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Résumé

Nous nous intéressons à la résolution en parallèle de système d’équations linéaires creux et de
large taille. Le calcul de la solution d’un tel type de système requiert un grand espace mémoire
et une grande puissance de calcul. Il existe deux principales méthodes de résolution de systèmes
linéaires. Soit la méthode est directe et de ce fait est rapide et précise, mais consomme beaucoup
de mémoire. Soit elle est itérative, économe en mémoire, mais assez lente à atteindre une solution
de qualité suffisante. Notre travail consiste à combiner ces deux techniques pour créer un solveur
hybride efficient en consommation mémoire tout en étant rapide et robuste. Nous essayons ensuite
d’améliorer ce solveur en introduisant une nouvelle méthode pseudo directe qui contourne certains
inconvénients de la méthode précédente .

Dans les premiers chapitres nous examinons les méthodes de projections par lignes, en partic-
ulier la méthode Cimmino en bloc, certains de leurs aspects numériques et comment ils affectent
la convergence. Ensuite, nous analyserons l’accélération de ces techniques avec la méthode des
gradients conjugués et comment cette accélération peut être améliorée avec une version en bloc
du gradient conjugué. Nous regarderons ensuite comment le partitionnement du système linéaire
affecte lui aussi la convergence et comment nous pouvons améliorer sa qualité. Finalement, nous
examinerons l’implantation en parallèle du solveur hybride, ses performances ainsi que les amélio-
rations possible.

Les deux derniers chapitres introduisent une amélioration à ce solveur hybride, en améliorant
les propriétés numériques du système linéaire, de sorte à avoir une convergence en une seule itéra-
tion et donc un solveur pseudo direct. Nous commençons par examiner les propriétés numériques
du système résultants, analyser la solution parallèle et comment elle se comporte face au solveur
hybride et face à un solveur direct. Finalement, nous introduisons de possible amélioration au
solveur pseudo direct. Ce travail a permis d’implanter un solveur hybride "ABCD solver" (Aug-
mented Block Cimmino Distributed solver) qui peut soit fonctionner en mode itératif ou en mode
pseudo direct.

Mots-clés : matrices creuses, méthodes itératives de résolution de systèmes linéaires, méthodes
directes de résolution de systèmes linéaires, méthodes hybrides, partitionnement, hypergraphes,
calcul haute performance, calcul parallèle.
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Abstract

We are interested in solving large sparse systems of linear equations in parallel. Computing the
solution of such systems requires a large amount of memory and computational power. The two
main ways to obtain the solution are direct and iterative approaches. The former achieves this
goal fast but with a large memory footprint while the latter is memory friendly but can be slow to
converge. In this work we try first to combine both approaches to create a hybrid solver that can be
memory efficient while being fast. Then we discuss a novel approach that creates a pseudo-direct
solver that compensates for the drawback of the earlier approach.

In the first chapters we take a look at row projection techniques, especially the block Cim-
mino method and examine some of their numerical aspects and how they affect the convergence.
We then discuss the acceleration of convergence using conjugate gradients and show that a block
version improves the convergence. Next, we see how partitioning the linear system affects the
convergence and show how to improve its quality. We finish by discussing the parallel implemen-
tation of the hybrid solver, discussing its performance and seeing how it can be improved.

The last two chapters focus on an improvement to this hybrid solver. We try to improve the
numerical properties of the linear system so that we converge in a single iteration which results
in a pseudo-direct solver. We first discuss the numerical properties of the new system, see how it
works in parallel and see how it performs versus the iterative version and versus a direct solver. We
finally consider some possible improvements to the solver. This work led to the implementation
of a hybrid solver, our "ABCD solver" (Augmented Block Cimmino Distributed solver), that can
either work in a fully iterative mode or in a pseudo-direct mode.

Keywords: sparse matrices, iterative methods for linear systems, direct methods for linear sys-
tems, hybrid methods, partitioning, hypergraphs, high-performance computing, parallel comput-
ing.
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Chapter 1

Introduction

One remarkable breakthrough in solving algebraic problems dates to almost two millennia ago
in a collection of essays by multiple Chinese scholars called Nine Chapters on the Mathematical
Arts. A large number of problems of everyday life and engineering were presented along with their
solutions in nine categories. The eighth chapter, The rectangular array, introduces a method of
solving systems of linear equations through a succession of elimination steps. One of the problems
as as follows

“Now given 3 bundles of top grade paddy, 2 bundles of medium grade paddy, (and) 1 bundle
of low grade paddy. Yield: 39 dou of grain. 2 bundles of top grade paddy, 3 bundles of medium
grade paddy, (and) 1 bundle of low grade paddy, yield 34 dou. 1 Bundle of top grade paddy, 2
bundles of medium grade paddy, (and) 3 bundles of low grade paddy, yield 26 dou. Tell: how
much paddy does one bundle of each grade yield? Answer: Top grade paddy yields 9(1/4) dou
(per bundle); medium grade paddy 4(1/4) dou; (and) low grade paddy 2(3/4) dou.” [1]

In modern times, this problem would have been transformed into a 3 × 3 matrix and could
be solved using Gaussian elimination. In fact, the solution proposed in the textbook is similar to
Gaussian elimination as it tries to nullify the coefficients of the variables to obtain as many zeros
as possible. The textbook presents the solution to problems up to 6×6, and even underdetermined
problems.

Today’s problems are more complicated than finding the amount of paddy depending on its
grade. Structural analysis, chemical engineering, network theory, fluid dynamics, data analysis
and circuit theory are only a few fields where systems of linear equations are used. The main
difference is that these systems yield sparse matrices. A matrix is said to be sparse if there is
a small ratio of nonzero entries to the total number of entries in the matrix. The sparsity of the
matrix is due to the loose coupling in the data it represents, in network theory this means that
each node is connected to only a few other nodes, in physical problems this can be a result of
weak interactions between the different physical domains. Exploiting the sparsity is essential if
we want to solve large systems on modern architectures. We note that today’s problems can be as
large as millions or even billions in size.

During the last decades, much work was done on computer hardware to be able to execute as
many operations per second as possible. As hardware becomes more and more powerful, algo-
rithms for solving systems of linear equations had to wisely exploit the new possibilities offered
by the hardware, such as faster communications between the different machine nodes and the in-
creasing number of processing units per node. This led to a wave of algorithms that try to use the
different levels of parallelism available to them and to do that efficiently.

