53 research outputs found

    Algorithms for the Maximum Independent Set Problem

    Get PDF
    This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of S2;j;kS_{2;j;k}-free graphs (thus generalizing the classical result for S1;2;kS_{1;2;k}-free graphs); + some subclasses of treektree_{k}-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of P7P_{7}-free graphs and S2;2;2S_{2;2;2}-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of S2;k;kS_{2;k;k}-free graphs and a subclass of S2;2;5S_{2;2;5}-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for P5P_{5}-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for P5P_{5}-free graphs, to give polynomial solutions for some subclasses of S2;2;2S_{2;2;2}-free graphs and treektree_{k}-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of Si;j;kS_{i;j;k}-free subcubic graphs

    On the edit distance from a cycle- and squared cycle-free graph

    Get PDF
    The edit distance from a hereditary property is the fraction of edges in a graph that must be added or deleted for a graph to become a member of that hereditary property. Let Forb(Ch) and Forb(C2h) denote the hereditary properties containing graphs with no induced cycle or squared cycle on h vertices, respectively. The edit distance from Forb(Ch) is found for odd values of h, and the maximum edit distance is found for all values of h. The edit distance is found for Forb(C2h) for h = 8; 9; 10, and the maximum value is known for h = 11; 12, with partial results for other values of h

    Structure and properties of maximal outerplanar graphs.

    Get PDF
    Outerplanar graphs are planar graphs that have a plane embedding in which each vertex lies on the boundary of the exterior region. An outerplanar graph is maximal outerplanar if the graph obtained by adding an edge is not outerplanar. Maximal outerplanar graphs are also known as triangulations of polygons. The spine of a maximal outerplanar graph G is the dual graph of G without the vertex that corresponds to the exterior region. In this thesis we study metric properties involving geodesic intervals, geodetic sets, Steiner sets, different concepts of boundary, and also relationships between the independence numbers and domination numbers of maximal outerplanar graphs and their spines. In Chapter 2 we find an extension of a result by Beyer, et al. [3] that deals with Hamiltonian degree sequences in maximal outerplanar graphs. In Chapters 3 and 4 we give sharp bounds relating the independence number and domination number, respectively, of a maximal outerplanar graph to those of its spine. In Chapter 5 we discuss the boundary, contour, eccentricity, periphery, and extreme set of a graph. We give a characterization of the boundary of maximal outerplanar graphs that involves the degrees of vertices. We find properties that characterize the contour of a maximal outerplanar graph. The other main result of this chapter gives characterizations of graphs induced by the contour and by the periphery of a maximal outerplanar graph. In Chapter 6 we show that the generalized intervals in a maximal outerplanar graph are convex. We use this result to characterize geodetic sets in maximal outerplanar graphs. We show that every Steiner set in a maximal outerplanar graph is a geodetic set and also show some differences between these types of sets. We present sharp bounds for geodetic numbers and Steiner numbers of maximal outerplanar graphs

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds

    Get PDF
    We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points of view. The study is divided into three parts. First, we study the complexity of deciding whether a given edge-colored graph is rainbow-connected. That is, we seek to verify whether the graph has a path on which no color repeats between each pair of its vertices. We obtain a comprehensive map of the hardness landscape of the problem. While the problem is NP-complete in general, we identify several structural properties that render the problem tractable. At the same time, we strengthen the known NP-completeness results for the problem. We pinpoint various parameters for which the problem is ïŹxed-parameter tractable, including dichotomy results for popular width parameters, such as treewidth and pathwidth. The study extends to variants of the problem that consider vertex-colored graphs and/or rainbow shortest paths. We also consider upper and lower bounds for exact parameterized algorithms. In particular, we show that when parameterized by the number of colors k, the existence of a rainbow s-t path can be decided in O∗ (2k ) time and polynomial space. For the highly related problem of ïŹnding a path on which all the k colors appear, i.e., a colorful path, we explain the modest progress over the last twenty years. Namely, we prove that the existence of an algorithm for ïŹnding a colorful path in (2 − Δ)k nO(1) time for some Δ > 0 disproves the so-called Set Cover Conjecture.Second, we focus on the problem of ïŹnding a rainbow coloring. The minimum number of colors for which a graph G is rainbow-connected is known as its rainbow connection number, denoted by rc(G). Likewise, the minimum number of colors required to establish a rainbow shortest path between each pair of vertices in G is known as its strong rainbow connection number, denoted by src(G). We give new hardness results for computing rc(G) and src(G), including their vertex variants. The hardness results exclude polynomial-time algorithms for restricted graph classes and also fast exact exponential-time algorithms (under reasonable complexity assumptions). For positive results, we show that rainbow coloring is tractable for e.g., graphs of bounded treewidth. In addition, we give positive parameterized results for certain variants and relaxations of the problems in which the goal is to save k colors from a trivial upper bound, or to rainbow connect only a certain number of vertex pairs.Third, we take a more graph-theoretic view on rainbow coloring. We observe upper bounds on the rainbow connection numbers in terms of other well-known graph parameters. Furthermore, despite the interest, there have been few results on the strong rainbow connection number of a graph. We give improved bounds and determine exactly the rainbow and strong rainbow connection numbers for some subclasses of chordal graphs. Finally, we pose open problems and conjectures arising from our work

    Interactions entre les Cliques et les Stables dans un Graphe

    Get PDF
    This thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem.Cette thĂšse s'intĂ©resse Ă  diffĂ©rents types d'interactions entre les cliques et les stables, deux objets trĂšs importants en thĂ©orie des graphes, ainsi qu'aux relations entre ces diffĂ©rentes interactions. En premier lieu, nous nous intĂ©ressons au problĂšme classique de coloration de graphes, qui peut s'exprimer comme une partition des sommets du graphe en stables. Nous prĂ©sentons un rĂ©sultat de coloration pour les graphes sans triangles ni cycles pairs de longueur au moins 6. Dans un deuxiĂšme temps, nous prouvons la propriĂ©tĂ© d'Erdös-Hajnal, qui affirme que la taille maximale d'une clique ou d'un stable devient polynomiale (contre logarithmique dans les graphes alĂ©atoires) dans le cas des graphes sans chemin induit Ă  k sommets ni son complĂ©mentaire, quel que soit k.Enfin, un problĂšme moins connu est la Clique-Stable sĂ©paration, oĂč l'on cherche un ensemble de coupes permettant de sĂ©parer toute clique de tout stable. Cette notion a Ă©tĂ© introduite par Yannakakis lors de l’étude des formulations Ă©tendues du polytope des stables dans un graphe parfait. Il prouve qu’il existe toujours un sĂ©parateur Clique-Stable de taille quasi-polynomiale, et se demande si l'on peut se limiter Ă  une taille polynomiale. Göös a rĂ©cemment fourni une rĂ©ponse nĂ©gative, mais la question se pose encore pour des classes de graphes restreintes, en particulier pour les graphes parfaits. Nous prouvons une borne polynomiale pour la Clique-Stable sĂ©paration dans les graphes alĂ©atoires et dans plusieurs classes hĂ©rĂ©ditaires, en utilisant notamment des outils communs Ă  l'Ă©tude de la conjecture d'Erdös-Hajnal. Nous dĂ©crivons Ă©galement une Ă©quivalence entre la Clique-Stable sĂ©paration et deux autres problĂšmes  : la conjecture d'Alon-Saks-Seymour gĂ©nĂ©ralisĂ©e et le ProblĂšme TĂȘtu, un problĂšme de Satisfaction de Contraintes

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    • 

    corecore