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Abstract

Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous

scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family

of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to

solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph

function approximation using neural networks, which lies at the heart of many relevant methods.

In the first part of the thesis, we contribute to the understanding and design of Graph Neural

Networks (GNNs). Initially, we investigate the problem of learning on signals supported on

a fixed graph. We show that treating graph signals as general graph spaces is restrictive and

conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective

by drawing parallels between graph signals and signals on Euclidean grids, such as images and

audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous

to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions).

Following, we focus on learning on general graph spaces and in particular on functions that are

invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expres-

sivity and computational complexity, which we address with a symmetry-breaking mechanism

based on substructure encodings (Graph Substructure Networks). Substructures are shown to be

a powerful tool that provably improves expressivity while controlling computational complexity,

and a useful inductive bias in network science and chemistry.

In the second part of the thesis, we discuss the problem of graph compression, where we analyse

the information-theoretic principles and the connections with graph generative models. We

show that another inevitable trade-off surfaces, now between computational complexity and

compression quality, due to graph isomorphism. We propose a substructure-based dictionary

coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different

graph distributions by estimating its parameters from observations. Additionally, contrary to

the majority of neural compressors, PnC is parameter and sample efficient and is therefore of

wide practical relevance. Finally, within this framework, substructures are further illustrated as

a decisive archetype for learning problems on graph spaces.
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1
Introduction

1.1 The bigger picture: Geometric Deep Learning

“G raphs are omnipresent”. Though this phrase might sound like hyperbole, graphs

have a remarkable generality that permits the representation of numerous real-world

phenomena. Enlisting the diverse application domains is by now arguably a cliché: From

statistical physics, particle physics and chemistry to electrical engineering, civil engineering,

social sciences and epidemiology, any system that can be perceived as a collection of entities

that interact (e.g. via a physical force or information exchange, causal relationship, or in general

if the behaviour/state of an entity affects that of another) or are linked (e.g. due to geometric

proximity, or by physical connections such as a cable or a synapse) can be mathematically

represented as a graph. At the same time, their manipulation, such as the computation of various

properties, poses significant computational challenges and gives rise to unsolved mysteries in

theoretical computer science. In this antithesis lies their beauty.

The theoretical and empirical investigation of graphs, both from a purely mathematical stand-

point (in the fields of graph theory, group theory, combinatorics, theoretical computer science,

network science and others) and from an application-related perspective, is a scientific endeavour

with a long history dating back to at least the 18th century and Euler [Euler, 1736]. The first

modern attempts to solve real-world graph-related tasks were dominated by handcrafted graph

descriptors, such as molecular fingerprints [Cereto-Massagué et al., 2015, Capecchi et al., 2020],

filter design for graph signals [Shuman et al., 2013, Ortega et al., 2018] and manually designed

random graph models used to describe the behaviour of real-world graphs [Erdös and Rényi,

1959, Gilbert, 1959, Holland et al., 1983, Albert and Barabási, 2002].

23
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Following this progress, the ground was laid for data-driven methods to emerge. As with most

application domains of machine learning (ML), the first successful and widely-adopted methods

were based on kernel machines and are known as graph kernels (for a comprehensive review

see [Kriege et al., 2020, Nikolentzos et al., 2021]). Not so long after, the sweeping wave of deep

learning (DL) entrained the field of graph ML. Broadly speaking, graphs belong to (or constitute

themselves) mathematical spaces of non-Euclidean geometry, similarly to a plethora of other

mathematical objects of practical interest, such as hypergraphs, sets, manifolds and groups.

Parallel research on neural networks designed for these sub-categories gradually converged to

related ideas that formed the field that is now widely known as Geometric Deep Learning

[Bronstein et al., 2017, Battaglia et al., 2018, Bronstein et al., 2021].

The aforementioned field concerns all data-driven algorithms employed to solve tasks where

non-Euclidean data are involved, which, in the vast majority of cases, amounts to predicting

one or more unknown functions. Formally, in statistical learning theory this problem is known

as function approximation and refers to the process of approximating a function f ∗, called

the ground truth or target, from an input set X to an output set Y with another function h,

called the hypothesis. The latter usually belongs to a set of candidates H , called the model

or the hypothesis class and in ML we are interested in methods using only a finite amount of

samples (the training set) from X × Y in order to select the hypothesis h. The algorithm that

selects a hypothesis, i.e. the map from the training data to the hypothesis, is called the learning

algorithm (see section 2.2 for a more detailed discussion).

When the hypothesis class is parametrised by a neural network, this process is commonly referred

to as neural function approximation. Contrary to the Euclidean case, modelling, manipulating,

approximating and estimating functions on non-Euclidean data, and graphs in particular is

still not well understood. This thesis seeks to deepen our understanding of the aforementioned

topic. To achieve this, we will first examine the basic characteristics of the problems considered

through the lens of the mathematical structure with which the non-Euclidean data of interest

are endowed (section 1.2). Based on this, we will subsequently provide a categorisation of this

topic’s diverse problem landscape (section 1.3) and the fundamental principles that should be

followed when designing ML- and neural network-based solutions (section 1.4). Therein, we

will also discuss concepts and principles that apply to general ML problems and go beyond the

scope of the problems that we consider, but are useful in order to find connections and obtain a

complete picture of the field. Then, in chapters 3, 4 and 5, we will present our contributions to
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three important problems which belong to the categories of graph signals (shape modelling) and

general graph spaces (graph discrimination and graph compression).

1.2 Endowing the data with structure

In Geometric Machine/Deep Learning, we are especially interested in the study of the structure

(the features) with which the input X and output set Y are equipped and the ways this affects

learning. The vast majority of progress in machine learning has been made for Euclidean data,

i.e. data residing in Euclidean vector spaces (vector spaces equipped with the inner product

operation). Euclidean spaces are equipped with rich structure; in fact, they possess each one of

the examples of structure that we enlist below, among others. In addition, many mathematical

tools (calculus, linear algebra, etc.) have been developed and are well-understood for Euclidean

spaces, while many popular application domains, such as image and audio processing, concern

data that reside in Euclidean spaces, which partly explains the speed with which many machine

learning achievements have been materialised. On the other hand, it is not uncommon that our

data may reside in spaces with weaker structure or in spaces where the Euclidean space axioms

are violated (non-Euclidean spaces).

Usually, structure can be directly inferred from the nature of the data, while sometimes

assumptions are made as design choices. In both cases, structure gives rise to a restriction of

the way we model the unknown task, i.e. to a certain inductive bias - see section 1.4.1. In

fact, without structure, it is impossible to make assumptions, and in turn without assumptions,

learning is impossible. Let us examine a few examples.1 A set X may be endowed with:

• Topology. Intuitively a topology equips the set with a notion of a neighbourhood, allowing

statements such as “is x1 ∈ X close to x2 ∈ X ?”. Strictly speaking, a topology is a

family of subsets of X respecting certain axioms, where each subset containing x ∈ X is a

neighbourhood of x. This is particularly important for machine learning since it allows us

to define local functions, i.e. by hypothesising that the target corresponding to each point

is a function of its neighbours. A less obvious consequence of topology is that it allows us

to define continuous functions, an almost universal assumption when learning on vector

1To ease exposition, we opted for a mainly intuitive explanation of the mathematical concepts involved (more
analytic explanations can be found in many resources such as [Foldes, 1994, Corry, 2003]) and we will introduce
strict definitions wherever necessary.
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spaces or manifolds.

• Metric. A metric is a distance function dX : X × X → R≥0 respecting certain axioms. It

is a stronger notion of structure, allowing us not only to define neighbourhoods but also a

quantitative measure of “closeness” between the points of a set, and to make statements

such as “how close is x1 ∈ X to x2 ∈ X ?”. This may give rise to stronger assumptions, e.g.

local functions that depend on the distances from the neighbours, or functions that have

a certain degree of smoothness (e.g. Lipschitz functions h : X → Y for which it holds that

∃ λ > 0, such that dX (x1, x2) ≤ λ dY
(︁
h(x1), h(x2)

)︁
, ∀x1, x2 ∈ X , where dX (·, ·), dY(·, ·)

are the metrics on the input and on the output space respectively).

• Order. This allows us to do comparisons between points in the set (partial, when only

certain pairs are comparable, or total, when everything is comparable). It gives rise to

important assumptions, such as monotonicity (e.g. increasing functions: x1 ≤ x2 ⇒

h(x1) ≤ h(x2)), or causality (e.g. h(x) = h
(︁
{x′ ∈ X | x′ ≤ x}

)︁
). Particular examples of

interest are natural language, where words in a document are totally ordered, and trees,

where vertices are partially ordered, giving rise to a hierarchy.

• Equivalence relations. Intuitively this allows us to define equivalent points in the set based

on a certain property. They may be defined by transformations2 on the points of the

set (e.g. the equivalence relation that is induced by rotations on a vector space, i.e. if

a vector is a rotation of another then they are equivalent); see section 2.3 for a strict

definition. They give rise to symmetries and allow us to define functions that are invariant

(equivalent points have the same output) or equivariant (a transformation applied to an

input point will result in an equally transformed output) - see definition 1.1.

• Arithmetic operations and identities, such as multiplication and addition, and associativity

and commutativity respectively, which, together with X constitute an algebraic structure.

Operations and identities are necessary in order to define vector spaces and are the basis

of linear algebra on which neural networks mostly rely.

Note that some of the above examples may give rise to others (e.g. a topology is induced from

a metric) and a set may be endowed with a combination thereof. We can define all the above

for Euclidean vector spaces, and in fact, there are multiple different definitions per category,

2usually these belong to a group, a set endowed with another type of interesting structure - see section 2.3.
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but this is not always possible for many data domains. For example, on a graph, we can define

a metric, e.g. the shortest path distance, and therefore a topology, and equivalence relations, e.g.

vertices that are mapped to each other via automorphisms (see section 2.4 for definitions), but

in general it is not possible to define an ordering of the vertices or operations such as addition.

On a set of strings (for natural language processing), we can define a metric, e.g. the string edit

distance, an order, e.g. alphabetic, and equivalence relations, e.g. synonyms, but again it is

unclear how to define arithmetic operations.

The absence of algebraic structure on many non-Euclidean spaces is what makes most machine-

learning algorithms, and especially neural networks, directly inapplicable since their majority

is defined on finite-dimensional vector spaces.3 To address this, the common strategy is to

represent the data as vectors and then restrict the model by making assumptions based on the

assigned structure. Before diving into the specific case of graphs that this thesis is devoted to,

in the next two sections, we will make a brief overview of two important steps one needs to

follow: identifying the structure of the data (section 1.3) and then designing the ML algorithm

by respecting certain universal principles (section 1.4).

1.3 Function approximation on non-Euclidean spaces:

problem categorisation

Designing a learning algorithm for non-Euclidean data requires first understanding their nature,

i.e. their structure, as described in section 1.2. In this section, we provide a categorisation of

the learning problems. Identifying the category a problem belongs to gives us the ability to

choose the appropriate framework to tackle it. In our categorisation, we identify three major

families, to which either the input or the output set of the target function might belong. In

every case, X (or Y ) is a set of singletons/points and is equipped with various features, that

turn it into a (geometric) space, including at least a topology T ⊆ 2X . The families are: single

space, function space and space of spaces.

Single space X . This is the most general case. We focus on examples where the singletons

of the said space do not have any added structure themselves. Notable examples are:
3Two notable exceptions are nearest neighbours and kernels that can be applied to non-Euclidean data as

long as some notion of similarity/distance between pairs of points can be defined.
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• Real coordinate space Rd (e.g. f ∗ : Rdin → Rdout). This is the most widely explored

topic. There is a multitude of ways to model functions on/to such spaces, ranging from

polynomials to neural networks. Strikingly though, even in this case, although some design

principles are better understood (e.g. the expressive power, where well-known universal

function approximation results apply - see 1.4.3), others are still enigmatic for the ML

community (e.g. how do some inductive biases affect generalisation? - see sections 1.4.1

and 1.4.2).

• Fixed manifold (e.g. figure 1.1 left - f ∗ : M → Rdout , where M is a manifold). Here

we encounter cases where the manifold is known, e.g. reasoning about a signal on a 3D

surface from limited observations. It is also possible that the manifold is unknown. In

fact, the manifold hypothesis [Schölkopf et al., 1998, Tenenbaum et al., 2000, Roweis and

Saul, 2000, Belkin and Niyogi, 2003, Donoho and Grimes, 2003, Cayton, 2005, Fefferman

et al., 2016] asserts that most high-dimensional real-world data reside in a low-dimensional

manifold, therefore many classical ML problems fall under this category. Important progress

in this subtopic has been made for manifolds of constant curvature, primarily hyperbolic

and secondarily spherical spaces, either in the output (e.g. hyperbolic embeddings) [Wilson

et al., 2014, Liu et al., 2017a, Nickel and Kiela, 2017, Chamberlain et al., 2017, Nickel and

Kiela, 2018, Sala et al., 2018], or in the input as well (e.g. hyperbolic neural nets) [Ganea

et al., 2018, Liu et al., 2019, Chami et al., 2019, Bachmann et al., 2020].

• Fixed graph (e.g. figure 1.2 left - f ∗ : V → Rdout , where V the vertex set of a graph

G = (V , E)). The input/output set here is the vertex set of a graph and the topology

can be defined in multiple ways, e.g. the one induced by the shortest-path metric on the

graph. Sometimes, it might be convenient to use alternative definitions of the set/topology

pair, e.g. via the line graph, i.e. the graph representing the adjacency of edges. Typically

the problems whose input set falls under this category are known in the ML literature

as semi-supervised, or transductive learning on graphs and they deal with mapping each

vertex to a target value from a limited amount of vertex observations (e.g. determining

the subject area of a paper in a citation network, where each vertex is a paper and only

a subset of them is labelled). Typical ML solutions are provided by graph embeddings

[Perozzi et al., 2014, Grover and Leskovec, 2016, Abu-El-Haija et al., 2018] or Graph

Neural Networks (GNNs) [Kipf and Welling, 2017, Hamilton et al., 2017, Velickovic et al.,

2018] (see section 2.6.3), to name a few. Other similar problems include more exotic
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Figure 1.1: Problem categorisation (manifolds). The input space might be a (from left to right):
single space (sphere), function space (signals on a sphere), space of spaces (space of manifolds).

discrete spaces, such as hypergraphs, simplicial complexes, CW complexes, etc.

Function space U = {u : X → X̂} ⊆ X̂
X
. Typically, the co-domain of the functions u is the

space of real numbers or a real-coordinate space X̂ = Rd, and the functions u are often called

signals. The functions on signals are sometimes called functionals, when the output space is the

space of real numbers or a real coordinate space, e.g. f ∗ :
(︁
Rdin

)︁X → Rdout , or operators, when

the output space is also a space of signals, e.g. f ∗ :
(︁
Rdin

)︁X → (︁
Rdout

)︁X . We consider cases

where the domain and co-domain X , X̂ are fixed. For example:

• Functions on vector spaces or manifolds (e.g. figure 1.1 middle - f ∗ :
(︁
Rdin

)︁M → Rdout ,

whereM is a manifold). Here we encounter problems where one wishes to model a function

on/to an entire signal, such as mapping the initial conditions of a partial differential

equation (PDE) over a Euclidean/non-Euclidean space to its solution, e.g. simulating

weather conditions over the 3D surface of the earth. It is important to mention here that

in case the said space is the input space, it might not be possible to obtain a succinct

representation (that can be stored in a computer) of each signal, so in practice, we might

encounter only a finite number of signal evaluations on its domain X . This problem has

recently started to gain traction in the neural network realm [Lu et al., 2021, Kovachki

et al., 2021b, Dupont et al., 2022], both theoretically and practically, in order to solve

PDEs and represent implicit functions, such as 3D shapes.

• Functions on graphs and other discrete spaces (e.g. figure 1.2 middle - f ∗ :
(︁
Rdin

)︁V → Rdout ,

where V the vertex set of a graph G = (V , E)). Perhaps the most notable case here is that

of images, the data domain that has gathered more attention than any other in ML. In

particular, every image can be defined as a function from an input grid to Rd (where d is
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Figure 1.2: Problem categorisation (graphs). The input space might be a (from left to right):
single space (the graph vertices), function space (signals on the graph vertices), space of spaces
(space of graphs).

the called the number of channels), and the neural networks used in this setup are the

well-known Convolutional Neural Networks (CNNs) [Fukushima and Miyake, 1982, LeCun

et al., 1998, LeCun et al., 1989, Krizhevsky et al., 2017]. Also, an example of particular

interest is that of functions on the vertices of a graph (graph signals). This problem has

been largely addressed by methods originating in the field of Graph Signal Processing

(GSP) (see section 2.5), such as graph wavelets [Coifman and Maggioni, 2006, Gavish

et al., 2010, Rustamov and Guibas, 2013], and GNNs with similar philosophy [Bruna et al.,

2014, Defferrard et al., 2016]. It is also the subject of investigation in the first publication

contained in this thesis and we will extensively discuss it in chapter 3, where we will see

that most GSP-based approaches have limited expressive power.

An attractive side note is that, when U refers to the output space, a particular case is function

approximation/learning per se, since it requires finding a mapping from a dataset to a function

(the learning algorithm A :
⋃︁∞

m=1

(︁
X × Y

)︁m → Y X ). This perspective has been studied by

several works in the field of meta-learning, where a set of training datasets is used to determine

(meta-learn) the learning algorithm [Mishra et al., 2018, Santoro et al., 2016, Garnelo et al., 2018],

or some of its components (e.g. the parameter initialisation [Finn et al., 2017, Li et al., 2017b],

the optimiser [Andrychowicz et al., 2016, Ravi and Larochelle, 2017], the hyperparameters

[Franceschi et al., 2018] etc.). Please refer to [Hospedales et al., 2021] for a more detailed

discussion.

Space of spaces X. In this case, we consider spaces where each singleton is a space itself, i.e.

a set of points with some added structure. Adding structure to X, e.g. defining a topology, a

metric, or an equivalence relation, is of particular importance in order to model functions in



1.3. Function approximation on non-Euclidean spaces: problem categorisation 31

this subtopic. For example:

• Space of manifolds (e.g. figure 1.1 right - f ∗ : M → Rdout , where M = {M1,M2, . . . }

is a space of manifolds). Many 3D computer vision problems fall under this category,

e.g. shape classification, shape segmentation, shape synthesis etc. Note though, that it is

typically hard to represent 3D data as manifolds and other representations are preferred

(e.g. point clouds, meshes, implicit functions), which explains why other perspectives (and

corresponding neural nets) are chosen to deal with these problems. A more elaborate

discussion is postponed until section 3.4.1 (in addition, in section 3.4.2 we apply one of

the proposed algorithms to the particular case of deformable shapes). The equivalence

relations that usually play a central role here are transformations between manifolds (e.g.

rigid: rotations, translations and reflections) and designing invariant/equivariant networks

is an active area of research [Thomas et al., 2018, Kondor, 2018, Shen et al., 2020, Satorras

et al., 2021, Geiger and Smidt, 2022]

• Space of sets (e.g. f ∗ : P → Rdout , where P = {P1,P2, . . . } is a space of sets

Pi = {pi1, pi2, . . . }, with pij: singleton). In the most general case, each singleton is a

set with no added structure. Then, the equivalence relation that guides the design of

neural networks is the one arising from permutations of the elements of the set [Zaheer

et al., 2017, Qi et al., 2017a]. However, in many cases (mostly in 3D data) a topology or

metric can be defined allowing the definition of local architectures [Qi et al., 2017b, Thomas

et al., 2019]. In addition, the equivalence relations mentioned in the previous subtopic

might be observed here.

• Space of graphs (e.g. figure 1.2 right - f ∗ : G→ Rdout , where G = {G1, G2, . . . } is a space

of graphs Gi = (VGi
, EGi

)). Frequently, in the literature, this setup is informally described

by the term inductive learning on graphs and includes graph classification/regression tasks,

where one needs to determine a mapping from a graph to a target value (e.g. predicting

unknown properties of a molecule). The equivalence relation that governs the problems

here is the one arising from Graph Isomorphism (GI) (see section 2.4 for a strict definition).

In addition, graphs are equipped with a topology and a metric, which allows us to define

local functions, which have been shown to be appropriate models for many real-world

tasks. We investigate such problems in the 2nd and 3rd publications (chapters 4 and 5),

where we thoroughly discuss the corresponding neural networks and the implications of
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GI on their design.

Finally, note that the function space case is subsumed under the space of spaces case,4 which in

turn is is subsumed under the single space case. This partly explains why frequently the same

neural networks are used in more than one setups. However, it is more appropriate to examine

each problem through the lens of the most specific possible setup, in order to make the most of

the problem structure (e.g. the fixed domain in the function space case or the internal topology

of each singleton in the space of spaces case) with regards to the design principles that we will

discuss in the next section.

1.4 Function approximation on non-Euclidean spaces:

design principles

In this section we will give a general overview of the design principles we must adhere to when

designing a learning system. These apply to all the categories we discussed in the previous

section 1.3, but as we will see in the next sections, their theoretical understanding is in some cases

limited. Relying on empirical observations and intuition is therefore a frequent phenomenon in

(deep) learning.

The main principles are the following: (1) Inductive biases, i.e. what kind of assumptions about

the true function are we making? These assumptions are present in all the components of the

learning system, e.g. they might be explicit in the hypothesis class, by restricting it to functions

that have an assumed property, or implicit in the learning algorithm, affecting the way it selects

the hypothesis from a set of plausible options. (2) Expressive power, i.e. how to design a model

that fits our assumptions? How powerful is our model in approximating functions with the

assumed characteristics? (3) Computational complexity, i.e. the amount of compute needed

to evaluate the selected hypothesis on an arbitrary input, and its scaling with the size of the

input/output (whenever this is variable). Also, an important topic is the amount of computation

needed for the learning algorithm in order to select the hypothesis.

4Each function u can be represented as a set {(x, u(x)) | x ∈ X}, known as the graph of the function, which
is a topological space, sometimes a manifold.
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1.4.1 Explicit inductive biases

We first discuss the assumptions that are built in our hypothesis class, i.e. that apply to all

the candidate hypotheses by construction. We will illustrate them in a consistent way with

the types of structure mentioned in section 1.2. This is not an exhaustive list but contains the

majority of assumptions that we usually encounter in learning systems. In general, a hypothesis

might be a composition of functions, and the inductive biases that we will describe might apply

to any of those functions or their composition as well.

Invariance/Equivariance

Perhaps the most ubiquitous assumption of learning systems is that of invariance. Informally, a

function is called invariant to a set of transformations (which form a group) if its value remains

unaffected when applying any of these transformations on the input and equivariant when the

value of the function is transformed accordingly. The concept of transforming a point in the

input or the output set is formalised by the notion of group action, which is described in detail

in section 2.3. Formally:

Definition 1.1 (Invariant/Equivariant function). Let X be a set of points. Let RX ⊆ X × X

be an equivalence relation on X and we will write x1 ≃RX x2 whenever (x1, x2) ∈ RX . We will

say that a function h : X → Y is invariant under RX if x1 ≃RX x2 implies that h(x1) = h(x2).

Equivalently, let G be a group acting on X , and denote the (left) group action with · : G×X → X .

We will say that a function is invariant under the group action iff h(g ·x) = h(x),∀g ∈ G, x ∈ X .

Moreover, if the group also acts on Y, we will say that a function is equivariant under the group

action iff h(g · x) = g · h(x),∀g ∈ G, x ∈ X .

Sometimes invariance/equivariance are reasonable assumptions that we make about the target

function, while in other cases they directly arise from the nature of the data, and failing to

ensure that our model enjoys this property will lead to unreliable results. Some well-known

transformations that we usually encounter in real-world data are the following:

Infinite groups, i.e. groups with an underlying set of infinite elements. The most useful

examples are subgroups of the general linear group GL(d,C), i.e. the set of all invertible matrices

in Cd×d (where C the field of complex numbers), such as the Euclidean group E(d), which

contains all isometric transformations of a Euclidean d-dimensional space, including translations



34 Chapter 1. Introduction

T (d) and rotations and reflections O(d) - the orthogonal group (the group containing only the

rotations is called the special orthogonal group and is denoted with SO(d)).

Finite groups, i.e. groups with an underlying set of a finite number of elements. All finite

groups are subgroups of the symmetric group S(d), containing all permutations of d elements

(Cayley’s theorem). This group and subgroups thereof will be the ones that we will encounter

in this thesis, in chapters 3, 4 and 5. In particular, shifts of various kinds, the discrete

analogue of translations, form subgroups of S(d) (see chapter 3). Moreover, when dealing

with function approximation problems on/to a space of graphs, we want our functions to be

invariant/equivariant to isomorphism (see section 2.4), which can be defined via the symmetric

group acting on the vertex and edge sets of a graph.

In the early deep learning years, this inductive bias was usually implicit, and its existence was

encouraged by data augmentation, i.e. by enlarging the training set with datapoints manually

transformed by randomly sampled transformations from the relevant group. However, this

not only increased the computational complexity of the learning algorithm but also could not

provide guarantees for invariance/equivariance. As a remedy to that, it is therefore important

to design invariance/equivariance as an explicit inductive bias, i.e. to guarantee that all the

hypotheses in the hypothesis class will have this property, whenever a symmetry is known.

This is not only because it guarantees the correctness and reliability of our model, but also

because (1) it reduces considerably the size of the hypothesis class, and therefore improves the

convergence of learning algorithms, and (2) because it makes our learning algorithm more sample

efficient as has been shown in various works [Shawe-Taylor, 1991, Shawetaylor, 1995, Sokolic

et al., 2017, Lyle et al., 2020, Sannai et al., 2021, Zhu et al., 2021, Behboodi et al., 2022].

However, embedding symmetries into the hypothesis class is generally a non-trivial task (it

is currently an active area of research). At the same time, it is not always clear how to

select an appropriate invariant/equivariant hypothesis class with desirable expressive power

and computational complexity properties, while, as a matter of fact, sometimes leads to a

fundamental trade-off (see chapters 4, 5).

Locality

We continue our discussion with the locality assumption, another classical convention in ML.

Informally, a function is described as local if its value on a point of the input set depends not
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only on the point itself but also on its neighbours. Formally:

Definition 1.2 (Local function). Let X be a set of points and T ⊆ 2X a topology on X . Let

N (x) be a neighbourhood of x, i.e. any N (x) ∈ T , such that x ∈ N (x). Then, a function

flocal : X → Y will be called local if it can be expressed as follows:

flocal(x) := ψ (x, {(x, x′) | x′ ∈ N (x)}) , ∀x ∈ X . (1.1)

The following observations can be made. First off, locality can be defined even for sets with weak

mathematical structure, since its definition only requires a topology. Second, the definition is

quite flexible and the exact form of a local function will depend on our choices of neighbourhoods

N (x) and the way that each neighbour will be involved in the computation. For example, in

a metric space, one might define a neighbourhood as a metric ball with a certain radius ρ:

Nρ(x) = {x′ ∈ X | dX (x, x′) ≤ ρ}. Moreover, neighbours might be treated equally based on

various equivalence relations, e.g. their distance from x (by the term “treated equally”, we

informally imply that the function flocal will be e.g. invariant to permutations of equivalent

neighbours). The definition also allows for multiple levels of computation, e.g. based on different

values of ρ, which is a common design pattern of CNNs and GNNs.

In the single space case, locality assumptions are either implicit or explicit. For example,

in the single vector space setup that we described in section 1.3, the neighbourhoods can be

derived with algebraic operations on x that neural networks can express, and therefore rarely

this assumption is explicitly made. On the other hand, in many non-Euclidean setups, this is

not the case and therefore locality needs to be explicit in the hypothesis. For example, in the

case of a single graph, the hypothesis might be a variation of a GNN, which amounts to a local

function or a composition of local functions, where the neighbourhood might be defined based

on the graph metric.

In the function space and space of spaces setups, locality assumptions are usually ex-

plicit as well, but now locality refers to the internal topology of each point. For example, a

classical formulation for hypotheses on a space of spaces is: h(X ) = ϕ
(︂{︁
flocal (x) | x ∈ X

}︁)︂
,

∀ X ∈ X, where the function ϕ is known as the readout (this is the rationale in the de-

sign of GNNs - see section 2.6.3). Similarly, for hypotheses on a space of functions, the

formula reads: h(u) = ϕ
(︂{︁
flocal

(︁
x, u (x)

)︁
| x ∈ X

}︁)︂
, ∀ u ∈ U ⊆ X̂

X
, but now usually

the neighbourhoods used by flocal are defined based on distances from the input point x, i.e.
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flocal(x) := ψ
(︂(︁
x, u(x)

)︁
,
{︁(︁
x, u(x), x′, u(x′)

)︁
| x′ ∈ N (x)

}︁)︂
.

Local functions are common in real-world scenarios and this observation has been widely used

as an intuitive motivation for putting this assumption forward. As a matter of fact, locality

has been adopted by the signal processing community even before the deep learning era, where

signals defined over various domains were processed with local filters (e.g. for denoising and

edge detection in images). In graphs, as we will discuss in chapter 4 many real-world tasks

are compositions of local functions over the graph, such as functions that depend on graph

substructures.

1.4.2 Implicit inductive biases

In the section that follows we discuss an important yet not well-understood concept that should

be always taken into account when designing neural networks in general and helps us create a

more holistic image of the behaviour of our models. Since the following discussion is not crucial

to understand our contributions, a reader familiar with the topic may safely skip it.

Undoubtedly the progress in deep learning methods is dominated by approaches that explicitly

restrict the hypothesis class. However, even with these restrictions, the hypothesis class is

still sufficiently large, including many functions that can achieve equally small empirical error

(error on the training set) with the target function, but will be poor approximations, i.e. their

generalisation error will be large. However, it is well-known that deep learning systems have

achieved remarkable generalisation performance in a plethora of artificial intelligence tasks.

This has been a puzzling phenomenon for researchers for many years and still remains largely

unexplained. The predominant belief attributes it to implicit inductive biases and asserts that

there exists an interplay between the hypothesis class (architecture) and the learning algorithm,

which favours certain functions over others. The former includes the explicit inductive biases,

as well as a set of architecture hyperparameters, such as the depth (number of layers), width

(dimension of intermediate representations) and activation functions. The latter is usually not

the Empirical Risk Minimisation (ERM) algorithm (see section 2.2), which selects the hypothesis

with the smallest empirical error, as this is usually a non-convex optimisation problem, which in

general is NP-hard. Instead, in deep learning, the learning algorithm is typically a variation of

gradient descent (GD)5 paired with a particular initialisation (an initial guess) of the predicted
5more precisely, stochastic gradient descent (SGD), i.e. a randomised variation that estimates the true
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hypothesis and a set of optimisation hyperparameters, such as the learning rate, the number of

optimisation iterations and other heuristics that schedule training (e.g. learning rate scheduler,

early stopping, etc.).

Most of the research on implicit inductive biases has been focused on the first problem setup -

functions on/to a single space - and even more so on the particular case of a single vector

space (or a single known and convenient manifold, such as the unit sphere [Bubeck and Sellke,

2021]). The existing results so far are mainly theoretical investigations of simplified settings

[Jacot et al., 2018, Du et al., 2019d, Allen-Zhu et al., 2019] or empirical. Nevertheless, they

have provided valuable insights that have contributed to our understanding of the behaviour of

neural networks and detecting their failure cases.

We will now discuss certain implicit inductive biases that are theorised to be instrumental in the

behaviour of neural networks. A general term that has been proposed is that of the simplicity

bias [Pérez et al., 2019a], i.e. describing the intuitive theory that neural networks trained with

(S)GD “learn simple functions”, or more precisely “learn simple patterns first during training”. To

quantify simplicity, some authors have proposed looking into the (distribution of) the distances

of the training data from the decision boundaries, i.e. the margins, for classification setups

[Arpit et al., 2017, Jiang et al., 2019], claiming that neural networks select hypotheses with

large margins, or the Fourier transform of the learned hypothesis for ReLU networks, claiming

that neural networks prefer low-frequency hypotheses (or learn low-frequency components first)

- the spectral bias [Rahaman et al., 2019]. A similar postulate has been put forward for the

single space setup where the input space is a graph, and it is widely known as the homophily

assumption, which asserts that GNNs, under certain conditions, prefer functions where nearby

vertices tend to have the same or similar target values [Zhu et al., 2020, Ma et al., 2022]. An

interesting insight that can be inferred from all the above observations is that (under certain

conditions) neural networks prefer functions that tend to have small rates of change, at least

close to the support of the data distribution; or more precisely they tend to have no larger rates

of change close to the training data, than the ones required to fit them. However, a rigorous

statement still remains beyond our current understanding.

All the above coincide with our knowledge of many real-world tasks, that are known to be simple

[Schmidhuber, 1997, Lin et al., 2017] or homophilic [McPherson et al., 2001]. At the same time,

they potentially pinpoint a limitation of neural networks in approximating high-frequency or

gradient from subsets (batches) of the training data.
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heterophilic functions, a limitation which has motivated the development of new architectures

[Sitzmann et al., 2020b, Tancik et al., 2020, Zheng et al., 2022].

To conclude our discussion, it is important to mention here that there are many other factors

that implicitly affect the selection of the hypothesis (and in turn the ability to generalise), that

are of equal importance when designing a learning system. In particular, designers tend to select

models that are “easy/fast to train” , while typically the hyperparameters are chosen based on a

validation set. This gives us access to a (usually unbiased) estimate of the generalisation error,

which is a powerful heuristic for model selection.

Finally, it goes without saying that the training dataset is particularly impactful with regards to

generalisation (the larger the dataset, the more restricted the set of hypotheses that can fit it),

acting just like an inductive bias itself. Many models, only recently published, that have been

trained with immense amounts of data, have achieved unprecedented generalisation performance

in many tasks [Brown et al., 2020, Ramesh et al., 2022, Poole et al., 2022, Ho et al., 2022], while,

frequently, similar performance has been observed for different architectures. It is therefore

probably only a slight exaggeration to say that the aforementioned inductive biases pale in

comparison with the power of data6 [Sutton, 2019]. Having said that, as we will see in section

1.4.4, larger datasets severely increase the computational complexity of the learning system, in

terms of time and space complexity (increased number of iterations and parameters) and the

data collection costs, while the access to them is limited. Thus, it becomes evident that this

inductive bias is a privilege only for the few. Therefore, there is still a pressing need to design

(explicit or implicit) inductive biases in the architecture and the learning algorithm, in order not

only to be able to “democratise” learning systems at smaller scales but also to solve tasks where

the collection of large datasets is impossible, e.g. in the physical sciences and biomedicine.

1.4.3 Expressive Power

Having established our assumptions, the next design principle that we need to adopt is to make

sure that our hypothesis class is sufficiently flexible, i.e. that it contains a sufficiently large set

of hypotheses. We will say that the larger the hypothesis class, the larger its expressive power

(or expressivity - the two terms will be used interchangeably).

6Strikingly, this is a phenomenon which still cannot be explained by classical learning theory results, since
the curse of dimensionality demands exponentially large datasets with the input dimension.
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Frequently, we are interested in hypothesis classes that have the universal approximation property

(UAP), i.e. that can approximate any target function in a function family that agrees with

our assumptions, up to arbitrary precision in any (compact) subset of our input set X .7 It is

important to note here that the UAP is purely existential, i.e. it does not give us guidance on

how to construct the approximator for a known target function, or when we only have access to

a finite amount of samples from it, or about the hardness of approximation. Nevertheless, it is

an important result that informs us about the possibility of approximation or lack thereof.

The UAP is a concept that has been deeply studied in the field of approximation theory for

functions on and to real coordinate spaces Rd. Its study dates back to at least the 19th century

when Weierstrass [Weierstrass, 1885] showed that any real-valued continuous function on a

closed interval of the real numbers can be approximated by a polynomial. Importantly, this

result was generalised by Stone [Stone, 1937, Stone, 1948] in the Stone–Weierstrass theorem

giving sufficient conditions for a family of real-valued functions to have the UAP on more general

topological spaces.

In the neural network realm, many results have been derived for real coordinate spaces starting

from the seminal works of Cybenko [Cybenko, 1989] and Hornik [Hornik et al., 1989, Hornik,

1991]. These and follow-up papers, e.g. [Pinkus, 1999, Yarotsky, 2017, Lu et al., 2017, Kidger

and Lyons, 2020, Maiorov and Pinkus, 1999, Park et al., 2021, Sonoda and Murata, 2017],

showed that neural networks with at least two layers and non-polynomial activation functions

can approximate any continuous function Rdin → Rdout on any compact subset of Rdin up to

arbitrary precision. In fact, the UAP provided strong arguments in favour of neural networks as

learning paradigms in general and has been widely used to justify their popularity. More general

results for arbitrary topological spaces were shown in [Kratsios and Bilokopytov, 2020, Kratsios

and Papon, 2022], with implications for input/output spaces which are smooth manifolds.

Regarding the function space setup, it is helpful for our understanding, to rewrite the definition

of a function space with finite domain X as X̂
|X |

. This implies that any sufficient conditions for

universality in this product space also apply to the function space. For example, when X̂ = RdX̂ ,

then the product space contains |X | concatenated vectors of dimension dX̂ , i.e. U = R|X |·dX̂ , and

therefore all the known universal approximation theorems for real coordinate spaces apply. This

7A more general notion, that of Turing completeness has been also explored for Recurrent Neural Networks
(RNNs) [Siegelmann and Sontag, 1992, Schäfer and Zimmermann, 2006], Transformers [Pérez et al., 2019b, Yun
et al., 2020] and GNNs [Loukas, 2020].
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observation is of importance for many tasks in ML, such as learning on images and audio of fixed

resolution, as well as learning on graph signals, since it tells us that we can use conventional

neural networks (such as MLPs) without compromising on universal approximation.

Nevertheless, this approach does not enforce any restrictions to the hypothesis class, which as

we will see in section 1.4.4 leads to an increase in both space complexity (increased number

of parameters) and time complexity (increased neural network inference time and potentially

learning algorithm iterations), but typically also in generalisation error. This motivates the

study of domain-specific architectures w.r.t. their approximation capacity. Such results have

been provided for Convolutional Neural Networks (CNNs), which have been shown in [Yarotsky,

2022, Zhou, 2020] to be universal when mapping discrete signals to real vectors.

Separate treatment is needed when the signal domain X is infinite, e.g. when X = RdX .

Although less well-known, many theoretical results have been derived in this case, regarding

more general topological domains X and function spaces, showing the universality of certain

architectures, most notably the DeepONet and Neural Operators of different types [Chen and

Chen, 1993, Chen and Chen, 1995a, Chen and Chen, 1995b, Mhaskar and Hahm, 1997, Rossi and

Conan-Guez, 2005, Lu et al., 2021, Lanthaler et al., 2022, Bhattacharya et al., 2021, Kovachki

et al., 2021b, Kovachki et al., 2021a].

Finally, there has been significant progress in analysing function families on/to spaces equipped

with a certain symmetry/equivalence relation, which also applies to the setup of space of

spaces X. It might be tempting to approach this problem with general function approximators

on X, e.g. in some cases X is a subset of a real coordinate space (e.g. the space of all graphs with

n vertices can be perceived as a subset of Rn2 - see section 4.2), where universal approximation

is well-understood), but as we discussed in section 1.4.1, this hinders both optimisation and

generalisation. It is therefore necessary to study approximators that are by construction

invariant/equivariant.

A rather general strategy is that of symmetrisation, where invariant functions are defined, for

every point X ∈ X, as the average over the outputs of a (possibly) asymmetric function fasym

evaluated on the points in the equivalence class of X . Formally, for invariance to the action of

a group G we have: h(X ) = 1
|G|
∑︁

g∈G fasym(g · X ).8 Several universal approximation theorems

have been derived for this class of functions, e.g. see [Yarotsky, 2022], under the condition that

8for equivariance the corresponding defintion reads h(X ) = 1
|G|
∑︁

g∈G g
−1fasym(g · X ).
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fasym belongs to a universal function approximator on X. Nevertheless, this is practical only

when the group is finite and relatively small, which prevents us from constructing approximators

for many interesting symmetries (e.g. the size of a permutation group is |S(n)| = n!), while

for infinite groups, such as rotations, the averaging operator is an integral and can be only

estimated with sampling.

To address this, the predominant approach in recent years is constructing hypothesis classes,

that contain intrinsically invariant/equivariant functions. Sufficient conditions are once again

provided in [Yarotsky, 2022] using the theory of symmetric polynomials, while particular

architectures have been analysed w.r.t the UAP [Segol and Lipman, 2020, Bogatskiy et al.,

2020, Dym and Maron, 2021] and [Villar et al., 2021] provided sufficient conditions for many

symmetries that arise from physical laws.

We make a separate allusion to the permutation symmetry of graphs. In particular, although

sufficient conditions have been provided for universal function approximation on graphs [Loukas,

2020, Dasoulas et al., 2020, Murphy et al., 2019, Brüel Gabrielsson, 2020, Keriven and Peyré, 2019,

Maron et al., 2019c], the resulting architectures are either not permutation invariant/equivariant

or are computationally intractable. This is not surprising, since as shown in [Chen et al., 2019],

universal approximation of invariant/equivariant graph functions is equivalent to solving graph

isomorphism, which so far is not known to be solvable in polynomial time (the best algorithm

runs in quasipolynomial time and it is due to Babai [Babai, 2016] - see also section 2.4). In

fact, an important trade-off between computational complexity, expressivity and permutation

invariance has been observed in this domain, with graph isomorphism being considered largely

responsible: the hypothesis classes that have been proposed are either overly flexible (certain

isomorphic graphs are mapped to different outputs) or overly restrictive (certain non-isomorphic

graphs are mapped to the same output), sacrificing permutation invariance or expressivity

respectively. Typically, the degree of their flexibility/restrictions is tightly related to their

computational complexity. We will extensively discuss this topic in chapter 4, where we will also

derive a universality result for a specific class of graph functions and a practical architecture

with improved expressivity compared to vanilla GNNs.
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1.4.4 Computational Complexity

The final universal design principle that we should be paying attention to is that of computational

complexity. Although it is a concept that is less frequently discussed in ML publications, it was

probably the most decisive factor that impeded deep learning progress in the late 20th century;

neural networks were too expensive to train and the functions they were converging to after

only a handful of iterations where not even sufficiently good in terms of their empirical error on

the training data. However, the advent of modern hardware (mainly GPUs and new technology,

such as TPUs), made massively parallel computation possible, which unlocked the potential of

neural networks.

The time complexity of a learning system, regarding its training phase, can be summarised with

the following scaling law: O (f (din, dout) · |D| · I), where f (din, dout) is typically the complexity

of the computation needed to update the parameters of the hypothesis (e.g. the backward pass -

gradient computation), based on each sample in the dataset, |D| are the number of samples and

I the number of epochs. In many cases f is linear (e.g. MLPs and CNNs with constant depth

and width) and even if din and dout are large, the computation can be parallelised (perhaps with

the exception of RNNs and in general autoregressive models). Similarly, the computation can

be parallelised across samples, which is done via mini-batching and stochastic estimation of

gradients, which together with many improvements in weight initialisation schemes, optimisation

algorithms, architecture modifications (e.g. residual connections, normalisation layers etc.) and

hyperparameter heuristics, also allow for a reduction in the number of iterations I.

Of equal importance is space complexity. Modern neural networks are heavily overparametrised

creating the need for large memory capacity. However, modern hardware has also significantly

improved in that respect, allowing us to empirically observe phenomena (e.g. double descent

[Belkin et al., 2019, Nakkiran et al., 2020]) that could not be explained by measuring model

complexity with the number of parameters and corroborated the arguments in favour of

alternative measures [Rasmussen and Ghahramani, 2000]. Overall, although training neural

networks is still a notoriously laborious and slow procedure, all the above have allowed significant

reductions in their computational complexity, making them more accessible and providing room

for wider experimentation.

However, as the community started to focus on more complex tasks, more intricate architectures

became necessary with f scaling worse than linearly w.r.t. the input and output dimensions
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(e.g. attention-based neural nets, such as transformers, have quadratic complexity), which

brought the issue of computational complexity to the front once more. In addition to that, the

computational complexity of a problem is inescapable: if it belongs to one of certain complexity

classes, such as NP, then there will be instances of it that we most likely won’t be able to solve

with architectures that run in polynomial, let alone in linear, time. Instead, our goal should

be to learn appropriate heuristics, akin to many combinatorial optimisation solvers, that can

approximate the ground truth function well enough with high probability, using samples from a

given distribution of instances. In many cases, learning such heuristics is indeed possible, e.g.

several problems, such as graph isomorphism, are hard because of certain instances that are

“artificial”, while real-world distributions contain instances for which the problem can be solved

far more efficiently (see section 4.2).

This discussion is of particular relevance to this thesis. As we saw in section 1.1, there is a

peculiarity in the structure of graphs that makes many problems defined on them computationally

cumbersome. This includes universal isomorphism-invariant function approximation (section

1.4.3), which is unknown if it is solvable in polynomial time, and unlabelled graph compression

(chapter 5), which at optimality is a specific case of isomorphism-injective & isomorphism-

invariant function approximation. Other invariant problems such as subgraph isomorphism (i.e.

deciding if a graph contains a subgraph isomorphic to another given graph) and the clique

decision problem (i.e. deciding if a graph contains a k-clique) are known to be NP-complete.

These problems are also of practical importance since subgraphs play a crucial role in many

real-world tasks (see chapter 4).

At the same time, many graph problems can be approached with equivariant function approxi-

mation, e.g. consider functions X →
⋃︁∞

n=1 Yn, where Y = {0, 1, . . . , |Y|}, i.e. the output is a

label vector, such as a zero-one vector, where each one of the n values corresponds to a vertex

of the graph and indicates if it belongs to a target set or not. In this category, we find problems

that are computationally hard, e.g. the graph k-colouring with k ≥ 3, which is NP-complete

(requires colouring the vertices of the graph with k colours, such that no adjacent vertices have

the same colour), but sometimes also hard to approximate, e.g. the maximum independent

set and the vertex cover, which are NP-hard (require finding the maximum vertex set with

non-adjacent vertices and finding a vertex set such that all edges are incident to at least one of

the selected vertices, respectively). In the field of combinatorial optimisation, many real-world

problems are variations of the above.



44 Chapter 1. Introduction

It is now clear that computational complexity is a crucial factor that needs to be taken into

account when designing graph ML algorithms. It is imperative for the designer to make the

necessary compromises between computational complexity and expressive power (i.e. even if our

hypothesis class is not universal, it might be sufficient to approximate a function well enough

on a given real-world distribution). In this thesis, we will also empirically examine the interplay

between computational complexity and generalisation. In chapters 4 and 5 we will see cases

where larger computational complexity does not improve or sometimes worsens, generalisation

(interestingly note that this is at odds with the empirical evidence about overparametrisation that

we mentioned above). However, this interplay still remains beyond our current understanding.

1.5 Thesis outline & summary of problems considered

The rest of the thesis is organised as follows:

Chapter 2 introduces mathematical definitions and notations that will be necessary across all

the chapters in the thesis and provides a brief overview of the machine learning terminology and

the background knowledge on graph theory. Additionally, it contains the necessary preliminaries

regarding relevant methods that have been used for the analysis and processing of graphs in

a non-data-driven manner, mainly spanning the field of graph signal processing. Finally, it

introduces the reader to Graph Neural Networks and their ancestors, the Weisfeiler-Leman

graph isomorphism tests.

Chapter 3 describes our contribution to the problem of neural function approximation

on graph signals. In particular, as per the categorisation of section 1.3, this chapter is

concerned with learning on signal spaces, where the signal domain is the vertex set of a fixed

graph and the co-domain is a real-coordinate space. In section 3.2 we will discuss how the

design principles of section 1.4 apply in this context, and we will recall that it is easy to design

function approximators that hold the UAP (as we saw in section 1.4.3) but at the expense of

weak inductive biases and high computational complexity. However, addressing this requires

defining an equivalence relation akin to shifts on Euclidean grids, which is a long-standing

research question in Graph Signal Processing - GSP (see section 2.5). Based on this observation,

we will define an analogous shift operator for graphs, that retains a fundamental property of

conventional shifts, i.e. that of being permutations of the domain of the function (see section
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3.3.1) and we will showcase a particular instantiation for mesh signals (Spiral Convolutional

Networks - see section 3.3.2).

In section 3.3.3 we will show that our shift operator has expressivity advantages compared to

conventional graph shift operators introduced in the field of GSP (anisotropy vs isotropy) and

computational advantages compared to the so-called patch-operator based and attention-based

GNNs, while we will illustrate connections with GNNs that are sensitive to graph isomorphism

(GI-sensitive/permutation-sensitive). Finally, section 3.4.1 discusses our application of interest,

shape modelling, and related topics, while section 3.5, provides an empirical comparison against

other GNNs and traditional statistical methods for shape modelling. Appendix A provides

implementation details and supportive experimental results. This work was originally presented

in [Bouritsas et al., 2019]. A preliminary version can be found in [Bokhnyak et al., 2019].

In Chapter 4 we shift our focus to neural function approximation on general graph

spaces. This problem pertains to the setup where our input space is a space of spaces, where each

singleton is a graph, possibly paired with a graph signal. In section 4.2 we will discuss the most

common case of target functions that are invariant to graph isomorphism (GI-invariant). We will

examine the famous trade-off in the GNN community, between expressive power, computational

complexity and GI-invariance and its implications in the computation of graph properties with

neural networks, either optimally (which relates to expressive power) or approximately (which

relates to generalisation).

In section 4.3, we present Graph Substructure Networks, a GNN equipped with substructure

encodings, that is GI-invariant and provably more expressive than vanilla GNNs (section 4.4),

while the unavoidable increase in the computational complexity is only incurred during a

preprocessing step (section 4.5). Section 4.6 discusses practical considerations regarding the

substructures of interest, while section 4.7 provides an overview of the vast literature on the

topic of GNN expressivity, including works that succeeded ours and further advanced the

research on substructures as a GNN inductive bias. Section 4.8 concludes the chapter by

comparing the empirical generalisation error of our method on a battery of graph analysis tasks

(biological, chemical and social networks) and with relevant ablation studies. Omitted proofs,

computational considerations and experimental details are relegated to the Appendix B. This

work was originally presented in [Bouritsas et al., 2022]. A preliminary version can be found in

[Bouritsas et al., 2020].
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In Chapter 5 we investigate lossless graph compression, another problem of function

approximation on general graph spaces. Our interest in this problem was fuelled by two factors.