The algorithms to solve systems of linear equations can be divided into two families: direct
or iterative methods. Direct methods are based on a factorization of a permutation of the given
input matrix. Depending on the numerical properties of the matrix, one can use either LU , LLT or

1



1. INTRODUCTION

LDLT factorizations. These factors are then used in substitution processes to obtain the solution.
However, direct methods suffer from a potentially very large memory footprint when solving
large linear problems, in particular those arising from 3D partial differential equation simulations.
Different studies have been made to reduce the memory usage, such as using and out-of-core
approach (see [2] and [3]) or low-rank approximation (see [4] and [5]).

Iterative methods are essentially based on matrix-vector products with an iteration matrix that
can be obtained from some particular transformations of the original matrix. They generally com-
pute successive approximations of the solution and monitor convergence with respect to some
error measure. In some cases, when some class of iterative methods are specifically suited for
a given class of problems, convergence can be very fast making these techniques very appealing
with respect to direct methods. However, in the general case, these methods may converge slowly
unless some sort of numerical boost is applied to them. This usually means applying some form of
preconditioner that improves the numerical properties of the iteration matrix so that convergence
is faster. The only issue here is that finding some appropriate preconditioner is usually problem
dependent and, in particular for hard cases, it is difficult to find cheap preconditioners to achieve
fast enough convergence. However, one major advantage of iterative methods in general is the low
memory usage as the required data structures are mainly the original matrix and few sets of extra
data whose size is proportional to the size of the original matrix. This feature has made them quite
attractive for very large sparse problems.

An intermediate class of methods, that emerged later, called hybrid methods, try to combine
the advantages of both previous classes e.g. the robustness of direct methods and the memory
economy of iterative methods. Hybrid methods usually decompose the original problem into
subproblems which are solved independently using a direct solver. Due to the fact that these
subproblems are smaller, solving them usually requires less memory with respect to solving the
original problem with a direct solver. The solutions to the subproblems are then combined within
an iterative process to derive approximations to the solution of the original problem. Additionally,
they exploit the independence between the subproblems raising an additional straightforward level
of parallelism. One or more additional levels of parallelism are achieved within the direct solver
itself when solving the subproblems.

Within the class of hybrid methods, we are interested in row projection techniques which,
as suggested by their name, use successive projections onto the range of subsets of rows of the
matrix. These projections are computed using a direct solver and the update of the solution is
iterative, which is why they are considered hybrid. For a natural first level of parallelism, we
focus specifically on the block Cimmino method in which these projections are basically summed
at each iteration and therefore can be computed totally independently. Row projection techniques
usually require some form of acceleration because convergence can be very slow. The most com-
mon acceleration method is the conjugate gradient method, when the iteration matrix is similar
to a symmetric positive definite matrix, which is in fact the case for the block Cimmino method.
The conjugate gradient method belongs to the class of Krylov methods and guarantees the conver-
gence in exact arithmetic after a finite number of iterations when the matrix is symmetric positive
definite. However, it can also be used as an iterative technique with an appropriate monitoring of
convergence, and this yields a usually robust iterative method. Its convergence can be improved
even further by using a block Krylov technique such as the block conjugate gradient algorithm.

We start this dissertation by introducing, in Chapter 2, different aspects of row projection
techniques. We recall some of their numerical properties, as described by Elfving in [6], and
discuss their acceleration using the conjugate gradient method, based on early work by Bramley
and Sameh in [7]. Next we analyse different types of convergence profile and explain how it is
possible to improve it in some cases by means of the stabilized block conjugate gradient method
presented by Arioli, Duff, Ruiz and Sadkane in [8]. Throughout this chapter, we also show in
detail how matrix-vector products with the iteration matrix are performed using a direct solver
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applied to augmented systems that express the row projection solutions.
Partitioning of the original system is an important issue in hybrid methods in general. De-

pending on the hybrid method, various partitioning strategies can be considered, their quality
being directly related to the achieved efficiency. In Chapter 3, we investigate the particular case
of row projection techniques and the effect of various partitioning strategies of the original linear
system on the convergence profile of the method. We introduce and compare different strategies
that aim to obtain partitions that improve the spectrum of the iteration matrix used by the conju-
gate gradient acceleration. The first strategy we present tries to form two sets of partitions that
are, within each set, mutually orthogonal to each other. The second strategy lowers this constraint
and tries to offer more freedom with the hope of being able to get more and better equilibrated
partitions while maintaining a convergence profile similar to the first strategy. Finally, we consider
a way to use hypergraph partitioning to obtain partitions that share minimum column overlap, and
we also analyse its benefits compared to the two previous strategies.

With respect to very large test problems for which, as we have said earlier, memory and
efficiency issues are very important, we propose a specific hybrid implementation of the block
Cimmino method that interfaces with the direct solver in a clever way so that it exploits as much
as possible all levels of parallelism. We present in Chapter 4 the details about the algorithms used
in this hybrid approach, starting with a basic master-slave implementation to highlight some of its
algorithmic aspects. We then propose a fully distributed version that can address in some specific
manner the different levels of parallelism identified, with appropriate mapping of data structures
across participating processes. On various sets of test problems, including some very large ones,
we illustrate the parallel potential of our hybrid implementation of the block Cimmino method
and show how it compares to a direct solver in terms of efficiency and memory usage.

One remaining major issue, with respect to the design of a general purpose iterative solver, is
the numerical behaviour (convergence) which remains problem dependent and cannot be a priori
controlled. Indeed, the efficiency of block row projection techniques relies strongly on the fact
that the partitioning of the original matrix is able to capture most of the ill-conditioning within the
blocks, and removes ill-conditioning across the blocks. This is not an easy target to achieve while
maintaining at the same time a good degree of parallelism and low memory usage, as these latter
issues usually require a minimum number of partitions. To achieve this goal, we propose a way
to enforce numerical orthogonality between the sets of rows given by the partitioning (whatever
one we use). We introduce in Chapter 5 a novel approach based on some form of augmentation of
the original matrix. Indeed, to enforce numerical orthogonality between predefined sets of rows,
we introduce some extra variables and show different ways to enlarge the system of equations
and reach this orthogonality in the super-space. We also introduce an extra set of equations to
recover the same solution as in the original linear system. This augmentation technique leads to
an algorithm to compute the solutions, that involves the same type of operations as in usual row
projection techniques, but with the introduction of a new auxiliary symmetric positive definite
linear system of much smaller size. This auxiliary system can be easily generated by means of
calls to the direct solver on multiple right-hand sides, and in an embarrassingly parallel manner.
Factorizing this auxiliary smaller system ultimately yields an implicit direct solver, but based on
tools and mechanisms specific to block iterative techniques. This novel approach results finally in
a fixed number of calls to the direct solution of sets of linear systems of much smaller sizes, and
numerical issues with convergence are avoided while maintaining a good degree of parallelism
and low memory usage. We illustrate the benefits of this new solver on a set of large matrices and
see how it compares with our classical hybrid solver.

