 3-graphH ′. There are 10 non-edges inH ′. Let V1, . . . , V6 be the blown-up

vertex sets. Since every vertex i ∈ [6] in H ′ is contained in exactly 5 non-edges,

we obtain

5n = 5
∑
i∈[6]

|Vi| =
∑

j1j2j3 6∈E(H)

|Vj1 |+ |Vj2 |+ |Vj3 |.

By the pigeonhole principle, there is a non-edge i1i2i3, such that |Vi1 | + |Vi2 | +
|Vi3 | ≥ n/2. Our bound follows by observing that for any non-edge i1i2i3 in the

original 3-graph H ′ the set Vi1 ∪ Vi2 ∪ Vi3 is an independent set. This gives an

independent set of size at least n/2, and if n 6≡ 0 (mod 6), then equality cannot

hold throughout (a short case analysis, which we omit, is needed to prove this)

and we obtain an independent set of size strictly greater than n/2 as required.

Case 2: Q = {(4, 0), (4, 2), (4, 3)}.
We now prove h(n, {(4, 0), (4, 2), (4, 3)}) = n − 1, for n ≥ 4. Let H be a 3-graph

that is a clique on n − 1 vertices and a single isolated vertex, then H is Q-free,

giving us the upper bound.

For the lower bound, letH be a Q-free 3-graph on n vertices, n ≥ 4. Assume that

H is not a clique and not a co-clique. We shall show thatH is a clique and a single

isolated vertex. Consider a maximal clique S inH . Since |S| < n, there is a vertex

v ∈ V (H) \ S. From the maximality of S, LS(v) is not a clique. If LS(v) contains

an edge, then we have that for some vertices x, y, y′, xy ∈ E(LS(v)) and xy′ 6∈
E(LS(v)). But then {v, x, y, y′} induces a (4, 2) or a (4, 3)-graph, a contradiction.
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Thus, LS(v) is an empty graph, i.e. there is no edge in H containing v and two

vertices of S. Now assume there exists a second vertex v′ ∈ V (H) \ (S ∪ {v}).
Then by the same argument as above, v′ is also not contained in any edgewith two

vertices from S. Consider triples vv′x, x ∈ S. Since |S| ≥ 3, by the pigeonhole

principle there are two vertices x, x′ ∈ S such that either vv′x, vv′x′ ∈ E(H)

or vv′x, vv′x′ 6∈ E(H). Then {v, v′, x, x′} induces 2 or 0 edges respectively, a

contradiction. Thus, |S| = n− 1 and v is an isolated vertex.

5.4 Concluding remarks

For r = 3wehave determined for each familyQ of order-size pairswith order 4whether

it has the EH-property. However, there remain some gaps between the upper and lower

bounds on h3(n,Q) for some families Qwith |Q| ∈ {1, 2}:

Open Problem 5.10. Improve the exponent 1/2 in the lower bound on h3(n, 4, 1).

Open Problem 5.11. Prove or disprove that

• h3(n, {(4, 0), (4, 2)}) = n1/2+o(1),

• h3(n, {(4, 0), (4, 3)}) = n1+o(1),

• h3(n, {(4, 1), (4, 2)}) = n1/2+o(1).

Fix integers m > r. Say that a set Q of order size pairs {(m, f1), . . . , (m, ft)} is

Erdős-Hajnal (EH) if there exists ε = εQ such that hr(n,Q) > nε. As |Q| grows, the

collection of Q-free r-graphs is more restrictive, and hence hr(n,Q) grows (assuming

that large Q-free r-graphs are not forbidden to exist by Ramsey’s theorem). The case

when hr(n,Q) = Ω(n) was treated by Axenovich and Balogh [9] when r = 2. A natural

question then is to ask what is the smallest t such that every Q of size t is EH. Call this

minimum value EHr(m). Our results for r = 3 show that form = 4, all Q of size 3 are

EH, but there are Q of size 2 which are not EH. Consequently, EH3(4) = 3.

In order to further study EHr(m), we need another definition. Given integers

m ≥ r ≥ 3, let gr(m) be the number of edges in an r-graph on m vertices obtained by

first taking a partition of the m vertices into almost equal parts, then taking all edges

that intersect each part, and then recursing this construction within each part. For

example, g3(7) = 13 since we start with a complete 3-partite 3-graph with part sizes

2, 2, 3 and then add one edge within the part of size 3. It is known (see, e.g. [109]) that
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as r grows we have

gr(m) = (1 + o(1))
r!

rr − r

(
m

r

)
.

Note that
r!

rr−r approaches 0 as r grows. Mubayi and Razborov [109] proved that for all

fixed m > r > 3, there are n-vertex r-graphs which are Q-free, Q = {(m, i) : gr(m) <

i ≤
(
m
r

)
}, with h(G) = O(log n). In other words, there exists Q of size

(
m
r

)
− gr(m)

which is not EH. This proves that EHr(m) ≥
(
m
r

)
− gr(m) + 1.

Erdős and Hajnal [58] proved that for all m > r ≥ 3, the set Q = {(m, i) : gr(m) ≤
i ≤

(
m
r

)
} is EH. In other words, they proved that every n-vertex r-graph in which every

set ofm vertices spans less then gr(m) edges has an independent set of size at least nε,

where ε depends only on r andm. This is a particular setQ of size

(
m
r

)
− gr(m) + 1 that

is EH and we speculate that every other set Q of this size is also EH.

Open Problem 5.12. Prove or disprove that for allm > r > 2,

EHr(m) =

(
m

r

)
− gr(m) + 1.

We end by noting that EH3(4) = 3 =
(

4
3

)
− g3(4) + 1.



Part II

Order-size pairs: absolute avoidability and forcing densities

Introduction and basic notions

One of the central topics of graph theory deals with properties of classes of graphs

that contain no subgraph isomorphic to some given fixed graph, see for example Bol-

lobás [26]. Similarly, graphs with forbidden induced subgraphs have been investigated

from several different angles – enumerative, structural, algorithmic, and more. One

famous example are Erdős-Hajnal-type problems, like the ones discussed in Part I of

this thesis.

Erdős, Füredi, Rothschild and Sós [56] initiated a study of a seemingly simpler

class of graphs that do not forbid a specific induced subgraph, but rather forbid any

induced subgraph on a given numberm of vertices and number f of edges. Following

their notation we say a graph G arrows a pair of non-negative integers, an order-size

pair (m, f), and write G → (m, f) if G has an induced subgraph on m vertices and

f edges. We say that a pair (n, e) of non-negative integers arrows the pair (m, f), and

write (n, e)→ (m, f), if for any graph G on n vertices and e edges, G→ (m, f).

As an example, if t(n,m− 1) denotes the number of edges in the complete balanced

(m − 1)-partite graph on n vertices, T2(n,m − 1), then by Turán’s Theorem [122] we

know that any graph on n vertices with more than t(n,m− 1) edges contains a copy of

Km. On the other hand, for any e ≤ t(n,m− 1) there exists a subgraph of T2(n,m− 1)

with e edges, which does not contain a copy of Km. Equivalently stated, we have

(n, e)→ (m,
(
m
2

)
) if and only if e > t(n,m− 1).

For a fixed pair (m, f) let Sn(m, f) = {e : (n, e) → (m, f)} and define the forcing
density

σ(m, f) = lim sup
n→∞

|Sn(m, f)|/
(
n

2

)
.
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In [56] the authors considered σ(m, f) for different choices of (m, f). One of their main

results is

Theorem 0.4 (Erdős, Füredi, Rothschild, Sós [56]).

If (m, f) 6∈ {(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}, then σ(m, f) ≤ 2
3 ; otherwise σ(m, f) = 1.

On the other hand, they showed that there are infinitely many pairs of positive

forcing density, in particular there are infinitely many pairs (m, f) with σ(m, f) ≥ 1
8 .

He, Ma and Zhao [88] improved this result, by showing that there are infinitely many

pairs (m, f) with σ(m, f) ≥ 1
2 . They also improved the upper bound 2/3 to 1/2 and

showed that there are infinitely many pairs for which the equality σ(m, f) = 1
2 holds.

Erdős, Füredi, Rothschild and Sós [56] also gave a construction demonstrating that

“most of the” forcing densities σ(m, f) are 0, by showing that for large n almost all

pairs (n, e) can be realised as the vertex-disjoint union of a clique and a high-girth

graph, and that for fixed m most pairs (m, f) cannot be realised as the vertex-disjoint

union of a clique and a forest. For some other results concerning sizes of induced

subgraphs, see for example Alon and Kostochka [4], Alon, Balogh, Kostochka and

Samotĳ [3], Alon, Krivelevich and Sudakov [5], Axenovich and Balogh [9], Bukh and

Sudakov [32], Kwan and Sudakov [100,101], Baksys andChen [18] for a similar result for

bipartite graphs, and Narayanan, Sahasrabudhe and Tomon [111]. A similar question

on avoidable order-size pairs was considered by Caro, Lauri and Zarb [38] for the class

of line graphs.

In Chapter 6 we investigate the existence of pairs (m, f) for which we not only have

σ(m, f) = 0, but the stronger property Sn(m, f) = ∅ for all sufficiently large n; we

call such pairs absolutely avoidable. We show that there exist infinitely many absolutely

avoidable pairs. Moreover, we give an infinite set of unavoidable pairs of the form

(m,
(
m
2

)
/2). We also show that for any m sufficiently large, there exists some f for

which the pair (m, f) is absolutely avoidable.

In Chapter 7 we will consider a variant of the problem in the bipartite setting. We

only consider a balanced version here, i.e. a bipartite order-size pair (m, f) is the class

of all bipartite graphs with m vertices in each part and f edges. We use analogous

definitions of avoidability and the bipartite forcing density σbip(m, f). It would be

interesting to show whether there are also absolutely avoidable pairs in the bipartite

setting. Unfortunately we cannot use our method from Chapter 6 to find such pairs.

However, we can show that there exist infinitely many bipartite pairs (m, f) for which

σbip(m, f) = 0 holds. On the other hand, there also exist infinitely many pairs (m, f)

with σbip(m, f) = 1.
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Finally we focus our attention on forbidden order-size pairs in hypergraphs. We

extend our definitions to r-uniform hypergraphs as follows:

We say an r-graph, G arrows a pair of non-negative integers (m, f) and write G→r

(m, f) if G has an induced sub-hypergraph on m vertices and f hyperedges. We say

that a pair (n, e) of non-negative integers arrow (or simply induces) the pair (m, f), and

write

(n, e)→r (m, f)

if for any r-graph G on n vertices and e edges, G →r (m, f). We say a pair (n, e) is

realised by an r-graph G if G has n vertices and e edges. If r is clear from the context,

we might omit the index and simply write (n, e) → (m, f). A pair (m, f) is absolutely
r-avoidable (or just absolutely avoidable, if the uniformity is clear from the context) if

for all n sufficiently large, we have {e : (n, e) →r (m, f)} = ∅. The forcing density of a

pair (m, f) is

σr(m, f) = lim sup
n→∞

|{e : (n, e)→r (m, f)}|(
n
r

) .

In Chapter 8 we show that for any r ≥ 3 there existsm0 such that for everym ≥ m0

either (m, b
(
m
r

)
/2c) or (m, b

(
m
r

)
/2c −m− 1) is absolutely avoidable. We further show,

for any r,m ∈ N, r,m ≥ 3, all but at most m
r
r−1 of all possible

(
m
r

)
pairs (m, f) have

forcing density σr(m, f) = 0. We also give some general upper bounds on σr(m, f) and

show that there exists no non-trivial pair with σr(m, f) = 1.

Chapter 8 raises the question whether for r ≥ 3 there exists any non-trivial pair

(m, f) with σr(m, f) > 0 at all and identifies some candidate pairs, the smallest being

(6, 10) for r = 3. In Chapter 9 we answer the question in the affirmative and prove that

σ3(6, 10) > 0 indeed. We also give more precise upper and lower bounds on σ3(6, 10)

and prove some conditions any other pair (m, f) must satisfy to have forcing density

σr(m, f) > 0.
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Chapter 6 Order-size pairs in graphs: absolutely avoidable

pairs and forcing densities

6.1 Introduction

In this chapter we investigate the existence of pairs (m, f) for which we not only have

σ(m, f) = 0, but the stronger property Sn(m, f) = ∅ for large n.

Definition 6.1. A pair (m, f) is absolutely avoidable if there is n0 such that for each n > n0

and for any e ∈ {0, . . . ,
(
n
2

)
}, (n, e) 6→ (m, f).

Our results show that there are infinitely many absolutely avoidable pairs. Our

first result gives an explicit construction of infinitely many absolutely avoidable pairs

(m,
(
m
2

)
/2). The second one provides an existence result of infinitely many absolutely

avoidable pairs (m, f), where f is “close” to

(
m
2

)
/2. Finally, the last result shows that for

every sufficiently largem at least one of the pairs (m,
⌊(
m
2

)
/2
⌋
) and (m,

⌊(
m
2

)
/2
⌋
− 6m)

is absolutely avoidable.

For the first result we need to define the following setM of integers. Let

M =

{
1

2

((
1 0

)
·

(
3 4

2 3

)s
·

(
3

1

)
+ 5

)
: s ∈ N, s ≥ 2

}
.

In particular, we haveM = {40, 221, 1276 . . .}.

Theorem 6.2. For any m ∈ M , f =
(
m
2

)
/2 is an integer and the pair (m, f) is absolutely

avoidable.

Theorem 6.3. For anymonotone integer valued function q(m) such that |q(m)| = O(m), there
are infinitely many values ofm, such that the pair (m,

(
m
2

)
/2− q(m)) is absolutely avoidable.

Moreover, there are infinitely many values of m, such that for any integer f ′ ∈ (
(
m
2

)
/2 −

0.175m,
(
m
2

)
/2 + 0.175m) the pair (m, f ′) is absolutely avoidable.

Theorem 6.4. For any m ≥ 754 either (m,
⌊(
m
2

)
/2
⌋
) or (m,

⌊(
m
2

)
/2
⌋
− 6m) is absolutely

avoidable.

Theorems 6.2 and 6.3 are joint work with Axenovich and appear in [16], together

with Theorem 6.4 form ≡ 0, 1 (mod 4):
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Proposition 6.5. For anym ≥ 740withm ≡ 0, 1 (mod 4) either (m,
(
m
2

)
/2) or (m,

(
m
2

)
/2−

6m) is absolutely avoidable.

The result is obtained for m ≡ 2, 3 (mod 4) in a very similar way by carefully

changing some of the constants involved. The proof does not appear in [16], but we

include it here for completeness.

Proposition6.6. For anym ≥ 754withm ≡ 2, 3 (mod 4) either (m,
⌊(
m
2

)
/2
⌋
) or (m,

⌊(
m
2

)
/2
⌋
−

6m) is absolutely avoidable.

The main idea of the proofs is that for certain pairs (m, f), there is no graph on

m vertices and f edges which is the vertex-disjoint union of a clique and a forest or a

complement of a vertex-disjoint union of a clique and a forest. In order to do so, we

need several number theoretic statements that we prove in several lemmata. After that,

we use the observation Erdős, Füredi, Rothschild and Sós [56], that for any sufficiently

large n, and any e ≤ c
(
n
2

)
, for any 0 ≤ c < 1, there is a graph on n vertices and e

edges that is the vertex-disjoint union of a clique and a graph of girth greater than m.

In particular, any m-vertex induced subgraph of such a graph is a disjoint union of a

clique and a forest. Considering the complements, we deduce that (m, f) is absolutely

avoidable.

This chapter is structured as follows. We state and prove the lemmata in Section 6.2,

prove Theorems 6.2 and 6.3, Proposition 6.5 andProposition 6.6 in Section in Section 6.3.

Section 6.4 provides final remarks and open questions.

6.2 Lemmata and number theoretic results

We say that a pair (m, f) is realisable by a graph H = (V,E) if |V (H)| = m and

|E(H)| = f . Recall that for x ∈ R the fractional part of x is denoted by {x}. A real-

valued sequence (xn)n∈N is called uniformly distributed modulo 1 (we write u.d. mod 1)

if for any pair of real numbers s, twith 0 ≤ s < t ≤ 1 we have

lim
N→∞

|{n : 1 ≤ n ≤ N, {xn} ∈ [s, t)}|
N

= t− s.

We will use the following facts:

Lemma 6.7. (a) The sequence (xn) = αn is u.d. mod 1 for any α ∈ R \Q.

(b) If a real-valued sequence (xn) is u.d. mod 1 and a real-valued sequence (yn) has the
property lim

n→∞
(xn − yn) = β, a real constant, then (yn) is also u.d. mod 1.
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For proofs of these facts see for example Theorem 1.2 and Example 2.1 in [99]. The

following lemma is given in [56], we include it here for completeness.

Lemma 6.8. Let p ∈ N and c be a constant 0 ≤ c < 1. Then for n ∈ N sufficiently large and
any e ∈ [c

(
n
2

)
], there exists a non-negative integer k and a graph on n vertices and e edges which

is the vertex-disjoint union of a clique of size k and a graph on n− k vertices of girth at least p.

Proof. Let p > 0 be given. Weuse the fact that for any v large enough there exists a graph

of girth p on v vertices with v
1+ 1

2p edges. For a probabilistic proof of this fact see for

example Bollobás [26] and for an explicit construction see Lazebnik et al. [102]. Let n be

a given sufficiently large integer. Let e ∈ [c
(
n
2

)
]. Let k be a non-negative integer such that(

k
2

)
≤ e ≤

(
k+1

2

)
−1. Note that since e ≤ c

(
n
2

)
,

(
k
2

)
≤ c
(
n
2

)
, thus, k ≤

√
cn+1 ≤ c′n, where

c′ is a constant, c′ < 1. We claim that (n, e) could be represented as a vertex-disjoint

union of a clique on k vertices and a graph of girth at least p. For that, consider a graph

G′ on n− k vertices and girth at least p such that |E(G′)| ≥ (n− k)
1+ 1

2p . Consider G′′,

the vertex-disjoint union of G′ andKk. Then |E(G′′)| ≥
(
k
2

)
+ (n− k)

1+ 1
2p ≥

(
k+1

2

)
≥ e.

Here, the second inequality holds since (n−k)
1+ 1

2p ≥ k for k ≤ c′n and n large enough.

Finally, let G be a subgraph of G′′ on e edges, obtained from G′′ by removing some

edges of G′. Thus, G is the vertex-disjoint union of a clique on k vertices and a graph

of girth at least p.

We shall need two number theoretic lemmata for the proof of themain result. Below

the setM is defined as in the introduction.

Lemma 6.9. For any m ∈ M , m is a positive integer congruent to 0 or 1 modulo 4, and
√

2m2 − 10m+ 9 is an odd integer for eachm ∈M .

Proof. Recall that M =

{
1
2

((
1 0

)
·

(
3 4

2 3

)s
·

(
3

1

)
+ 5

)
: s ∈ N, s ≥ 2

}
. We see,

thatM corresponds to the following recursion: (x0, y0) = (3, 1) and for s ≥ 0

xs+1 = 3xs + 4ys

ys+1 = 2xs + 3ys.

I.e., for s ≥ 0, (
xs

ys

)
=

(
3 4

2 3

)s
·

(
3

1

)
.

Indeed,M = {(xs + 5)/2 : s ≥ 2}.
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From the recursionwe see that x2s ≡ 3 (mod 8), x2s+1 ≡ 5 (mod 8), y4s = y4s+1 ≡ 1

(mod 8), and y4s+2 = y4s+3 ≡ 5 (mod 8) for s ∈ N0. In particular ys is an odd integer.

Let ms = (xs + 5)/2, i.e.M = {ms : s ≥ 2}.When s is even, ms ≡ 0 (mod 4), and if s

is odd,ms ≡ 1 (mod 4). This proves the first statement of the lemma.

Next, we observe that (x, y) = (xs, ys) gives an integer solution to the generalized

Pell’s equation

x2 − 2y2 = 7. (∗)

Indeed, (x, y) = (x0, y0) = (3, 1) satisfies (∗). Assume that (x, y) = (xs, ys) satisfies (∗).
Let (x, y) = (xs+1, ys+1) and insert it into the left hand side of (∗). Then we have

x2
s+1 − 2y2

s+1 = 9x2
s + 24xsys + 16y2

s − 8x2
s − 24xsys − 18y2

s = x2
s − 2y2

s = 7.

Thus, (x, y) = (xs+1, ys+1) also satisfies (∗).

Since (xs, ys) satisfies (∗), we have that ys =
√

1
2(x2

s − 7). Then

ys =

√
1

2
((2ms − 5)2 − 7) =

√
1

2
(4m2

s − 20ms + 18) =
√

2m2
s − 10ms + 9.

Since ys is an odd integer, the second statement of the lemma follows.

For the next lemmata and theorems we will need the following definitions. Let

m, q ∈ Z,m ≥ 5 + 2
√
|q|. Let

yq(m) =

√
2m2−10m−8q+9

2 , zq(m) =

√
2m2−2m−8q+1

2 ,

tq(m) = zq(m)− yq(m), dq(m) = 3
2 − tq(m),

Lq(m) =
⌊

5
2 + yq(m)

⌋
, Rq(m) =

⌊
1
2 + zq(m)

⌋
.

Note that sincem ≥ 5 + 2
√
|q|, we always have yq(m), zq(m) ∈ R.

Lemma6.10. Let q = q(m),m ∈ Z,m ≡ 0, 1 (mod 4),m ≥ 5+2
√
|q|, and |q(m)| = O(m).

(a) We have tq(m) =
2
√

2(1− 1
m

)√
1− 1

m
+

1−8q
2m2 +

√
1− 5

m+
9−8q
2m2

. In particular, lim
m→∞

dq(m) = 3
2 −
√

2.

(b) We have Lq(m) > Rq(m) if and only if {yq(m)} ∈ [0, dq(m)) ∪
[

1
2 , 1
)
. In particular,

L0(m) > R0(m) ifm ∈M .
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Proof. We start by proving (a). By definition of tq(m) we have

tq(m) = zq(m)− yq(m)

=
1

2

√
2m2 − 2m− 8q + 1− 1

2

√
2m2 − 10m− 8q + 9

=
1

2

2m2 − 2m− 8q + 1− 2m2 + 10m+ 8q − 9√
2m2 − 2m− 8q + 1 +

√
2m2 − 10m− 8q + 9

=
2
√

2(1− 1
m)√

1− 1
m + 1−8q

2m2 +
√

1− 5
m + 9−8q

2m2

.

This also shows that for |q| = |q(m)| ∈ O(m), lim
m→∞

dq(m) = 3
2− lim

m→∞
tq(m) = 3

2−
√

2,

which concludes the proof of (a).

Now we can prove part (b). From part (a) we have in particular that tq(m) =
√

2 + εq(m), where for m sufficiently large |εq(m)| < 0.05, and thus, tq(m) ∈ (1, 3
2).

Thus, dq(m) = 3
2 − tq(m) ∈ (0, 1

2) for sufficiently large m. We compare Lq(m) and

Rq(m) using the expression x = bxc+ {x}:

Lq(m) =

⌊
5

2
+ yq(m)

⌋
= 2 + byq(m)c+

⌊
1

2
+ {yq(m)}

⌋

= 2 + byq(m)c+

0, {yq(m)} ∈ [0, 1
2)

1, {yq(m)} ∈ [1
2 , 1)

,

Rq(m) =

⌊
1

2
+ zq(m)

⌋
=

⌊
1

2
+ yq(m) + tq(m)

⌋
= byq(m)c+

⌊
1

2
+ tq(m) + {yq(m)}

⌋

= byq(m)c+

1, tq(m) + {yq(m)} ∈ [1, 3
2)

2, tq(m) + {yq(m)} ∈ [3
2 ,

5
2)
.
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Thus,

Lq(m)−Rq(m) = 2 +



0− 1, {yq(m)} ∈ [0, 1
2) and tq(m) + {yq(m)} ∈ [1, 3

2)

0− 2, {yq(m)} ∈ [0, 1
2) and tq(m) + {yq(m)} ∈ [3

2 ,
5
2)

1− 1, {yq(m)} ∈ [1
2 , 1) and tq(m) + {yq(m)} ∈ [1, 3

2)

1− 2, {yq(m)} ∈ [1
2 , 1) and tq(m) + {yq(m)} ∈ [3

2 ,
5
2)

.