First, by the practical considerations of data compression and the scarcity of approaches based on

information-theoretic principles. Second, by the intimate connections between compression and

generative models (or random graph models in network science terminology) and the theoretical

challenges that arose in this investigation. In section 5.3 we show that compressing graphs

without information loss amounts to approximating a GI-injective function (one that evaluates

to different outputs for non-isomorphic graphs) and estimating a graph distribution. In

the case of unlabelled graphs, optimality requires the former function to also be GI-invariant,

which turns out to imply another fundamental trade-off between compression quality and

computational complexity.

Section 5.4 presents our compression framework (Partition and Code). We initially observe

that the distribution estimator should be also compressible as its parameters need to be also

stored along with the data, which is a fact that is frequently ignored in neural compression. To

address this, we depart from overparametrised neural estimators and propose a dictionary-based

estimator: initially we partition the graph and map the resulting subgraphs to the elements

of an adaptive dictionary (section 5.4.1), and subsequently, we encode each component of the

resulting decomposition using a parameter-efficient distribution (section 5.4.2). The partitioning

algorithm, the dictionary as well as the distribution are jointly optimised w.r.t. the total

compression gains (i.e. storage cost of both the data and the estimator - see sections 5.4.3 and

5.6). Our method builds on the assumption that most real-world graphs consist of a small

number of substructures of small size (for which graph isomorphism can be solved efficiently)

repeated in high frequencies (network motifs). We formalise this theoretically in section 5.5 and

empirically in section 5.8 on diverse domains showcasing increased compression gains compared

to various competitive graph compressors. As a byproduct, our algorithm extracts substructures

of high frequency, that can be further used for graph analysis and interpretation or as features for

downstream supervised learning tasks. Finally, Appendix C provides omitted proofs, technical

algorithmic and implementation details and additional experiments. This work was originally

presented in [Bouritsas et al., 2021].

In the final Chapter 6, we summarise the contributions of the thesis and the collective

conclusions that can be drawn from this research, as well as its impact and the future directions

that we envision in this scientific field.
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2
Background and Preliminaries

2.1 Notation

Below we summarise the main notation conventions that will be used throughout the thesis.

We use bold letters for vectors x and matrices X, calligraphic letters for sets X and fraktur font

for sets of sets X. We use normal font for scalars x and whenever the structure of a point in a

set is not specified. Functions are also denoted using normal font, e.g. f : X → Y , either with

lower case or upper case letters. Occasionally, we will use script style for special concepts that

will be repeatedly used to distinguish them from others, e.g. for the input and output sets of a

function approximation problem we write X ,Y respectively.

2.2 Machine learning nomenclature

At the heart of most (if not all) machine learning algorithms lies the ability to model, manipulate

and evaluate functions of various kinds. To see this it is necessary to establish the general

machine learning nomenclature that we will be using in this thesis. We will take advantage of

this section to introduce several notations and a common mathematical and conceptual language

that will be used. The reader familiar with the conventional machine learning concepts can

safely skip this section.

ML components. Every learning setup consists of the following components:

• The input set X , i.e. a set of possible inputs. This set is usually equipped with certain

structure/features that turn it into a geometric space.

49



50 Chapter 2. Background and Preliminaries

• The output set Y , i.e. a set of possible outputs. Similarly to the input space, it might be

also equipped with a certain structure, e.g. Y = Rd for regression problems, but it might

also be an unstructured set, e.g. a labelling in the case of classification.

• The task f ∗ that we wish to solve, which is a mapping between inputs and outputs:

f ∗ : X → Y . In the supervised learning setup the term ground-truth function is most

commonly used. We will use these two terms interchangeably.

• The hypothesis class H . A common scenario is when we don’t know how to solve the

task with a sequence of algorithmic steps that will provably yield the correct answer for

every possible input x, or doing so is computationally intractable. To this end, we seek to

predict an approximate solution h. The set of all candidate solutions comprises H .

• The data distribution p over X ,1

• The experience we collect, which typically comes in the form of a training dataset

D = {si}|D|
i=1. This component is what discerns machine learning algorithms from other

algorithmic solutions. In particular, the approximate solution here is selected in a data-

driven manner, i.e. using the experience we collect, instead of e.g. a heuristic. In several

machine learning problems, the experience comes with the presence of supervision, e.g.

some knowledge of the ground-truth function. For example, in supervised learning each

datapoint is a tuple of input and output points si = (xi, yi), where yi = f ∗(xi). In

other problems, collectively known as unsupervised learning, the experience contains no

knowledge of the task, i.e. si = xi. A central assumption in ML is that the datapoints xi

are independently and identically distributed (i.i.d.) and their distribution is p. We will be

making this assumption throughout this thesis as well.

• The learning algorithm A , which is responsible for mapping the experience to a hypothesis

i.e. h = A (D). In some cases, the learning algorithm returns more than one hypothesis

(model ensemble), or a distribution over hypotheses (bayesian learning). These methods

are not discussed in this thesis (but the algorithms for graph function approximation

presented here seamlessly apply to these settings as well).

1It is common in various textbooks to define p over X ×Y . This is useful when the mapping between inputs
and outputs is non-deterministic. However, this can be reformulated by defining the input space as X × Y , the
output space as R and the task as a distribution over X × Y .



2.3. Mathematical structure 51

• The true loss/risk function L : H ×F × P → R, where F the set of all possible tasks,

P the set of all possible distributions over X . The loss function measures the quality of

approximation of the selected hypothesis.

Learning objective. The objective of the learner (loosely this consists of all the algorithms

and models used to infer h) is to find the hypothesis h that minimises L (h, f, p). But since f ,

and usually p, are unknown, exactly evaluating the true loss is impossible. Instead, we typically

minimise an estimation L̂ (h,D), commonly known as the empirical risk. In this case the

learning algorithm becomes A (D) = argminh∈H L̂ (h,D), which is widely known as Empirical

Risk Minimisation (ERM). Designing a learning algorithm that yields a hypothesis, such that

the true risk is close to the empirical risk with high probability (w.h.p.), is the cornerstone of

ML and highlights its intimate relation with statistics. For example, in supervised learning

typically we have L (h, f ∗, p) = Ex∼p [L(h(x), f
∗(x))], where L is the pointwise loss function,

and the empirical risk is L̂ (h,D) = 1
|D|
∑︁

si=(xi,yi)∈D L (h(xi), yi).

2.3 Mathematical structure

Definition 2.1 (Equivalence relation). Let X be a set and RX ⊆ X × X a binary relation on

X , i.e. a set of ordered tuples (x1, x2), with x1, x2 ∈ X . We will say that RX is an equivalence

relation if the following hold ∀x1, x2, x3 ∈ X :

• (x1, x1) ∈ RX (reflexivity),

• (x1, x2) ∈ RX ⇔ (x2, x1) ∈ RX (symmetry),

• (x1, x2) ∈ RX and (x2, x3) ∈ RX ⇒ (x1, x3) ∈ RX (transitivity).

If RX is an equivalence relation, will use the notation x1 ≃ x2 whenever (x1, x2) ∈ RX .

An important property of equivalence relations is that they split the set X into a partition of

disjoint subsets, where each cell of the partition is called an equivalence class. The equivalence

class of a point x1 ∈ X is also called the orbit of x1 and is denoted with OrbX/≃(x1) = {x2 ∈ X |

x2 ≃ x1}, while the set of all orbits/equivalence classes is called the quotient of the equivalence

relation and is denoted with X/ ≃ = {OrbX/≃(x) | x ∈ X}.
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Definition 2.2 (Group). A group is a set G together with a binary operation · : G × G → G,

that satisfies the following axioms:

• (g1 · g2) · g3 = g1 · (g2 · g3), ∀ g1, g2, g3 ∈ G (associativity),

• ∃ e ∈ G which is unique and it is called the identity element, such that g · e = e · g = g,

∀ g ∈ G (identity element),

• ∀ g ∈ G, there exists a unique element in G, denoted as g−1 and called the inverse of g,

such that g · g−1 = g−1 · g = e (inverse element).

Groups can be used to define equivalence relations. In particular, we can use groups to define

transformations of a set X , via the notion of group action, i.e. a function that maps the

combination of a group element and a set element to another set element. The left group

action is a function G × X → X , usually denoted with · as well, which needs to satisfy the

following axioms: e · x = x and g2 · (g1 · x) = (g2 · g1) · x. Similarly for the right group action

X×G → X . Using this definition, we can define for each group, the set {(x, g ·x) | x ∈ X , g ∈ G},

which one can easily verify is an equivalence relation. Using a similar notation as before, we

define the orbits of G as OrbX/G(x) = {g · x | g ∈ G} and the quotient of the group action as

X/G = {OrbX/G(x) | x ∈ X}. Inversely, for each equivalence relation RX , there exists a group

G of transformations acting on X , whose orbits are the cells of the partition induced by RX .

2.4 Graph theory

In this section, we will introduce notation and definitions of some graph-theoretic concepts that

will be useful throughout the thesis. We typically use the symbol G to denote a graph, with

G =
(︁
VG, EG,uVG

,uEG
)︁
, where VG ⊂ N is the vertex set and EG ⊆ VG ×VG is the edge set i.e. a

set of vertex connections/relations. Graphs may be represented in multiple alternative ways,

one of which, is the adjacency matrix, that will be denoted as A(G) ∈ {0, 1}VG×VG and it is

defined as A(G)(i, j) = 1 iff (i, j) ∈ EG. A graph might be undirected (A(G) = A(G)⊤) or

directed and may allow or prohibit the existence of self-loops (A(G)(i, i) = 0,∀i ∈ VG).

Optionally, one might equip the vertices with a signal on the vertices, i.e. a function from

the vertex set to a real-coordinate space Rd, which can be written in matrix notation as

uVG
∈ RVG×dv , or also with a signal on the edges, i.e. similarly uEG ∈ RVG×VG×de . In some cases,
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one encounters the term attribute or feature instead of signal, usually when the co-domain of the

signal is a discrete space, such as Nd. We will be using these terms interchangeably. Edge-wise

signals can be used to define weighted graphs, i.e. when a weight is assigned to each edge,

where a convenient compact representation is the weighted adjacency matrix A(G) ∈ RVG×VG×d.

For brevity, whenever it is clear from the context we will be dropping the subscript/function

argument G from all the definitions above.

Topology and metric. The edge set, or equivalently the adjacency matrix, allows the

definition of a metric and therefore a topology on the vertex set VG. A popular option is the

shortest-path distance, also known as geodesic distance. In particular, let PL
G(i, j) be the set of

all vertex tuples that are walks of length L in G, i.e.

PL
G(i, j) = {i = (i1, i2, . . . , iL) ∈ VL

G | i1 = i, iL = j,
(︁
ik, ik+1

)︁
∈ E ,∀ k ∈ [L− 1]}. (2.1)

Then the shortest-path distance is defined as:

dG(i, j) = min
L∈[|VG|]

dLG(i, j) with dLG(i, j) =

⎧⎪⎨⎪⎩L, PL
G ̸= ∅

+∞, else.
(2.2)

This is a proper metric, for undirected graphs with no self-loops and an adjacency matrix with

positive values. For a directed matrix it is a quasi-metric, since it is not necessarily symmetric.

Even if dG is not a metric, it allows us to define neighbourhoods asNρ(i) = {j ∈ V | dG(i, j) ≤ ρ}.

Usually, when we write N (i) we will be implying the immediate neighbourhood N1(i).

Isomorphism and Automorphism. In general, graphs are objects with no inherent

ordering. This means that the vertices of the graph can be ordered arbitrarily (and their edges

accordingly) and all the graphs resulting from different orderings are considered equivalent. A

formal notion that summarises the above is the concept of isomorphism, defined as follows:

Definition 2.3 (Isomoprhism). Let G =
(︁
VG, EG

)︁
and H =

(︁
VH , EH

)︁
be two graphs. We will

say that G and H are isomorphic, if there exists an adjacency preserving bijective mapping

f : VG ↔ VH , i.e. if f is one-to-one and onto (permutation) and if ∀i, j ∈ VG the following

holds: (i, j) ∈ EG ⇔
(︁
f(i), f(j)

)︁
∈ EH . Then, the mapping f is called an isomorphism between

G and H and we write G ≃ H.
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We will also denote the set of all adjacency preserving bijections between G and H with Iso(G,H)

(which is an empty set when G ̸≃ H). In adjacency matrix notation the above definition reads:

there exists a permutation matrix P ∈ S(n) = {P ∈ {0, 1}n×n | P1[n] = 1[n],1[n]P = 1[n]}),

where n = |VG| such that PA(G)P⊤ = A(H). When graph signals are present, the bijection

should be such that the signal values are also preserved, i.e. PuVG
= uVH

and PuEGP
⊤ = uEH

(where the matrix multiplication is applied to each channel/signal dimension). Let G be the set

of all possible graphs. It is not hard to see that isomorphism is an equivalence relation on G

(since permutations form a group). Therefore, isomorphism partitions G into equivalence classes

(sometimes also referred to as isomorphism classes) denoted as OrbG/≃(G) = {H ∈ G | G ≃ H}.

An isomorphism that maps G = (V , E) onto itself, i.e. ∃ f : V ↔ V such that (i, j) ∈ E ⇔(︁
f(i), f(j)

)︁
∈ E ,2 is called an automorphism. Obviously, all graphs have the trivial automorphism,

i.e. the identity, so of interest are graphs that have non-trivial automorphisms. The set of all

automorphisms of a graph, forms a group, the automorphism group of the graph, denoted as

Aut(G), which acts on the vertex set V. The automorphism group yields a partition of the

vertices into orbits

OrbV(i) = {j ∈ V | ∃ f ∈ Aut(G) with f(i) = j}, ∀i ∈ V , (2.3)

where we off-loaded notation replacing V/Aut(G) with V . Intuitively, the automorphism group

contains all the internal symmetries of the graph and allows us to group the graph vertices (or

edges) based on on their structural roles, e.g. the endpoint vertices of a path, or all the vertices

of a cycle (see below for definitions and Figure 4.1 in chapter 4 for an illustration). It is useful

to define the edge partition into (directed) edge orbits that the automorphism group also yields:

OrbE(i, j) = {(k, ℓ) ∈ E | ∃ f ∈ Aut(G) with f(i) = k, f(j) = ℓ}, ∀(i, j) ∈ E . (2.4)

A simpler, and less discriminative definition is the one that partitions the edges into undirected

edge orbits: OrbE(i, j) =
{︁
{k, ℓ} ∈ E | ∃ f ∈ Aut(G) with {f(i), f(j)} = {k, ℓ}

}︁
, ∀{i, j} ∈ E

(which makes sense only for undirected graphs). Minor detail : there is an alternative way

to define edge orbits; one can define edge isomorphisms by defining adjacency-preserving

bijections on the edge sets, where edge adjacency means that two edges have a common endpoint.

Subsequently, one can define edge automorphisms and the edge automorphism group, which

2in matrix notation: ∃P ∈ S(|V|) such that PAP⊤ = A
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turns out that it is strictly larger than the group induced by the vertex automorphism group

(induced edge automorphism group) only for 3 trivial cases [Whitney, 1932].

The Graph Isomorphism (GI) problem. The GI problem, i.e. the problem of deciding if

two finite graphs are isomorphic, in its general form, is still a mystery in the field of computational

complexity: while GI belongs in NP, it is still unknown if deciding if two graphs are isomorphic

can be done in polynomial time [Lewis, 1983]. It is therefore unknown if GI belongs either

in the P or in the NP-complete complexity classes, which makes it a good candidate for

being characterised as NP-intermediate [Ladner, 1975] (assuming that P ̸=NP). Currently, the

algorithm with the best worst-case complexity has been proposed by Babai in [Babai, 2016] and

runs in quasi-polynomial (super-polynomial) time in the number of vertices.

Examples. Below we enlist some common examples of graphs that we will encounter. Denote

the vertex set with V = [n]. Path graphs, denoted with Pn, are isomorphic to a graph with

edge set E =
⋃︁n−1

i=1

{︁
i, i+ 1

}︁
(we use set notation since we are referring to undirected graphs).

Cycle graphs, denoted with Cn, are isomorphic to a graph with edge set E =
⋃︁n

i=1

{︁
i, (i + 1)

mod |V|
}︁
. Complete graphs (cliques), denoted with Kn, are isomorphic to a graph with edge

set E =
⋃︁n

i=1,j

{︁
i, j
}︁
. Star graphs, denoted with Sn, are isomorphic to a graph with edge set

E =
⋃︁n

i=2

{︁
1, i
}︁
. Observe that S1 is a single vertex graph and S2 is a single edge graph.

Subgraphs. A subgraph H = (VH , EH) of G = (V , E) is any graph with VH ⊆ V and

EH ⊆ E ∩ (VH ×VH) and we write H ⊆ G. When EH includes all the edges of G with endpoints

in VH , i.e., EH = E ∩
(︁
VH × VH

)︁
, the subgraph is said to be induced. In the literature, sometimes

induced subgraphs are called graphlets [Pržulj et al., 2004, Pržulj, 2007]. Another popular term

in the literature is that of network motifs [Milo et al., 2002], which is used to refer to statistically

significant subgraphs, i.e. subgraphs that appear with a frequency larger than a given threshold

compared to that produced by a random graph model. For brevity, we will use this term to

refer to non-induced subgraphs (or more precisely, not necessarily induced subgraphs). Given

some graph α, the subgraph isomorphism problem amounts to finding a subgraph H of G such

that H ≃ α. We will denote the set of all subgraphs in a graph G with S(G) (induced or not

necessarily induced - this will be clear from the context).
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2.5 Graph signal processing

The term Graph Signal Processing (GSP) refers to the subfield of classical signal processing

that deals with the modification (filtering), analysis and synthesis of signals, the domain of

which is the vertex set (or edge set) of a graph. The main difference with graph ML is that

typically GSP methods are not data-driven and the functions used to process the graph signals

are chosen by the designer based on application-specific desiderata. Similar to the relation

between ML for computer vision and audio, and signal/image processing, graph ML has been

heavily influenced by GSP, especially during its early years, and thus GSP can be considered

one of its predecessors. Below, we introduce certain concepts from GSP that will be useful,

particularly for chapter 3.

Graph Laplacian. Let G = (V , E) be a graph. The Laplacian operator is a linear operator

that, when applied to a graph signal u ∈ RV×d, performs at each point of the domain a weighted

averaging of the signal over the point’s neighbours, i.e. it smooths out the signal.

(∆u)(i) =
∑︂

j∈N1(i)

w(i, j)(u(j)− u(i)), (2.5)

where w(i, j) denotes an edge weight that varies depending on the definition of the Laplacian.

Its name originates from the fact that it is the discrete approximation of the negative continuous

Laplacian (e.g. in R3: −∇2 = −( ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
)), using the finite difference method.

In matrix notation, one may define the graph Laplacian matrix as L ∈ RV×V and express the

operator with matrix multiplication ∆u = Lu. The Laplacian matrix is usually defined as

L = D −A, where D is the diagonal degree matrix, i.e. D(i, i) = |N1(i)| and D(i, j) = 0 if

(i, j) ̸∈ E , and A the adjacency matrix. Sometimes other normalised alternatives are used, such

as the random walk Laplacian Lrw = I−D−1A, and the symmetrically normalised Laplacian

Lsym = I−D−1/2AD−1/2. In general, the Laplacian matrix is a matrix that needs to have the

following structure:

⎧⎪⎨⎪⎩L(i, j) < 0 if i ̸= j and (i, j) ∈ E

L(i, j) = 0 if i ̸= j and (i, j) ̸∈ E
(2.6)
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Graph Shift Operators. In the field of GSP, the Laplacian has been widely used as an

analogy to shift operators on grids. Generally, operators that perform weighted averaging over

the neighbourhood of each vertex are referred to as graph shift operators (GSO) [Sandryhaila

and Moura, 2013, Mateos et al., 2019, Gama et al., 2020, Dasoulas et al., 2021, Isufi et al.,

2022]. A GSO is a linear operator, which can be represented as a matrix S ∈ RV×V for which

the following should hold:

S(i, j) = 0, if i ̸= j and (i, j) ̸∈ E . (2.7)

This definition subsumes many linear operators on graph signals, such as the generalised

Laplacian, the adjacency matrix, the Bethe Hessian [Saade et al., 2014] and others.

Graph Fourier Transform. In traditional signal processing, the Fourier transform is om-

nipresent in the analysis of continuous or discrete signals. As it is widely known the Fourier

transform amounts to projecting the signal at hand to a set of basis functions, where the output

of each projection is a frequency component. Relevant to our discussion is the Discrete Fourier

Transform (DFT), i.e. the projection of a discrete signal to a finite domain of frequencies. One

interpretation of the basis functions (basis vectors in this case) is that they are the eigenvectors

of any 1D circular shift operator (we state this fact without proof - the interested reader can

refer to [Bronstein et al., 2021] pp. 37-38 for a detailed analysis).

One can follow the same rationale to define the Graph Fourier Transform (GFT), using graph

shift operators. In particular, the GSO/Laplacian matrix is usually diagonalisable, and therefore

it admits an eigendecomposition, i.e. S = ΦΛΦ−1, where Φ = [ϕ1, . . . ,ϕ|V|], the eigenvector

matrix with the eigenvectors ϕi ∈ RV×1 as columns, and Λ = diag(λ1, . . . , λ|V|) the diagonal

matrix of the eigenvalues. When a real symmetric Laplacian matrix is chosen as GSO, it is

always diagonalisable and the eigenvector matrix is orthogonal, i.e. L = ΦΛΦT . Therefore, the

i component of the GFT for the GSO S is FS{u}(i) = ϕ⊤
i u, or in matrix form the GFT and

the IGFT (inverse GFT) are as follows:

û = FS{u} = Φ⊤u and u = F−1
S {û} = Φû (2.8)
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2.6 Weisfeiler-Leman tests & Graph neural networks

2.6.1 Weisfeiler-Leman test

The Weisfeiler-Leman graph-isomorphism test [Weisfeiler and Leman, 1968], also known as naive

vertex classification, 1-WL, or just WL, is a fast heuristic to decide if two graphs are isomorphic

or not. The WL test proceeds as follows: every vertex i ∈ V is initially assigned a colour c0(i)

(a scalar value) that is later iteratively refined by aggregating information from its neighbours:

ct(i) = HASH
(︁
ct−1(i), Hct−1(j)Ij∈N1(i)

)︁
, (2.9)

where H·I denotes a multiset (a set that allows element repetitions). The WL algorithm

terminates when the colours stop changing, and outputs a histogram of colours Hc∞(i)Ii∈V . Two

graphs with different histograms are non-isomorphic; if the histograms are identical, the graphs

are possibly, but not necessarily, isomorphic. Note that the neighbour aggregation in the WL

test is a form of message passing, and as we will see in the next section 2.6.3, GNNs are the

learnable analogue. As shown by the seminal works of [Xu et al., 2019, Morris et al., 2019]

GNNs are at most as expressive as the WL test, i.e. the class of non-isomorphic graphs that

can be distinguished by a GNN is a subset or equal to that of the WL test.

2.6.2 The WL hierarchy

WL has been generalised to higher-order variants that comprise the WL hierarchy. Following the

terminology introduced in [Maron et al., 2019a], we describe the so-called Folklore WL family

(k-FWL). Note that, in the majority of papers on GNN expressivity [Morris et al., 2019, Maron

et al., 2019a, Chen et al., 2020] another family of WL tests is discussed, under the terminology

k-WL with expressive power equal to (k− 1)-FWL. In contrast, in most graph theory papers on

graph isomorphism [Cai et al., 1992, Fürer, 2017, Arvind et al., 2019] the k-WL term is used

to describe the algorithms referred to as k-FWL in GNN papers. Here, we follow the k-FWL

convention to align with the work mostly related to ours.

The k-FWL test assigns and updates the colours of k-tuples of vertices i = (i1, i2, . . . , ik) ∈ Vk

instead of single vertices ∈ V. Initially, each tuple is assigned a colour c0(i) based on its

isomorphism type which can be thought of as a generalisation of isomorphism that also preserves
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the ordering of the vertices in the tuple:

Definition 2.4 (Isomorphism Types). Two k-tuples ia = (ia1, i
a
2, . . . , i

a
k), ib = (ib1, i

b
2, . . . , i

b
k) will

have the same isomorphism type iff:

• ∀ ℓ,m ∈ [k], iaℓ = iam ⇔ ibℓ = ibm

• ∀ ℓ,m ∈ [k], iaℓ ∼ iam ⇔ ibℓ ∼ ibm, where ∼ means that the vertices are adjacent.

Note that this is a stronger condition than isomorphism since the mapping between the vertices

of the two tuples needs to preserve order. In case the graph is employed with edge and vertex

features, these need to be preserved as well (see [Chen et al., 2020]) for the extended case).

The k-WL proceeds at each iteration by refining each colour as follows:

ct+1(i) = HASH
(︂
ct(i), H

(︁
ct(ij,1), ct(ij,2), . . . , ct(ij,k)

)︁
Ij∈V

)︂
, (2.10)

where ij,ℓ = (i1, i2, . . . , iℓ−1, j, iℓ+1, . . . , ik). The multiset H
(︁
ij,1, ij,2, . . . , ij,k

)︁
Ij∈V can be perceived

as a form of generalised neighbourhood. Observe that all possible tuples in the graph store

information necessary for the updates, thus each k-tuple receives information from the entire

graph, contrary to the local nature of the 1-WL test.

The expressive power of higher-order variants. The (k + 1)-FWL test is strictly stronger

than k-FWL, k-FWL is as strong as (k + 1)-WL and 2-FWL is strictly stronger than the simple

1-WL test, where by stronger we mean that the class of graphs that are indistinguishable by

the said variant is smaller. Due to this fact, as we will see in section 4.7, a series of works have

proposed to improve the expressivity of GNNs by mimicking the WL hierarchy (this will be

extensively discussed in chapter 4).

2.6.3 Graph neural networks

The term Graph neural network (GNN), loosely speaking, collectively refers to all neural networks

that are designed to operate on graph-structured data. As we saw in section 1.3, graph-structured

data reside in various input/output spaces, e.g. plain vertices of a fixed graph, signals defined

on a fixed graph, entire graphs (possibly paired with signals defined on their vertices/edges)

and others. Despite this diversity, certain neural network paradigms (or at least their backbone)
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are being used in multiple problems, which partially explains why the community has settled to

a common terminology.

Due to the pervasiveness of graphs in many fields of mathematics, computer science, electrical

engineering, physics and the life sciences, many methods for graph processing and inference

have been proposed, frequently with different starting points. Strikingly, with GNNs our field

has observed a convergence of these approaches into a common framework. In particular,

following the early GNN prototypes [Sperduti and Starita, 1997, Gori et al., 2005, Scarselli et al.,

2008], the first methods that became popular were proposed drawing inspiration from GSP

[Bruna et al., 2014, Defferrard et al., 2016, Kipf and Welling, 2017] and geometry processing

[Masci et al., 2015, Boscaini et al., 2016]. Simultaneously or shortly after, ideas originating

from application domains, such as chemoinformatics [Duvenaud et al., 2015, Gilmer et al.,

2017], social networks [Ying et al., 2018], protein analysis and design [Fout et al., 2017] and

physics [Battaglia et al., 2016, Kipf et al., 2018] were incorporated in order to introduce suitable

inductive biases for certain graph distributions. To understand and explain this vast landscape,

ideas from graph theory [Xu et al., 2019, Chen et al., 2019, Chen et al., 2020], group theory and

tensor methods [Kondor et al., 2018, Kondor and Trivedi, 2018, Maron et al., 2019b, Maron

et al., 2019c, Maron et al., 2019a, Keriven and Peyré, 2019], as well as distributed computing

[Sato et al., 2019, Loukas, 2020] were put forward.

The most common design paradigm for GNNs is message passing and the resulting architectures

are known as Message Passing Neural Networks (MPNNs). In short, MPNNs are a composition

of vertex-wise local functions, i.e. functions that, for each vertex, aggregate information from its

neighbours. Optionally, when a graph-wise representation is required, MPNNs are complemented

with one or more global functions, i.e. functions that aggregate information from all vertices.

Formally, let G = (V , E ,uV ,uE) be a graph optionally equipped with a vertex and/or edge signal

uV ∈ RV×dv , uE ∈ RV×V×de . The general form of an MPNN can be defined as follows:

x0(i) = uV(i), i ∈ V

mt(i) = AGGRt

(︂
H
(︁
xt−1(i),xt−1(j),uE(i, j),wE(i, j),wV(i),wV(j)

)︁
Ij∈N (i)

)︂
, t ∈ [T ], i ∈ V

xt(i) = UPt

(︂
xt−1(i),wV(i),mt(i)

)︂
, t ∈ [T ], i ∈ V

xG = READ
(︂
HxT (i) | i ∈ VI

)︂
.

(2.11)
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T denotes the number of layers and UPt are arbitrary functions mapping vectors to vectors

(e.g. MLPs). The functions AGGRt are multiset functions (e.g. DeepSets [Zaheer et al., 2017]).

Usually, they are implemented as AGGRt(X ) =
⨁︁

x∈X MSGt(x), where MSGt are also arbitrary

functions mapping vectors to vectors and
⨁︁

is a permutation invariant operator, usually the

summation, the element-wise maximum etc. The neighbourhood N (i) is usually the 1-hop

neighbourhood N1(i) , while other alternatives include ρ-hop neighbourhoods Nρ(i) or adding to

the set the central vertex i, i.e. Nρ(i) ∪ {i}. Finally, READ is a permutation invariant function,

typically of the form UP
(︁⨁︁

MSG(·)
)︁

as well, or just
⨁︁

.

Finally, wE ∈ RV×V×dwe , wV ∈ RV×dwv are edge and vertex weighting functions respectively

(we will be also using the term features). In the literature, the weighting functions are also

encountered under the term positional encodings. Throughout this manuscript we will see various

examples, e.g. those arising in spectral filters by taking powers of the graph shift operator and

those arising in patch operators (see section 3.3.3) and of course substructure encodings, that

will be extensively discussed in chapter 4. Please refer to section 4.7.1 for a review of other

popular examples. When the weighting functions are computed in a permutation equivariant

way, the vertex-wise representations of GNNs are permutation equivariant and the graph-wise

representation is permutation invariant, and therefore invariant to graph isomorphism. In many

cases, permutation-sensitive positional encodings are chosen, which might be problematic in

terms of generalisation, but beneficial in terms of expressive power (see sections 4.2 and 4.7.1).

To conclude, it will be useful to precisely state the time complexity of an MPNN. In particular,

assume that the update functions are MLPs with maximum depth TU , the aggregation function

is of the form =
⨁︁

x∈X MLP(x) and the readout function is of the form = MLP
(︁⨁︁

x∈X x
)︁
,

where the MLPs have maximum depth TM and TR, respectively. Let dMLP be the maximum

width of all the MLPs. Then the time complexity can be written as:

O

(︃
m
(︂
d
(︁
2d+2dwv +de+d

w
e

)︁
+d2

(︁
TM−1

)︁)︂
TG+n

(︂
d
(︁
2d+dwv

)︁
+d2

(︁
TU−1

)︁)︂
TG+d

2TR

)︃
, (2.12)

where d = max(dv, dout, dMLP), TG, the number of message passing layers.
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Part I

Graph Neural Networks:

from graph signals to general graph spaces
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3
Spiral Convolutional Networks &

Neural 3D Morphable Models

3.1 Introduction

In the first of the three main chapters of the thesis we will discuss our first contribution which

touches on two topics: (1) learning on a space of functions (signals) defined on a fixed graph,

and (2) applications of geometric deep learning on 3D data. More precisely, in this setup, each

datapoint is a function from X to another set, usually Rd, and the signal domain X is a fixed

graph embedded in the 3D space (a mesh), known as the template. We encounter such signals

in 3D computer vision, biomedical imaging and computer graphics, where they might represent

shape deformations texture, or various geometric and rendering-related signals on the mesh. In

the tasks of interest, the shape signals might belong either in the input or in the output space

and the most common examples are shape classification, shape segmentation, dimensionality

reduction, shape synthesis etc.

Interestingly, the setup of signals on a fixed graph goes well-beyond 3D meshes and shape

modelling. Similar problems can be found in bioinformatics where the fixed graph is a map of

the human interactome with possible input signals of interest being drug-protein interactions

and the task being a classification of each drug depending on its suitability to treat a disease

[Gonzalez et al., 2021]. Another notable example is networked dynamical systems of fixed

topology (e.g. from coupled oscillators to traffic flow networks and electrical grids), where the

task is to predict the signal evolution or a property at a given timestep. Finally, a related

application is surface Partial Differential Equations [Dziuk and Elliott, 2013], which are PDEs

defined on a fixed surface and the input and output signals are the initial conditions and the

65
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solution of the PDE respectively. When the surface is discredited into a fixed mesh, this problem

belongs in the same category as the above.

In the chapter that follows, we will first study the principles of learning on fixed graph signals,

consulting the design principles that we illustrated in section 1.4. We will see that although

universal approximation can be achieved in more than one way, vanilla universal approximators

may have high computational complexity and weak inductive biases, which in turn can result in

poor optimisation convergence or/and poor generalisation. On the other hand, many methods in

the literature, inspired by Graph Signal Processing (GSP (see section 2.5) have limited expressive

power since they consist of isotropic operators. Although isotropy was considered by many as a

necessary evil for operators on graph signals, in this work we will argue that this is not true

when the graph is fixed, since vertices can be consistently identified across different signals.

We, therefore, propose to break the assumption of local permutation invariance, by assigning

a consistent ordering to the vertices. Going one step further, we provide a weight-sharing

mechanism that reduces the required number of parameters, based on the assumption that

operators acting locally can be re-used across different regions of the graph. Specifically for a

fixed 3D mesh, we achieve this using a spiral operator, that locally orders the mesh vertices via

a spiral scan. Our ordering-based GNN findings are corroborated by subsequent works that

theoretically support local [Sato et al., 2019], as well as global [Loukas, 2020] orderings, proving

their improved expressive power compared to vanilla locally permutation invariant GNNs.

3.2 Learning on signals supported on a fixed graph

Problem formulation. Let G = (V , E) be a graph and U = {u : V → Rd} a function space

(signal space), where the domain of each function is the vertex set of the graph (see figure 1.2

middle). We will be interested in both the case where U is the input set X of the function that

we wish to approximate and the case where U is the output set Y . These tasks are frequently

called in the literature as analysis and synthesis respectively. Observe that this problem falls

under the function space setup, as described in section 1.3, where the function domain is a

non-euclidean space. To motivate the choices made in the proposed approach, i.e. w.r.t. the

hypothesis class/architecture, we will focus on each one of the main design principles that we

enlisted in section 1.4.
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Let us begin with the expressive power.

Graph signals are vectors: UAP on real coordinate spaces.

As we saw in section 1.4.3, when the domain of functions in the function space is finite, as is

the case with a finite graph, we can rewrite the function space as U = X̂
|X |

=
(︁
Rd
)︁|V|

= Rd·|V|.

Therefore, even though the existence of the underlying graph might create confusion and initially

obfuscate the nature of the problem, one can straightforwardly reason about the sufficient

conditions for a function approximator to hold the UAP on these problems: any function

approximator that holds the UAP on real coordinate spaces (e.g. polynomials, neural networks,

etc.) holds the UAP on real coordinate signals defined on a fixed graph.

This is a statement that remains underappreciated in this setup. However, before the deep

learning era, it was not uncommon to treat graph signals as vectors. For example, as we will see

in section 3.4.2, a common approach that was used in our application, i.e. shape modelling, was

Principal Component Analysis (PCA), which operates on vectors, completely discarding the

underlying graph. As we will see in the experimental section 3.5, PCA is a strong competitor

and has had widespread appreciation from the community due to its simplicity. It might not be

a universal approximator, since it is a linear operator with orthogonality constraints, but the

above discussion makes less surprising the fact that it works well for dimensionality reduction

tasks, even when the underlying domain is a graph. Given the above, a reasonable next step

from PCA is to simply employ a universal approximator for real coordinate spaces.

Inductive biases.

Nevertheless, such a hypothesis class is oblivious to the underlying graph structure and it,

therefore, misses the opportunity to be restricted based on assumptions stemming from the

underlying topology. This can be harmful for generalisation, especially in low-data regimes,

such as biomedical applications or 3D computer vision, where dataset collection is costly and

potentially subject to privacy restrictions. This is where the explicit inductive biases that we

discussed in section 1.4.1 become useful.

First off, in analogy to euclidean underlying domains, such as grids, we will consider local

functions. This is straightforward to implement since a graph has well-defined neighbourhoods,

e.g. based on its shortest-path distance (section 2.4). Therefore, we can directly define
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local functions using Eq. (1.1). The locality inductive bias, although potentially helpful for

generalisation, does not combat the increased computational complexity problem, as we will see

below. This issue is usually addressed by weight sharing, i.e. by re-using some parameters in the

computational model of the architecture (e.g. across different locations in the input domain).

Deciding how to share parameters is usually formally taken care of by invariance/equivariance.

In particular, every symmetry in our domain enforces certain constraints into our hypothesis

that in turn results in a reduction in the number of parameters.

However, contrary to locality, it is unclear a-priori what symmetries of fixed graph signals to

consider and what are the right assumptions one should make. To obtain inspiration, researchers

studied known symmetries in euclidean domains. The most well-known example is that of

shift invariance/equivariance, which intuitively demands that if a signal is translated over

the input domain, the output signal should remain unaffected/translated equally. This is a

reasonable assumption for e.g. audio and image signals, where the absolute position of a signal

within a grid is typically irrelevant to most downstream tasks.

On the other hand, it is unclear how to shift a graph signal, not to mention that it is not

obvious if invariance/equivariance to shifts is desirable. In fact, equivariance to many graph shift

operators (see section 2.5) results in isotropic operators, which not only have limited expressive

power but in many domains (such as 3D meshes) they are known to be inappropriate inductive

biases. For example, consider a fixed 3D mesh template and graph signals representing different

textures. Shifting a texture graph signal using the Laplacian, the most popular graph shift

operator, will result in a smoothed version of the original signal, and therefore applying a shift

equivariant operator will result in an equally smoothed output. However, this is inappropriate

for e.g. tasks such as deblurring where the target function amounts to a sharpened version of

the input signal.

Computational complexity.

Therefore, constraining our discussion to particular transformations, such as graph shifts, is of

questionable relevance. However, the issue of computational complexity that we discussed in

section 1.4.4 persists. Let us inspect this in more detail.

Regarding global function approximators, (that might hold the UAP), even in the best scenario

where the approximator is based on linear operators (matrix multiplications), we will have to
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deal with at least O(|V|) number of parameters (assuming that the other matrix dimensions are

constant w.r.t. the size of the input - this is the case of dimensionality reduction, e.g. PCA) or

O(|V|2) (assuming at least one matrix dimension comparable to the size of the input - this is

the case of deriving vertex-wise or hierarchical representations).1 The time complexity will be

O(|V|ω), where 1 < ω ≤ 2, an exponent arising from the size of the matrices and the matrix

multiplication algorithm used.

Regarding local function approximators, we should separate our analysis into two cases. When

mapping a graph signal to a single vector, effectively summarising the signal, locality means that

the target value will be a combination of local functions, resulting in a number of parameters of

at least O (|V|2 ·maxv∈V |N (v)|), where N (v) the neighbourhood of each vertex contributing

into the local function. This is because we have |V| local functions with O (maxv∈V |N (v)|)

parameters and then an aggregation function with O(|V|) parameters. Notice that this leads

to an increase in space complexity compared to the O(|V|) required when computing a global

summarisation function. The same holds when mapping a single vector to a graph signal,

whereby we project the vector to an initial graph signal and then proceed with local operations.

When mapping a graph signal to another graph signal, locality means that the target value per

vertex will be a local function, resulting in space complexity of at least O(|V| ·maxv∈V |N (v))|,

since we have |V| local functions with O (maxv∈V |N (v)|) parameters. Notice, that this might

also result in an increase in space complexity compared to the O(|V|) required when computing

vertex-wise functions globally, but the other matrix dimensions are O(1) (e.g. PCA). A decrease

in space complexity is observed when in the global counterpart, intermediate matrix dimensions

are O(|V|).

These scalings might look acceptable for small graphs but will quickly become unbearable

when dealing with real-world large-scale graphs. In fact, this is the case in our application

domain of interest, where deformable shape models are in general large-scale so as to capture

high-resolution details, e.g. in 3D computer vision for rendering purposes, or in 3D biomedical

imaging for accurate diagnosis. This is also the case in other potential domains of interest such

as signals on the human interactome and traffic flow networks.

It is therefore imperative to shift our focus to a weight-sharing mechanism, even if this doesn’t

result from a strict invariance/equivariance constraint. With this in mind, in the next section,

1In both cases we assumed that the input/output signal dimensions are O(1) with respect to the size of the
graph.
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we will discuss how we implement weight sharing based on local vertex orderings.

3.3 Spiral Convolutional Networks

3.3.1 Generalising convolutions to arbitrary countable domains

As we saw in the previous section 3.2, a universally applicable assumption for equivariance in

graph signals does not exist. Therefore, it might be useful to take a step back, and examine

alternative perspectives for weight-sharing (or more generally for function-sharing, in the context

of non-linear operators).

As a warm-up let us examine the concept of 1D-convolution. Let u : V → R be a graph signal;

for convenience assume for now that the co-domain of the input and output signals are R. Let

τ : V → V be a shift function, e.g. a circular i right-shift τi(j) = (i+ j) mod |V|. It is more

convenient to represent these functions as matrices, i.e. the graph signal with u ∈ R|V| and the

shift with a shift operator S ∈ {0, 1}|V|×|V|, where S(i, j) = 1 iff τ(i) = j. When shift functions

are bijections, i.e. permutations, the shift operator will be a doubly stochastic matrix.

The 1D-convolution between u and a filter θ ∈ R|V| reads:

h(u)
(︁
i) = (u∗θ)(i) =

|V|−1∑︂
j=0

u (τi (j))θ(j) =

|V|−1∑︂
j,k=0

Si(j, k)u(k)θ(j) = (Siu)
Tθ = uTST

i θ = θ⊤Siu,

(3.1)

where in this case Si corresponds to a circular i-right shift. Intuitively, a convolution amounts

to shifting either the filter or the signal, using a (potentially different for each vertex) shift

operator. Regarding alternative shift operators, i-left shifts τi(j) = (j − i) mod |V|, will result

in an equivalent notion known as correlation, while non-circular shifts will result in convolutions

in an extended domain (e.g. Z), which is equivalent to doing zero-padding.

We can take this rationale one step further. By examining the derivation of Eq. (3.1) we can see

that the only requirement for the shift operator is to be a permutation matrix or in other words

a vertex (re-)ordering. More generally, for non-linear operators we can use a shared function f

parametrised by a set of parameters θ and obtain the output signal at each point i using shift

operators as follows:
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h(u)(i) = fθ(Siu), u ∈ R|V|×din , h(u) ∈ R|V|×dout (3.2)

where we also generalised the definition to allow for vector-valued signals. Further notice that we

can implement Eq. (3.2) to any countable domain (finite or infinite) since it is always possible

to define bijections.

Now, the question that arises for arbitrary domains is how to choose the shift operator of each

vertex i, which intuitively is equivalent to asking how to transport the filter/function across

different parts of the domain. For regular grids, the shift operators arise by the shift equivariance

requirement (in fact it can be shown that convolutions are the only linear operators that possess

the shift equivariance property). If no such assumption can be made, the shift operators can be

selected arbitrarily, but different choices will potentially affect both the expressive power and

the generalisation of the model.

Sparsity. In order to further reduce the number of parameters we use operators that are

a function of only at most L elements in the re-ordered signal, using a set of vertex indices

Vi ⊂ V , |Vi| ≤ L. Denote with 1Vi
an indicator vector with 1Vi

(j) = 1 iff j ∈ Vi, else 0. Then

our sparse filters are defined as follows:

h(u)(i) = θ⊤Sidiag(1Vi
)u and h(u)(i) = fθ

(︂
Sidiag(1Vi

)u
)︂

(3.3)

3.3.2 Spiral (shift) operators

In this work we choose an intuitive mechanism, specifically considering the topology of meshes.

In particular, we opt for a vertex re-ordering using spiral trajectories inspired by [Lim et al., 2018].

For the following discussion, we assume a triangular mesh M = (V , E ,F), which is an undirected

graph, which additionally to the vertex and edge set V and E , is employed with a set of faces,

i.e. connected vertex triples: F ⊆ {{i1, i2, i3} | i1, i2, i3 ∈ V s.t. (iℓ, iκ) ∈ E , ∀ℓ, κ ∈ {1, 2, 3}}.

Additionally, the mesh is assumed to be a proper discretisation of a continuous surface, i.e. a

manifold, which enforces additional constraints to the graph structure, mainly that each edge

must belong to one or two faces (or equivalently, each pair of connected vertices should have

one or two mutual neighbours), i.e.

1 ≤
⃓⃓
{ia, ib, ic} ∈ F | {ia, ib, ic} ∩ {iℓ, iκ} = {iℓ, iκ}

⃓⃓
≤ 2, ∀(iℓ, iκ) ∈ E . (3.4)
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A spiral trajectory around a vertex i is a vertex re-ordering τi : V → V , that is defined by sequen-

tially traversing each ρ-radius ring Rρ(i) = {j ∈ V | dG(i, j) = ρ} around i. Algorithmically it

is defined as follows:

Step 1. The initial vertex is set to i, τi(0) = i.

Step 2. Fix two degrees of freedom: (1) the starting point, i.e. the second vertex as an arbitrary

neighbour of i, τi(1) = i1, with (i, i1) ∈ E2 and (2) the spiral orientation via selecting the third

vertex as one of the two possible mutual neighbours, τi(2) = i2, with {(i, i2), (i1, i2)} ⊂ E (recall

the manifold assumption for the mesh).

Step 3. Inductively re-order all the remaining vertices in R1(i) such that τi(ℓ) = iℓ, with

{(i, iℓ), (iℓ−1, iℓ)} ⊂ E , with ℓ ∈ {3, . . . , r1}, where r1 = |R1(i)|.

Step 4. Set the first vertex of the 2-ring as τi(r1 + 1) = ir1+1, with {(i1, ir1+1), (ir1 , ir1+1)} ⊂ E

and the second vertex as τi(r1 + 2) = ir1+2, with {(i1, ir1+2), (ir1+1, ir+2)} ⊂ E .

Step 5. Repeat analogously from Step 3 for each ring with 2 ≤ ρ (modify the reference vertices

in Steps 3,4 using iteratively the ordered vertices in Rρ−1(i)) until all vertices are visited.

Compactly, a spiral re-ordering (in vector notation) is as follows:

τi = [i,R1
1(i),R2

1(i), . . . , |V|], (3.5)

where Rℓ
ρ(i) denotes the ℓ-th element in the ρ-ring (trivially, R1

0(i) = i). When the manifold

assumption holds, steps 3, 4, and 5 are unambiguous for closed surfaces (for open surfaces please

refer to Appendix A.1) and thus there is exactly one possible option for the subsequent vertex

at each step. In figure 3.1, we illustrate a spiral ordering on a mesh (left) and a 2D grid (using

a triangular meshing).

Locality. To conclude, we introduce a locality inductive bias, by considering only the first

L elements of each spiral/vertex re-ordering. By definition of the spiral shift operator, these

elements will be at most ρ-hops far from the vertex i, where ρ depends on L and the maximum

degree of the mesh. Then our network layers follow from the weight-sharing mechanisms of

Eq. (3.3). Alternatively, one may choose ρ and define L as maxi∈V |Nρ(i)|. Then, following the

notation of Eq. (3.3) we have that Vi = Nρ(i).

2In our method, we chose the starting point by a heuristic, i.e. by fixing a reference vertex i∗ on the mesh
and choosing the starting point to be the neighbour with the shortest geodesic path to i∗. However, in practice,
we did not observe any difference in experimental performance by selecting different starting points.
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Figure 3.1: Spiral ordering on a mesh and an image patch

3.3.3 Analysis and Comparisons

In the following section, we will compare Spiral Convolutions to other GNNs in order to highlight

their advantages in our learning setup and illustrate connections with architectures that have

been proposed in the literature.

Comparison to [Lim et al., 2018]. First off, we focus our discussion on the original

implementation of spiral trajectories on meshes, as proposed by [Lim et al., 2018]. In a nutshell,

the main and instrumental difference is that in the aforementioned paper, the spiral shift

operators are not fixed. In particular, for each vertex, the authors choose the spiral starting

point (and therefore the entire shift operator) at random for every mesh signal during training

and inference.

Firstly, selecting different shift operators per signal “breaks” the correspondence between signals

that the common underlying domain provides us. Thus, it is unlikely that the weight sharing

of Eq. (3.1) or (3.2) will be effective in approximating the complex function that will arise.

Secondly, sampling shift operators can be perceived as a form of data augmentation that

implicitly encourages invariance to the choice of the shift operator (it is an implicit form of

symmetrisation). This choice biases the learning algorithm to converge to locally permutation

invariant/isotropic solutions, which are restrictive (more on this in the next comparison) and it

is precisely what we want to avoid with spiral convolutions. A minor difference is the use of a

recurrent neural network in [Lim et al., 2018], which results in higher computational complexity

and more laborious optimisation.
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Comparison to spectral filters. Spectral convolutional operators developed in the seminal

works of [Bruna et al., 2014], [Defferrard et al., 2016] and [Kipf and Welling, 2017] were among

the first neural networks for graphs and to date they constitute strong baselines across multiple

tasks. In fact, they have also been used in the application domain that we are concerned with in

this work, i.e. deformable shape models, via mesh autoencoders [Ranjan et al., 2018]. However,

we will show that they are actually over-restrictive in this case since they suffer from the fact

that they are inherently isotropic.

Spectral filters rely on the Laplacian operator. Recall from section 2.5, that the Laplacian

is a weighted averaging operator that is applied locally over each vertex neighbourhood and

that in Graph Signal Processing, the Laplacian is a particular case of the so-called graph shift

operators, i.e. linear operators that have been defined in analogy to shifts on 1D signals. Several

methods have defined parametric linear operators on graph signals that are equivariant to these

definitions of graph shifts. [Bruna et al., 2014] define spectral filters using the Graph Fourier

Transform and the convolution theorem, which asserts that convolution in the original domain is

equivalent to multiplication in the frequency domain.

