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An Improved Complex-valued Recurrent Neural

Network Model for Time-Varying Complex-valued

Sylvester Equation
Lei Ding, Lin Xiao, Kaiqing Zhou, Yonghong Lan, Yongsheng Zhang, and Jichun Li

Abstract—Complex-valued time-varying Sylvester equation
(CVTVSE) has been successfully applied into mathematics and
control domain. However the computation load of solving
CVTVSE will rise significantly with the increase of sampling rate,
and it is a challenging job to tackle online the CVTVSE. In this
paper, a new sign-multi-power activation function is designed.
Based on this new activation function, an improved complex-
valued Zhang neural network (ICZNN) model for tackling the
CVTVSE is established. Furthermore, the strict proof for the
maximum time of global convergence of the ICZNN is given
in detail. Two numerical experiments are employed to verify
the performance of the proposed ICZNN model, and the results
show that, as compared with the previous Zhang neural network
(ZNN) models with different nonlinear activation functions, this
ICZNN model with sign-multi-power activation function has a
faster convergence speed to tackle the CVTVSE.

Index Terms—Zhang neural network, complex-valued time-
varying Sylvester equation, convergence speed, sign-multi-power
function, finite-time convergence.

I. INTRODUCTION

TODAY the Sylvester equation (SE) has been successfully

applied into many fields, such as the robotic application

[1], the waveguide eigenvalue problem [2], the commutative

rings [3], the isogeometric Preconditioners [4], the multi-agent

linear parameter-varying systems [5]. Generally speaking, the

Sylvester equation can be divided into two categories: namely

the static SE and the dynamic SE (i.e., time-varying Sylvester

equation, TVSE). The classical algorithms to tackle the static

SE are the Bartels−Stewart and Hessenberg−Schur methods

[6], [7]. The main shortcoming of the above algorithms is

that they only fit for solving the small-scale problems due

to the dense matrix operation. Recently, a series of iteration
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algorithms using the gradient information have been proposed

to tackle the static SE, such as the relaxed gradient based

iterative algorithm [8], the least-squares iterative algorithm

[9], the accelerated gradient algorithm [10], and the alternating

direction implicit algorithm [11]. However, the above methods

can not effectively tackle the TVSE online. The main reason

is that the TVSE should be calculated in every sampling

cycle, and the computational burden will significantly increase

within a sampling cycle when the sampling rate increases.

Thus the above algorithm may not complete a calculation

if the computational burden is too big. Today the neural

networks have caused widely attention [12]–[14]. As a kind

of neural network, the recurrent neural networks (RNNs) have

a stronger real-time computation ability than the traditional

numerical algorithms [15]–[21]. So a series of RNN models

have been designed for tackling the dynamic SE. For example,

the gradient-based RNNs are designed to tackle the real-valued

SE [22], [23]. But the gradient-based RNNs may need very

long time to obtain its ideal solution because its performance

indicator is the Frobenius norm of errors. So a novel RNN

called Zhang neural network (ZNN), which can converge

to zero exponentially, is proposed because its performance

indicator is a vector/matrix-valued error function [24]–[30].

But Xiao pointed out that the traditional ZNN cannot obtain its

theoretical solution in finite time [31]. So a series of improved

ZNNs with the finite time convergence property have been

proposed [32]–[34]. Furthermore, some of improved ZNNs

have been successfully employed to tackle the TVSE online

[35]–[37].

Now the complex-valued neural networks have shown more

advantages than the real-valued neural networks in some fields,

such as the high-capacity auto-associative memories [38], the

spectral domain [39], the millimeter-wave active imaging [40],

and the geometric measures [41]. Inspired by the previous

studies for the ZNNs, we explore a novel complex-valued ZNN

model for solving the complex-valued time-varying Sylvester

equation (CVTVSE) in this paper. Before that, some related

work about complex-valued ZNNs is reviewed as follows. In

[42], a ZNN model is applied to tackle a complex matrix

inversion. However, a linear activation function is used in

this ZNN model, which causes this ZNN model cannot obtain

its ideal solution in finite time. In [43] Li et al. proposed a

novel sign-bi-power nonlinear activation function to build an

improved ZNN model, which can obtain its theoretical results

in finite time for tackling the TVSE. We can describe this
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Fig. 1. Output trajectories of neural states X11(t) synthesized by the model (9) in example 1.The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.
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Fig. 2. Output trajectories of neural states X21(t) synthesized by the model (9) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

sign-bi-power function as

Ψ(u) =
1

2
sgnz(u) +

1

2
sgn1/z(u), (1)

where z is an odd integer and satisfy z > 1, and

sgnz(u) =











|u|z, if u > 0

0, if u = 0

−|u|z, if u < 0.

