102 research outputs found

    Improving performance of simplified computational fluid dynamics models via symmetric successive overrelaxation

    Get PDF
    The ability to model fluid flow and heat transfer in process equipment (e.g., shell-and-tube heat exchangers) is often critical. What is more, many different geometric variants may need to be evaluated during the design process. Although this can be done using detailed computational fluid dynamics (CFD) models, the time needed to evaluate a single variant can easily reach tens of hours on powerful computing hardware. Simplified CFD models providing solutions in much shorter time frames may, therefore, be employed instead. Still, even these models can prove to be too slow or not robust enough when used in optimization algorithms. Effort is thus devoted to further improving their performance by applying the symmetric successive overrelaxation (SSOR) preconditioning technique in which, in contrast to, e.g., incomplete lower–upper factorization (ILU), the respective preconditioning matrix can always be constructed. Because the efficacy of SSOR is influenced by the selection of forward and backward relaxation factors, whose direct calculation is prohibitively expensive, their combinations are experimentally investigated using several representative meshes. Performance is then compared in terms of the single-core computational time needed to reach a converged steady-state solution, and recommendations are made regarding relaxation factor combinations generally suitable for the discussed purpose. It is shown that SSOR can be used as a suitable fallback preconditioner for the fast-performing, but numerically sensitive, incomplete lower–upper factorization

    Research in applied mathematics, numerical analysis, and computer science

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Méthodes hybrides pour la résolution de grands systèmes linéaires creux sur calculateurs parallèles

    Get PDF
    Nous nous intéressons à la résolution en parallèle de système d’équations linéaires creux et de large taille. Le calcul de la solution d’un tel type de système requiert un grand espace mémoire et une grande puissance de calcul. Il existe deux principales méthodes de résolution de systèmes linéaires. Soit la méthode est directe et de ce fait est rapide et précise, mais consomme beaucoup de mémoire. Soit elle est itérative, économe en mémoire, mais assez lente à atteindre une solution de qualité suffisante. Notre travail consiste à combiner ces deux techniques pour créer un solveur hybride efficient en consommation mémoire tout en étant rapide et robuste. Nous essayons ensuite d’améliorer ce solveur en introduisant une nouvelle méthode pseudo directe qui contourne certains inconvénients de la méthode précédente. Dans les premiers chapitres nous examinons les méthodes de projections par lignes, en particulier la méthode Cimmino en bloc, certains de leurs aspects numériques et comment ils affectent la convergence. Ensuite, nous analyserons l’accélération de ces techniques avec la méthode des gradients conjugués et comment cette accélération peut être améliorée avec une version en bloc du gradient conjugué. Nous regarderons ensuite comment le partitionnement du système linéaire affecte lui aussi la convergence et comment nous pouvons améliorer sa qualité. Finalement, nous examinerons l’implantation en parallèle du solveur hybride, ses performances ainsi que les améliorations possible. Les deux derniers chapitres introduisent une amélioration à ce solveur hybride, en améliorant les propriétés numériques du système linéaire, de sorte à avoir une convergence en une seule itération et donc un solveur pseudo direct. Nous commençons par examiner les propriétés numériques du système résultants, analyser la solution parallèle et comment elle se comporte face au solveur hybride et face à un solveur direct. Finalement, nous introduisons de possible amélioration au solveur pseudo direct. Ce travail a permis d’implanter un solveur hybride "ABCD solver" (Augmented Block Cimmino Distributed solver) qui peut soit fonctionner en mode itératif ou en mode pseudo direct. ABSTRACT : We are interested in solving large sparse systems of linear equations in parallel. Computing the solution of such systems requires a large amount of memory and computational power. The two main ways to obtain the solution are direct and iterative approaches. The former achieves this goal fast but with a large memory footprint while the latter is memory friendly but can be slow to converge. In this work we try first to combine both approaches to create a hybrid solver that can be memory efficient while being fast. Then we discuss a novel approach that creates a pseudo-direct solver that compensates for the drawback of the earlier approach. In the first chapters we take a look at row projection techniques, especially the block Cimmino method and examine some of their numerical aspects and how they affect the convergence. We then discuss the acceleration of convergence using conjugate gradients and show that a block version improves the convergence. Next, we see how partitioning the linear system affects the convergence and show how to improve its quality. We finish by discussing the parallel implementation of the hybrid solver, discussing its performance and seeing how it can be improved. The last two chapters focus on an improvement to this hybrid solver. We try to improve the numerical properties of the linear system so that we converge in a single iteration which results in a pseudo-direct solver. We first discuss the numerical properties of the new system, see how it works in parallel and see how it performs versus the iterative version and versus a direct solver. We finally consider some possible improvements to the solver. This work led to the implementation of a hybrid solver, our "ABCD solver" (Augmented Block Cimmino Distributed solver), that can either work in a fully iterative mode or in a pseudo-direct mode
    corecore