Finally, in Chapter 6, we investigate various ways to decrease the size of this auxiliary matrix.
When doing so, we relax gradually the aforementioned enforced numerical orthogonality and we
are led to again require iterations to recover the solution. This approach defines a trade-off between
the pure iterative technique (no augmentation) and the implicit direct method (full augmentation).

3



1. INTRODUCTION

We then try to understand experimentally how this can still be beneficial. We also investigate
the iterative solution of the full auxiliary symmetric positive definite linear system (without any
reduction) as it is possible to use matrix-vector products with this matrix without the need to build
it. These two complementary studies can indeed be of some interest when this auxiliary system is
too large or too dense, which can make it difficult to build explicitly and factorize.

The various experiments in this manuscript are performed on three different architectures. We
present in Table 1.1 these three architectures with their name and location, and their corresponding
characteristics such as the type of processors they have, the number of cores per node and the
amount of memory per node. In the rest of this dissertation we shall refer to the architectures
directly by their names whenever necessary.

Name CPU Core/node Memory/node Location

Conan AMD Opteron(TM) 6220 32 500GB ENSEEIHT
Hyperion Intel Xeon 5560 8 32GB CALMIP Toulouse
Oakleaf Fujitsu Sparc64-IXfx 16 32GB Tokyo University

Table 1.1: The systems used to test our solver.
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Chapter 2

Block Conjugate Gradient acceleration
of the block Cimmino method

The classical and the block version of the conjugate gradient algorithm are methods that can
theoretically guarantee the convergence of the solution to symmetric positive definite systems in
a finite number of iterations in the absence of roundoff errors. This characteristic makes it an
appealing acceleration method for different iterative schemes. Among these schemes we will
study the block Cimmino one in detail and see how we can use both the classical and the block
conjugate gradient algorithms as accelerators of convergence.

We start by looking at some of the row projection techniques and the theory behind them. We
look at how we can accelerate them and the special case of conjugate gradient acceleration. Then
we discuss the block conjugate gradient (Block-CG) acceleration and the main differences with
the classical version.

2.1 Introduction to row projection techniques

In this chapter we consider the solution of the linear system

Ax = b (2.1)

where A is an m× n sparse matrix, x an n-vector and b is a given m-vector.
Elfving [6] and Campbell [9] showed that the minimum norm solution (m.n.s.) to (2.1) is a

solution to the least squares problem

min ‖ x ‖2 with x ∈ {x; ‖ Ax− b ‖2 is minimum},

and in the case of a consistent system, this m.n.s is unique and can be obtained by computing

x = A+b (2.2)

where A+ is the Moore-Penrose pseudoinverse defined by

A+ = AT (AAT )−1. (2.3)

Thus the solution (2.2) can be obtained through the solution of

AAT z = b, then x = AT z,

the details of obtaining the pseudoinverse are discussed in [10]. Let PR(AT ) be the orthogonal
projector onto the range of AT written as

PR(AT ) = A+A, (2.4)

5



2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

and PN (A) the orthogonal projector onto the nullspace of A defined as

PN (A) = I − PR(AT ).

For simplicity, we will assume that A is a square m ×m matrix and has full rank. Consider
the partition of the matrix A into p strips of rows, and the partitioning of b accordingly, as in the
following: 

A1
A2
...
Ap

x =


b1
b2
...
bp

 . (2.5)

Row Projection methods are algorithms that compute the solution to the linear system (2.1)
through successive projections of the iterate x(k) onto the range of each ATi . The row projection
methods fall usually into two general categories, that we recall here: the Kaczmarz [11] form, in
which the next iterate is obtained through a product of projections and the Cimmino [12] form
in which the iterate is obtained through a sum of projections, Bramley and Sameh did a deep
comparison of both approaches in [7].

In the following we consider that we have at least several rows per partition, this approach is
called block row projection and is a generalization for both Kaczmarz and Cimmino methods that
consider single row projections.

The block Kaczmarz method obtains its next iterate through a product of projections of the
current iterate such that, at the k-th iteration, we have the following computation

δ(i+1) = δ(i) +A+
i

(
bi −Aiδ(i)

)
for i = 1 to p

where δ(1) = x(k) and A+
i is the Moore-Penrose pseudoinverse of Ai. Then the next iterate is

computed as
x(k+1) = δ(p+1).

In contrast, the block Cimmino method obtains its next iterate through a sum of the projections as

δ(i) = A+
i

(
bi −Aix(k)

)
,

then updates the next iterate

x(k+1) = x(k) + ω
p∑
i

δ(i)

with some relaxation parameter ω.
We notice that the two approaches are quite similar, however the block Cimmino approach is

more amenable to parallelism as each projection can be computed independently from the others
and in parallel.

We will describe in more detail the block Cimmino algorithm in Section 2.2. We recall the
acceleration of this method using the conjugate gradient algorithm in Section 2.4 and we take
a brief look at the stabilized block conjugate gradient algorithm as an accelerator in the same
section. Finally, we will look at some numerical experiments in Section 2.5.

2.2 The block Cimmino method

Consider the partitioning (2.5) and let PR(AT
i ) be the orthogonal projector onto the range of ATi

defined as in (2.4) and A+
i the Moore-Penrose pseudoinverse of Ai defined as in (2.3). The block

Cimmino algorithm can be described as in the Algorithm 2.1.

6



2.2. The block Cimmino method

Algorithm 2.1 The block Cimmino method
Input: ω
x(0) ← arbitrary
k ← 0
loop

for i = 1→ p do
δi = A+

i

(
bi −Aix(k)

)
end for
x(k+1) ← x(k) + ω

∑p
i=1 δi

k ← k + 1
end loop

Elfving [6] showed that if 0 < ω < 2/ρ
(∑p

i=1 PR(AT
i )

)
the method converges towards the

minimum norm solution; for simplicity we consider ω as equal to one in the following. Moreover,
the method converges for any generalized inverse, as Campbell showed in [9], as long as Ai has
full row rank which implies the existence of (AiATi )−1.

From a geometrical point of view, we see in Figure 2.1 the interpretation of the block Cimmino
algorithm in the case of two partitions. It projects the current iterate on the different subspaces and
then combines them with respect to the parameter ω to get the next approximation of the solution.