So, Lq(m)−Rq(m) > 0 in all cases except for the second one, i.e. if and only if

{yq(m)} ∈ [0, 1) \
([

0, 1
2

)
∩
[

3
2 − tq(m), 5

2 − tq(m)
))

=
[

1
2 , 1
)
∪ ([0, 1) \ [dq(m), 1 + dq(m)))

=
[

1
2 , 1
)
∪ [0, dq(m)).

Now letm ∈M and consider y0(m) =
√

2m2−10m+9
2 . Then by Lemma 6.9, 2y0(m) is

an odd integer for all m ∈ M , i.e. {y0(m)} = 1
2 . Thus, we have L0(m) > R0(m) for all

m ∈M , which concludes the proof of (b).

Lemma 6.11. If q = q(m) ∈ Z, m ∈ N, m ≡ 0, 1 (mod 4), m ≥ 2
√
|q| + 5, and Lq(m) >

Rq(m), then the pair (m,
(
m
2

)
/2− q) cannot be realised as the vertex-disjoint union of a clique

and a forest.

Proof. Let f =
(
m
2

)
/2 − q. Suppose that (m, f) can be realised as the vertex-disjoint

union of a clique K on x vertices and a forest F onm− x vertices. We shall show that

Lq(m) ≤ Rq(m).

Claim 1: x ≥ Lq(m).

Proof. The forest F has f −
(
x
2

)
=
(
m
2

)
/2− q −

(
x
2

)
edges. Since F hasm− x vertices, it

contains strictly less thanm−x edges. Thus, we have

(
m
2

)
/2− q−

(
x
2

)
< m−x. Solving

for x gives

x >
3

2
+

1

2

√
2m2 − 10m− 8q + 9 or x <

3

2
− 1

2

√
2m2 − 10m− 8q + 9.

Since m ≥ 2
√
|q| + 5, we have 2m2 − 10m − 8q + 9 ≥ 9. The second inequality gives

x < 3
2 −

1
2

√
2m2 − 10m− 8q + 9, and thus, x < 0, a contradiction. So only the first
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inequality for x holds and implies that

x ≥

⌊
3 +

√
2m2 − 10m− 8q + 9

2

⌋
+ 1 = Lq(m),

which proves Claim 1. �

Claim 2: x ≤ Rq(m).

Proof. The number of edges in the clique K is at most f and exactly

(
x
2

)
. Thus,

(
x
2

)
≤

f =
(
m
2

)
/2− q,which implies that 2x(x− 1) ≤ m(m− 1)− 4q. This in turn gives

x ≤

⌊
1 +

√
2m2 − 2m− 8q + 1

2

⌋
= Rq(m),

and proves Claim 2. �

Claims 1 and 2 imply that Lq(m) ≤ Rq(m).

Lemma 6.12. Let q = q(m) ∈ Z, m ∈ N, m ≡ 0, 1 (mod 4), m ≥ 2
√
|q| + 5. If both

Lq(m) > Rq(m) and L−q(m) > R−q(m), then the pair (m, f) = (m,
(
m
2

)
/2−q) is absolutely

avoidable.

Proof. Let m satisfy the condition of the lemma and let f− =
(
m
2

)
/2 − q and f+ =(

m
2

)
/2 + q. Then by Lemma 6.11, neither (m, f+) nor (m, f−) can be represented as the

vertex-disjoint union of a clique and a forest.

By Lemma 6.8, for every sufficiently large n, and all e ≤
⌈(
n
2

)
/2
⌉
we can realise (n, e)

as the vertex-disjoint union of a clique and a graph of girth greater than m. Thus, for

each e ∈ {0, 1, . . . ,
(
n
2

)
} there is a graph G on n vertices and e edges such that either G

or the complement G of G is a vertex-disjoint union of a clique and a graph of girth

greater thanm.

IfG is the vertex-disjoint union of a clique and a graph of girth greater thanm, then

anym-vertex induced subgraph of G is a vertex-disjoint union of a clique and a forest.

Since (m, f−) cannot be represented as a clique and a forest, we have G 6→ (m, f−). If

G is the vertex-disjoint union of a clique and a graph of girth greater than m, then as

above G 6→ (m, f+). Since f− =
(
m
2

)
− f+, we have that G 6→ (m, f−). Thus, (m, f−) is

absolutely avoidable.
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6.3 Proofs of the main theorems

Proof of Theorem 6.2. Let m ∈ M . By Lemma 6.9 we have m ≡ 0, 1 (mod 4), so f =(
m
2

)
/2 is an integer. By Lemma 6.10(b) we have L0(m) > R0(m). Now we can apply

Lemma 6.12 with q = 0. Thus, the pair (m, f) is absolutely avoidable.

Proof of Theorem 6.3. Let q = q(m) ∈ Z, |q(m)| ∈ O(m), be a monotone function. Recall

that yq(m) = 1
2

√
2m2 − 10m+ 9− 8q. Let a = lim

m→∞
q(m)
m .

Claim1: lim
m→∞

(
m√

2
− yq(m)

)
= 5

2
√

2
+
√

2a and lim
m→∞

(
m√

2
− y−q(m)

)
= 5

2
√

2
−
√

2a.

Observe that

lim
m→∞

(
m√

2
− yq(m)

)
= lim

m→∞

m√
2

(
1−

√
1− 5

m
+

9− 8q

2m2

)

= lim
m→∞

m√
2

5
m −

9−8q
2m2

1 +
√

1 + 5
m + 9−8q

2m2

=
5

2
√

2
+ lim
m→∞

√
2q

m

=
5

2
√

2
+
√

2a.

Doing a similar calculation for y−q(m) proves Claim 1. �

Claim 2: yq(4m) and y−q(4m) are u.d. mod 1; in particular, y0(4m) is u.d. mod 1.

Since
1√
2
∈ R \ Q, by Lemma 6.7(a) the sequence (x4m) = (4m)/

√
2 is u.d. mod 1.

Sincewe have lim
m→∞

(x4m−yq(4m)) = 5+2
√

2a
2
√

2
∈ R and lim

m→∞
(x4m−y−q(4m)) = 5−2

√
2a

2
√

2
∈

R, by Lemma 6.7(b) (yq(4m)) and (y−q(4m)) are also u.d. mod 1. This proves Claim 2.

�

Now, to prove the first part of the theorem, from Lemma 6.12 it suffices to find

infinitely many integers m such that for q = q(m), Lq(m) > Rq(m) and L−q(m) >

R−q(m).

By Lemma 6.10(a), we have that lim
m→∞

dq(m) = lim
m→∞

d−q(m) = 3/2−
√

2. Letm0 be

large enough so that for any m ≥ m0, dq(m) and d−q(m) are close to these limits, i.e.

|dq(m)− (3/2−
√

2)| < (3/2−
√

2)/3 and |d−q(m)− (3/2−
√

2)| < (3/2−
√

2)/3.

Let δ > 0 be a small constant such that δ < (3/2 −
√

2)/2, 2δ < 1 − {
√

2a} and if

{
√

2a} < 1/2, then δ < 1/2 − {
√

2a}. In addition assume that δ is sufficiently small
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that for any m ≥ m0, δ < dq(m)/3, and δ < d−q(m)/3. Using Claim 1, define mδ to be

sufficiently large, so that mδ > m0 and for any m ≥ mδ, yq(m) − m√
2
and y−q(m) − m√

2

are δ-close to the limiting values:

yq(m) ∈
((

m√
2
− 5

2
√

2
−
√

2a

)
− δ,

(
m√

2
− 5

2
√

2
−
√

2a

)
+ δ

)
and

y−q(m) ∈
((

m√
2
− 5

2
√

2
+
√

2a

)
− δ,

(
m√

2
− 5

2
√

2
+
√

2a

)
+ δ

)
.

We distinguish two cases based on the values of a:

Case 1: {
√

2a} ∈ [0, 1
4) ∪ [1

2 ,
3
4), i.e. {2

√
2a} ∈ [0, 1

2).

Since
4m√

2
− 5

2
√

2
is a sequence u.d. mod 1, there is an infinite setM1 of integers at

leastmδ, such that for anym ∈M1

4m√
2
− 5

2
√

2
∈ (km + 1/2 + {

√
2a}+ δ, km + 1/2 + {

√
2a}+ 2δ),

for some integer km. Then we have

yq(4m) ∈
(

(1/2 + km + {
√

2a}+ δ)−
√

2a− δ, (1/2 + km + {
√

2a}+ δ)−
√

2a+ δ
)
,

y−q(4m) ∈
(

(1/2 + km + {
√

2a}+ δ) +
√

2a− δ, (1/2 + km + {
√

2a}+ δ) +
√

2a+ δ
)
.

This implies that

{yq(4m)}, {y−q(4m)} ∈ [1/2, 1) .

From Lemma 6.10(b), Lq(4m) > Rq(4m) and L−q(4m) > R−q(4m). Note that f =(
4m
2

)
/2− q(4m) is an integer. Thus, by Lemma 6.12 the pair

(
4m,

(
4m
2

)
/2− q(4m)

)
is absolutely avoidable for anym ∈M1.

Case 2: {
√

2a} ∈ [1
4 ,

1
2) ∪ [3

4 , 1), i.e. {2
√

2a} ∈ [1
2 , 1).

Since
4m√

2
− 5

2
√

2
is a sequence is u.d. mod 1, there is an infinite setM2 of integers

at leastmδ, such that for anym ∈M2

4m√
2
− 5

2
√

2
∈ (km + {

√
2a}+ δ, km + {

√
2a}+ 2δ),
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for some integer km. Then we have

yq(4m) ∈
(

(km + {
√

2a}+ δ)−
√

2a− δ, (km + {
√

2a}+ δ)−
√

2a+ δ
)

and

y−q(4m) ∈
(

(km + {
√

2a}+ δ) +
√

2a− δ, (km + {
√

2a}+ δ) +
√

2a+ δ
)
.

This implies that

{yq(4m)} ∈ [0, 2δ) , {y−q(4m)} ∈ [1/2, 1) .

Recall that for any m > mδ, δ < dq(m)/3. Thus, {y−q(4m)} ∈ [1/2, 1) and

{yq(4m)} ∈ [1/2, 1) ∪ [0, dq(4m)). From Lemma 6.10(b), Lq(4m) > Rq(4m) and

L−q(4m) > R−q(4m). Note that f =
(

4m
2

)
/2 − q(4m) is an integer. Thus, by

Lemma 6.12 the pair(
4m,

(
4m
2

)
/2− q(4m)

)
is absolutely avoidable for anym ∈M2.

This proves the first part of the theorem.

For the second part, let c = 0.175 < 1
4
√

2
. We shall show that there is an infinite set

M0 of integers such that for any m ∈ M0 and for all integers q ∈ (−cm, cm), the pair

(m,
(
m
2

)
/2 − q) is absolutely avoidable. In order to do that, we shall show that y0(m)

does not differ much from yq(m), for chosen values ofm.

Recall that limm→∞ dq(m) = 3/2−
√

2 > 0 for any q ∈ (−cm, cm). Thus, the interval[
3
4 ,

3
4 + dq(m)

)
has positive length for any such q and sufficiently large m. By Claim

2 the sequence y0(4m) is u.d. mod 1, thus, there are infinitely many values of m that

m ≡ 0 (mod 4) and {y0(m)} ∈
[

3
4 ,

3
4 + dq(m)

)
. Now our choice for m will allow us to

use Lemmata 6.10, 6.11 and 6.12.

Let q ∈ (−cm, cm). It will be easier for us to deal with yq(m) − y0(m) instead of

yq(m). Let sq(m) = yq(m)− y0(m). We have

lim
m→∞

sq(m) = lim
m→∞

(yq(m)− y0(m))

= lim
m→∞

1

2

(√
2m2 − 10m+ 9− 8q −

√
2m2 − 10m+ 9

)
= −

√
2 lim
m→∞

q

m
.

Thus, since q ∈ (−cm, cm), c = 0.175 < 1
4
√

2
, for m sufficiently large we have

sq(m) ∈
(
−1

4 ,
1
4

)
. Since yq = sq(m)+y0(m), and {y0(m)} ∈

[
3
4 ,

3
4 + dq(m)

)
, we have that

{yq} = {sq(m)+y0(m)} ∈ [0, dq(m))∪[1
2 , 1). Lemma6.10(b) implies thatLq(m) > Rq(m)
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and L−q(m) > R−q(m). Lemmata 6.11 and 6.12 then imply that (m,
(
m
2

)
/2 − q) is

absolutely avoidable.

Proof of Proposition 6.5. Letm ≥ 740,m ≡ 0, 1 (mod 4). IfL0(m) > R0(m), byLemma6.12

(m,
(
m
2

)
/2) is absolutely avoidable, so we, assume using Lemma 6.10(b), that {y0(m)} ∈

[d0(m), 1
2).

We shall first make some observations about y6m(m) and y−6m(m) by comparing

them to y0(m). From the definition we have

y0(m) =
1

2

√
2m2 − 10m+ 9,

y6m(m) =
1

2

√
2m2 − 58m+ 9, y−6m(m) =

1

2

√
2m2 + 38m+ 9.

Thus,

lim
m→∞

y0(m)− y6m(m) = 6
√

2 and lim
m→∞

y0(m)− y−6m(m) = −6
√

2.

By Lemma 6.10(a),

lim
m→∞

t0(m) = lim
m→∞

t6m(m) = lim
m→∞

t−6m(m) =
√

2.

This implies that

lim
m→∞

y0(m)− y6m(m)− t6m(m) = 5
√

2 > 7

lim
m→∞

y0(m)− y6m(m) + t0(m) = 7
√

2 < 10

lim
m→∞

−(y0(m)− y−6m(m)) + t−6m(m) = 7
√

2 < 10

lim
m→∞

−(y0(m)− y−6m(m))− t0(m) = 5
√

2 > 7.

Thus, for sufficiently largemwe have

y6m(m) < y0(m)− t6m(m)− 7

y6m(m) > y0(m) + t0(m)− 10

y−6m(m) < 10 + y0(m)− t−6m(m)

y−6m(m) > 7 + y0(m) + t0(m).
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Thus, combining these inequalities and recalling that dq(m) + tq(m) = 3/2, for any

q, we have

y0(m)− 8− 1

2
− d0(m) < y6m(m) ≤ y0(m)− 8− 1

2
+ d6m(m),

y0(m) + 8 +
1

2
− d0(m) < y−6m(m) ≤ y0(m) + 8 +

1

2
+ d−6m(m).

Recall that{y0(m)} ∈ [d0(m), 1
2). Recall also that byLemma6.10(a), limm→∞ dq(m) =

3
2 −
√

2 ≈ 0.086, for q ∈ {0, 6m,−6m}. Then {y6m(m)} ∈ [0, d6m(m)) ∪ [1
2 , 1) and

{y−6m(m)} ∈ [0, d−6m(m)) ∪ [1
2 , 1).

This implies by Lemma 6.10(b) that L6m(m) > R6m(m) and L−6m(m) > R−6m(m).

Therefore by Lemma 6.12, the pair (m,
(
m
2

)
/2− 6m) is absolutely avoidable.

In particular, one can check that all the above inequalities hold for eachm ≥ 740.

Proof of Proposition 6.6

Here we prove Proposition 6.6, i.e. Theorem 6.4 form ≡ 2, 3 (mod 4). It is very similar

to the proof of Proposition 6.5 for m ≡ 0, 1 (mod 4), so it is not included in the paper

containing the other results [16], but we include it here for completeness.

We will need the following definitions. Letm, q ∈ Z,m ≥ 6 + 2
√
|q|. Let

y′q(m) =

√
2m2−10m−8q+5

2 , z′q(m) =

√
2m2−2m−8q−3

2 ,

t′q(m) = z′q(m)− y′q(m), d′q(m) = 3
2 − t

′
q(m),

L′q(m) =
⌊

5
2 + y′q(m)

⌋
, Rq(m) =

⌊
1
2 + z′q(m)

⌋
.

Note that sincem ≥ 6 + 2
√
|q|, we always have y′q(m), z′q(m) ∈ R.

Lemma6.13. Let q = q(m),m ∈ Z,m ≡ 2, 3 (mod 4),m ≥ 6+2
√
|q|, and |q(m)| = O(m).

(a) We have t′q(m) =
2
√

2(1− 1
m

)√
1− 1

m
+
−3−8q

2m2 +

√
1− 5

m+
5−8q
2m2

. In particular, lim
m→∞

d′q(m) = 3
2 −
√

2.

(b) We have L′q(m) > R′q(m) if and only if {y′q(m)} ∈
[
0, d′q(m)

)
∪
[

1
2 , 1
)
.
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Proof. We start by proving (a). By definition of t′q(m) we have

t′q(m) = z′q(m)− y′q(m)

=
1

2

√
2m2 − 2m− 8q − 3− 1

2

√
2m2 − 10m− 8q + 5

=
1

2

2m2 − 2m− 8q − 3− 2m2 + 10m+ 8q − 5√
2m2 − 2m− 8q − 3 +

√
2m2 − 10m− 8q + 5

=
2
√

2(1− 1
m)√

1− 1
m + −3−8q

2m2 +
√

1− 5
m + 5−8q

2m2

.

This also shows that for |q| = |q(m)| ∈ O(m), lim
m→∞

d′q(m) = 3
2− lim

m→∞
t′q(m) = 3

2−
√

2,

which concludes the proof of (a).

Now we can prove part (b). From part (a) we have in particular that t′q(m) =
√

2 + εq(m), where for m sufficiently large |εq(m)| < 0.05, and thus, t′q(m) ∈ (1, 3
2).

Thus, d′q(m) = 3
2 − t′q(m) ∈ (0, 1

2) for sufficiently large m. We compare L′q(m) and

R′q(m) using the expression x = bxc+ {x}, similar as in the proof of Lemma 6.10(b):

L′q(m) =

⌊
5

2
+ y′q(m)

⌋

= 2 +
⌊
y′q(m)

⌋
+

0, {y′q(m)} ∈ [0, 1
2)

1, {y′q(m)} ∈ [1
2 , 1)

,

R′q(m) =

⌊
1

2
+ z′q(m)

⌋

=
⌊
y′q(m)

⌋
+

1, t′q(m) + {y′q(m)} ∈ [1, 3
2)

2, t′q(m) + {y′q(m)} ∈ [3
2 ,

5
2)
.

Thus,

L′q(m)−R′q(m) = 2 +



0− 1, {y′q(m)} ∈ [0, 1
2) and t′q(m) + {y′q(m)} ∈ [1, 3

2)

0− 2, {y′q(m)} ∈ [0, 1
2) and t′q(m) + {y′q(m)} ∈ [3

2 ,
5
2)

1− 1, {y′q(m)} ∈ [1
2 , 1) and t′q(m) + {y′q(m)} ∈ [1, 3

2)

1− 2, {y′q(m)} ∈ [1
2 , 1) and t′q(m) + {y′q(m)} ∈ [3

2 ,
5
2)

.



112 II. Order-size pairs: absolute avoidability and forcing densities

So, L′q(m)−R′q(m) > 0 in all cases except for the second one, i.e. if and only if

{y′q(m)} ∈ [0, 1) \
([

0, 1
2

)
∩
[

3
2 − t

′
q(m), 5

2 − t
′
q(m)

))
=

[
1
2 , 1
)
∪
(
[0, 1) \

[
d′q(m), 1 + d′q(m)

))
=

[
1
2 , 1
)
∪ [0, d′q(m)).

Lemma 6.14. If q = q(m) ∈ Z, m ∈ N, m ≡ 2, 3 (mod 4), m ≥ 2
√
|q| + 6, and L′q(m) >

R′q(m), then the pair (m,
⌊(
m
2

)
/2
⌋
−q) cannot be realised as the vertex-disjoint union of a clique

and a forest.

Proof. Let f =
⌊(
m
2

)
/2
⌋
− 1

2−q. Suppose that (m, f) can be realised as the vertex-disjoint

union of a clique K on x vertices and a forest F onm− x vertices. We shall show that

L′q(m) ≤ R′q(m).

Claim 1: x ≥ L′q(m).

The forest F has f −
(
x
2

)
=
(
m
2

)
/2− 1

2 −q−
(
x
2

)
edges. Since F hasm−x vertices, it

contains strictly less thanm−x edges. Thus, we have

(
m
2

)
/2− 1

2−q−
(
x
2

)
< m−x.

Solving for x gives

x >
3

2
+

1

2

√
2m2 − 10m− 8q + 5 or x <

3

2
− 1

2

√
2m2 − 10m− 8q + 5.

Since m ≥ 2
√
|q| + 6, we have 2m2 − 10m − 8q + 5 ≥ 9. The second inequality

gives x < 3
2 −

1
2

√
2m2 − 10m− 8q + 5, and thus, x < 0, a contradiction. So only

the first inequality for x holds and implies that

x ≥

⌊
3 +

√
2m2 − 10m− 8q + 5

2

⌋
+ 1 = L′q(m),

which proves Claim 1.

Claim 2: x ≤ R′q(m).

The number of edges in the clique K is at most f and exactly

(
x
2

)
. Thus,

(
x
2

)
≤

f =
(
m
2

)
/2 − 1

2 − q, which implies that 2x(x − 1) ≤ m(m − 1) − 2 − 4q. This in

turn gives

x ≤

⌊
1 +

√
2m2 − 2m− 8q − 3

2

⌋
= R′q(m),

and proves Claim 2.
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Claims 1 and 2 imply that L′q(m) ≤ R′q(m).

Lemma 6.15. Let q = q(m) ∈ Z, m ∈ N, m ≡ 2, 3 (mod 4), m ≥ 2
√
|q| + 6. If both

L′q(m) > R′q(m) and L′−(q+1)(m) > R′−(q+1)(m), then the pair (m, f) = (m,
⌊(
m
2

)
/2
⌋
− q)

is absolutely avoidable.

Proof. Let m satisfy the condition of the lemma and let f− =
⌊(
m
2

)
/2
⌋
− q and f+ =⌊(

m
2

)
/2
⌋

+ q + 1 =
⌈(
m
2

)
/2
⌉

+ q. Then by Lemma 6.14, neither (m, f+) nor (m, f−) can

be represented as the vertex-disjoint union of a clique and a forest.

The rest of the proof is identical to the proof of Lemma 6.12.

Proof of Proposition 6.6. Letm ≥ 754,m ≡ 2, 3 (mod 4).

IfL′0(m) > R′0(m) andL′−1(m) > R′−1(m), by Lemma 6.15 (m,
⌊(
m
2

)
/2
⌋
) is absolutely

avoidable, soweassume, usingLemma6.13(b), that {y′0(m)} ∈ [d′0(m), 1
2)or {y′−1(m)} ∈

[d′0(m), 1
2).

We shall firstmake some observations about y′6m(m) and y′−(6m+1)(m) by comparing

them to y0(m). From the definition we have

y′0(m) =
1

2

√
2m2 − 10m+ 5, y′−1(m) =

1

2

√
2m2 − 10m+ 13

y′6m(m) =
1

2

√
2m2 − 58m+ 5, y′−6m(m) =

1

2

√
2m2 + 38m+ 13.

Thus,

lim
m→∞

y′0(m)− y′6m(m) = y′−1(m)− y′6m(m) = 6
√

2 and

lim
m→∞

y′0(m)− y′−(6m+1)(m) = y′−1(m)− y′−(6m+1)(m) = −6
√

2.

By Lemma 6.13(a),

lim
m→∞

t′0(m) = lim
m→∞

t′−1(m) = lim
m→∞

t′6m(m) = lim
m→∞

t′−(6m+1)(m) =
√

2.
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This implies that

lim
m→∞

y′0(m)− y′6m(m)− t′6m(m) = 5
√

2 > 7

lim
m→∞

y′0(m)− y′6m(m) + t′0(m) = 7
√

2 < 10

lim
m→∞

−(y′0(m)− y′−(6m+1)(m)) + t′−(6m+1)(m) = 7
√

2 < 10

lim
m→∞

−(y′0(m)− y′−(6m+1)(m))− t′0(m) = 5
√

2 > 7,

and the same holds if we replace y′0(m) by y′−1(m) and t′0(m) by t′−1(m).

