96 research outputs found

    (R, S) conjugate solution to coupled Sylvester complex matrix equations with conjugate of two unknowns

    Get PDF
    In this work, we are concerned with (R, S) ā€“ conjugate solutions to coupled Sylvester complex matrix equations with conjugate of two unknowns. When the considered two matrix equations are consistent, it is demonstrated that the solutions can be obtained by utilizing this iterative algorithm for any initial arbitrary (R,S) ā€“ conjugate matrices V1,W1. A necessary and sufficient condition is established to guarantee that the proposed method converges to the (R,S) ā€“ conjugate solutions. Finally, two numerical examples are provided to demonstrate the efficiency of the described iterative technique

    A gradient-based iterative algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems

    Get PDF
    In this paper, a new gradient-based iterative algorithm is proposed to solve the coupled Lyapunov matrix equations associated with continuous-time Markovian jump linear systems. A necessary and sufficient condition is established for the proposed gradient-based iterative algorithm to be convergent. In addition, the optimal value of the tunable parameter achieving the fastest convergence rate of the proposed algorithm is given explicitly. Finally, some numerical simulations are given to validate the obtained theoretical results

    Toward Solution of Matrix Equation X=Af(X)B+C

    Get PDF
    This paper studies the solvability, existence of unique solution, closed-form solution and numerical solution of matrix equation X=Af(X)B+CX=Af(X) B+C with f(X)=XT,f(X) =X^{\mathrm{T}}, f(X)=XĖ‰f(X) =\bar{X} and f(X)=XH,f(X) =X^{\mathrm{H}}, where XX is the unknown. It is proven that the solvability of these equations is equivalent to the solvability of some auxiliary standard Stein equations in the form of W=AWB+CW=\mathcal{A}W\mathcal{B}+\mathcal{C} where the dimensions of the coefficient matrices A,B\mathcal{A},\mathcal{B} and C\mathcal{C} are the same as those of the original equation. Closed-form solutions of equation X=Af(X)B+CX=Af(X) B+C can then be obtained by utilizing standard results on the standard Stein equation. On the other hand, some generalized Stein iterations and accelerated Stein iterations are proposed to obtain numerical solutions of equation equation X=Af(X)B+CX=Af(X) B+C. Necessary and sufficient conditions are established to guarantee the convergence of the iterations

    Learning Output Kernels for Multi-Task Problems

    Full text link
    Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data

    TR-2012001: Algebraic Algorithms

    Full text link
    • ā€¦
    corecore