R(AT
1 )

R(AT
2 )

x(0)

x∗

δ
(1)
1

δ
(1)
2

x(1)
ω

Figure 2.1: Geometric interpretation of the block Cimmino Algorithm with p = 2

The Algorithm 2.1 shows an important characteristic of the block Cimmino algorithm which
is the independence in the computations of the different projections δi. This enables us to exploit
two main levels of parallelism, the first one coming from the independent computation of the
projections, and the second one from operations within this computation. We shall talk more
about it in Chapter 4 when describing the hybrid parallelization of the block Cimmino method.

Iteration matrix. We define the iteration matrix Q of the block Cimmino iteration as

Q = I −H

with H =
p∑
i=1

PR(AT
i ) =

p∑
i=1

A+
i Ai.

7



2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

It is obtained from the block Cimmino iteration defined by

x(k+1) = x(k) +
p∑
i=1

A+
i

(
bi −Aix(k)

)
(2.6)

=
(
I −

p∑
i=1

A+
i Ai

)
x(k) +

p∑
i=1

A+
i bi

= (I −H)x(k) +
p∑
i=1

A+
i bi

= Qx(k) +
p∑
i=1

A+
i bi. (2.7)

The issue that arises now is how to compute the projections involved in the block Cimmino
iteration. Four approaches can be used:

Normal equations of the partitions Ai can be used, in which it is only necessary to solve linear
systems with the different AiATi matrices at each iteration. However, this approach has two main
drawbacks. First, buildingAiATi induces a large preprocessing time to estimate the storage needed
and can require excessive extra storage especially if Ai is sparse with some dense columns. The
second drawback is that the conditioning corresponding to the L2-norm κ2(AiATi ) is the square
of κ2(Ai) which is penalizing for ill-conditioned matrices.

QR factorization well known for its use with least-squares methods, avoids the formation of
ATA. In our case, consider the QiRi decomposition of ATi , we can compute A+

i v as in

A+
i bi = ATi

(
AiA

T
i

)−1
bi

= QiRi
(
RTi Q

T
i QiRi

)−1
bi

= QiRi
(
RTi Ri

)−1
bi

= QiRiR
−1
i R−Ti bi

A+
i bi = QiR

−T
i bi (2.8)

and A+
i Aix = QiQ

T
i x. (2.9)

Using this approach, one can factorize independently each partition and at each iteration com-
pute the projection using (2.9). For the moment, there is no suitable sparse QR distributed solver
available, therefore this approach has not yet been investigated numerically.

Seminormal equations are midway between normal equations and QR factorization. Suppose
we have the QR factorization

ATi = QiRi,

therefore, the normal equations can be written as

AiA
T
i = RTi Ri

and solving a linear system with these amounts to solving

RTi Riw = z.

8



2.3. Solving augmented systems using a direct solver

We can therefore compute A+
i v as

A+
i v = ATi

(
AiA

T
i

)−1
v

= ATi

(
RTi Ri

)−1
v

= ATi w

and A+
i Aix = ATi

(
RTi Ri

)−1
Aix.

Augmented systems are the simplest to use in our case. To obtain the projection

δi = A+
i

(
bi −Aix(k)

)
,

we can solve the linear system

Aiδi = ri, (ri = bi −Aix(k))

using the augmented system approach:(
I ATi
Ai 0

)(
ui
vi

)
=
(

0
ri

)
. (2.10)

Whose solution is defined by

ui = ATi

(
AiA

T
i

)−1
ri and vi = −

(
AiA

T
i

)−1
ri.

By solving the linear system (2.10) at each iteration we obtain the different projections δi = ui.
We use a sparse direct solver to factorize the augmented system and solve the linear systems at
each iteration.

The augmented system approach has been proven to be more stable than the normal equations
approach by Arioli et al. [13] as it avoids building and storing the normal equations for each par-
tition, especially when reordering the matrix using the maximum weighted matching that creates
oxo pivots in the LDLT factorization of (2.10)’s matrix, as we will show in the next section.

2.3 Solving augmented systems using a direct solver

In this section we will look at the different aspects of solving augmented systems using a direct
solver. The notations in this section (such as the names of the matrices and vectors) are indepen-
dent from the rest of the manuscript. We consider the following system:

Ax = b

where x is the solution vector to the linear system, b a known vector and A = (aij) is an n × n
symmetric matrix described as:

A =
[
D C
CT 0

]
. (2.11)

In contrast to iterative methods that look for the solution over a set of successive approximations,
direct methods find the exact solution –relative to the machine precision and to the conditioning
ofA– to the linear system in a finite number of operations. However, direct methods could require
huge amounts of memory to factorize large matrices, especially when matrices result from large
3D problems.

To solve the linear system (2.11) the direct solver goes through three phases [14]:

9



2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

• The analysis phase in which it does a preprocessing to improve the structure of the matrix
and/or its numerical properties for a faster and more stable factorization. It also estimates the
amount of memory it requires for factorization and the number of floating-point operations
needed.

• The factorization phase of the prepocessed matrix where it is decomposed into a product of
two or three matrices easier to solve.

• The solution phase performs a set of operations to obtain the solution to the linear system
using the matrices obtained during the factorization phase.

In this section we will give some details about the different algorithms involved in the three
phases and which are important for maintaining a good performance when solving the augmented
systems. More details on the background presented in this chapter can be found in [15, 16, 17].

2.3.1 Analyzing the matrix

The work done during the analysis can be divided into two kinds of preprocessing:

Structural preprocessing. As its name suggest, this preprocessing takes into account only the
pattern (structure) of the nonzero entries in the matrix. Its main objective is either to reduce the
fill-in during the factorization and therefore reduce the number of operations and the memory
requirement, or to make the structure more adapted for a parallel factorization. The algorithms of
this kind, like the ordering algorithms, are involved in a permutation process which reorders the
matrix to achieve the goals previously listed. Alternately, using the structure of the matrix, they
try to determine the structure of the factors and the storage space needed for it; this algorithm is
called the symbolic factorization and was originally considered as an independent phase from the
analysis as in [18].

Numerical preprocessing. The numerical preprocessing considers and uses the values of the
nonzero entries in the matrix. The algorithms that belong to this kind of preprocessing try to
apply transformations to the matrix making the factorization algorithm more stable due to fewer
roundoff errors. The two main preprocessing steps involved in this kind of preprocessing are
scaling and maximum transversal algorithms.