Thus, for sufficiently largemwe have

y′6m(m) < y′0(m)− t′6m(m)− 7

y′6m(m) > y′0(m) + t′0(m)− 10

y′−(6m+1)(m) < 10 + y′0(m)− t′−(6m+1)(m)

y′−(6m+1)(m) > 7 + y′0(m) + t′0(m),

and the same holds if we replace y′0(m) by y′−1(m) and t′0(m) by t′−1(m).

Thus, combining these inequalities and recalling that d′q(m) + t′q(m) = 3/2, for any

q, we have

y′0(m)− 8− 1

2
− d′0(m) < y′6m(m) ≤ y′0(m)− 8− 1

2
+ d′6m(m),

y′0(m) + 8 +
1

2
− d′0(m) < y′−(6m+1)(m) ≤ y′0(m) + 8 +

1

2
+ d′−6m(m),

and the same holds if we replace y′0(m) by y′−1(m) and d′0(m) by d′−1(m).

Now assume that {y′0(m)} ∈ [d′0(m), 1
2) or {y′−1(m)} ∈ [d′0(m), 1

2). Recall that by

Lemma 6.13(a), lim
m→∞

d′q(m) = 3
2 −
√

2 ≈ 0.086, for q ∈ {0,−1, 6m,−6m − 1}. Then

{y′6m(m)} ∈ [0, d′6m(m)) ∪ [1
2 , 1) and {y′−(6m+1)(m)} ∈ [0, d−(6m+1)(m)) ∪ [1

2 , 1).

This implies byLemma6.13(b) thatL′6m(m) > R′6m(m)andL′−(6m+1)(m) > R′−(6m+1)(m).

Therefore by Lemma 6.15, the pair (m,
⌊(
m
2

)
/2
⌋
− 6m) is absolutely avoidable.

In particular, one can check that all the above inequalities hold for eachm ≥ 754.
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6.4 Concluding remarks

We showed that there are infinite sets of absolutely avoidable pairs (m, f). One could

further extend our results and provide more absolutely avoidable pairs.

The arguments in the proof of Proposition 6.5 should still hold if we deviate from

f0 =
(
m
2

)
/2 by a small term, as in Theorem 6.3. The reason here is that this change does

not affect the limit computations for dq(m) and yq(m). Thus, for each large enough m,

one should be able to obtain a small interval for f so that each (m, f) is absolutely avoid-

able. We cannot hope to do much better though: In infinitely many cases, if (m, f0) is

absolutely avoidable, then already for (m, f0 −m) or (m, f0 +m) our method does not

give a contradiction. The constant 6 is the smallest integer for which the argument in

the proof of Proposition 6.5 works (since {6
√

2} is close to 1
2 while {c

√
2}, c ∈ [5] is not).

We believe that one could show by an argument very similar to that used in the proof,

that for sufficiently large m, for any constants a, b which satisfy that {a
√

2 − b
√

2} is
close enough to 1

2 , we have that either (m, f0−am) or (m, f0−bm) is absolutely avoidable.
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Chapter 7 Bipartite order-size pairs

7.1 Introduction

In Chapter 6weweremainly concernedwith the existence of absolutely avoidable pairs

in graphs. A similar question on avoidable pairs can be asked in the bipartite setting.

Recall that a biclique is a complete bipartite graph and a bihole is an empty bipartite

graph, i.e. the bipartite complement of a biclique.

We say a bipartite graph G bipartite arrows the pair (m, f), and write G
bip→ (m, f) if

G has an induced subgraph with parts of sizem each, contained in the respective parts

of G, with exactly f edges. We say that a pair (n, e) of non-negative integers bipartite
arrows the pair (m, f), written (n, e)

bip→ (m, f) if for any bipartite graph Gwith parts of

size n each and with e edges, G
bip→ (m, f).

We say that a bipartite graph H bipartite realises a pair (m, f) if H has m vertices in

each part and f edges. We also call H a bipartite (m, f)-graph. We call a pair (m, f)

absolutely bipartite avoidable if there exists n0, such that for each n ≥ n0 and for any

e ∈ {0, . . . , n2}, (n, e)
bip9 (m, f). We define the bipartite forcing density of a bipartite

order-size pair as σbip(m, f) = lim sup
n→∞

{e:(n,e)bip→(m,f)}
n2 .

In Section 7.2 wewill show that themethods for showing the existence of absolutely

avoidable pairs in the graph case from Chapter 6 are not extendable to the bipartite

setting.

Proposition 7.1. Let (m, f) be a bipartite order size pair. Then either (m, f) or its bipartite
complementary pair (m,m2 − f) can be bipartite realised as the vertex-disjoint union of a
biclique and a forest.

Proposition 7.1 also appears in [16] togetherwithmost of the results fromChapter 6.

In Section 7.3 we will show that there is a family of three unavoidable bipartite

graphs, one of which appears as an induced subgraph of any bipartite graph with

sufficiently large order and sufficiently many edges and non-edges. We will connect

this to avoidability of order-size pairs.

Proposition 7.2. Letm, f ∈ N with 0 ≤ f ≤ m2. Then for all n sufficiently large there exists
a positive q = qm and a number ϕn,t ∈ O(n2−1/q) such that for all e ∈ [ϕn,m, n

2 − ϕn,m],
(n, e)

bip→ (m, a ·m) for all a ∈ [m].
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In Section 7.4wewill look at a specificpair, namely (3, 4) and completely characterise

which graphs (and hence pairs) bipartite arrow (3, 4). In Section 7.5 we will use the

results from the previous two sections to derive some results on the bipartite forcing

density.

Proposition 7.3. (a) There are infinitely many pairs (m, f) with σbip(m, f) = 1. In par-
ticular, for anym ∈ N, a ∈ [m], we have σbip(m, am) = 1 and σbip(3, 4) = 1.

(b) There are infinitely many pairs (m, f) with σbip(m, f) = 0. In particular, for any
m, f ∈ N withm ≥ 2, (m− 1)m < f < m2 we have σbip(m, f) = 0.

In particular, we did not find any bipartite pair for which σbip(m, f) ∈ (0, 1); we

leave the existence of such a pair as an open question, see Section 7.6.

7.2 Realising bipartite order-size pairs as the vertex-disjoint unions of

a biclique and a forest or its complement

Our entire argument for the existence of absolutely avoidable pairs in the graph setting

(see Chapter 6) built on the fact that certain pairs (m, f) cannot be realised as the

disjoint union of a clique and a forest. The following lemma shows that our argument

for the existence of such absolutely avoidable pairs in the non-bipartite setting cannot

be extended to the bipartite setting.

Note that a biclique is an induced subgraph of a complete bipartite graph, i.e. could

be in particular an empty set or a single vertex.

Lemma 7.4. For any positive integerm and any non-negative integer f , f ≤
⌊
m2

2

⌋
, there is a

bipartite graph H with m vertices in each part and f edges, which is the vertex-disjoint union
of a biclique and a forest.

Proof. Fix a pair (m, f) with f ≤
⌊
m2

2

⌋
. Let x =

⌊
m
2

⌋
and let y be the largest integer

such that xy ≤ f . In particular

xy > f − x and y ≤
⌊
m2

2

⌋
/
⌊m

2

⌋
.

We shall use the fact that for any non-negative integers v′ and e′, with e′ < v′ and for any

partition v′ = v′′+ v′′′, with v′′, v′′′ positive integers, there is a forest with partite sets of

sizes v′′ and v′′′ and e′ edges. To see this, let F = K1,v′−1 or Kv′−1,1 if min{v′′, v′′′} = 1,

or otherwise, let F be the vertex-disjoint union of K1,v′′′−1 and Kv′′−1,1, connected by
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a single edge between two leaves. Then F is a tree with parts of sizes v′′ and v′′′ with

v′′+ v′′′− 1 = v′− 1 edges. Then any subgraph of this with e < v′ edges is a forest with

desired part sizes.

Case 1: y < m.

If y = 0 then f <
⌊
m
2

⌋
. In this case (m, f) is bipartite realisable as a forest. So,

assume that y > 0. We shall show that (m, f) is bipartite realisable as the vertex

disjoint union of Kx,y and a forest. Let e′ = f − xy, v′ = 2m − x − y. We have

that e′ ≤ x − 1 =
⌊
m
2

⌋
− 1. On the other hand, using the upper bound on y,

we have that v′ ≥ 2m −
⌊
m
2

⌋
−
(⌊

m2

2

⌋
/
⌊
m
2

⌋)
. Considering the cases when m is

even or odd, one can immediately verify that e′ < v′. Since x + y + v′ = 2m and

xy+ e′ = f , we have that (m, f) is bipartite realisable as the vertex-disjoint union

of Kx,y and a forest on v′ vertices and e′ edges. Note that in this case we needed

y < m so thatKx,y does not span one of the parts completely.

Case 2: y = m.

In particular, we have that f ≥
⌊
m
2

⌋
m. If m is even, we have that f ≥ m2/2

and from our original upper bound f ≤ m2/2 it follows that f = m2/2. Thus

(m, f) is bipartite representable as Km/2,m and isolated vertices. If m is odd, let

m = 2k + 1, k ≥ 1. Then f ≤
⌊
m2

2

⌋
= 2k2 + 2k and f ≥ y

⌊
m
2

⌋
= 2k2 + k.

Consider Kk+1,2k−1 and let e′ = f − (k + 1)(2k − 1) and v′ = 2m − 3k. Then

e′ ≤ 2k2 + 2k − (2k2 + k − 1) = k + 1 and v′ = 4k + 2− 3k = k + 2. Thus, v′ > e′.

Therefore (m, f) is bipartite realisable as a vertex-disjoint union ofKk+1,2k−1 and

a forest on v′ vertices and e′ edges.

Case 3: y = m+ 1.

This case could happen only if m is odd. Let m = 2k + 1. Then we have x = k

and y = 2k + 2 and f = 2k2 + 2k. We see that (m, f) is bipartite representable by

K2k,k+1 and isolated vertices.

Proof of Proposition 7.1. If f ≤
⌊
m2

2

⌋
, thenbyLemma7.4we canbipartite realise (m, f) as

the vertex-disjoint union of a biclique and a forest. Otherwise, we havem2−f ≤
⌊
m2

2

⌋
,

so we can apply Lemma 7.4 to the complementary pair (m,m2 − f). In particular, we

can bipartite realise (m, f) as the bipartite complement of the vertex-disjoint union of

a biclique and a forest.
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7.3 Unavoidable bipartite patterns

In this section we will show that any (n×n) bipartite graph with positive edge-density

in both G and Gc contains at least one of three induced unavoidable subgraphs. This

result is inspired by the following result for the general graph case:

Theorem 7.5 (Cutler, Montagh [50]). Let Fk be the family of 2-graphs on 2k vertices, which
are isomorphic to eitherKk and k isolated vertices,K2k − E(Kk), 2Kk orK2k − E(2Kk).

Then for any ε > 0 and positive integer k, there exists n(k, ε), such that any complete graph
of order n ≥ n(k, ε) and size e with ε

(
n
2

)
≤ e ≤ (1− ε)

(
n
2

)
contains a member of Fk.

Theorem 7.5was first proven byCutler andMontagh [50]who showed that n(k, ε) <

4ε/k. This was further improved by Fox and Sudakov [73] to n(k, ε) ≤
(

16
ε

)2k+1
for

ε < 1
7 , using probabilistic arguments. Caro, Hansberg and Montejano [37] reproved

the theorem using only classical Ramsey and Turán numbers for bipartite graphs and

the results on Zarankiewicz numbers.

This result on unavoidable patterns is also related to the notion of balanceability
of graphs which was introduced by Caro, Hansberg and Montejano [37]. A graph H

is called balanceable if in any 2-colouring of the edges of a large complete graph with

“enough” edges in both colours, there exists a copy ofH having exactly

⌊
|E(H)|

2

⌋
edges

of one colour. One might use Theorem 7.6 below to obtain bipartite balanceability

results. For more on Zero-Sum problems and balanceability in the general graph case,

see also Caro, Hansberg and Montejano [35, 36] and the survey by Caro [34].

Recall that for the symmetric Zarankiewicz number z(n; t) we have z(n; t) < (t −
1)1/tn2−1/t+ 1

2(t−1)n. We define the following bipartite graphs with 2t vertices in each

part: At is isomorphic toK2t,2t − E(Kt,2t), and Bt is isomorphic toK2t,2t − E(Kt,t).

At Bt Bc
t

Figure 7.1: The bipartite graphs At, Bt and B
c
t with 2t vertices in each part

Theorem 7.6. Let t be a positive integer. For all sufficiently large n there exists a positive
q = qt and a number ϕ = ϕn,t ∈ O(n

2− 1
q ), such that any (n × n) bipartite graph G with
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|E(G)| ∈ [ϕn,t, n
2 − ϕn,t] contains an induced copy of either At, Bt or Bc

t , the bipartite
complement of Bt.

Proof. Let q ≥ t be an integer satisfying

1

2
q2 > (t− 1)1/tq2−1/t +

1

2
(t− 1)q,

and set

ϕn,t := (q − 1)1/qn2−1/q +
1

2
(q − 1)n+ 2(n− q)q + 1,

which is clearly in O(n2−1/q).

Let G be an (n × n) bipartite graph with |E(G)| ∈ [ϕn,t, n
2 − ϕn,t] edges. Then by

definition of z(n; q), there is a copy ofKq,q in G, let its parts be V1,W1.

Consider the ((n−q)×(n−q)) bipartite graphG1, obtained by removing V1 andW1

from G. Then the bipartite complement Gc1 of G1 has at least E(Gc)− |V1|(n− |W1|)−
|W1|(n − |V1|) ≥ ϕn,t − 2(n − q)q > z(n; q) > z(n − q; q) edges, so we find Kq,q in G

c
1.

Denote the parts of thisKq,q by V2 andW2.

Now consider the two (q × q) bipartite graphs G3 = G[V1,W2] and G4 = G[V2,W1].

Each of them has either at least
1
2q

2
edges or non-edges, so there is Kt,t in Gi or G

c
i for

i = 3, 4, i.e. either a biclique or a bihole. If we have two bicliques, we have a copy of Bt,

if we have two biholes, we have a copy ofBc
t , and if we have a bihole and a biclique, we

have a copy of At.

Lemma 7.7. If G bip→ (m, f) for some G ∈ {At, Bt, Bc
t }, we have (n, e)

bip→ (m, f) for all n
sufficiently large and all e ∈ [ϕn,m, n

2 − ϕn,m].

Proof. By Theorem 7.6, for pairs (n, e) as given, we have (n, e)
bip→ G for some G ∈

{At, Bt, Bc
t }. Then by assumption, we have (n, e)

bip→ G
bip→ (m, f).

Clearly if t ≥ m, the graph At contains all pairs (m, f) for which f = a · m and

a ∈ [m]. These pairs are also induced by Bt and B
c
t , so we obtain Proposition 7.2 as a

Corollary of Theorem 7.6 and Lemma 7.7.

7.4 A characterisation of graphs that bipartite arrow (3, 4)

The goal of this section is to find all bipartite graphs G that bipartite arrow the pair

(3, 4).
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For n > 7 consider the following graph classes Gi = Gi(n) of (n × n) bipartite

graphs. We shall claim that these classes of graphs contain all graphs for which we

have G
bip9 (3, 4):

1. G1 = G1(n) = {P4+isolated vertices}∪{G ⊆ Kn,n : G is a union of pairwise vertex

disjoint stars (with centres in the same part)}.
Then G ∈ G1 does not contain (3, 4): If G = P4, then G has only 3 edges. Other-

wise, all vertices in one part ofG have degree at most 1, i.e. there cannot be (3, 4).

For each e ∈ {0, . . . , n} there exists G ∈ G1(n) with |E(G)| = e.

2. G2 = G2(n) = {G = Ka,n − {e} ⊆ Kn,n : 2 ≤ a ≤ n − 1}, where e is an arbitrary

edge of theKa,n.

Then G ∈ G2 does not contain (3, 4): In any (3× 3) induced subgraph of G, there

is at most one vertex of degree 2, any other vertex has degree 0 or 3. Thus, any

(3× 3) induced subgraph H of G has |E(H)| ∈ {0, 2, 3, 5, 6, 8, 9} edges.
For each a ∈ {2, . . . , n− 1} there is G ∈ G2(n) with |E(G)| = an− 1.

3. G3 = G3(n) = {Kn,n − E(Ka,b) : a, b ∈ [n]}.
For G ∈ G3 we have Gc = Ka,b+ isolated vertices for some a, b ∈ [n]. This clearly

does not contain (3, 5), and thus, G does not contain (3, 4).

For any integers a, bwith 0 ≤ a ≤ b ≤ n there isG ∈ G3(n) with |E(G)| = n2− ab.

4. G4 = G4(n) = {Kn,n − E(
⋃
iHi) : Hi ∈ Hn,

⋃
iHi ⊆ Kn,n}, where Hn = {C6} ∪

{H ⊆ Kn,n : H is a tree with at most 2 vertices in one part}. Note that we can

have one tree component in Gc with a part of size at least 3 in U and another tree

with a part of size at least 3 in V .

Then G ∈ G4 does not contain (3, 4): No component of Gc contains (3, 5), and

since any (3, 5)-graph is connected, Gc cannot contain (3, 5). In particular, the

complement of any G ∈ G4 is the vertex-disjoint union of C6’s and a forest, so

|E(G)| ≥ n2 − 2n.

We also define the following set:

E(n) := {e : e = |E(G)|, G ∈ Gi, i = 1, . . . , 4}.

Now we can state our characterisation lemma:

Lemma 7.8. Let G be a bipartite graph with n vertices in each part, n > 7. Then G bip9 (3, 4)

if and only if G ∈
⋃4
i=1 Gi. In particular, for n > 7 we have (n, e)

bip→ (3, 4) if and only if
e 6∈ E(n).
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Before we prove this lemma, we need an auxiliary result:

Lemma 7.9. LetG be aC4-free (n×n) bipartite graph. Then eitherG bip→ (3, 5) orGc ∈ G4(n).

Proof. Let G = (U ∪̇V,E) be a C4-free bipartite graph with |U | = |V | = n and assume

that G
bip9 (3, 5). We want to show that each connected component of G is either C6 or

a tree with at most 2 vertices in one part.

Let G′ be a connected component of G.

Assume that G′ is a tree. If G′ has at most 2 vertices in one part, we are done, so

assume G′ has at least 3 vertices in each part. Then there must be a P4 in G′, otherwise

G′ would be a star, a contradiction to G′ having at least 3 vertices in each part. Then

this P4 and two vertices adjacent to it, one from each part, induce a (3, 5)-graph, a

contradiction.

Consider a longest induced cycle inG′. If it has length at least 8, we find induced P6,

which is a (3, 5)-graph, a contradiction. SinceG′ is C4-free, it must contain induced C6.

IfG′ = C6, we are done, so there must be a vertex u′ incident to the C6 = u1v1u2v2u3v3.

Since G′ is C4-free, u
′
is incident to exactly one vertex of C6, w.l.o.g. v3. But then

{u1, u2, u
′, v1, v2, v3} induces (3, 5), a contradiction.

Now we can prove Lemma 7.8.

Proof of Lemma 7.8. Let G = (U ∪̇V,E) be a bipartite (n, e)-graph, and assume that

G
bip9 (3, 4). We will show that G ∈ Gi(n) for some i ∈ [4].

Let u1 ∈ V (G) be a vertex with d(u1) = ∆(G), w.l.o.g. u1 ∈ U .

If ∆(G) = 1, then G is a matching and isolated vertices, in particular, G ∈ G1(n).

Thus, we can assume that d(u1) = ∆(G) ≥ 2.

AssumeN(u1)∩N(u) = ∅ for allu ∈ U \{u1}. Assume there is a vertex v ∈ V \N(u1)

of degree d(v) ≥ 2. But then we find induced K1,2 ∪ K2,1, which is a (3, 4)-graph, a

contradiction, see Figure 7.2 for an illustration. Thus, we have d(v) ∈ {0, 1} for all

v ∈ V \ N(u1), so G is a vertex-disjoint union of stars with centres in U , and in

particular, G ∈ G1(n)

Thus, there exists some u ∈ U \ {u1} such that N(u1) ∩ N(u) 6= ∅. Let u2 be such

that |N(u1) ∩N(u2)| is maximal and with maximal degree among all such vertices.
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u1

v1

Figure 7.2: K1,2 ∪K2,1

Assume that |N(u1) ∩N(u2)| = 1, i.e. there is no vertex in U that shares more than

one neighbour with u1. Note that since d(u1) ≥ 2, we have |N(u1) \N(u2)| ≥ 1.

• If ∆(G) = d(u1) = 2, there are v1, v2 ∈ V such that v1, u1, v2, u2 induce a P4. In

particular, d(u2) ∈ {1, 2}.

– Assume d(u2) = 1. If d(u) = 0 for all u ∈ U \ {u1, u2}, then G is P4 and

isolated vertices, in particular, G ∈ G1(n). So let u3 ∈ U \ {u1, u2} with

d(u3) > 0.

Then u3 either has (exactly) one neighbour in {v1, v2}, w.l.o.g. v2, then let

v3 ∈ V \ {v1, v2}, or it has no neighbour in {v1, v2}, then let v3 ∈ N(u3). In

either case, there is induced (3, 4), see Figure 7.3a for an illustration.

– If d(u2) = 2, let v3 ∈ N(u2) \N(u1). Then for n ≥ 5 there is u3 ∈ U \ {u1, u2}
withN(u3)∩ {v1, v2, v3} = ∅: since ∆(G) = 2, the set {v1, v2, v3} has at most

2 more neighbours in U \ {u1, u2}, i.e. for n ≥ 5, such a vertex u3 exists, so

we find (3, 4), a contradiction. See Figure 7.3a for an illustration.

• If ∆(G) = d(u1) = 3, we find vertices v1, v2 ∈ N(u1) \ N(u2) and v3 ∈ N(u1) ∩
N(u2). Claim: For n > 7 there is a vertex u3 ∈ U \ {u1, u2} with N(u3) ∩
{v1, v2, v3} = ∅. Since ∆(G) = 3, we have d(v1) + d(v2) + d(v3) ≤ 9, so there

are at most 5 vertices in U \ {u1, u2} which are incident to {v1, v2, v3}. Thus, if

|U | ≥ 8, u3 exists. Then {u1, u2, u3, v1, v2, v3} induces (3, 4). See Figure 7.3b for

an illustration.

• If ∆(G) = d(u1) ≥ 4, i.e. we have |N(u1) \N(u2)| ≥ 3.

Recall that each vertex u ∈ U \ {u1} has at most 1 neighbour in N(u1). Let

v3 ∈ N(u1) ∩N(u2). Assume there is a vertex u3 ∈ U \ {u1, u2} with v3 6∈ N(u3).

Since |N(u3)∩N(u1)| ≤ 1, there exist two vertices v1, v2 ∈ (N(u1)\N(u2))\N(u3),

i.e. {u1, u2, u3, v1, v2, v3} induces (3, 4), a contradiction. See Figure 7.3 for an

illustration.

Thus, we have v3 ∈ N(u) for all u ∈ U , i.e. d(v3) = n = d(u1) and have d(u) =

d(v) = 1 for u, v ∈ U ∪ V \ {u1, v3}, i.e. e = 2n − 1 and Gc = Kn−1,n−1, i.e.

G ∈ G3(n).

Thus, we can assume that |N(u1) ∩N(u2)| ≥ 2. Recall that d(u1) = ∆(G) and that
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u1

v1

u2

v2

u3

v3

u1

v1

u2

v2

u3

v3

d(u2) = 1

u1

v1

u2

v2

u3

v3

d(u2) = 2

(a) d(u1) = 2

u1

v1

u2

v2

u3

v3

(b) d(u1) > 2

Figure 7.3: |N(u1) ∩N(u2)| = 1

u2 ∈ U \ {u1} is such that |N(u1)∩N(u2)| is maximal and with maximal degree among

all such vertices.