Furthermore, in [44] Li et al. proposed a complex-valued ZNN

based on the sign-bi-power function to tackle the CVTVSE.

Inspired by the sign-bi-power function, a tunable activation

function is designed to obtain a higher convergence rate

in [45]. In [46] Ding et al. designed an improved ZNN

activation function to tackle the complex-valued linear equa-

tions (CVLE), which is transformed into a real-valued linear

equation, and the improved ZNN activation function can be

described as

Ψ(u) = sign(u)(j1|u|h + j2|u|1/h − j3|u|), (2)

where j1 > j3 > 0, j2 > j3 > 0, h is an odd integer and

satisfies h > 1, and

sign(u) =











1, if u > 0

0, if u = 0

−1, if u < 0.

According to the above idea, to obtain a higher convergence

rate for online solving the CVTVSE, an improved nonlinear

activation function is designed and investigated in this paper.

Based on this new activation function, an improved complex-

valued Zhang neural network (ICZNN) model for tackling the

CVTVSE is established. Furthermore, the strict proof for the

maximum time of global convergence of the ICZNN is given

in detail. Two numerical experiments are employed to verify

the performance of the proposed ICZNN model.

The remaining parts contain the following content. In Sec-

tion II, we give the description of the problem. In Section

III, we design a sign-multi-power function to build a novel

ICZNN to tackle the CVTVSE, and give the theoretical proof
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Fig. 3. Output trajectories of neural states X12(t) synthesized by the model (9) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.
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Fig. 4. Output trajectories of neural states X22(t) synthesized by the model (9) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

for the maximum time of global convergence of the ICZNN.

In Section IV, we give two digit experiments to verify the

superiority of the sign-multi-power function. Finally, we give

the final conclusions of this paper in Section V.

Before finishing this section, we can summarize the contri-

bution of this paper as below.

1) A novel sign-multi-power activation function is designed.

2) A novel ICZNN is derived to tackle the CVTVSE in

complex-valued domain, and the strict theoretical proof

is explained.

3) The digit experiments demonstrate that this novel model

for online tackling the CVTVSE can increase the conver-

gence rate significantly.

II. DESCRIPTION OF THE PROBLEM

The CVTVSE can be described as

G(t)X(t) −X(t)Q(t) = −S(t) ∈ C
n×n, (3)

where G(t), Q(t) and S(t) are all the complex-valued coeffi-

cient matrices, t means time, and X(t) is a time-varying matrix

needs to be calculated. Now we give the following assumption-

s: the complex-valued matrices G(t), Q(t), and S(t) have no

identical eigenvalues, and are all first-order differentiable. So

there will be only a solution for the equation (3). To help the

future description, let X̃(t) denote the theoretical solution. Our

target is to design a novel nonlinear complex-valued activation

function to build a neural network for tackling the CVTCSE.

First suppose G(t), Q(t), X(t) and S(t) are all real-valued

matrices, and the procedure for the real-valued TVSE using

the ZNN model can be described as the following three steps.

Step 1: The error function can be represented as:

D(t) = G(t)X(t)−X(t)Q(t) + S(t). (4)

Step 2: The evolution procedure is designed as follows:

Ḋ(t) = qΨ(D(t)), (5)

where q > 0 denotes the coefficient to accelerate the conver-

gence rate, and Ψ(·) denotes the activation function.

Step 3: Substitute (4) into (5), and we will have the

following equation:

G(t)Ẋ(t)− Ẋ(t)Q(t) = qΨ(G(t)X(t)−X(t)Q(t)

+ S(t))− Ġ(t)X(t) +X(t)Q̇(t)− Ṡ(t).
(6)

Now suppose G(t) = Gre(t) + jGim(t), Q(t) = Qre(t) +
jQim(t), X(t) = Xre(t)+jXim(t) and S(t) = Sre(t)+Sim(t),
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Fig. 5. Output trajectories of the residual errors synthesized by the model (10) in example 1.