Before we start to describe the different steps involved in the analysis phase, we have to
take a look at the roundoff propagation that arises during the factorization and that might lead to
erroneous results. In [19], the authors give the following example. Assume a computer with 3
decimal digits floating-point representation, then the linear system[

0.001 1.000
1.000 2.000

] [
x1
x2

]
=
[
1.000
3.000

]
, (2.12)

leads, after applying the Gaussian elimination process, to the matrices:

L̂ =
[

1.000 0.000
1000.000 1.000

]
Û =

[
0.001 1.000
0.000 −1000.000

]
.

Using forward and backward substitution –that will be introduced later in this chapter– we get
the solution x̂ = (0, 1)T , whereas the real solution is x = (1.002 . . . , 0.996 . . . )T if computed
with higher precision. This roundoff error occurs when the 0.0001 entry in the matrix is used as a
pivot which is a small value relative to the off-diagonal entry of size 1. The methods discussed in
this section will help to avoid this kind of situation.

10



2.3. Solving augmented systems using a direct solver

2.3.1.1 Maximum transversal

To introduce the maximum transversal, we have to go through some graph concepts.

Adjacency graph. We are familiar with the concept of the adjacency matrix that represents
the connections between the vertices of a graph. An adjacency graph does the reverse thing, it
represents the structure of the matrix. As presented in [16], we can represent the structure of a
symmetric matrix A by the graph G = (V,E) where V = 1, 2, . . . , n are the vertices representing
the row/column number, and E are the edges where each pair (i, j) in E represents a nonzero
element in the row i and column j and vice versa.

The same structure can be represented by a bipartite graph G = (R,C,E), where R =
r1, r2, . . . , rn, C = c1, c2, . . . , cn and (ri, cj) ∈ R×C belongs to E if and only if aij 6= 0 where
aij is the entry in the matrix A in row i and column j.

The Figure 2.2 shows how we can get the associated adjacency graph and the corresponding
bipartite graph of a given symmetric matrix. For clarity, we represent diagonal elements in the
bipartite graph with dashed lines.

1

1

2

2

3

3

4

4

5

5

12

3

4

5

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

A sparse matrix Adjacency graph Bipartite graph

Figure 2.2: Graph representation of a sparse matrix.

Matching. A matching in a bipartite graph is a set of edges with no pair of edges sharing a
common vertex; this corresponds to a set of nonzero entries in which no pair are in the same row
or column. A maximum matching is a matching with maximum cardinality. It is equal to n if
the matrix is structurally nonsingular, it is called also complete –or perfect– matching.

In the same way, finding the maximum weighted matching amounts to finding a matching
with maximum weight w(M), whereM is the concerned matching. In the unsymmetric case, it
is done by finding the matching maximizing the product Πiaσ(i)i over all permutations σ. Finding
a maximum weighted matching can be used to put large entries onto the diagonal of the resulting
permuted matrix. In Figure 2.3 we show a possible row permutation that puts large values on the
diagonal.

However, if we want to keep the symmetry of the matrix we have to use a symmetric maxi-
mum weighted matrix introduced in [17]. In this matching, we compute the maximum weighted
matching and then use it to get potential 1× 1 and 2× 2 pivots which will be exploited during the
factorization.

Once the maximum weighted matching M is found, we store the diagonal nonzero entries
that are in the matching into a setM1×1 that holds potential 1× 1 pivots. The author in [17] uses
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Figure 2.3: Unsymmetric weighted matching, dashed lines represent the permutation cycles.
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Figure 2.4: Symmetric weighted matching, dashed boxes represent the good potential pivots.

the strategy described in [20] to select 2×2 pivots and put them into a setM2×2. Using these two
sets we createMs = M1 ∪M2 the symmetric matching corresponding toM. The symmetric
maximum matching can then be used to create row and column permutations to bring big values
close to the diagonal which will form good initial 1× 1 and 2× 2 pivots during the factorization.
Figure 2.4 shows a symmetric maximum weighted matching –left part– for the previous example
in Figure 2.3. The corresponding permuted matrix is shown in the right part where the pivots are
surrounded by thick dashed lines.

2.3.1.2 Scaling

In exact precision, an operation gives the correct result regardless of the values involved in that
operation. However, due to the finite precision of floating-point arithmetic, round-off errors appear
especially when there is a large difference in magnitude between these values.

Matrices containing entries with disparate magnitudes are called badly-scaled matrices. Deal-
ing with such matrices may lead to performance issues, especially during the factorization.

As values are involved in this process it is considered as a numerical preprocessing. It mainly
consists in left and right-multiplying the original matrix by diagonal matrices Dr and Dc respec-
tively. If the matrix to be scaled is symmetric, the scaling matrices are equal. The original matrix
A becomes then

Â = DrADc,
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2.3. Solving augmented systems using a direct solver

which is used to solve a new linear system

Âx̂ = b̂.

The new right-hand side is obtained by scaling the original right-hand side such as b̂ = Drb and
the solution to the original linear system is obtained by scaling back the new solution vector such
as x = D−1

c x̂.
The scaling process helps to make the coefficients of the system closer in magnitude, whereas

the relationship between values in the matrix can be wide as illustrated by the system shown in
equation (2.12). The scaling helps in the selection of the pivots during the factorization and thus
affects the numerical stability of that process. In [16] the authors show the impact of good and
bad scalings on the numerical results.

Different scaling algorithms exist and can use different norms in that process. We will use the
HSL package MC77 implementing the algorithm introduced by Knight, Ruiz and Uçar in [21] that
tries to compute the scaling matrices so that the p-norms of all rows and columns of D−1

r AD−1
c

are close to 1. Notice here that this package gives the inverse of the scaling matrices.
We will discuss two main ways to get the scaling factorsDr andDc in this section. The reader

can get more details in [22, 21].

1. Using the maximum weighted matching. During the maximum transversal algorithm, it is
possible also to compute scaling factors so that the scaled matrix has ones in absolute value on its
diagonal and its other entries are less than or equal to one in absolute value. This is why the author
in [22] describes it as an I-matrix. However, this algorithm does not preserve the symmetry of
the matrix. The authors of [16] described an adaptation to avoid this problem. The main idea is
summarized by:

Definition 2.1. A matrix B = (bij) is said to satisfy the constraints of the method if and only if

∃ a permutation σ, such that ∀i, |biσ(i)| =‖ b∗σ(i) ‖∞=‖ bσ(i)∗ ‖∞= 1

Property 2.1. Let M be the maximum matching of the symmetric matrix A and Dr = (dri),
Dc = (dci) be the row and column scaling respectively. Let D = (di) =

√
DrDc , then DAD is

a symmetrically scaled matrix that satisfies the constraints given by Definition 2.1.