In particular, let L be a graph shift operator, such as the Laplacian. The following discussion

will be made using the symbol L to denote graph shift operators instead of S, in order to avoid

notation clash with the spiral shift operators that we defined in the previous section. Also,

note that we will discuss one-dimensional signals ∈ RV×1, but our analyses easily carry over to

multi-dimensional signals ∈ RV×d. Assume that the graph shift operator is diagonalisable as

L = ΦΛΦ−1.The authors of [Bruna et al., 2014] define the linear operator as follows:

h(u) = F−1
L

{︂
θ ⊙FL{u}

}︂
= F−1

L

{︂
diag(θ)Φ−1u

}︂
= Φdiag(θ)Φ−1u, (3.6)

where θ ∈ R|V|×1 the parameters of the linear operator defined directly in the frequency domain

and ⊙ the Hadamard (elementwise) product. As this operator lacks locality, subsequent works,

such as [Defferrard et al., 2016, Kipf and Welling, 2017] further restricted it by setting the

diagonal parameter matrix as a polynomial of degree k of the eigenvalue matrix:

diag(θ) =
K∑︂
k=0

θkΛ
k, (3.7)
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which in turn results in a linear operator that is a polynomial of the GSO:

h(u) = Φdiag(θ)Φ−1u =
K∑︂
k=0

θkΦΛkΦ−1u =
K∑︂
k=0

θkL
ku (3.8)

h(u)(i) = θ⊤Wiu, Wi =

⎡⎣ 1{i}
L(i,:)

...
LK(i,:)

⎤⎦ (3.9)

It is easy to show, that by the definition of the GSO in (2.7) we have that if dG(i, j) > k, then

Lk(i, j) = 0 [Defferrard et al., 2016, Hammond et al., 2011], and therefore the same holds for∑︁K
k=0 θkL

k, which in turn implies that that linear operator of (3.8) is a local function that

depends on K-hop neighbourhoods. To construct neural networks based on spectral filters,

it is common to interleave linear operators as the ones in Equations (3.6) and (3.8) with

non-linearities σ(·) that act vertex-wise on the signal.

Even though spectral filters are very popular and have essentially paved the path for the

introduction of general GNNs and message passing, in many cases they can be very restrictive.

For example,

Remark 3.1. Let L be a GSO for which it holds that ∃ i, j ∈ V such that Lk(i, :) = Lk(j, :),

for 1 ≤ k ≤ K. Then, if h is a K-th order spectral filter as in (3.8), and u(i) = u(j) we have

that h(u)(i) = h(u)(j). The result carries over to a spectral GNN, i.e. multiple spectral filters

interleaved with vertex-wise non-linearities.

This is obvious since we will have that Wiu = Wju, and since h(u)(i) = h(u)(j) the result

inductively holds for subsequent layers. Note that the Laplacian assumptions of this remark

are true for automorphic vertices (that are in the same orbit of the automorphism group

OrbV(i) = OrbV(j)), i.e. pairs of vertices that are connected to the exact same vertices and are

thus completely symmetric (see section 2.4).

Remark 3.2. Let L be a GSO for which it holds that ∃ i ∈ V such that Lk(i, j) = Lk(i, ℓ),

∀j, ℓ ∈ V with j, ℓ ∈ Nk(i) for 1 ≤ k ≤ K. Then, K-th order spectral filters as in (3.8) are

locally permutation invariant, i.e. isotropic. The results carry over to the case of multiple

spectral filters interleaved with vertex-wise non-linearities.

To see this define a permutation τi : V → V, with corresponding permutation operator Si

that permutes vertices based on their distance from the vertex i, i.e. τi(j) = ℓ implies that
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dG(i, j) = dG(i, ℓ). Now we have the following:

h(Siu)(i) = σ
(︂ K∑︂

k=0

θkL
kSiu

)︂
(i) = σ

(︂ K∑︂
k=0

θk
∑︂

j∈Nk(i)

Lk(i, j)u
(︁
τ(j)

)︁)︂

= σ
(︂ K∑︂

k=0

θk
∑︂

j∈Nk(i)

Lk
(︁
i, τ(j)

)︁
u
(︁
τ(j)

)︁)︂
= σ

(︂ K∑︂
k=0

θk
∑︂

j∈Nk(i)

Lk(i, j)u(j)
)︂
= h(u)(i).

This phenomenon is observed for example in 1st order spectral filters when using most GSOs

based on the adjacency matrix (including the Laplacian), or for spectral filters of arbitrary order

when working with specific categories of graphs, such as strongly regular graphs (see chapter 4

and [Haemers, 2000]).

Local permutation invariance is also a property of general MPNNs, such as [Xu et al., 2019].

While a necessary evil when dealing with problems on a space of graphs, where no canonical

ordering can be defined, spectral filters and general MPNNs are rather weak when dealing with

signals on a fixed graph. This is even more important when dealing with 3D surfaces, where

the local permutation invariance property amounts to local rotation-invariance. On the other

hand, spiral convolutional filters take advantage of the fact that on a fixed graph one can define

an ordering of the neighbours of each vertex and consistently repeat it across all input signals.

Consequently, our filters are in general anisotropic (unless isotropic filters are learned by the

learning algorithm).

To illustrate this visually, in figure 3.2 we show an impulse response using a Dirac function

centred on a vertex on the forehead of our template. We compare the output of a selected

spectral filter (and on an arbitrary output channel) learned using the architecture of [Ranjan

et al., 2018] (where the Chebyshev polynomials of [Defferrard et al., 2016] are used) vs a

selected spiral convolution filter with K = 1. As expected, spectral filters diffuse the signal

isotropically, a phenomenon which can be explained similarly to remark 3.2, i.e. due to the

regularity of the connectivity of the mesh which results in having equal values of the Laplacian

for all neighbouring vertices with equal distance from the vertex where the Dirac is placed.

In the general case, spectral filters may counteract local permutation invariance by using

anisotropic graph shift operators (e.g. as in the case of global spectral filters defined via the

graph Fourier transform), or by increasing the size of the receptive field, which may result in
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Figure 3.2: Illustration of the representations produced by ChebNet vs Spiral convolutions

an indirect symmetry breaking for most graphs based on the graph connectivity. However,

even in this case, there is only one free/learnable parameter per hop k, which will unavoidably

result in other restrictions in the hypothesis class, similar to remark 3.2 (although less intuitive

or mathematically “clean”). It is therefore reasonable to directly break the local permutation

invariance, as we do with spiral convolutions, and learn anisotropic operators, regardless of the

connectivity, that do not necessarily require larger receptive fields.

We conclude our discussion with another interesting remark, which states that linear spectral

operators are equivariant to linear transformations of an input signal with the corresponding

GSO and its powers. Formally:

Remark 3.3. Let L be a GSO as defined in (2.7). Define the corresponding graph k-shifts as Lk

and linear spectral filters h : R|V| → R|V|as in Eq. (3.6). Then, it holds that h(Lku) = Lkh(u).

The verification of this remark is straightforward:

h(Lku) = Φdiag(θ)Φ−1Lku = Φdiag(θ)Φ−1ΦΛkΦ−1u = Φdiag(θ)ΛkΦ−1u

= ΦΛkdiag(θ)Φ−1u = ΦΛkΦ−1Φdiag(θ)Φ−1u = LkΦdiag(θ)Φ−1u = Lkh(u).

This result also applies to polynomial spectral filters, since they are a specific case. The remark,

intuitively tells us that spectral filters are equivariant to smoothing, which as we saw in the
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section 3.2 is harmful to certain tasks. Generalising the result to non-linear spectral filters is

not straightforward, but typically in the analysis of neural nets, the behaviour of the linear

counterparts provides us with valuable information for the behaviour in the non-linear regime.

Comparison to patch operators. Another related family of models of interest is that of

geometric neural networks based on patch operators. In particular, by the first term, we refer to

neural nets whose input space is a space of signals on manifolds, and by the second we refer to

operators analogous to our vertex wise shift-operators, but in a continuous form, which, when

defined locally, amount to extracting a subset of the surface and mapping it to a chart.

Although manifolds lack a global coordinate system, they locally resemble a euclidean space

around each point. Based on this fact, the first intrinsic mesh/manifold convolutional archi-

tectures such as GeodesicCNN [Masci et al., 2015], ACNN [Boscaini et al., 2016] or MoNet

[Monti et al., 2017], as well as more sophisticated recent ones [Zhou et al., 2020, Sun et al.,

2020, de Haan et al., 2021, Weiler et al., 2021] are based on a construction of a local system

of coordinates around each point x ∈ M of the manifold. In particular, the authors of these

papers define a mapping Px : {M → R} → {M′ → R},3 named as patch operator, that

converts the signal on a local neighbourhood of the manifold to a signal on another manifoldM′,

usually a euclidean space e.g. for a 3D surfaceM′ can be R2, leveraging on the locally-euclidean

definition of manifolds.

For a manifold signal u, a linear patch operator is defined as Px(u)(z) =
∫︁
x′∈Mwz(x, x

′)u(x′)dx′,

∀x ∈ M, z ∈ M′, where wz : M×M → R is a (potentially parametric) weighting func-

tion. Then, convolution is defined as an inner product on the new space as follows: û(x) =∫︁
z∈M′ θ(z)

(︂
Px(u)(z)

)︂
dz, where θ :M′ → R. The definition of patch operators can be gener-

alised to arbitrary input domains, including discrete ones such as graphs and meshes. In analogy

to the above, a discrete domain linear patch operator Pi : {V → R} → {V ′ → R} becomes:

Pi(u
)︁
(z) =

∑︂
j∈V

wz(i, j)u(j), ∀i ∈ V , z ∈ V ′, (3.10)

and the patch operator-based convolution:

û(i) =
∑︂
z∈V ′

θ(z)
(︂
Pi(u)(z)

)︂
= θ⊤Wiu, (3.11)

3For notation convenience, w.l.o.g. we again limit our discussion to one-dimensional signals.
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where we wrote the patch operator in matrix notation as Pi(u) = Wiu, Wi ∈ R|V ′|×|V|. Equation

(3.11) bears a striking resemblance with Equations (3.1) and (3.9) and illustrates the analogy

between shift operators, spectral operators (graph shift operators) and patch operators, which

are all special cases of the GNN weighting functions we defined in section 2.6.3. The main

differences are that (1) conventional shift operators are typically permutations, as is the case

with spiral shifts, and (2) conventional shift operators and graph shift operators do not contain

learnable parameters while patch operators might do. Moreover, notice the differences in the

dimensions of the operators: shifts have |V| output dimensions and locality is provided with

an indicator matrix multiplied to the shift, graph shifts have K + 1 output dimensions which

directly reflect the size of the neighbourhood (K), while patch operators may have an arbitrary

output dimension reflecting the size of the new space, but not necessarily locality in the original

space.

Although patch operators can be very flexible, they may either result in a large number of

parameters and hardness of optimisation/generalisation due to insufficient weight sharing (if Wi

are freely parametrised), or may require to be carefully parametrised, with a manually chosen

system of local coordinates. It is thus expected that these methods are more suitable in the case

that our input space contains multiple manifolds (or multiple graphs, when projecting to local

coordinate systems is possible). Similar conclusions can be inferred for non-linear alternatives

that are akin to attention mechanisms [Verma et al., 2018, Velickovic et al., 2018], i.e. where

the weighting coefficients are wz

(︁
u(i),u(j)

)︁
instead of wz(i, j) resulting in an operator which

can be compactly written (with a slight abuse of notation) as

û(i) = θ⊤Wi(u)u, where Wi(u)(z, j) = wz

(︁
u(i),u(j)

)︁
. (3.12)

Permutation-sensitive GNNs. Message-passing neural networks until a few years ago, were

almost universally implemented using permutation invariant functions, both at the aggregation

and at the readout level (see 2.6.3). However, subsequent works, published after the paper

that we discuss here, proved that permutation-sensitive GNNs have improved expressive power,

although at the expense of generalisation when dealing with graph spaces, where invariance to

isomorphism is necessary. We encounter two cases: local identifiers wE ∈ RV×V×dwe and global

identifiers wV ∈ RV×dwv , as defined in Eq. (2.11). The most relevant theoretical result to the

former case is that of [Sato et al., 2019], where an architecture named Consistent Port Number
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GNN - CPNGNN is proposed and it is shown to be strictly more expressive than permutation

invariant GNNs while regarding the latter case several papers [Dasoulas et al., 2020, Loukas,

2020, Sato et al., 2021, Abboud et al., 2021] have proven their universality, as we have already

mentioned.

Most relevant to our work is that of [Sato et al., 2019]. Their architecture has a similar

rationale to GNNs, i.e. for each vertex, information is aggregated from its neighbours, but the

aggregation is performed in a permutation-sensitive manner. First, the neighbours of vertex i

are ordered, based on an ordering mechanism that the authors call consistent port numbering,

and each neighbour j is assigned an integer value ∈
[︂
|N1(j)|

]︂
, which is called a “port”.4 Then,

ordered vertices, along with their port numbers are concatenated and given as input to a

permutation-sensitive function.

Interestingly, this method is very similar to our ordering-based GNN and spiral convolutions. In

particular, when considering only immediate neighbours ∈ N1(i), the only difference between

the two methods is that CPNGNNs use port numbers as part of the aggregation. Intuitively,

port numbers allow neighbours to identify each other, a feature that we speculate might be of

importance when the graph structure is relevant to the task, e.g. when solving combinatorial

optimisation problems such as those studied by [Sato et al., 2019], but less relevant when the

graph is fixed, as in our case. However, the expressive power of an ordering-based GNN that

uses vertex-wise shift operators, instead of port numbers, has not been fully characterised yet.

3.4 Application: 3D Deformable Shapes

3.4.1 3D deep learning

Given the success of deep learning in computer vision, speech recognition, and natural language

processing in the past decade, it was a natural consequence that 3D geometric data would follow.

In fact, the rapid progress of 3D acquisition technology has made possible the collection of

large real-world datasets, while 3D simulation and CAD (computer-aided design) environments

have been widely used to create large repositories of artificial, frequently highly realistic, 3D

data. This has allowed the use of data-driven methods in a variety of tasks in the fields of

4To facilitate understanding we deliberately omit some technical details that have to do with the consistency
of the poor numbering/ordering procedure. The interested reader may refer to [Sato et al., 2019] for more details.



3.4. Application: 3D Deformable Shapes 81

geometry processing, computer graphics and animation, 3D computer vision and 3D biomedical

imaging. Characteristic examples are shape analysis problems, such as classification and retrieval,

segmentation, object detection, scene understanding, shape matching/alignment, etc. and shape

synthesis problems, such as 3D reconstruction, shape optimisation and style transfer, animation

etc.

One of the key challenges in the processing of 3D data, and in particular 3D surfaces is that

they are continuous in nature. Therefore, multiple different strategies have been implemented

in order to store and represent them on a computer. In the early years of 3D deep learning,

researchers were mainly focusing on euclidean representations of 3D data (e.g. voxels and UV

maps), using traditional methods that were already present in their ML toolbox. However, as

the field gained more popularity and solid geometric deep learning techniques were developed,

other representations (e.g. point clouds, meshes and implicit surfaces) became the centre of

attention, due to their improved abilities in approximating the continuous surface. At the time

of writing this thesis, the research in this field is ongoing and fruitful and machine learning has

become an organic component of many 3D processing pipelines.

3D deep learning literature. Before diving into the details of the 3D representation of

interest to us in section 3.4.2, let us provide a brief overview of popular 3D deep learning methods

provided for various representations. Volumetric CNNs were among the first 3D deep learning

methods proposed for 3D voxels, for e.g. classification, retrieval, single image reconstruction and

voxel synthesis [Wu et al., 2015, Maturana and Scherer, 2015, Qi et al., 2016, Girdhar et al.,

2016, Sharma et al., 2016, Wu et al., 2016, Riegler et al., 2017] . Among the key drawbacks

of volumetric methods are that due to the uniformity of the grid, high resolution and detailed

representations come at the expense of high computational complexity and a high level of

redundancy. Point clouds are a lightweight alternative and several methods exist for synthesis

and analysis tasks [Qi et al., 2017a, Qi et al., 2017a, Fan et al., 2017, Xu et al., 2018b, Hua et al.,

2018, Yang et al., 2018, Achlioptas et al., 2018, Wu et al., 2019, Thomas et al., 2019, Wang

et al., 2019], while as we saw in sections 1.3 and 1.4.3, recently more sophisticated architectures

that enforce invariance/equivariance to certain euclidean transformations have been proposed

[Thomas et al., 2018, Fuchs et al., 2020, Shen et al., 2020]. Despite their compactness, point

clouds also face a computational complexity-representation accuracy trade-off and they are less

popular than meshes for realistic and high-quality 3D representation and rendering.
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Implicit surfaces parameterised by neural networks (also known as implicit neural represen-

tations or neural fields) have gained immense popularity in the last few years, mainly due to

their ability to accurately and naturally represent a continuous surface. Currently, they are

the preferred method for storage, representation, rendering and synthesis of surfaces [Park

et al., 2019, Mescheder et al., 2019, Chen and Zhang, 2019, Sitzmann et al., 2019, Atzmon and

Lipman, 2020, Gropp et al., 2020, Sitzmann et al., 2020b, Tancik et al., 2020, Niemeyer et al.,

2020, Sitzmann et al., 2020a, Mildenhall et al., 2021, Tancik et al., 2021, Yu et al., 2021] , while

recently there have been attempts to use them also for analysis tasks [Dupont et al., 2022]. One

of the main challenges for implicit functions is incorporating important inductive biases, such as

symmetries and locality, and therefore generalisation to unseen surfaces is sometimes poor. This

is currently an active field of research and various publications are trying to address this issue.

Finally, meshes are accurate and rich representations of continuous surfaces, but they are yet to

become as popular as other representations, due to their intricate structure that makes them less

“neural-network-friendly”. The topology induced by the underlying graph of a mesh motivates the

employment of local architectures, similar to GNNs. However, function approximation problems

in this domain have special characteristics that can be summarised with the following challenges:

(1) Symmetries, e.g. (a) permutation invariance (as with general graphs and point clouds), (b)

invariance to euclidean transformations and (c) discretisation invariance (as with point clouds),

i.e. our hypothesis should be invariant (or at least robust) to different discretisations of the

same continuous surface. (2) Mesh synthesis problems are significantly harder compared to

other surface representations, as one needs to generate the topology of the graph, apart from

the 3D coordinates of the vertices, which introduces inherent trafe-offs between computational

complexity, generalisation and permutation invariance (see section 5.7 for a discussion). At the

same time, the 3D structure of meshes provides us with an opportunity: (3) Expressivity : the

3D positions of the vertices can be used for symmetry-breaking (see chapter 4), and provide a

way out of the expressive power limitations of vanilla GNNs.

In this category, we find spectral GNNs applied to meshes, typically of fixed topology, [Bruna

et al., 2014, Defferrard et al., 2016], or of arbitrary topology with the help of functional maps

[Yi et al., 2017, Litany et al., 2017] specialised GNNs variants for meshes (of arbitrary topology)

[Kostrikov et al., 2017, Feng et al., 2019, Hanocka et al., 2019, Milano et al., 2020, Smirnov

and Solomon, 2021], including local-charting/patch-based ones [Masci et al., 2015, Boscaini

et al., 2016, Monti et al., 2017, Poulenard and Ovsjanikov, 2018, Verma et al., 2018, Fey et al.,
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2018, Zhou et al., 2020, Wiersma et al., 2020, Sun et al., 2020, de Haan et al., 2021, Weiler

et al., 2021], mappings to flat domains (followed by the application of e.g. a conventional CNN)

[Sinha et al., 2016, Maron et al., 2017, Haim et al., 2019] and surface heat diffusion [Sharp et al.,

2022], which was shown to be robust to different discretisations.

3.4.2 Deformable shapes

Fortunately, most of the above challenges are irrelevant when dealing with meshes of fixed

topology, which is the application domain of interest in this work and one of the most widespread

paradigms of signals on a fixed graph. Even though one might be wary of the limitations of

this category, in fact, these meshes, also known as deformable shape models, encompass a large

variety of mesh distributions that are encountered in real-world problems, such as the modelling

of faces [Blanz et al., 1999], human and animal bodies [Loper et al., 2015, Zuffi et al., 2017],

hands [Romero et al., 2017] etc. In a nutshell, these shape categories contain shapes that are

topologically equivalent, i.e. every pair of shapes in the category are homeomorphic, 5 which

informally means that they have the same topological properties (e.g. number of holes, number

of connected components, etc.). It is thus common and convenient in differential geometry,

geometry processing and 3D computer vision, to work with deformations instead of shapes

per se. In particular, as we have previously mentioned, typically one identifies a reference

shape, a template and aligns to it every other shape in the category, a procedure called shape

registration [Besl and McKay, 1992, Amberg et al., 2007, Tam et al., 2013]. When the template

is discretised into a mesh, this procedure allows us to obtain a mapping from each template

vertex to a point in the surface of each shape in the category. Therefore, shapes can now be

defined as deformation signals on the template, while other shape signals can be transferred to

the template as well.

Now, clearly, most of the challenges we mentioned in section 3.4.1 are no longer present.

Permutation and discretisation invariances are no longer a problem and mesh synthesis reduces

to synthesising only 3D vertex positions (or other signals thereon). Invariance to euclidean

transformations can be guaranteed by restricting the hypothesis class, using an equivariant

network, or by transforming each mesh to a canonical pose, which renders invariance unnecessary.

The latter is common for deformable shapes, where translations are taken care of by centroid

5Formally, a homeomorphism is a continuous bijection with continuous inverse between two topological
spaces.
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subtraction and rotations and reflections by alignment to the template with the Procrustes

algorithm [Gower, 1975, Goodall, 1991]. Improved expressivity with regards to vanilla GNNs is

the topic of this work as we extensively discussed in section 3.3.

Statistical shape models. To date, the gold standard in modelling deformable shapes are

statistical shape models, the origins of which date back to the seminal works of [Yuille et al.,

1992, Cootes et al., 1995, Cootes et al., 2001], and are largely based on PCA. Initially, one of

their main application domain was 3D biomedical imaging and biometrics, where they are still

actively being used to model organs, skeletal structures, tissues, etc. [Heimann and Meinzer,

2009], but gradually they started becoming popular in the fields of 3D computer vision and

computer graphics for mesh dimensionality reduction, representation learning, 3D reconstruction

from a single image, 3D animation and for many synthesis and analysis tasks involving 3D

avatars. Perhaps the most notable and popular example is the famous 3D Morphable Model

(3DMM) of [Blanz et al., 1999] for faces. Regarding facial identity, the Large Scale Face Model

(LSFM) [Booth et al., 2018] was proposed, while a large scale model of the entire head was

proposed in [Ploumpis et al., 2019]. Regarding facial expression, similar methods have been

presented in [Cao et al., 2014, Li et al., 2017a]. Additionally, the most well-known models for

human bodies and hands, are the SCAPE [Anguelov et al., 2005] and SMPL [Loper et al., 2015]

models, and the MANO [Romero et al., 2017] model respectively.

Below we briefly explain the method that lies at the heart of most statistical shape models, i.e.

Principal Component Analysis (PCA) [Hotelling, 1933]. In a nutshell, PCA performs a change

of basis on the data by calculating an orthonormal basis, such that the largest percentage of

the variance of the data lies in only a few dimensions. This can be mathematically written as

an optimisation program which can be solved in closed form and the solution can be found

by performing a singular value decomposition (SVD) on the data matrix U ∈ R|D|×|V|·d, where

|D| = {u1, . . . ,u|D|} the training dataset. In particular, let U − Ū = VΣΘT be the SVD of

the centred data matrix, where Ū = 1
|D|1[|D|]1

⊤
[|D|]U the column-wise average (e.g. mean shape).

Then, each datapoint is transformed as follows:

z = henc(u) = ΘT
L(u− ū), (3.13)

where ΘL =
[︂
Θ(:, 1); · · · ;Θ(:, L)

]︂
is the truncated projection matrix, which means that we
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Figure 3.3: Illustration of our Neural3DMM architecture

keep only the first L principal components, effectively reducing the dimension of our data. The

reconstruction from the PCA latent vector z is:

û = hdec(z) = ū+ΘLz. (3.14)

Keeping all principal components we obtain a lossless reconstruction of the data since ΘT is

orthogonal by the definition of SVD. Observe that this method is linear, global and it only

allows for signal-wise representations (unless we perform local PCA on vertex neighbourhoods).

Also, it is important to reiterate that the model parameters (the parameters of matrix Θ ∈

RL×|V|·d) scale with the number of vertices, while the time complexity of computing the SVD is

O
(︂
|D||V|d ·min(|D|, |V|d)

)︂
which makes the method impractical for large meshes.

3.4.3 Neural 3D Morphable Models

Autoencoders. Following the same rationale with Morphable models, [Ranjan et al., 2018]

defined a non-linear morphable model, where the encoder henc and decoder hdec functions are

neural networks. In particular, the authors, propose an architecture in the spirit of classical deep

convolutional autoencoders, named COMA, by composing GNN layers (that produce vertex-wise

representations), with mesh pooling layers in the encoder, and mesh unpooling layers in the

decoder, that allow a considerable reduction in the number of parameters. During pooling

only a subset of the vertices is retained, the selection of which is based on a popular mesh

coarsening technique [Garland and Heckbert, 1997], while for unpooling the representations of

the vertices that were discarded are computed as a weighted average of their neighbours using

the barycentric coordinates of the closest triangle (please refer to [Ranjan et al., 2018] for more

details). The optimisation objective function is the empirical mean of the reconstruction error:

argminθ,φ
1
|D|
∑︁

ui∈D ∥h
DEC
φ

(︁
hENC
θ (ui)

)︁
− ui∥p, where ∥ · ∥p is usually the L1 norm.

To ensure a fair comparison, in the experimental section we retain the same architecture
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as in COMA and compare different non-linear operators, e.g. spectral and patch-based, as

discussed in section 3.3.3, to the proposed spiral convolutions. The evaluation is done w.r.t.

the reconstruction error of the model, given the dimension of the latent space, which indirectly

tests the dimensionality reduction/loss compression capabilities of a model. Our architecture is

dubbed Neural 3D Morphable Models, as a reference to the classical morphable models that we

already discussed. An illustration of the architecture can be found in Fig 3.3.

Generative adversarial networks. In addition to the above, we tested our model on the

task of (unconditional) mesh synthesis, i.e. learning to sample from the true mesh distribution.

In particular, we develop a Generative adversarial network (GAN), trained with a distribution

matching objective (1-Wasserstein distance minimisation [Arjovsky et al., 2017] - we solve the

dual problem and we use the gradient penalty method [Gulrajani et al., 2017] as a surrogate

to the 1-Lipschitz constraint). The generator and discriminator networks, share the same

architecture with the decoder and the encoder of the autoencoder respectively. Note that due

to the high resolution of the datasets considered, this is a particularly challenging statistical

learning problem, and inductive biases are crucial to restrict the hypothesis class distributions.

3.5 Results

In this section, we showcase the effectiveness of our proposed method on a variety of shape

datasets of fixed mesh topology. We conduct a series of ablation studies in order to compare

our operator to other GNNs, by using the same autoencoder architecture. We experimented

with two autoencoder variants, one architecture that follows the implementation details of

[Ranjan et al., 2018] to ensure a fair comparison (simple Neural3DMM ), and another one with

increased parameter count (larger layer widths) that provides a further boost in performance

(large Neural3DMM ).

First off, we compare spiral convolutions to spectral filters (ChebNet [Defferrard et al., 2016]),

where we observe improved performance on both the training and the test set, which is evidence

for increased expressive power and generalisation. Moreover, we discuss the advantages of

our method compared to patch operators and attention-based GNNs. Finally, we show the

importance of the consistency of the ordering by comparing our method to different variants

of the method proposed in [Lim et al., 2018]. Furthermore, we quantitatively show that our
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method can yield better representations (in the sense of the reconstruction error) than the linear

3DMM and COMA, while maintaining a small parameter count and frequently allowing a more

compact latent representation. Finally, we proceed with a qualitative evaluation (1) of the latent

space of the autoencoder, by generating novel examples through vector space arithmetic, and

(2) of the distribution learnt by the GAN, by synthesising high-resolution human faces. The

mesh signals that are studied in this work are chosen as the standardised deformations from the

mean shape, i.e. for every vertex we subtract its mean position and divide with the standard

deviation, where the mean and the std are computed on the training set.

3.5.1 Datasets

COMA. The facial expression dataset from Ranjan et al. [Ranjan et al., 2018] consists of 20K+

3D scans (5023 vertices) of twelve unique identities performing twelve types of extreme facial

expressions. We used the same data split as in [Ranjan et al., 2018], i.e. 18,000+ datapoints in

the training set, 100 in the validation and 2050 in the test set.

DFAUST. The dynamic human body shape dataset from Bogo et al. [Bogo et al., 2017],

consists of 40K+ 3D scans (6890 vertices) of ten unique identities performing actions such as

leg and arm raises, jumps, etc. We randomly split the data into 34,5K+ training datapoints,

500 for validation and 5K for testing.

MeIn3D. The 3D large-scale facial identity dataset from Booth et al. [Booth et al., 2016],

consists of more than 10,000 distinct identity scans with 28K vertices which cover a wide range

of gender ethnicity and age. For the subsequent experiments, the MeIn3D dataset was randomly

split within demographic constraints to ensure gender, ethnic and age diversity, into 9K train

and 1K test meshes.

For the quantitative experiments of sections 3.5.2 and 3.5.3 we report the estimated generalisation

error on the test set, measuring the ability of the model to represent novel shapes from the

same distribution as it was trained on. The metric is the euclidean distance in the 3D space (in

millimetres) between corresponding input and reconstructed vertex positions, averaged over the

vertices and the samples in the test set.
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3.5.2 Operator comparisons

Isotropic vs Anisotropic Convolutions

Figure 3.4: SpiralNet vs ChebNet filters

In this experiment, we compared the generalisation reconstruction error of SpiralNet against

ChebNet, using the architecture of [Ranjan et al., 2018], by varying the dimension of the

latent vector dout. For both datasets, as clearly illustrated in Fig 3.4, spiral convolution-based

autoencoders consistently outperform the counterpart for every latent dimension considered,

in accordance with the analysis made in section 3.3.3. Additionally, by increasing the latent

dimensions, our model’s performance increases at a higher rate than its counterpart, whose

performance tends to saturate early on. Notice that the number of parameters has the same

scaling law as the latent size grows, but the spiral model makes better use of the added

parameters. Note that the number of parameters in our case is slightly larger due to the fact

that the immediate neighbours (ρ = 1), that determine the size of the spiral, range from 7 to 10,

while the polynomials used in [Ranjan et al., 2018] go up to the 6th power of the Laplacian.

Spiral vs Attention based Convolutions

GAT FeastNet MoNet Ours
kernels 9 25 9 25 9 25 -
error 0,762 0,732 0,750 0,623 0,708 0,583 0,635
params 50K 101K 49K 98K 48K 95K 48K
time 12,77 15,37 9,04 9,66 10,55 10,96 8,18

Table 3.1: Spiral shift operators vs patch and attention-based operators.
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In this experiment, we compare our method with certain state-of-the-art patch operator-based

and attention-based GNNs. First, MoNet is the patch-operator-based model of [Monti et al.,

2017], where the weighting functions (also known as heads or kernels) wz(i, j) are Gaussian kernels

defined on a pseudo-coordinate space (here we display the best-obtained results when choosing

the pseudo-coordinates to be local cartesian on the fixed mesh template). The parameters of the

gaussian kernels are learnable. FeastNet [Verma et al., 2018] and Graph Attention [Velickovic

et al., 2018] are attention-based alternatives, where the weighting functions are learnable functions

of the signal, i.e. wz

(︁
u(i),u(j)

)︁
. In both cases, the weighting functions are learnable softmax

kernels, with minimal differences (linear and translation invariant transformation succeeded by

a softmax with kernel-wise normalisation and neighbour-wise averaging in the former, and non-

linear transformation succeeded by a softmax with neighbour-wise normalisation and kernel-wise

averaging in the latter).

In Table 3.1, we provide results on the COMA dataset, using the simple Neural3DMM architec-

ture with latent dimension 16. We choose the number of kernels/heads/weighting functions |V ′|

to be either 9 (equal to the size of the spiral in our method, for a fair comparison) or 25 (as in

[Monti et al., 2017], to showcase the effect of a heavier parametrisation). With regards to the

same order of magnitude of the number of parameters, our method outperforms its counterparts,

while compared to heavier parametrisations our results are comparable or slightly worse. This

shows that spiral operators (or more generally shift operators) can make more efficient use of the

available learnable parameters, thus being a lightweight alternative to attention-based methods

without sacrificing performance. Also, its formulation allows for fast computation (observe the

per mesh inference time in ms - on a GeForce RTX 2080 Ti GPU - in Table 3.1).

Comparison to Lim et al. [Lim et al., 2018]

Ordering random (mesh & epoch) random (mesh) random (epoch) fixed
LSTM 0.888 [Lim et al., 2018] 0.880 0,996 0.792
Linear 0.829 0.825 0.951 0.635 (Ours)

Table 3.2: Importance of the ordering consistency.

In order to showcase how the operator behaves when the ordering is not consistent, we perform

experiments under four scenarios: the original formulation of [Lim et al., 2018], where each

spiral is randomly oriented for every mesh and every training/inference iteration - random

(mesh & epoch); choosing different orderings for every mesh, but keeping them fixed across
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training/inference iterations - random (mesh); choosing the same ordering across all the meshes,

but sampling a new ordering at every training/inference iteration - random (epoch); and fixed

ordering - Ours. We compare the LSTM-based non-linear layer of [Lim et al., 2018] as in Eq.

(3.2) and a linear layer as in Eq. (3.1). The experimental setting and architecture are the

same as in the previous experiment. Observe that fixed orderings achieve significantly improved

performance compared to inconsistent/stochastic ones, which substantiates the benefits of our

approach. It is also interesting to notice, that even the best-performing inconsistent ordering

(i.e. fixed per iteration but inconsistent across meshes) is comparable to ChebNet (see figure

3.4), which hints that inconsistent orderings may result in a collapse to isotropic operators.

3.5.3 Mesh autoencoders: quantitative results

Figure 3.5: Quantitative evaluation of Neural3DMM against the baselines, w.r.t. generalisation
reconstruction error and # of parameters.
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In this section, we compare the following methods for different dimensions of the latent space:

PCA, the classical 3D Morphable Model of [Blanz et al., 1999], COMA, the ChebNet-based

Mesh Autoencoder of [Ranjan et al., 2018], Neural3DMM (small), our spiral convolution

autoencoder with the same architecture as in COMA, Neural3DMM (ours), our spiral

convolution autoencoderwith a larger parameter count (see Appendix A.1 for details). The

dimensions of the latent vectors were chosen such that the principal components in PCA capture

certain levels of signal variance (roughly 85%, 95% and 99% of the total variance).

As can be seen from the graphs in Fig 3.5, our Neural3DMM achieves smaller generalisation

errors in every case it was tested on. For the COMA and DFAUST datasets, both GNN-

based architectures outperform PCA for small latent sizes. In Fig 3.6 we compare example

reconstructions of samples from the test set (latent dimension equal to 16). It is clearly visible

that PCA prioritises body shape over pose resulting in the misplacement of body parts (for

example see the right leg of the woman on the leftmost column). On the contrary, COMA places

the vertices in approximately correct locations, but struggles to recover the fine details of the

shape leading to non-smooth reconstructions and various artefacts and deformities; our model on

the other hand seemingly balances these two difficult tasks resulting in quality reconstructions

that preserve pose and shape.

Compared to [Ranjan et al., 2018], it is again apparent that our spiral-based autoencoder has

increased capacity, which when paired with a wider architecture, makes our larger Neural3DMM

outperform the other methods by a considerably large margin in terms of both generalisation

and lossy compression (measured by the dimension of the latent space). Despite the fact that

for higher dimensions, PCA can capture more than 99% of the total variance, thus making it a

tough-to-beat baseline, our larger model still manages to outperform it. The main advantage

here is the substantially smaller number of parameters of which we make use. This is clearly

seen in the comparison for the MeIn3D dataset, where the large vertex count makes global

methods such as PCA impractical. It is necessary to mention here, that larger latent space sizes

are not necessarily desirable for an autoencoder because they might lead to poor representations

that won’t generalise well to downstream tasks.
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Figure 3.6: Colour coding of the per-vertex euclidean error of the reconstructions produced by
PCA (2nd), COMA (3rd), and Neural3DMM (bottom). The top row shows the ground truth
shapes.

3.5.4 Qualitative results

Interpolation Fig 3.7a: We choose two sufficiently different samples u1 and u2 from our

test set, encode them in their latent representations z1 and z2 and then produce intermediate

encodings by sampling the line that connects them, i.e. z(t) = tz1 + (1− t)z2, where t ∈ (0, 1),

and then decoding the latent vectors.

Shape Analogies Fig 3.7b: We choose three meshes u1, u2, u3, and synthesise a new one

u4 such that it linearly satisfies the analogy u1:u2::u3:u4 as in [Mikolov et al., 2013], i.e.

henc(u2)− henc(u1) = henc(u4)− henc(u3) , where we then solve for henc(u4) and decode it. This

way we transfer a specific characteristic using meshes from our dataset (e.g. gender transfer in

the top row and pose transfer in the second).
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(a) Interpolations between the rightmost and
leftmost shape (expressions and identities). (b) Analogies in MeIn3D and DFAUST.

Figure 3.7: Interpolation & analogies

Extrapolation Fig 3.8a: Similarly, we decode latent representations that reside on the line

defined by z1 and z2, but outside the respective line segment, i.e. z = tz1 + (1− t)z2, where

t ∈ (−∞, 0) ∪ (1,+∞). We choose z1 to be our neutral expression for COMA and neutral pose

for DFAUST, in order to showcase the exaggeration of a specific characteristic on the shape.

(a) Extrapolation using the two leftmost
shapes (neutral and randomly selected expres-
sion/pose). (b) Synthesied identities from our 3D GAN

Figure 3.8: Extrapolation & mesh synthesis

Face synthesis with GANs Finally, in figure 3.8b, we sampled several 3D faces using the

generator of a GAN, as described in section 3.4.3. Notice that they are realistic, and following

the statistics of the dataset, span a large proportion of the real distribution of human faces, in

terms of ethnicity, gender and age. Compared to the most popular approach for synthesising

faces, i.e. the 3DMM, our model learns to produce finer details on the facial surface compared

to the samples produced by its counterpart, which are typically overly smooth. We direct the

reader to Appendix A.2 to compare with samples drawn from the 3DMM’s latent space.
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4
Graph Substructure Networks

4.1 Introduction

In this chapter, we shift our attention to a broader and arguably more challenging function

approximation problem, that of learning on a general space of graphs. This topic spans several

application domains, including chemistry and materials science (molecular and material property

prediction, drug discovery and molecular dynamics simulations [Wieder et al., 2020, Noé et al.,

2020, Reiser et al., 2022]), bioinformatics and network neuroscience (predicting properties of

biological [Muzio et al., 2021] or brain networks [Bessadok et al., 2021] ), computational social

sciences (social network analysis [Tan et al., 2019]), physics (e.g. classification and simulation of

many-particle systems [Shlomi et al., 2020]) and (3D) geometry processing anc computer vision

(analysis of 3D meshes of arbitrary topology - see section 3.4.1). Here, we focus on analysis tasks,

i.e. where the input set X is a set of graphs and the output set Y is typically a real-coordinate

space. Synthesis problems have different challenges and deserve a separate investigation (more

on this in chapter 5), but as we will see in both cases the foundational underlying reason for the

challenges in both setups, is that of graph symmetries and in particular (not surprisingly) the

concept of graph isomorphism (GI).

We will start again by discussing the design principles that one should follow, giving particular

emphasis on the expressive power. We will see that, contrary to most problems discussed in

section 1.4.3, in this problem setup, it is currently unknown if there exists a hypothesis class

that holds the universal approximation property (UAP) and is at the same time efficiently

computable (i.e. in polynomial time). In fact, the expressive power of several GNN has been

accurately characterised, starting from the vanilla, locally-permutation invariant ones, i.e. those

95
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defined by Eq. (2.11) excluding the weighting functions wV ,wE , which have been shown to be

equivalent to the Weisfeiler-Leman algorithm [Xu et al., 2019, Morris et al., 2019], revealing

important limitations in computing certain graph properties.

The realisation of these facts has created a heated interest and a surge of publications on the

topic of the expressive power of GNNs. However, as we will see, so far, there is no universally

acceptable solution. This is mainly due to the fact that it is not obvious when an improvement

in expressive power will also benefit generalisation, i.e. the objective that we actually desire to

optimise for. In addition, there seems to be a fundamental tension between expressive power

and either invariance/equivariance to GI (which is known to be linked with generalisation) or

computational complexity, and typically an increase in the former comes with a sacrifice in

one of the latter. Therefore, expressive power cannot be studied independently from the other

design principles and the designer should aim to strike a balance.

The present work draws inspiration from two observations. First, from its predecessor, presented

in the previous chapter 3, where we saw that isotropy is a limiting property for filters applied

to graph signals. This concept was later formalised for learning on a space of graphs [Sato

et al., 2019, Loukas, 2020], where it was shown that local GNNs improve their expressive power

when endowed with symmetry-breaking mechanisms. Consequently, GNNs can retain their

locality inductive bias, and their O(|E|+ |V|) (linear w.r.t. the number of edges and vertices)

computational complexity, yet one might need to give up invariance/equivariance. Second, from

the striking limitation of GNNs to detect and count substructures [Arvind et al., 2019, Chen

et al., 2020], an ability that as we will in see in section 4.7 is crucial for generalisation in a

multitude of applications, including molecular graphs, where e.g. functional groups and rings

are related to chemical properties, and biological or social networks, where cliques and other

substructures are related to the emergence of community structure.

Therefore, two major questions arise when designing GNN architectures: (a) Can we improve

the expressive power of local GNNs, using a symmetry-breaking mechanism (anisotropic) that

does not sacrifice invariance/equivariance to isomorphism? (b) Can we make GNNs aware of

the structural properties of the graph?

In this work, we attempt to provide an answer to the above simultaneously. In brief, we propose

a symmetry-breaking mechanism based on substructure encodings, i.e. vertex-wise or edge-wise

features (or weighting functions as in Eq. (2.11)) that encode the membership (or absence
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thereof) of each vertex/edge in certain substructures (subgraph counts) belonging to a predefined

dictionary. Despite its simplicity, this modification straightforwardly brings provable expressive

power improvements to GNNs for the vast majority of dictionaries (see section 4.4) and retains

invariance/equivariance, thus addressing (a), while (b) is addressed by construction. At the

same time, we achieve a controllable increase in computational complexity, since this is relegated

to a preprocessing subgraph enumeration step, while the computational complexity of the GNN

per se remains unaffected. Finally, by selecting the substructure dictionary, one can provide the

model with different inductive biases, based on the graph distribution at hand. This will be

illustrated in section 4.8, where apart from experimentally validating the improved expressive

power in terms of solving hard graph isomorphism problems, we will also show that choosing

substructures based on domain-specific knowledge, achieves a consistent improvement in the

empirical generalisation error on several real-world benchmarks, ranging from molecular graphs

to biological and social networks.

4.2 Learning on graph spaces

Problem formulation. Let G be a graph space, i.e. a set of graphs G = (V , E ,uV ,uE),

defined as in section 2.4. We are interested in analysis tasks, i.e. when G is the input set of of

the function that we wish to approximate, and typically the output set is Rdout or a finite set of

classes {0, 1, . . . , |Y |}. In particular, we will consider GI-invariant target functions g : G→ Y ,

where f ∗(G1) = f ∗(G2),∀G1 ≃ G2. Observe that this problem falls under the space of spaces

setup, as described in section 1.3 (see figure 1.2 right), where each singleton is a non-euclidean

space. To discuss functions in this setup, it is sometimes convenient to work with an alternative

representation, i.e. that of the adjacency matrix A ∈ {0, 1}|V|×|V|.

Warm-up: Treating graph spaces as vector spaces. Is this a good idea?

As a prelude, we will start with the simplest attempt to approximate functions in this setup.

First, we will assume that G contains graphs with a bounded number of vertices, |V| ≤ |Vmax|.

Then, one can represent each graph with the tuple
(︁
|V|,Aext,uext

V ,uext
E
)︁
, where we zero-padded

the adjacency and the signals (e.g. Aext(i, j) = A(i, j), i, j ∈ V and Aext(i, j) = 0, i ̸∈ V , or j ̸∈

V) and included in the tuple the size of the graph to distinguish zero-padded tuples from
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tuples with isolated nodes or zero signals. Then, G can be rewritten as a product space

G ⊆ [|Vmax|]× {0, 1}|Vmax|×|Vmax| × R|Vmax|×dv × R|Vmax|×|Vmax|×de ⊂ R1+|Vmax|2+dv |Vmax|+de|Vmax|2 .

Therefore, one can naively attempt to approach this problem by using a function approximator

that holds the UAP on real-coordinate spaces.

But, why is this probably a bad idea? First, its computational complexity is going to be

unbearable even for medium-sized graphs: even for approximators based on linear operators,

we will need at least O(|Vmax|2) number of parameters (assuming, e.g. a graph-level task, and

the other input dimensions, as well as the intermediate parameter matrix dimensions, being

constant w.r.t. the size of the input), or worse O(|Vmax|4) (assuming e.g. a vertex-level task,

with no-dimensionality reduction by the intermediate matrices). Also, the time complexity will

be O(|Vmax|ω), with 2 ≤ ω ≤ 4.

Second, obviously, this approach has poor inductive biases as it completely ignores the structure

of the underlying space, and most importantly the symmetries induced by GI. In particular, the

learning algorithm should converge to a function that is invariant/equivariant to GI, which is a

quest unlikely to be achieved even with a massive amount of training data or data augmentation,

even for medium-sized graphs (e.g. the generalisation bound of [Sokolic et al., 2017] informs

us that a GI-sensitive neural network might need O(|Vmax|!) more training data to achieve the

same generalisation error with a GI-invariant one). But, even in this case, we will still be unable

to guarantee GI-invariance/equivariance, which is a crucial requirement for the reliability of the

learning system in most cases. Finally, other inductive biases, such as locality are also ignored,

while the upper bound to the vertex count will force us to use a possibly unreasonably large

amount of computation even for small graphs, not to mention that the bounded vertex count

assumption might be violated.

The pivotal role of graph isomorphism: graph discrimination

Naturally, an alternative solution is to focus on hypothesis classes that can guarantee invari-

ance/equivariance to GI (they are GI-invariant/equivariant), i.e. for invariance:

H = {h : G→ Y | h(G1) = h(G2),∀G1, G2 ∈ G, with G1 ≃ G2}. (4.1)
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To define GI-equivariance we need to be more specific about the output set Y . A common setup

is vertex-wise or edge-wise tasks, where the equivalent elements in the output set are defined

using the same bijective mappings as the ones used to determine isomorphisms in the input set:

H = {h : G→ Y | h
(︁
G1

)︁(︁
f(i)

)︁
= h(G2)(i),∀G1 ≃ G2, i ∈ VG1 , f ∈ Iso(G1, G2)}. (4.2)

Now, if we assume that G is the space of all graphs and we consider a hypothesis class H that

holds the UAP, this automatically means that H can be used to solve GI (for certain specific

hypothesis classes, the inverse also holds as shown in [Dasoulas et al., 2020, Chen et al., 2019],

i.e. for certain hypothesis classes, if they can solve GI, they are also universal). Additionally, if

H contains only functions that can be computed in polynomial time, this would imply that GI

can be solved in polynomial time. Let us formalise this claim:

Proposition 4.1. Let H = {h : G→ Rdout | h(G1) = h(G2), ∀G1, G2 ∈ G, with G1 ≃ G2} be a

hypothesis class that is a universal approximator of GI-invariant functions, where G is the space

of all graphs. Then, if all h ∈H can be computed in O(poly(|V|)) time, where |V| the number

of vertices of the input graph, then GI can be decided in polynomial time.

Proof. Let g : G → Rdout be a GI-invariant function, such that ∀G1 ̸≃ G2, it holds that

∥g(G1)− g(G2)∥p > c > 0, where ∥ · ∥p a p-norm in Rdout and c a constant. Such functions will

be called GI-complete. Since H is a universal GI-invariant function approximator, there exists

a function h∗ ∈H that can approximate g with precision ϵ < c/2 for all possible graph inputs.

Then, h∗ can be used to solve GI as follows:

If two graphs are isomorphic, then ∥h∗(G1)− h∗(G2)∥p = 0 since H contains only GI-invariant

functions. If two graphs are non-isomorphic we will have that ∥h∗(G1)− h∗(G2)∥p > 0 since:

∥h∗(G1)− h∗(G2)∥p = ∥g(G1)− g(G2) + h∗(G1)− g(G1) + g(G2)− h∗(G2)∥

≥
⃓⃓⃓
∥g(G1)− g(G2)∥p − ∥h∗(G)− g(G1) + g(G2)− h(G2)∥p

⃓⃓⃓
≥ ∥g(G1)− g(G2)∥p − ∥h∗(G)− g(G1) + g(G2)− h(G2)∥p

≥ c− ∥h∗(G1)− g(G2)∥p − ∥g(G2)− h∗(G2)∥p

≥ c− 2ϵ > 0.
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Therefore, since h∗ can be computed in polynomial time, we get the desideratum.

However, as we discussed in section 2.4, to date, it is unknown if a polynomial time algorithm

for GI exists. Thus, in light of the current evidence in computational complexity theory, no

GI-invariant & universal hypothesis class containing only hypotheses that can be computed in

polynomial time is currently known to exist either. In fact, given the difficulty of solving certain

instances of graph isomorphism, it is customary to characterise the expressive power of GNNs,

based on their ability to distinguish non-isomorphic graphs of increasing difficulty, instead of

their ability to approximate certain function classes.

Computational complexity vs expressive power vs GI invariance

Currently, there is strong evidence that there is a fundamental tradeoff between invariance to

GI, expressive power and computational complexity and the three concepts cannot be studied

separately. As we will see in detail in section 4.7, one may choose to focus on low computational

complexity and preservation of GI invariance, as the vast majority of the early GNN research.