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t (s)

X11,re (t)

(a) Element of real part of X11(t)

0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t (s)

X11,im (t)

(b) Element of imaginary part of X11(t)

Fig. 6. Output trajectories of neural states X11(t) synthesized by the model (10) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

where j =
√
−1 denotes an imaginary unit. Then according

to the equation (6), we have

G(t)Ẋ(t)− Ẋ(t)Q(t) = q(Ψ(Gre(t)Xre(t)

−Gim(t)Xim(t)−Xre(t)Qre(t)

+Xim(t)Qim(t)) + jΨ(Gim(t)Xre(t)

+Gre(t)Xim(t)−Xim(t)Qre(t)

−Xre(t)Qim(t))) − Ġ(t)X(t)

+X(t)Q̇(t)− Ṡ(t).

(7)

III. A NOVEL RECURRENT NEURAL NETWORK

A. A New Nonlinear Activation Function

From the equation (7), we can find that a suitable activation

function will increase the convergence rate significantly. So a

novel nonlinear activation function called the sign-multi-power

function can be designed as follows:

Ψ(k) = a1sgnz(k) + a2sgnz−21(k) + a3sgnz−22(k)

+ · · ·+ ansgn1(k) + an+1sgn1/z(k),
(8)

where z is odd integer and satisfy z > 1, the parameters a1,

· · · , an+1 are all the positive numbers, and

sgnz(u) =











|u|z, if u > 0

0, if u = 0

−|u|z, if u < 0.

B. A Sign-multi-power Model for Tackling the CVTVSE

For ease of comparison, we first introduce two improved

ZNN models. One is a sign-bi-power model [44], and the other

is an IZNN model [46]. For ease of description, we first give

the following definition:

f1(t) = Gre(t)Xre(t)−Gim(t)Xim(t)

−Xre(t)Qre(t) +Xim(t)Qim(t),

and

f2(t) = Gim(t)Xre(t) +Gre(t)Xim(t)

−Xim(t)Qre(t)−Xre(t)Qim(t).
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Fig. 7. Output trajectories of neural states X21(t) synthesized by the model (10) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.
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Fig. 8. Output trajectories of neural states X12(t) synthesized by the model (10) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

Then the sign-bi-power model is represented as:

G(t)Ẋ(t)− Ẋ(t)Q(t) = q(
1

2
sgnz(f1(t))

+
1

2
sgn1/z(f1(t)) + j(

1

2
sgnz(f2(t))

+
1

2
sgn1/z(f2(t)))) − Ġ(t)X(t)

+X(t)Q̇(t)− Ṡ(t).

(9)

The IZNN model is represented as:

G(t)Ẋ(t)− Ẋ(t)Q(t) = q(sign(f1(t))(j1|f1(t)|h

+ j2|f1(t)|1/h − j3|f1(t)|)
+ j(sign(f2(t))(j1|f2(t)|h

+ j2|f2(t)|1/h − j3|f2(t)|))) − Ġ(t)X(t)

+X(t)Q̇(t)− Ṡ(t),

(10)

where j1 > j3 > 0, j2 > j3 > 0, and h is an odd integer and

satisfy h > 1, and

sign(u) =











1, if u > 0

0, if u = 0

−1, if u < 0.

Now we can build a novel improved ZNN using the sign-

multi-power function, which is designed as:

G(t)Ẋ(t)− Ẋ(t)Q(t) = q(a1sgnz(f1(t))

+ a2sgnz−21(f1(t)) + a3sgnz−22(f1(t))

+ · · ·+ ansgn1(f1(t)) + an+1sgn1/z(f1(t))

+ j(a1sgnz(f2(t)) + a2sgnz−21(f2(t))

+ a3sgnz−22(f2(t)) + · · ·+ ansgn1(f2(t))

+ an+1sgn1/z(f2(t))))− Ġ(t)X(t)

+X(t)Q̇(t)− Ṡ(t),

(11)

where q > 0, z is an odd integer and satisfies z > 1, q > 0,

and the parameters a1, · · · , an+1 are all the positive numbers.

We can call this model (11) as the ICZNN model.

C. Theorem Analysis of ICZNN Model

Theorem 1: The ICZNN model (11) is globally stable no

matter what its randomly generated initial value X(0) is.