2. Simultaneous row and column scaling. We consider an iterative algorithm that scales the
matrix to a doubly stochastic matrix see [21]. The scaled matrix uses the inverse of the scaling
factors such that Â = D−1

1 AD−1
2 . We describe in more detail the scaling in Chapter 4 during

the preprocessing phase. A parallel implementation of this algorithm has been proposed in [23],
and tests have been carried out in [16] showing that the p−norm used in the algorithm indeed
influences the factorization process, while showing that this method using the infinity norm gives
good results 95% of the time whereas the maximum weighted matching is the best on 100% of
the treated problems. They noticed also that bad scaling can cause severe numerical problems,
increase the memory requirements and severely slow down the factorization.

2.3.1.3 Ordering

During the Gaussian elimination of sparse matrices, 1 × 1 pivots are used within the elimination
as in

aij = aij −
aikakj
akk

.

If aij was zero before the elimination and aik and akj were nonzeros, then the updated aij becomes
a nonzero. This newly created entry is called a fill-in and can cause severe memory problems
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2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

during the factorization process. Ordering –also called re-numbering– permutes the rows and
columns of the matrix to reduce the fill-in and this is done by pre and post-multiplying the matrix
by permutation matrices, that is Aordered = PAP T with P the permutation matrix. This fill-in
is linked to the order in which we do the elimination during the factorization process. A good
ordering tries to keep the fill-in low and thus preserves the sparsity of the matrix. The matrix
A on the left hand-side of Figure 2.5 results in a dense matrix after factorization. However, the
reordered matrix PAP T results in no fill-in.

A =


• • • •
• •
• •
• •

 PAP T =


• •
• •
• •

• • • •


Figure 2.5: Matrix before and after ordering; A generates 6 fill-ins, whereas PAP T generates no
fill-in.

There are two main approaches to minimize this fill-in. The first is a local one that tries to
minimize the fill-in at each step of the elimination process and is based on local heuristics like the
minimum degree algorithm. The other approach treats the matrix as a whole (global approach)
and tries to permute it to special structures such as the nested dissection algorithm. The ordering
algorithms can be viewed as operating on the elimination graph whose initial state is equal to the
adjacency graph of the matrix A.

1. Minimum degree is an algorithm [24, 18] using local heuristics. There also exists an efficient
variant called Approximate Minimum Degree [25, 26]. At each step of the elimination process
it selects the next node to be eliminated based on its degree (the number of nodes connected to
it), thus selecting the node with minimum adjacent nodes in the current elimination graph. The
permuted matrix in Figure 2.5 was obtained by using minimum degree algorithm.

2. Nested dissection is an algorithm in which we recursively dissect –cut– the graph into sets
using separators. A separator S is a set of nodes that once removed, separates the graph into two
distinct –disconnected– graphs. The algorithm consists in selecting a separator for the graph and
reordering the matrix so that the nodes in the distinct graphs are numbered first then the separator
nodes last. This leads to a bottom-right bordered structure of the permuted matrix. This way of
cutting the graph restricts the fill-in to the diagonal and border blocks of the matrix [27, 28].

Ordering on the compressed graph. If we applied permutations using the maximum weight
matching on the matrix as described earlier, we are able to use an ordering that will not break the
resulting 2× 2 pivots. Suppose that we have a matrix such as

A =


• • •
• •

• •
•

• • •

 ,

where the 2×2 pivots are the two first diagonal blocks. An ordering on the compressed graph [17]
consists in compressing the graph representing A so that the 2× 2 pivots are grouped into a single
vertex and their adjacency is the union of the two adjacencies for each node. The resulting graph
is represented using its adjacency matrix R in Figure 2.6, the 2 × 2 pivots are represented with
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2.3. Solving augmented systems using a direct solver

a weight equal to 2, the 1 × 1 pivots with weights equal to 1 and the off-diagonal elements are
represented by the symbol •. If we apply an ordering on R, we are sure that the nodes 2 will not

R =

2 •
2

• 1

 .
Figure 2.6: Adjacency matrix corresponding to the compressed graph of the matrix A

be broken, and thus keeping the integrity of the maximum weighted matching.

2.3.2 Factorization and Solution

Factorizing a matrix amounts to decomposing the matrix A into a product of matrices then used
by the solution phase. Different factorizations exist; we focus on factorizations based on Gaussian
elimination. Depending on the property of the matrix (symmetric, diagonally dominant, positive
definite) we can perform the following decompositions:

• LU factorization: the matrix A is decomposed as A = LU with L a lower triangular matrix
with unity diagonal, and U an upper triangular matrix,

• Cholesky factorization: when A is symmetric positive definite we can decompose it in the
form A = LLT , where L is a lower triangular matrix,

• LDLT factorization: for general symmetric matrices, we decompose it in the form A =
LDLT , where L is a lower triangular matrix and D is a diagonal matrix with 1 × 1 and
2 × 2 diagonal blocks. As augmented systems are indefinite, we will use this approach to
factorize them.

Consider the symmetric n× n matrix A and suppose that it has the following structure

A =
[
P CT

C B

]
,

where P is an s × s matrix, C is (n − s) × s and B is (n − s) × (n − s), with s = 1 or 2. We
define also v = |det(P )| = |p11p22 − p2

21| the determinant of the matrix P , when s = 2.
If v 6= 0, then P−1 exists and we have:

A = A0 = L1DL
T
1

=
[

I 0
CP−1 I

] [
P 0
0 A1

] [
I P−1CT

0 I

]
.

Applying the previous step recursively on A1, A2, . . . we obtain:

A = (L1L2 . . . Ln−1)D(LTn−1 . . . L
T
2 L

T
1 ).

Notice that D is a block-diagonal matrix with P being the diagonal matrix at each step of the
decomposition. When s = 1 we call P a 1×1 pivot, when it is equal to 2, we call P a 2×2 pivot.

During the process of factorization, we use symmetric permutations and numerical pivoting
to ensure that the P matrices have good numerical stability and avoid a zero block. Using the
maximum weighted matching might provide good pivots and therefore improves the factorization

15



2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

performance. The author in [17] presents a solution to obtain stable pivots that fall into four
categories: (

x
) (

x x
x x

) (
0 x
x 0

) (
x x
x 0

)
1× 1 pivot full 2× 2 pivot oxo pivot Tile pivot

Once the matrix is factorized, the solution phase goes through two steps called forward and
backward substitution. The former corresponds to solving the systems Ly = b and Dz = y, and
solving LTx = z in the later to obtain the solution.