This can be done, by either employing the locality inductive bias, which results in locally

permutation invariant aggregation functions (see Eq. (2.11)) [Xu et al., 2019], or by first

characterising the linear GI invariant/equivariant operators and then interleaving them with

non-linearities [Maron et al., 2019b], in a similar fashion to shift-invariance/equivariance and

convolutions (as discussed in chapter 3). It turns out that both methods result in equally

expressive hypothesis classes [Xu et al., 2019, Morris et al., 2019, Geerts, 2020], which are at

most as powerful as the WL algorithm, in terms of their ability to distinguish non-isomorphic

graphs.

Therefore the immediate next step in order to improve expressivity was to either sacrifice GI

invariance or computational complexity (as is also the case in the present work) in favour

of the other two. In the former case, several papers [Murphy et al., 2019, Dasoulas et al.,

2020, Loukas, 2020, Sato et al., 2021] independently proposed GI-sensitive neural networks as a

means to improve expressive power. In the latter case, the first papers that traded computational

complexity for expressivity were based on higher-order variants of the WL algorithm (known as

the WL hierarchy, or simply k-WL tests - see section 2.6.2 for details) and equivalent neural

networks were either implemented as direct analogues [Morris et al., 2019], with higher-order

tensors [Maron et al., 2019b, Maron et al., 2019c, Keriven and Peyré, 2019], or with matrix
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polynomials [Maron et al., 2019a, Chen et al., 2019, Puny et al., 2023].

GNNs employed with GI-sensitive global identifiers wV , were shown to hold the UAP with

as few as a single vertex reordering, but achieving GI-invariance / equivariance might require

O(|Vmax|!) different reorderings. Analogously, higher-order GNNs are GI-invariant / equivariant

regardless of their order, but the UAP comes with an unbearable price to pay in computational

complexity, with the required tensors shown to be of order Ω(|V|(|V|−2)/2), for graphs of fixed

size |V| [Maron et al., 2019c].

Graph properties

Going one step forward, one can argue that graph discrimination is an insufficient measure

of the expressive power of GNNs and instead we should be examining their ability to capture

certain properties that are either known or assumed to be intimately related to real-world tasks.

Some examples are properties relevant to the connectivity of the graph (e.g. the number of

connected components and the vertex connectivity), to distances and paths between its vertices

(e.g. the diameter, the Wiener index and centrality measures), to its community structure (e.g.

the clustering coefficient and the modularity), and to the presence (and the location) of various

substructures, such as cliques and cycles.

Yet, vanilla GNNs, and sometimes other GNNs with improved expressivity, have been shown to

be unable to compute some of the properties above [Loukas, 2020, Garg et al., 2020, Chen et al.,

2020, Zhang et al., 2023], in the sense that they cannot distinguish pairs of graphs for which

these properties are unequal. This should not come as a surprise to us1 given the computational

complexity of solving these problems, e.g. graph partitioning problems are typically NP-hard,

subgraph counting in the general case has O(|V|k) complexity, where k is the size of the subgraph

etc.. Therefore it would be unreasonable to expect a GNN that runs in linear time to be able to

solve them in the general case.

Generalisation

The missing element from the discussion above (arguably the elephant in the room) is generali-

sation. In fact, it is not uncommon for architectures that are solely designed with expressivity

in mind to suffer from poor generalisation or tedious optimisation, as is the case of GI-sensitive
1perhaps with some exceptions as the ones presented in [Zhang et al., 2023].
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GNNs with random identifiers [Abboud et al., 2021]. Besides, it has been observed that in

many benchmarks almost all graph pairs can be distinguished by 1-WL [Zopf, 2022] and it is

reasonable to assume that the graph pairs that are indistinguishable by various GNN architec-

tures are unlikely to be encountered for most tasks ([Babai et al., 1980] asserts that almost all

non-isomorphic graphs can be distinguished by the 1-WL, using the Erdős-Renyi random graph

model). This hints that architectures that work well in practice do not necessarily do so because

of improved expressivity.

We argue here that it is not the ability (or inability) of certain GNNs to distinguish graph pairs

that allows them to or prevents them from solving tasks related to certain graph properties, but

their “ease of learning”. In particular, although two different GNN architectures might be able

to discriminate all graph pairs in a given distribution, their success in approximating the true

function well enough (and in turn in generalising well) will depend on the function that they will

converge to when optimised with gradient-based methods on a finite dataset. Unfortunately, our

theoretical understanding here is limited and, not different from conventional neural networks,

the existing results are mainly generalisation error confidence bounds [Scarselli et al., 2018, Du

et al., 2019b, Garg et al., 2020, Liao et al., 2021], which are frequently vacuous, and do not

allow architectures to be directly compared.

Therefore, the arguments that can be put forward are mainly intuitive and/or empirical. A

simple rule-of-thumb is to constructively examine the function that a GNN needs to converge to

in order to compute a relevant graph property and assess its “simplicity” (see also section 1.4.2).

For example, if it can be implemented as a composition of linear (or polynomial) functions

(e.g. see the proof of Theorem 4.2), this provides positive evidence that a GNN will be able to

learn it using an acceptable number of training samples (although this has not been completely

theoretically explained so far, arguments under simplified assumptions can be found in the

algorithmic alignment framework of [Xu et al., 2020]).

To conclude, we should mention that graph discrimination sometimes gives us hints about the

ability to generalise (e.g. when designing more expressive architectures with a certain graph

property in mind, as is the case of the present work) and perhaps for this reason, although it is

not our end goal, to date it largely drives the research on GNN architectures. However, the

fact that in-distribution graph discrimination can be achieved even with vanilla GNNs, begs

us to wonder if better generalisation can be achieved without an increase in expressivity (or
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equivalently a penalty in computational complexity or GI-invariance). After all, the premise

of ML is to learn good and efficient heuristics and not to solve computationally challenging

problems to optimality (see section 1.4.4 for a discussion). This, to date, remains a pertinent

question in our field.

4.3 Graph Substructure Networks

In the following section, we describe our proposed approach to the graph space function

approximation problem, coined as Graph Substructure Network (GSN). Before diving into the

details, we will re-iterate the design principle trade-off that we adopted: Improved expressive

power, and preservation of GI-invariance, by doing sacrifices in computational complexity. In

terms of inductive biases, we aimed at retaining the locality of classical GNNs and introduced a

new one: that of substructures, which proved beneficial for generalisation, following evidence

from related fields, and was later adopted by several methods proposed in the wider GNN

community.

Subgraph counts as structural features

In order to preserve locality, we adopted the general GNN formulation and aimed at achieving

our objectives via a local symmetry-breaking mechanism. Recall from equation (2.11) that this

can be realised using vertex-wise or edge-wise weighting functions. Below we show how these

are constructed.

First, we define a graph dictionary D = {α1, α2, . . . , α|D|}, i.e. a finite set of (typically small)

graphs that we will refer to as atoms, for example, cycles or complete graphs of given sizes.

For each input graph G = (V , E) ∈ G and for each dictionary graph α ∈ D, the algorithm

proceeds as follows. First, we enumerate all the subgraphs in G that are isomorphic to α. Then,

for each vertex in G we enumerate all its appearances in a subgraph isomorphic to α. More

precisely, to make our feature more fine-grained/discriminative, for each vertex we enumerate

all the times it gets mapped to a vertex that belongs in a particular orbit (structural role) in α.

Finally, a vertex-wise structural feature/weighting function/identifier (the terms will be used

interchangeably from now on) wV(i), i ∈ V for each vertex is obtained by concatenating all the

subgraph counts across dictionary graphs and orbits into a single vector.
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Formally, let S(G) be the set of all the subgraphs of G (the definition applies to either induced or

not necessarily induced subgraphs). Also, ∀α = (Vα, Eα) ∈ D, let Aut(α) be the automorphism

group of α. This yields a partition of the vertices into vertex orbits (vertex structural roles)

OrbVα(v) as defined in Eq. 2.3. Let Vα/Aut(α) = {OVα
1 ,OVα

2 , . . . ,OVα

|Vα/Aut(α)|} be the quotient

of the automorphism group when acting on the vertex set. Then, we define the function

vcount(G,α) that enumerates all the times a vertex orbit of an atom appears on a graph vertex,

for all the vertices i ∈ V and all orbits OVα
v ∈ Vα/Aut(α), i.e. vcount(G,α) ∈ N|V|×|Vα/Aut(α)|

with:

vcount(G,α)(i, v) :=
⃓⃓⃓{︁
H ∈ S(G) | ∃f ∈ Iso(H,α) s.t. i ∈ VH , f(i) ∈ OVα

v

}︁⃓⃓⃓
wV =

[︁
vcount(G,α1); . . . ; vcount(G,α|D|)

]︁
∈ N|V|×dwv , dwv =

∑︂
αi∈D

|Vαi
/Aut(αi)|

(4.3)

Note that there exist |Aut(H)| different functions f that can map a subgraph H with α

when they are isomorphic; any of those can be used to determine the orbit mapping of each

vertex i. Similarly, according to Eq. 2.4, we define for each edge e ∈ Eα the edge orbits

(edge structural roles) OrbEα(e), and the quotient of the automorphism group when acting

on the edge set Eα/Aut(α) = {OEα
1 ,OEα

2 , . . . ,OEα
|Eα/Aut(α)|}.2 We now define edge-wise structural

features/weighting functions wE(i, j), (i, j) ∈ E by counting occurrences of edge orbits using

the function ecount(G,α) that enumerates all the times an edge orbit of an atom appears on a

graph edge, i.e. ecount(G,α) ∈ N|E|×|Eα/Aut(α)| with:

ecount(G, a)
(︁
(i, j), e

)︁
=
⃓⃓⃓{︁
H ∈ S(G) | ∃f ∈ Iso(H,α) s.t. (i, j) ∈ EH ,

(︁
f(i), f(j)

)︁
∈ OEα

e

}︁⃓⃓⃓
wE = [ecount(G,α1); . . . ; ecount(G,α|D|)] ∈ N|E|×dwe , dwe =

∑︂
αi∈D

|Eαi
/Aut(αi)|

(4.4)

An example illustration of vertex and edge structural features is provided in figure 4.1.

2Observe that we use the vertex automorphism group and the directed edge orbits definition, first due to
its simplicity and second, because it is an important condition for the validity of Theorem 4.4). The edge
automorphism group is more discriminative only for 3 trivial cases, so we do not expect differences in performance
in the vast majority of the cases.
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Figure 4.1: Vertex (left) and edge (right) structural features computed via induced subgraph
counting for a 3-cycle C3 and a 3-path P3. Counts are reported for the blue vertex on the left
and for the blue edge on the right. Different colours depict different orbits and for simplicity,
we illustrate undirected edge orbits.

Substructure-aware message passing

Now we can directly use the general GNN formulation of Eq. (2.11), to define what we call

substructure-aware message passing. In particular, using only vertex-wise structural features

wV gives rise to vertex-wise Graph Substructure Networks (GSN-v) while using only edge-wise

structural features wE gives rise to edge-wise Graph Substructure Networks (GSN-e). These are

analogous to global [Loukas, 2020, Dasoulas et al., 2020] and local [Sato et al., 2019] identifiers

respectively, or absolute and relative positional encodings in language models [Shaw et al.,

2018, Dai et al., 2019].

It is important to note here that contrary to identifier-based GNNs that obtain universality

at the expense of GI-equivariance (since the identifiers are arbitrarily chosen with the sole

requirement of being unique), GSNs are by construction GI-invariant/equivariant. This stems

from the fact that the process generating our structural identifiers (i.e. subgraph isomorphism)

is GI-invariant/equivariant itself (the proof is provided in the Appendix B.1.1).

4.4 How powerful are GSNs?

We now turn to the expressive power of GSNs in comparison to MPNNs and the WL tests, a

key tool for the theoretical analysis of the expressivity of graph neural networks so far. Since

GSN is a generalisation of MPNNs, it is easy to see that it is at least as powerful. Importantly,

GSNs have the capacity to learn functions that traditional MPNNs cannot learn. The following

observation derives directly from the analysis of the counting abilities of the 1-WL test [Arvind
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et al., 2019] and its extension to MPNNs [Chen et al., 2020].

Theorem 4.2. GSN is strictly more powerful than MPNN and the 1-WL test when one of the

following holds:

• (1) For any input graph G = (V , E) ∈ G, the set of subgraphs S(G) contains arbitrary

subgraphs (motifs), i.e. S(G) = {(VH , EH) | VH ⊆ V , EH ⊆ E ∩
(︁
VH × VH

)︁
, and (2)

∃ α ∈ D, which is not isomorphic to any of the star graphs, i.e. α ̸≃ Sk,∀ k ∈ N, r ≥ 1.

Alternatively,

• (1) For any input graph G = (V , E) ∈ G, the set of subgraphs S(G) contains induced

subgraphs (graphlets), i.e. S(G) = {(VH , EH) | VH ⊆ V , EH = E ∩
(︁
VH × VH

)︁
, and

(2) ∃ α ∈ D, which is not isomorphic to the single vertex or the single edge graphs, i.e.

α ̸≃ S1, α ̸≃ S2.

Proof. It is easy to see that the GSN hypothesis class contains MPNNs, and is thus at least as

expressive. We can also show that GSN is at least as expressive as 1-WL by repurposing the

proof of Theorem 3 in [Xu et al., 2019] (see Appendix B.1.2).

Given the first part of the proposition, in order to show that GSNs are strictly more expressive

than the 1-WL test, it suffices to show that GSN can distinguish a pair of graphs that 1-WL

deems isomorphic. Let α be a graph that 1-WL/MPNNs cannot count, then there exists a pair

of graphs G1, G2 that 1-WL/MPNNs deem isomorphic, even though G1, G2 have a different

number of subgraphs isomorphic to α. On the other hand, if α ∈ D, we can compute the number

of isomorphic subgraphs by summing up the structural features across vertices/edges and orbits:

⃓⃓
{H ∈ S(G) | H ≃ α}

⃓⃓
=

1

|Vα|
∑︂
i∈V

∑︂
v∈Vα/Aut(α)

wV(i, v) =
1

|Eα|
∑︂

(i,j)∈E

∑︂
e∈Eα/Aut(α)

wE(i, j, e). (4.5)

Observe that both subgraph counting equations of (4.5) can be expressed by a GNN of Eq.

(2.11). For example, for GSN-v we set xT (i) =
1

|Vα|
∑︁

v∈Vα/Aut(α)wV(i, v) , while for GSN-e we

set xT (i) =
1

|Eα|
∑︁

j∈N (i)

∑︁
e∈Eα/Aut(α)| wE(i, j, e. Then in both cases, we set the READ function

to
∑︁

i∈V xT (i) (it is a permutation invariant function so it can be expressed), which gives us the

desideratum. Therefore, GSN can obtain different representations h(G1), h(G2) and deem G1,

G2 as non-isomorphic. An example is depicted in figure 4.2 (left), where the two non-isomorphic

graphs are distinguishable by GSN via e.g. cycle counting, but not by 1-WL.
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To characterise the graphs for which GSN is more expressive than 1-WL/MPNNs, we can use

the results of [Arvind et al., 2019], who showed that 1-WL, and consequently MPNNs, cannot

count any connected subgraph apart from forests of stars, which include star graphs of any

size (note that this contains single vertices and single edges). In addition, [Chen et al., 2020]

showed that 1-WL, and consequently MPNNs, cannot count any induced connected subgraph

with 3 or more vertices, i.e. any induced connected subgraph apart from single vertices and

single edges.

Universality. A natural question that emerges is what are the sufficient conditions under

which GSN can solve GI. This would entail that GSN is a universal approximator of functions

defined on graphs [Dasoulas et al., 2020, Chen et al., 2019] (assuming a universal function

approximator in real-coordinate spaces after the READ function). To answer this, we can

examine whether there exists a specific substructure collection that can completely characterise

each graph. To date, we are not aware of any results in graph theory that can guarantee the

reconstruction of a graph from a smaller collection of its subgraphs. However, the Reconstruction

Conjecture [Kelly et al., 1957, Ulam, 1960] is the most closely related statement and is widely

believed to be true, although still only proven for n ≤ 11 [McKay, 1997]); it states that a graph

with size n ≥ 3 can be reconstructed from its vertex-deleted subgraphs. Consequently, (proof in

the Appendix B.1.3):

Corollary 4.3. Let G be the set of all graphs of size ≤ n and the graph dictionary D be the set

of all graphs of size ≤ n− 1. If the Reconstruction Conjecture holds, then GSN can distinguish

all non-isomorphic graphs of size ≤ n. Additionally, let H = {h : G → Y | h = h2 ◦ h1, h1 ∈

H1, h2 ∈H2} be a composite hypothesis class, where H1 = {h1 : G→ Z} the GSN hypothesis

class of GI-invariant functions with a dictionary defined as above, and H2 = {h : Z → Y} a

hypothesis class that holds the UAP on functions from Z to Y. Then, H holds the UAP on

GI-invariant functions G→ Y.

GSN-v vs GSN-e. We can also compare the expressive power of the two proposed variants.

A crucial observation that we make is that for each graph α in the dictionary, the vertex structural

identifiers can be reconstructed by the corresponding edge identifiers using linear operations.

Thus, we can show that for every GSN-v there exists a GSN-e that can simulate the behaviour

of the former (proof in the Appendix B.1.4).
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Theorem 4.4. For a given subgraph collection D, let HGSN-v and HGSN-e be the set of functions

that can be expressed by a GSN-v and a GSN-e, respectively, with arbitrary depth and width.

Then, it holds that HGSN-e ⊇ HGSN-v, or in other words GSN-e is at least as expressive as

GSN-v.

Comparison with higher-order WL tests. Finally, the expressive power of GSN can be

compared to higher-order versions of the WL test. In particular, for each k-th order Folklore

WL test in the hierarchy (see section 2.6.2), it is known that there exists a family of graphs that

will make the test fail. These are known in the literature as k-isoregular graphs [Douglas, 2011],

and the most well-known example is the Strongly Regular (SR) graph family, for k = 2:

Definition 4.5 (Strongly regular graph). A SR(n,d,λ,µ)-graph is a regular graph with n vertices

and degree d, where every two adjacent vertices have always λ mutual neighbours, while every

two non-adjacent vertices have always µ mutual neighbours.

Proving that k-FWL test cannot be more expressive than GSN amounts to constructing a

dictionary that allows GSN to distinguish certain pairs from the k-isoregular family. Indeed,

this is the case for the 2-FWL test. Formally:

Proposition 4.6. Let G be the set of all graphs of size ≤ n. There exist graphs α with size

|Vα| = O(1), i.e. independent of the maximum graph size n, such that a GSN with a dictionary

D ⊇ {α} is not less expressive than 2-FWL.

We provide numerous counterexamples that prove this claim. figure 4.2 (right) provides a

typical pair of SR graphs that can be distinguished with a 4-clique, while in section 4.8.1 this

is extended to a large-scale study, where other constant size substructures (paths, cycles and

cliques) can achieve similar results.

Remark. At the time of writing our paper, it was not clear if there exists a certain dictionary

that results in GSNs that align with the WL hierarchy. Following our work, [Barceló et al., 2021]

gave more in-depth results regarding the relations between the WL hierarchy and GSNs and

settled this open question negatively. In particular, they showed that for every dictionary there

exists a k such that k-WL is more expressive than the corresponding GSN while for certain

dictionaries, GSN can distinguish graphs that (k − 1)-WL deems isomorphic. However, there

are also graphs that (k − 1)-WL distinguishes, while GSN fails to do so. Nevertheless, we stress
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Figure 4.2: (Left) Decalin and Bicyclopentyl : Non-isomorphic molecular graphs than can be
distinguished by GSN, but not the by the WL test [Sato, 2020] (vertices represent carbon atoms
and edges represent chemical bonds). (Right) Rook’s 4x4 graph and the Shrikhande graph: the
smallest pair of strongly regular non-isomorphic graphs with the same parameters SR(16,6,2,2).
GSN can distinguish them with 4-clique counts, while 2-FWL fails.

that such a connection is not necessary in order to design GNNs, since it does not take into

account generalisation. In particular, despite the increase in expressivity, k-WL tests are not

only more computationally involved, but they also process the graph in a non-local fashion.

However, locality is presumed to be a strong inductive bias of GNNs, i.e. many real-world tasks

on graph spaces are assumed to be compositions of local functions, an assumption that has been

widely validated empirically by the excellent performance of MPNNs.

4.5 The computational complexity of GSNs

The complexity of GSN comprises two parts: (1) Preprocessing (substructure enumeration and

assignment of features to vertices/edges) and (2) GNN evaluation (training/inference). The key

appealing property is that GNN evaluation is linear w.r.t. the number of edges m and vertices

n of an input graph, O(m+ n), similarly to a conventional MPNN (assuming constant depth,

width and feature vector dimensions, including dwv , dwe ). In particular, when using structural

features (or any weighting function in general), we incur an increase in the multiplicative factors

of m and n (which is linear in the dimensions of the structural features), compared to those of a

vanilla MPNN (see Eq. (2.12)). The dimensions of the structural features wV ,wE are of size

O(|D|k) and O(|D|k2) respectively, and therefore when |D| = O(1) and k = O(1), the GNN

evaluation complexity remains linear in m and n. This is in contrast to the GNN evaluation

computational complexity of higher-order methods, such as [Maron et al., 2019a, Morris et al.,

2019] with O(nk) complexity, and [Vignac et al., 2020] with O(n2). This is also considerably

smaller than the evaluation complexity of relational pooling [Murphy et al., 2019] which is O(n!)
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Table 4.1: Summary of complexity bounds. GSN vs other GI-invariant/equivariant GNNs.
(n,m) = (|VG|, |EG|): # of vertices, # of edges (maximum across the dataset for the training
complexity), k = |Vα|: # of atom vertices, c(G,α): # of occurrences of α in G, a(G): arboricity
of G, D: dictionary, D: training set, I: # of epochs.

Model GSN MPNN k-IGN & k-GNN Symmetrisation

Preprocessing
(enum(G,α))

Worst-case
(brute-force) nk

— — —
Special cases

α: connected, induced c(G,α)nm
α: clique a(G)k−2m
α: cycle m+ kc(G,α)

G: planar, k = O(1) n+ c(G,α)
Total training
(dataset D) O

(︂
I|D|(m+ n) +

∑︁
α∈D,G∈D enum(G,α)

)︂
O
(︁
I|D|(m+ n)

)︁
O
(︁
I|D|nk

)︁
O
(︁
I|D|n!)

)︁
Total inference
(per graph G) O

(︁∑︁
α∈D enum(G,α) +m+ n

)︁
O
(︁
m+ n

)︁
O
(︁
nk
)︁

O
(︁
n!
)︁

in absence of approximations.

The worst-case complexity of subgraph enumeration for an arbitrary atom α of size k is

O
(︁
k2 n!

(n−k)!

)︁
= O(nk), for k = O(1), which follows from the brute-force enumeration of all vertex

tuples (without repetitions) of size k in the graph and then scanning each of them to verify

adjacency preservation (by e.g. testing the induced adjacency matrices for equality with those

of the atoms). However, this bound can be substantially improved for specific instances of

the problem, taking into account the following: (1) The properties of the target graph, e.g.,

its sparsity. (2) The structure of the subgraph of interest, e.g., cycles and cliques. These

substructure families are of particular importance in real-world graphs, social networks and

molecules respectively, as will be discussed in the experimental section 4.8. (3) The number of

occurrences of the patterns in the target graph (output sensitive algorithms), e.g., the algorithm

in [Avis and Fukuda, 1996] enumerates connected induced subgraphs in O
(︁
c(G,α)nm

)︁
time,

where c(G,α) the number of occurrences of the subgraph of interest α in G. In Appendix B.2.1

we provide an overview of these specialised algorithms and their complexities.

Table 4.1, provides a summary of the theoretical time complexity bounds of the preprocessing,

including special cases, as well as the overall GSN training and inference. Additionally, in the

same table we compare against other GI-invariant/equivariant GNN families: vanilla MPNNs,

such as [Xu et al., 2019], higher-oreder GNNs, such as k-IGNs [Maron et al., 2019b] and k-GNNs

[Morris et al., 2019] and symmetrisation without sampling, such as [Dasoulas et al., 2020, Murphy

et al., 2019]. Regarding the total training time, in the vast majority of cases, the GNN evaluation

term dominates since the number of epochs are typically large (e.g. compared to the size of the

dictionary), and therefore the total training overhead of GSN (w.r.t. a vanilla MPNN) is usually
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considerably smaller than its competitors. Additionally, typically in ML, the NN training is

repeated multiple times during experimentation in order to optimise the hyperparameters of

the model. Therefore, it is beneficial to maintain a low neural network complexity. Regarding

the total inference time, the complexity of GSN varies a lot depending on the structure of the

pattern and the target graph, as well as on the number of pattern occurrences in the target

graph. For example, cycle enumeration in molecular graphs (which are planar and typically

contain only a handful of cycles), or clique enumeration in very sparse graphs, will incur only

an additional linear term in the overall inference complexity, rendering the total GSN inference

time similar to vanilla MPNNs, and significantly smaller than its other competitors. However,

clique enumeration in dense graphs will result in O(nk) complexity, increasing the inference

time of GSN significantly compared to MPNNs and making it similar to higher-order GNNs.

Moreover, for both cases the bounds for higher-order GNNs and symmetrised GNNs are

tight, whereas those of GSN might be overly pessimistic, since, apart from the specialised

algorithms, arbitrary subgraph counting/enumeration is widely studied, and many general-

purpose algorithms [Ullmann, 1976, Houbraken et al., 2014, Cordella et al., 2004, Carletti

et al., 2017, Han et al., 2013, McCreesh and Prosser, 2015, Hocevar and Demsar, 2014] provide

practical implementations that achieve significant speed-ups using heuristics. As a side note,

approximate counting algorithms are also widely used, especially for counting frequent network

motifs [Kashtan et al., 2004, Wernicke, 2005, Wernicke, 2006, Wernicke and Rasche, 2006],

and can provide a considerable speed-up. Furthermore, recent neural approaches [Ying et al.,

2020b, Ying et al., 2020a] provide fast approximate counting.

In our experiments, we used a general-purpose subgraph isomorphism algorithm. We bench-

marked the VF2 algorithm [Cordella et al., 2004], and its recently improved version, the VF3

[Carletti et al., 2017] in our real-world networks and, as expected, in most of the cases, the

preprocessing runtime was considerably smaller than that of the naive enumeration (see Fig.

B.1, Appendix B.2.2, where we compare the empirical scaling w.r.t. n and k, to the O(nk) naive

enumeration bound). In the Appendix B.2.2, we report the average and total preprocessing

runtimes for both algorithms and various datasets and pattern sizes (Tables B.1 and B.2), while

in the Appendix B.2.3, we contrast the preprocessing runtimes with those required in total for

training/inference (Tables B.3 and B.4), experimentally validating the theoretical bounds of

Table 4.1. As discussed above, specialised algorithms are expected to yield further improvements,

however, this comparison is beyond the scope of our work.
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4.6 Substructure Selection

Expressivity. The Reconstruction Conjecture provides a sufficient, albeit impractical

condition for universality. This motivates us to analyse the constant size case k = O(1) for

practical scenarios, similar to the argument put forward for hard instances of graph isomorphism

(Proposition 4.6). In particular, one can count only the most discriminative subgraphs, i.e. the

ones that can achieve the maximum possible vertex disambiguation, similar to identifier-based

approaches. Whenever these subgraph counts can provide a unique identification of the vertices,

then universality will also hold (Corollary 3.1. in [Loukas, 2020]).

We conjecture, that in real-world scenarios the number of subgraphs needed for unique, or

near-unique identification, are far fewer than those dictated by Corollary 4.3. This is consistent

with our experimental findings, where we observed that certain small substructures such as

paths and trees, significantly improve vertex disambiguation, compared to the initial vertex

features (see figure 4.4 (left) and Table B.6 in the appendix). As expected this allows for better

fitting of the training data, which validates our claim that GNN expressivity improves. In

addition, [Barceló et al., 2021] provided an analysis showing in which cases adding an atom to

an existing dictionary improves expressivity and when it remains unaffected.

Generalisation. However, none of the above claims can guarantee good generalisation to

unseen data. For example, in figure 4.4, we observe that the test set performance does not

follow the same trend as training performance when choosing substructures with strong vertex

disambiguation. Aiming at better generalisation, it is desirable to make use of substructures

for which there is prior knowledge of their importance in certain network distributions and

have been observed to be intimately related to various properties. For example, graphlets have

been extensively analysed in protein-protein interaction networks [Pržulj et al., 2004], triangles

and cliques characterise the structure of ego-nets and social networks, in general, [Granovetter,

1982], simple cycles (rings) are central in molecular distributions, directed and temporal motifs

have been shown to explain the working mechanisms of gene regulatory networks, biological

neural networks, transportation networks and food webs [Milo et al., 2002, Paranjape et al.,

2017, Benson et al., 2016]. In figure 4.4 (right), we showcase the importance of these inductive

biases: a cycle-based GSN predicting molecular properties achieves a smaller generalisation

gap compared to a traditional MPNN, while at the same time generalising better with fewer
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training data.

Going forward from domain knowledge and various heuristics, such as motif frequencies or

feature selection strategies, it would be desirable to design the dictionary in a data-driven

manner. This is still an open problem that does not admit a straightforward solution due to its

combinatorial nature. In chapter 5, we will describe a substructure selection algorithm, that

learns the dictionary D using samples from the graph distribution at hand (training data) and

optimising for a compression criterion. We will theoretically show, that optimal dictionaries have

low entropy, i.e. they are small and contain frequent subgraphs. One could use this method as a

heuristic (assuming that frequent subgraphs, will be relevant in the determination of real-world

tasks). An even more reasonable and improved choice would be to learn the dictionary, using an

algorithm similar to the one presented in chapter 5, optimising for the objective of interest on

the training data (i.e. using the ERM learning algorithm). However, there are several challenges

in this approach, such as non-differentiability and increased computational complexity during

training, since subgraph enumeration cannot be precomputed in this case, and therefore we left

this endeavour for future work.

4.7 Comparisons and Related Wrok

4.7.1 GNN expressivity

The following section provides a brief overview of the related work on GNN expressivity (in some

cases enlisting already mentioned references for the sake of completeness of the timeline). Given

the popularity of the topic in the GNN community, the literature is quite wide so inevitably

some references might be missing, and most likely new works will be published in parallel with

the publication of this thesis. However, we hope to provide the reader with the important

takeaways and contextualise our work within this landscape. For a more comprehensive review,

we refer the interested reader to the surveys of [Sato, 2020, Jegelka, 2022, Morris et al., 2021]

and the excellent tutorial of [Frasca et al., 2022b]. In the experimental section, GSN is compared

against a variety of these methods in real-world scenarios.

GI-sensitive GNNs & symmetrisation. With regard to the class of GI/permutation-

sensitive GNNs, we have already discussed the cases of [Sato et al., 2019] and [Loukas, 2020], which
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showed the connections between GNNs and distributed local algorithms [Angluin, 1980, Linial,

1992, Naor and Stockmeyer, 1993] and suggested deterministic local or global identifiers. The

closest practical instantiation of this is the work of [Vignac et al., 2020], where the authors

propose to propagate matrices of order equal to the size of the graph instead of vectors, at

the expense of quadratic complexity. In the spirit of randomised algorithms, [Dasoulas et al.,

2020] propose to use stochastic colourings/features in order to uniquely identify the vertices,

where the space of possible options is reduced by first inspecting the vertex features, which is

similar to [Murphy et al., 2019, Sato et al., 2021, Abboud et al., 2021] where a single sample

from the random colour/feature distribution is used for each graph. It is worth observing that

these methods are on expectation GI-invariant, which is a form of symmetrisation, as initially

pinpointed by [Murphy et al., 2019] (see also [Puny et al., 2022]), and sampling amounts to

a Monte Carlo estimate of the expected value (and its gradient during training). However,

these estimators are typically high-variance, which is something that has not been convincingly

addressed so far. In general, these approaches lack a principled permutation equivariant way

to choose orderings/identifiers. To date, this is an open problem in graph theory called graph

canonicalisation and it is at least as hard as solving graph isomorphism itself (see also section 5.3).

WL hierarchy. The seminal results in the theoretical analysis of the expressivity of GNNs [Xu

et al., 2019] and k-GNNs [Morris et al., 2019] established that traditional message passing-based

GNNs are at most as powerful as the 1-WL test, while [Chen et al., 2019, Dasoulas et al., 2020]

showed that graph isomorphism is equivalent to universal GI-invariant function approximation.

[Morris et al., 2019] first proposed a neural analogue to k-WL, which was later improved

with more efficient alternatives in [Morris et al., 2020b, Morris et al., 2022]. [Kondor et al.,

2018] and [Maron et al., 2019b] proposed higher-order (k-th order) Invariant Graph Networks

(k-IGNs), which operate on k-th order tensors, while the latter fully characterised the space of

linear (permutation) invariant/equivariant layers. Thereafter, a series of works characterised

their expressive power w.r.t. universal approximation [Maron et al., 2019c, Ravanbakhsh,

2020, Keriven and Peyré, 2019] and equivalence with k-WL [Maron et al., 2019a, Geerts, 2020].

Additionally, a more efficient alternative, based on equivariant matrix polynomials, was proposed

[Maron et al., 2019a], and was shown to be equivalent to k-FWL [Azizian and Lelarge, 2021]

(see section 2.6.2 for the exact definition). The main drawbacks of these methods are the

training and inference time complexity and memory requirements of O(|V|k), where k ≥ 2, the
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super-exponential number of parameters (for linear IGNs) making them impractical, as well as

their non-local nature possibly making them more prone to overfitting.

Symmetry-breaking & positional encodings. Concurrently and following our paper,

other classes of weighting functions/positional encodings/symmetry-breaking mechanisms were

proposed and frequently incorporated into Transformer architectures. A (non-exhaustive) list

includes Laplacian eigenvectors [Dwivedi et al., 2020, Beaini et al., 2021, Dwivedi and Bresson,

2021, Kreuzer et al., 2021], distance-based encodings [Li et al., 2020, Ying et al., 2021], diffusion

kernels [Mialon et al., 2021], heat kernels [Feldman et al., 2022], random walk-based encodings

[Dwivedi et al., 2022, He et al., 2022] and Laplacian eigenmaps [Wang et al., 2022]. Most

of these encodings probably improve expressivity, they have been associated with important

graph properties and can be efficiently computed, but several of them are GI-sensitive with

a recent work attempting to address this problem [Lim et al., 2023]. Finally, in another

related paper [de Haan et al., 2020], in the spirit of symmetry breaking the authors propose

to linearly transform each neighbouring message with a different weight matrix based on the

local isomorphism class of the corresponding edge (similar to our definition of structural roles).

However, as also noted by the authors, taking into account all possible local isomorphism classes

leads to insufficient weight sharing and hence to overfitting.

Subgraph GNNs. Finally, following our work, several methods used subgraphs as an in-

strumental element of their GNN architectures. [Barceló et al., 2021] proposed homomorphism

counts (mappings that allow vertex repetitions) instead of subgraph counts, showed that GSN

can be expressed as such, and provided a series of theoretical results answering several of the

theoretical questions we left open in this work. [Bodnar et al., 2021, Bodnar et al., 2021]

showed that lifting graphs to a simplicial or a cellular complex and subsequently performing

an appropriate WL algorithm (or a neural analogue) improves expressivity. Recently, there

has been a surge in methods that, sometimes in parallel, proposed variations of the so-called

Subgraph GNNs [You et al., 2021, Sandfelder et al., 2021, Thiede et al., 2021, Cotta et al.,

2021, Zhang and Li, 2021, Papp et al., 2021, Bevilacqua et al., 2022, Zhao et al., 2022], where, in

a nutshell, a graph is decomposed into a multiset of subgraphs using a certain predefined policy

(e.g. vertex removal, edge removal, vertex marking, ego-net extraction, ego-net extraction w/

vertex marking). Several of these policies were compared against each other and against GSN
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in [Papp and Wattenhofer, 2022]. Node-based policies were unified and extended in a general

framework in [Frasca et al., 2022a], where it was also proved that they are at most as expressive

as 3-IGNs and 3-WL. Finally, [Qian et al., 2022] also proposed a generalising framework (in

addition to a data-driven method for subgraph selection) showing that the expressivity of

Subgraph GNNs is upper bounded by (k+1)-FWL, but they are incomparable to k-FWL.

Quantifying expressivity. As we saw in section 4.2, solely quantifying the expressive power

of GNNs in terms of their ability to distinguish non-isomorphic graphs does not provide the

necessary granularity. As a result, there have been several efforts to analyse the power of

k-WL tests in comparison to other graph properties (graph invariants) [Fürer, 2010, Fürer,

2017, Arvind et al., 2019, Dell et al., 2018]. [Garg et al., 2020]. [Loukas, 2020] showed lower

bounds for the depth-width tradeoffs required to compute various graph properties and solve or

approximate various combinatorial optimisation problems with global-identifier-based GNNs,

similarly to [Sato et al., 2019], where impossibility results were derived for local-identifier-based

GNNs w.r.t the capacity to approximate certain NP-hard optimisation problems. Vanilla GNNs

were studied w.r.t. their ability to compute polynomials of the adjacency matrix [Dehmamy

et al., 2019] and to count substructures [Chen et al., 2020], while [Garg et al., 2020] showed

that some impossibility results (e.g. inability to compute shortest or longest cycle, diameter

etc.) extend to other more expressive architectures. Very recently [Zhang et al., 2023] showed

that many GNN architectures (including GSN for problems with graphs of unbounded size)

cannot solve vertex-biconnectivity problems, even though their computational complexity is

linear. Finally, [Fereydounian et al., 2022] provided a fine-grained analysis on the exact class of

functions that GNNs can express.

4.7.2 Substructures in complex networks prior to the GNN era.

The idea of analysing complex networks based on small-scale topological characteristics dates

back to the 1970s and the notion of triad census for directed graphs [Holland and Leinhardt,

1976]. The seminal paper of [Milo et al., 2002] coined the term network motifs as over-represented

subgraph patterns that were shown to characterise certain functional properties of complex

networks in systems biology. The closely related concept of graphlets [Pržulj et al., 2004, Pržulj,

2007, Milenković and Pržulj, 2008, Sarajlić et al., 2016], different from motifs in being induced
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subgraphs, has been used to analyse the distribution of real-world networks and as a topological

signature for network similarity. Our work is similar in spirit to the graphlet degree vector (GDV)

[Pržulj, 2007], a vertex-wise descriptor based on graphlet counting.

Substructures have been also used in the context of ML. In particular, subgraph patterns have

been used to define Graph Kernels (GKs) [Horváth et al., 2004, Shervashidze et al., 2009, Costa

and De Grave, 2010, Kriege and Mutzel, 2012, Nguyen and Maehara, 2020], with the most

prominent being the graphlet kernel [Shervashidze et al., 2009]. Motif-based vertex embeddings

[Dareddy et al., 2019, Rossi et al., 2018] and diffusion operators [Monti et al., 2018, Sankar et al.,

2019, Lee et al., 2019] that employ adjacency matrices weighted according to motif occurrences,

have recently been proposed for graph representation learning. Our formulation provides a

unifying framework for these methods and was the first to analyse their expressive power.

4.8 Results

In the following section, we evaluate GSN in comparison to the state-of-the-art in a variety of

datasets from different application domains. We are interested in practical scenarios where the

dictionary D, as well as the size of each α ∈ D, are kept small. Depending on the dataset domain

we experimented with typical graph families (cycles, paths, cliques and trees) and maximum

substructure size k (for each setting, the dictionary consists of all the substructures of the family

with size ≤ k).

We experimented with both induced subgraphs and not-necessarily-induced subgraphs (from

now on referred to as graphlets and motifs respectively) and observed similar performance in

most cases. To showcase that structural features can be used as an off-the-shelf strategy to boost

GNN performance, we usually choose a base message passing architecture and minimally modify

it into a GSN. Unless otherwise stated, the base architecture is a general-purpose MPNN as in

Eq. (2.11) with MLPs used in the message and update functions. Additional implementation

details can be found in Appendix B.3.

4.8.1 Graph Isomoprhim Testing

We tested the ability of GSNs to decide if two graphs are non-isomorphic on a collection of

Strongly Regular graphs of size up to 35 vertices, attempting to disambiguate pairs with the same
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Figure 4.3: GI test for SR graphs (log scale, smaller values are better). Different colours indicate
different substructure sizes.

number of vertices (for different sizes the problem becomes trivial). As we are only interested in

the bias of the architecture itself, we use a GSN with random weights to compute graph-wise

representations in Rdout . Two graphs are deemed isomorphic if the Euclidean distance of their

representations is smaller than a predefined threshold ϵ. Figure 4.3 shows the failure percentage

of our isomorphism test when using different graphlet substructures (cycles, paths, and cliques)

of varying maximum size k. Interestingly, the number of failure cases of GSN decreases rapidly

as we increase k; cycles and paths of maximum length k = 6 are enough to tell apart all the

graphs in the dataset. Note that the performance of cliques saturates, possibly because the

largest clique in our dataset has 5 vertices. Observe also the discrepancy between GSN-v and

GSN-e. In particular, vertex-wise counts do not manage to distinguish all graphs, (although

failing on only a few instances), which is in accordance with Theorem 4.4. Finally, 1-WL [Xu

et al., 2019] and 2-FWL [Maron et al., 2019a] equivalent models demonstrate 100% failure, as

expected from theory.

4.8.2 TUD benchmarks: graph classification

We evaluate GSN on datasets from the TUD benchmarks, a well-established family of datasets

in the graph ML community. We use seven datasets of molecular, biological and social networks

and compare GSN against various GNNs and Graph Kernels. The base architecture that we used
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Table 4.2: Graph classification accuracy on TUD Datasets. First, Second, Third best methods
are highlighted. For GSN, the best-performing dictionary is shown. ∗Graph Kernel methods.

Dataset MUTAG PTC Proteins NCI1 Collab IMDB-B IMDB-M

RWK* [Gärtner et al., 2003] 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A N/A
GK* (k=3) [Shervashidze et al., 2009] 81.4±1.7 55.7±0.5 71.4±0.31 62.5±0.3 N/A N/A N/A
PK* [Neumann et al., 2016] 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A N/A
WL kernel* [Shervashidze et al., 2011] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 78.9±1.9 73.8±3.9 50.9±3.8
GNTK* [Du et al., 2019a] 90.0±8.5 67.9±6.9 75.6±4.2 84.2±1.5 83.6±1.0 76.9±3.6 52.8±4.6
DCNN [Atwood and Towsley, 2016] N/A N/A 61.3±1.6 56.6±1.0 52.1±0.7 49.1±1.4 33.5±1.4
DGCNN [Zhang et al., 2018] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 73.8±0.5 70.0±0.9 47.8±0.9
IGN [Maron et al., 2019b] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 78.3±2.5 72.0±5.5 48.7±3.4
GIN [Xu et al., 2019] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 80.2±1.9 75.1±5.1 52.3±2.8
PPGNs [Maron et al., 2019a] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 81.4±1.4 73.0±5.8 50.5±3.6
Natural GN [de Haan et al., 2020] 89.4±1.60 66.8±1.79 71.7±1.04 82.7±1.35 N/A 74.8±2.01 51.3±1.50
WEGL [Kolouri et al., 2021] N/A 67.5±7.7 76.5±4.2 N/A 80.6±2.0 75.4±5.0 52.3±2.9
GIN+GraphNorm [Cai et al., 2021] 91.6 ± 6.5 64.9 ± 7.5 77.4 ± 4.9 82.7 ± 1.7 80.2 ± 1.0 76.0 ± 3.7 N/A

GSN-e 90.6±7.5 68.2±7.2 76.6±5.0 83.5± 2.3 85.5±1.2 77.8±3.3 54.3±3.3
6 (cycles) 6 (cycles) 4 (cliques) 15 (cycles) 3 (triangles) 5 (cliques) 5 (cliques)

GSN-v 92.2±7.5 67.4±5.7 74.59±5.0 83.5±2.0 82.7±1.5 76.8±2.0 52.6±3.6
12 (cycles) 10 (cycles) 4 (cliques) 3 (triangles) 3 (triangles) 4 (cliques) 3 (triangles)

is GIN [Xu et al., 2019]. We follow the same evaluation protocol of [Xu et al., 2019], performing

10-fold cross-validation and then reporting the performance at the epoch with the best average

accuracy across the 10 folds. Table 4.2 lists all the methods evaluated with the split of [Zhang

et al., 2018]. We select our model by tuning architecture and optimisation hyperparameters and

dictionary-related parameters, that is (i) maximum dictionary graph size k, (ii) motifs against

graphlets. Following domain evidence, for networks with community structure (moderate and

large clustering coefficient), such as social networks, we used cliques, while for molecular graphs

we used cycles, due to the prominent role of ring structures that are known to strongly influence

molecular properties. We report the best-performing architecture for both GSN-e and GSN-v

variants. As can be seen, our model outperforms the majority of its competitors in most of the

datasets, typically with a considerable margin from the base GNN architecture.

4.8.3 ZINC benchmark: regression on molecular graphs

We evaluate GSN on the task of regressing the “penalized water-octanol partition coefficient -

logP” (see [Gómez-Bombarelli et al., 2018, Kusner et al., 2017, Jin et al., 2018a] for details) of

molecules from the ZINC database [Irwin et al., 2012a, Dwivedi et al., 2020]. We use structural

features obtained with cycle counting and report the result of the best-performing dictionary on

the validation set. The data split is obtained from [Dwivedi et al., 2020] and the evaluation

metric is the Mean Absolute Error (MAE). We compare against a variety of baselines, ranging

from traditional message passing NNs to recent more expressive architectures [Corso et al.,
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Table 4.3: ZINC dataset (graph property regression). Performance metric on the test set (mean
absolute error).

Method MAE MAE (EF)

GCN [Kipf and Welling, 2017] 0.469±0.002 -
GIN [Xu et al., 2019] 0.408±0.008 -
GraphSage[Hamilton et al., 2017] 0.410±0.005 -
GAT [Velickovic et al., 2018] 0.463±0.002 -
MoNet[Monti et al., 2017] 0.407±0.007 -
GatedGCN [Bresson and Laurent, 2017] 0.422±0.006 0.363±0.009
MPNN 0.254±0.014 0.209±0.018
MPNN-r 0.322±0.026 0.279±0.023
PNA[Corso et al., 2020] 0.320±0.032 0.188±0.004
DGN[Beaini et al., 2021] 0.219±0.010 0.168±0.003
GNNML[Balcilar et al., 2021] 0.1612 ± 0.006 -
HIMP[Fey et al., 2020] - 0.151±0.006
SMP[Vignac et al., 2020] 0.219± 0.138±

GSN 0.140±0.006 0.115±0.012

2020, Beaini et al., 2021, Vignac et al., 2020, Balcilar et al., 2021] and a molecular-specific one

(HIMP) which is based on the junction-tree molecular decomposition [Fey et al., 2020]. As

dictated by the evaluation protocol of [Dwivedi et al., 2020], the total number of parameters of

the model is approximately 100K, which is achieved by selecting an appropriate network width.

Wherever possible, we compare two variants, one that ignores edge features and one that takes

them into account. In both cases, GSN outperforms all the baselines. For completeness, we also

note that a GSN with 500K params attains 0.101 ± 0.010 MAE.

4.8.4 OGB benchmark: classification on large-scale graphs

Table 4.4: OGB property prediction: molecular graphs. Test and validation performance metrics.
First, Second, Third best methods are highlighted

ogbg-molhiv ogbg-molpcba
Method Test ROC-AUC Val. ROC-AUC Test AP Val. AP

GCN[Kipf and Welling, 2017] 0.7606 ± 0.0097 0.8204 ± 0.0141 0.2020 ± 0.0024 0.2059 ± 0.0033
HIMP [Fey et al., 2020] 0.7880 ± 0.0082 N/A 0.2739 ± 0.0017 N/A
PNA [Corso et al., 2020] 0.7905 ± 0.0132 0.8519 ± 0.0099 0.2838 ± 0.0035 0.2926 ± 0.0026
GIN [Xu et al., 2019] 0.7558 ± 0.0140 0.8232 ± 0.0090 0.2266 ± 0.0028 0.2305 ± 0.0027
GIN+VN [Xu et al., 2019] 0.7707 ± 0.0149 0.8479 ± 0.0068 0.2703 ± 0.0023 0.2798 ± 0.0025
DGN (eigenvectors) [Beaini et al., 2021] 0.7970 ± 0.0097 0.8470 ± 0.0047 0.2885 ± 0.0030 0.2970 ± 0.0021
GSN (GIN base) 0.7606 ± 0.0174 0.8517 ± 0.0090 0.2508 ± 0.0023 0.2542 ± 0.0021
GSN (GIN+VN base) 0.7799 ± 0.0100 0.8658 ± 0.0084 0.2816 ± 0.0047 0.2913 ± 0.0017
GSN (DGN base) 0.8039 ± 0.0090 0.8473 ± 0.0096 N/A N/A

We use three graph property prediction datasets from the Open Graph Benchmark (OGB)

[Hu et al., 2020]: ogbg-molhiv and ogbg-molpcba are molecular datasets where the task is
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Table 4.5: OGB property prediction: protein-protein association networks (biological). Test
and validation performance metrics. First, Second, Third best are highlighted.

ogbg-ppa
Method Test Accuracy Val. Accuracy

GCN[Kipf and Welling, 2017] 0.6839 ± 0.0084 0.6497 ± 0.0034
HIMP [Fey et al., 2020] N/A N/A
PNA [Corso et al., 2020] N/A N/A
GIN [Xu et al., 2019] 0.6892 ± 0.0100 0.6562 ± 0.0107
GIN+VN [Xu et al., 2019] 0.7037 ± 0.0107 0.6678 ± 0.0105
DGN (eigenvectors) [Beaini et al., 2021] N/A N/A
GSN (GIN base) 0.6877 ± 0.0022 0.6489 ± 0.0065
GSN (GIN+VN base) 0.7119 ± 0.0120 0.6716 ± 0.0078
GSN (DGN base) N/A N/A

graph-level binary classification. In ogbg-molhiv the task is to predict if a molecule inhibits

HIV replication or not, while ogbg-molpcba has multiple tasks that we need to optimise for

simultaneously. We also evaluate GSN on ogbg-ppa, a dataset of protein-protein association

networks, where the task is to predict the taxonomic group of each graph (37-way classification)

The underlying distribution of this dataset is significantly different from the other two since it

contains larger and denser graphs with community structure.