Let V1 = N(u1), V2 = N(u2), V ′1 = V1 \ V2 and V ′2 = V2 \ V1. We split the remaining

proof into the following 4 cases:

Case 1: ∃u ∈ U \ {u1, u2} : |(V ′1 ∪ V ′2) \N(u)| ≥ 2 and |(V1 ∩ V2) \N(u)| ≥ 1,

Case 2: ∃u ∈ U \ {u1, u2} : |(V ′1 ∪ V ′2) \N(u)| ≥ 3,

Case 3: ∃u ∈ U \ {u1, u2} : |(V1 ∩ V2) \N(u)| ≥ 3,

Case 4: ∀u ∈ U \ {u1, u2} : |(V1 ∪ V2) \N(u)| ≤ 2.

In particular we will show that Case 1 is impossible, in Case 2 we have G ∈ G3, in Case

3.1 we have G ∈ G2, and in Cases 3.2 and 4 we have G ∈ G4.

Case 1: There is u3 ∈ U \{u1, u2}with |(V ′1∪V ′2)\N(u3)| ≥ 2 and |(V1∩V2)\N(u3)| ≥ 1.

Then let v1, v2 ∈ (V ′1∪V ′2)\N(u3) and v3 ∈ (V1∩V2)\N(u3). Then{u1, u2, u3, v1, v2, v3}
induces (3, 4). See Figure 7.4a for an illustration.

u1

v1

u2

v2

u3

v3

u1

v1

u2

v2

u3

v3

(a) Case 1

u1

v1

u2

v2

u3

v3
or

u1

v1

u2

v2

u3

v3

(b) Case 2

Figure 7.4: Cases 1 and 2

Case 2: There is u3 ∈ U \ {u1, u2}with |(V ′1 ∪ V ′2) \N(u3)| ≥ 3.

Since we are not in Case 1, (V1 ∩ V2) \N(u3) = ∅. Let v1, v2 ∈ (V ′1 ∪ V ′2) \N(u3),

v3 ∈ V1 ∩ V2. See Figure 7.4b for an illustration.

Assume there is v4 ∈ V \ (V1 ∪ V2) with v4u3 6∈ E(G). Then {u1, u2, u3, v1, v3, v4}
induces (3, 4). Assume there is a vertex v4 ∈ V ′1 ∪ V ′2 with v4u3 ∈ E(G). Then

{u1, u2, u3, v1, v2, v4} induces (3, 4). See Figure 7.5 for an illustration.



7. Bipartite order-size pairs 125

u1 u2 u3

v1 v3 v4

∃v4 ∈ V \ (V1 ∪ V2) : u3v4 6∈ E(G)

u1 u2 u3

v1 v2 v4

u1 u2 u3

v1 v2 v4

u1 u2 u3

v1 v2 v4

∃v4 ∈ V ′
1 ∪ V ′

2 : u3v4 ∈ E(G)

Figure 7.5: Case 2 continued

Thus, N(u3) = V \ (V ′1 ∪ V ′2), i.e. V = V ′1∪̇V ′2∪̇N(u3)∪̇V1 ∩ V2 and any vertex in V

is either in exactly one or in all three neighbourhoods N(u1), N(u2), N(u3).

Let u4 ∈ U \ {u1, u2, u3}. Assume u4 has a non-neighbour v3 ∈ V1 ∩ V2. Since

we are not in Case 1, u4 has at most 1 non-neighbour in V ′1 ∪ V ′2 . Recall that

|V ′1 |+ |V ′2 | ≥ 3, i.e. |N(u4)∩ (V ′1 ∪V ′2)| ≥ 2. If |N(u4)∩V ′1 | ≥ 2 or |N(u4)∩V ′2 | ≥ 2,

w.l.o.g. the former, let v1, v2 ∈ N(u4) ∩ V ′1 . Then {u2, u3, u4, v1, v2, v3} induces
(3, 4). Thus, we have |N(u4)∩V ′1 | = |N(u4)∩V ′2 | = 1. Since |V ′1 ∪V ′2 | ≥ 3, w.l.o.g.

there is v1 ∈ V ′1 with v1u4 6∈ E(G). Let v2 ∈ N(u4)∩V ′2 . Then {u2, u3, u4, v1, v2, v3}
induces (3, 4). See Figure 7.6

v1 v2 v3

u4 u2 u3

|N(u4) ∩ V ′
1 | ≥ 2

v1 v2 v3

u4 u2 u3

|N(u4) ∩ V ′
1 | = |N(u4) ∩ V ′

2 | = 1

Figure 7.6: Case 2 continued

Thus, V1∩V2 ⊆ N(u) for allu ∈ U , and thus, sinceV1∩V2 6= ∅, wehaven = ∆(G) =

d(u1). In particular, we have V = (V1 ∩ V2)∪̇V ′1 , and G = Kn,n − E(Kn−1,|V ′1 |), i.e

G ∈ G3(n).

Case 3: There is u3 ∈ U \ {u1, u2}with |(V1 ∩ V2) \N(u3)| ≥ 3.

Since we are not in Case 1, u3 is incident to all vertices in V ′1 ∪ V ′2 .

We partition V into four sets V = V ′1∪̇V ′2∪̇(V1∩V2)∪̇V ′. Note that v′u3 ∈ E(G) for

all v′ ∈ V ′: assume not. Then there exists v′ ∈ V ′ with vui 6∈ E(G) for i = 1, 2, 3,

and since u3 has two non-neighbours v1, v2 ∈ V1∩V2, {u1, u2, u3, v1, v2, v
′} induces

(3, 4).

Claim 0: |V ′| ≤ 1.

Assume there exist v′, v′′ ∈ V ′. Then u3v
′, u3v

′′ ∈ E(G), i.e. {u1, u2, u3, v1, v
′, v′′}

induces (3, 4) (with v1 ∈ (V1 ∩ V2) \N(u3)), a contradiction. �

Consider the bipartite complement Gc of G. We will find a (3, 5)-graph in Gc

which corresponds to a (3, 4)-graph in G.
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Case 3.1: There is a C4 u3v3u4v4u3 in Gc with u3, u4 ∈ U \ {u1, u2} and v3, v4 ∈
V1 ∩ V2.

Claim 1: |V ′| = ∅.
Assume there is v′ ∈ V ′. If u3v

′ ∈ E(Gc) (or u4v
′
), then {u1, u2, u3, v

′, v3, v4}
induces (3, 5) in Gc. If both u3v

′, u4v
′ 6∈ E(Gc), then {u1, u3, u4, v

′, u3, u4}
induces (3, 5) in Gc, a contradiction. �

Claim 2: |V ′1 ∪ V ′2 | ≤ 1.We have vu3, vu4 ∈ E(Gc) for v ∈ V ′1 ∪ V ′2 .
Let v1 ∈ V ′1 ∪ V ′2 (w.l.o.g. v1 ∈ V ′1). Then v1 is incident to at least one of

{u3, u4} in Gc (else {u2, u3, u4, v1, v3, v4} induces K2 ∪ C4, a (3, 5)-graph, a

contradiction), not incident to only one of {u3, u4} (else {u1, u3, u4, v1, v3, v4}
induces C4 with a pendant edge, a (3, 5)-graph, a contradiction). Thus, v1

is incident to both {u3, u4}. Assume there is a second vertex v2 ∈ V ′1 ∪
V ′2 . Then by the same argument it is also incident to both {u2, u3}. Then

{u1, u2, u3, v1, v2, v3} induces (3, 5) in Gc, a contradiction. �

Thus, we have |V1 ∩ V2| ≥ n − 1 and 0 = dGc(u1) ≤ dGc(u2) ≤ 1, i.e.

0 = |V ′2 | ≤ |V ′1 | ≤ 1.

Claim 3: N(u3) = N(u4).

Assume not. Then w.l.o.g. there is v5 ∈ V = (V1 ∩ V2) ∪ V ′1 , such that

u3v5 ∈ E(Gc) and u4v5 6∈ E(Gc). Then {u1, u3, u4, v3, v4, v5} induces (3, 5) in

Gc, a contradiction. �

Let u5 ∈ U \ {u1, u2, u3, u4}.
Claim 4: If |NGc(u5) ∩NGc(u3)| ≥ 2, then N(u3) = N(u5):

Assume not, i.e. w.l.o.g. we have v, v′, v′′ ∈ NGc(u3) such that u5v, u5v
′ ∈

E(Gc) and u5v
′′ 6∈ E(Gc). Then {u1, u3, u5, v, v

′, v′′} induces (3, 5) in Gc, a

contradiction. �

If |NGc(u5) ∩NGc(u3)| ≥ 2, by Claim 4 we have N(u3) = N(u5).

If NGc(u5) ∩NGc(u3) = ∅, then dGc(u5) = 0:

Otherwise there exists v5 ∈ N(u5) \N(u3), i.e. {u3, u4, u5, v3, v4, v5} induces
K2 ∪ C4, i.e. (3, 5) in Gc, a contradiction.

If |N(u5) ∩N(u3)| = 1, (and hence |N(u3) \N(u5)| ≥ 1), then V \N(u3) ⊆
N(u5) :

Otherwise there is v5 ∈ V \ (N(u3) ∪N(u5)) and thus, {u3, u4, u5, v3, v4, v5}
induces (3, 5) in Gc (where w.l.o.g. u5v3 ∈ E(Gc) and u5v4 6∈ E(Gc)).

Note that we must have dGc(u5) ≤ 2, since otherwise there are two vertices

v5, v6 ∈ N(u5) \ N(u3), i.e. {u3, u4, u5, v3, v5, v6} induces (3, 5). Thus, we

have |N(u3)| ≥ |V | − 1. Now assume d(u5) = 2. Then since n ≥ 4, we

have |N(u3)| ≥ 3, and thus, there exist v1, v2 ∈ N(u3) \ N(u5) and v3 ∈
N(u5) \N(u3), i.e. {u3, u4, u5, v1, v2, v3} induces C4 ∪K2, i.e. (3, 5). Thus, if
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|N(u5) ∩N(u3)| = 1 for some u5 ∈ U \ {u1, u2, u3, u4}, then N(u3) = V .

Assume there is a second vertex u6 ∈ U \ {u1, u2, u3, u4, u5} with |N(u6) ∩
N(u3)| = 1. Then we find a (3, 5) with {u3, u5, u6}, the neighbour(s) of u5, u6

and an arbitrary other vertex in V = N(u3). Thus, there exists at most one

vertex with this property.

In conclusion, if no vertex in U has degree 1 inNGc(u3), for all vertices u ∈ U
we haveNGc(u) ∈ {∅, N(u3)}. Thus, Gc = Ka,n for some a ≥ 2 is a complete

bipartite graph, i.e G ∈ G3(n). Otherwise, there is exactly one vertex in U

with degree 1 in NGc(u3) we have that Gc = Ka,n with a pendant edge, i.e.

G = Kb,n − {e} for some awith 2 ≤ a ≤ n− 1, so G ∈ G2(n).

Case 3.2: There is no C4 in Gc[U \ {u1, u2}, V1 ∩ V2].

We will show that then there is no C4 in Gc.

There cannot be a C4 in Gc containing both u1 and u2, since u1 and u2 share

at most one neighbour (By Claim 0, |V ′| ≤ 1).

Assume there is a C4 = u3v1u4v2 in Gc with u3, u4 ∈ U \ {u1, u2}.
Assume v2 ∈ V1 ∩ V2. Then we must have v1 ∈ V ′ ∪ V ′1 ∪ V ′2 . Note that

then no vertex v3 ∈ V1 ∩ V2 \ {v2} is incident to both u3, u4, since otherwise

{u3, u4, v2, v3} is a C4, a contradiction.

If v1 ∈ V ′, let v3 ∈ (V1 ∩ V2) \ {v2}. If v3 is incident to none of u3, u4, then

{u1, u3, u4, v1, v2, v3} induces (3, 5) inGc, a contradiction. Thus, v3 is incident

to exactly one of u3, u4, say v3u3 ∈ E(Gc). Then {u1, u2, u3, v1, v2, v3} induces
(3, 5) in Gc, a contradiction.

If v1 ∈ V ′1 ∪ V ′2 , w.l.o.g. v1 ∈ V ′1 : If there is v3 ∈ V1 ∩ V2 incident to

none of u2, u3, then {u2, u3, u4, v1, v2, v3} induces (3, 5). Otherwise, there

is v3 ∈ V1 ∩ V2 incident to exactly one of {u3, u4}, say u3v3 ∈ E(Gc), then

{u1, u3, u4, v1, v2, v3} induces (3, 5) in Gc, a contradiction.

So assume v1, v2 ∈ V ′1 ∪ V ′2 ∪ V ′, and there is no v ∈ V1 ∩ V2 which is

incident to both u3 and u4. If there is v3 ∈ V1 ∩ V2 incident to none of u3, u4,

then w.l.o.g. u1 has exactly one neighbour in v1, v2, so {u1, u2, u3, v1, v2, v3}
induces (3, 5). Otherwise all v ∈ V1 ∩ V2 are incident to exactly one of u3, u4,

pick v3, v4 ∈ V1∩V2. Thenw.l.o.g. u1 is incident to v1, so {u1, u2, u3, v1, v3, v4}
induces (3, 5), a contradiction.

Thus, if there is a C4 in Gc, it contains exactly one of u1, u2, so it consists

w.l.o.g. of u1, u3 ∈ U and v1, v2 ∈ V ′2 ∪ V ′.
Assume that v1 ∈ V ′ and v2 ∈ V ′2 . Then u3 is incident to every vertex in

V1∩V2 inG
c
(otherwise there is v3 ∈ V1∩V2\NGc(u3), i.e. {u1, u2, u3, v1, v2, v3}

induces (3, 5)in Gc). Since |V1 ∩ V2| ≥ 2, there are v3, v4 ∈ V1 ∩ V2. Then

{u1, u2, u3, v1, v3, v4} induces (3, 5).
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Thus, both v1, v2 ∈ V ′2 . Then NGc(u3) ∩ (V1 ∩ V2) = ∅: otherwise there exists

v3 ∈ NGc(u3) ∩ (V1 ∩ V2), i.e. {u1, u2, u3, v1, v2, v3} induces (3, 5).

Let u4 ∈ U \ {u1, u2, u3}. Then u4 has at most 1 neighbour in {v1, v2} (else
we have a C4 on {u3, u4, v1, v2}, a contradiction). Assume u4 has exactly

one neighbour in {v1, v2}, say v1. If it has a non-neighbour v3 in V1 ∩ V2,

then {u1, u3, u4, v1, v2, v3} induces (3, 5), i.e. v3 is incident to all vertices in

V1 ∩ V2. Let v3, v4 ∈ V1 ∩ V2. Then {u1, u3, u4, v1, v3, v4} induces (3, 5). So

assume u4 has no neighbour in {v1, v2}. If it has at least one neighbour in

v3 ∈ V1 ∩ V2, then {u1, u3, u4, v1, v2, v3} induces (3, 5) in Gc. Thus, no vertex

u ∈ U has any neighbours in V1 ∩ V2, so δ(G
c) = 0. This is a contradiction to

δ(Gc) = d(u1) ≥ 2.

Thus, there is no C4 in Gc, so by Lemma 7.9, we have G ∈ G4(n).

Case 4: For all u ∈ U \ {u1, u2}we have |(V1 ∪ V2) \N(u)| ≤ 2.

That means in particular, that d(u1) ≥ d(u) ≥ d(u1)− 2 for all u ∈ U .

Thus, there are at least d(u1)n−2(n−1) edges betweenU andV1, i.e. themaximum

degree in V1 is at least n− 2(n−1)
d(u1) . Since d(u1) = ∆(G), we must have n− 2(n−1)

d(u1) ≤
d(u1), i.e.

d(u1)2−nd(u1) ≥ −2n+2 ⇔
(
d(u1)− n

2

)2
≥
(n

2

)2
−2n+2 =

(n
2
− 2
)2
−2

and in particular, we either have

d(u1) ≥ n

2
+
√

((n/2)− 2)2 − 2 >
n

2
+
√

((n/2)− 3)2 = n− 3 (for n > 7),

or

d(u1) ≤ n

2
−
√

((n/2)− 2)2 − 2 <
n

2
− n

2
+ 3 = 3.

In the second case, we have ∆(G) = d(u1) = 2, and u1, u2, v1, v2 induce a C4

disjoint from the remaining graph. Since |U \ {u1, u2}| ≥ 3, there must be u3 ∈
U \ {u1, u2} and v3 ∈ V \ {v1, v2} with uv 6∈ E(G). But then {u1, u2, u3, v1, v2, v3}
induces (3, 4), a contradiction. Thus, we have d(u1) ∈ {n− 2, n− 1, n}.

Case 4.1: d(u1) = n.

Then G has at least n+ (n− 1)(n− 2) = n2 − 2n+ 2 edges. In particular we

have 0 = dGc(u1) ≤ dGc(u2) ≤ dGc(u) ≤ 2. Assume there is a C4 u3v3u4v4 in

Gc. Then any vertex u ∈ U has N(u) ∈ {∅, {v3, v4}}, since otherwise there is

(3, 5), i.e. Gc = K2,a for some a ∈ [n− 1], i.e. G ∈ G3(n).

If there is no C4 in Gc, by Lemma 7.9 we have G ∈ G4(n).
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Case 4.2: d(u1) = n− 1.

We consider the complement Gc. Then d(u1) = 1 and d(u) ∈ {1, 2, 3} for
u ∈ U . Assume there is a C4 = u2v2u3v3 in Gc.

IfN(u1)∩{v2, v3} 6= ∅, then {u1, u2, u3, v2, v3} and any vertex in V \ (N(u2)∪
N(u3)) (which exists, since |V | ≥ 5) induce C4 with a pendant edge, i.e. a

(3, 5)-graph, a contradiction.

If (N(u2) ∪ N(u3)) ∩ N(u1) = ∅, then {u1, u2, u3, v2, v3} ∪ N(u1) induces

K2 ∪ C4, i.e. a (3, 5)-graph, a contradiction.

Let v1 be the neighbour of u1. Then w.l.o.g. u2v1 ∈ E and u3v1 6∈ E.

Now let u4 ∈ U \ {u1, u2, u3}.

If u4 has no neighbour in {v1, v2, v3}, then {u2, u3, u4, v1, v2, v3} induced C4

and a pendant edge, i.e. a (3, 5)-graph, a contradiction.

So u4 has at least one neighbour in {v1, v2, v3}. Note that since dGc(u) ≤ 3

for all u ∈ U and n > 7, there must exist a vertex v4 ∈ V \ (
⋃

i∈{1,2,3,4}
N(ui))

Assume u4 has exactly one neighbour in {v1, v2, v3}. If u4v1 ∈ E(Gc),

then {u1, u2, u4, v1, v2, v3} induces (3, 5), and if w.l.o.g. u4v2 ∈ E(Gc), then

{u2, u3, u4, v2, v3, v4} induces (3, 5), a contradiction.

Thus, u4 has at least 2 neighbours in {v1, v2, v3}.
If {v1, v2} ⊆ N(u4), then {u1, u2, u4, v1, v2, v4} induces (3, 5). If {v1, v3} ⊆
N(u4), then {u1, u2, u3, v1, v3, v4} induces (3, 5). So N(u3) ∩ {v1, v2, v3} =

{v2, v3}. Then {u1, u3, u4, v1, v2, v3} inducesK2 ∪C4, a (3, 5)-graph. Thus, in

either case we have a contradiction.

Thus, Gc does not contain C4, so by Lemma 7.9 we have G ∈ G4(n).

Case 4.3: d(u1) = n− 2.

Consider the bipartite complement Gc. Let v1, v2 be the neighbours of u1

in Gc. Note that in Gc every vertex in U has degree ∈ {2, 3, 4}, while in V

every vertex has degree ≥ 2. Then since δ(Gc) = 2, both v1 and v2 have

at least one more neighbour. Assume v1, v2 have a common neighbour, say

u2 ∈ U \ {u1}, choose u2 of maximum degree with that property.

• dGc(u2) = 2: Let u3 ∈ U \ {u1, u2}.
Assume N(u3) ∩ {v1, v2} = ∅. Since d(u3) ≥ 2, there exists v3 ∈ N(u3),

i.e. {u1, u2, u3, v1, v2, v3} induces (3, 5). Assume |N(u3) ∩ {v1, v2}| = 1,

say v2 ∈ N(u3). Then there exists v3 ∈ V \ {v1, v2} with u3v3 /∈ E(Gc),

since d(u3) ≤ 4 and |V | ≥ 6 ), so {u1, u2, u3, v1, v2, v4} induces (3, 5).

Thus, {v1, v2} ⊆ N(u) for all u ∈ U and d(u2) ≥ d(u), so we have

N(u) = {v1, v2} for all u ∈ U , and hence d(v) = 0 for all v ∈ V \ {v1, v2},
a contradiction to δ(Gc) ≥ 2.
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• dGc(u2) = 3: Let N(u2) = {v1, v2, v3}. Assume there exists u3 ∈ U \
{u1, u2}with v3 ∈ N(u3).

If |N(u3)∩{v1, v2}| = 0, then let v4 ∈ N(u3)\{v3}. Then{u1, u2, u3, v1, v2, v4}
induces (3, 5). If |N(u3)∩{v1, v2}| ≥ 1, w.l.o.g. v2 ∈ N(u3), then let v4 ∈
V \ (N(u2) ∪N(u3)), which exists for n ≥ 6. Then {u1, u2, u3, v2, v3, v4}
induces (3, 5).

Thus, for all vertices u ∈ U \ {u2}we have uv3 6∈ E(Gc), i.e. dGc(v3) = 1,

a contradiction to δ(Gc) ≥ 2.

• dGc(u2) = 4: Let N(u2) = {v1, v2, v3, v4} and let u3 ∈ U \ {u1, u2}.
If |N(u3) ∩ N(u2)| ≤ 1, w.l.o.g. v2, v3 6∈ N(u3). If v1 ∈ N(u3), then

{u1, u2, u3, v1, v3, v4} induces (3, 5), otherwise {u1, u2, u3, v1, v2, v3} in-
duces (3, 5). If |N(u3)∩N(u2)| ≥ 3, w.l.o.g. we have v2u3, v3u3 ∈ E(Gc),

so for v4 ∈ V \ (N(u3) ∪ N(u2)), the set {u1, u2, u3, v2, v3, v4} induces
(3, 5).

Thus, we have |N(u3) ∩ N(u2)| = 2. If N(u3) ∩ N(u2) = {v1, v2}, then
{u1, u2, u3, v1, v3, v4} induces (3, 5). If |N(u3) ∩ {v1, v2}| = 1 = |N(u3) ∩
{v3, v4}, say {v1, v4} ∈ N(u3), then let v5 ∈ V \ (N(u3) ∪ N(u2)), so

{u1, u2, u3, v1, v2, v5} induces (3, 5).

Thus, all vertices u ∈ U \ {u1, u2} satisfy N(u) ∩N(u2) = {v3, v4}. But
then for u3, u4 ∈ U \ {u1, u2}, the set {u1, v1, u3, u4, v3, v4} induces (3, 5).

Thus, there is no vertex u ∈ U \ {u1}with {v1, v2} ∈ N(u). Pick vertices

u2, u3 ∈ U with v1u2, v2u3 ∈ E(Gc).

Assume there is a C4 in Gc with vertex set C = {u2, u3, v3, v4}. Then

u1 6∈ C and |{v1, v2} ∩ {v3, v4}| ≤ 1. If {v1, v2} ∩ {v3, v4} = ∅, then
{u1, u2, u3, v1, v3, v4} induces (3, 5). If {v1, v2} ∩ {v3, v4} 6= ∅, say v2 =

v3, then let v5 ∈ V \ {N(u1) ∪ N(u2) ∪ N(u3)} (6= ∅ for n ≥ 8), then

{u1, u2, u3, v3, v4, v5} induces (3, 5). Thus,Gc is C4-free, so we can apply

Lemma 7.9, and in particular, G ∈ G4(n).