2.4 The block conjugate gradient acceleration of block Cimmino

The convergence of the row projection techniques presented in the previous section is known
to be slow even after selecting the optimal parameter ω. Hageman and Young showed in [29]
that polynomial acceleration such as Chebyshev polynomials or CG acceleration can be used to
improve convergence of iterative techniques. Moreover, CG acceleration converges fast enough
and does not require any parameter estimate (the largest and the smallest eigenvalue are required
in the case of Chebyshev acceleration).

The classical CG of Hestenes and Stiefel [30] can be applied to linear systems whose matrices
are symmetric positive definite (SPD). It converges, in the absence of roundoff errors, in a finite
number of steps.

Bramley and Sameh [7] used CG to accelerate Kaczmarz and Cimmino methods. They showed
that, in practice, these accelerations converge faster than GMRES and CGNE. They also showed
that these accelerated row projection methods have a high robustness and can successfully solve
large linear systems.

Let us consider the iterative scheme of the block Cimmino method (2.7)

x(k+1) = Qx(k) +
p∑
i=1

A+
i bi,

where Q = I −H is the iteration matrix and H =
∑p
i=1A

T
i (AiATi )−1Ai. H can be written as

H = ATD−1A,

where D is a block diagonal matrix 
D1

D2
. . .

Dp


in which each block

Di = (AiATi )−1

is symmetric positive definite. Therefore, if A is square and has full rank then the matrix H
is symmetric positive definite as is Q. If it is not the case, then H will be symmetric positive
semidefinite. We will study later in Chapter 5 the use of CG on semidefinite systems.

Accelerating the block Cimmino method using CG amounts to solving the linear system

Hx = k, (2.13)

where k =
∑p
i=1A

+
i bi and x is the same solution vector as for the original linear system Ax = b.
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The CG acceleration algorithm is described in Algorithm 2.2. In lines 5 and 7 we use Hp(j)

which is defined as

Hp(j) =
p∑
i=1

A+
i Aip

(j)

and is equivalent to solving the augmented systems presented in (2.10) with ri = Aip
(j) i.e.,(

I ATi
Ai 0

)(
ui
vi

)
=
(

0
Aip

(j)

)
,

the sum of ui, the upper part of the solutions, is Hp(j).

Algorithm 2.2 CG acceleration of block Cimmino

1: x(0) is arbitrary
2: r(0) ← k −Hx(0)

3: p(0) ← r(0)

4: for j = 0, 1, 2.. until convergence do
5: λj ←

(
r(j)T

r(j)
)
/
(
p(j)T

Hp(j)
)

6: x(j+1) ← x(j) + p(j)λj
7: r(j+1) ← r(j) −Hp(j)λj

8: αj ←
(
r(j+1)T

r(j+1)
)
/
(
r(j)T

r(j)
)

9: p(j+1) ← r(j+1) + p(j+1)αj
10: end for

In the second line of Algorithm 2.2, when computing the initial residual

r(0) = k −Hx(0) =
p∑
i=1

A+
i

(
bi −Aix(0)

)
,

we sum the ui resulting from solving the linear systems(
I ATi
Ai 0

)(
ui
vi

)
=
(

0
bi −Aix(0)

)
.

We introduce Projections Sum (PS) described in Algorithm 2.3 to describe the sum of projec-
tions. It takes as input two vectors w and z and computes

PSA(w, z) =
p∑
i=1

A+
i (wi −Aiz), (2.14)

where wi is a partition of w according to the partition Ai. In this way we can rewrite Hp(j) and k
as

Hp(j) = PSA(0, p(j))
k = PSA(b, 0).

The convergence of the CG acceleration can sometimes be slow when the CG iteration matrix,
H , has small clusters of eigenvalues as we will see in practical examples in Section 2.5. CG
finds it hard to target them and the convergence curve will often have long plateaux. Golub,
Ruiz and Touhami [31] studied a combination of Chebyshev filters with conjugate gradients to
accelerate its convergence by targeting the small clusters of eigenvalues directly. They showed
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2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

Algorithm 2.3 Projections Sum (PSA)
Input: w and z
Output:

∑p
i=1A

+
i (wi −Aiz)

δ ←
[
0 . . . 0

]T
for i = 1→ p do[

ui
vi

]
← direct_solve

([
I ATi
Ai 0

] [
ui
vi

]
=
[

0
wi −Aiz

])
/* Forward and backward substitu-

tion */
δ ← δ + ui

end for
return δ

that this approach can be helpful when solving several linear systems that have the same matrix
with different right-hand sides. This is of particular interest in the case of the block Cimmino
acceleration, since the block Cimmino iteration matrix H has a good clustering of eigenvalues
around 1, but with some trailing eigenvalues clustered at the extremes of the spectrum. Arioli,
Duff, Ruiz and Sadkane in [8] introduced a block version of the CG acceleration (Block-CG), and
stabilized it for large block sizes, as given in Algorithm 2.4.

The stabilization process is performed at the pairs of lines 11, 12 and 17, 18. The issue with
non-stabilized Block-CG algorithm is that the residual R(j+1) matrices are maintained orthogonal
block-wise (e.g. R(j)⊥R(j+1)) but not within the blocks and thus theR(j+1)T

R(j+1) matrices can
become very ill-conditioned as the algorithm converges. To avoid this problem, the authors in [32]
enforced the stability of the method by forcing the matrices R̄(j+1) to have orthogonal columns as
in

γTj+1γj+1 = chol
(
R(j+1)T

R(j+1)
)

where chol is the Cholesky decomposition and γj+1 is the resulting upper triangular matrix. By
setting

R̄(j+1) = R(j+1)γ−1
j+1

we obtain

R̄(j+1)T
R̄(j+1) = γ−Tj+1

(
R(j+1)T

R(j+1)
)
γ−1
j+1 (2.15)

= γ−Tj+1γ
T
j+1γj+1γ

−1
j+1 = I

This property shown in (2.15) is, in practice, what maintains the stability of the algorithm and
is also used for the P matrices making them H-orthogonal. The stability of this algorithm has
been studied by the same authors and they showed that it deteriorates on really large block-sizes
due to the fact that the conditioning increases once the algorithm reaches superlinear convergence;
moreover some columns might converge earlier than the others in the set of linear systems solved
simultaneously, see O’Leary [33].