In Tables 4.4 and 4.5, we compare against the following baselines: two vanilla GNNs (GCN

[Kipf and Welling, 2017] and GIN [Xu et al., 2019]), two modern GNNs (PNA [Corso et al.,

2020] and DGN [Beaini et al., 2021]) with provably increased expressivity and strong empirical

performance, and HIMP, a molecule-specific GNN [Fey et al., 2020]. There is a plethora of other

methods that have reported results in these datasets, sometimes outperforming GSN (see the

OGB public leaderboard3). Note that many of them are either domain-specific or have intricate

implementation details which are orthogonal to our work. Hence, an exhaustive comparison is

beyond the scope of this experimental section. Instead, our goal is to highlight that GSN can

be used as a plug-and-play method and boost the performance of a base architecture without

any hyperparameter tuning (except for the dictionary selection, which in our case boils down to

searching the maximum size k of the graphs in the family considered), rather than to achieve

state-of-the-art results.

Following this rationale, we choose a base architecture and modify it into a GSN variant by

introducing structural features in the aggregation function: cycle counts for the molecular

datasets and triangle counts for ogbg-ppa. We use the following base architectures: (a) GIN

3https://ogb.stanford.edu/docs/leader_graphprop/

https://ogb.stanford.edu/docs/leader_graphprop/
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and (b) GIN-VN, a variation of GIN that takes edge features into account and is extended with

a virtual node, i.e. an artificial vertex that is connected to all the other vertices in the graph.

For ogbg-molhiv we also used (c) DGN [Beaini et al., 2021] as base architecture, a GNN that

propagates messages in an anisotropic manner, and it is a particular instantiation of Eq. (2.11).

The authors of DGN use weighting functions (they refer to them as graph vector fields) defined

by the eigenvectors of the graph, which in this case are replaced by subgraph counts. More

information can be found in the supplementary material.

Using the evaluators provided by the authors, we report the relevant metric at the epoch with

the best validation performance (the maximum dictionary graph size is also chosen based on the

validation set). By examining the results in Tables 4.4, 4.5 the following observations can be

made, (a) GSN seamlessly improves the performance of the base architecture, both in the test

set and the validation set, sometimes significantly, or, in only one case, is on par. (b) Cycles

are a good inductive bias when learning on molecules, corroborating our results on the ZINC

dataset, while the same holds for triangles in PPA networks. The latter agrees with our intuition

that tasks defined on graphs with community structure correlate with the presence of triangles

(or cliques), as was the case for social networks in the TU Datasets. (c) General purpose GNNs

benefit from symmetry-breaking mechanisms, either in the form of eigenvectors (DGN) or in

the form of substructures.

4.8.5 Ablation Studies

Comparison between substructure collections. In figure 4.4 (left), we compare the

training and test error for different graph families (cycles, paths and trees – for each ex-

periment we use all the graphs of size ≤ k in the family). Additionally, with regards to

GSN-v, we measure the “uniqueness” of the features/identifiers each dictionary yields as fol-

lows: for each graph G in the dataset, we measure the percentage of unique vertex features

1− δG = 1
|V|

⃓⃓⃓{︁(︁
uV(i),wV(i)

)︁
| i ∈ V

}︁⃓⃓⃓
(vertex attributes concatenated with vertex structural

features) and then take its empirical mean over the training dataset, i.e. 1−δD = 1− 1
|D|
∑︁

G∈D δG,

yielding the disambiguation score. The disambiguation scores for the different graph families

are illustrated as horizontal bars in figure 4.4 (the exact values can be found in Appendix B.3,

Table B.6).

The first thing to notice is that the training error is tightly related to the disambiguation score.
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Figure 4.4: (Top) Train (dashed) and test (solid) MAEs for path-, tree- and cycle-GSN-EF as a
function of the maximum dictionary graph size k. Vertical bars indicate standard deviation;
horizontal bars depict disambiguation scores δD. (Bottom) Train (dashed) and test (solid) MAEs
for GSN-EF (blue) and MPNN-EF (red) as a function of the dataset fraction used for training.

As identifiers become more discriminative, the model gains expressive power. On the other hand,

the test error is not guaranteed to decrease when the identifiers become more discriminative.

For example, although cycles have smaller disambiguation scores, they manage to generalise

much better than the other substructures, the performance of which is similar to the baseline

architecture (MPNN with MLPs). This is also observed when comparing against [Sato et al.,

2021] (MPNN-r method in Table 4.3), where, akin to unique identifiers, random features are

used to improve the expressivity of GNN architectures. This approach also fails to improve

the baseline architecture in terms of performance in the test set. This validates our intuition

that unique identifiers can be hard to generalise when chosen in a non-GI equivariant way

and motivates once more the importance of choosing the identifiers not only based on their

discriminative power, but also in a way that allows incorporating the appropriate inductive
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biases. Finally, we observe a substantial jump in performance when using GSN with cycles of

size k ≥ 6. This is not surprising, as cyclical patterns of such sizes (e.g. aromatic rings) are

very common in organic molecules.

Sample efficiency. We repeat the experimental evaluation on ZINC using different fractions

of the training set and compare the vanilla MPNN model against GSN. In figure 4.4 (right), we

plot the training and test errors of both methods. Regarding the training error, GSN consistently

performs better, following our theoretical analysis of its expressive power. More importantly,

GSN manages to generalise much better even with a small fraction of the training dataset.

Observe that GSN requires only 20% of the samples to achieve approximately the same test

error that MPNN achieves when trained on the entire training set.

Table 4.6: Comparison between DeepSets and GSN using the same dictionary D.

Dataset DeepSets # params GSN # params
MUTAG 93.3±6.9 3K 92.8±7.0 3K
PTC 66.4±6.7 2K 68.2±7.2 3K
Proteins 77.8±4.2 3K 77.8±5.6 3K
NCI1 80.3 ±2.4 10K 83.5± 2.0 10K
Collab 80.9 ±1.6 30K 85.5±1.2 52K
IMDB-B 77.1 ±3.7 51K 77.8±3.3 65K
IMDB-M 53.3 ±3.2 68K 54.3±3.3 66K
ZINC 0.288 ±0.003 366K 0.108 ±0.018 385K
ogbg-molhiv 77.34±1.46 3.4M 77.99±1.00 3.3M

Structural features: How important is message passing? Finally, we study the abilities

of the structural features to solve the task at hand, when given as input to a graph-agnostic

function approximator. In particular, to retain GI-invariance, we treat the structural features

as a set and employ a hypothesis class that holds the UAP on set functions, i.e. DeepSets

[Zaheer et al., 2017]. We use the same dictionary as the one that our best-performing GSN

uses and, to ensure a fair evaluation, we perform the same hyperparameter search on both

DeepSets and GSN (see Appendix B.3). Interestingly, as we show in Table 4.6, our baseline

attains particularly strong performance across a variety of datasets and often outperforms other

traditional message-passing baselines. This demonstrates the importance of substructures in a

variety of graph-level real-world problems and motivates their use as a new inductive bias in

GNN architectures. As expected, we observe that applying message passing, brings performance

improvements in the vast majority of the cases, sometimes considerably, as in the ZINC dataset.
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5
Partition and Code: Learning how to compress graphs

5.1 Introduction

In the following and last chapter of our contributions, we will continue navigating the research

line of function approximation in graph spaces. We will now focus on a topic at the intersection

of machine learning and information theory for graph-structured data. We will study a source

coding problem and in particular that of lossless graph compression. A reasonable question to

ask is why we treat this as a function approximation problem and what makes compression

special, among other particular cases.

The function design aspect. To answer the first part of the question, we will first establish

the concept of data compression. In general, storage, communication, and creation of information

(anything from symbols, audiovisual signals and text corpora to mathematical concepts, physical

laws and even emotions and intentions qualify as a good example for the abstract notion of

information) can be achieved by representing information with the help of an agreed language.

Typically, a language consists of sequences of symbols that belong in a finite alphabet B and

may need to respect a set of rules. For example, humans may communicate information using

natural languages arising from various different known alphabets, such as the Latin and the

Greek alphabet, while similarly, computers use arithmetic alphabets, most notably the binary

one B = {0, 1}. Importantly, representing information with a given language can be done in

multiple different ways, i.e. with multiple different symbol sequences, also known as codewords,

(e.g. this very text can be rewritten in infinitely many different ways in order to convey the same

piece of information to the reader). In general, by data compression, we refer to procedures

127
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that convert an original representation of a piece of information to a new one, whose length,

also known as description length (the number of sequence symbols used) is smaller than that of

the original one.

To formalise this mathematically, we can assume that each piece of information is taken from an

input set X and our language is the output set Y = B∗ :=
⋃︁∞

i=0 Bi. In data compression, we

usually seek to determine a function henc : X → Y , which is commonly known as compressor,

encoder, or source code according to the terminology used in [Cover and Thomas, 2006]. Ground-

truth information is rarely known a-priori (unless we seek to imitate the behaviour of a predefined

compressor). Instead, the code is designed or optimised with respect to a specific objective, the

general principle of which is to favour codes that lead to as small as possible description lengths

and as much as possible information preserved. In lossless compression, which is the setup of

interest in this thesis, no information can be lost and thus the code needs to be invertible, i.e.

one needs to guarantee the existence of a function hdec , such that hdec
(︁
henc(x)

)︁
= x, ∀ x ∈X .

In this case, the code is called non-singular. The objective is to minimise the description

lengths of all the points in X . More generally, when the points that the compressor encounters

are sampled from a distribution (or probabilistic source in information-theoretic terminology),

the objective is to minimise the expected codeword length. In lossy compression, information

loss (distortion) is allowed and thus the code needs not necessarily to be invertible, while the

objective is formalised so as to find a balance between the minimisation of codeword lengths

and distortion. Distortion is either defined as a distance from the original representation, as a

perceptual distance or based on the ability to solve a downstream task [Dubois et al., 2021].

The function approximation/statistical aspect. In order to design a compressor it is

necessary to make assumptions about the information we will encounter and in particular about

its distribution. In fact, for lossless compression, the source-coding theorem [Shannon, 1948]

dictates that the optimal achievable bit rate of a compressor is uniquely determined by the

data distribution, and in particular by its entropy (see section 5.2). The assumptions can be

made a-priori, i.e. by using prior knowledge about the data that will be encountered. However,

this approach is too rigid and will inevitably lead to a suboptimal code if our assumptions are

incorrect. Therefore, a more flexible alternative is to adapt our assumptions by using data

observations. This is exactly where the function approximation aspect of the problem arises:

one can approximate the distribution from observations and design an optimal compressor for
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the estimated distribution (either subsequently on in an online fashion). In the information

theory literature, this process is called universal source coding and notable examples are

adaptive arithmetic coding and Lempel-Ziv compressors [Ziv and Lempel, 1977, Ziv and Lempel,

1978, Welch, 1984]. This illustrates the connection between compression and learning: optimally

compressing data from an unknown distribution is equivalent to accurately estimating it.

The importance of graph compression. From a practical standpoint, it goes without saying

that, given the ever-increasing amount of data that needs to be generated, stored, transmitted,

processed, visualised, etc every day, data compression is essential in order to ensure a reduction

in the storage and transmission costs and the time spent. Compression of euclidean data such

as text, images, or video, has been deeply studied, and many algorithms are widely used in

practice underpinning many modern technologies, such as web protocols and video streaming.

However, graph-structured data, as well as other types of combinatorial data [Steinruecken,

2015], remain a notable exception. Graph data are becoming more prevalent, either in the

form of single graphs of massive scale (e.g. web graphs, knowledge graphs or a graph of social

network) or in the form of large graph datasets (e.g. molecular graphs, code represented as a

graph) and therefore it becomes increasingly important to invent specialised and practical ways

to encode them parsimoniously.

Nevertheless, the algorithms currently used to compress graphs are general-purpose (e.g. for

sequential data) or tailored to labelled graphs, i.e. graphs with a particular ordering/labelling of

their vertices, and fail to make the right assumptions about the underlying distributions, thus

resulting in suboptimal codes (see section 5.7 for details). The most important assumption they

miss is that in many cases we are not interested in the exact vertex ordering, and we can instead

compress the graph as an unlabelled object (when the graphs are by construction unlabelled,

e.g. molecules, or when the labelling is irrelevant, e.g. when we are only interested in querying

on inferring graph-level information). Failing to make such an assumption can be shown to lead

to a significant loss in the potential compression gains (see section 5.3 for an analysis).

Additionally, data compression is of theoretical interest since it allows us to mathematically

reason about the randomness of our data (e.g. do they contain any patterns/regularities and

what are they?) as well as their complexity (e.g. can we succinctly describe them?). In

particular, data compression is intimately related to machine learning [MacKay, 2003] and

algorithmic information theory [Solomonoff, 1960, Solomonoff, 1964, Solomonoff, 1964, Chaitin,
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1969, Kolmogorov, 1998], which in the case of graphs, provides us insights into probabilistic

notions, such as random graph models (generative models) for unlabelled graphs, and complexity

notions, such as the Kolmogorov complexity of graphs. It is also worth mentioning that, as we

will see in section 5.3, the constraints imposed by the principles of unlabelled graph compression

on our hypothesis class, create fundamentally different design challenges compared to the usual

graph function approximation problems, such as classification and regression.

Our contributions. This work serves a dual purpose. First, to explore the fundamental

principles of unlabelled graph compression and second, to propose a practical algorithm that

adheres to them. The main challenges that arise can be summarised as follows (see section 5.3

for details):

C1. Dealing with graph isomorphism (computational complexity). It can be shown that ap-

proaching an optimal bit rate requires mapping each graph to its equivalence class. Addressing

this would imply a solution to graph isomorphism, and therefore optimality comes with the cost

of high-computational complexity. This is the most fundamental challenge that discerns graph

compression from other types of data.

C2. Likelihood estimation and model description length (compression vs generative models).

An optimal encoder [Shannon, 1948] requires one to accurately estimate and evaluate the

probabilities of all the possible outcomes of the underlying domain. This task reminds us

of the objective of likelihood-based (deep) generative models (see section 5.7). For instance,

autoregressive models, partition the data into parts to obtain a decomposition of the probability

distribution: e.g. images are partitioned into pixels or patches [van den Oord et al., 2016, Mentzer

et al., 2019], and text into characters or n-grams [Bell et al., 1989, Schmidhuber and Heil,

1996, Mahoney, 2000]. Generative models rely on two factors to accurately capture all the

statistical dependencies in the data: a large amount of training data and a powerful, typically

heavily parametrised model. However, in compression adaptivity using only a handful of

observations is desired (especially in diverse domains, such as real-world networks), while large

models result in a reduction of the overall compression gains. In particular, although frequently

overlooked, the parameters of the model themselves need to be also stored and transmitted

to the decoder along with the compressed data in order to recover the original representation.

Thus, the objective that one should seek to optimise must account for the description length of

the observations as well as that of the model parameters. This highlights an important difference
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between compression and generative models, with vanilla neural networks being sometimes

unsuitable, due to the fact that they are overparameterised and of non-variable description

length.

Figure 5.1: Illustration of the graph decom-
position. The subgraph colours correspond
to dictionary atoms a1, a2 and a3. Cuts
are denoted in red.

The Partition and Code (PnC) framework.

Our algorithmic solution to the aforementioned chal-

lenges is the Partition and Code (PnC) framework.

PnC is a dictionary coding algorithm that consists

of three main steps: (a) Initially, a graph is par-

titioned into non-overlapping subgraphs, which in

turn yields a decomposition of the graph likelihood.

(b) Subsequently, frequent subgraphs are mapped

to a (learned) dictionary - see Fig. 5.1. (c) Finally,

each component of the decomposition is entropy

coded using a distribution estimator. Additionally,

we propose a practical instantiation of the framework that allows optimisation of all three

components (partitioning, dictionary, distribution estimator) with gradient-based methods

(section 5.6).

As we will thoroughly discuss, our framework attempts to find a trade-off between the aforemen-

tioned challenges: C1 : Subgraphs are mapped isomorphically to the elements of the dictionary,

thus leading to important compression gains, To ensure we can efficiently solve GI, we constrain

the dictionary to only contain graphs of size up to a small constant. C2 : Graph partitioning

provides us with a decomposition of the distribution, which with the help of the dictionary is

parameterised with only a handful of parameters that can be efficiently estimated. Additionally,

we use neural networks only to infer the decomposition of the distribution (and not to predict

the likelihood), and hence we can rely on overparameterisation without having to relay the NN

parameters to the decoder. Finally, the description length of the dictionary (which accounts for

the largest portion of the model parameters) can be optimised during training w.r.t. the total

description length objective.

Our theoretical analysis reveals that PnC can significantly improve upon less sophisticated

graph encoders and justifies the usefulness of both the “Partition” and the “Code” component.

Specifically, we prove that under mild conditions on the underlying graph distribution, PnC
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requires in expectation Θ(n2) fewer bits than standard graph encodings, even if the latter are

given access to an oracle that solves GI. Further, the dictionary induces additional savings of

Θ(n) bits, with the gain being inversely proportional to the entropy of the distribution of the

dictionary atoms. Thus, the more repetitive the patterns in the graph distribution are, the

larger will be the compression benefits of PnC. These findings are corroborated by our empirical

studies. We evaluate our framework on diverse real-world graph distributions and showcase

compression gains with respect to both traditional graph compressors and more sophisticated

specialised alternatives, including deep graph generative models.

5.2 Background: Information theory and graph encodings

Following the usual terminology in information theory and Minimum Description Length (MDL)

theory [MacKay, 2003, Grünwald, 2007, Cover and Thomas, 2006], we assume an observation

space X , and a probability distribution px(x) (or p(x) - we will drop the subscript whenever

the random variable is clear from the context), sometimes referred to as probabilistic source,

producing samples from the observation space. We observe a dataset D = {x1, x2, . . . , x|D|} of

i.i.d. observations drawn from p. Note that, in the context of graphs, this setting is in contrast

with most works on graph compression [Vigna and Boldi, 2004, Claude and Navarro, 2010, Lim

et al., 2014, Dhulipala et al., 2016], where the target is to compress a single large network, such

as a social network or a web graph.

Codes and distributions. Recall that a source code henc : X → B∗ is a mapping from the

observation space to a variable-length sequence of binary symbols and in lossless compression,

we are interested in non-sinular codes, i.e. codes that are invertible. Of particular interest are

the uniquely decodable codes, for which it holds that any concatenation of codewords can be

uniquely mapped to a sequence of observations. This eliminates the need to encode delimiters

between codewords. Instantaneous or prefix codes are a practical subcase, for which it holds

that no codeword is a prefix of another codeword, and therefore sequences of codewords can be

decoded in one pass. From now on, all the source codes that we will be dealing with will be

prefix codes.

Typically we are only interested in the description length of a datapoint x under the code

henc, i.e. the number of bits needed to encode the datapoint x, denoted with L(x;henc) , or
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L(x) for brevity, rather than the particular instantiation of the code itself. An important

property of uniquely decodable codes is the the well-known Kraft–McMillan inequality (l.h.s. in

formula (5.1)):

∑︂
x∈X

|B|−L(x;henc) ≤ 1 (code) ⇐⇒ q(x) =
|B|−L(x;henc)∑︁

x∈X |B|−L(x;henc)
(distribution). (5.1)

Conversely, for every set of natural numbers {L(x;henc)}x∈X that satisfies the l.h.s of Eq. (5.1),

there exists a uniquely decodable code over X with these codeword lengths, as well as an

implicit distribution q(x) (r.h.s. of Eq. (5.1)). When the Kraft–McMillan inequality holds with

strict inequality, we say that the code is redundant, while in the case of equality, we say that the

code is complete. Using Eq. (5.1) and Gibbs’ inequality we recover a variant of Shannon’s source

coding theorem. This asserts that the expected codeword length of any uniquely decodable

code is lower bounded by the entropy of the true distribution (see [MacKay, 2003, Cover and

Thomas, 2006]):

Ex∼p(x)[L(x;henc)] ≥ Hx∼p(x)[x] = Ex∼p(x)[− log|B| p(x)], (5.2)

with the equality attained when
∑︁

x∈X |B|−L(x;henc) = 1 and L(x;henc) = − log|B| p(x), i.e.

when the implicit distribution is equal to the true one for all x ∈ X . Since the latter

does not guarantee that the codeword lengths will be natural numbers, one may set them as

L(x;henc) = ⌈− log|B| q(x)⌉ (Shannon–Fano code), which satisfy the l.h.s. of Eq. (5.1) (since

⌈− log|B| q(x)⌉ ≥ − log|B| q(x)), and therefore also constitute a uniquely decodable code. In this

case, the expected description length becomes Ex∼p(x)[⌈− log|B| q(x)⌉] < Ex∼p(x)[− log|B| q(x)] + 1,

and its optimal value is Hx∼p(x)[x] + 1.

Hence, instead of explicitly optimising for codes, we can optimise for distributions:

min
q

Ex∼p(x)[− log|B| q(x)], (5.3)

which, at optimality, is guaranteed in expectation to incur at most one extra symbol compared

to the lower bound, using a properly selected code. The selection of a code given a distribution

so as to approach the entropy lower bound as closely as possible is commonly known as entropy

coding, with the most widespread paradigms being Huffman coding [Huffman, 1952], arithmetic

coding [Pasco, 1976, Rissanen, 1976, Rissanen and Langdon, 1979, Witten et al., 1987] and
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asymmetric numeral systems [Duda, 2009, Duda, 2013]. From now on, for brevity, we will

assume that our alphabet is the binary one, and we will express the information content in bits

by using a base-2 logarithm log instead of log|B|.

Uniform codes. An important principle that we follow is that whenever we cannot make

any assumptions about an underlying distribution, or modelling it is impractical or expen-

sive, then the uniform distribution qunif is chosen for encoding. The reason is that uni-

form distribution is worst-case optimal [Grünwald, 2007] in two ways: (1) over all the data,

i.e. maxx∈X [− log qunif(x)] = minq maxx∈X [− log q(x)], and (2) over distributions, i.e. for

any non-uniform unknown distribution p, there exists at least one distribution q such that

Ex∼p[− log q(x)] > Ex∼p log[−qunif(x)].

Common graph encodings. Denote a labelled graph with G = (V , E) ∈ G, where G is

our observation space and let n = |V|,m = |E|. Many standard graph encodings are based on

variations of the above principle of uniform encodings. For example, one can decompose the

graph distribution as q(G) = q(G | n)q(n) or q(G) = q(G | n,m)q(m | n)q(n) and use a uniform

encoding for at least of one the terms. Such are the following encodings we commonly encounter:

• uniform: Lunif(G | n) = n2, which is optimal for a uniform distribution over labelled graphs

of n vertices. This can be implemented by storing the binary adjacency matrix.

• edge list : LEL(G | n,m) = m log n2, which is optimal for a uniform distribution over

labelled graphs of n vertices and m edges, where multi-edges are allowed. This can be

implemented by storing the pairs of connected vertices. Observe that, although commonly

used in practice, this model is in fact always redundant for simple graphs.

• Erdős–Rényi (ER): LER(G | n,m) = log
(︁
n2

m

)︁
, which is optimal for the Erdős–Rényi model,

i.e. a uniform distribution over simple labelled graphs of n vertices and m edges.

Uniform encodings can be also used for n and m, i.e. L(n) = log(nmax + 1), where nmax is an

upper bound on the vertex count and L(m) = log(n2 + 1).1 The latter, differently from the

uniform encoding, is optimal when all edges counts are equally probable, and when combined

with the ER model compresses more efficiently graphs that are either very sparse or very dense

as the number of possible graphs with m edges is maximised when m = n2/2. Note that all the

1An alternative is an universal integer code, which is optimal for monotonically decreasing distributions.



5.3. The principles of unlabelled graph compression 135

formulas above apply to directed graphs with self-loops allowed. To modify them for undirected

graphs with or without self-loops, we simply replace n2 with n2 − n or
(︁
n
2

)︁
respectively.

We will collectively refer to any of these encodings as null encodings, paraphrasing the term null

model, which is commonly used in network science to refer to random graph models that reflect

a null hypothesis, i.e. a hypothesis that does not display any particular distinct patterns apart

from satisfying a set of predefined constraints. In our framework, we will make use of a null

model in order to encode low-probability subgraphs that cannot be mapped into the dictionary

(see section 5.4.2), and in practice, we use the ER model for undirected graphs without self-loops,

with uniform vertex and edge count probabilities, that reads:

Lnull(G) := log(nmax + 1) + log
(︂(︃n

2

)︃
+ 1
)︂
+ log

(︃(︁n
2

)︁
m

)︃
. (5.4)

Binary entropy. An important notion that appears in our theoretical analysis is the binary

entropy, i.e. the entropy of a Bernoulli variable with success probability θ. To distinguish it

from the general notion of entropy we write H(θ) = −θ log θ − (1− θ) log(1− θ). It holds that

0 ≤ H(θ) ≤ 1, where the l.h.s equality is satisfied for θ ∈ {0, 1} and the r.h.s. for θ = 1/2.

5.3 The principles of unlabelled graph compression

Problem formulation: Labelled vs unlabelled lossless graph compression Let G

be a graph space, i.e. a space of labelled graphs. In graph compression, we are tasked with

designing a function henc : G → B∗. Observe, that similarly to chapter 4, this is an analysis

problem and falls under the space of spaces setup (see figure 1.2 right). In labelled lossless graph

compression, each graph in G is a distinct element, i.e. two isomorphic graphs G1 ≃ G2 are

considered distinct, and therefore henc should be injective, i.e. henc(G1) = henc(G2)⇒ G1 = G2,

in order to guarantee the existence of a decoder function hdec : B∗ → G,2 for which it holds

that hdec
(︁
henc(G)

)︁
= G, ∀G ∈ G. In unlabelled lossless graph compression, two graphs G1, G2

are considered distinct if and only if they are not isomorphic, and therefore henc should be

isomorphism-injective (GI-injective), i.e. henc(G1) = henc(G2) ⇒ G1 ≃ G2. This is necessary

in order to guarantee the existence of a decoder function hdec : B∗ → G, for which it holds

2Technically speaking, the domain of hdec should be henc[G], i.e. hdec may be undefined for some codewords
in B∗. This detail was avoided for simplicity and with our definition, we imply an arbitrary extension of hdec to
the entire B∗.
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that hdec
(︁
henc(G)

)︁
≃ G, ∀G ∈ G, or in other words the decoder should output a graph

isomorphic to the one originally encoded. Note that from the perspective of labelled graphs,

the compression is lossy. Finally, as we will see in Theorem 5.1 any optimal unlabelled

graph compressor is additionally required to be isomorphism invariant (GI-invariant), i.e.

G1 ≃ G2 ⇒ henc(G1) = henc(G2).

How to design the encoder and decoder functions?

Labelled graph compression amounts to designing a uniquely- decodable code. As we saw in

section 5.2, designing such codes is well understood, and in our case amounts to estimating

the distribution of labelled graphs. However, this result does not straightforwardly apply to

unlabelled graphs, since the encoder function is no longer injective. To overcome this we can

design the encoder as a two-step process with a composition of functions henc = hd-enc ◦ hg-enc.

• In the first step, graphs are mapped to an intermediate representation with a GI-injective

function hg-enc : G→ Z

• In the second step, intermediate representations are mapped to codewords with an injective

function hd-enc : Z → B∗.

We will call hg-enc as the graph encoder, and hd-enc as the distribution encoder. Then, the

decoder will be hg-dec ◦ hd-dec, where hd-dec is the inverse of hd-enc and hg-dec is a function for

which it holds that hg-dec
(︁
hg-enc(G)

)︁
≃ G. Now let us examine each of the two steps separately.

The graph encoder: Designing an optimal hg-enc is quite challenging: GI-invariant and GI-injective

functions are known as complete graph invariants ([Dubois et al., 2021] use the term maximal

invariants) and computing them is is at least as hard as graph isomorphism. Additionally, the

decoder hg-dec needs to be manually designed (contrary to hd-dec, as we will see below) and we

need to make sure that it is efficiently computable. One possible solution is to solve a graph

canonicalisation problem and define hg-enc as a function that returns the same canonical form

for all graphs in an equivalence class, i.e. Z ⊆ G and G ≃ hg-enc(G). In this case, hg-dec can be

the identity function, which is obviously efficiently computable. However, the problem of the

high computational complexity of graph canonicalisation persists. There exist several heuristics

for this that are either efficiently computable but are approximate and canonicalise graphs

with high probability (e.g. the Weisfeiler-Leman algorithm [Weisfeiler and Leman, 1968] or
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GNNs), or exact, but not efficiently computable for all graphs (e.g. the Nauty tool [McKay

et al., 1981, McKay and Piperno, 2014]). However, similarly to graph isomorphism, to date

there is no efficiently computable algorithm that returns a complete graph invariant/canonical

graph form for all graphs.

To address this, we should resort to a necessary compromise. In compression, although it

might seem surprising at first glance, having the property of GI-injectivity is necessary, while

having the property of GI-invariance is not. In particular, a non-GI-injective hg-enc allows two

non-isomorphic graphs to be mapped to the same intermediate representations and therefore

to the same codewords. Then it will be impossible for the decoder hg-dec to reconstruct the

isomorphism class of both of them. On the other hand, GI-invariance can be dropped. This

will result in the possibility of having two isomorphic graphs mapped to different intermediate

representations and therefore to different codewords. This does not prevent the decoder from

mapping these representations to the same isomorphism class and thus it is possible to achieve

zero information loss. Overall, dropping GI-invariance does not threaten the correctness of the

compressor, but as we will see below leads to suboptimal bit rates.

The distribution encoder: Regarding the function hd-enc, since it is injective, we can use the

aforementioned information-theoretic results and design instead a distribution on intermediate

representations qz : Z → [0, 1]. The probabilities can be later translated into codewords using,

e.g. arithmetic coding techniques, as in [Steinruecken, 2015]. The same procedure allows us to

obtain the intermediate representation decoder hd-dec : B∗ → Z for free.

How to optimise the encoder-decoder?

To begin with, as we saw in section 5.2 optimising the distribution encoder amounts to estimating

the probability distribution of the intermediate representations pz. Now the objective of Eq

(5.3) becomes:

Ez∼pz [− log qz(z)] = EG∼pG [− log qz
(︁
hg-enc(G)

)︁
] (5.5)

and minimising the empirical objective amounts to the following problem:

min
qz

1

|D|
∑︂
G∈D

− log qz
(︁
hg-enc(G)

)︁
(5.6)
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Additionally, it s possible to parametrise hg-enc as well and therefore Eq. (5.6) needs to be

adjusted in order to also optimise for hg-enc.

An additional aspect that we need to consider, is that when the encoders are parametric, i.e.

qz(·;φ) and hg-enc(·;ϑ), the decoders hd-dec and hg-dec might also depend on φ and ϑ respectively.

For hd-dec this is always the case when we use entropy coding since both the encoder and

the decoder need to maintain the estimator of the distribution in order to match codewords

to data. For hg-dec, sometimes we can define it in a non-parametric way (as in the case of

graph canonicalisation or graph partitioning - e.g. see Appendix C.2.4) independently of the

parameters of the encoder. In case the decoders do depend on the encoder parameters φ and

ϑ, these need to be stored and transmitted along with the data. Although this is frequently

ignored in the field of neural compression, it is of paramount importance when the number of

parameters, or more precisely their description length L
(︁
(φ, ϑ)

)︁
, is large. In particular, the

empirical objective becomes:

min
φ,ϑ

1

|D|

(︃∑︂
G∈D

− log qz
(︁
hg-enc(G;ϑ);φ

)︁
+ L

(︁
(φ, ϑ)

)︁)︃
, (5.7)

which is also known as the two-part code Minimum Description Length (MDL) principle. This is

similar to the Occam’s razor principle and is reminiscent of the bias-variance or empirical error-

model complexity trade-off. Classical learning theory relates model complexity to generalisation,

i.e. the larger the model complexity the larger the worst-case deviation of the empirical error

from the true error. However, in modern deep learning, this relation is challenged and estimators

modelled with overparameterised neural networks often showcase improved generalisation. In

fact, overparameterisation is commonly argued to be one of the decisive factors for the successful

optimisation and generalisation of NNs with gradient-based methods [Neyshabur et al., 2018, Du

et al., 2019d, Arora et al., 2019, Allen-Zhu et al., 2019, Allen-Zhu et al., 2019, Bubeck and

Sellke, 2021, Belkin et al., 2019, Nakkiran et al., 2020]. This is a pertinent issue for neural

compression as the description length of these models might even end up being larger than that

of the data, unless they undergo a process for model compression themselves (see Appendix

C.3.2). Moreover, it is unclear how to optimise Eq. (5.7) when φ represents the parameters of a

neural network since their description length is usually fixed.
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The benefits of unlabelled graph compression

It is worth explaining here why it is beneficial to compress graphs as unlabelled objects when

the vertex labelling is uninteresting. In particular, we can assume that the labelled graphs

we encounter in practice are sampled as follows. First, an unlabelled graph is sampled from a

distribution pS on equivalence classes (i.e. on the quotient G/ ≃). Following, a vertex labelling

is assigned by sampling uniformly at random from all possible vertex labellings, inducing a

labelled graph distribution pG(G) =
pS(S)
|S| , ∀S ∈ G/ ≃, ∀G ∈ S. It is not hard to show that

the entropy (and as a result the expected description length of an optimal compressor) of the

random variable of unlabelled graphs will be asymptotically smaller than the entropy of the

random variable of labelled graphs by O
(︁
E[log n!]

)︁
bits, where n the number of vertices. This

result can be found in [Choi and Szpankowski, 2012] and is recovered using rate-distortion

theory for invariant tasks in [Dubois et al., 2021].

When doing a compromise on GI-invariance, our optimal compressor will incur a penalty in

its expected description length compared to the optimal compressor that uses a GI-invariant

and GI-injective hg-enc. We quantitatively characterise this penalty which is described by the

following theorem:

Theorem 5.1. Consider a distribution pS over unlabelled graphs S ∈ G/ ≃ and a distribution

pG over labelled graphs G ∈ G such that pG(G) = pS(S)
|S| , ∀S ∈ G/ ≃,∀G ∈ S. Denote the

orbit of a graph G under the isomorphism equivalence relation with Orb(G) = OrbG/≃(G) =

{G′ ∈ G | G′ ≃ G}. Further, consider a compression scheme for unlabelled graphs that first

represents a labelled graph in an intermediate representation using a GI-injective graph encoder

hg-enc : G→ Z and then losslessly compresses intermediate representations using entropy coding

with a distribution model qz : Z → [0, 1]. Denote with pz the pushforward measure hg-enc#pG.

Then, the following holds for the optimal compressor of intermediate representations:

min
qz

Ez∼pz

[︁
− log qz(z)

]︁
−HS∼pS [S] = EG∼pG

[︃
log

(︃ ⃓⃓
Orb(G)

⃓⃓⃓⃓
{G′ ∈ G | hg-enc(G) = hg-enc(G′)}

⃓⃓)︃]︃. (5.8)

Intuitively, this tells us that the larger the number of isomorphic graphs that are mapped to the

same intermediate representation (on expectation) the smaller the penalty that we will incur in

the optimal expected description length. The penalty is zero when hg-enc is GI-invariant and

maximum - O
(︁
E[log n!]

)︁
- when hg-enc is injective, i.e. we perform labelled graph compression,
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which recovers the result of [Choi and Szpankowski, 2012]. Please refer to Appendix C.1.1 for

the proof.

5.4 The Partition & Code (PnC) framework

To showcase the rationale behind our compressor, we will start by discussing the design choices

that apply to both labelled and unlabelled graph compression and subsequently, we will specify

the extra steps, that are specific to unlabelled graph compression, and will be taken to further

reduce the bit rate. First, we will investigate the challenge C2 that is common to both setups.

In neural compression, it is customary to estimate the probability distribution of the data using

deep generative models. However, as already discussed, typically a large amount of data is

required to obtain good estimates, while the true objective demands a joint optimisation of the

description length of the model parameters, along with the description length of the data, a

goal that is currently unknown how to achieve when the model is designed as a neural network.

Dictionary coding

To address this, we will shift our attention from deep generative models to other parametric

distributions that are more amenable to our true objective. In particular, we draw inspiration

from traditional adaptive compressors, and in particular, from dictionary coding [Ziv and Lempel,

1977, Ziv and Lempel, 1978, Welch, 1984, Deutsch, 1996] which underlies some of the currently

most popular compression protocols used in practice, such as zip, gzip, pdf, GIF, PNG and

others, and tokenisation methods (e.g. byte-pair encoding [Gage, 1994]) used by large language

models, such as GPT-3 [Brown et al., 2020].

Instead of strictly modelling all possible dependencies in the graph distribution (which would

entail a heavy parametrisation), dictionary coding identifies frequent patterns of variable size

that dominate the data observations. Subsequently, one can parametrically model only the

dependencies between dictionary patterns (the atoms) and use a generic non-parametric model

for the remainder of the information, which, with high probability, will result in only a small

increase in the overall bit rate. The description length of the model parameters in this case

is dominated by the description length of the dictionary itself. The advantage compared to

other adaptive or neural compressors, is that the dictionary is not only adaptive/learnable but
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has also a variable description length (depending on the atoms that it contains) which we can

optimise.

Partitioning

To adapt this idea for graph compression, it remains to define the nature of the atoms that will

be stored in the dictionary. In text compression and image compression, the dictionary atoms

are strings and image patches respectively. An immediate analogue for labelled graphs is to

define dictionary atoms as sub-matrices of the adjacency matrix. An obvious disadvantage of

this is that forming a dictionary with sub-matrices of arbitrarily labelled graphs might result in

atoms of low frequencies (in other words to a high entropy dictionary) and therefore might not

be amenable to dictionary coding.

To address this, vertex re-ordering (see section 5.7) methods are usually employed in order to

transform the adjacency matrix into a matrix with sub-matrices that are more likely to be

repeatable, which, when paired with traditional dictionary coding algorithms, achieve significant

compression gains.3 This idea is also inspired by traditional compression algorithms, and in

particular, the Burrows–Wheeler transform [Burrows and Wheeler, 1994] that re-orders the

symbols of a sequence in order to make it more amenable to encoders, such as the move-to-front

transform [Ryabko, 1980, Bentley et al., 1986] and run-length-encoding, that take advantage of

contiguous repeated elements in a sequence.

Pairing vertex-reordering with sequence-based dictionary encoding is similar to graph partitioning,

where now instead of sequences, the dictionary elements can be (labelled) subgraphs (main-

diagonal blocks of the adjacency matrix) and cuts, i.e. edges between the vertices of the

subgraphs (off-diagonal blocks). This is the approach we take in this work, where our dictionary

contains subgraphs as atoms. Cuts can be also stored in a dictionary, but since they are less

likely to be repeatable, in our case they are encoded using a generic non-parametric encoding.

It is important to mention here, that many real-world networks display community-structure,

i.e. their adjacency matrices are close to block-diagonal. This allows us to attain important

compression gains by only using a partitioning that uncovers these communities (without the

help of a dictionary) and encodes them with a non-parametric model, suitable for this assumption.

This is theoretically supported by Theorem 5.2.a.
3In the case of labelled graphs, the re-ordering may also be transmitted so as to reconstruct the original

graph.
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Unlabelled subgraphs

To address challenge C1, an ideal graph encoder should ensure that the above steps are performed

in a GI-invariant way. In particular, every pair of isomorphic graphs should admit the same

vertex re-ordering and partitioning. Since this cannot be done in an efficiently computable

way, we propose an alternative that strikes a balance between GI-invariance and computational

complexity. In particular, instead of mapping labelled subgraphs to dictionary atoms, i.e. by

comparing their adjacency matrices for equality, we restrict the dictionary to contain only

non-isomorphic atoms (of arbitrary but fixed vertex ordering) and map unlabelled subgraphs via

graph isomorphism testing. This has a dual purpose. First, it reduces the number of possible

vertex re-orderings that can result in the same representation, and second, it reduces the bit rate

by construction (see Theorem 5.3). The reduction in computational complexity is guaranteed by

bounding the maximum size of the dictionary atoms to a small number k = O(1), i.e. constant

w.r.t. the size of the graphs to be compressed, for which GI is efficiently computable.

In summary, our pipeline consists of three main modules: a partitioning module and a dictionary

module, which collectively constitute the graph encoder, and a distribution encoder module. (a)

The partitioning module is responsible for decomposing the graph into disjoint subgraphs and

cross-subgraph edges (or cuts). (b) The dictionary is a small collection of subgraphs (atoms)

that are recurrent in the graph distribution. The dictionary module maps the partitioned

subgraphs to atoms in the dictionary, allowing us to represent the graph as a collection of

atom indices, non-dictionary subgraphs, and cuts. (c) This representation is given as input to

the distribution encoder that calculates its probability according to an estimator. Finally, the

probability is translated into a bitstream using entropy coding.

Remark. A minor detail that it is appropriate to mention is that the exact construction of

hg-enc and hg-dec when using a partitioning algorithm and a dictionary which maps subgraphs

isomorphically entails some technical steps that relate to the ordering of the vertices of each

subgraph. To avoid overloading the main text with unnecessary details we relegate the discussion

on the exact way to construct these functions to the Appendix C.2.4 and will compromise

with a slight abuse of notation in the following section where we will identify hg-enc with the

partitioning algorithm PART.
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5.4.1 Graph encoder

Partitioning. Consider a graph G = (V , E). The first step of PnC is to employ a partitioning

algorithm PART(·;θ), where θ denote the optional parameters of the algorithm, to decompose

the graph into b disjoint and induced subgraphs:

PART(G;θ) = (H, C) and H = {H1, H2, · · · , Hb}, (5.9)

The subgraphs that a partitioning yields should have the following properties: (1)Hi = {VHi
, EHi
}

with VHi
⊆ V and EHi

= E
⋂︁
VHi
×VHi

, i.e. the subgraphs are induced, (2) VHi
∩VHj

= ∅, ∀i, j ∈

[b], i ≠ j, V =
⋃︁b

i=1 VHi
, i.e. the subgraph vertex sets partition V and (3) C = {VC , EC} is a

b-partite graph containing all the cuts of the partitioning, i.e. VC = V , EC = E −
⋃︁

i EHi
.

Dictionary. Partitioning-based compression methods, such as [Peixoto, 2019], encode the

block adjacency matrix that the partitioning yields using a non-parametric distribution encoder.

Although this is very effective for networks with community structure, it relies on a strong

assumption, while it does not explicitly deal with graph isomorphism. Instead we propose to

exploit regularities in the output of PART using dictionary coding and store the most commonly

occurring subgraphs. Concretely, we define a dictionary D to be a collection of non-isomorphic

graphs (usually connected), called atoms, from some graph universe U:

D = {α1, α2, . . . , α|D|}, where αi = (Vαi
, Eαi

) ∈ U, and αi ̸≃ αj,∀; i ̸= j. (5.10)

As mentioned above, the dictionary mapping is implemented via graph isomorphism using the

following function ψD(·):

ψD(H) =

⎧⎪⎨⎪⎩i, iff ∃ αi ∈ D s.t. αi ≃ H

0, else,
(5.11)

which is a function since by the definition of the dictionary there will be at most one atom

isomorphic to each graph. Finally, our graph encoder function becomes hg-enc(G;ϑ) :=

PART
(︁
G; (θ,D)

)︁
) = (Hdict,Hnull, C), where

Hdict = HψD(H) | H ∈ H,∃α ∈ D s.t. α ≃ HI and Hnull = {H ∈ H | ∀α ∈ D, α ̸≃ H}. (5.12)
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Note that it is unnecessary to preserve the labelling of the vertices of the non-dictionary

subgraphs in Hnull and those of the cut matrix C, and we can instead encode them using block

adjacency matrices (here we slightly abuse notation for simplicity). The order with which the

subgraph block matrices are encoded can be arbitrary but should correspond to that of the cut

block matrices to ensure unique decodability. However, the atom indices of dictionary subgraphs

Hdict can be encoded as a multiset since the dictionary provides us with a way to obtain a

canonical index ordering. All the above are explained in detail in Appendix C.2.4.

The reason for a dual subgraph encoding. The choice for the dual encoding into dictionary

and non-dictionary subgraphs is made for the following reasons: (a) It allows PART to choose

non-dictionary atoms. This is crucial to our approach, since constraining the partitioning to

specific isomorphism classes would significantly complicate optimisation. (b) Further, it enables

us to maintain a small dictionary and avoid storing subgraphs that will be infrequent in the

distribution. Instead, we give the possibility to encode them with a non-parametric model

whenever this leads to larger compression gains.

5.4.2 Distribution encoder

The last step entails compressing G by encoding the output of PART using a probability

distribution, i.e. q
(︁
hg-enc(G;ϑ)

)︁
= q

(︁
PART

(︁
G; (θ,D)

)︁)︁
. The distribution is decomposed as

follows:

q
(︁
PART

(︁
G; (θ,D)

)︁)︁
= q(Hdict,Hnull, C)

= q(Hdict,Hnull)q(C | Hdict,Hnull)

= q(bdict, b)q(Hdict,Hnull | bdict, b)q(C | Hdict,Hnull)

= q(bdict, b)q(Hdict | bdict, b)q(Hnull | Hdict, bnull)q(C | Hdict,Hnull), (5.13)

where b, bdict, bnull are the total number of subgraphs, the number of dictionary subgraphs

and the number of non-dictionary subgraphs in the partition respectively. This corresponds

to a description length L
(︁
PART

(︁
G; (θ,D)

)︁
; q
)︁
= − log q

(︁
PART

(︁
G; (θ,D)

)︁
. Further, we may

parameterise q with a vector of parameters φ.

Number of subgraphs. First, we encode b along with bdict (which uniquely determine bnull). We

use a categorical distribution q(b) for b and a binomial distribution for bdict conditioning on the
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former. The binomial is parameterised by the probability of a “successful” outcome δ, where

1− δ = q(H ∈ D) is the probability of an arbitrary subgraph belonging in the dictionary, and

the outcomes are assumed to be independent:

q(bdict, b;φ) = Binomial(bdict | b;φ)q(b) =
(︃

b

bdict

)︃
(1− δ)bdictδb−bdictq(b), (5.14)

Dictionary subgraphs. The dictionary subgraphs are encoded via their corresponding indices

into the graph dictionary. As we mentioned above, these indices form a multiset (intuitively, a

histogram). We use a multinomial distribution to encode them, by first conditioning on the

number of dictionary subgraphs bdict. As a generalisation of the binomial, the multinomial

distribution is parametrised by the probabilities of each possible outcome, i.e. the probability of

the appearance of each atom, denoted with q(α), and the outcomes are again assumed to be

independent:

q(Hdict | bdict, b;φ) = q(Hdict | bdict;φ) = Multinomial(b1, . . . , b|D| | bdict;φ) = bdict!
∏︂
α∈D

q(α)bα

bα!
,

(5.15)

where bi =
⃓⃓
{ψD(H) ∈ Hdict | ψD(H) = i}

⃓⃓
and

∑︁
i∈|D| bi = bdict.

Non-Dictionary subgraphs. For the non-dictionary subgraphs, we encode their adjacency

matrices independently according to the non-parametric null model of Eq. (5.4):

q(Hnull | Hdict, bnull;φ) = q(Hnull | bnull;φ) =
∏︂

H∈Hnull

qnull(H). (5.16)

Cuts. We encode the cuts conditioned on the subgraphs, also using a non-parametric null

model for multi-partite unidrected graphs similar to [Peixoto, 2013]. Denote the vertex count of

subgraph Hi as ki. Further denote with mc = {m1,1,m1,2, . . . ,mb−1,b} the vector containing the

number of edges between each subgraph pair i, j and mc =
∑︁b

i<j mij. The b-partite graph C

containing the cuts will be encoded hierarchically, i.e. first we encode the total edge count mc,

then the pairwise counts mc and finally, for each subgraph pair, we independently encode the

arrangement of the edges. For each of these cases, a uniform encoding is chosen, following the

rationale mentioned in section 5.2. Hence, calculating the length of the encoding boils down to
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enumerating possible outcomes:

q(C | H;φ) = q(C,mc,mc | H;φ) = q(mc | H;φ)q(mc | mc,H;φ)q(C |mc,mc,H;φ)

=

(︃(︁
1 +

b∑︂
j>i

kikj
)︁
·
(︃
b(b− 1)/2 +mc − 1

mc

)︃
·

b∏︂
j>i

(︃
kikj
mij

)︃)︃−1 (5.17)

We make the following remarks: (a) The encoding is the same regardless of the isomorphism

class of the subgraphs, and the only dependence arises from their number, as well as their vertex

counts. (b) Small cuts are prioritised, thus the encoding has an inductive bias towards distinct

clusters in the graph. (c) Our cut encoding bears resemblance to those used in non-parametric

Bayesian inference for SBMs (e.g., see the section C.2.1 on the baselines and [Peixoto, 2019] for

a detailed analysis of a variety of probabilistic models), although a central difference is that in

these works the encodings also take the vertex ordering into account.

Alternative parametrisations. Observe that when parametrising our distribution we implicitly

make several assumptions (more precisely our estimator will be optimal should these assumptions

hold) that may be weakened. For example, one may assume that dictionary subgraphs are

not sampled independently and model q(bdict | b;φ) with a categorical distribution for each

b and q(b1, . . . , b|D| | bdict;φ) with an autoregressive model. Moreover, the non-dictionary

subgraphs can be modelled with a generative model for a sequence of binary matrices, e.g. a

doubly autoregressive (one for the adjacency and one for the sequence) model, conditioned

on a representation of the histogram Hdict and the scalar bnull. This type of model can be

also used to model the cuts, again conditioning on a representation of Hdict, as well as on a

representation of Hnull. It is evident though, that all these improvements will significantly

increase the description length L(φ), which is non-variable and cannot be optimised. Our

current distribution estimator learnable parameter set is φ =
(︂
δ, {q(b)

}︁bmax

b=bmin
, {q(α)}α∈D

)︂
which

enjoys a small description length by construction, negligible compared to the description length

of the data or the dictionary.