Proof: According to the error evolution (5), we can find

each element of the matrix D(t) has the same dynamics, then

we have

Ḋiw(t) = qΨ(Diw(t)), (12)
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Fig. 10. Output trajectories of the residual errors synthesized by the model (10) in example 1.

where Diw(t) denotes the iwth element of the error matrix

D(t). According to Diw(t) = Diw,re(t) + jDiw,im(t), the

following two real-valued equations are derived:

Ḋiw,re(t) = qΨ(Diw,re(t)),

Ḋiw,im(t) = qΨ(Diw,im(t)),
(13)

where Diw,re(t) and Diw,im(t) denote the real part and imag-

inary part of Diw(t), respectively. Then we can design the

following Lyapunov functions:

Vre(t) = D2
iw,re(t),

Vim(t) = D2
iw,im(t).

(14)

Considering the equation Vre(t) = D2
iw,re(t) and the equation

Vim(t) = D2
iw,im(t) have the identical dynamic, we need only

take the equation Vre(t) = D2
iw,re(t) as a example to analyse

the convergence property. Now we have

V̇re(t) = −2qDiw,re(t)Ψ(Diw,re(t)). (15)

If we choose the sign-multi-power activation function, we will

have

Ψ(Diw,re(t)) = a1sgnz(Diw,re(t))

+ a2sgnz−21(Diw,re(t))

+ a3sgnz−22(Diw,re(t))

+ · · ·+ ansgn1(Diw,re(t))

+ an+1sgn1/z(Diw,re(t)).

(16)

From the equation (16), we can first find sgnz(t), · · · and

sgn1/z(t) are monotone increasing functions. Then the equa-

tion (16) is an odd and monotone increasing function. So

Diw,re(t)Ψ(Diw,re(t)) is positive definite. Now according to

the equation (15), V̇ is negative definite. Then the correspond-

ing conclusion can be given that Diw,re(t) will converge to 0

globally with time for all i and w. Similarly, we can prove the

convergence property of Diw,im(t) for all i and w.

Now from the equation (4), the corresponding conclusions

can be given that the X(t) of the sign-multi-power model (11)

will also converge to 0 globally. This proof is successful. �

Theorem 2: The state X(t) of ICZNN model (11) will obtain

its theoretical solution within the time th:

th =
z

q(z − 1)
V

z−1

2z
max (0)
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Fig. 11. Output trajectories of neural states X11(t) synthesized by the model (11) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.
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Fig. 12. Output trajectories of neural states X21(t) synthesized by the model (11) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

where Vmax(0) denotes the maximum initial element of

Diw,re(t) and Diw,im(t) for all possible i and w, and z is

an odd integer and satisfy z > 1.

Proof: According to the equation (13), we first design the

following Lyapunov function:

Vre(t) = D2
iw,re(t),

Vim(t) = D2
iw,im(t).

(17)

Now we take the equation Vre(t) = D2
iw,re(t) as a example to

analyse the maximum convergence time, and have

V̇re(t) = −2qDiw,re(t)(a1sgnz(Diw,re(t))

+ a2sgnz−21(Diw,re(t)) + a3sgnz−22(Diw,re(t))

+ · · ·+ ansgn1(Diw,re(t))

+ an+1sgn1/z(Diw,re(t)))

= −2q|Diw,re(t)|(a1sgnz(|Diw,re(t)|)
+ a2sgnz−21(|Diw,re(t)|)
+ a3sgnz−22(|Diw,re(t)|)
+ · · ·+ ansgn1(|Diw,re(t)|)
+ an+1sgn1/z(|Diw,re(t)|))
≤ −2q|Diw,re(t)|(an+1sgn1/z(|Diw,re(t)|))
= −2qVre

1/2(t)(an+1sgn1/z(Vre
1/2(t))).

(18)

Then we have

V̇re(t) ≤− 2qVre
1/2(t)an+1sgn1/z(Vre

1/2(t))

=− 2qVre
1/2(t)Vre

1/2z(t)

=− 2qVre

1+z

2z (t).

(19)
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Fig. 13. Output trajectories of neural states X12(t) synthesized by the model (11) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.
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Fig. 14. Output trajectories of neural states X22(t) synthesized by the model (11) in example 1. The dotted red line denotes the theoretical values, and the
blue solid line denotes the calculated values.

Now let’s integrate the equation (19) from zero to t, and we

will have

Vre(t) ≤ (V re
z−1

2z (0)− q(z − 1)

z
t)

2z
z−1

.