7.5 Density observations in the bipartite setting

Consider the class of (n × n) bipartite graphs which are the vertex-disjoint union of

bicliques and isolated vertices, i.e.Mn = {
⋃
Kai,bi : ai, bi ∈ [n],

∑
ai ≤ n,

∑
bi ≤ n}.

Then the set of sizes of graphs inMn is given by

T (n) = {|E(G)| : G ∈Mn} =
{∑

aibi : ai, bi ∈ [n],
∑

ai ≤ n,
∑

bi ≤ n
}
.

Lemma 7.10. For any c ∈ [0, 1), there exists an n ≥ n0 such that T (n) ≥ cn2.
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Proof. We will show that for any e with 0 ≤ e ≤ cn2
there exists a graph inMn with

exactly e edges.

Let e ≤ cn2
and let x be an integer such that x2 ≤ e < (x+ 1)2

.

We want to realise the pair (n, e) as a unionK ∪K ′∪K1,` and isolated vertices, with

K ∈ {Kx,x,Kx,(x+1)} andK ′ = Ky,y for some suitable y ≤ b
√
xc and ` ≤ 2y + 1.

If e < x(x+ 1), let K = Kx,x. Otherwise, let K = Kx,x+1. Then e− |E(K)| ≤ x, so

we need to show that for any f with 0 ≤ f ≤ x we can find a graph inMn−x−1 with

exactly f edges. Fix some f with 0 ≤ f ≤ x.

Let y =
⌊√

f
⌋
, let K ′ = Ky,y and let ` := e − E(K) − E(K ′) = f − y2

. Recall that

{y} denotes the fractional part of y. Thus, we have

` = f − (
√
f − {

√
f})2 = 2

√
f {
√
f}︸ ︷︷ ︸

∈(0,1)

−{
√
f}︸ ︷︷ ︸

∈(0,1)

2 < 2
√
f ≤ 2

√
x.

Thus, if we can show that 2
√
x ≤ n− x− 1− y, we can realise the remaining ` ≤ 2

√
x

edges asK1,`. Equivalently, we need to show that n ≥ x+ 2
√
x+ y + 1. We have

x+ 2
√
x+ y + 1 ≤ x+ 3

√
x+ 1 ≤ e

1
2 + 3e

1
4 + 1 ≤ c

1
2n+ 3c

1
4
√
n+ 1.

Note that depending on c, there exists n0 such that c
1
2n+ 3c

1
4
√
n+ 1 ≤ n for all n ≥ n0.

Thus, forn ≥ n0, we can realise all pairs (n, e)with 0 ≤ e ≤ cn2
asK∪K ′∪K1,` ∈Mn

withK,K ′, ` defined as above.

Lemma 7.11. If for some bipartite pair (m, f) we have G bip9 (m, f) for all G ∈ Mn, then
σbip(m, f) = 0.

Proof. Assume we have G
bip9 (m, f) for all G ∈ Mn. Then by the definition of the

bipartite forcing density, we obtain for all c ∈ [0, 1):

σbip(m, f) = lim sup
n→∞

|{e : (n, e)
bip→ (m, f)}|
n2

= lim sup
n→∞

n2 − |{e : (n, e)
bip9 (m, f)}|

n2

≤ 1− lim sup
n→∞

|Mn|
n2

= 1− lim sup
n→∞

T (n)

n2
≤ 1− c,

where the last inequality follows from Lemma 7.10. Thus, we obtain σbip(m, f) = 0.

Observation 7.12. Any bipartite pair (m, f) which cannot be realised as H with H ∈ Mm

satisfies σbip(m, f) = 0.
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Proof. Any induced subgraph of a component of a graph inMn is a biclique. Thus, any

induced (m, f)-subgraph H of a graph inMn is the vertex-disjoint union of bicliques

and isolated vertices, and thus, H ∈Mm.

Lemma 7.13. There are infinitely many bipartite pairs (m, f) which satisfy σbip(m, f) = 0. In
particular, for anym ≥ 4 and f with (m− 1)2 + 1 < f < m(m− 1) we have σbip(m, f) = 0.

Proof. Let m ≥ 4 and f with (m − 1)2 + 1 < f < m(m − 1). Note that for m ≥ 4,

[(m− 1)2 + 2,m(m− 1)− 1] 6= ∅. Let H be a bipartite (m, f) graph.

Assume H is disconnected and has two components H ′ and H ′′, both containing

at least one edge. But then f ≤ |E(H ′)| + |E(H ′′)| ≤ |E(Km−1,m−1)| + |E(K2)| =

(m − 1)2 + 1, a contradiction. Thus, H is either connected or H = H ′ + {v} and H ′ is
connected.

Now assume H is connected. Then it cannot be a complete bipartite graph, since

f < m2 = E(|Km,m|). So assumeH = H ′∪{v}. ThenH ′ is not complete bipartite since

f ≤ m(m− 1) = |Km,m−1|.

Thus, H 6∈ Mm, and thus, by Observation 7.12, σbip(m, f) = 0.

Lemma 7.14. For anym ≥ 2 and f withm(m− 1) < f < m2 we have σbip(m, f) = 0.

Proof. Let m ≥ 2 and f with m(m − 1) < f < m2
. Note that for m ≥ 2, [m(m − 1) +

1,m2 − 1] 6= ∅. Let H be a bipartite (m, f) graph.

Assume that H is disconnected. Then |E(H)| ≤ |E(Km,m−1)| = m(m − 1), a

contradiction. So H is connected, and H is also not complete bipartite, since E(H) <

m2 = |E(Km,m)|.

Thus, H 6∈ Mm, and thus, by Observation 7.12, σbip(m, f) = 0.

This shows that there are infinitely many pairs which have forcing density 0. On

the other hand, we can show, using the results from the previous sections, that there

also exist pairs with positive forcing density:

Lemma 7.15. Letm ∈ N. We have σbip(m, am) = 1, for any a ∈ [m].

Proof. By Proposition 7.2, we have (n, e)
bip→ (m, am) for any n sufficiently large and

e ∈ [n
2− 1

q , n2 − n
2− 1

q ] for some q depending only on m. Thus, by definition of the
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bipartite forcing density, we obtain

σbip(m, am) = lim sup
n→∞

|{e : (n, e)
bip→ (m, am)}
n2

≥ lim sup
n→∞

n2 − 2n
2− 1

q

n2

= 1− lim sup
n→∞

2

n
1
q

= 1.

In the previous section, we have characterised the bipartite graphs that bipartite

arrow (3, 4). Note that 4 6= 3 ·a for any a ∈ [3], so we cannot apply Lemma 7.15 to (3, 4),

so the following lemma shows that not all pairs of bipartite forcing density 0 are of the

form (m, am).

Lemma 7.16. We have σbip(3, 4) = 1.

Proof. By Lemma 7.8 we know that G
bip→ (3, 4) if and only if G 6∈

4⋃
i=1
Gi(n), for the

families Gi(n) given in Section 7.4. Let Ei(n) = {|E(G)| : G ∈ Gi(n)}. In particular we

have

1. Any graph in G1(n) is a vertex-disjoint union of stars, i.e. a graph with at most n

edges. In particular, |E1(n)| ∈ O(n).

2. Any graph in G2(n) is of the formKa,n \ {e}. Since there are at most n choices for

a, we obtain |E2(n)| ∈ O(n).

3. Any graph in G3(n) is Kn,n − E(Ka,b) for some 0 ≤ a, b ≤ n. Thus, |E3(n)| =

{ab : 0 ≤ a, b ≤ n}. This set was considered by Erdős [54], who proved that

|E3(n)| ∈ o(n2). For the correct asymptotics of the cardinality of this set see also

Ford [67,68].

4. There at most 2n edges in the complement of any graph in G4(n), and thus,

|E4(n)| ∈ O(n).

By the definition of the forcing density, we obtain

σbip(3, 4) = lim sup
n→∞

|{e : (n, e)
bip→ (3, 4)}

n2
= lim sup

n→∞

n2 −
∣∣∣∣ 4⋃
i=1

Ei(n)

∣∣∣∣
n2

≥ 1− lim sup
n→∞

1

n2

(
4∑
i=1

|Ei(n)|

)
≥ 1− lim sup

n→∞

o(n2)

n2
= 1.
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Now Proposition 7.3 follows immediately from Lemma 7.14, Lemma 7.15 and

Lemma 7.16.

7.6 Concluding remarks

We have shown that there exist infinitely many bipartite pairs with forcing density 0,

but we were not able to extend our results on absolutely avoidable pairs to the bipartite

setting. This leaves the following open problem:

Open Problem 7.17. Are there any absolutely avoidable pairs (m, f) in the bipartite setting?

Clearly good candidates for absolutely avoidable pairs are those for which we

already know that the bipartite forcing density is 0. Lemma 7.11 and Observation 7.12

tells us, that we might want to look at pairs which are not realisable as the vertex

disjoint union of bicliques and isolated vertices, i.e not as graphs inMm. Pairs (m, f)

withm(m−1) < f < m2
arenot absolutely bipartite avoidable, since (n, n2−(m2−f))

bip→
(m, f), but it might be interesting to look at the pairs identified in Lemma 7.14.

While finding infinitely many pairs (m, am) and the additional pair (3, 4) with

bipartite forcing density 1, we also did not find any pair of non-trivial density, i.e. not

0 or 1. This leaves the second open question for this chapter:

Open Problem 7.18. Are there any bipartite pairs (m, f) with σbip(m, f) ∈ (0, 1)?
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Chapter 8 Order-size pairs in hypergraphs: absolute avoid-

ability and forcing densities

8.1 Introduction

This chapter is concerned with order-size pairs in r-graphs with r ≥ 3. We will look at

questions about avoidability and forcing densities.

Recall that in Chapter 6 we investigated the existence of so-called absolutely avoid-

able pairs (m, f) for which we not only have σ2(m, f) = 0, but the stronger property

{e : (n, e)→ (m, f)} = ∅ for all sufficiently large n. We showed that for r = 2 there are

infinitely many absolutely avoidable pairs and amongst others constructed an infinite

family of absolutely avoidable pairs of the form (m,
(
m
2

)
/2) and showed that for any

sufficiently largem, there exists an f such that (m, f) is absolutely avoidable. Here, we

extend this result to higher uniformities:

Theorem 8.1. Let r ≥ 3. Then there exists m0 such that that for any m ≥ m0 either
(m,

⌊(
m
r

)
/2
⌋
) or (m,

⌊(
m
r

)
/2
⌋
−m− 1) is absolutely r-avoidable.

Recall that the forcing density of a pair (m, f) is defined as

σr(m, f) = lim sup
n→∞

|{e : (n, e)→r (m, f)}|(
n
r

) .

Erdős, Füredi, Rothschild and Sós [56] claimed for r = 2 that “almost all pairs” have

forcing density σ2(m, f) = 0. Here we prove the following for higher uniformities:

Proposition 8.2. For r,m ∈ N, r,m ≥ 3, all but O
(
m

r
r−1

)
of all possible

(
m
r

)
pairs (m, f)

satisfy σr(m, f) = 0.

As seen in Theorem 0.4, for r = 2 there exist pairs with σ2(m, f) = 1. This

changes for r ≥ 3, as seen in Proposition 8.4 below, for which we need some additional

definitions and notation. Recall that Tr(n, l) denotes the complete l-partite r-graph on

n vertices and part sizes n1, . . . , nl ∈ {
⌊
n
l

⌋
,
⌈
n
l

⌉
}. Note that for l < r, Tr(l, n) is empty,

and for r = 2 this is just the Turán graph. The number of edges in Tr(n, l) is denoted

by tr(n, l) and for l ≥ r we have

tr(n, l) =
∑
S∈([l]

r )

∏
i∈S

ni =
(l)r
lr

(
n

r

)
+ o(nr),
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where (l)r =
∏r−1
i=0 (l − i) = l(l − 1) · · · (l − r + 1). Note that for r ≥ 2, (l)r

lr = (l−1)r
(l−1)r (1−

1
l )
r l
l−r , and by Bernoulli’s inequality we have (1− 1

l )
r > 1− r

l , i.e.
(l)r
lr > (l−1)r

(l−1)r , so
(l)r
lr

is strictly increasing in l, and lim
l→∞

(l)r
lr = 1. Also note that we have

(r)r
rr = r!

rr ≤
1
r .

Let lm,r be the largest l ∈ N for which tr(m, l) <
1
2

(
m
r

)
. Note that this is well-defined

by the previous observation, in particular, lm,r ≥ r and lm,r is increasing in m. In

particular, for fixed r there exists some m0 such that lm,r = lm0,r for all m ≥ m0. One

can verify that the following holds for r = 3:

Observation 8.3. We have lm,3 =


3, 4 ≤ m ≤ 11,

4, 12 ≤ m ≤ 72,

5, m ≥ 73.

Proposition 8.4. Letm > r ≥ 3, 0 ≤ f ≤
(
m
r

)
. Then σr(m, f) < 1.

In particular, we can give the following upper bounds on σr for any l ∈ N satisfying l ≤ lm,r:

(a) We have σr(m, f) ≤ 1− (l)r
lr .

(b) If tr(m, l) < f <
(
m
r

)
− tr(m, l) for some l, then σr(m, f) < 1− 2 (l)r

lr .

Note that He, Ma and Zhao [88] mentioned in their conclusion without proof, that

for pairs (m, f) withm > r ≥ 3, 0 ≤ f ≤
(
m
r

)
, the bound σr(m, f) ≤ 1− r!

rr holds.

This chapter is organised as follows. In Section 8.2 of this chapter we will build

on one of the proof ideas used in [16] for 2-graphs, and extend these methods to

higher uniformities in order to prove Theorem 8.1. In Section 8.3 we will make some

observations on the forcing density σr and prove Proposition 8.2 and Proposition 8.4.

8.2 Existence of absolutely avoidable pairs

We will call an r-graph G m-sparse if every subset ofm vertices in G induces at mostm

edges. We call an r-graph with at mostm edges an ≤m-edge (“at mostm-edge”) r-graph.

In order to prove results in the 2-uniform case, the following fact is used in [16,56]:

Let m > 0 be given. Then for any v large enough there exists a graph of girth at least

m on v vertices with v1+ 1
2m edges. For a probabilistic proof of this fact see for example

Bollobás [26] and for an explicit construction see Lazebnik et al. [102].

Our first lemma is inspired by this: A 2-graph of girth ≥ m is an (m − 1)-sparse

graph. The proof of the lemma follows a standard probabilistic argument:



8. Order-size pairs in hypergraphs: absolute avoidability and forcing densities 137

Lemma 8.5. Letm > 0, r ≥ 2 be given. Then for any n large enough there exists an n-vertex
r-graph with Ω(nr−1+ 1

m+1 ) edges which ism-sparse.

Proof. Let cm,f,r =
(
m
e

)m
f r!f
mre21/f . Consider a random r-graph G ∈ Gr(n, p), for p <

cm,r,fn
−m/f

. Then the probability that some m-subset contains at least f edges is less

than (
n

m

)((m
r

)
f

)
pf ≤

(ne
m

)m(mrep

r!f

)f
<

1

2
. (?)

Now letX be the number of edges in G. Using the the standard bound

(
n
r

)
≥
(
n
r

)r
,

we have

E[X] =

(
n

r

)
p ≥ cm,f,r

nr−m/f

rr
.

UsingChernoff’s bound forBin(n, p)distributed randomvariables ( [90], seeLemma2.9),

we obtain that for δ ∈ (0, 1) the probability that G has fewer than a (1 − δ)-fraction of

the expected number of edges is

P(X ≤ (1− δ)E(X)) ≤ exp
(
− δ2

2 E[X]
)
≤ exp

(
−cm,f,r δ

2n
r−m

f

2rr

)
<

1

2
,

where the last inequality holds for
m
f ≤ r and n sufficiently large. Together with (?)

that gives there exists an r-graph on n vertices with at least (1− δ)
(
n
r

)
p edges in which

eachm-element subset spans at most f − 1 edges.

Note that, by choosing f = m + 1, we obtain the existence of an r-graph with

c′r,f,mn
r−1+ 1

m+1 hyperedges and nom-subset which spans more thanm hyperedges, i.e.

anm-sparse graph.

The next two lemmata show that for many possible order-size pairs (n, e) we can

find an r-graph which realises this pair and has a “nice”, i.e. easy to analyse, structure.

We will use them repeatedly throughout this chapter.

Lemma 8.6. Let m, r ∈ N, m, r ≥ 2, and c be a constant, 0 ≤ c < 1. Then for n ∈ N
sufficiently large and any e ∈ [c

(
n
r

)
], there exists a non-negative integer k and an r-graph on n

vertices and e edges which is the vertex-disjoint union of a K(r)
k and an m-sparse r-graph on

n− k vertices.

Proof. Letm, r > 0 be given and let n be a given sufficiently large integer. Let e ∈ [c
(
n
r

)
].

Let k be the non-negative integer such that

(
k
r

)
≤ e ≤

(
k+1
r

)
−1. Note that since e ≤ c

(
n
r

)
,(

k
r

)
≤ c
(
n
r

)
, and thus, k ≤ r

√
cn + 1 ≤ c′n, where c′ is a constant with c′ < 1. We claim
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that the pair (n, e) could be represented as the vertex-disjoint union of a K
(r)
k and an

m-sparse r-graph.

LetG′ be am-sparse graph on n−k vertices with exactly e−
(
k
r

)
edges. Lemma 9.13

guarantees the existence of such a graph, since

e−
(
k

r

)
<

(
k + 1

r

)
−
(
k

r

)
=

(
k

r − 1

)
k≤c′n
≤ (n− k)r−1+ 1

m+1 .

Now let G be the vertex-disjoint union ofK
(r)
k and G.

Lemma 8.7. Let m, r ∈ N, m, r ≥ 2, and c be a constant, 0 < c ≤ 1. Then for n ∈ N
sufficiently large and any integer e with c

(
n
r

)
≤ e ≤

(
n
r

)
, there exists a non-negative integer

k ≤ n and an r-graph on k vertices and e edges which is the complement of anm-sparse r-graph.

Proof. Note that adding isolatedvertices to the complement of anm-sparse graph results

in the complement of the vertex-disjoint union of a clique and anm-sparse graph. Thus,

the statement immediately follows from Lemma 8.6 by taking complements.

Lemma 8.8. If for some integers m, r, f with m ≥ r ≥ 2 and 0 ≤ f ≤
(
m
r

)
neither (m, f)

nor (m,
(
m
r

)
− f) can be realised as an r-graph which is the vertex-disjoint union of a complete

r-graph and an ≤m-edge r-graph, then the pair (m, f) is absolutely avoidable.

Proof. Assumewe can realise neither (m, f) nor (m,
(
m
r

)
−f) as the vertex-disjoint union

of a complete r-graph and an ≤m-edge r-graph.

By the previous lemma, for n sufficiently large and any e ≤
⌈(
n
r

)
/2
⌉
, there exists an

r-graph G with e hyperedges which is the vertex-disjoint union of a clique and an r-

graph which ism-sparse. In particular, for every e ∈ {0, 1, . . . ,
(
n
r

)
}, there is an r-graph

G on n vertices with e edges, such that eitherG or its complement is the vertex-disjoint

union of a clique and anm-sparse r-graph.

If G is the union of a clique and an m-sparse r-graph, then clearly G 6→r (m, f),

since (m, f) cannot be realised as the union of a clique and an ≤m-edge r-graph.

If Ḡ is the union of a clique and anm-sparse r-graph, then any induced r-graph on

m vertices is the complement of the vertex-disjoint union of a clique and an ≤m-edge

r-graph. Since (m,
(
m
r

)
− f) cannot be realised as the union of a clique and an≤m-edge

r-graph, the pair (m, f) = (m,
(
m
r

)
− (
(
m
r

)
− f)) cannot be realised by a graph whose

complement is the union of a clique and an ≤m-edge r-graph. Thus, G 6→r (m, f).
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In the 2-uniform case we used a slightly stronger statement (i.e. nom-subset spans

more thanm− 1 edges), to find absolutely avoidable pairs. For r > 2, it suffices to find

pairs (m, f), which cannot be realised as the vertex-disjoint union of a clique K
(r)
x and

an ≤m-edge r-graph.

Good candidates for such pairs (m, f) are again, as in the 2-uniform case, pairs

which look roughly like (m,
(
m
r

)
/2 + o(1)).

We will use the following lemmata several times:

Lemma 8.9. Let r ≥ 2,m, f be integers with m ≥ r, 0 ≤ f ≤
(
m
r

)
. If for some k ∈ N,(

k
r

)
+m < f <

(
k+1
r

)
, then the pair (m, f) cannot be realised as an r-graph which is the vertex

disjoint union of a clique and an ≤m-edge r-graph.

Proof. Assume (m, f) is realised asK
(r)
l +H , where l ≥ 0 andH is an≤m-edge r-graph.

Then from the lower bound on f , we have that l > k, and from the upper bound on f ,

we see that l < k + 1. Thus, no such l exists.

Lemma 8.10. Let r ≥ 2,m, f be integers with m ≥ r, 0 ≤ f ≤
(
m
r

)
. If for some k ∈ N,(

k−1
r

)
< f <

(
k
r

)
−m, then the pair (m, f) cannot be realised as an r-graph which is the union

of the complement of an ≤m-edge hypergraph and some isolated vertices.

Proof. Assume (m, f) is realised asK
(r)
l −H , where l ≥ 0 andH is an≤m-edge r-graph,

and some isolated vertices. Then from the upper bound on f , we have that l < k, and

from the lower bound on f , we see that l > k − 1. Thus, no such l exists.

Proof of Theorem 8.1. Let r ≥ 3,m ≥ m0 and let f0 =
⌊(
m
r

)
/2
⌋
.

Using Lemma 8.8, we need to show that either (m, f0) or both (m, f0 − (m + 1)) and

(m,
(
m
r

)
− f0 + (m + 1)) are not realisable as the vertex-disjoint union of a clique and

an ≤m-edge r-graph. To this end we will show that the condition of Lemma 8.9 is

satisfied.

Let x be an integer such that

(
x
r

)
≤
⌊(
m
r

)
/2
⌋
<
(
x+1
r

)
. By standard bounds we observe

the following:

1

2

(m
r

)r
≤
⌊

1

2

(
m

r

)⌋
<

(
x+ 1

r

)
<

(
(x+ 1)e

r

)r
,

and thus,

x+ 1 >
1

21/re
m.
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Thus, by choosing m0 sufficiently large, we have for m ≥ m0 that x − 1 > m
4 , since for

r ≥ 3 r
√

2e ≥ 3
√

2e > 4, and(
x− 1

r − 1

)
≥
(
x− 1

r − 1

)r−1

≥
(

m

4(r − 1)

)r−1

> 2m+ 2. (∗)

Let f− =
⌊(
m
r

)
/2
⌋
− (m+ 1) and f+ =

⌈(
m
r

)
/2
⌉

+ (m+ 1).

Case 1:

(
x
r

)
+m < f0. Then by Lemma 8.9, (m, f0) cannot be realised by K

(r)
k +H ,

where k ∈ N andH has at mostm edges. If

⌈(
m
r

)
/2
⌉
<
(
x+1
r

)
, then again by Lemma 8.9,

(m,
(
m
r

)
− f0) cannot be realised as the disjoint union of a clique and an ≤m-edge r-

graph, i.e. by Lemma 8.8, (m, f0) is absolutely avoidable.

Otherwise, we have

⌈(
m
r

)
/2
⌉

=
(
x+1
r

)
=
⌊(
m
r

)
/2
⌋

+ 1. We clearly have f− <
(
x+1
r

)
and

f+ >
(
x+1
r

)
+ m, so it remains to show that f− >

(
x
r

)
+ m and f+ <

(
x+2
r

)
. Indeed, we

have

f− −
(
x

r

)
=

(
x+ 1

r

)
−m− 1−

(
x

r

)
=

(
x

r − 1

)
− (m+ 1)

(∗)
> 2m+ 1−m− 1 = m,

i.e. f− >
(
x
r

)
+m, and also

f+ =

(
x+ 1

r

)
+m+ 1 <

(
x+ 1

r

)
+ 2m+ 1

(∗)
<

(
x+ 1

r

)
+

(
x− 1

r − 1

)
<

(
x+ 2

r

)
,

and thus, f+ <
(
x+2
r

)
.