5.4.3 Selecting a hypothesis by minimising the total description length

In order to optimise the two-part MDL objective of Eq. (5.7), we need to define the description

length of the model parameters. First off, we examine the parameters of the graph encoder

ϑ = (θ,D). Importantly, the parameters of the partitioning algorithm θ do not need to
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be transmitted to the decoder, since the graph decoder hg-dec is non-parametric and can be

defined independently of the parameters of the encoder (please see Appendix C.2.4 for the exact

definition of the graph decoder). Therefore, PART can be safely overparameterised (e.g. with a

neural network) and can do all the “heavy-lifting” by selecting subgraphs that will be convenient

for dictionary coding.

Regarding the dictionary, there are two viable choices: (a) If the universe is small enough to

be efficiently enumerable and we assume that the adjacency graphs of the universe are public

(accessible to both the encoder and the decoder), then storing the dictionary amounts to storing

the indices of the atoms in the universe. In this case, a simple non-parametric encoder can

perform a uniform encoding of the size of the dictionary |D| and then a uniform encoding of

the set of |D| indices: L(D) = log |U|+ log
(︁ |U|
|D|

)︁
. (b) On the other hand, when U is too large to

enumerate or non-public, the adjacency matrices of the atoms can be stored one by one, as if

independently sampled from the null-model given in (5.4):

L(D) =
∑︂
αi∈D

Lnull(αi). (5.18)

The latter is the method that we adopt in our implementation since it relies on fewer assumptions.

Finally, the parameters of the distribution encoder φ = φ need to be transmitted to the decoder

as well, but their description length is not variable (see the discussion above), thus it will not

be included in the optimisation objective. In practice, we use a fixed length 16-bit encoding for

each of the learnable parameters.

Putting everything together, in order to encode a graph dataset D sampled i.i.d. from G we

minimise the total description length

min
θ,D,φ

∑︂
G∈D

L
(︂
PART

(︁
G; (θ,D)

)︁
;φ
)︂
+ L(D) (5.19)

5.5 Theoretical Analysis: the compression gains of PnC

The following section performs a comparative analysis of the description length growth rate

of various graph compressors. We theoretically compare PnC against two strong baselines

whose description length can be derived in closed form: (a) Partitioning-only encoding for

unlabelled graphs with code length Lpart. Here, a graph is decomposed into subgraphs and cuts,
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but no dictionary coding is performed and the distribution of subgraphs and cuts is modelled

with a null model, i.e. Lpart(G) = Lnull(H) + Lnull(C|H) (see Eq. (C.7) in the Appendix for

the exact formula). (b) Encodings that do not rely on partitioning and a decomposition of

the graph distribution but model the distribution with a null model directly on the space of

graphs. Our results hold for both the baselines that use a null model on labelled, but also, most

importantly, on unlabelled graphs, such as the Erdős-Renyi model for unlabelled graphs of n

vertices: LER-S(G | n,m) = log |Gn,m/ ≃ | where Gn,m/ ≃ is the set of all unlabelled graphs

with n vertices and m edges. LER-S(G) serves as a lower bound to typical encodings such as that

of Eq. (5.4), but can be impractical to implement due to the complexity of GI. The analysis of

additional baselines, the exact assumptions and formulas for the compared encodings, as well as

all proofs, can be found in the Appendices C.1.2-C.1.4.

Our main theorem shows that, under mild conditions on the underlying graph distribution, the

expected description lengths of the compared encodings are totally ordered:

Theorem 5.2. Consider a distribution p over labelled graphs with n vertices and a partitioning

algorithm that decomposes a graph into b blocks of k = O(1) vertices. Then asymptotically with

n the following hold for an optimal PnC compressor:

EG∼p[L
PnC(G)]

(1b)

≲ EG∼p[L
part(G)]

(1a)

≲ EG∼p[L
ER-S(G)] (5.20)

under the following conditions:

(1a) H̄m− log(k2+1)
k2

)− H̄mij
> 0, where H̄mij

:= 1
b2−b

∑︁b
i ̸=j EG∼p[H

(︁mij

k2

)︁
] and H̄m := EG∼p[H(m

n2 )]

are the expected binary entropy of the cut size mij between subgraphs i and j (averaged over all

subgraph pairs) and that of the total number of edges m, respectively.

(1b) 1− δtrue > 0 and log |D| < log(k2 + 1)+ k2
H̄mi−δtrueH̄

null
mi

1−δtrue
, where H̄mi

:= 1
b

∑︁b
i=1 EG∼p[H

(︁
mi

k2

)︁
]

is the expected binary entropy of the subgraph edges mi averaged over all subgraphs, H̄null
mi

is

the analogue when averaging over non-dictionary subgraphs, δtrue :=
EG∼p[bnull]

b
is the expected

percentage of non-dictionary subgraphs and |D| is the size of the dictionary.

The compression gains are:

EG∼p[L
Part(G)] ≲ EG∼p[L

ER-S(G)]−Θ(n2) and EG∼p[L
PnC(G)] ≲ EG∼p[L

part(G)]−Θ(n)

(5.21)
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Theorem 5.2 provides insights into the compressibility of certain graph distributions given their

structural characteristics. In particular, we can make the following remarks:

Condition (1a) can be satisfied even for very small values of k as long as the graphs possess

community structure. Perhaps counter-intuitively, when k = O(1) we can satisfy the condition

even if the communities have O(n) size by splitting them into smaller subgraphs. This is possible

because, in contrast to the majority of graph partitioning objectives that are based on minimum

cuts, the compression objective attains its minimum when the cuts have “low entropy”. Since

communities that are tightly internally connected have large cuts, H̄mij
and the code length

will be kept small. This is a key observation that strongly motivates the use of partitioning for

graph compression.

Condition (1b) provides an upper bound to the size of the dictionary, which can be easily

satisfied for moderately small values of k as long as δtrue is not close to 1, i.e. we don’t fall back

to a partitioning-based compressor. Observe that the smaller the value of δtrue, the larger the

upper bound for the size of the dictionary. More importantly, the dependence of the compression

gain on the entropy H(D), reveals that dictionary atoms should be frequent subgraphs in the

distribution, confirming our intuition. The bounds also show that, since the probabilities of the

atoms are estimated from the data, PnC does not need to make assumptions about the inner

structure of the subgraphs and can adapt to general distributions.

We lastly provide theoretical evidence on the importance of encoding dictionary subgraphs as

isomorphism classes instead of adjacency matrices, which is related to challenge C1. Theorem 5.3

shows that, if isomorphism is not taken into account, the extra number of bits that we will incur

will grow linearly with the number of vertices. Formally, (proof in Appendix C.1.5):

Theorem 5.3. Let p be a graph distribution on labelled graphs of n vertices that is invariant to

isomorphism, i.e., p(G′) = p(G) if G ≃ G. Moreover, consider any algorithm that partitions G

in b subgraphs of k vertices. Denote by LPnC-G and LPnC-S the description length of an optimal

PnC compressor that maps labelled subgraphs to dictionary atoms by comparing their adjacency

matrices, and that of an optimal PnC compressor that maps unlabelled subgraphs to dictionary

atoms via graph isomorphism testing, respectively. The following holds:

EG∼p[L
PnC-S(G)] ≈ EG∼p[L

PnC-G(G)]− n(1− δtrue) log k, (5.22)
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under the condition that almost all graphs in the dictionary are rigid 4 and δtrue :=
EG∼p[bnull]

b
.

Importantly, the compression gains implied by the theorem hold independently of the size of

the dictionary, applying e.g. also when the dictionary is equal to the universe and contains all

graphs of size k (which amounts to the traditional partitioning baselines). We refer the reader

to section 5.8, where both key theoretical findings are reflected in the experimental results.

5.6 Optimisation and learning algorithms

We turn our focus to learning algorithms for the optimisation of the MDL objective (5.19). The

following sections explain how each parametric component of PnC is learned.

Distribution encoder parameters φ. The distribution encoder is parametrised as follows:

q(αi) and q(b) are parametrised by real-valued learnable variables that are converted into

categorical distributions over the dictionary atoms and the number of vertices respectively, using

a softmax function. Similarly, δ is parametrised by a real-valued learnable variable converted to

a probability via the sigmoid function.

Dictionary D. Let U = {α1, α2, . . . α|U|} be a practically enumerable universe and define

x = (x1, x2, . . . , x|U|) as

xi =

⎧⎪⎨⎪⎩1 if αi ∈ D

0 otherwise.

Thus, xi indicates whether D contains subgraph αi. Now, optimising for the dictionary is

equivalent to finding the binary assignments for x that minimise (5.19). To circumvent the

combinatorial nature of this problem, we apply the continuous relaxation x̂i = σ(ξi), ∀i ∈

{0, 1, . . . , |U|}, where σ is the sigmoid function, ξi are learned continuous variables, and x̂i ∈ [0, 1]

a fractional alternative to xi. Appendix C.2.2 shows how (5.19) can be re-written using x and

optimised by using the surrogate gradient w.r.t. x̂.

It is important to note that, since most subgraphs αi will be never encountered in the graph

distribution, we build the universe adaptively during training, by progressively adding the

different graphs that the partitioning algorithm yields. Our universe contains subgraphs of size

up to k = O(1), in order to ensure that the isomorphism testing can be efficiently computed.

4A rigid graph has only the trivial automorphism.
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Parametric graph partitioning algorithm. Finding the graph partitions that minimise (5.19)

in principle requires searching in the space of partitioning algorithms. Instead, we constrain this

space via a differentiable parametrisation that allows us to perform gradient-based optimisation.

Currently, learning to partition is an open problem, as to the extent of our knowledge known

neural approaches do not guarantee that the subgraphs are connected [Karalias and Loukas,

2020] or/and require a fixed number of clusters [Wilder et al., 2019, Nazi et al., 2019, Bianchi

et al., 2020].

Our Neural Partitioning is a randomised algorithm parametrised with a GNN. When applied

to a graph, the GNN outputs a random (H, C) together with a corresponding probability

pGNN(H, C | G;θ) and training is performed by estimating the gradients w.t.t. θ with RE-

INFORCE [Williams, 1992]. Our algorithm proceeds by iteratively sampling (and removing)

subgraphs from the graph until it becomes empty. At each step t we select a subgraph Ht, by

first sampling its vertex count kt, and subsequently sampling at most kt vertices. To guarantee

connectivity, we also sample the vertices iteratively and mask out the probabilities outside

the pre-selected vertices’ neighbourhoods. The complexity of the algorithm is O(n), where

n the number of the vertices of the graph. Please refer to Appendix C.2.3 for an in-depth

explanation of the algorithm and relevant implementation details. We stress that we mainly

consider this algorithm as a proof of concept that we ablate against other non-parametric

partitioning algorithms. A plethora of solutions can be explored in a parametric setting and we

anticipate further work in this direction in the future.

Final MDL objective. Given a dataset D, we train all components by minimising the

description length:

L(D) =
∑︂
G∈D

E(H,C)∼pGNN(H,C|G;θ)[L
(︁
(H, C);x,φ

)︁
] + L(D;x). (5.23)

Taking the expectation over the GNN output we calculate the gradients as follows:

∇φL(D) =
∑︂
G∈D

E
[︂
∇φ L

(︁
(H, C);x,φ

)︁]︂
∇x̂L(D) =

∑︂
G∈D

E
[︂
∇x̂ L

(︁
(H, C); x̂,φ

)︁]︂
+∇x̂ L(D; x̂),

∇θL(D) =
∑︂
G∈D

E
[︂
L
(︁
(H, C);x,φ

)︁
∇θ ln p

GNN(H, C | G;θ)
]︂
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5.7 Related Work

Engineered codecs. The majority of graph compressors are not explicitly designed as

probabilistic models, but rely on handcrafted encodings optimised to take advantage of domain-

specific properties of e.g., WebGraphs [Vigna and Boldi, 2004], social networks [Dhulipala et al.,

2016, Apostolico and Drovandi, 2009, Boldi et al., 2011], and biological networks [Peshkin, 2007].

A common idea in these approaches is vertex re-ordering [Vigna and Boldi, 2004, Lim et al.,

2014, Dhulipala et al., 2016, Apostolico and Drovandi, 2009, Boldi et al., 2011, Chierichetti et al.,

2009, Claude and Navarro, 2010, Rossi and Zhou, 2018], where the adjacency matrix is permuted

in such a way that makes it “compression-friendly” for mainstream compressors of sequences,

such as gzip. The algorithms identifying the re-orderings are usually based on heuristics taking

advantage of specific network properties, e.g., community structure. Another recurrent idea is

to detect or use predefined frequent substructures (e.g., cliques) to represent more efficiently

different parts of the graph via grammar rules [Maneth and Peternek, 2016]. Most of these

approaches implicitly make rigid assumptions about the underlying graph distribution and are

not adaptive, but strive to find a balance between compression ratios and fast operations on the

compressed graphs. Thus, despite their practical importance, they are less relevant to our work.

A comprehensive survey can be found in [Besta and Hoefler, 2018].

Theory-driven approaches. Several works have contributed to the foundations of the

information content and the complexity of graphs [Naor, 1990, Choi and Szpankowski, 2012,

Trucco, 1956a, Trucco, 1956b, Körner, 1973, Turán, 1984, Dehmer, 2008, Dehmer et al.,

2009, Mowshowitz and Dehmer, 2012]. However, few works have attempted to model the

underlying graph distribution. Perhaps the most outstanding progress has been made for graphs

modelled by the Stochastic Block Model (SBM) [Holland et al., 1983, Rosvall and Bergstrom,

2008, Karrer and Newman, 2011, Peixoto, 2012, Peixoto, 2013, Peixoto, 2017, Peixoto, 2019],

where community structure is prevalent. Although originally invented for clustering and network

analysis purposes, these approaches can be seamlessly used for compression since they are random

graph models with explicit likelihood computation. In fact, as we argue in this work, virtually

any graph clustering algorithm can be used successfully for compression, by defining codewords

corresponding to a community-based random graph model. However, as our experiments confirm,

such approaches are less effective at compressing graphs that do not contain clusters.

Likelihood-based neural approaches. Any generative model that can provide likelihood
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estimates in a finite sample space can be used for lossless compression. As a result, a plethora

of likelihood-based neural compressors have been recently invented, ranging from autoregressive

models for text [Schmidhuber and Heil, 1996, Mahoney, 2000, Cox, 2016, Goyal et al., 2019] and

images [van den Oord et al., 2016, Mentzer et al., 2019] to latent variable models [Townsend et al.,

2019, Kingma et al., 2019, Townsend et al., 2020, Ruan et al., 2021, Severo et al., 2022] (paired

with bits-back coding [Wallace, 1990, Hinton and Van Camp, 1993] and Asymmetric Numeral

Systems - ANS [Duda, 2013]), normalising flows [Ho et al., 2019, Hoogeboom et al., 2019, Tran

et al., 2019, van den Berg et al., 2021] and most recently, diffusion-based generative models

[Kingma et al., 2021, Hoogeboom et al., 2022]. However, the vast majority of current graph

generators lack the necessary theoretical properties an effective graph compressor should have:

they compute probabilities on labelled graphs instead of isomorphism classes by resorting to a

heuristic ordering [Jin et al., 2018b, Li et al., 2018, You et al., 2018, Liu et al., 2018, Liao et al.,

2019, Dai et al., 2020, Shi et al., 2020, Luo et al., 2021] (in general this will be suboptimal unless

we canonicalise the graph/solve graph isomorphism, while different orderings will have non-zero

probabilities, hence we will incur compression losses), and/or do not provide a likelihood [Cao and

Kipf, 2018, Yang et al., 2019, Bojchevski et al., 2018, Niu et al., 2020, Liu et al., 2021]. Recently,

[Dubois et al., 2021] developed a relevant framework for invariant compression using rate-

distortion theory, but its instantiation and optimisation cannot guarantee that non-isomorphic

graphs will not be mapped to the same codeword.

Generative models are usually parameter inefficient while compressing them (especially during

training) is a challenging problem [Bird et al., 2021]. Note that this is significantly different than

compressing neural classifiers since the capacity to infer the likelihood up to high precision needs

to be retained. Therefore, these approaches can have diminishing (or even negative) returns

when the dataset size is not large enough. In contrast, by optimising the total description length,

we design a compressor that is practical even for small datasets, while the learned dictionary

makes our compressor interpretable.

Other related work includes using compression objectives paired with heuristic algorithms for

downstream tasks, such as motif finding [Ketkar et al., 2005, Bloem and de Rooij, 2020] and graph

summarisation [Koutra et al., 2014, LeFevre and Terzi, 2010], lossy compression/coarsening

[Nourbakhsh et al., 2015, Loukas and Vandergheynst, 2018, Loukas, 2019, Garg and Jaakkola,

2019, Dong and Sawin, 2020, Jin et al., 2020], and graph dictionary learning in the context of

sparse coding [Zhang et al., 2012, Vincent-Cuaz et al., 2021].
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5.8 Results

We evaluate our framework in a variety of datasets: small molecules, proteins and social

networks [Yanardag and Vishwanathan, 2015, Irwin et al., 2012b, Morris et al., 2020a, Borgwardt

et al., 2005, Helma et al., 2001]. Across all methods, we assume an optimal entropy coder that

attains the entropy lower bound (this is often realistic since modern entropy coders asymptotically

approach it) to evaluate the expressive power of each model independently of the coder. We

measure the description length of the data as their negative log-likelihood (NLL) under each

probabilistic model, as well as the total description length by adding the cost of the parameters

which need to be transmitted to the decoder (see Appendix C.4 for details).

Baselines. We aim to assess representative approaches across the entire spectrum of graph

probabilistic models, i.e., from generic uninformative non-parametric distributions to overparam-

eterised neural compressors. We consider the following types of compressors: (a) Null models.

We select the uniform, the edge list model and the Erdős-Renyi model (see section 5.2). (b)

Partitioning-based: Non-parametric methods that aim at grouping vertices in tightly-connected

clusters. They can be used for any type of sparse matrix [Chakrabarti et al., 2004] and are based

on the assumption that there exists a hidden community structure in the graph. The partioning

algorithms used are SBM fitting [Peixoto, 2012, Peixoto, 2013, Peixoto, 2017, Peixoto, 2019], the

Louvain algorithm [Blondel et al., 2008] and Label Propagation clustering[Raghavan et al., 2007].

The encoding we use to encode the clusters corresponds exactly to the SBM assumptions, hence

the partitioning-based results are always superior for this approach. (c) Likelihood-based neural

compressors. As with any likelihood-based model, graph generative models can be transformed

into graph compressors. We evaluate the original GraphRNN [You et al., 2018] and GRAN [Liao

et al., 2019] networks, as well as smaller instantiations that have undergone model compression

using the Lottery Ticket Hypothesis algorithm [Frankle and Carbin, 2019].

Results. Tables 5.1 and 5.2 report the compression quality of each method measured in terms

of the average number of bits required to store each edge in a dataset (bpe). We present

four variants of PnC, differing on the type of partitioning algorithm used [Raghavan et al.,

2007, Blondel et al., 2008, Peixoto, 2019]. We report separately the cost of compressing the

data as well as the total cost (including the parameters). Several observations can be made with

regard to the baselines:

First off, off-the-shelf likelihood-based neural approaches are poor compressors due to failing to
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Table 5.1: Average bits per edge (bpe) for molecular datasets. First, Second, Third

Method
type

Graph type Small Molecules

Dataset name MUTAG PTC ZINC

data total params data total params data total params

Null
Uniform (raw adjac.) - 8.44 - - 17.43 - - 10.90 -
Edge list - 7.97 - - 9.38 - - 8.60 -
Erdős-Renyi - 4.78 - - 5.67 - - 5.15 -

Partitioning SBM-Bayes - 4.62 - - 5.12 - - 4.75 -
(non-parametric) Louvain - 4.80 - - 5.27 - - 4.77 -

PropClust - 4.92 - - 5.40 - - 4.85 -

Neural GraphRNN 1.33 3338.21 388K 1.57 1394.59 389K 1.62 43,16 388K
(likelihood) GRAN 0.81 12557.75 1460K 2.18 5269.82 1470K 1.30 157.7 1461K

GraphRNN (pruned) 1.95 12.39 1.08K 2.16 6.71 1.10K 1.79 2.02 1.90K
GRAN (pruned) 2.59 24.56 2.23K 4.31 14.00 2.36K 3.26 3.47 1.69K

PnC PnC + SBM 3.81 4.11 49 4.38 4.79 155 3.34 3.45 594
PnC + Louvain 2.20 2.51 47 2.68 3.14 166 1.96 1.99 196
PnC + PropClust 2.42 3.03 63 3.38 4.02 178 2.20 2.35 726

PnC + Neural Part. 2.17±0.02 2.45±0.02 46±1 2.63±0.26 2.97±0.14 143±31 2.01±0.02 2.07±0.03 384±105

Table 5.2: Average bits per edge (bpe) for social and protein datasets. First, Second, Third

Method
type

Graph type Biology Social Networks

Dataset name PROTEINS IMDB-B IMDB-M

data total params data total params data total params

Null
Uniform (raw adjac.) - 24.71 - - 2.52 - - 1.83 -
Edge list - 10.92 - 8.29 - - 7.74 -
Erdős-Renyi - 5.46 - - 1.94 - - 1.32 -

Partitioning
(non-parametric)

SBM-Bayes - 3.98 - - 0.80 - - 0.60 -
Louvain - 3.95 - - 1.22 - - 0.88 -
PropClust - 4.11 - - 1.99 - - 1.37 -

Neural
(likelihood)

GraphRNN 2.03 156.99 392K 1.03 132.27 395K 0.72 127.84 392K
GRAN 1.51 607.96 1545K 0.26 488.88 1473K 0.17 475.13 1467K
GraphRNN (pruned) 2.63 3.76 2.56K 1.43 1.92 1.28K 0.91 1.39 1.28k
GRAN (pruned) 4.28 5.11 1.78K 0.84 1.75 2.38K 0.55 1.41 2.31K

PnC PnC + SBM 3.26 3.60 896 0.50 0.54 198 0.38 0.38 157
PnC + Louvain 3.34 3.58 854 0.96 1.02 202 0.66 0.70 141
PnC + PropClust 3.42 3.68 866 1.45 1.64 241 0.93 1.04 178

PnC + Neural Part. 3.34±0.25 3.51±0.23 717±61 1.00±0.04 1.05±0.04 186±25 0.66±0.05 0.72±0.05 178±14

address challenge C2. These models exhibit an unfavourable trade-off between the data and

model complexity, often requiring significantly more bpe than the null models. Although model

compression techniques can alleviate this tradeoff (especially for larger datasets, e.g., pruned

GraphRNN on ZINC), in most of the cases the compression ratios required to outperform

PnC are significantly higher than the best that have been reported in the literature (See Table

C.4 in the Appendix). Perhaps more importantly, it is unclear how to optimise the model

description length during training (one of the few exceptions is [Havasi et al., 2019]) and usually

model compression might be tedious and is based on heuristics [Han et al., 2016, Louizos et al.,

2017, Han et al., 2015, Hinton et al., 2015]. See Appendix C.3.2 for more details and additional

experiments.

In addition, as expected from Theorem 5.2.a, non-parametric clustering algorithms work well
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Figure 5.2: PnC + Neural Part. - Most probable graphs in the IMDB-B dataset (left) and the
attributed MUTAG dataset (right).

when the dataset has a strong community structure, but are not a good choice for datasets with

repetitive substructures. For instance, the best clustering algorithm requires 2.4× more bpe for

ZINC than the best PnC. PnC variants achieve the best compression in all datasets considered.

This verifies Theorem 5.2.b, since the learned dictionaries are relatively small, and confirms

our hypothesis that our framework is sufficiently flexible to account for the particularities of

each dataset. As seen, neural partitioning performs in every case better, or on par with the

combination of PnC with the Louvain algorithm. However, in the social network datasets,

the combination of PnC with SBM achieves the best performance. This occurs because these

networks fit nicely with the SBM inductive bias (which as a matter of fact is exactly that of

low-entropy cuts), and most importantly, due to the fact that the clusters recovered by the SBM

are small and repetitive, which makes them ideal for the PnC framework. We also observe that

there is room for improvement for the neural partitioning variant, and hypothesise that a more

powerful parametrised algorithm can be designed. Since learnable partitioning is still an open

problem, we leave this research direction to future work.

Fig. 5.2 shows the most likely dictionary atoms for the IMDB-B and the MUTAG dataset (also

including attributes - Appendix C.3.3 provides additional experiments). Observe that cliques

or near-cliques and typical molecular substructures, such as carbon cycles and junctions are

recovered for social networks and molecules respectively. This clearly highlights the connection

between compression and pattern mining and provides evidence for potential applications of our

framework.



6
Discussion

In the following and final chapter of the thesis, we will summarise our contributions to the fields

of graph machine learning and geometric deep learning and we will pinpoint the crux of the

problems we encountered and the main axes that have driven this research. Additionally, we

will review the impact that our research has had both in terms of applications and in terms of

the related ideas that emerged after our work. Finally, we will discuss potential ideas that we

anticipate to push forward our understanding of the problems considered.

6.1 Main contributions & takeaways

Summary of main results. The unifying element that bridges our contributions is the

problem of approximating functions on graphs. In its most general form, addressing it amounts

to providing an answer to the following question: Consider a target function f ∗ : X → Y ,

where at least one of X ,Y is a set of graphs attributed with vertex and/or edge signals, i.e.

G ⊆ {(V , E ,uV ,uE) | V ⊂ N, E ⊆ V × V ,uV ∈ RV×dv ,uE ∈ RE×de} and a distribution p on

X . How can we design a function h that approximates f ∗ up to a desired precision with high

probability, using only a finite sample of data?. In section 1.3 we provided formal specifications

of this concept and identified different problems that can be encapsulated therein, while in

section 1.4 we presented the common principles that the designer should follow to succeed in

the desired task.

In chapter 3 we analysed the first popular instance of the problem, the case of a fixed graph

topology (V , E), which finds applications in fields ranging from network science (network analysis

and network dynamic signals) to biomedical imaging, computer graphics and 3D computer

157
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vision (shape modelling), where the latter is the one we focus on. We saw that treating the

problem with many established graph function approximation methodologies is limiting in

terms of the functions that can be expressed, while on the other end, treating it as a function

approximation problem on real coordinate spaces comes with an important cost in computational

complexity and with weaker inductive biases. To address the above, we drew inspiration from

shift-equivariance and convolutions on grids and proposed a permutation-sensitive graph neural

network (GNN) that overcomes the expressivity issues of vanilla permutation-invariant GNNs

(isotropy), while being computationally efficient and maintaining the desirable inductive bias of

locality.

In the following chapters 4 and 5, we moved to the general problem formulation, where the

datapoints are of variable graph topology, with the applications spanning multiple scientific

fields, including chemistry, biology and social sciences, and considered analysis problems, i.e.

when the input space is a space of graphs and the output space is typically a subset of a

real coordinate space. In chapter 4 we analysed the problem of approximating GI-invariant

functions, i.e. functions that always evaluate to the same output for every pair of isomorphic

graphs, and saw that this constraint unless allowed to be violated, imposes a fundamental

tradeoff between expressivity and computational complexity. To address this, we proposed to

harness the power of graph substructures in the form of symmetry-breaking weighting functions

incorporated into vanilla message-passing GNNs and benefited from provable improvements in

expressivity, controllable increase in computational complexity, as well as a strong inductive

bias that empirically improved generalisation.

Finally, in chapter 5, we analysed the problems of graph compression, an important, yet under-

explored topic in information theory, and saw that it is a particular case of an approximation

problem of GI-injective functions, i.e. functions that always evaluate to different outputs for

every pair of non-isomorphic graphs. In addition, we showed that when compressing unlabelled

graphs, optimality imposes an additional constraint, that of GI-invariance, which revealed

another tradeoff, now between compression quality and computational complexity. To address

this, first, we reformulated the problem as regularised distribution estimation and then we

proposed an efficient (w.r.t. both time complexity and model size) estimator based on dictionary

coding with theoretically provable and empirical compression gains.
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Conclusions. The following collective conclusions can be derived from the research questions

we investigated.

• The problem of function approximation on graphs is diverse and different instances thereof

will lead to fundamentally different constraints for the target function, as well as the

designed hypothesis. Although the constraints of certain instances of the problem entail

inevitable trade-offs (see below), others frequently lead to great simplifications and give

us more room to approach optimality in an efficient way. Except for signals on a fixed

graph, other notable examples for which this is true, are the space of asymmetric graphs,

which we know can be efficiently canonicalised, or molecular graphs, which are frequently

equipped with a canonical ordering (canonical SMILES [Weininger et al., 1989]).

• Graph isomorphism has a multifaceted influence on general graph function approximation

problems. Whenever our target function is not known to belong to any special instance,

isomorphic graphs will be generally considered indiscernible. Although at first glance,

graph discrimination seemed to be of mainly theoretical interest, it turned out to reveal

fundamental limits in universal graph function approximation, but also in optimally

computing graph properties that are known to be of practical relevance in real-world tasks.

• Due to the above, GI-invariance, computational complexity and expressivity are tightly

linked. Obtaining improvements in one of the three dimensions typically requires trading

one of the other two, and to date, it is unknown what is the optimal trade-off (the Pareto

front) and how to attain it. This will require answering deep questions in graph theory,

such as “Can we completely characterise the set of graphs that can be distinguished in

linear time”?

• Nevertheless, the above discussion excludes two important desiderata of function approxi-

mation. Recall the definition: the target function needs to be approximated up to a desired

precision and with high probability. In other words, it is acceptable for our approximator

to make small mistakes on data that are rarely encountered. Considering that the funda-

mental trade-offs above arise from graphs that, under reasonable assumptions, will have

low probability [Babai et al., 1980], we should not be disheartened.

• The misalignment between our true desiderata and the concepts that are currently deeply

investigated, calls for a (at least partial) paradigm shift. In particular, the fact that the
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vast majority of the graphs in the datasets we experiment with, are WL-distinguishable,

implies that, in this context, graph discrimination can be achieved in linear time. It is,

therefore, necessary to examine the behaviour of our function approximators in these

regimes and w.r.t. our desiderata, i.e. generalisation. For example, under the condition of a

particular distribution of graphs (that can be discriminated in linear time, e.g. asymmetric

graphs), what are the fundamental limits of computing or approximating certain graph

properties, and how do they compare with the unconditional case? How can we benefit

from learning, i.e. will these limits be also reflected in sample complexity?

• A parallel line can be drawn between graph classification/regression and graph compres-

sion/graph generative models. We saw that in practical problems where GI-invariance

is necessary (the former case), linear time algorithms can achieve graph discrimination

with high probability. Similarly, in practical problems where GI-injectivity is necessary

(the latter case), linear time algorithms can achieve GI-invariance [Babai and Kucera,

1979] with high probability. Therefore, similar questions to the ones above can be asked

here, where now we are interested in the generalisation of such algorithms in distribution

estimation problems.

• Finally, in the works presented in this thesis, our choices are driven by expressivity

considerations and the constraints of the target function, but also by task-dependent

inductive biases (anisotropy in chapter 3, substructures in chapters 4, 5 and community

structure in chapter 5). Although in terms of generalisation, these are supported by

intuitive and empirical arguments, their success (or lack thereof, potentially in other cases),

advocates their theoretical investigation, in line with the aforementioned paradigm shift.

6.2 Impact & the road ahead

Learning on graph signals & spiral convolutions Our findings discussed in chapter 3

have been corroborated by subsequent works that used variations of spiral convolutions for

various shape modelling tasks, both for shape analysis and synthesis. Some indicative examples

include 3D computer vision and graphics applications, such as predicting shape correspondences

and facial expression classification [Gong et al., 2019], hand pose estimation [Kulon et al., 2020],

prediction of human-scene interaction [Hassan et al., 2021], body and cloth reconstruction from
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single-images, [Jiang et al., 2020] and facial expression animation [Potamias et al., 2020]. Other

examples in the field of 3D medical imaging include, genetic syndrome diagnosis [O’Sullivan

et al., 2022, Mahdi et al., 2022a], demographics prediction from facial structure [Mahdi et al.,

2021a, Mahdi et al., 2021b, Mahdi et al., 2022a], ear cartilage prediction for reconstructive

surgery [Sullivan et al., 2020] and analysis of brain morphology of Alzheimer’s disease patients

[Azcona et al., 2021]. A subsequent publication showed improved empirical performance using

soft permutations [Gao et al., 2022], while in [Chrysos et al., 2020, Chrysos et al., 2021] we

showed significant improvements using polynomial approximators to instantiate Eq. (3.2).

Regarding learning on signals supported on a fixed graph, we anticipate further research beyond

shape modelling and more sophisticated weight-sharing mechanisms, building on the framework

of permutation-sensitive GNNs. In particular, capitalising on the universal approximation results

of [Loukas, 2020] and in absence of the necessity to preserve GI-invariance, the challenging

question that remains in this topic is how to design unique vertex identifiers that are flexible

and can generalise well. Several of the positional encoding methods, such as the ones discussed

in section 4.7.1, might prove appropriate for this objective.

Finally, regarding meshes of arbitrary topology, we already saw in section 3.4.1 that important

progress has already been achieved. At the same time, several methods have been recently

proposed for geometric graphs, such as 3D conformations of molecules [Satorras et al., 2021,

Schütt et al., 2021, Klicpera et al., 2020] and followed by relevant theoretical arguments

[Joshi et al., 2022]. These results provide solutions to similar challenges as the ones that we

encounter when learning on meshes, such as permutation invariance and invariance to euclidean

transformations. However, discretisation invariance is a particularly challenging question that

current research has not been able to rigorously answer so far. Considering that meshes are

simple depictions (to be precise, lossy representations) of reality, it is natural to believe that

discretisation invariance should be studied through the lens of the underlying continuous surface,

which can also simplify synthesis tasks (e.g. by synthesising the parameters of a continuous

function). The large body of literature on implicit surfaces that we saw in section 3.4.1, as

well as the promising results of continuous neural PDE solvers/continuous simulators [Kovachki

et al., 2021b] provides us with positive indications of this direction.

Learning on graph spaces & graph substructure networks As we discussed in section

4.7.1, following our work, the concept of subgraphs was studied in several papers, as a means of
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improving the expressivity of GNNs (see paragraph “Subgraph GNNs”), establishing them as a

popular research theme. In addition, observing the empirical performance of the architectures

proposed in many of these works, subgraphs are verified to be an appropriate inductive bias for

many real-world graph-level analysis tasks (e.g. for molecular property prediction substructure-

oriented methods are among the best performing), while recently they have been also used to

improve the performance of graph generative models [Vignac et al., 2022, Boget et al., 2022].

Moreover, our work posed important theoretical research questions (e.g. regarding substructure

selection, comparisons with k-WL tests and exact expressivity quantification) that sparked the

interest of fellow researchers in the community and were partially addressed by future works

[Barceló et al., 2021, Papp and Wattenhofer, 2022]. Overall, GSN currently serves as a strong

baseline and an important reference point in the field of GNN expressivity.

As we saw in section 4.2 substructure-related information is one of the many categories of graph

properties that are known to be closely related to real-world tasks, while others (e.g. distance

encodings, or community-related information, implicitly conveyed by spectral encodings) have

also been incorporated into modern GNNs and demonstrated strong empirical generalisation.

This naturally poses the question if such information can be discovered in a data-driven manner

(as is customary in many ML application domains). Having established the inability of vanilla,

and sometimes modern, GNNs to optimally compute these properties, we envision that future

research endeavours will attempt to push our knowledge forward w.r.t. the ability to do

distribution-dependent approximations. As we saw in the previous section, this entails first

theoretically investigating the limitations of the current architectures, but in the context of

practical operating regimes.

Additionally, by departing from the strict requirements of expressivity and graph discrimination,

we envision new algorithmic approaches to emerge and possibly achieve better invariance-

complexity-generalisation trade-offs. Some ideas include algorithms with potentially high

worst-case complexity, but variable runtime (in line with most practical solvers of graph-related

problems), or with variable GI-invariance, e.g. with guaranteed invariance for easy instances,

such as asymmetric graphs, but with potentially GI-sensitive output for hard instances. In this

endeavour, it will be once again helpful to draw inspiration from other sub-fields of theoretical

computer science, such as distributed computing and combinatorial optimisation (in particular

approximation and randomised algorithms), since many of the problems we encounter when

designing GNNs are disguised versions of problems that have re-appeared in the past.
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Graph compression & graph generative models. Furthermore, we anticipate further

practical advancements in the topic of graph compression. Our work marked the first step

in the topic of neural compression of (unlabelled) graphs and there are still deep questions

that wait to be answered, such as how to achieve better trade-offs between GI-invariance and

computational complexity. Additionally, in the process of developing this work, we uncovered

two other fundamental problems: First, that of neural partitioning, which is a hard combinatorial

optimisation problem, that currently has not received as much attention as others in the same

category (TSP, SAT, maximum clique etc.).

Second, as we have extensively discussed in chapter 5 and section 5.3, we faced a universal

problem in neural compression: that of minimising the description length of the parametric

estimator. In our case, we addressed it by using an estimator with a variable description length

(due to the dictionary), but at the expense of expressivity and in turn, potentially, optimality.

Given the remarkable success of neural generative models as distribution estimators, in the

future we expect more algorithms for model compression in the same spirit with [Havasi et al.,

2019] so that neural networks can be assigned a variable and optimisable with gradient-based

methods description length. Moreover, we expect similar attempts to be proposed for (neural)

distribution estimators in single massive graphs, instead of sets of graphs as in our case, where

scalability is a pertinent issue.

Finally, we hope that the understanding we obtained by investigating graph compression, w.r.t.

random graph models can influence the research of graph generative models. In particular,

initially in the literature, GI-sensitive generative models were proposed, with this being considered

as a disadvantage, while, lately, methods for GI-invariant models were successfully implemented.

However, to achieve the latter in a computationally efficient way, GNNs are used, and these

inevitably come with the expressivity (and possibly generalisation) limits that we have seen.

In our work, we argue that if the vertex ordering is irrelevant, as with most benchmarks we

see in practice (e.g. molecule generation), using a distribution estimator on labelled graphs is

going to be wasteful in compression terms, even if the estimator is GI-invariant, and instead

a distribution on isomorphism classes should be estimated. This calls to possibly re-think

GI-sensitive generative models, or to be more precise, models that GI-invariance holds with

high probability, which is a trade-off reminiscent of the ones we have to make in the GNN

expressivity/graph analysis literature. Given the above, we expect that the answers provided to

the fundamental questions of the two topics may converge in the near future.
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A
Appendix to chapter 3

A.1 Implementation Details

Open surfaces. Looking more closely into the algorithmic procedure of section 3.3.2, one can

observe that the inductive condition in Step 3 might not be satisfied for any of the remaining

vertices of the current ring. This happens for open surfaces/meshes with boundaries (i.e. when

the l.h.s. of Eq. (3.4) is satisfied with equality). To address this, whenever the inductive

condition is not satisfied in the ring Rℓ+1, i.e. when the spiral intersects the boundary, we

continue the traversal from the remaining neighbour of the initial ring vertex iri+1 (e.g. the

vertex i1 in the first ring) that we have not visited so far. Then we proceed again by using

the inductive rule until the entire ring is visited. To ensure that the spiral orientation will be

consistent, the vertices added after the boundary intersection are placed into τi in reverse order

(and optionally a dummy vertex that indicates zero-padding is inserted right after the vertex on

which the intersection happened). For the same reason, in Step 4, it is possible that the first

and last vertex of a ring do not have an additional common neighbour. In this case, we look for

a common neighbour between the first and the second vertex or the second and the third and

so on and so forth.

Network architectures and hyperparameters. We denote with SCd,ρ,M a spiral convolution

of width d using ρ-hop spiral shift operators computed on the mesh M , followed by an element-

wise non-linearity σ(·). Additionally, we denote with DSr,M and USr,M a downsampling (pooling)

and an upsampling (unpooling) layer, where the coarsening is applied on mesh M , which

reduces or increases, respectively, the mesh size by a factor r. Finally, we denote with FCd a

211



212 Appendix A. Appendix to chapter 3

fully connected linear layer of width d, and with |Vlast| the number of vertices after the last

downsampling layer. The simple variant for the COMA and DFAUST datasets is the following:

hENC(u) = FCdout ◦DS4,M4 ◦ SC32,1,M4 ◦DS4,M3 ◦ SC16,1,M3 ◦DS4,M2 ◦ SC16,1,M2 ◦DS4,M1◦

SC16,1,M1(u)

hDEC(z) = SCdin,1,M1 ◦ US4,M1 ◦ SC16,1,M2 ◦ US4,M2 ◦ SC16,1,M3 ◦ US4,M3 ◦ SC32,1,M4 ◦ US4,M4◦

FC|Vlast|×32(z),

where M1, . . . ,M4 are the original and coarsened meshes, din is the dimension of the input

signal and dout is the dimension of the latent vector. For Mein3D, due to the high vertex count,

we modified the COMA architecture in order to reduce the parameter count of the simple

Neural3DMM by adding an extra convolution and an extra downsampling/upsampling layer in

the encoder and the decoder respectively (encoder widths from 1st to last layer: (8, 16, 16, 32, 32),

decoder: mirror of the encoder). The larger Neural3DMM follows the above architecture, but

with increased widths (encoder: COMA: (64, 64, 64, 128), DFAUST: (16, 32, 64, 128), Mein3D:

(8, 16, 32, 64, 128), decoder: mirror of the encoder).1 All of our activation functions were ELUs

[Clevert et al., 2016]. Our learning rate was 10−3 with a decay of 0.99 after each epoch, and our

weight decay was 5× 10−5. All models were trained for 300 epochs.

GAN architecture. For the GAN and the PCA-based morphable model that we used

for comparison, we used a latent space dimension dout = 256 (for PCA this corresponds to

the principal components explaining 99.4% of the variance of the data). The generator and

discriminator networks had the following architectures:

hDISC(u) = FC1 ◦DS4,M5 ◦ SC256,1,M4 ◦DS4,M4 ◦ SC128,1,M4 ◦DS4,M3 ◦ SC128,1,M3 ◦DS4,M2◦

SC128,1,M2 ◦DS4,M1 ◦ SC64,1,M1(u)

hGEN(z) = SCdin,1,M1 ◦ US4,M1 ◦ SC64,1,M2 ◦ US4,M2 ◦ SC128,1,M2 ◦ US4,M3 ◦ SC128,1,M3 ◦ US4,M4◦

SC128,1,M4 ◦ US4,M5 ◦ FC|Vlast|×256(z),

1In DFAUST, we also experimented with dilated convolutions using ρ = 2, and dilation ratio r = 2 that
slightly improved the results
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A.2 Additional quantitative and qualitative results

Generalisation error. In Tables A.1, A.3, and A.2, we report the exact results and parameter

counts of the methods of Fig. 3.5.

Shape analogies. In Figures A.1 and A.2a, we show additional shape analogies (body pose

and facial expression transfer in the DFAUST and COMA respectively) similar to Fig. 3.7b.

Synthetic faces generated by PCA. Finally, in Figure A.2b we included sampled synthetic

faces generated with PCA in order to visually compare with those generated by the GAN. As

already mentioned in the main text, although PCA tends to produce smooth and noise-free

surfaces, the synthetic faces look artificial, due to the absence of high-frequency detail.

Table A.1: COMA dataset comparison

Latent
Size

Explained
Variance Model # of

Params
Generalization

(mm)

8

83.1 % PCA 120k 1.636
n/a COMA 28k 0.885
n/a Neural3DMM (small) 38k 0.801
n/a Neural3DMM (ours) 381k 0.472

16

94.6 % PCA 241k 0.825
n/a COMA 39k 0.751
n/a Neural3DMM (small) 48k 0.635
n/a Neural3DMM (ours) 425k 0.377

64

99.1 % PCA 965k 0.284
n/a COMA 100k 0.611
n/a Neural3DMM (small) 113k 0.449
n/a Neural3DMM (ours) 682k 0.260

Table A.2: DFAUST dataset comparison

Latent
Size

Explained
Variance Model # of

Params
Generalization

(mm)

8

84.8 % PCA 165k 59.30
n/a COMA 32k 28.09
n/a Neural3DMM (small) 41k 28.69
n/a Neural3DMM (ours) 274k 19,77

16

96.1 % PCA 330k 32.16
n/a COMA 46k 17.03
n/a Neural3DMM (small) 56k 15.30
n/a Neural3DMM (ours) 332k 11.20

64

99.8 % PCA 1.32M 5.28
n/a COMA 129k 8.98
n/a Neural3DMM (small) 142k 5.51
n/a Neural3DMM (ours) 676k 4.29
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Table A.3: Mein3D dataset comparison

Latent
Size

Explained
Variance Model # of

Params
Generalization

(mm)

16

86.0 % PCA 1.36M 0.739
n/a COMA 53k 0.812
n/a Neural3DMM (small) 66k 0.718
n/a Neural3DMM (ours) 320k 0.711

32

93.0 % PCA 2.79M 0.525
n/a COMA 82k 0.616
n/a Neural3DMM (small) 95k 0.518
n/a Neural3DMM (ours) 438k 0.502

128

98.5 % PCA 10.91M 0.235
n/a COMA 254k 0.400
n/a Neural3DMM (small) 274k 0.269
n/a Neural3DMM (ours) 1.15M 0.229

Figure A.1: Pose transfer examples through latent space analogies in the DFAUST dataset

(a) Expression transfer examples via latent
space analogies in the COMA dataset (b) Faces sampled from the PCA-based 3DMM

Figure A.2: Spiral ordering on a mesh and an image patch



B
Appendix to chapter 4

B.1 Omitted proofs

B.1.1 GSN is permutation equivariant

Proposition B.1. GSN layers are GI-equivariant.

Proof. Let G = (V , E ,uV ,uE) be a graph, where uV ∈ R|V|×dv ,uE ∈ R|V|×|V|×de are the optional

vertex and edge attributes/signals. The proof trivially follows from the permutation equivariance

of MPNN layers. In particular, it is easy to see that a GSN layer can be written as an

MPNN by simply modifying its input. In particular, let hMPNN be a single layer (t = 1) as

defined in Eq. (2.11) without a READ function and without using any weighting functions

wV ,wE . Then, by observing Eq. (2.11) one can see that hGSN(G) = hMPNN
(︁
hcount(G)

)︁
, where

hcount(G) = (V , E , [uV ;wV ], [uE ;wE ]),and [uV ;wV ] ∈ Rdv+dwv , [uE ;wE ] ∈ Rde+dwe

Define Iso(G1, G2) as the set of adjacency preserving bijections that also preserve the vertex and

edge attributes (i.e. now G1, G2 are isomorphic iff there exists a permutation of the vertices of

G1 that when simultaneously applied to its adjacency matrix, to its vertex attribute matrix and

to its edge attribute matrix, yields the corresponding ones of G2). We know that MPNN layers

are permutation equivariant: if f ∈ Iso(G1, G2), then hMPNN
(︁
G1

)︁(︁
f(i)

)︁
= hMPNN

(︁
G2

)︁(︁
i
)︁
.

Now, it is straightforward to see that the functions in Eq. (4.3) and (4.4) that count orbit

appearances are equivariant to isomorphism, i.e. if f ∈ Iso(G1, G2) then vcount(G1, α)(f(i), v) =

vcount(G2, α)(i, v) and similarly for ecount(·, ·). Therefore, if f ∈ Iso(G1, G2), then f ∈
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Iso(hcount(G1), hcount(G2)). Thus, if f ∈ Iso(G1, G2), then

hGSN
(︁
G1

)︁(︁
f(i)

)︁
= hMPNN

(︁
hcount(G1)

)︁(︁
f(i)

)︁
= hMPNN

(︁
hcount(G2)

)︁(︁
i
)︁
= hGSN

(︁
G2

)︁(︁
i
)︁

(B.1)

Overall, a GSN network is GI-equivariant as a composition of GI-equivariant functions, or

GI-invariant when composed with a permutation invariant layer (READ) at the end.

B.1.2 Proof of Theorem 4.2: GSN is at least as powerful as the 1-WL

test

Proof. The proof that GSN is at least as expressive as the 1-WL test follows directly from the

proof of Theorem 3 in [Xu et al., 2019]. We repurpose it for our needs and re-write it here

for completeness. We will consider vertex-labelled graphs, since traditionally the 1-WL test

does not take into account edge labels.1 It suffices to show that there exists a function in the

GSN hypothesis class which is at least as expressive as WL. Consider the general formulation of

Eq. (2.11) and assume a hypothesis hGSN where the update functions UPt and the aggregation

functions AGGRt of each layer t are injective w.r.t. all their arguments We will show that this

hypothesis is at least as powerful as the 1-WL.

We can rephrase the statement as follows: If GSN deems two graphs G1, G2 as isomorphic, then

also 1-WL deems them isomorphic. Given that the graph-level representation is extracted by a

readout function READ that receives the multiset of the vertex-wise colours/representations in

its input, then it suffices to show that if for the two graphs, the multiset of the vertex colours

that GSN infers is the same, then also 1-WL will infer the same multiset for the two graphs.

Since equal multisets contain the same elements with the same multiplicities, it further suffices

to show that if two vertices i, j are assigned the same GSN hidden representations xt(i) = xt(j)

at any iteration t, then they will be also assigned the same colours ct(i) = ct(j) by 1-WL. We

prove the above by induction (similarly to [Xu et al., 2019]) for the selected function hGSN.

• For t = 0 the statement holds since the initial vertex features are the same for both GSN

and 1-WL (either uV or a constant value for graphs without attributes), i.e. x0(i) = c0(i).
1If one considers a simple 1-WL extension that concatenates edge labels to neighbour colours, then the same

proof applies.
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• Suppose the statement holds for t − 1, i.e. xt−1(i) = xt−1(j)⇒ ct−1(i) = ct−1(j). Then

we show that it also holds for t. Recall that xt(i) = UPt

(︁
xt−1(i),wV(i),mt(i)

)︁
. If xt(i) =

xt(j), then, using that UPt is injective, we have the following:

(a) xt−1(i) = xt−1(j), which from the induction hypothesis implies that ct−1(i) = ct−1(j).

(b) mt(i) = mt(j). Since AGGRt is injective w.r.t. its input multiset we get: 2

mt(i) = mt(j)⇒ Hxt−1(w)Iw∈N (i) = Hxt−1(z)Iz∈N (j)

Invoking again the induction hypothesis we obtain that Hct−1(w)Iw∈N (i) = Hct−1(z)Iz∈N (j).

Now, simply recall the update rule of 1-WL: ct(i) = HASH
(︂
ct−1(i), Hct−1(w)Iw∈N (i)

)︂
, and

therefore since both arguments of the HASH function are equal for the vertices i and j, it must

hold that ct(i) = ct(j). And this concludes the proof.