Let

t1,i =
z

q(z − 1)
v

z−1

2z (0). (20)

Now we can draw a conclusion if t ≥ t1,i, Vre(t) = 0. Suppose

Vre,max(0) denote the maximum element of Diw,re(t) for all

possible i and w, and t1,re = z
q(z−1)V

z−1

2z
re,max(0). Therefore if

t ≥ t1,re, Vre(t) = 0. Similarly, we can deal with the Lyapunov

function Vim(t) = D2
iw,im(t) using the above method. Suppose

Vim,max(0) denote the maximum element of Diw,im(t) for all

possible i and w, and t1,im = z
q(z−1)V

z−1

2z

im,max(0). Then we can

find if t ≥ t1,im, Vim(t) = 0.

Suppose t1 = max(t1,re, t1,im), and we can draw a conclu-

sion that if t ≥ t1, the Lyapunov function (17) will converge

to zero.

Now the proof is successful. �

IV. NUMERICAL SIMULATION

Now, two illustrative examples are provided in this section.

Furthermore to show the advantage of the ICZNN model (11),

the sign-bi-power model (9) and the IZNN model (10) are also

used to calculate the solution of CVTVSE. The convergence

process of each neural-state solution and the residual error

norm of each model are shown in corresponding figures. For

the convenience of comparison, the following parameters are

chosen q = 1, z = h = 5, a1 = a2 = a3 = a4 = j1 = j2 = 1
2 ,

and j3 = 0.25.

Example 1: In this example, the sign-bi-power model (9),

the IZNN model (10) and the ICZNN model (11) are employed

to calculate the theoretical solution X̃(t), respectively. The

specific CVTVSE example is presented as below:

G1(t)X(t)−X(t)Q1(t) = −S1(t) ∈ C
n×n,

where

G1 =

[

cos(5t) + j4 sin(2t) 3 sin(4t) + j6 cos(3t)

6− sin(t) + j cos(4t) 2 + cos(2t) + j3 sin(2t)

]

,

Q1 =

[

2 0

0 3

]

,
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Fig. 15. Output trajectories of the residual errors synthesized by the model (11) in example 1.
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Fig. 16. Output trajectories of the residual errors synthesized by the model (9) in example 2.

and

S1 =

[

sin(3t) sin(2t)

− cos(t) + j4 sin(3t) sin(t)

]

.

The calculation results are displayed in Figs.1-15. The Figs.

1-4, the Figs. 6-9 and the Figs. 11-14 display the output

trajectories of neural state X(t). From these figures, we can

find that the complex-valued time-varying parameters X11(t),
X21(t), X12(t), X22(t) of different models will all converge

to the theoretical solution in finite time. However, the ICZNN

model (11) has the highest convergence speed. The Fig. 5, the

Fig. 10 and the Figs. 15-18 display the output trajectories of

the residual error norm ||D(t)||2. From these figures, we can

find that the convergence time of the sign-bi-power model (9),

the IZNN model (10), and the ICZNN model (11) is about

2.6s, 4.7s, and 1.7s, respectively. Compared with the sign-bi-

power model (9) and the IZNN model (10), the ICZNN model

increases the convergence speed about percent 34% and 62%,

respectively.

Example 2: In this example, the sign-bi-power model (9),

the IZNN model (10) and the sign-multi-power model (11) are

further employed to calculate the following CVTVSE:

G2(t)X(t)−X(t)Q2(t) = −S2(t) ∈ C
n×n,

where

G2 =

[

cos(t) + j3 sin(4t) 5 sin(3t) + j cos(4t)

8− j cos(4t) 6 cos(3t) + j sin(4t)

]

,

Q2 =

[

2 + j cos(2t) 4 + j sin(3t)

cos(3t)− j sin(2t) 3 + cos(t)

]

,

and

S2 =

[

sin(t) + j4 cos(t) cos(t)

− cos(t) + j sin(3t) sin(t) + j sin(2t)

]

.

The calculation results are displayed in Fig.16-18 which show

the output trajectories of the residual error norm ||D(t)||2.

Similarly, we can find the the sign-multi-power model (11)

has a higher convergence speed than the sign-bi-power model

(9) and the IZNN model (10).

V. CONCLUSIONS

In this paper a novel activation function is designed. Based

on this novel activation function, a new finite-time ZNN model

(11) is designed to tackle the CVTVSE, and the strict proof

of global convergence and the upper bound are described. The

simulation results validate the proposed ICZNN model can
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Fig. 17. Output trajectories of the residual errors synthesized by the model (10) in example 2.
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Fig. 18. Output trajectories of the residual errors synthesized by the model (11) in example 2.

increase the convergence speed significantly. So it has a certain

significance for tackling the CVTVSE online.
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