Case 2:

(
x
r

)
≤
⌊(
m
r

)
/2
⌋
≤
(
x
r

)
+m.

It remains to check that neither (m, f−) nor (m, f+) can be realised as the vertex-

disjoint union of a clique and an ≤m-edge r-graph. On the one hand we have f− ≤(
x
r

)
+m− (m+ 1) <

(
x
r

)
. Thus, in order to use Lemma 8.9, it remains to verify that we

also have f− >
(
x−1
r

)
+m. Indeed, we have

f− −
(
x− 1

r

)
≥
(
x

r

)
− (m+ 1)−

((
x

r

)
−
(
x− 1

r − 1

))
=

(
x− 1

r − 1

)
− (m+ 1)

(∗)
> 2m+ 1−m− 1 = m

for m ≥ m0, i.e. we have

(
x−1
r

)
+ m < f− <

(
x
r

)
, so by Lemma 8.9, (m, f−) cannot be

realised as the vertex-disjoint union of a clique and an ≤m-edge r-graph.

On the other hand, we clearly have f+ >
(
x
r

)
+m, and also,

f+ ≤
(
x

r

)
+m+ 1 + (m+ 1)

(∗)
<

(
x

r

)
+

(
x− 1

r − 1

)
<

(
x

r

)
+

(
x

r − 1

)
=

(
x+ 1

r

)
,
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so by Lemma 8.9, (m, f+) cannot be realised as K
(r)
k + H , where k ∈ N and H is an

≤m-edge r-graph.

Thus, by Lemma 8.8 the pair (m, f−) is absolutely avoidable.

8.3 Density observations

Let r ≥ 3,m, f ≤
(
m
r

)
. Recall from the Introduction to Part II that the forcing density is

defined as

σr(m, f) = lim sup
n→∞

|{e : (n, e)→ (m, f)}|(
n
r

) .

It immediately follows that σr(m, f) = σr(m,
(
m
r

)
− f) by considering complemen-

tary pairs. Recall that for a family of r-graphs G, exr(n,G) denotes the extremal number,

and for an r-graph H , πr(H) denotes the Turán density.

Note that for f = 0, σr can be expressed in terms of the Turán density, i.e. σr(m, 0) =

σr(m,
(
m
r

)
) = 1−πr(K(r)

m ), where the currently best known general bounds on the Turán

density are

1−
(
r − 1

m− 1

)r−1

≤ π(Kr
m) ≤ 1−

(
m− 1

r − 1

)−1

,

due to Sidorenko [118] and de Caen [51]. Also note that σr(r, 1) = σr(r, 0) = 1. Thus,

the only non-trivial cases are m > r, which are dealt with in Proposition 8.2 and

Proposition 8.4.

Before we prove Proposition 8.2, we show the following auxiliary lemma:

Lemma 8.11. Letm, r, f ∈ N withm ≥ r ≥ 3 and 0 ≤ f ≤
(
m
r

)
.

(a) If (m, f) cannot be realised as the disjoint union of a clique and an ≤m-edge r-graph,
then σr(m, f) = 0. In particular, if there is no x ∈ [m], such that 0 ≤ f −

(
x
r

)
< m,

then σr(m, f) = 0.

(b) If (m, f) cannot be realised as the complement of an ≤m-edge r-graph and some isolated
vertices, then σr(m, f) = 0. In particular, if there is no x ∈ [m], such that 0 ≤

(
x
r

)
−f <

m, then σr(m, f) = 0.

(c) If σr(m, f) > 0, then there exist x, x̄ ∈ [m] such that 0 ≤ f −
(
x
r

)
< m and

0 ≤ (
(
m
r

)
− f)−

(
x̄
r

)
< m.

(d) If for some l ∈ N we have
(

l
r−1

)
> 2m, then for f >

(
l
r

)
and f 6=

(
x
r

)
for x ∈ [m] we

have σr(m, f) = 0.
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Proof. (a) By Lemma 8.6, for any 0 < c′ < 1, n sufficiently large, and e ∈ En :=
[
c′
(
n
r

)]
there exists an r-graph G on n vertices with e edges which is the vertex-disjoint

union of a clique and anm-sparse r-graph.

Note that any induced subgraph on m vertices of G is the union of a clique and

an r-graph with at mostm edges. Thus, by definition of σr, if a pair (m, f) cannot

be realised by a clique and an ≤m-edge r-graph, we have

σr(m, f) = lim sup
n→∞

|{e : (n, e)→ (m, f)}|(
n
r

) ≤ lim sup
n→∞

|
(

[n]
r

)
− En|(
n
r

) = 1− c′.

Since this holds for any c′ ∈ (0, 1), σr(m, f) = 0.

If there is no x ∈ [m], such that 0 ≤ f −
(
x
r

)
≤
(
m
r

)
, then the pair (m, f) cannot be

realised as the union of a clique and an ≤m-edge r-graph. Thus, in this case we

have σr(m, f) = 0.

(b) By Lemma 8.7, for any 0 < c′ < 1, n sufficiently large, and e ∈ En :=
[(
n
r

)]
−
[
c′
(
n
r

)]
there exists an r-graph G on n vertices with e edges which is the complement of

anm-sparse r-graph and some isolated vertices.

Note that any induced subgraph on m vertices of G is the union of a clique with

at mostm edges removed and an empty graph. Thus, by definition of σr, if a pair

(m, f) cannot be realised as the complement of an ≤m-edge r-graph and some

isolated vertices, we have

σr(m, f) = lim sup
n→∞

|{e : (n, e)→ (m, f)}|(
n
r

) ≤ lim sup
n→∞

|
(

[n]
r

)
− En|(
n
r

) = c′.

Since this holds for all c′ ∈ (0, 1), we have σr(m, f) = 0.

The “in particular” part follows similarly as in part (a).

(c) The first part is the contrapositive of the “in particular” statement in part (a). The

second statement follows trivially using σr(m, f) = σr(m,
(
m
r

)
− f).

(d) Let f >
(
l
r

)
, f 6=

(
x
r

)
for x ∈ [m], and let t be the unique integer satisfying

(
t
r

)
<

f <
(
t+1
r

)
. Since

(
l

r−1

)
> 2m, it implies that

(
t+1
r

)
−
(
t
r

)
=
(
t

r−1

)
≥
(

l
r−1

)
> 2m.

Thus, we either have f >
(
t
r

)
+ m or

(
t+1
r

)
−m > f . In particular, by part (a) or

(b), we have σr(m, f) = 0.

Note: The results by Axenovich, Balogh, Clemen and the author in [10] imply

that the condition f >
(
l
r

)
might not be needed. It is shown there for r = 3.

Proof of Proposition 8.2. Let m be fixed and f ≤
(
m
r

)
; write f uniquely as f =

(
l
r

)
+ l′,
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where l ∈ [m] and 0 ≤ l′ <
(

l
r−1

)
. By Lemma 8.11(d) it follows thatwe have σr(m, f) = 0

if

(
l
r

)
> 2m and l′ > 0. In particular, any pair (m, f) with σr(m, f) > 0 must satisfy

either l′ = 0 or

(
l
r

)
≤ 2m. In the first case, there are exactly m + 1 possible choices

for f (i.e. f =
(
x
r

)
for some x ∈ {0, . . . ,m}). In the second case, we obtain that(

l
r

)r−1 ≤
(

l
r−1

)
≤ 2m, i.e. l ≤ (2m)1/r−1r, i.e. f ≤

(
l
r

)
≤
(
el
r

)r ≤ er(2m)r/r−1
. Thus, at

most (m+1)+er(2m)r/r−1 ∈ O
(
m

r
r−1

)
of all possible pairs (m, f) satisfy σr(m, f) > 0.

Note that for r ≥ 3, we havem
r
r−1 ∈ o(

(
m
r

)
).

Proof of Proposition 8.4. Note that tr(n, l) is the maximum number of edges an l-partite

r-graph can have.

Letm > r ≥ 2, 0 ≤ f ≤
(
m
r

)
.

Let l ∈ N, such that tr(m, l) <
1
2

(
m
r

)
. Note that for r ≥ 3, such an l always exists, since

we have tr(m, r) <
1
2

(
m
r

)
, so we can always choose l = r.

Thus, in particular, we are in one of two cases: Either we have f ≥ 1
2

(
m
r

)
> tr(m, l), or

we have f ≤ 1
2

(
m
r

)
, i.e. f −

(
m
r

)
≥ 1

2

(
m
r

)
> tr(m, l).

Case 1: f > tr(m, l). Then any r-graph that realises the pair (m, f) is not l-partite. If

e ≤ tr(n, l), we have (n, e) 6→ (m, f), since taking any subgraph of Tr(n, l) with e edges

yields an l-partite (n, e)-graph, which cannot contain any (m, f)-graph. In particular,

this implies that

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(
n
r

) < 1.

Case 2:

(
m
r

)
− f > tr(m, l). Then any graph that realises (m,

(
m
r

)
− f) is not l-partite.

Then any r-graph G with G →r (m,
(
m
r

)
− f) cannot be l-partite, i.e. |E(G)| > tr(n, l).

Thus, for each e ≤ tr(n, l), (n, e) 6→r (m,
(
m
r

)
−f), and thus, by using complementation,

for each e ≥
(
n
r

)
− tr(n, l), (n, e) 6→r (m, f). In particular, we have

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(
n
r

) < 1.

Thus, in either case we have

σr(m, f) ≤ 1− lim sup
n→∞

tr(n, l)(
n
r

) = 1− (l)r
lr

< 1.

This proves part (a).

To obtain part (b), assume that for some l ∈ Nwe have tr(m, l) < f <
(
m
r

)
− tr(m, l).

Then by Cases 1 and 2, we see that (n, e)→r (m, f) requires tr(n, l) < e <
(
n
r

)
− tr(n, l).
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Thus, we obtain that

σr(m, f) ≤ 1− 2 lim sup
n→∞

tr(n, l)(
n
r

) = 1− 2
(l)r
lr
,

which completes the proof.

Remark 8.12. For the proof of Proposition 8.4(a) one can also use the following extension of
Turán’s theorem to hypergraphs by Mubayi [108]. This is also the proof that appeared in the
paper [126] containing the result. For fixed l, r ≥ 2 let F (r)

l be the family of r-graphs with
at most

(
l
2

)
edges, that contain a core S of l vertices, such that every pair of vertices in S is

contained in an edge.

Theorem 8.13 (Mubayi [108]). Let r, l, n ≥ 2. Then

ex(n,F (r)
l+1) = tr(n, l)

and the unique r-graph on n vertices containing no copy of any member of F (r)
l+1 for which

equality holds is Tr(n, l), the complete balanced l-partite r-graph on n vertices.

Alternative proof of Proposition 8.4. Now letm > r ≥ 2, 0 ≤ f ≤
(
m
r

)
.

Let l ∈ N, such that tr(m, l) <
1
2

(
m
r

)
. Note that for r ≥ 3, such an l always exists, since

we have tr(m, r) <
1
2

(
m
r

)
, so we can always choose l = r.

Thus, in particular, we are in one of two cases: Either we have f ≥ 1
2

(
m
r

)
> tr(m, l), or

we have f ≤ 1
2

(
m
r

)
, i.e. f −

(
m
r

)
≥ 1

2

(
m
r

)
> tr(m, l).

Case 1: f > tr(m, l). Then by Theorem 8.13, any r-graph that realises the pair (m, f)

contains a member of F (r)
l+1. If e ≤ tr(n, l), we have (n, e) 6→ (m, f), since taking any

subgraph of Tr(n, l) with e edges yields an (n, e) graph not containing any member of

F (r)
l+1, and thus, a graph not containing induced (m, f). In particular, this implies that

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(
n
r

) < 1.

Case 2:

(
m
r

)
− f > tr(m, l). Then by Theorem 8.13 any graph that realises (m,

(
m
r

)
− f)

contains a member ofK
(r)
l+1. Then any graph Gwith G→r (m,

(
m
r

)
− f) must contain a

member ofF (r)
l+1, i.e. |E(G)| > tr(n, l). Thus, for each e ≤ tr(n, l), (n, e) 6→r (m,

(
m
r

)
−f),

and thus, by considering the complement, for each e ≥
(
n
r

)
− tr(n, l), (n, e) 6→r (m, f).

In particular, we have

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(
n
r

) < 1.
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Thus, in either case we have

σr(m, f) ≤ 1− lim sup
n→∞

tr(n, l)(
n
r

) = 1− (l)r
lr

< 1.

Corollary 8.14. For an integerm withm > 3 and any integer f with 0 < f <
(
m
3

)
, we have:

1. σ3(m, f) ≤ 7
9 .

2. If t3(m, 3) < f <
(
m
r

)
− t3(m, 3), then σ3(m, f) ≤ 5

9 .

3. Ifm ≥ 12, then σ3(m, f) ≤ 5
8 .

4. Ifm ≥ 73, then σ3(m, f) ≤ 13
25 .

For an integerm withm > 4 and any integer f with 0 < f <
(
m
4

)
, we have:

1. σ4(m, f) ≤ 29
32 ,

2. There ism0, such that for allm ≥ m0 we have σ4(m, f) ≤ 131
243 ≈ 0.54.

Proof. Recall that Proposition 8.4(a) says that for a pair (m, f) and any l satisfying

l ≤ lm,r, we have σr(m, f) ≤ 1 − (l)r
lr . Recall that lm,r is the largest integer l for which

tr(m, l) <
1
2

(
m
r

)
. Note again that lm,r is increasing inm and that for fixed r there exists

somem0 such that lm,r = lm0,r for allm ≥ m0.

We start with r = 3. In order to obtain our bounds, we can compute the fraction

(l)3

l3
for different l ≥ 3. We have that

(3)3

33
=

2

9
,

(4)3

43
=

3

8
,

(5)3

53
=

12

25
,

(6)3

63
=

5

9
.

Note that
(6)3

63 > 1
2 , so for r = 3, the best possible upper bound on σ3(m, f) one can

achieve for any pair (m, f) using Proposition 8.4 will use l = 5.

Now (1) and (2) immediately follow from Proposition 8.4, by setting l = r = 3 and

observing that for r ≥ 3, we always have tr(m, r) <
1
2

(
m
r

)
. Then by Proposition 8.4(a)

we have

σ3(m, f) ≤ 1− 3!

33
=

7

9
,

and for all f with t3(m, 3) < f <
(
m
r

)
− t3(m, 3), by Proposition 8.4(b) we have

σ3(m, f) < 1− 2
(3)3

33
=

5

9
.
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Now for (3), by Observation 8.3 we know that for m ≥ 12 we have lm,3 ≥ 4, i.e.

t3(m, 4) < 1
2

(
m
3

)
for allm ≥ 12, and thus, by Proposition 8.4(a), for all pairs (m, f) with

m ≥ 12 we have

σ3(m, f) ≤ 1−
(

(4)3

43

)
= 1− 6

16
=

5

8
.

For (4), by Observation 8.3 we know that for m ≥ 73 we have lm,3 = 5, i.e. t3(m, 5) <
1
2

(
m
3

)
for allm ≥ 73, so by Proposition 8.4(a), for all pairs (m, f) withm ≥ 73 we have

σ3(m, f) ≤ 1− (5)3

53
= 1− 12

25
=

13

25
.

For the case r = 4, we obtain the first part by computing
(4)4

44 = 3
32 . As before, since

t4(m, 4) < 1
2

(
m
4

)
for allm, by Proposition 8.4(a) we have

σ4(m, f) ≤ 1− 4!

44
= 1− 3

32
=

29

32
.

The second part is obtained by computing
(9)4

94 = 112
243 <

1
2 and

(10)4

104 = 63
125 >

1
2 . This

implies, that for r = 4 there exists some m0, such that lm,4 = 9 for all m ≥ m0. In

particular, we then have t4(m, 9) < 1
2

(
m
4

)
for allm ≥ m0 and thus, by Proposition 8.4(a),

we have

σ4(m, f) ≤ 1− (94)

94
= 1− 112

243
=

131

243

form ≥ m0.

8.4 Concluding remarks

We have shown that for r ≥ 3 andm sufficiently large there always exists an f such that

(m, f) is absolutely r-avoidable; however, in the cases considered f is always roughly(
m
r

)
/2. This inspires the following interesting question:

Open Problem 8.15. Are there absolutely avoidable pairs where f/
(
m
r

)
is bounded away from

1
2 in the limit?

We have proven that for m > r ≥ 3 and f with 0 ≤ f ≤
(
m
r

)
, we always have

σr(m, f) < 1. Wehave also shown that for fixed r, most pairs (m, f) satisfyσr(m, f) = 0.

On the other hand, for r ≥ 3 we have not identified any pair (m, f) with 0 < f <
(
m
r

)
for which we could show that σr(m, f) > 0. We will now use Lemma 8.11 to identify

candidate pairs (m, f) for r = 3,m ≤ 15 which might satisfy σ3(m, f) > 0:

Lemma 8.16. Let r = 3, 4 ≤ m ≤ 15 and 0 < f <
(
m
r

)
. If (m, f) 6= (6, 10), then

σ3(m, f) = 0.
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Proof. Let (m, f) be a pair with 4 ≤ m ≤ 15, 0 < f <
(
m
r

)
with σ3(m, f) > 0. One can

verify that for 4 ≤ m ≤ 15, we have 2
(
m−3

3

)
+ 4 ≤

(
m
3

)
, i.e.

(
m−3

3

)
+ 2 ≤

(
m
3

)
−
(
m−3

3

)
− 2.

Thus, for any f ≤
(
m
3

)
, we either have f ≥

(
m−3

3

)
+ 2 or

(
m
3

)
− f ≥

(
m−3

3

)
+ 2, assume

w.l.o.g. that we have f ≥
(
m−3

3

)
+2. Let x be the unique valuewith

(
x
3

)
≤ f <

(
x+1

3

)
and

write f =
(
x
3

)
+x′, 0 ≤ x′ <

(
x
2

)
. Then by assumptionwe have x ∈ {m−3,m−2,m−1}.

By Lemma 8.11(a) we know that if we cannot realise the pair (m, f) as the vertex-

disjoint union of a clique and an ≤m-edge 3-graph, then we have σ3(m, f) = 0. Thus,

we can assume that the pair (m, f) can be realised as the vertex-disjoint union of a

clique and an ≤m-edge 3-graph. By Lemma 8.9, it follows that (m, f) can be realised

as the disjoint union ofK
(3)
x and an ≤m-edge 3-graph.

Assumewe have x = m−3. Since by assumption f ≥
(
x
3

)
+2, clearly the pair (m, f)

cannot be realised as the vertex-disjoint union ofK
(3)
x and a graph with at most 1 edge.

Since m − x = 3, it also cannot be realised as the vertex-disjoint union of K
(3)
x and a

graph with 2 edges, a contradiction. Thus, for x = m− 3 we have σ3(m, f) = 0.

So assume x ∈ {m− 2,m− 1}. Note that sincem− x ≤ 2, the pair (m, f) cannot be

realised as the vertex-disjoint union of a clique on x vertices and a graph with at least 1

edge. Thus, the only pairs (m, f) which might satisfy σ3(m, f) > 0 have x′ = 0, i.e. f ∈
{
(
m−2

3

)
,
(
m−1

3

)
}. Then (m, f) ∈ A1 ∪ A2 ∪ {(6, 10), (10, 84), (13, 165), (15, 169), (15, 91)}

with

A1 = {(5, 4), (7, 20), (8, 35), (9, 56), (11, 120), (12, 165), (13, 220), (14, 286)},

A2 = {(5, 1), (6, 4), (7, 10), (8, 20), (9, 35), (10, 56), (11, 84), (12, 120), (14, 220)}.

Now let (m, f) ∈ A1 ∪ A2. Let f̄ =
(
m
3

)
− f and let y ∈ [m] such that

(
y
3

)
≤ f̄ <

(
y+1

3

)
,

i.e. f̄ =
(
y
3

)
+ y′ for some y′ ≤

(
y
2

)
. Then it is easy to verify that we are in one of three

cases:

• y ∈ {m− 1,m− 2} and y′ > 0,

• y = m− 3 and y′ > 1,

• y ≤ m− 4 and y′ > m.

In each case, by Lemma 8.9 (m, f̄) cannot be realised as the disjoint union of a clique

and an ≤m-edge 3-graph, and thus, by Lemma 8.11(a), σ3(m, f) = σ3(m, f̄) = 0.

The pair (6, 10) is self-complementary with 10 =
(

5
3

)
=
(

6
3

)
/2.
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For the pair (10, 84) we have

(
10
3

)
− 84 = 36 =

(
7
3

)
+ 1 =

(
10
3

)
−
(

9
3

)
. Note that for

m = 10, we have 2m <
(

7
2

)
, i.e. by Proposition 8.2, σ3(10, 36) = 0.

For the pair (13, 165) we have

(
13
3

)
− 165 = 121 =

(
10
3

)
+ 1 =

(
13
3

)
−
(

11
3

)
. Note that

form = 13, we have 2m <
(

10
2

)
, i.e. by Proposition 8.2, σ3(13, 121) = 0.

For the pair (15, 91) we have 91 =
(

15
3

)
−
(

14
3

)
=
(

9
3

)
+ 7, and for the pair (15, 169) we

have 169 =
(

15
3

)
−
(

13
3

)
=
(

11
3

)
+ 4. Note that for m = 15, we have 2m <

(
9
2

)
<
(

11
2

)
, i.e.

by Proposition 8.2, σ3(15, 91) = σ3(15, 169) = 0.

Lemma 8.16 implies that for r = 3, the smallest value ofm for which we might have

σ3(m, f) > 0 for some f is m = 6. In this case, f = 10 is the only possible value for

which wemight have σ3(6, f) > 0.Wewill show in Chapter 9 that indeed σ3(6, 10) > 0.

This is based on the work by Axenovich, Balogh, Clemen and the author [10], where

both upper and lower bounds on σ3(6, 10) are provided.

It would be interesting to further investigate this problem, as currently there is no

other known non-trivial pair (m, f) for r ≥ 3 which satisfies σr(m, f) > 0. Here the

results from Chapter 9 also provide some further insight.



9. Order-size pair in hypergraphs: positive forcing density 149

Chapter 9 Order-size pair in hypergraphs: positive forcing

density

9.1 Introduction

Recall that the Turán function or extremal number exr(n,H) is the maximum number of

edges in an H-free n-vertex r-graph, and the Turán density of H is defined as π(H) =

lim
n→∞

exr(n,H)

(nr)
.

Determining the Turán function for graphs and hypergraphs is a central topic in

extremal graph theory with many challenging open problems, trying to identify what

graph density forces the occurrence of a specific subgraph. Here, we are concerned

with conditions on the graph density that forces the occurrence of an induced subgraph

on a given number of vertices and a given number of edges, i.e. a given order-size pair.

As seen in Chapter 8, there are many pairs (m, f) for which σr(m, f) = 0, but not

a single (non-trivial) pair with positive forcing density was known for r-graphs when

r ≥ 3. Note that σr(r, 1) = σr(r, 0) = 1 and for f = 0, σr corresponds to the Turán

density, i.e. σr(m, 0) = σr(m,
(
m
r

)
) = π(K

(r)
m ), where the best currently known general

bounds on the Turán density are

1−
(
r − 1

m− 1

)r−1

≤ π(K(r)
m ) ≤ 1−

(
m− 1

r − 1

)−1

,

due to Sidorenko [118] and de Caen [51]. In the previous chapter we asked whether

for m > r ≥ 3, there is any f with 0 < f <
(
n
r

)
such that σr(m, f) > 0 and suggested

the pair (6, 10) as a candidate. We answer this question in the affirmative and prove

σ3(6, 10) > 0.