B.1.3 Proof of Corollary 4.3

Proof. In order to prove the universality of GSN, we will show that when the substructure

collection contains all graphs of size n− 1, then there exists a parametrisation of GSN that can

infer the isomorphism classes of all vertex-deleted subgraphs of the graph G (known as the deck

of G). The reconstruction conjecture states that two graphs with at least three vertices are

isomorphic if and only if they have the same deck. Thus, the deck is sufficient to distinguish

all non-isomorphic graphs. Then universality of GSN follows from the arguments in [Dasoulas

et al., 2020, Chen et al., 2019]. The deck can be defined as follows:

Let D = {α1, α2, . . . , α|D|} = Gn−1 be the set of all possible graphs of size n− 1. The vertex-

deleted subgraphs of G are by definition all the induced subgraphs of G with size n− 1, which

we denote as:

Hn−1 = {H = (VH , EH) ∈ S(G) with |VH | = n− 1}.

2Lemma 5 from [Xu et al., 2019] states that such a function always exists assuming that the elements of the
multiset originate from a countable domain
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Then, the deck Deck(G) can be defined as a vector of size |D|, the j-th element of which reads:

Deck(G)(j) =
⃓⃓⃓{︂
H ∈ Hn−1 | H ≃ αj

}︂⃓⃓⃓
=

∑︂
H∈Hn−1

1[H ≃ αj],

where 1[·] the indicator function. Now the proof closely follows the proof of 4.2 of the main

part of the thesis. In particular, the structural feature vcount(G,αj)(i, v) for each atom αj and

orbit v are computed as follows:

vcount(G,αj)(i, v) =
⃓⃓⃓{︁
H ∈ S(G) | ∃f ∈ Iso(H,αj) s.t. i ∈ VH , f(i) ∈ O

Vαj
v

}︁⃓⃓⃓
=

∑︂
H∈Hn−1

1[i ∈ VH ]1[∃f ∈ Iso(H,αj) s.t. f(i) ∈ O
Vαj
v ]

where Iso(H,αj) = ∅ if H ̸≃ αj, otherwise it contains all the adjacency-preserving bijective

mappings. The deck can be inferred as follows:

∑︂
i∈V

∑︂
v∈Vαj /Aut(αj)

wV(i, v) =
∑︂
i∈V

∑︂
v∈Vαj /Aut(αj)

∑︂
H∈Hn−1

1[i ∈ VH ]1[∃f ∈ Iso(H,αj) s.t. f(i) ∈ O
Vαj
v ]

=
∑︂
i∈V

∑︂
H∈Hn−1

1[i ∈ VH ]
∑︂

v∈Vαj /Aut(αj)

1[∃f ∈ Iso(H,αj) s.t. f(i) ∈ O
Vαj
v ]

=
∑︂

H∈Hn−1

1[H ≃ αj]
∑︂
i∈V

1[i ∈ VH ]

=
∑︂

H∈Hn−1

(n− 1)1[H ≃ αj]

= (n− 1)Deckj(G),

where we used that
∑︁

Vαj /Aut(αj)
1[∃f ∈ Iso(H,αj) s.t. f(i) ∈ O

Vαj
v ] = 1[H ≃ αj], since each

vertex can be mapped to at most one orbit. Thus, the deck can be inferred by a simple GSN-v

parametrisation (a linear layer with depth equal to |D| that performs orbit-wise summation and

division by the constant n − 1 for each vertex separately, followed by a sum readout). Since

GSN-v can be simulated by a GSN-e (Theorem 4.4), then GSN-e is also universal.

B.1.4 Proof of Theorem 4.4: GSN-e is at least as powerful as GSN-v

Proof. Without loss of generality, we will show Theorem 4.4 for the case of a single atom α.

In order to show that GSN-e can express GSN-v, we will first prove the following: The vertex
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structural feature wV(i, :) of a vertex i can be inferred by the edge structural features wE(i, j, :)

of its incident edges.

To simplify notation we define the following. For an orbit OrbV(i), denote the orbit neighbourhood

as the multiset of the orbits of the neighbours of i and the orbit degree as the degree of any

vertex in OrbV(i):

N
(︁
OrbV(i)

)︁
= HOrbV(j) | j ∈ N (i)I and deg(i) = deg(OrbV(i)) = |N

(︁
OrbV(i)

)︁
|. (B.2)

To start, let us assume that there exists only one subgraph H ∈ S(G) such that H ≃ α and the

bijection between VH and Vα is f . Then, for an arbitrary vertex i and a vertex orbit OVα
v , one

of the following holds:

• v ̸∈ VH . Then wV(i, v) = 0 and wE
(︁
i, j, (v, u)

)︁
= 0, ∀j ∈ N (i),∀u ∈ N

(︁
OVα

v

)︁
,

• v ∈∈ VH and OrbVα

(︁
f(i)

)︁
̸= OVα

v . Then, wV(i, v) = 0 and wE
(︁
i, j, (v, u)

)︁
= 0, ∀j ∈

N (i),∀u ∈ N
(︁
OVα

v

)︁
. Note that here the directionality of the edge is important, otherwise,

we would not be able to determine the value of wE
(︁
i, j, (v, u)

)︁
unless we also know the

orbit of f(j).

• v ∈ VH and OrbVα

(︁
f(i)

)︁
= OVα

v . Then, wV(i, v) = 1 and since f(i) has exactly deg(OVα
v )

neighbours in α, then v has exactly deg(OVα
v ) neighbours in H with vertex orbits in

N
(︁
OVα

v

)︁
. This implies that:

∑︂
j∈N (i)

∑︂
u :OVα

u ∈N (OVα
v )

wE
(︁
i, j, (v, u)

)︁
= deg(OVα

v )

Thus, by induction, for m matched subgraphs H ≃ α with i ∈ VH and OrbVα

(︁
f(v)

)︁
= OVα

v , it

holds that wV(i, v) = m and
∑︁

j∈N (i)

∑︁
u :OVα

u ∈N (OVα
v )wE

(︁
i, j, (v, u)

)︁
= m · deg(OVα

v ). Then it

follows that:

wV(i, v) =
1

deg
(︁
OVα

v

)︁ ∑︂
j∈N (i)

∑︂
u :OVα

u ∈N (OVα
v )

wE
(︁
i, j, (v, u)

)︁
(B.3)

The rest of the proof is straightforward: we will assume a GSN-v using substructure counts of the

graph α, with T layers and width d. Then, there exists a GSN-e with T +1 layers, where the first
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layer has width dv+dwv and implements the following function: UP1

(︁
x0(i),m1(i)

)︁
= [x0(i);m1(i)],

where:

m1(i) = AGGR1

(︁
H(x0(i),x0(j),wE(i, j),uE(i, j)Ij∈N (i)

)︁
= [

1

deg
(︁
OVα

1

)︁ ∑︂
j∈N (i)

∑︂
u :OVα

u ∈N (OVα
1 )

wE
(︁
i, j, (1, u)

)︁
; . . . ;

1

deg
(︁
OVα

dwv

)︁ ∑︂
j∈N (i)

∑︂
u :OVα

u ∈N (OVα
dwv

)

wE
(︁
i, j, (dwv , u)

)︁
] = wV(i)

Note that since AGGR1 is a universal multiset function approximator, then there exists a

parameterisation with which the above function can be computed. The next T layers of GSN-e

can implement a traditional MPNN where now the input vertex features are [x1(i);wV(i)] (which

is exactly the formulation of GSN-v) and this concludes the proof.

B.2 Scalability analysis

B.2.1 Improved subgraph enumeration algorithms

Graphs with community structure (social and protein networks). The typical sub-

structures of interest for these distributions are triangles and cliques. Their enumeration is

well-studied [Chiba and Nishizeki, 1985, Danisch et al., 2018, Bron and Kerbosch, 1973, Makino

and Uno, 2004, Takeaki, 2012, Jain and Seshadhri, 2020, Alon et al., 1997, Latapy, 2008, Björk-

lund et al., 2014] and has been shown to admit an O
(︁
a(G)k−2m

)︁
complexity, where a(G) ≤ m1/2

the arboricity of the graph - an indicator of its sparsity - m the number of edges and k the size

of the clique. This is an important improvement for sparse graphs, as it yields linear time when

the arboricity is a constant and O(nk/2) for moderate sparsity, i.e. when m grows at the same

rate with n. The naive enumeration bound O(nk) is only recovered for very dense graphs, i.e.

when m grows at the same rate with n2. Moreover, parallel implementations have been shown

to empirically scale well to million-edge graphs [Danisch et al., 2018].

Molecular graphs. Several algorithms have been also proposed for k-cycle enumeration

[Johnson, 1975, Mateti and Deo, 1976, Birmelé et al., 2013, Ferreira et al., 2014] attaining an
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optimal scaling of O
(︁
m+ kc(G,α)

)︁
(this cannot be improved since one needs to traverse the m

edges of the graph at least once, and then list all k vertices of each of the c(G,α) subgraphs).

Others. Improved bounds have been also shown for trees [Wasa et al., 2014, Ferreira et al., 2011]

and paths [Hoàng et al., 2013] among others, while planar graphs enjoy linear-time complexity,

O
(︁
n + c(G,α)

)︁
, for any O(1)-sized subgraph [Eppstein, 1995, Dorn, 2010]. This is of great

interest for chemoinformatics/bioinformatics applications, since almost all molecules are planar.

B.2.2 Quantitative analysis of the runtime: preprocessing

Figure B.1: Empirical (solid) vs worst case (dashed) runtime (in seconds)
for different graph distributions (in seconds, log scale). For each distribution, we count the best
performing (and frequent) substructures of increasing sizes k. The computational complexity

for real-life graphs is significantly better than the worst case.

In Figure B.1, we study the empirical runtime of VF2 as a function of the graph size (n) and
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that of the substructure (k). We compare the performance of VF2 against the worst case, for

three different graph distributions: molecules, protein contact maps, and social networks. In

accordance with the bounds of Table 4.1, we observe that in the first two cases, where the

graphs are sparse and the number of pattern occurrences is small, the runtime is significantly

smaller than the worst-case upper bound, while it scales better with the size of the graph n.

Even, in the case of social networks, where several examples are near-complete graphs, the

scaling is also better w.r.t both n and k.

Table B.1: Dataset statistics and preprocessing runtimes (avg and total in seconds). Molecules.

Dataset
name MUTAG PTC NCI1 ZINC MOLHIV MOLPCBA

Statistics

# graphs 188 344 4110 12,000 41,127 437,929
avg. # vertices 17.93 25.56 29.87 23.16 25.51 25.97

avg. # edges 19.79 25.96 32.3 24.92 27.46 28.11
avg. degree 2.19 1.99 2.16 2.15 2.14 2.16

avg. clust. coeff. 0.0 0.003 0.003 0.006 0.002 0.002
k avg total avg total avg total avg total avg total avg total

VF2

4 3.7e-5 0.007 3.9e-5 0.01 5.3e-5 0.22 4.1e-5 0.49 4.7e-5 1.90 4.5e-5 20
6 3.2e-4 0.06 1.9e-04 0.07 3.9e-4 1.60 2.6e-4 3.10 3.2e-4 13 3.2e-4 140
8 1.6e-4 0.03 1.3e-4 0.04 2.5e-4 1.10 1.4e-4 1.70 1.9e-4 7.80 1.7e-4 76

10 2.2e-4 0.04 1.6e-4 0.06 3.8e-4 1.62 1.9e-4 2.20 2.6e-4 11 2.4e-4 100

VF3

4 0 0 7.2e-7 2.5e-4 2.4e-6 0.009 8.6e-7 0.01 1.4e-6 0.06 5.6e-7 0.24
6 1.1e-4 0.02 6.9e-5 0.02 1.4e-4 0.58 1.0e-4 1.20 1.2e-4 4.80 1.2e-4 53
8 0 0 8.9e-6 0.003 2.4e-4 1.00 5.4e-6 0.07 1.8e-5 0.75 9.2e-6 4

10 1.7e-4 0.03 5.3e-5 0.02 2.0e-4 0.80 3.4e-5 0.40 1.0e-4 4.30 6.1e-5 27

Table B.2: Dataset statistics and preprocessing runtimes (avg and total in seconds). Proteins &
social networks.

Dataset
name Proteins DD ogbg-ppa Collab IMDB-B IMDB-M

Statistics

# graphs 1113 1178 158,100 5000 1000 1500
avg # verts 39.06 284.32 243.42 74.50 19.77 13.00
avg # edges 72.82 715.66 2,266.10 2,457.78 96.53 65.94

avg degree 3.74 4.98 18.33 37.37 8.89 8.10
avg clust coeff 0.51 0.48 0.51 0.88 0.95 0.97

k avg total avg total avg total avg total avg total avg total

VF2
3 0.002 1.90 0.04 47 1.80 2.9e+5 1.30 6.3e+3 0.03 27 0.02 35
4 8.3e-4 0.93 0.04 52 21 3.3e+6 OOM OOM 0.50 500 0.46 700
5 7.5e-5 0.08 0.02 25 OOM OOM OOM OOM 11 1.1e+4 13 1.9e+4

VF3
3 1.9e-4 0.21 0.002 2.40 0.03 5.4e+3 0.41 2.1e+3 0.001 1.10 8.0e-4 1.20
4 2.2e-4 0.24 0.004 5.10 1.20 2.0e+5 OOM OOM 0.02 20 0.02 25
5 2.6e-6 0.003 0.005 5.60 OOM OOM OOM OOM 0.26 262 0.27 410

In Tables B.1 and B.2 we report a comprehensive analysis of the empirical runtime performance

of two subgraph isomorphism algorithms: VF2 and VF3. The study encompasses graph domains

of different topological characteristics. First-off, we should note that VF3 provided a consistent

speed-up in all datasets considered. This highlights another advantage of our strategy to increase

the computational complexity of the preprocessing instead of that of the neural network:
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the practitioner can benefit from improved specialised algorithms and is not constrained to

tensor-based deep learning frameworks.

Table B.1 reports the results for molecular structures; they are sparse graphs characterised

by a low clustering coefficient. We match cycle graphs of typical sizes: 4, 6, 8, 10. On all the

benchmarks, both algorithms perform isomorphism counting in a fraction of a second, allowing

to complete the task in the order of a couple of minutes on the large-scale ogbg-molpcba dataset

(∼ 438k graphs). These results remark on the suitability of GSN on molecular modelling tasks.

Table B.2 reports results for denser graph families, where we match cliques of sizes 3, 4, and 5.

Graphs in Proteins and DD represent protein structure contact maps, while those in ogbg-ppa

model protein-protein associations. These graphs feature a medium clustering coefficient and

span through medium to high density. The remaining three datasets are of a social nature,

with an extremely high clustering coefficient and medium (IMDB-B, IMDB-M) to high density

(Collab). Both two algorithms exhibit negligible run times on Proteins and DD. In particular,

VF3 requires only a few seconds to complete the enumeration on the entire DD dataset. On the

IMDB datasets run times are still tractable; on these benchmarks, it is possible to appreciate

the significant speed-up achieved by VF3 w.r.t. VF2. (two order of magnitudes for k = 4, 5).

We observed the two algorithms to run Out Of Memory (OOM) on Collab and ogbg-ppa for,

respectively, k ≥ 4 and k = 5. We attribute this behaviour to the extreme density of these

graphs; here the number of cliques grows exponentially, making it unfeasible even to list them.

Either way, we remark that triangle listing (k = 3) is tractable in both benchmarks and remind

that this was sufficient to allow GSN to outperform the GIN base architecture. It is important

to notice that these runtimes were obtained with generic subgraph isomorphism algorithms, and

that specialised routines would allow for even more efficient computations (see section B.2.1).

B.2.3 Quantitative analysis of the runtime: total

We conclude our computational complexity discussion with an empirical analysis of the overall

GSN runtime, both during training and during inference, including both steps of the algorithm,

i.e. preprocessing and NN training (across the entire dataset)/inference (per graph). Tables

B.3 and B.4 compare the total runtime of the best GSN models (the performances of which

are reported in the main part of the thesis) against that of the corresponding backbone MPNN

(i.e. the same architecture without structural features). First off, for all datasets considered,
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Table B.3: Number of parameters, preprocessing and NN training & inference runtimes (in
seconds) for molecular datasets. Best GSN model vs backbone MPNN. Percentage indicates the
ratio of the preprocessing to the total runtime.

Dataset
name MUTAG PTC NCI1 ZINC MOLHIV MOLPCBA

Model backbone
MPNN

GSN-v
(k=12)

backbone
MPNN

GSN-e
(k=6)

backbone
MPNN

GSN-v
(k=3)

backbone
MPNN

GSN-v
(k=8)

backbone
MPNN

GSN-e
(k=6)

backbone
MPNN

GSN-e
(k=6)

Space #params 2.4K 2.8K 2.7K 3K 9.4K 9.5K 378.9K 384.5K 333.3K 333.9K 1.923M 1.928M

Training time
(dataset)

Preprocessing - 0.05 - 0.03 - 0.01 - 2.15 - 7.49 - 75.99
Training 328.42 334.08 332.63 351.27 321.27 329.13 429.35 310.42 4068.53 4862.51 5675.67 6250.23
Total 310.55 334.13 332.63 351.30 321.27 329.14 429.35 312.57 4068.53 4870.00 5675.7 6326.22

Percentage - 0.015% - 0.009% - 0.003% - 0.688% - 0.154% - 1.201%

Inference time
(per graph)

Preprocessing - 0.27e-3 - 0.09e-3 - 0.002e-3 - 0.22e-3 - 0.22e-3 - 0.22e-3
Inference 3.77e-3 5.60e-3 3.93e-3 4.93e-3 3.90e-3 4.36e-3 5.20e-3 6.54e-3 8.97e-3 10.72e-3 7.90e-3 8.54e-3
Total 3.77e-3 6.27e-3 3.93e-3 5.02e-3 3.90e-3 4.362e-3 5.20e-3 6.76e-3 8.97e-3 10.94e-3 7.90e-3 8.76e-3

Percentage - 4.76% - 1.79% - 0.045% - 3.25% 2.01% - 2.51%

Table B.4: Number of parameters, preprocessing and NN training & inference runtimes
(in seconds) for protein and social network datasets. Best GSN model vs backbone MPNN.
Percentage indicates the ratio of the preprocessing to the total runtime.

Dataset
name Proteins ogbg-ppa Collab IMDB-B IMDB-M

Model backbone
MPNN

GSN-e
(k=4)

backbone
MPNN

GSN-e
(k=3)

backbone
MPNN

GSN-e
(k=3)

backbone
MPNN

GSN-e
(k=5)

backbone
MPNN

GSN-e
(k=5)

Space # params 8.3K 8.8K 3.286M 3.375M 31.1K 52.2K 30.8K 64.9K 34.8K 66K

Training time
(dataset)

Preprocessing - 0.41 - 2670.97 - 1845 - 254.79 - 392.58
Training 327.43 329.50 19.42K 21.48K 373.13 456.55 327.37 333.14 327.65 329,89
Total 327.43 329.931 19.42K 24.18K 373.13 2301.55 327.37 587.93 327.65 722,47

Percentage - 0.12% - 12.43% - 80.16% - 43,34% - 54.34%

Inference time
(per graph)

Preprocessing - 0.41e-3 - 0.034 - 0.410 - 0.283 - 0.291
Inference 3.77e-3 4.44e-3 8.21e-3 8.54e-3 4.40e-3 5.17e-3 4.34e-3 5.34e-3 4.43e-3 5.34e-3%
Total 3.77e-3 4.85e-3 8.21e-3 0.042 4.40e-3 0.415 4.34e-3 0.288 4.43e-3 0.296

Percentage - 8.45% - 80.95% - 98.80% - 98.26% - 98.31%

we observe only a small increase in the NN training time, compared to that of the backbone

MPNN (approx 0.4%-5.6% increase for most TU datasets, 10.1%-19.5% for ogb and 22.4% for

Collab), while in one case (ZINC), the training time is reduced, since the structural features

allow for faster convergence (approx 27% reduction). The same holds for the NN inference time

(8%- 25% increase), perhaps with the exception of the MUTAG dataset, where a slightly larger

increase (48.5%) can be attributed to the fact that the dictionary used is larger compared to

the rest of the datasets (12 atoms). The above results are in accordance with section 4.5, where

it was discussed that the NN complexities of both GSN and the backbone MPNN are linear

in the number of vertices and edges. Note that the training runtime also depends heavily on

the size of the dataset and the number of epochs, which justifies the variability across datasets

(e.g. for all the datasets in the TUD benchmarks we used the same number of total iterations,

regardless of the dataset size, in the ZINC dataset we perform early stopping, while in the ogb

benchmarks we train the network for 100 epochs, according to the required training protocols).

In terms of the total runtime, we observe that for all molecular datasets, the preprocessing is

negligible compared to the NN runtime, both during training and during inference. This showcases
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that molecular distributions, as well as distributions of graphs with small densities and clustering

coefficients, are an excellent regime for GSN in terms of its computational complexity (as well

as its performance as we saw in the main part of the thesis).

However, this fraction increases for the datasets that exhibit medium to high clustering coefficient

and density. It remains negligible for the Proteins dataset (medium clustering coefficient and

density), small for the ogbg-ppa dataset (medium clustering coefficient, high density), but

becomes comparable to the training time for the IMDB-B and IMDB-M datasets (very high

clustering coefficient and medium density) and eventually exceeds it for the Collab dataset

(very high clustering coefficient and high density). This can be mitigated by preprocessing

the dataset in parallel (e.g. with 16 processes we observed approximately a 6-fold speedup),

while as mentioned in the main part of the thesis, it might be of lesser importance, since in

ML applications, typically the same NN is trained multiple times, while the preprocessing is

performed only once. However, it becomes problematic when it comes to NN inference, where

for high density and high clustering coefficient graphs, the preprocessing might be orders of

magnitude larger than the NN runtime. Although, arguably, this ratio can be reduced by further

optimisations and specialised algorithms, the aforementioned result illustrates a limitation of

our method.

Finally, to complement our results, we also report the space complexity in terms of the number

of parameters, where the extra parameters of GSN, compared to the backbone MPNN, can be

calculated to be linear in the dimensions of the structural features. In all the experiments the

structural features are one-hot-encoded for each atom, therefore the increase will be linear in

the sum of the number of unique values across all orbits of all atoms in the dictionary (or more

loosely, the product of the maximum number of unique values, the size of the dictionary and the

maximum k, for GSN-v, or k2, for GSN-e). In most cases, we observe a small to medium increase

(0.2% - 16.7%), with the exceptions of Collab, IMDB-B and IMDB-M, where the increase is

larger (67.9%-110.7%), due to the large number of unique values for the clique counts in the

dataset. However, note that this percentage can be also largely attributed to the relatively

small size of the NN used, while for large overparameterised NNs, the increase percentages are

neglible (0.2% - 2.7% for the ogb datasets).
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B.3 Experimental Settings - Additional Details

In this section, we provide additional implementation details of our experiments. All experiments

were performed on a server equipped with 8 Tesla V100 16 GB GPUs, except for the Collab

dataset where a Tesla V100 GPU with 32 GB RAM was used due to larger memory requirements.

Experimental tracking and hyperparameter optimisation were done via the Weights & Biases

platform (wandb) [Biewald, 2020]. Our implementation is based on native PyTorch sparse

operations [Paszke et al., 2019] in order to ensure complete reproducibility of the results. PyTorch

Geometric [Fey and Lenssen, 2019a] was used for additional operations (such as preprocessing

and data loading).

In each one of the different experiments, we aim to show that structural identifiers can be

used off-the-shelf and independently of the architecture. At the same time we aim

to suppress the effect of other confounding factors in the model performance, thus wherever

possible we build our model on top of a baseline architecture. For more details, please see the

relevant subsections. Interestingly, we observed that in most of the cases, it was sufficient to

replace only the first layer of the baseline architecture with a GSN layer, in order to obtain a

boost in performance.

Throughout the experimental evaluation, the structural identifiers wV and wE are one-hot

encoded, by taking into account the unique count values present in the dataset. Other more

sophisticated methods can be used, e.g. transformation to continuous features via a normalisation

scheme or binning. However, we found that the number of unique values in our datasets was

usually relatively small (which is a good indication of recurrent structural roles) and thus such

methods were not necessary.

B.3.1 Automorphism computation and orbit matching

In order to compute the automorphism of a graph in the dictionary we first run a graph

isomorphism algorithm between the graph and itself and obtain a set of vertex bijections.

Subsequently, to compute the orbits, we initialise each orbit to contain a single vertex (using

an arbitrary vertex ordering) and then iterate over the bijections found in the previous step.

Whenever two vertices of different orbits are matched by a bijection, the two orbits are merged.

Both steps need O(k!k) time in the worst case, but since k is a small constant (independent of
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the size of the target graphs) and this operation is performed only once, its run time is negligible

(in practice it takes a fraction of a millisecond).

Assigning orbit identifiers to each vertex/edge (for GSN-v, GSN-e respectively) is a straight-

forward procedure. In particular, the subgraph isomorphism algorithm returns mappings

(bijections) between the vertices of the substructure in the dictionary and the vertices of the

target graph, which implies that we can infer the corresponding orbit for each vertex in O(1) by

simply using the look-up table that we computed in the previous step (we need O(c(G,α)k)

time to traverse all the detected subgraphs, where c(G,α) their number, but this process can be

merged with the subgraph enumeration).

B.3.2 Experimental details

Graph Isomorphism testing. For the Strongly Regular graphs dataset (available from

http://users.cecs.anu.edu.au/~bdm/data/graphs.html) we use all the available families of

graphs with a size of at most 35 vertices: The total number of non-isomorphic pairs of the same

size is ≈ 7 ∗ 107. We used a simple 2-layer architecture with a width equal to 64. The message

aggregation was performed as in the general formulation of (2.11), where the update and the

message functions are MLPs. The prediction is inferred by applying a sum readout function

in the last layer and then passing the output through an MLP. Regarding the substructures,

we use graphlet counting, as certain motifs (e.g. cycles of length up to 7) are known to be

unable to distinguish strongly regular graphs (since they can be counted by the 2-FWL [Fürer,

2017, Arvind et al., 2019]).

Given the adversities that strongly regular graphs pose in graph isomorphism testing, it would

be interesting to see how this method can perform in other categories of hard instances, such as

the classical CFI counter-examples for k-WL proposed in [Cai et al., 1992], and explore further

its expressive power and combinatorial properties. We leave this direction to future work.

TUD benchmarks. For this family of experiments, due to the usually small size of the

datasets, we choose a parameter-efficient architecture, in order to reduce the risk of overfitting.

In particular, we follow the simple GIN architecture [Xu et al., 2019] and we concatenate

structural identifiers to vertex or edge features depending on the variant. Then for GSN-v, the

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
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hidden representation is updated as follows:

xt+1(i) = UPt+1

(︂
[xt(i);wV(i)] +

∑︂
j∈N (i)

[xt(j);wV(j)]
)︂
, (B.4)

and for GSN-e:

xt+1(i) = UPt+1

(︂
[xt(i);wE(i, i)] +

∑︂
j∈N (i)

[xt(j);wE(i, j))]
)︂
, (B.5)

where wE(i, i) is a dummy variable (also one-hot encoded) used to distinguish self-loops from

edges. Empirically, we did not find training the ϵ parameter used in GIN to make a difference.

We implement an architecture similar to GIN [Xu et al., 2019], i.e. message passing layers : 4,

jumping knowledge from all the layers [Xu et al., 2018a] (including the input), transformation

of each intermediate graph-level representation: linear layer, readout : sum for biological and

mean for social networks. Vertex features are one-hot encodings of categorical vertex labels.

Similarly to the baseline, the hyperparameters search space is the following: batch size in {32,

128} (except for Collab where only 32 was searched due to GPU memory limits), dropout in

{0,0.5}, network width in {16,32} for biological networks, 64 for social networks, learning rate in

{0.01, 0.001}, decay rate in {0.5,0.9} and decay steps in {10,50} (number of epochs after which

the learning rate is reduced by multiplying with the decay rate). For social networks, since they

are not attributed graphs, we also experimented with using the degree as a vertex feature, but

in most cases the structural identifiers were sufficient.

Model selection is done in two stages. First, we choose a substructure that we perceive as

promising based on indications from the specific domain: triangles for social networks and

Proteins, and 6-cycles (motifs) for molecules. Under this setting, we tune model hyperparameters

for a GSN-e model. Then, we extend our search to the parameters related to the substructure

collection: i.e. the maximum size k and motifs vs graphlets. In all the molecular datasets we

search cycles with k = 3, . . . , 12, except for NCI1, where we also consider larger sizes due to the

presence of large rings in the dataset (macrocycles [Liu et al., 2017b]). For social networks, we

searched cliques with k = 3, 4, 5. In Table B.5 we report the hyperparameters chosen by our

model selection procedure, including the best-performing substructures.

The seven datasets3 we chose are the intersection of the datasets used by the authors of our

3more details on the description of the datasets and the corresponding tasks can be found at [Xu et al., 2019].
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Table B.5: Chosen hyperparameters for GSN-e and GSN-v on the TUD datasets.

Dataset MUTAG PTC Proteins NCI1 Collab IMDB-B IMDB-M

GSN-e

batch size 32 128 32 32 32 32 32
width 32 16 32 32 64 64 64
decay rate 0.9 0.5 0.5 0.9 0.5 0.5 0.5
decay steps 50 50 10 10 50 10 10
dropout 0.5 0 0.5 0 0 0 0
lr 10−3 10−3 10−2 10−3 10−2 10−3 10−3

degree No No No No No No Yes
subgraph type graphlets motifs same graphlets same same same
atom family cycles cycles cliques cycles clique clique cliques
k 6 6 4 15 3 5 5

GSN-v

batch size 32 128 32 32 32 32 32
width 32 16 32 32 64 64 64
decay rate 0.9 0.5 0.5 0.9 0.5 0.5 0.5
decay steps 50 50 10 10 50 10 10
dropout 0.5 0 0.5 0 0 0 0
lr 10−3 10−3 10−2 10−3 10−2 10−3 10−3

degree No No No No No Yes Yes
subgraph type graphlets graphlets same same same same same
atom family cycles cycles cliques cycles cliques clique cliques
k 12 10 4 3 3 4 3

main baselines: the Graph Isomorphism Network (GIN) [Xu et al., 2019], a simple, yet powerful

GNN with expressive power equal to the 1-WL test, and the Provably Powerful Graph Network

(PPGN) [Maron et al., 2019a], a polynomial alternative to the Invariant Graph Network [Maron

et al., 2019b], that increases its expressive power to match the 2-FWL. We also compare our

results to other GNNs as well as Graph Kernel approaches. Our main baseline from the GK

family is the Graph Neural Tangent Kernel (GNTK) [Du et al., 2019a], which is a kernel obtained

from a GNN of infinite width that operates in the Neural Tangent Kernel regime [Jacot et al.,

2018, Allen-Zhu et al., 2019, Du et al., 2019c].

ZINC benchmark - Experimental Details. The ZINC dataset includes 12k molec-

ular graphs of which 10k form the training set and the remaining 2k are equally split be-

tween validation and test (splits obtained from https://github.com/graphdeeplearning/

benchmarking-gnns). Molecule sizes range from 9 to 37 vertices/atoms. Vertex features encode

the type of atoms and edge features the chemical bonds between them. Again, here vertex and

edge features are one-hot encoded.

Our MPNN baseline model updates vertex representations as follows: xt+1(i) = MLPt+1

(︁
xt(i),mt+1(i)

)︁
,

mt+1(i) =
∑︁

j∈N (i) MLPt

(︁
xt(i),xt(j),uE(i, j)

)︁
. Our instantiation of GSN is a simple extension

https://github.com/graphdeeplearning/benchmarking-gnns
https://github.com/graphdeeplearning/benchmarking-gnns
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where structural identifiers are also given as input to the message MLP. Following the same

rationale as before, the network configuration is minimally modified w.r.t. the baselines provided

in [Dwivedi et al., 2020], while here no hyperparameter tuning is done and we use the default

ones provided by the authors. In particular, the parameters are the following: message passing

layers: 4, transformation of the output of the last layer : MLP, readout : sum, batch size: 128,

dropout : 0.0, network width: 128, learning rate: 0.001. The learning rate is reduced by 0.5

(decay rate) after 5 epochs (decay rate patience) without improvement in the validation loss.

Training is stopped when the learning rate reaches the minimum learning rate value of 10−5.

Validation and test metrics are inferred using the model at the last training epoch.

We select our best-performing substructure-related parameters based on the performance in

the validation set in the last epoch. We search cycles with k = 3, . . . , 10, graphlets vs motifs,

and GSN-v vs GSN-e. The chosen hyperparameters for GSN are: GSN-e, cycle graphlets of

10 vertices and for GSN-EF : GSN-v, cycle motifs of 8 vertices. Once the model is chosen, we

repeat the experiment 10 times with different seeds and report the mean and standard deviation

of the test MAE in the last epoch.

Disambiguation Scores: In Table B.6, we provide the disambiguation scores 1 − δ|D| as

defined in section 4.8.5 for different types of substructures. These are computed based on vertex

structural identifiers (GSN-v).

Table B.6: Disambiguation scores 1 − δ|D| on ZINC for different substructure families and
maximum size k. Size k = 0 refers to using only the original vertex features.

k Cycles Paths Trees
0 0.196 0.196 0.196
3 0.199 0.540 0.540
4 0.200 0.746 0.762
5 0.256 0.866 0.875
6 0.327 0.895 0.897
7 0.330 0.900 0.900
8 0.330 0.901 0.901
9 0.330 0.901 0.901

10 0.330 0.901 0.901

OGB benchmarks We extend the following base architectures:

GIN. We follow the design choices of the authors of [Hu et al., 2020] and extend their

architectures to include structural identifiers. For ogbg-molhiv and ogbg-molpcba, initial vertex
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and edge features are multi-hot encodings, while for ogbg-ppa in absence of vertex features, we

use a constant, and the edge features are continuous values in [0, 1] indicating the confidence of

each edge (from 7 different sources of information). These are passed through linear layers that

project them in the same embedding space, i.e. x0(i) = W0,x · xin(i), ut
E(i, j) = Wt,e · uin

E (i, j).

The baseline model is a modification of GIN that allows for edge features: for each neighbour,

the hidden representation is added to an embedding of its associated edge feature. Then the

result is passed through a ReLU non-linearity which produces the neighbour’s message. Formally,

the aggregation is as follows:

xt+1(i) = UPt+1

⎛⎝xt(i) +
∑︂

j∈N (i)

σ
(︁
xt(j) + ut

E(i, j)
)︁⎞⎠ (B.6)

GIN + VN. In order to allow global information to be broadcasted to the vertices, a virtual

node takes part in the message passing. The virtual node representation, denoted as Gt, is

initialised as a zero vector G0 and then Message Passing becomes:

x̃t(i) = xt(i) +Gt, xt+1(i) = UPt+1

⎛⎝x̃t(i) +
∑︂

j∈N (i)

σ
(︁
x̃t(j) + ut

E(i, j)
)︁⎞⎠ ,

Gt+1 = MLPt+1

(︄
Gt +

∑︂
j∈V

x̃t(j)

)︄ (B.7)

We modify these models, as follows: first, the substructure counts are embedded into the

same embedding space as the rest of the features. Then, for GSN-v, they are added to the

corresponding vertex embeddings: x́t(i) = xt(i) +Wt
V ·wV(i), or for GSN-e, they are added to

the edge embeddings uÉ
t(i, j) = ut

E(i, j) +Wt
E ·wE(i, j).

DGN + substructures. We use the directional average operator as defined in [Beaini et al.,

2021]:

mt+1(i) = [
∑︂

j∈N (i)

a(i, j, 1)xt(j); . . . ;
∑︂

j∈N (i)

a(i, j, L)xt(j)], (B.8)

where a(i, j, ℓ) are weighting average coefficients. In our case, each orbit v induces a separate

set of averaging coefficients. For example, for GSN-e a(i, j, ·) =
⃓⃓
wE

(︁
i,j,·
)︁⃓⃓

ϵ +
∑︁

j′∈N (i)

⃓⃓
wE

(︁
i,j′,·
)︁⃓⃓ , where

wE
(︁
i, j, ·

)︁
denotes edge-wise substructure counts (the index of the orbit (v, w) was dropped to

simplify notation). Similarly, for GSN-v, α(i, j, ·) = |wV (i,·)−wV (j,·)|
ϵ +

∑︁
j′∈N (i) |wV (i,·)−wV (j′,·)|

. Subsequently,
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the vertex representation is updated as follows: xt+1(i) = MLPt+1(mt+1(i)). Observe that this

model is simpler than the aforementioned, in terms of both its parameter count and its expressive

power. Since the MOLHIV dataset poses a significant challenge w.r.t. generalisation (the data

splits reflect different molecular distributions), architectures biased towards simpler solutions

usually perform better, since they mitigate the risk of overfitting.

In both cases, we use the same hyperparameters as the ones provided by the authors, and only

select the substructure-related parameters based on the highest validation metric (choosing the

best scoring epoch as in [Hu et al., 2020]). We compare GSN-v vs GSN-e and search cycles

with k = 3, . . . , 12 for the molecular datasets, while for ogbg-ppa we only tested triangles. The

chosen hyperparameters are GSN-e (all 3 datasets), cycle graphlets of 6 vertices (for molecules).

We repeat the experiment 10 times with different seeds and report the mean and standard

deviation of the train, validation and test ROC-AUC, again by choosing the best scoring epoch

w.r.t the validation set.

DeepSets on structural features. The baseline architecture treats the input vertex and edge

features, along with the structural identifiers, as a set. In particular, we consider each graph as

a set of independent edges (i, j) endowed with the features of the endpoint vertices uV(i),uV(j),

the structural identifiers wV(i),wV(j) and the edge features uE(i, j), and we implement a

DeepSets universal set function approximator [Zaheer et al., 2017] to learn a prediction function:

h

(︃{︂(︁
uV(i),uV(j),wV(i),wV(j),uE(i, j)

)︁}︂
(i,j)∈E

)︃
= ψ

(︃ ∑︂
(i,j)∈E

ϕ
(︁
uV(i),uV(j),wV(i),wV(j),uE(i, j)

)︁)︃
,

(B.9)

with E the edge set of the graph and ψ, ϕ MLPs. This baseline is naturally extended to the

case where we consider edge structural identifiers by replacing (wV(i),wV(j)) with wE(i, j).

For fairness of evaluation, we follow the exact same parameter tuning procedure as the one we

followed for our GSN models for each benchmark, i.e. for the TUD datasets we first tune network

and optimisation hyperaparameters (network width was set to be either equal to the ones we

tuned for GSN, or such that the absolute number of learnable parameters was equal to those used

by GSN; depth of the MLPs was set to 2) and subsequently we choose the substructure related

parameters based on the evaluation protocol of [Xu et al., 2019]. For ZINC and ogbg-molhiv we

perform only substructure selection, based on the performance on the validation set. Using the

same widths as in GSN leads to smaller baseline models w.r.t the absolute number of parameters,
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and we interestingly observed this to lead to particularly strong performance in some cases,

especially Proteins and MUTAG, where our DeepSets implementation attains state-of-art results.

This finding motivated us to explore ‘smaller’ GSNs (with either reduced layer width or a single

message passing layer). These GSN variants exhibited a similar trend, i.e. to perform better

than their ‘larger’ counterparts over these two datasets. We hypothesise this phenomenon to

be mostly due to the small size of these datasets, which encourages overfitting when using

architectures with larger capacities. In Table 4.6 in the main part of the thesis, we report the

result for the best-performing architectures, along with the number of learnable parameters.
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C
Appendix to chapter 5

C.1 Omitted proofs

C.1.1 The benefits of unlabelled graph compression - proof of Theorem

5.1.

Proof. First, let us introduce some additional notation that will be useful for the proof. Denote

the preimage of a set Y ′ ⊆ Y under a function f : X → Y with f−1[Y ′] = {x ∈ X | f(x) ∈ Y ′}.

For example, with this notation we can define the level sets f−1[y] = {x ∈ X | f(x) = y}. Of

interest is the level set h−1
g-enc[z] = {G ∈ G | hg-enc(G) = z} and more specifically, for a given G

the following level set:

h−1
g-enc[hg-enc(G)] = {G′ ∈ G | hg-enc(G

′) = hg-enc(G)}. (C.1)

Observe that since hg-enc is GI-injective we have that if G′ ∈ h−1
g-enc[hg-enc(G)] then G′ ≃ G.

Therefore, h−1
g-enc[hg-enc(G)] ⊆ Orb(G). Moreover, for any distribution qG on G and its push-

forward qz on Z we have that qz(z) =
∑︁

G∈G qz|G(z|G)qG(G) =
∑︁

G∈h−1
g-enc[z]

qG(G). Now, for the

true distribution pG on G we have that pG(G) = pS(Orb(G)
|Orb(G)| , ∀G ∈ Orb(G), and therefore we

derive the following identity which will be useful for our derivation:

pz
(︁
hg-enc(G)

)︁
=

∑︂
G′∈h−1

g-enc[hg-enc(G)]

pG(G
′) = pS

(︁
Orb(G)

)︁ ⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ . (C.2)
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Now, we can proceed as follows:

min
qz

Ez∼pz

[︁
− log qz(z)

]︁
= Ez∼pz

[︁
− log pz(z)

]︁
= EG∼pG

[︁
− log pz

(︁
hg-enc(G)

)︁]︁
= EG∼pG

[︃
− log

(︂
pS
(︁
Orb(G)

)︁ ⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ )︂]︃
= EG∼pG [− log pS

(︁
Orb(G)

)︁
] + EG∼pG

[︃
− log

(︂⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ )︂]︃
= −

∑︂
G∈G

pG(G) log pS
(︁
Orb(G)

)︁
+ EG∼pG

[︃
− log

(︂⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ )︂]︃

= −
∑︂

S∈G/≃

∑︂
G∈S

pS(S)

|S|
log pS(S) + EG∼pG

[︃
− log

(︂⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ )︂]︃

= −
∑︂

S∈G/≃

pS(S) log pS(S) + EG∼pG

[︃
− log

(︂⃓⃓h−1
g-enc[hg-enc(G)]

⃓⃓⃓⃓
Orb(G)

⃓⃓ )︂]︃
= HS∼pS [S] + EG∼pG

[︁
log
(︁
|Orb(G)|

)︁]︁
− EG∼pG

[︁
log
(︁⃓⃓
h−1

g-enc[hg-enc(G)]
⃓⃓)︁]︁
.

The minimum and maximum values of the above quantity are obtained by inspecting the

following cases:

• When hg-enc is isomorphism-invariant we have that h−1
g-enc[hg-enc(G)] = Orb(G),∀G ∈ G

and therefore

min
qz

Ez∼pz

[︁
− log qz(z)

]︁
= HS∼pS [S], (C.3)

which is the optimal bit rate one can obtain.

• When hg-enc is injective, e.g. the identity function when doing labelled graph compression,

we have that h−1
g-enc[hg-enc(G)] = {G} and therefore

min
qz

Ez∼pz

[︁
− log qz(z)

]︁
= HS∼pS [S] + EG∼pG

[︁
log
(︁
|Orb(G)|

)︁]︁
= HS∼pS [S] + EG∼pG

[︃
log

|VG!|
|Aut(G)|

]︃
, (C.4)

which recovers the result of [Choi and Szpankowski, 2012]. Assuming that all graphs in the

distribution have n vertices and w.h.p. the graphs in the distribution have few automor-

phisms (this is a mild assumption and it holds for most medium and large size graphs [Erdos

and Rényi, 1963]), the above simplifies to HS∼pS [S] + log n! − EG∼pG

[︁
log |Aut(G)|

]︁
=
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HS∼pS [S] + O
(︁
n log n

)︁
, where we used Stirling’s approximation log n! ≈ n log n and

EG∈S∼pS

[︁
log |Aut(G)|

]︁
= O(1).

C.1.2 Preliminaries for the proofs of section 5.5

Recall the definition of the binary entropy H(p) = −p log p− (1− p) log(1− p). A useful ap-

proximation that will be used in the analysis is the following:

log

(︃
n

m

)︃
≈ nH

(︃
m

n

)︃
, (C.5)

can be derived using Stirling’s approximation. For the following comparisons, we will be

considering a graph distribution on graphs with a fixed number of n vertices and therefore

L(G) = L(G | n). For better exposition, the analysis will be performed for directed graphs,

where self-loops are allowed. The same trends in the bounds hold also for undirected graphs

and graphs where self-loops are prevented.

Conventional graph encodings. We consider two types of baseline graph encodings:

• uniform: Lunif-G(G) = n2. Here no assumptions are made about the graph; all graphs are

considered to be equally probable.

• Erdős-Renyi : LER-G(G) = log
(︁
n2

m

)︁
+log(n2+1) ≈ n2Hm+log(n2+1), where m the number

of edges and Hm := H
(︁
m
n2

)︁
. This baseline is efficient at encoding graphs that are either

very sparse or very dense.

Though the above encodings assign the same probability to every pair of isomorphic graphs, they

always map them to different codewords. Hence, they are heavily redundant when dealing with

unlabelled graphs. The following variants are more efficient by taking into account isomorphism:

• uniform - isomorphism classes : Lunif-S(G) = log |Gn/ ≃ | ≈ n2 − n log n.

• Erdős-Renyi - isomorphism classes: LER-S(G) = log |Gn,m/ ≃ | + log(n2 + 1) ≈ n2Hm +

log(n2 + 1)− n log n,1

1This approximation is less tight for very sparse or very dense graphs for which the size of the automorphism
group is large.
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where Gn/ ≃ and Gn,m/ ≃ are the set of all unlabelled graphs with n vertices and the set

of all unlabelled graphs with n vertices and m edges, respectively. In both cases, we used

the fact that asymptotically almost all graphs are rigid i.e., that they have only the trivial

automorphism [Erdos and Rényi, 1963]. Observing that all four encodings asymptotically grow

quadratically with the number of nodes we can derive the following lemma:

Lemma C.0.1. Consider a graph distribution p over graphs with n vertices and denote by

H̄m := EG∼p[H(m
n2 )] the expected value of the binary entropy of the number of edges m. If

H̄m < 1, then the expected description lengths of the baseline models are asymptotically ordered

as follows:

EG∼p[L
ER-S(G)] ≲ EG∼p[L

ER-G(G)] ≲ EG∼p[L
unif-S(G)] ≲ EG∼p[L

unif-G(G)] (C.6)

The compression gain when encoding isomorphism classes instead of labelled graphs is Θ(n log n),

while that of the Erdős-Renyi encoding compared to the uniform one is Θ
(︁
n2(1− H̄m)

)︁
.

The proof follows directly from the equations above using only the quadratic term that dominates

the growth with n. More precisely the following hold:

• EG∼p[L
unif-S(G)] ≤ EG∼p[L

unif-G(G)] and EG∼p[L
ER-S(G)] ≤ EG∼p[L

ER-G(G)], and the

inequalities are strict whenever the expected size of the automorphism group of a

group is ≤ n!. With the assumption that the graphs in our distribution are with

high probability rigid/asymmetric, we get that the compression gains are in both cases

O(log n!) ≈ O(n log n).

• H̄m < 1 − log(n2+1)
n2 =⇒ EG∼p[L

ER-G(G)] ≤ EG∼p[L
unif-G(G)]. The inequality is easily

satisfied even for small n when H̄m < 1. Since most real-world graphs are sparse, then

the condition H̄m < 1 is almost always true and therefore the uniform encoding is rarely

beneficial. A similar conclusion can be drawn for the comparison between EG∼p[L
ER-S(G)]

and EG∼p[L
unif-S(G)].

• H̄m < 1− log(n2+1)
n2 − log(n!)

n2 =⇒ EG∼p[L
ER-G(G)] ≤ EG∼p[L

unif-S(G)]. In this case, the last

term diminishes slower - with O( logn
n

). Therefore, the range of values of H̄m for which

the inequality holds is smaller compared to the previous case (for the same value of n),

however, we argue that the inequality holds for most real-world graph distributions, due

to their sparsity, once again.
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Partitioning (only). The partitioning models considered in this analysis assume that each

graph is clustered into b subgraphs of k vertices each (i.e. b = n
k
) and that the intra- and

inter-subgraph edges are encoded independently.2 Note that the preamble terms that encode

the number of blocks in the partition and the number of vertices per block are unnecessary

since k is fixed. Overall, the code length is given by LPart(G) = L(H) + L(C|H), with the two

terms defined respectively as follows:

L(H) =
b∑︂

i=1

(︃
log(k2 + 1) + log

(︃
k2

mi

)︃)︃
and L(C|H) =

b∑︂
i ̸=j

(︃
log(k2 + 1) + log

(︃
k2

mij

)︃)︃
.

(C.7)

Above, mi is the number of edges in subgraph Hi and mij is the size of the cut between subgraphs

Hi and Hj. In both cases, the first term encodes the number of edges, and the second their

arrangement across the vertices.

Partition and Code (PnC). We make the same assumptions for PnC as in LPart(G): the

graph is partitioned into b subgraphs of k vertices and the same encoding for non-dictionary

subgraphs Hnull and cuts C is used. We use an arbitrary distribution (categorical) to encode

the number of dictionary subgraphs bdict. The indices Hdict mapping the dictionary subgraphs

to dictionary atoms are encoded with a Multinomial as in Eq. (5.15). Again, the number of

blocks in the partition does not need to be included in the encoding since n and k are fixed.

The overall encoding length is

LPnC(G) = L(bdict;φ) + L(Hdict | bdict;φ) + L(Hnull | bnull;φ) + L(C | H;φ), (C.8)

The dictionary atoms are encoded as if they were sampled independently from any of the null

models mentioned in the “conventional graph encodings” paragraph, hence L(D) = O(|D|k2).