Given families of r-graphs F ,G, we denote by ex(n, indF ,G) the maximum number

of edges in an n-vertex r-graph not containing any F ∈ F as an induced copy and also

not any G ∈ G as a copy. Further, denote by π(indF ,G) the limit

π(indF ,G) = lim sup
n→∞

ex(n, indF ,G)(
n
r

) .

We mostly consider 3-graphs in this chapter. When clear from context, we shall write

abc for the set {a, b, c} corresponding to an edge in a 3-graph. The 3-graph on vertex set

[4] with edge set {123, 124, 124} is denoted by K3−
4 . Let F10

6 be the family of 6-vertex

3-graphs containing exactly 10 edges.
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Theorem 9.1. We have that σ3(6, 10) = 1 − 2π(indF10
6 , {K3−

4 }). Moreover, 0.42622 ≤
σ3(6, 10) ≤ 0.47106.

We do not know whether other pairs (m, f) with m > 3, 0 < f <
(
m
3

)
exist, such

that σ3(m, f) > 0. We conjecture that for r = 3 there are indeed no other pairs with

positive forcing density. The following result provides evidence for this conjecture to

be true.

Theorem 9.2. Let m and f be positive integers, 0 < f <
(
m
3

)
. If σ3(m, f) > 0, then there

exist x1, x2, x3 ∈ [m− 1] such that

f =

(
x1

3

)
=

(
m

3

)
−
(
x2

3

)
=

(
x3

3

)
+

(
x3

2

)
(m− x3). (9.1)

Thus, in particular if there are no other non-trivial solutions except for m = 6,

x1 = 5, x2 = 5, x3 = 3, to the above Diophantine equation, then Conjecture 9.19 is true.

A computer search for suitable solutions of (9.1) did not give a result form ≤ 106
.

Themain results of this chapter are jointworkwithAxenovich, BaloghandClemen [10].

This chapter is organised as follows. In Section 9.2 we prove Theorem 9.1. In

Section 9.3 we prove Theorem 9.2. Finally, in Section 9.4 we make concluding remarks

and state open problems.

9.2 Proof of Theorem 9.1

We say a 3-graphG induces (6, 10) ifG contains an induced copy of some F ∈ F10
6 . IfG

does not contain any F ∈ F10
6 as an induced copy, we sayG is (6, 10)-free, i.e. a 3-graph

is (6, 10)-free if no 6-vertex set induces exactly 10 edges.

9.2.1 Proof idea

Before proving Theorem 9.1, we give a short sketch of the proof. We shall show that for

every ε > 0 there is n0 such that for every n > n0 if G is an n-vertex 3-graph satisfying

e(G)(
n
3

) ∈ [π(indF10
6 , {K3−

4 }) + ε, 1− π(indF10
6 , {K3−

4 })− ε
]
, (9.2)

thenG induces (6, 10). Then we first use a standard Ramsey type argument to partition

most of the vertices of G into many large homogeneous sets. First, we rule out the case
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that there is a large clique and a large independent set that are disjoint. Thus, most

of the vertex set of G or its complement G can be partitioned into large independent

sets. Due to the symmetry of the problem, if we find a (6, 10)-set in G, we also find

a (6, 10)-set in G. Thus, without loss of generality, we can assume that most of the

vertices of G can be partitioned into many large independent sets. Using a classical

supersaturation result and the density assumption onG, we findmany copies ofK3−
4 in

G and thus, in particular, four large independent sets spanningmany transversal copies

ofK3−
4 . Using a final cleaning argument, we find a (6, 10)-set in this substructure.

On the other hand, we fix an arbitrary 3-graph G on ex(n, indF10
6 , {K3−

4 }) edges

that is (6, 10)-free and K3−
4 -free. Then every set of 6 vertices spans at most 9 edges,

so there is a graph on n vertices and e edges, for any e ≤ ex(n, indF10
6 , {K3−

4 }), that is
(6, 10)-free. By taking complements, there also is a graph on n vertices and e edges for

every e ≥
(
n
3

)
− ex(n, indF10

6 , {K3−
4 }), that is (6, 10)-free.

9.2.2 Definitions, notations, and construction

Let G be a 3-graph and let X,Y, Z ⊆ V (G), not necessarily disjoint from each other.

Then, let EG(X,Y, Z) = {(x, y, z) ∈ E(G) : x ∈ X, y ∈ Y, z ∈ Z, x, y, z pairwise

distinct}. We say EG(X,Y, Z) is complete if EG(X,Y, Z) = {(x, y, z) : x ∈ X, y ∈ Y, z ∈
Z, x, y, z pairwise distinct}, and EG(X,Y, Z) is empty if EG(X,Y, Z) = ∅. If the 3-graph

G is clear from the context, we might omit the index and simply write E(X,Y, Z).

Let H be an r-graph and t ∈ N. The t-blow-up of H , denoted by H(t), is the r-

graph with its vertex set partitioned in |V (H)| sets V1, V2, . . . , V|V (H)|, each of size t and

edge set {{a1, . . . , ar} : aj ∈ Vij , j = 1, . . . , r, {i1, . . . , ir} ∈ E(H)}. Informally, H(t)

is obtained from H by replacing each vertex i with an independent set Vi and each

hyperedge e of H with a complete r-partite hypergraph with parts corresponding to

the vertices of e.

We say that a 3-graph G is a weak t-blow-up of H , which we also call weak H(t), if

the vertex set of G can be partitioned into |V (H)| sets V1, V2, . . . , V|V (H)| each of size t

such that if ijk ∈ E(H) then for every a ∈ Vi, b ∈ Vj , c ∈ Vk we have abc ∈ E(G), and if

ijk 6∈ E(H) then for every a ∈ Vi, b ∈ Vj , c ∈ Vk we have abc 6∈ E(G). Moreover, Vi is

an independent set for i = 1, . . . , |V (H)|. Note that we do not impose any condition on

3-tuples of vertices with exactly two vertices in some part Vi.

Recall that Rr(t, t) denotes the Ramsey number of K(r)
t versus K

(r)
t . Erdős, Hajnal

and Rado [61] showed that there exists a constant c > 0 such that R3(t, t) < 22ct .
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Next, we shall provide a construction of a (6, 10)-free graph that we shall use to

provide an upper bound in Theorem 9.1.

Construction of the 3-graph H it
n

LetH be the 3-graph with vertex set [6] and edges 123, 124, 345, 346, 561, 562, 135, 146,

and 236. Note that adding the edge 245 toH results in a 5-regular 3-graph on 6 vertices,

which isK3−
4 -free and the basis for the construction for the lower bound on π(K3−

4 ) by

Frankl and Füredi [74].

We define the following iterated unbalanced blow-up of this graph. Denote by Hn

the3-graphonnverticeswhere thevertex set is partitioned into six setsA1, A2, A3, A4, A5

and A6, where

|A2| = |A4| = |A5| =
⌈

n

3
√

3

⌉
,

|A1| = |A3| =
⌈
n

(
1

3
− 1

3
√

3

)⌉
and

|A6| = n

(
1

3
− 1

3
√

3

)
+O(1).

The 3-graph Hn consists of all triples xyz, where x ∈ Ai, y ∈ Aj and z ∈ Ak and

ijk ∈ E(H). Now, let H it
n be the 3-graph constructed from Hn by iteratively adding a

copy of H|Ai| with vertex set Ai for all i ∈ [6] if |Ai| is sufficiently large.

Lemma 9.3. The graph H it
n is an n-vertex 3-graph with 4

3+7
√

3

(
n
3

)
+ o(n3) edges such that

every 6 vertices in H it
n induce at most 9 edges. In particular, H it

n is (6, 10)-free.

Proof. We have

|E(Hn)| = 3

(
n

3
√

3

)2(1

3
− 1

3
√

3

)
n+ 6

(
n

3
√

3

)(
1

3
− 1

3
√

3

)2

n2 + o(n3)

=
2
√

3

81
n3 + o(n3).

Since H it
n is an n-vertex 3-graph, it has at most

(
n
3

)
≤ n3/6 edges. Let |E(H it

n )| =

dn3 + o(n3) for some d ∈ [0, 1
6 ]. We have

|E(H it
n )| = 2

√
3

81
n3 + 3d

(
n

3
√

3

)3

+ 3d

(
1

3
− 1

3
√

3

)3

n3 + o(n3)

=

(
2
√

3

81
+
d

9
(2−

√
3)

)
n3 + o(n3).
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Comparing the two expressions for |E(H it
n )|, we get d = 2/(9 + 21

√
3). In particular,

|E(H it
n )|(

n
3

) =
4

3 + 7
√

3
+ o(1) ≈ 0.26447 + o(1).

Next we show that every set of six vertices in H it
n spans at most 9 edges. Recall that

H it
n is obtained as an iterated blow-up construction with a “seed" graphH , whereH is

the 3-graph with vertex set [6] and edges 123, 124, 345, 346, 561, 562, 135, 146, and 236.

At the first iteration, the vertices 1, . . . , 6 orH correspond to parts A1, . . . , A6. We have

thatH has three vertices of degree 4 and three vertices of degree 5, andH isK3−
4 -free,

so every subset of four vertices spans at most two edges. Moreover, the link graph of

any vertex ofH is a subgraph of a 5-cycle. Here, the link graph of a vertex x is a 2-graph

which has contains an edge yz if and only if xyz is an edge of H .

Let X be an arbitrary set of six vertices of H it
n .

Case 1: X contains vertices from six distinct parts A1, . . . A6.

Then |X| induces a copy of H , i.e. exactly 9 edges.

Case 2: X contains vertices from five distinct parts, say Ai1 , Ai2 , Ai3 , Ai4 , and Ai5 .

Assumewehave twovertices inAi1 , andonevertex in eachofAi2 , Ai3 , Ai4 , andAi5 .

Note that Ai1 , Ai2 , Ai3 , Ai4 , and Ai5 correspond to the vertices i1, . . . , i5 ∈ V (H).

LetH ′ = H[{i1, i2, i3, i4, i5}]. Since the link graph of any vertex inH is a subgraph

of C5, the link graph of any vertex inH ′ has at most three edges, so the maximum

degree of H ′ is at most three. This implies that the total number of edges in H ′

is at most 3 · 5/3 = 5. Since the subgraph of H it
n induced by X corresponds to

H ′ with an added copy of i1 which contributes at most three edges,X induces at

most 5 + 3 = 8 edges.

Case 3: X contains vertices from four distinct parts: Ai1 , Ai2 , Ai3 , and Ai4 .

Case 3.1: X contains 3 vertices fromAi1 and one vertex from each ofAi2 , Ai3 , Ai4 .

ThenH[{i1, i2, i3, i4}] contains at most two edges, soX induces at most 2 · 3
edges between the parts and at most one additional edge inside Ai1 , so in

total at most 7 edges.

Case 3.2: X contains two vertices from each of Ai1 , Ai2 and one vertex in each of

Ai3 , Ai4 . Again, sinceH[{i1, i2, i3, i4}] contains at most two edges,X induces

at most 2 · 4 = 8 edges.

Case 4: X contains vertices from three distinct parts: Ai1 , Ai2 , and Ai3 .

If we have two vertices in each of the three parts, they induce at most 2 · 2 · 2 = 8
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edges. If there are exactly three vertices in one of the parts, then there is a part

with two vertices and a part with one vertex, i.e. there are at most 3 · 2 · 1 = 6

edges between the parts, and at most one additional edge inside the first part,

giving at most 7 edges. If there are four vertices in one part, then there are at

most 4 · 1 · 1 edges between the parts, and at most

(
4
3

)
= 4 additional edges inside

the first part, i.e. at most 8 edges in total.

Case 5: X contains vertices from only one or two distinct parts.

Then there are no edges between these parts, and all possible edges induced by

the six vertices are inside the Ai’s. Since the construction is iterative, we can use

the previous cases to conclude that X induces at most 9 edges.

9.2.3 Lemmata

The following lemma shows that every sufficiently large 3-graph can be partitioned

into many large homogeneous sets.

Lemma 9.4. Let t > 0. Then there exists n0 = n0(t) such that for every n ≥ n0, if G is an
n-vertex 3-graph, then G or G contains at least n/t −

√
n pairwise disjoint homogeneous sets

of size t.

Proof. Let t > 0 be fixed. Set n0 = (d22cte)2
and let n ≥ n0. Let G = G0 be an n-vertex

3-graph. Since n ≥ R3(t, t), there exists a homogeneous set of size t inG. Call itD0 and

define G1 = G0 \D0. We iteratively repeat this process. Define Gi+1 := Gi \Di, where

Di is a homogeneous set of size t in Gi. We can proceed as long as |V (Gi)| > R3(t, t).

Since R3(t, t) ≤
⌈
22ct
⌉
≤ √n0 ≤

√
n, we have found at least (n −

√
n)/t ≥ n/t −

√
n

pairwise disjoint homogeneous sets of size t each.

The following lemma analyses the structure “between" two large vertex sets. This

is partly motivated by a result by Fox and Sudakov [73] for 2-graphs.

Lemma 9.5. Let t ≥ 0. Then there exists n0 such that for all n ≥ n0 the following holds. Let
G be a 3-graph with vertex set V (G) = A ∪ B with A ∩ B = ∅, |A| = |B| = n. Then there
exist sets A′ ⊆ A, B′ ⊆ B with |A′| = |B′| = t such that each of the edge sets E(A′, A′, B′)

and E(A′, B′, B′) is either empty or complete.

Proof. Let m = 44···
4t︸ ︷︷ ︸

2t

, let n0 = 44···
42t−1︸ ︷︷ ︸
m

. Let A and B be sets of size n ≥ n0. For

a ∈ A,X ⊆ B we define an auxiliary 2-graph GXa = (X,
(
X
2

)
) and an edge-colouring
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cXa : E(GXa )→ {r, b}with cXa ({b1, b2}) =

r, {a, b1, b2} ∈ E(G),

b, else.

Note that by the standard bound on the diagonal Ramsey number r2(s, s) ≤ 4s, each

2-coloured 2-clique on k vertices contains a monochromatic clique of size log4(k).

Let A = {a1, . . . , an}, let B1 ⊆ B be the vertex set of a monochromatic clique in

GBa1
of size log4(|B|). Now assume Bi, i ≥ 1, has been chosen. Let Bi+1 ⊆ Bi be a

monochromatic clique in GBiai+1
of size log4(|Bi|). Thus, after m iterations we obtain a

set Bm of size |Bm| = log4 · · · log4︸ ︷︷ ︸
m

(n) ≥ 2t − 1, such that for each ai, i ∈ [m], the set

E({ai}, Bm, Bm) is either empty or complete. Thus, there exists a subsetA′′ ⊂ A, |A′′| =⌈
m
2

⌉
≥ 44···

4t︸ ︷︷ ︸
2t−1

, such that the set E(A′′, Bm, Bm) is either empty or complete.

Now we repeat this process with vertices in B′′ = Bm, to obtain a subset A′ ⊆ A′′,

|A′| = log4 · · · log4︸ ︷︷ ︸
|B′′|

(|A′′|) ≥ t, such that for each vertex b ∈ B′′, the set E(A′, A′, {b})

is either empty or complete. Thus, there exists a subset B′ ⊆ B′′, |B′| ≥
⌈
|B′′|

2

⌉
= t

such that the set E(A′, A′, B′) is either empty or complete. The sets A′, B′ satisfy the

conditions of the lemma, completing the proof.

The next lemma shows that in a (6, 10)-free 3-graph there cannot be a large inde-

pendent set and a large clique that are disjoint.

Lemma 9.6. There exists t0 > 0 such that for all t ≥ t0 the following holds. LetG be a 2t-vertex
3-graph with vertex set V (G) = A ∪B where A ∩B = ∅, |A| = |B| = t, G[A] is a clique and
G[B] is an independent set. Then G induces (6, 10).

Proof. By Lemma 9.5, for sufficiently large t, we can we find subsets A′ ⊆ A, B′ ⊆ B

with |A′| = |B′| = 5 such that the two sets E(A′, A′, B′) and E(A′, B′, B′) are either

empty or complete.

If E(A′, B′, B′) is complete, then any vertex from A′ together with the 5 vertices

fromB′ induces (6, 10). IfE(A′, A′, B′) is empty, then any vertex fromB′ together with

the five vertices from A′ induces (6, 10). Hence, we may assume that E(A′, B′, B′) is

empty and E(A′, A′, B′) is complete. But then three arbitrary vertices from A′ together

with three arbitrary vertices from B′ induce (6, 10).

Lemma 9.4 together with Lemma 9.6 immediately implies the following lemma.
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Lemma 9.7. There exists t0 such for all t ≥ t0 the following holds. There exists n0 = n0(t)

such that for all n ≥ n0, if G is a (6, 10)-free n-vertex 3-graph, then either G or G contains at
least n/t−

√
n pairwise disjoint independent sets of size t.

Lemma 9.8. Let t′ > 0. Then there exists t0 > 0 such that for all t ≥ t0 the following holds.
Let G be a (6, 10)-free 2t-vertex 3-graph with vertex set V (G) = A ∪ B where |A| = |B| = t,
A ∩ B = ∅, G[A] and G[B] are independent sets. Then there exists A′ ⊆ A, B′ ⊆ B of sizes
|A′| = |B′| = t′ such that the two sets E(A′, B′, B′) and E(A′, A′, B′) are empty.

Proof. We apply Lemma 9.5 for t′. Then there exists t0 such that for t ≥ t0, we find

A′ ⊆ A,B′ ⊆ B, such that the two sets E(A′, A′, B′) and E(A′, B′, B′) are either empty

or complete. Assume the set E(A′, A′, B′) is complete. Then we find induced (6, 10) by

taking any 5 vertices fromA′ and 1 vertex fromB. By symmetry the same holds for the

set E(A′, B′, B′), so in particular, G[A′ ∪B′] is the empty graph.

Lemma 9.9. There exists t0 > 0 such that for all t ≥ t0 a weakK(3)
4 (t) and also a weakK3−

4 (t)

induces (6, 10).

Proof. Let G be a weak K3−
4 (t) with independent sets V1, V2, V3, V4. By iteratively

applying Lemma 9.8 to all of the tuples (Vi, Vj), 1 ≤ i < j ≤ 4, we obtain an induced

copy H ⊆ G of K3−
4 (2) with sets X1, X2, X3, X4, Xi ⊂ Vi, i ∈ [4], i.e. H[Xi ∪ Xj ] is

empty for all i 6= j, the sets E(Xi, Xj , Xk) are complete for {i, j, k} ∈
(

[4]
3

)
except for

E(X2, X3, X4), which is empty. Let x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2, x3 ∈ X3 and x4 ∈ X4.

Then {x1, x
′
1, x2, x

′
2, x3, x4} induces (6, 10).

Now assume there is a weakK3
4 (t) calledGwith independent sets V1, V2, V3, V4. By

iteratively applying Lemma 9.8 to all of the tuples (Vi, Vj), 1 ≤ i < j ≤ 4, we obtain an

induced copyH ⊆ G ofK3
4 (3) with setsX1, X2, X3, X4,Xi ⊂ Vi, i ∈ [4], i.e.H[Xi ∪Xj ]

is empty for all i 6= j and the sets E(Xi, Xj , Xk) are complete for all {i, j, k} ∈
(

[4]
3

)
. Let

x2 ∈ X2, x3 ∈ X3, x4 ∈ X4. Then H[X1 ∪ {x2, x3, x4}] is a 6-vertex 3-graph spanning

exactly 10 edges.

Lemma 9.10. Let t > 0 be an integer and δ > 0. Then there exists m0 = m0(t, δ) such that
for allm ≥ m0 the following holds. Let G be a 3-graph on 4m vertices such that the vertex set
of G can be partitioned into four independent sets V1, V2, V3, V4 of sizem each and the number
of copies of K3−

4 with one endpoint from each of the V ′i s is at least δm4. Then G contains an
induced copy of a weakK3

4 (t) or a weakK3−
4 (t).

Proof. Define the auxiliary 4-graph H on 4m vertices where a 4-set spans an edge iff

the corresponding four vertices in G form a copy of K3−
4 . We 5-colour the edges of H
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in the following way: An edge {v1, v2, v3, v4} of H with vi ∈ Vi for i ∈ [4] is coloured

with j ∈ [4] if {v1, v2, v3, v4} \ {vj} is not an edge in G, and it is coloured with colour 5

if {v1, v2, v3, v4} induces aK3
4 in G.

By thepigeonholeprinciple, there exists (δ/5)m4
edgesof the samecolour. Erdős [55]

proved that π(K4
4 (t)) = 0 and thus, there exists a monochromatic copy of K4

4 (t) in H .

Denote by T the vertex set of this monochromatic copy. The 3-graph G[T ] is a weak

K3
4 (t) or weakK3−

4 (t).

We will use a supersaturation result discovered by Erdős and Simonovits [64]. The

proof presented below follows a proof given by Keevash (Lemma 2.1. in [92]).

Lemma 9.11. For ε > 0 and familiesF ,G of r-graphs, there exists constants δ > 0 and n0 > 0

so that ifG is an r-graph on n > n0 vertices with e(G) > (π(indF ,G)+ε)
(
n
r

)
, thenG contains

at least δ
(

n
|V (H)|

)
copies ofH for someH ∈ G, or at least δ

(
n

|V (H)|
)
induced copies ofH for some

H ∈ F .

Proof. Let G be an r-graph on sufficiently many vertices n with e(G) > (π(indF ,G) +

ε)
(
n
r

)
. Fix an integer k ≥ r, k ≥ |V (H)| for all H ∈ F ∪ G so that ex(k, indF ,G) ≤(

π(indF ,G) + ε
2

) (
k
r

)
. There are at least

ε
2

(
n
k

)
k-setsK ⊆ V (G)with e(G[K]) > (π(indF ,G)+

ε
2)
(
k
r

)
. Otherwise, we would have

∑
K⊆V (G)
|K|=k

e(G[K]) ≤
(
n

k

)(
π(indF ,G) +

ε

2

)(k
r

)
+
ε

2

(
n

k

)(
k

r

)

= (π(indF ,G) + ε)

(
n

k

)(
k

r

)
,

but we also have∑
K⊆V (G)
|K|=k

e(G[K]) =

(
n− r
k − r

)
e(G) >

(
n− r
k − r

)
(π(indF ,G) + ε)

(
n

r

)

= (π(indF ,G) + ε)

(
n

k

)(
k

r

)
,

a contradiction. By the choice of k, each of these k-sets K contains an induced copy

of some H ∈ F or a copy of some H ∈ G. By the pigeonhole principle, there exists

H1 ∈ F such that at least
ε

2(|F|+|G|)
(
n
k

)
of these k-setsK contain an induced copy ofH1,

or there existsH2 ∈ G such that at least
ε

2(|F|+|G|)
(
n
k

)
of these k-setsK contain a copy of
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H2. Thus, in the first case, the number of induced copies of H1 is at least

ε
2(|F|+|G|)

(
n
k

)(n−|V (H1)|
k−|V (H1)|

) = δ

(
n

|V (H1)|

)
, for δ =

ε

2(|F|+ |G|)
(

k
|V (H1)|

) .
Similarly, in the second case, the number of copies of H2 is at least

δ

(
n

|V (H2)|

)
for δ =

ε

2(|F|+ |G|)
(

k
|V (H2)|

) .

9.2.4 Proof of Theorem 9.1.

Proof of Theorem 9.1. Let ε > 0. Fix an integer t whose existence is guaranteed by

Lemma 9.9, such that every weak K
(3)
4 (t) and also every weak K3−

4 (t) induces (6, 10),

see the paragraph before Lemma 9.9 for the definition of a weak blow-up. Fix δ > 0 and

n1 ∈ N, given by Lemma 9.10, such that every (6, 10)-free 3-graph G on n ≥ n1 vertices

satisfying e(G) ≥ (π(indF10
6 , {K3−

4 }) + ε)
(
n
3

)
contains at least 2δ

(
n
4

)
copies of K3−

4 . Let

m0 = m0(t, δ) be given by Lemma 9.10. Fix integers m1 and n2 whose existence is

guaranteed by Lemma 9.7, such that m1 ≥ m0 and for all n ≥ n2, if G is (6, 10)-free

n-vertex 3-graph, then either G or G contains at least n/m1 −
√
n pairwise disjoint

independent sets of sizem1. Choose n0 := max{n1, n2,m
2
1, d40000δ−2e} and let n ≥ n0.

Let G be a (6, 10)-free n-vertex 3-graph satisfying the density assumption (9.2):

e(G)(
n
3

) ∈ [π(indF10
6 , {K3−

4 }) + ε, 1− π(indF10
6 , {K3−

4 })− ε
]
.

By Lemma 9.7 either G or G contains at least n′ := n/m1 −
√
n pairwise disjoint

independent sets, each of size m1. Since the density assumption is symmetric, and

since G induces (6, 10) if and only if G induces (6, 10), we can assume, without loss of

generality, that G contains at least n′ pairwise disjoint independent sets V1, V2, . . . , Vn′

of sizem1 each.

By Lemma 9.11, G contains at least 2δ
(
n
4

)
(not necessarily induced) copies of K3−

4 .

We call a 4-set transversal in G if each of the four vertices is in a different Vi. A copy

of K3−
4 in G is called transversal if the vertex set of the copy is transversal in G. The

number of 4-sets which are not transversal in G is at most

√
nn3 + n′

(
m1

2

)
n2 ≤ n

7
2 +m1n

3 ≤ 2n
7
2 ,
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for n ≥ m2
1. The number of transversal copies ofK3−

4 in G is at least
3
2δ
(
n
4

)
, since

2δ

(
n

4

)
− 3

2
δ

(
n

4

)
=
δ

2

(
n

4

)
≥ δ

2

n4

2 · 4!
=

δ

96
n4 > 2n7/2,

where the last inequality holds for n ≥ 40000δ−2
. By pigeonhole principle there exist

1 ≤ i1 < i2 < i3 < i4 ≤ n′, such that the number of copies ofK3−
4 with one endpoint in

each of Vi1 , Vi2 , Vi3 , Vi4 is at least

3
2δ
(
n
4

)(
n′

4

) ≥ δ n
4

4!(
n
m1

)4

4!

= δm4
1.

By Lemma 9.10, the 3-graph G[Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4 ] contains a weak K3−
4 (t) or a weak

K
(3)
4 (t) as an induced subhypergraph. This contradicts Lemma 9.9.

We conclude σ3(6, 10) ≥ 1 − 2π(indF10
6 , {K3−

4 }). In fact, we have σ3(6, 10) =

1 − 2π(indF10
6 , {K3−

4 }) holds by the following argument: Let G be an n-vertex K3−
4 -

free and (6, 10)-free 3-graph with exactly ex(n, indF10
6 , {K3−

4 }) many edges. Since G is

K3−
4 -free, every four vertices span at most 2 edges, so using double counting, we see

that every 6 vertices span at most

(
6
4

)
· 2/3 = 10 edges. Since G is also (6, 10)-free,

every 6 vertices span only at most 9 edges. We conclude that every subgraph G′ ⊆ G

is (6, 10)-free. Further, by symmetry, also the complement 3-graph of any G′ ⊆ G is

(6, 10)-free. This proves the first part of the theorem.

To get specific numerical bounds on the forcing density, recall again that if

e(G)(
n
3

) ∈ [π(indF10
6 , {K3−

4 }) + ε, 1− π(indF10
6 , {K3−

4 })− ε
]
,

then G induces (6, 10). In particular, if
e(G)

(n3)
∈
[
π(K3−

4 ) + ε, 1− π(K3−
4 )− ε

]
, then G

induces (6, 10). The Turán density of K3−
4 is not known precisely. The best currently

known bounds on the Turán density of K3−
4 are 0.28571 ≈ 2

7 ≤ π(K3−
4 ) ≤ 0.28689,

where the lower bound construction was given by Frankl and Füredi [74]. The upper

bound was proved by Vaughan [123] who applied the flag algebra method, see also

the webpage of Lidický [103]. Thus, σ3(6, 10) ≥ 1 − 2 · 0.28689 = 0.42622. However,

from Lemma 9.3, we have that there is a 3-graph on n vertices and
4

3+7
√

3

(
n
3

)
(1 + o(1))

hyperedges, such that each of its subgraphs is (6, 10)-free. Moreover, the complement

of this 3-graph has

(
1− 4

3+7
√

3

(
n
3

))
(1 + o(1)) hyperedges and each of its supergraphs

is (6, 10)-free. Thus, σ3(6, 10) ≤ 1− 2 4
3+7
√

3
= 0.47105.
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9.3 Proof of Theorem 9.2

9.3.1 Constructions and notations

We shall first construct a special class of 3-graphs.

Let n, k ∈ N, k ≤ n and S ⊆ [2]. Let G(S, n, k) be the 3-graph with vertex set A ∪B,

|A| = k, |B| = n−k, whereA andB are disjoint such thatA induces a clique,B induces

an independent set, called base set, and we have the additional edges

⋃
i∈S Ei, where

Ei = {A′ ∪ B′ : A′ ∈
(
A
i

)
, B′ ∈

(
B

3−i
)
}. Thus, G∅(n, k) is just a clique on k vertices and

n− k isolated vertices, and G[2](n, k) is the complete graph on n vertices with a clique

of size n− k removed. For an illustration of G({2}, n, k) see Figure 9.1.

A B

Figure 9.1: Illustration of G({2}, n, k).

Note that the complement of G(S, n, k) is G([2] − S, n, n − k). Let f(S, n, k) =

|E(G(S, n, k))|. We call a 3-graph G m-sparse if every subset ofm vertices in G induces

at most m edges. We say that a 3-graph G is canonical plus with parameters (S, n, k), or

simply canonical plus ifG is a 3-graph obtained as a union ofG(S, n, k) and anm-sparse

graphwhose vertex set is the base independent set ofG(S, n, k). A 3-graphG is canonical
minus with parameters (S, n, k), or simply canonical minus, if G is the complement of a

canonical plus graph with parameters ([2] − S, n, n − k). Note that a canonical minus

graph with parameters (S, n, k) is obtained from the graph G(S, n, k) by removing

edges of a copy of anm-sparse graph from the cliqueA. We see that (letting

(
y
x

)
= 0 for

y < x), that

f(S, n, k) =

(
k

3

)
+
∑
i∈S

(
k

i

)(
n− k
3− i

)
.

Moreover, |f(S, n, x) − f(S, n, x − 1)| ∈ O(n2). Note that any induced subgraph

of a canonical plus 3-graph with parameters (S, n, k) is a canonical plus 3-graph with

parameters (S, n′, k′), for some n′ and k′. A similar statement holds for canonical

minus graphs. Thus, these two classes of graphs are hereditary. We see that if an

m-vertex 3-graph is canonical plus with parameters (S,m, x), then the number of
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edges in such a graph is in the interval [f(S,m, x), f(S,m, x) + m]. Similarly, the

number of edges in a canonical minus graphwith parameters (S,m, x) is in the interval

[f(S,m, x)−m, f(S,m, x)]. Thus, if f is the number of edges of a graph that could be

represented as both a canonical plus and a canonical minus graph with first parameter

S andm vertices, then f ∈ F (S,m), where

F (S,m) =

m−1⋃
x=0

[f(S,m, x), f(S,m, x) +m] ∩
m⋃
x=1

[f(S,m, x)−m, f(S,m, x)]

⊆
{

0, 1, . . . ,

(
m

3

)}
.

9.3.2 Proof idea

We are using the following general principle:

Proposition 9.12. Let C1, . . . , Ck be hereditary classes of r-graphs such that for any c, 0 < c <

1/2, any sufficiently large n, and any e with c
(
n
r

)
≤ e ≤ (1 − c)

(
n
r

)
, there is a graph Gi ∈ Ci

on n vertices and e edges for all i = 1, . . . , k. If for any sufficiently large n and some i ∈ [k],
each n-vertex graph in Ci is (m, f)-free, then σr(m, f) = 0.

Here, we use two classes C1 and C2 of 3-graphs that are canonical plus and canonical

minus with the same first parameter S. Specifically, the main idea of the proof of

Theorem 9.2 is that for any sufficiently large n, any S ⊆ [2], and any e in the interval

[c
(
n
3

)
, (1− c)

(
n
3

)
] for 0 < c < 1/2, there is a canonical plus 3-graph G+

c,S and a canonical

minus 3-graph G−c,S with first parameter S, on n vertices and e edges. If, for a pair

(m, f), f 6∈ F (S,m) for some S ⊆ [2], then the pair (m, f) is not representable as a

canonical plus or canonical minus graph with first parameter S. Then in particular,

G+
c,S and G−c,S are (m, f)-free and (n, e) 6→ (m, f). Letting c be arbitrarily small, we

conclude that σ3(m, f) = 0 for such a pair (m, f). Finally, we derive number theoretic

conditions for a pair (m, f) not being representable by a canonical plus or a canonical

minus graph.

9.3.3 Lemmata

In the following lemmata, n,m, f, e are non-negative integers withm > 3, 0 < f <
(
m
3

)
.

In [126] it was shown that for any m ≤ 15 and for any 0 < f <
(
m
3

)
such that (m, f) 6=

(6, 10), σ3(m, f) = 0. Thus, we can assume that m ≥ 16. The following folklore result

can be obtained by a standard probabilistic argument.
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Lemma 9.13. Let m > 0. Then for any sufficiently large n there exists an n-vertex 3-graph
with Ω(n2+ 1

m+1 ) edges which ism-sparse.

For a proof of Lemma 9.13 see e.g. [126]. The next lemma is a generalization of a

similar statement proven in [56] for graphs.

Lemma 9.14. Let S ⊆ [2] and c be a constant, 0 < c < 1/2. For n ∈ N sufficiently large and
any e where c < e < (1− c)

(
n
3

)
, there exist 3-graphs G1(n, e) and G2(n, e) on n vertices and

e edges that are canonical plus and canonical minus respectively, with first parameter S.

Proof. Let n be a given sufficiently large integer. Let k be a non-negative integer such

that either f(S, n, k) ≤ e ≤ f(S, n, k + 1) or f(S, n, k) ≤ e ≤ f(S, n, k − 1) holds. With-

out loss of generality assume that f(S, n, k) ≤ e ≤ f(S, n, k + 1). Let c1 = 1 − c. Note

that since e ≤ c1

(
n
3

)
,

(
k
3

)
≤ c1

(
n
3

)
, we have k ≤ 3

√
c1n+1 ≤ c′n, where c′ < 1 is a constant.

Let G′ be an m-sparse 3-graph on n− k vertices with |E(G′)| ≥ (n− k)2+ 1
m+1 . The

existence of G′ is guaranteed by Lemma 9.13. Define G′′ to be the 3-graph obtained as

a union of G(S, n, k) and a copy of G′ on the vertex set that is the base independent set

of G(S, n, k). Then |E(G′′)| ≥ f(S, n, k) + (n− k)2+ 1
m+1 ≥ f(S, n, k + 1) ≥ e. Here, the

second inequality holds since f(S, n, k+ 1)− f(S, n, k) = O(n2). Finally, letG1(n, e) be

a subgraph of G′′ with e edges, obtained from G′′ by removing some edges of G′.

For the secondpart of the lemma, takeG2(n, e) to be the complement ofG1(n,
(
n
3

)
−e)

with first parameter [2]− S, guaranteed by the first part of the lemma.

Lemma 9.15. Let S ⊆ [2]. If f 6∈ F (S,m), then σ3(m, f) = 0.

Proof. Assume we have integers m, f as above, some S ⊆ [2] and f 6∈ F (S,m). Let

c be a constant, 0 < c < 1/10, n ≥ n0, and e be any integer satisfying c
(
n
3

)
≤

e ≤ (1 − c)
(
n
3

)
. Define graphs G1 = G1(n, e) and G2 = G2(n, e) whose existence is

guaranteed by Lemma 9.14. Any induced subgraph of G1 on m vertices is canon-

ical plus with parameters (S,m, x) for some x and thus, its number of edges is in

m−1⋃
x=0

[f(S,m, x), f(S,m, x) + m]. Any induced subgraph of G2 on m vertices is canon-

ical minus with parameters (S,m, x) for some x and thus, its number of edges is in

m⋃
x=1

[f(S,m, x) −m, f(S,m, x)]. Since f 6∈ F (S,m), we get that G1 and G2 are (m, f)-

free. Letting c go to zero, we see that σ3(m, f) = 0.
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In the following lemmata we shall use the set S = ∅, S = {1}, or S = {2}, to claim

that for many pairs (m, f), σ3(m, f) = 0.

Lemma 9.16. Letm ≥ 7 and 0 < f <
(
m−1

2

)
. Then σ3(m, f) = 0.

Proof. Let S = {1}. By Lemma 9.15, it is sufficient to verify that f 6∈ F ({1},m). For that

it is sufficient to check that F ({1},m) ∩ [1,
(
m−1

2

)
− 1] = ∅. Recall that

F ({1},m) =

m−1⋃
x=0

[f({1},m, x), f({1},m, x) +m] ∩
m⋃
x=1

[f({1},m, x)−m, f({1},m, x)].

Note that f({1},m, 0) = 0, f({1},m, 1) =
(
m−1

2

)
, and f({1},m, x) ≥

(
m−1

2

)
, for x > 1.

Thus, we have

F ({1},m) ∩ [1,
(
m−1

2

)
− 1] =

m−1⋃
x=0

[f({1},m, x), f({1},m, x) +m] ∩ [1,
(
m−1

2

)
− 1]

= [f({1},m, 0), f({1},m, 0) +m] ∩ [1,
(
m−1

2

)
− 1] = [1,m],

and

m⋃
x=1

[f({1},m, x)−m, f({1},m, x)] ∩ [1,
(
m−1

2

)
− 1] = [f({1},m, 1)−m, f({1},m, 1)− 1]

= [
(
m−1

2

)
−m,

(
m−1

2

)
− 1].

In particular, we have

F ({1},m) ∩ [1,
(
m−1

2

)
− 1] = [0,m] ∩ [

(
m−1

2

)
−m,

(
m−1

2

)
− 1] = ∅,

where in the last step we used that

(
m−1

2

)
> 2m. Thus, σ3(m, f) = 0.

Lemma 9.17. Let f be an integer such that
(
m−1

2

)
≤ f <

(
m
3

)
and for any x ∈ [m], f 6=

(
x
3

)
.

Then σ3(m, f) = 0.

Proof. Define f as given in the statement of the lemma and S = ∅. By Lemma 9.15,

it is sufficient to prove that f 6∈ F (∅,m) and in particular it is sufficient to show that

F (∅,m) ∩ [
(
m−1

2

)
,
(
m
3

)
− 1] ⊆ {

(
x
3

)
: x ∈ [m]}. Since f(∅, n, x) =

(
x
3

)
, we have

F (∅,m) =
m−1⋃
x=0

[
(
x
3

)
,
(
x
3

)
+m] ∩

m⋃
x=1

[
(
x
3

)
−m,

(
x
3

)
],

see Figure 9.2 for an illustration of the set F (∅,m). Note that

(
x
3

)
≥
(
m−1

2

)
implies
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(
x
2

)
> 2m, which is equivalent to

(
x+1

3

)
−m >

(
x
3

)
+ m. In particular, in this case the

interval [
(
x
3

)
,
(
x+1

3

)
] is long enough that we have [

(
x
3

)
,
(
x
3

)
+m] ∩ [

(
x′

3

)
−m,

(
x′

3

)
] = ∅ for

x 6= x′ and
(
x
3

)
,
(
x′

3

)
≥
(
m−1

2

)
. Thus,

F (∅,m) ∩ [
(
m−1

2

)
,
(
m
3

)
] ⊆ {

(
x
3

)
: x ∈ [m]}.

0 . . . . . .
(
x0+1

3

)(
x0

3

)(
x0−1

3

) (
m−2

3

) (
m−1

3

) (
m
3

)
Figure 9.2: This figuredisplays the set

m−1⋃
x=0

[
(
x
3

)
,
(
x
3

)
+m] in red and the set

m⋃
x=1

[
(
x
3

)
−m,

(
x
3

)
]

in blue on the number line. Here, x0 is the smallest integer x such that

(
x+1

3

)
−m >(

x
3

)
+m.

Lemma 9.18. Let m ≥ 13 and f be an integer, such that
(
m−1

2

)
≤ f ≤

(
m
3

)
−
(
m−1

2

)
and for

any x ∈ [m], f 6=
(
x
3

)
+
(
x
2

)
(m− x). Then σ3(m, f) = 0.

Proof. Consider m and f as given in the statement of the lemma and let S = {2}. By

Lemma 9.15, it is sufficient to prove that f 6∈ F (S,m) and in particular, it is sufficient to

show that

F ({2},m) ∩
[(
m− 1

2

)
,

(
m

3

)
−
(
m− 1

2

)]
⊆
{(

x

3

)
+

(
x

2

)
(m− x) : x ∈ [m]

}
.

Recall that

F ({2},m) =
m−1⋃
x=0

[f({2},m, x), f({2},m, x) +m] ∩
m⋃
x=1

[f({2},m, x)−m, f({2},m, x)].

From thedefinition of f , wehave that f({2},m, x) =
(
x
3

)
+
(
x
2

)
(m−x). Note that forx < 4

we have f({2},m, x) +m <
(
m−1

2

)
and for x > m− 4, f({2},m, x)−m >

(
m
3

)
−
(
m−1

2

)
.

Therefore it is sufficient to consider only

m−4⋃
x=4

[f({2},m, x), f({2},m, x) +m] ∩
m−4⋃
x=4

[f({2},m, x)−m, f({2},m, x)].

One can verify, that form ≥ 13 and 4 ≤ x ≤ m−4, f({2},m, x)−f({2},m, x−1) > 2m.

Thus,

m−4⋃
x=4

[f({2},m, x), f({2},m, x) +m] ∩
m−4⋃
x=4

[f({2},m, x)−m, f({2},m, x)]

= {f({2},m, x) : 4 ≤ x ≤ m− 4}.
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In particular, we have

F ({2},m) ∩ [
(
m−1

2

)
,
(
m
3

)
−
(
m−1

2

)
] ⊆ {

(
x
3

)
+
(
x
2

)
(m− x) : 4 ≤ x ≤ m− 4}.

9.3.4 Proof of Theorem 9.2

Proof. Form ≤ 15 it was already shown in [126], that the only possible pair (m, f) with

0 < f <
(
m
3

)
and σ3(m, f) > 0 is (6, 10), where 10 =

(
5
3

)
=
(

6
3

)
−
(

5
3

)
=
(

3
3

)
+
(

3
2

)
(6− 3).

Now let m > 15, and assume that for some f we have σ3(m, f) > 0. Then applying

Lemma 9.16 to (m, f) and (m,
(
m
3

)
− f), we obtain that

(
m−1

2

)
≤ f ≤

(
m
3

)
−
(
m−1

2

)
.

Applying Lemma 9.17 to (m, f) gives us that f =
(
x1

3

)
, for some x1; applying it again to

(m,
(
m
3

)
− f) gives us that f =

(
m
3

)
−
(
x2

3

)
, for some x2. Lemma 9.18 shows the existence

of some x3, for which we have f =
(
x3

3

)
+
(
x3

2

)
(m− x3). This completes the proof.

9.4 Concluding remarks

In this chapter we have investigated 3-uniform hypergraphs and forcing densities

σ3(m, f). We have shown that σ3(6, 10) > 0 and provided more specific bounds.

Apart from the pairs (m, 0), (m,
(
m
3

)
), the pair (6, 10) is the only known non-trivial pair

for which the forcing density is positive. We conjecture that (6, 10) is the unique pair

(m, f) with 0 < f <
(
m
3

)
for which σ3(m, f) > 0:

Conjecture 9.19. Let m and f be positive integers, 0 < f <
(
m
3

)
. If σ3(m, f) > 0, then

(m, f) = (6, 10).

Theorem 9.2 implies that if there is nom 6= 6 forwhich there is a solution (x1, x2, x3),

xi ∈ [m− 1], of the system of Diophantine equations(
x1

3

)
=

(
m

3

)
−
(
x2

3

)
=

(
x3

3

)
+

(
x3

2

)
(m− x3), (9.3)

thenConjecture 9.19 is true. However, wedonot knowmuch about solutions (x1, x2, x3)

to the above system of equations. A computer search for suitable solutions of (9.3) for

anygivenm ≤ 106
didnot give a result. Consideringonly the equation

(
x1

3

)
=
(
m
3

)
−
(
x2

3

)
,

Sierpiński [119] found an infinite class of solutions.

It might be possible to find stronger necessary conditions for a pair to have positive

forcing density using different constructions than the ones used in the proof of Theo-

rem9.2. In particular, the readermightwonderwhyLemma9.15 and the corresponding
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constructions in Lemma 9.14 were not used when S = {1}. The reason for this is that

the respective function f({1},m, x) =
(
x
3

)
+x
(
m−x

2

)
is not monotone, making it difficult

to capture the structure of the set F ({1},m). However, this construction could very

well be used to conclude that certain pairs (m, f) have forcing density zero.

Determining the exact value of σ3(6, 10) remains open. We believe that the upper

bound from Theorem 9.1, coming from the iterated construction H it
n in Lemma 9.3, is

tight.

Conjecture 9.20. We have σ3(6, 10) = 1− 2 12
9+21

√
3
≈ 0.47105.

We remark that a standard flag algebra calculation yields that π(indF10
6 , {K3−

4 }) ≤
0.275 < 2/7. Using the first part of Theorem 9.1, this gives σ3(6, 10) ≥ 0.45 which

improves the lower bound on σ3(6, 10) given in the second part of Theorem 9.1.
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(m, f)-graph, 11, 97

Cn, 5

H-free, 5

Kn, 5

K
(r)
n , 5

K3−
4 , 149

Km,n, 6

Pn, 5

Tr(n, l), 7, 135

∆, 5

δ, 5

H-free, 5
bip→, 116

→, 96

→r, 98

σ(m, f), 96

σr(m, f), 98, 135

σbip(m, f), 116

k-partite, 6

m-sparse, 136, 160

≤m-edge r-graph, 136

absolutely r-avoidable, 98

absolutely avoidable, 3, 97, 99

absolutely bipartite avoidable, 116

acyclic, 5

adjacent, 5

arrow, 96

balanceability, 119

Bernoulli’s inequality, 27

biclique, 6, 116, 117

bihole, 6, 21, 116

bipartite, 6

bipartite arrows, 116

bipartite complement, 6

bipartite forcing density, 97, 116

bipartite Ramsey number, 24

bipartite realisable, 116

blow-up, 10, 92, 151

canonical decomposition, 18

canonical minus, 160

canonical plus, 160

canonically indecomposable, 18

Cartesian product, 4

Chernoff, 28, 137

chromatic number, 6

clique number, 5

co-biclique, 6

co-graph, 43

colouring, 6

configuration model, 31

connected, 5

cycle of length n, 5

degree, 5

Diophantine equation, 150

EH-property, 9
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Erdős-Hajnal conjecture, 9

extremal number, 7, 141

forcing density, 96

forest, 5

fractional part, 4, 100, 131

Gallai colouring, 42, 51

girth, 97, 101

homogeneous set, 5, 6

independence number, 5

induced bipartite graph respecting

sides, 6

induced subgraph, 98

isolated vertex, 5

isomorphic, 4

leaf, 5

monochromatic, 7

neighbourhood, 5

non-edge, 4

odd girth, 5

order, 4

order-size pair, 11, 96, 149

ordered bipartite graph, 14

path of length n, 5

Pell’s equation, 102

rainbow colouring, 51

Ramsey number, 7

random graph, 6

realisable, 98, 100

size, 4

strongly acyclic, 12

totally decomposable, 18

tree, 5

Turán density, 7, 141, 149

Turán graph, 7, 96, 135

u.d. mod 1, 100

unavoidable subgraph, 119

uniformity, 4

weak t-blow-up, 151

Zarankiewicz, 7, 24, 119
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