2To make the analysis more tangible, we examine here a slightly simpler encoding than the one used in the
experiments - see Eq. (C.12).
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C.1.3 Proof of Theorem 5.2.a: Why partitioning? Partitioning vs

Null Models

As a warm-up, we will discuss the case of encodings based only on graph partitioning, such

as the Stochastic Block Model (“Partitioning non-parametric” in the Tables 5.1 and 5.2). We

remind the reader that these encodings do not take into account the isomorphism class of the

identified subgraphs and cannot be adapted to different subgraph distributions. In the following,

we derive a sufficient condition for the sparsity of the connections between subgraphs, under

which partitioning-based encodings will yield a smaller expected description length than the

baseline null models. Formally:

Theorem 1a. Let every G ∼ p be partitioned into b blocks of k = O(1) vertices and suppose

that the partitioning-based encoding of Eq. (C.7) is utilised. The following holds:

EG∼p[L
Part(G)] ≲ EG∼p[L

ER-S(G)]− n2
(︂
H̄m −

log(k2 + 1)

k2
− H̄mij

)︂
, (C.9)

where H̄mij
:= 1

b2−b

∑︁b
i ̸=j EG∼p[H

(︁mij

k2

)︁
] and H̄m := EG∼p[H(m

n2 )] are the expected binary entropy

of the cuts (averaged over all subgraph pairs) and of the total number of edges, respectively.

Proof.

EG∼p[L
part(G)] ≈ EG∼p

[︁ b∑︂
i=1

(︃
log(k2 + 1) + k2H

(︁mi

k2
)︁)︃

+
b∑︂

i ̸=j

(︃
log(k2 + 1) + k2H

(︁mij

k2
)︁)︃]︁

=
n

k

(︃
log(k2 + 1) + k2H̄mi

)︃
+ (

n2

k2
− n

k
)

(︃
log(k2 + 1) + k2H̄mij

)︃
= n2

(︃
log(k2 + 1)

k2
+ H̄mij

)︃
+ nk

(︃
H̄mi
− H̄mij

)︃
= EG∼p[L

ER-S(G)]− n2

(︃
H̄m −

log(k2 + 1)

k2
− H̄mij

)︃
+ nk

(︃
H̄mi
− H̄mij

+ log n

)︃
− log(n2 + 1)

≲ EG∼p[L
ER-S(G)]− n2

(︃
H̄m −

log(k2 + 1)

k2
− H̄mij

)︃
,

where H̄mi
= 1

b

∑︁b
i=1 EG∼p[H(mi

k2
)] and in the last step we derive an asymptotic inequality using

the dominating quadratic term. In other words, partitioning-based encoding is quadratically
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superior to the best null model whenever there exists a k such that

log(k2 + 1)

k2
< H̄m − H̄mij

.

The above concludes the proof.

C.1.4 Proof of Theorem 5.2.b: The importance of the dictionary: PnC

vs Partitioning

We proceed to mathematically justify why encoding subgraphs with a dictionary can yield

extra compression gains compared to pure partitioning-based encodings. As our main theorem

shows, utilising a dictionary allows us to reduce the linear O(n) terms of the partitioning-based

description length:

Theorem 1b. Let every G ∼ p be partitioned into b blocks of k = O(1) vertices and sup-

pose that the PnC encoding of Eq. (C.8) is used. Assume that the dictionary-subgraph

encoding used by PnC is optimal for the distribution p. Let H̄mi
= 1

b

∑︁b
i=1 EG∼p[H

(︁
mi

k2

)︁
],

H̄null
mi

= 1
b·δtrue

EG∼p[
∑︁

Hi∈Hnull
H
(︁
mi

k2

)︁
] be the expected binary entropy of the subgraph edges aver-

aged over all subgraphs and over non-dictionary subgraphs respectively, and δtrue =
EG∼p[bnull]

b
the

expected percentage of non-dictionary subgraphs. For every dictionary for which the following

holds:

log |D| < log(k2 + 1) + k2
H̄mi
− δtrueH̄

null
mi

1− δtrue
(C.10)

then an optimal PnC compressor will achieve linear gains compared to its partitioning-based

counterpart :

EG∼p[L
PnC(G)] ≲ EG∼p[L

part(G)]− nk(1− δtrue)

(︃
H̄mi
− δtrueH̄

null
mi

1− δtrue
− H(D)− log(k2 + 1)

k2

)︃
,

(C.11)

where H(D) is the entropy of the distribution q over the dictionary atoms.

Proof. We will analyse the description length of each of the components of Eq. (C.8).

Number of dictionary subgraphs. Assuming that our PnC compressor operates in an

optimal regime, the expected description length of the number of subgraphs is approximately
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equal to the true entropy of the distribution of the number of dictionary subgraphs:

EG∼p[L(bdict;φ)] = EG∼p[− log q(bdict;φ)] = EG∼p[− log p(bdict;φ)] ≤ log(b+ 1) = log
(︁n
k
+ 1
)︁

Dictionary subgraphs. Here we will need a stronger assumption to proceed. In particular, we

will need to assume that the dictionary subgraph encoding is optimal, i.e. that the distribution

of the dictionary subgraphs is a Multinomial (which is the same regardless of the value of bdict).

Then, if PnC has converged to its optimal form we can get the following, for the expected

number of dictionary subgraphs mapped to atom α:

EG∼p[bα] =
b∑︂

bdict=0

Ebα∼p(ba|bdict)[bα | bdict]p(bdict) =
b∑︂

bdict=0

p(α)bdictp(bdict)

= p(α)EG∼p[bdict] = q(α)b(1− δtrue)

Now we can upper bound the expected description length of the dictionary subgraphs as follows:

EG∼p[L(Hdict | bdict;φ)] = EG∼p

[︃
− log

bdict!∏︁
α∈D bα!

−
∑︂
α∈D

bα log q(α)

]︃
≤ EG∼p[−

∑︂
α∈D

bα log q(α)]

= −
∑︂
α∈D

EG∼p[bα] log q(α)

= −b(1− δtrue)
∑︂
α∈D

q(α) log q(α) =
n

k
(1− δtrue)H(D)

where we used the fact that bdict! ≥
∏︁

α∈D bα! and H(D) = Hα∼q(α)[α] = −
∑︁

α∈D q(α) log q(α)
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Non-dictionary subgraphs.

EG∼p[L(Hnull | bnull;φ)] = EG∼p

[︃ ∑︂
Hi∈Hnull

(︃
log(k2 + 1) + k2H

(︂mi

k2

)︂)︃]︃
= log(k2 + 1)EG∼p

[︂ ∑︂
Hi∈Hnull

1
]︂
+ k2 EG∼p

[︂ ∑︂
Hi∈Hnull

H
(︂mi

k2

)︂]︂
= log(k2 + 1)EG∼p

[︂
bnull

]︂
+ k2 EG∼p

[︂ ∑︂
Hi∈Hnull

H
(︂mi

k2

)︂]︂
= log(k2 + 1)bδtrue + k2H̄null

mi
bδtrue

=
n

k
δtrue

(︃
log(k2 + 1) + k2H̄null

mi

)︃
,

where H̄null
mi

= 1
b·δtrue

EG∼p[
∑︁

Hi∈Hnull
Hmi

].

Cuts. Re-using the derivation of Theorem 1a we have:

EG∼p[L(C | H;φ)] = n2

(︃
log(k2 + 1)

k2
+ H̄mij

)︃
− n

(︃
log(k2 + 1)

k
+ kH̄mij

)︃

Overall. Putting everything together we get:

EG∼p[L
PnC(G)] ⪅ log

(︂n
k
+ 1
)︂
+ n2

(︃
log(k2 + 1)

k2
+ H̄mij

)︃
+ n

(︃
kδtrueH̄

null
mi

+ (1− δtrue)

(︃
H(D)− log(k2 + 1)

k

)︃
− kH̄mij

)︃
= EG∼p[L

part(G)] + nk

(︃
δtrueH̄

null
mi
− H̄mi

+ (1− δtrue)
(︂H(D)− log(k2 + 1)

k2

)︂)︃
+ log

(︂n
k
+ 1
)︂

Including the description length of the dictionary and amortising it over each graph in a dataset

of D graphs, we conclude

EG∼p[L
PnC(G)] = EG∼p[L

part(G)]− nk(1− δtrue)

(︃
H̄mi
− δtrueH̄

null
mi

1− δtrue
− H(D)− log(k2 + 1)

k2

)︃
+O

(︂
log

n

k
+
|D|
|D|

k2
)︂
.

Hence, if k = O(1) and |D| ≪ |D| (more precisely, the ratio |D|
|D| shouldn’t grow with n), then a
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linear compression gain is obtained if 1− δtrue > 0 and:

H̄mi
− δtrueH̄

null
mi

1− δtrue
− H(D)− log(k2 + 1)

k2
> 0⇐⇒ H(D) < log(k2 + 1) + k2

H̄mi
− δtrueH̄

null
mi

1− δtrue

The proof concludes by recalling that H(D) < log |D|.

C.1.5 Proof of Theorem 5.3: The importance of subgraph isomorphism

Proof. In the context of this comparison, we are only interested in the description length of the

dictionary subgraphs. For simplicity, we will assume that these are encoded with a categorical

distribution instead of a multinomial and we will make the same assumption as in Theorem 1b

(i.e. that the dictionary-subgraph encoding is optimal).

EG∼p[L(Hdict|bdict)] = EG∼p

[︃
−
∑︂
α∈D

bα log q(α)

]︃
=
n

k
(1− δtrue)H(D)

Hence, in order to compare the two variants, we are interested in the entropy H(D), which

requires enumerating the possible outcomes of the categorical distribution, i.e., the dictionary

atoms.

Denote with qG(α), qS(α) the categorical distributions used by PnC-G and PnC-S respectively,

and (with a slight abuse of notation) with HG(D) = Hα∼qG(α)[α], HS(D) = Hα∼qS(α)[α] their

corresponding entropies. Let DG be the optimal dictionary of PnC-G and DS the optimal

dictionary of PnC-S. For simplicity, we will assume that DG = Gk, i.e. it contains the adjacency

matrices of all labelled graphs with k vertices, while DS = G/ ≃, or more precisely it contains

only the adjacency matrix of one labelled representative from each equivalence class.

Regarding PnC-G, since p(G) is isomorphism-invariant, then the same will hold for the subgraphs

H ⊆ G, i.e. p(H ′) = p(H) if H ′ ≃ H. Hence, for the optimal qG(α) it should hold that for each

atom α in D, then all α′ ∼= α will be also contained in the dictionary and assigned the same

probability, i.e., qG(α) = qG(α
′) = pG(α) = pG(α

′).

Now regarding PnC-S, the probability of the equivalence class of an atom Orb(α) will be

pS
(︁
Orb(α)

)︁
=
∑︁

α∈Orb(α) pG(α) = |Orb(α)|pG(α), and therefore the same will also hold for

the optimal model qS
(︁
Orb(α)

)︁
= |Orb(α)|pG(α). Recall that |Orb(α)| = k!

|Aut(α)| [Harary and

Palmer, 2014].
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Then, using a similar argument to [Choi and Szpankowski, 2012], we can derive the following

for the entropy HG(D):

HG(D) = −
∑︂
α∈DG

qG(α) log qG(α)

= −
∑︂
α∈DG

qS
(︁
Orb(α)

)︁
|Orb(α)|

log
qS
(︁
Orb(α)

)︁
|Orb(α)|

= −
∑︂

Orb(α)∈DS

∑︂
α∈Orb(α)

qS
(︁
Orb(α)

)︁
|Orb(α)|

log
qS
(︁
Orb(α

)︁
|Orb(α|

= −
∑︂

Orb(α)∈DS

qS
(︁
Orb(α)

)︁
log

qS
(︁
Orb(α)

)︁
|Orb(α)|

= HS(D) +
∑︂

Orb(α)∈DS

qS
(︁
Orb(α)

)︁
log |Orb(α)|

= HS(D) + log k!−
∑︂

Orb(α)∈DS

qS
(︁
Orb(α)

)︁
log |Aut(α)|

At this point we will assume that almost all graphs in the dictionary are rigid, or more precisely

we require that
∑︁

Orb(α)∈DS
qS
(︁
Orb(α)

)︁
log |Aut(α)| ≈ 0, which can be also satisfied when non-

rigid dictionary atoms have a small probability. In practice, although for very small graphs

of up to 4 or 5 vertices, many graphs have non-trivial automorphisms, this condition is easily

satisfied for larger k (but still of constant size w.r.t. n), that were also considered in practice.

Then, the result immediately follows:

EG∼p[L
PnC-G(Hdict | bdict)] ≈ EG∼p[L

PnC-S(Hdict | bdict)] +
n

k
(1− δtrue) log k! =⇒

EG∼p[L
PnC-S(G)] ≈ EG∼p[L

PnC-G(G)]− n(1− δtrue) log k,

where we used Stirling’s approximation log k! ≈ k log k.

C.2 Algorithmic Details

C.2.1 Baseline Encodings

Clustering. The encoding we used for the clustering baselines is optimal for labelled graphs

under SBM assumptions and is obtained from [Peixoto, 2019] with small modifications. It
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consists of the following uniform encodings: number of graph vertices, number of graph edges,

number of blocks, number of vertices in each block, number of edges inside each block and

between each pair of blocks, and finally the arrangements of intra- and inter-block edges (a

detailed explanation for each term can be found in [Peixoto, 2019] and [Peixoto, 2014]):

L(G) = log(nmax + 1) + log

(︃
n(n− 1)/2 + 1

)︃
+ log(n) + log

(︃
n− 1

b− 1

)︃
+ log

(︃
b(b+ 1)/2 +m− 1

m

)︃
+

b∑︂
i=1

log

(︃(︁ki
2

)︁
mi

)︃
+

b∑︂
i<j

log

(︃
kikj
mij

)︃ (C.12)

C.2.2 Dictionary Learning - Continuous Relaxation

In the following section, we will relax the Minimum Description Length objective of Eq. (5.19)

by introducing the fractional membership variables x̂. The dictionary description length, Eq.

(5.18), can be trivially rewritten as follows:

L(D; x̂) =
∑︂
α∈U

x̂α L
null(α). (C.13)

Regarding the description length of the graphs, the membership variables are the ones that

select when a subgraph is encoded as a dictionary atom or when with the help of the null

model. The relaxation of the graph description length was done with the following modifications

bα(x̂) = x̂αbα, bdict(x̂) =
∑︁

α∈U bα(x̂), and q(α; x̂) = x̂αeζα∑︁
α′∈U x̂α′e

ζα′ , where ζa ∈ R are learnable

parameters. The rest of the components of the graph description length are unaffected by the

choice of the dictionary. Now Eq. (5.14)-(5.16) can be rewritten as:

L(bdict, b;ϕ, x̂) = − log

(︃
b

bdict(x̂)

)︃
− bdict(x̂) log(1− δ)−

(︂
b− bdict(x̂)

)︂
log(δ)− log q(b)

L(Hdict | bdict;φ, x̂) = − log
(︂
bdict(x̂)!

)︂
+
∑︂
α∈U

log
(︂
bα(x̂)!

)︂
−
∑︂
α∈U

bα(x̂) log q(α; x̂)

L(Hnull | bnull; x̂) = −
∑︂
H∈H

log qnull(H)(1− x̂H), where x̂H =

⎧⎨⎩ x̂i ∃ ai ∈ U s.t. H ∼= ai

0 otherwise.

(C.14)

To obtain a continuous version of the terms where factorials are involved we used the Γ function,

where Γ(n+ 1) = n!, for positive integers n. The rest of the terms are differentiable w.r.t x̂.
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C.2.3 Learning to Partition

We remind that our algorithm is based on a double iterative procedure: the external iteration

refers to subgraph selection and the internal to vertex selection. In order for the algorithm

to be able to make decisions, we maintain a representation of two states: the subgraph state

SH
t = (H1, H2, . . . Ht) that summarises the decisions made at the subgraph level (external

iteration) up to step t, and the vertex state SV
t,i = (vt,1, vt,2, . . . vt,i) that summarises the decisions

made at the vertex level (internal iteration) up to the i-th vertex selection during step t. Overall,

we need to calculate the probability of SH
T , where T is the number of iterations:

p(SH
T | G;θ) = p(HT | SH

T−1, G;θ)p(S
H
T−1 | G;θ) =

T∏︂
t=1

p(Ht|SH
t−1, G;θ)

=
T∏︂
t=1

(︃ kt∏︂
i=1

p(v | SV
t,i−1, kt, S

H
t−1, G;θ)

)︃
p(kt | SH

t−1, G;θ)

(C.15)

Hence, the parametrisation of the algorithm boils down to defining the vertex count probability

p(kt | SH
t−1, G; ;θ) and the vertex selection probability p(v | SV

t,i−1, kt, S
H
t−1, G;θ), where v ∈ Vt

and Vt the set of the remaining vertices at step t.

Now we explain in detail how we parametrise each term. First, we use a GNN to embed each

vertex into a vector representation h(v) = GNNv(G), while the graph itself is embedded in

a similar way h(G) = GNNG(G). Each subgraph is represented by a permutation invariant

function on the embeddings of its vertices, i.e., h(Ht) = DeepSets
(︂
{h(v) | v ∈ Ht}

)︂
, where

we used DeepSets [Zaheer et al., 2017] as a set function approximator. Similarly, the sub-

graph state summarises the subgraph representations in a permutation invariant manner to

ensure that future decisions of the algorithm do not depend on the order of the past ones:

h(SH
t ) = DeepSets

(︂
{h(Ht) | Ht ∈ SH

t }
)︂
.

Given the above, the probability of the vertex count at step t is calculated as follows:

p(kt | SH
t−1, G;θ) = softmax|Vt|

kt=1MLP
(︂
h(SH

t−1),h(G)
)︂
, (C.16)

where MLP is a multi-layer perceptron. As already mentioned, the probability of the selection
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of each vertex is computed in a way that guarantees connectivity:

p(v | SV
t,i−1, kt, S

H
t−1, G;θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
softmax

v∈Vt

MLP
(︂
h(v),h(SH

t−1)
)︂

i = 0, v ∈ Vt

softmax
v∈Vt∩N (SV

t,i−1)
MLP

(︂
h(v),h(SH

t−1)
)︂

0 < i < kt, v ∈ Vt ∩N (SV
t,i−1)

0 otherwise,
(C.17)

where N (SV
t,i−1) denotes the union of the neighbourhoods of the already selected vertices, ex-

cluding themselves: N (SV
t,i−1) =

⋃︁i−1
i′=1N (vt,i′)− {vt,1, vt,2, . . . vt,i−1}, and N (SV

t,0) = Vt. Overall,

the parameter set θ is the set of the parameters of the neural networks involved, i.e., GNNs,

DeepSets and MLPs. In the algorithm 1 we schematically illustrate the different steps described

above.

Algorithm 1: Partitioning algorithm
Input: graph G = (V , E)
Output: partition H
Initialisations: h(v) = GNNv(G), h(G) = GNNG(G), V1 = V , SH

0 = ∅
t← 1
while Vt ̸= ∅ do

kt ∼ p(kt | SH
t−1, G;θ) // sample maximum vertex count

Initialise SV
t,0 = ∅

while i = 1 ≤ kt and N (SV
t,i−1) ̸= ∅ do

vt,i ∼ p(v | SV
t,i−1, kt, S

H
t−1, G;θ) // sample new vertex

SV
t,i = SV

t,i−1 ∪ {vt,i}
end
Ht = SV

t,i

SH
t = SH

t−1 ∪ {Ht}
t← t+ 1

end
H = SH

t

Limitations. Below we list two limitations of the learnable partitioning algorithm that we

would like to address in future work. First, it is well known that GNNs have limited expressivity

which is bounded by the Weisfeiler Leman test [Xu et al., 2019, Morris et al., 2019]. The

most important implication of this is that they have difficulties in detecting and counting

substructures [Chen et al., 2020]. Since in our case, subgraph detection is crucial in order to be

able to partition the graph into repetitive substructures, the expressivity of the GNN might be

an issue. Although iterative sampling may mitigate this behaviour up to a certain extent, the

GNN will not be able to express arbitrary randomised algorithms. Modern architectures such
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as [Vignac et al., 2020, Bouritsas et al., 2022] might be more suitable for this task, which makes

them good candidates for future exploration on the problem.

Second, more sophisticated inference schemes should be explored, since currently a partition is

decoded from the randomised algorithm by taking a single sample from the learned distribution.

In particular, currently at each step t the algorithm can only sample kt vertices as dictated by

the initial sampling on the vertex count. However, there might be benefits from expanding the

subgraph more or stopping earlier than kt when no other vertex addition can contribute towards

a smaller description length. However, there is no control on the stopping criterion apart from

the initial vertex count prediction. To this end, it is of interest to explore alternatives that

will allow the algorithm to choose from a pool of candidate decisions based on the resulting

description lengths (i.e. in hindsight). Further inspiration can be taken from a variety of

clustering and graph partitioning algorithms, e.g. k-means or soft clustering in a latent space

[Wilder et al., 2019, Locatello et al., 2020], agglomerative [Karger, 1993, Blondel et al., 2008]

and Markov Chain Monte Carlo as in [Peixoto, 2013] where a modified Metropolis-Hastings

algorithm is proposed.

Special cases of note. A pertinent question is whether one can determine the optimal way to

partition a graph when minimising (5.19). Though a rigorous statement is beyond our current

understanding, in the following we discuss two special cases:

(a) Small predefined universe. When the subgraphs are chosen from a small and predefined U, one

may attempt to identify all the possible atom appearances in G by repeatedly calling a subgraph

isomorphism subroutine. The minimisation of (5.19) then simplifies to that of selecting a subset

of subgraphs that have no common edges (as per the definition in section 5.4.1). The latter

problem can be cast as a discrete optimisation problem under an independent set constraint

(by building an auxiliary graph the vertices of which are candidate subgraphs and two vertices

are connected by an edge when two subgraphs overlap and looking for an independent set that

minimises the description length).

(b) Unconstrained universe. When U contains all possible graphs, the problem can be seen as a

special graph partitioning problem. However, contrary to traditional clustering algorithms [Ng

et al., 2001, Karypis and Kumar, 1998, Blondel et al., 2008, Karger, 1993], our objective is not

necessarily optimised by finding small cuts between clusters (see section 5.5).
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Since most independent set and partitioning problems are NP-hard, we suspect that similar

arguments can be put forward for (5.19). This highlights the need to design parametric

(learnable) alternatives that can provide fast solutions without the need to be adapted to unseen

data.

C.2.4 Construction of the graph encoder-decoder functions

In the following section we will showcase the exact construction of the graph encoder and decoder

functions hg-enc, hg-dec. To show that hg-enc is GI-injective it suffices to show that there exists a

decoder function hg-dec such that hg-dec
(︁
hg-enc(G)

)︁
≃ G, ∀G ∈ G. For illustration purposes, it

will be more convenient to present our results using the adjacency matrix representation. First,

we show why partitioning allows us to define a GI-injective function.

Remark C.1. Let G = (V , E) ∈ G be a graph with adjacency matrix A(G) ∈ {0, 1}|V|×|V| and a

partitioning algorithm that partitions the graph as follows: PART(G) =
(︂(︁
H1, H2, · · · , Hb

)︁
, C
)︂
.

Denote the (extended) adjacency matrix of a subgraph Hj with A(Hj) ∈ {0, 1}|V|×|V|,3 i.e.

A(Hj)(u, v) = 1 iff (u, v) ∈ EHi
, ∀u, v ∈ V. Similarly, denote with A(C) ∈ {0, 1}|V|×|V| the

extended adjacency of the b-partite cut graph, i.e. A(C)(u, v) = 1 iff (u, v) ∈ EC, ∀u, v ∈ V.

Then, there exists a permutation matrix Ppart ∈ S(|V|), such that:

A′ = PpartA(G)P⊤
part = H+C =

b∑︂
j=1

Hj+C =

⎡⎣A1,1 0 ··· 0
0 A2,2 ··· 0

...
... ... ...

0 0 ··· Ab,b

⎤⎦+
⎡⎣ 0 A1,2 ··· A1,b

A2,1 0 ··· A2,b

...
... ... ...

Ab,1 Ab,2 ··· 0

⎤⎦, (C.18)

with PpartA(Hj)P
⊤
part = Hj and PpartA(C)P⊤

part = C, where Hj is a block-diagonal matrix with

only one non-zero block Aj,j in the position j and C is a block matrix with zero blocks in the

main diagonal. Then, a graph encoder function

hg-enc(G) =
(︂
A1,1, . . . ,Ab,b,A1,2, . . . ,Ab−1,b

)︂
is a GI-injective function.

To see the above, recall that the vertex sets are disjoint. Therefore, we can constructively define

a permutation matrix as follows: first, we map the vertices of VH1 to {1, . . . , |VH1|} with an

arbitrary bijection, then we map the vertices of VH2 to {|VH1| + 1, . . . , |VH1 | + |VH2|} and so
3we slightly abused notation, w.r.t. the dimensions.
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on and so forth. Applying the resulting permutation matrix to the original adjacency matrix

will result in the form of in Eq. (C.18). It is obvious that this is a GI-injective function since

one can define the graph decoder to simply be a function reconstructing the matrix A′, i.e.

hg-dec(hg-enc(G)) = A′ which yields a graph which is by definition isomorphic to G. In other

words, we can think of a partitioning algorithm as a procedure that first permutes and then

decomposes the adjacency matrix as in Eq. (C.18).

Next, we show how one can construct a graph encoder with the help of a graph dictionary. For

now, we will assume that all subgraphs can be mapped to exactly one dictionary atom.

Remark C.2. Let G = (V , E) ∈ G be a graph with adjacency matrix A(G) ∈ {0, 1}|V|×|V| and

a partitioning algorithm that partitions the graph as in Eq. (C.18). Let D = {α1, . . . , α|D|}

be a graph dictionary, where αk ̸≃ αℓ, ∀k, ℓ ∈ [|D|], k ̸= ℓ. Define the function ψD(·) that

maps each subgraph of the partition to a dictionary atom as follows: ψD(H) = i, if ∃ i ∈

[|D|], s.t. αi ∈≃ H, and define ij = ψD(Hj). Then, there exist permutation matrices Pj, such

that A(αij) = PjAj,jP
⊤
j . A GI-injective function can be defined as follows:

hg-enc(G;D) =
(︂
i1, . . . , ib,P1A1,2P

⊤
2 . . .Pb−1Ab−1,bP

⊤
b

)︂
(C.19)

Moreover, assume a permutation π of the indices i1, . . . , ib such that iπ(1) ≤ iπ(2), · · · ≤ iπ(b).

Then, we can define an improved graph encoder function which is also GI-injective:

hg-enc(G;D) =
(︂
Hi1, . . . , ibI,Pπ(1)Aπ(1),π(2)P

⊤
π(2) . . . ,Pπ(b−1)Aπ(b−1),π(b)P

⊤
π(b)

)︂
(C.20)

The above is easy to see by defining a graph decoder that computes a graph isomorphic to the

input. In the first case:

hg-dec(hg-enc(G;D)) =

⎡⎢⎣ A(αi1
) P1A1,2P⊤

2 ··· P1A1,bP
⊤
b

P2A2,1P⊤
1 A(αi2

) ··· P2A2,bP
⊤
b

...
... ... ...

PbAb,1P
⊤
1 PbAb,2P

⊤
2 ··· A(αib

)

⎤⎥⎦ =

⎡⎢⎣P1A1,1P⊤
1 P1A1,2P⊤

2 ··· P1A1,bP
⊤
b

P2A2,1P⊤
1 P2A2,2P⊤

2 ··· P2A2,bP
⊤
b

...
... ... ...

PbAb,1P
⊤
1 PbAb,2P

⊤
2 ··· PbAb,bP

⊤
b

⎤⎥⎦
=

⎡⎣P1 0 ··· 0
0 P2 ··· 0
...

... ... ...
0 0 ··· Pb

⎤⎦⎡⎣A1,1 A1,2 ··· A1,b

A2,1 A2,2 ··· A2,b

...
... ... ...

Ab,1 Ab,2 ··· Ab,b

⎤⎦
⎡⎢⎣P⊤

1 0 ··· 0

0 P⊤
2 ··· 0

...
... ... ...

0 0 ··· P⊤
b

⎤⎥⎦
= P′A′P′⊤ =

(︁
P′Ppart

)︁
A
(︁
P⊤

partP
′⊤)︁.

which yields an isomorphic graph to G. In the second case, the graph decoder first computes a
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permutation π′ of the indices i1, . . . , ib such that iπ′(1) ≤ iπ′(2), · · · ≤ iπ′(b). It is not hard to see

that even if π′ ̸= π we will have that iπ′(j) = iπ(j) and therefore we can define a graph decoder

as:

hg-dec(hg-enc(G;D)) =

⎡⎣ A(αiπ(1)
) ··· Pπ(1)Aπ(1),π(b)P

⊤
π(b)

... ... ...
Pπ(b)Aπ(b),π(1)P

⊤
π(1)

··· A(αiπ(b)
)

⎤⎦ =

⎡⎣Pπ(1)Aπ(1),π(1)P
⊤
π(1)

··· Pπ(1)Aπ(1),π(b)P
⊤
π(b)

... ... ...
Pπ(b)Aπ(b),π(1)P

⊤
π(1)

··· Pπ(b)Aπ(b)),π(b)P
⊤
π(b)

⎤⎦
=

[︄
Pπ(1) ··· 0

... ... ...
0 ··· Pπ(b)

]︄[︄
Aπ(1),π(1) ··· Aπ(1),π(b)

... ... ...
Aπ(b),π(1) ··· Aπ(b),π(b)

]︄⎡⎣P⊤
π(1)

··· 0

... ... ...
0 ··· P⊤

π(b)

⎤⎦
= P′′′(︁P′′A′P′′⊤)︁P′′′⊤ =

(︁
P′′′P′′Ppart

)︁
A
(︁
P⊤

partP
′′⊤P′′′⊤)︁.

Finally, when some subgraphs cannot be mapped to any of the dictionary atoms, their original

adjacency matrices (without being permuted) are placed right after the multiset of atom indices

and the same result as above can be shown using a subgraph-level permutation π once again.

C.3 Additional Experiments

C.3.1 Ablation studies

Compression of unseen data. In Tables C.1 and C.2 we report the compression rates (in

bpe) of the training and the test data separately for all the PnC variants. As can be seen, in

most of the cases the generalisation gap is small, which implies that there was no evidence of

overfitting and the compressor can be used to unseen data with a small degradation in the

compression quality.

Table C.1: Train vs test data (avg negative log-likelihood in bpe). Molecules.

Dataset name MUTAG PTC ZINC

Set train test train test train test

PnC + SBM 3.81 3.85 4.40 4.25 3.33 3.41
PnC + Louvain 2.18 2.39 2.67 2.74 1.96 1.97
PnC + PropClust 2.37 2.89 3.33 3.83 2.19 2.27
PnC + Neural Part 2.16±0.02 2.28±0.03 2.64±0.24 2.59±0.21 2.01±0.02 2.03±0.01
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Table C.2: Train vs test data (avg negative log-likelihood in bpe). Proteins & social networks.

Dataset name PROTEINS IMDB-B IMDB-M

Set train test train test train test

PnC + SBM 3.24 3.46 0.48 0.50 0.35 0.31
PnC + Louvain 3.33 3.47 0.94 0.95 0.66 0.59
PnC + PropClust 3.41 3.53 1.43 1.61 0.95 0.75
PnC + Neural Part 3.33±0.24 3.36±0.29 1.01±0.05 0.99±0.04 0.70±0.03 0.63±0.02

Out-of-distribution compression. In the following experiment we tested the ability of

PnC to compress data sampled from different distributions. In particular, we trained the

Neural Partitioning variant on one of the MUTAG and IMDB-B datasets and then used the

pre-trained compressor on the remaining ones. In Table C.3 (left) we report the data as well

as the total (data + model) description length, in accordance with the experiments of section

5.8. We make the following two observations: (1) As expected, PnC can generalise to similar

distributions relatively well (in the table we highlight the MUTAG→ ZINC and the IMDB-B→

IMDB-M transfer), but fails to do so when there is significant distribution shift. (2) Although

MUTAG contains only approximately 100 graphs, it is sufficient to train a compressor that can

generalise to a significantly larger dataset (ZINC contains approximately 10K graphs), which is

an indication that PnC is sample efficient.

Table C.3: Out of distribution compression (left) and probability of a subgraph to belong in the
dictionary (right).

Training dataset

MUTAG IMDB-B same dataset
Test dataset data total data total data total

MUTAG - - 6.68 7.61 2.17±0.02 2.45±0.02
PTC 4.14 4.48 8.16 8.55 2.63±0.26 2.97±0.14
ZINC 2.62 2.63 6.92 6.94 2.01±0.02 2.07±0.03
PROTEINS 4.74 4.87 4.31 4.44 3.34±0.25 3.51±0.23
IMDB-B 1.83 1.86 - - 1.00±0.04 1.05±0.04
IMDB-M 1.37 1.39 0.74 0.77 0.66±0.05 0.72±0.05

dataset 1 - δ

MUTAG 0.998
PTC 0.995
ZINC 0.999
PROTEINS 0.999
IMDB-B 0.995
IMDB-M 0.997

How frequently do we encounter dictionary subgraphs? In Table C.3 (right), we report

the probability 1− δ for the Neural Partitioning variant of PnC, i.e., the estimated probability of

an arbitrary subgraph to belong in the dictionary. Interestingly, since the values are very close

to 1, it becomes evident that the partitioning algorithm learns to detect frequent subgraphs in

the distribution, which (following Theorem 5.2.b) can in part justify the high compression gains
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of PnC in all the datasets.

C.3.2 Reducing the model size of deep generative models

Smaller architectures

It is made clear by the experimental results of section 5.8 that deep neural compression is

particularly costly due to heavy overparameterisation. Yet, we also observe that these models

achieve strong results in terms of the likelihood of the data. Is it possible to strike a better

balance between the number of parameters and the compression cost for a deep generative model?

To investigate this, we have conducted the following experiment. We trained 5 GRAN models

that differ in parameter count, on 3 different datasets, and monitored the total BPE.

In order to consistently scale the number of parameters across these 5 different models, we have

fixed the GNN depth for all models to one, and set for each model the size of the embedding,

attention, and hidden dimension, to a constant c. Using a different c for each model allows

us to explore different scales for the parameter count of the GRAN model. Furthermore, to

facilitate comparison with PnC, one of the 5 models is trained without attention and features a

reduced amount of mixture components. This is the minimum, in terms of parameter count,

working instantiation of GRAN. Finally, we also considered the BPE for the null Erdős-Renyi

(ER) model. Figure C.1 plots the total BPE of the different models against the number of

parameters.

Results. In the low parameter regime, the GRAN models are not capable of outperforming the

null models and fall significantly behind PnC. At scales that range from 103 to 104 parameters,

we observe slight improvements in the total BPE of GRAN on the Proteins and the IMDB-Binary

datasets. However, the improved likelihood is not able to compensate sufficiently for the increase

in the number of parameters. This becomes more pronounced on larger scales, where GRAN

experiences diminishing returns as the cost of parameters outpaces the likelihood gains. On

the other hand, the results consistently worsen as the number of parameters grows on MUTAG.

In this case, the size of the dataset is an additional detrimental factor that weighs against

overparameterised models. Overall, the experiment suggests that, as the number of parameters

grows, the off-the-shelf GRAN model becomes increasingly inefficient and is thus not well suited

for compression.
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Figure C.1: Total BPE of likelihood-based models as a function of the parameter count. GRAN
minimal refers to the minimum working GRAN model that does not feature attention and
multiple mixture components. The non-parametric ER model is represented with dashed lines.

Pruning

Based on the results of the previous section, parameter search alone cannot mitigate the cost

of overparameterisation. A more efficient approach to managing the tradeoff between model

size and data likelihood is required. However, as shown in table C.4, an (at least) two orders of

magnitude reduction in the model size without a decrease in the data likelihood is required for

a more competitive neural compressor with deep generative models. In the following section, we

experimented with a combination of modern model compression techniques as a heuristic to

reduce the model size.

Model compression techniques aim to reduce the size of a given model while maintaining its

performance. Research in model compression has empirically demonstrated that large models

can often be considerably shrunk without suffering from major performance losses. Combined

with parameter search and mixed precision training, model compression may result in more

cost-effective neural compressors. We investigate the feasibility of such an approach in the

following experiment.

First, we decrease the model size by hyper-parameter search. We fix the depth of both GraphRNN
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and GRAN to the one provided in the original implementations, and gradually reduce their

width to identify a compact version of the network that maintains high performance. This leads

to fixing the width of both GraphRNN and GRAN to 16. Then, we train both models using an

iterative weight pruning technique. We opt for global unstructured L1 weight pruning, using

the lottery ticket procedure [Frankle and Carbin, 2019] that has been shown to be effective

in the literature. The method we utilised proceeds in the following way: A model is trained

for T iterations (T is a hyperparameter chosen based on the convergence and running time of

the models on each dataset), then a percentage of the weights are pruned (25% in our case).

After pruning, the unpruned weights are reset to their initial state and the process is repeated

from the beginning using the new pruned network. This yields up to a 10x reduction in the

size of the model in most datasets (we report the best total description length between all

pruning phases). Finally, we attempted to reduce the storage size of the model weights using

half precision. Traditionally, NNs are trained with 32-bit floating point numbers. Recently,

progress has been made in mixed precision training which can enable the use of 16-bit tensors

[Micikevicius et al., 2018]. We follow the same procedure and at the end of training, we store

the model weights using 16 bits.

Tables C.5 and C.6 contain the results of both single and half-precision pruned models on all

datasets. As can be observed in the results, both models benefit significantly from this hybrid

approach, albeit at the cost of reduced data likelihood. However, PnC is still able to outperform

the pruned versions. Although our approach to model compression is by no means exhaustive, it

becomes evident that the procedure is quite tedious and choosing the right trade-off between

the data likelihood and the model size is based on heuristics, hence the minimisation of the total

description length cannot be guaranteed. Nevertheless, we believe that this is an important

research direction that should be further explored in a more principled manner.

Table C.4: Minimum model compression ratios required for overparameterised neural compressors
to outperform PnC. We assume zero degradation of the data likelihood.

dataset GraphRNN GRAN

MUTAG x2980 x7657
PTC x995 x6668
ZINC x112 x227
PROTEINS x105 x303
IMDBB infeasible x1745
IMDBM infeasible x2262
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Table C.5: Pruning deep graph generators (single, half-precision). Molecules.

dataset name MUTAG PTC ZINC

data total params data total params data total params

GraphRNN (half) 4.70 10.77 1.08K 9.53 12.10 1.10K 3.89 4.10 2.64K
GRAN (half) 2.41 14.84 2.21K 4.35 9.86 2.36K 3.26 3.38 1.67K
GraphRNN (single) 1.95 12.39 1.08K 2.16 6.71 1.10K 1.79 2.02 1.90K
GRAN (single) 2.59 24.56 2.23K 4.31 14.00 2.36K 3.26 3.47 1.69K

Table C.6: Pruning deep graph generators (single, half-precision). Proteins & social networks.

dataset name PROTEINS IMDB-B IMDB-M

data total params data total params data total params

GraphRNN (half) 27.10 27.47 1.43K 4.21 4.49 1.28K 2.91 3.16 1.20K
GRAN (half) 3.89 4.70 3.16K 0.89 1.41 2.39K 0.61 1.10 2.31K
GraphRNN (single) 2.63 3.76 2.56K 1.43 1.92 1.28K 0.91 1.39 1.28k
GRAN (single) 4.28 5.11 1.78K 0.84 1.75 2.38K 0.55 1.41 2.31K

C.3.3 Vertex and Edge attributes

Our method can be easily extended to account for the presence of discrete vertex and edge

attributes, the distribution of which can also be learned from the data. Assuming a discrete

vertex attribute domain Ndv and an edge attribute domain Nde , we can use the following simple

encodings for a graph with n vertices and m edges:

L(uV) = n log |dv| and L(uE) = m log |de|, (C.21)

where uV ∈ NV×dV the vertex attributes and uE ∈ NE×|de| the edge attributes. One could also

choose a more sophisticated encoding by explicitly learning the probability of each attribute. In

this case, the dictionary becomes even more relevant, since when simply partitioning the graph,

the attributes will still have to be stored in the same manner for each subgraph and each edge

in the cut. Hence, in the absence of the dictionary, the attributes will have to be encoded in a

raw format.

In Table C.7, we showcase a proof of concept in the attributed MUTAG and PTC MR datasets,

which are variations of those used for structure-only compression. Vertex attributes represent

atom types and edge attributes represent the type of bond between two atoms. As mentioned in

the previous paragraph, it is clear that non-dictionary methods are hardly improving w.r.t the
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null model, which is mainly due to the fact that the attributes constitute the largest portion

of the total description length. Another interesting observation is that since the clustering

algorithms we used are oblivious to the existence of attributes, they are less likely to partition

the graph in such a way that the attributed subgraphs will be repetitive unless the structure

is strongly correlated with the attributes. This becomes clear in the PTC MR dataset, where

between the different PnC variants, the neural partitioning performs considerably better since

the partitioning is optimised in coordination with the dictionary. In Figure 5.2 of the main part

of the thesis, we show the most probable substructures that the Neural Partitioning yields for the

MUTAG dataset. It is interesting to observe that typical molecular substructures are extracted.

This highlights an interesting application of molecular graph compression, i.e., discovering

representative patterns of the molecular distribution in question.

Table C.7: Average bpe for attributed molecular datasets. First, Second, Third

Dataset name Atrributed MUTAG Atrributed PTC MRMethod
Family data total params data total params

Uniform (raw adjacency) - 13.33 - - 16.32 -
Edge list - 12.62 - - 14.06 -Null
Erdős-Renyi - 9.38 - - 10.87 -

Clustering SBM-Bayes - 9.17 - - 10.61 -
Louvain - 9.37 - - 10.76 -
PropClust - 9.52 - 10.80

PnC PnC + SBM 6.56 7.49 78 8.05 9.49 158
PnC + Louvain 3.52 4.45 78 5.56 7.65 200
PnC + PropClust 5.21 6.30 54 8.51 9.58 118

PnC + Neural Part. 3.83±0.06 4.78±0.12 74±6 5.19±0.39 6.49±0.54 170±30

C.4 Implementation Details

Datasets: We evaluated our method on a variety of datasets that are well-established in

the GNN literature. In specific, we chose the following from the TUDataset collection [Morris

et al., 2020a]: the molecular datasets MUTAG [Debnath et al., 1991, Kriege and Mutzel,

2012] (mutagenicity prediction) and PTC-MR [Helma et al., 2001, Kriege and Mutzel, 2012]

(carcinogenicity prediction), the protein dataset PROTEINS [Borgwardt et al., 2005, Dobson

and Doig, 2003] (protein function prediction - vertices represent secondary structure elements

and edges either neighbourhoods in the aminoacid sequence or proximity in the 3D space) and

the social network datasets IMDBBINARY and IMDBMULTI [Yanardag and Vishwanathan,
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2015] (movie collaboration datasets where each graph is an ego-net for an actor/actress). We also

experimented with the ZINC dataset [Irwin et al., 2012b, Kusner et al., 2017, Gómez-Bombarelli

et al., 2018, Jin et al., 2018a] (molecular property prediction), which is a larger molecular dataset

from the dataset collection introduced in [Dwivedi et al., 2020]. A random split is chosen for the

TUDatasets (90% train, 10% test), since we are not interested in the class labels, while for the

ZINC dataset, we use the split given by the authors of [Dwivedi et al., 2020] (we unify the test

and the validation split since we do not use the validation set for hyperparameter tuning/model

selection).

PnC model architecture and hyperparameter tuning: The GNN used for the Neural

partitioning variant of PnC is a traditional Message Passing Neural Network [Gilmer et al., 2017],

where a general formulation is employed for the message and the update functions (i.e., we use

Multi-layer Perceptrons similar to [Loukas, 2020]). We optimise the following hyperparameters:

batch size in {16, 64, 128}, network width in {16, 64} number of layers in {2, 4}. The learning

rate for the updates of the dictionary and probabilistic model parameters was 1 and 0.1 for the

fixed partitioning and the neural partitioning variants respectively, while the learning rate of

the GNN (neural partitioning only) was set to 0.001. For all the variants we further tune the

maximum number of vertices for the dictionary atoms k in {6, 8, 10, 12}. Note that the last

hyperparameter mainly affects the optimisation of the Neural Partitioning variant: small values

of k will constrain the possible subgraph choices, but will facilitate the network to find good

partitions by exploitation. On the other hand, larger values of k will encourage exploration, but

the optimisation landscape becomes significantly more complex, thus in some cases (mainly for

social networks, where there is a larger variety of non-isomorphic subgraphs) we observed that

the optimisation algorithm could not converge to good solutions.

We optimise each PnC variant for 100 epochs and report the result on the epoch where the

description length of the training set is minimum. The best hyperparameter set is also chosen

w.r.t the lowest training set description length, and after its selection, we repeat the experiment

for 3 different seeds (in total). Table C.8 shows the chosen hyperparameters.

We implement our framework using PyTorch Geometric [Fey and Lenssen, 2019b], while the

predefined partitioning algorithms were implemented using graph-tool [Peixoto, 2014] for the

SBM fitting and scikit-network [Bonald et al., 2020] for the Louvain and the Propagation

Clustering algorithms. To track our experiments we used the wandb platform [Biewald, 2020].
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Table C.8: Chosen hyperparameters for each dataset (PnC + NeuralPart)

dataset batch size width number of layers k

MUTAG 16 16 2 10
PTC 16 16 2 10
ZINC 128 16 2 10
PROTEINS 16 16 4 8
IMDB-B 16 16 2 8
IMDB-M 64 64 2 8

Deep generative models and pruning. For the generative model baselines, we have used

the official implementations provided in the corresponding repositories4. For GraphRNN, we

trained with the default parameters provided with the official implementation and only tuned

the number of training epochs according to the time required for convergence. For GRAN, we

adopt one of the configurations provided in the official repository with minor modifications.

Namely, we used a DFS ordering, stride and block size 1, 20 Bernoulli mixture components for

the parametrisation of the likelihood, and switched of the subgraph sampling feature.

For our iterative pruning protocol, we fix the same number of pruning iterations for both models

on each dataset. Specifically, we use {450, 270, 10, 90, 90, 90} total epochs and a pruning interval

T of {50, 30, 1, 10, 10, 10} for MUTAG, PTC, ZINC, PROTEINS, IMDB-B, and IMDB-M

respectively. We used a 25% pruning percentage, which lead to a 10-fold reduction in model

size in most cases. Further pruning was not found to be consistently beneficial in the parameter

ranges that we experimented on.

Model parameter cost. For the PnC variants, we could seamlessly use half-precision (16 bits)

to store the model parameters (section 5.6) without sacrificing compression quality. However, as

discussed in Appendix C.3.2 we were not able to retain similar likelihood estimates when storing

with half-precision the weights of deep generative models, hence in the results reported in the

main tables, we used 32 bits to store the model weights.5 Additionally, regarding the pruned

versions of deep generative models, we need to transmit the locations of the non-zero weights

for each parameter matrix in Rd1×d2 , which are encoded as follows: log(d1d2 + 1) + log
(︁
d1d2
e

)︁
,

where e is the number of the non-zero elements. For all methods compared, the decompression

4https://github.com/JiaxuanYou/graph-generation & https://github.com/lrjconan/GRAN
5In a preliminary version of the paper we assumed a 16-bit weight encoding without likelihood losses.

However, our subsequent implementation with half-precision deep graph generators demonstrated that this might
not be possible in practice.

https://github.com/JiaxuanYou/graph-generation
https://github.com/lrjconan/GRAN
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algorithm and the neural network architectures are assumed to be public, hence they do not

need to be transmitted.

Isomorphism. In order to speed up isomorphism testing between dictionary atoms and

the subgraphs that the partitioning algorithm yields, we make the following design choices:

(a) Dictionary atoms are sorted by their frequencies of appearance (these are computed by

an exponential moving average that gets updated during training). In this way, the expected

number of comparisons drops to O(1) from O(|D|). (b) We choose the parameter k to be a

small constant value (i.e., does not scale with the number of vertices of the graph), as previously

mentioned. It becomes clear, that except for the importance of k in the optimisation procedure,

it also plays a crucial role in scalability, since as mentioned in the introduction of the main part

of the thesis, solving the isomorphism problem quickly becomes inefficient when the number

of vertices increases. (c) Additionally, one can choose to approximate isomorphism with faster

algorithms, such as the Weisfeiler-Leman test [Weisfeiler and Leman, 1968], or with more

expressive Graph Neural Networks, such as the ones we saw in section 4.7.1. These algorithms

will always provide a correct negative answer whenever two graphs are non-isomorphic, but a

positive answer does not always guarantee isomorphism. In that case, exact isomorphism can

be employed only when the faster alternatives give a positive answer.

Translating probabilities into codes. In the following section, we explain how a partitioned

graph can be represented into a bitstream using our probabilistic model. The general principle

for modern entropy encoders (Arithmetic Coding [Witten et al., 1987] and Asymmetric Numeral

Systems [Duda, 2013]) is that both the encoder and the decoder need to possess the cumulative

distribution function (c.d.f.) of each component they are required to encode/decode. Hence, the

encoder initially sends to the decoder the parameters of the model φ using a fixed precision

encoding (e.g., we used 16 bits for our comparisons). The rest of the bitstream is described

below:

• Dictionary. The dictionary is sent as part of the preamble of the message. It consists of

the following:

(a) the size of the dictionary (we assume fixed precision for this value),

(b) a sequence of dictionary atoms encoded with the null model, where each message
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includes the number of vertices, the number of edges and finally the adjacency matrix:

ki,mi,A(αi) (see Eq. (5.18)).

• Graphs: Subsequently, graphs are sequentially transmitted. The message contains the

following:

(a) the total number of subgraphs b using a categorical distribution parametrised with

q(b), and the number of dictionary subgraphs bdict that are encoded using δ and b to

parametrise the binomial distribution Binomial(bdict | b;φ). The c.d.f. of the binomial

distribution can be computed using a factorisation described in [Steinruecken, 2015],

(b) the subgraphs that belong in the dictionary, which are encoded using the multinomial

distribution q(Hdict | bdict;φ). As above, a factorisation described in [Steinruecken, 2015]

can be used to compute the c.d.f.,

(c) the non-dictionary subgraphs. These are encoded with the null model (same as the

encoding of dictionary atoms as mentioned above),

(d) the cuts, which are encoded using Eq. (5.17).

Several of our encodings involve uniform distributions over combinations of elements (e.g., for the

adjacency matrix in the null model). To compute them, we can either factorise the distribution

as in [Steinruecken, 2016] in order to efficiently compute the c.d.f or use a ranking function (and

its inverse for the decoder) that maps a combination to its index in lexicographic order (e.g.,

see [Kreher and Stinson, 2020]).
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