If the Cholesky decomposition fails due to ill-conditioning, we employ a fall-back solution
using the orthogonalization process described in [34] based on a modified Gram-Schmidt that
avoids computing square roots. However, if some vectors converge earlier than the others, we can
use a reduction of block-size to avoid issues as suggested in [33]. Nevertheless, we did not observe
(nor did the authors in [8]) any stability issues for block-sizes with reasonable size (smaller than
or equal to 32).

Regarding the complexity of this algorithm, we notice that we are able to avoid some du-
plicate computations such as HP̄ (j) at line 9 and HP (j+1) at line 17 by storing the latter for
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2.4. The block conjugate gradient acceleration of block Cimmino

Algorithm 2.4 Stabilized Block-CG acceleration

1: X(0) is arbitrary
2: R(0) = K −HX(0)

3: γT0 γ0 = chol
(
R(0)T

R(0)
)

4: R̄(0) = R(0)γ−1
0

5: βT0 β0 = chol
(
R̄(0)T

HR̄(0)
)

6: P̄ (0) = R̄(0)β−1
0

7: for j = 0, 1, 2.. until convergence do
8: λj = β−Tj
9: R(j+1) = R̄(j) −HP̄ (j)λj

10: /* Starting stabilization */
11: γTj+1γj+1 = chol

(
R(j+1)T

R(j+1)
)

12: R̄(j+1) = R(j+1)γ−1
j+1

13: /* Ending stabilization */
14: αj = βjγ

T
j+1

15: P (j+1) = R̄(j+1) + P̄ (j)αj
16: /* Starting stabilization */
17: βTj+1βj+1 = chol

(
P (j+1)T

HP (j+1)
)

18: P̄ (j+1) = P (j+1)β−1
j+1

19: /* Ending stabilization */
20: X(j+1) = X(j) + P̄ (j)λj

(∏0
i=j γi

)
21: end for

the next iteration. Indeed, in the next iteration, HP̄ (j) is equivalent to the current iteration’s(
HP (j+1)

)
β−1

(j+1).
We describe in Algorithm 2.5 the function that computes the stabilized matrices that takes

the matrices D and W and returns the stabilization matrix U , the stabilized matrices D̄ and W̄
corresponding to P̄ (j+1) and HP̄ (j+1) in the case of P THP and R̄(j+1) in the case of RTR.

At lines 2 and 4, we compute the dense matrix-matrix product depending on the case, then we
factorize the resulting matrix at line 6 and stabilize the matrices on lines 7 and 9.

Algorithm 2.5 Stabilization: stab()
Input: D and W
Output: U, D̄ and W̄

1: if D 6= W then
2: C ← DTW
3: else/* Handle the case of DTD */
4: C ← DTD
5: end if
6: U ← chol(C)
7: D̄ ← DU−1

8: if D 6= W then
9: W̄ ←WU−1

10: end if

If we use this algorithm for P THP , with inputs P (j+1) and HP (j+1), we will obtain P̄ (j+1)

and HP̄ (j+1) as results. The latter, as said previously, is the matrix HP̄ (j) of the next itera-
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2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

tion, therefore by storing the matrix temporarily we avoid the computation of this product (which
requires a call to the direct solver).

Algorithm 2.6 Stabilized Block-CG acceleration

1: X(0) is arbitrary
2: R(0) = K −HX(0)

3:
[
γ0, R̄

(0)
]

= stab
(
R(0)

)
4: P (0) = R(0)

5: k = 0
6: while k < it_max do
7:

[
βj , P̄

(j), HP̄ (j)
]

= stab
(
P (j), HP (j)

)
8: λj = β−Tj

9: X(j+1) = X(j) + P̄ (j)λj
(∏0

i=j γi
)

10: R(j+1) = R̄(j) −HP̄ (j)λj
11: if converged then
12: break
13: end if
14:

[
γj+1, R̄

(j+1)
]

= stab
(
R(j+1)

)
15: αj = βjγ

T
j+1

16: P (j+1) = R̄(j+1) + P̄ (j)αj
17: k = k + 1
18: end while

We update the previous version of the stabilized block-CG algorithm using these results to
obtain Algorithm 2.6. We will use the function stab() defined in Algorithm 2.5 with only one
parameter in the case when D and W are equal. We also use the Matlab notation [. . . ] to extract
multiple return values from the function stab.

Algorithm 2.6 presents aesthetic simplifications compared to the former one. The stabilization
of P (0) is now done inside the loop at line 7 followed by an immediate update of the iterate. This
update used to be at the end of the loop even if the data required was available beforehand. We
also extracted the HP̄ matrix from the stabilization process to be used at line 10 as described
previously.

Classical vs. Block version. The Block-CG follows the same steps as the classical CG and
improves it by adding orthogonalization steps. In addition to that, it does matrix-matrix operations
rather than matrix-vector operations because it uses multiple right-hand sides. Therefore, the
complexity of the Block-CG is increased and so is the floating-point operations count (FLOP) per
iteration. We look now at where this increase of FLOP happens and if it can be prohibitive.

Orthogonalization. During the orthogonalization, we do two kind of operations:

• First, a matrix-matrix product corresponding to DTW is done instead of a dot product
in the case of classical CG. For that purpose we use the BLAS kernels GEMM instead of
the DOT routine. This offers an increase in performance due to the fact that GEMM is a
level 3 BLAS kernel compared to the level 1 BLAS kernel DOT. Depending on the block-
size, the matrix-matrix product might out-perform the simple dot product due to the level 3
BLAS kernel efficiency. However, increasing the block-size further can and will decrease
the performance. These parameters are machine dependent as is the BLAS implementation,
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2.5. Convergence behaviour

therefore some experiments have to be done to find the best block-size with respect to time
per iteration and the gains resulting from the possible reduction in the number of iterations
for convergence.

• The second operation is the Cholesky factorization of the matrix obtained from the previous
matrix-matrix product. It is safe to say that due to the small size of the block under consider-
ation (because it is not useful in general to use too large block-sizes), the time for factorizing
the resulting matrix does not vary so much on a modern architecture for the range of block
sizes under consideration (i.e. 1 to 32). Therefore, this step is not really penalizing.

Sum of Projections. The other change concerns the computation of the HP product. This
product, as stated previously, is a succession of three steps:

• First we compute the productAiP where i is the partition number. Increasing the block size
will also change the operations to be performed, and in this case we use level 3 SpBLAS
kernels (SpBLAS stands for Sparse BLAS) that will benefit from the block-size compared
to a level 2 SpBLAS kernel as has been shown in [35].

• The second step is the solution of multiple right-hand sides within the direct solver. The
performance is usually increased with larger block-sizes during the forward and backward
substitutions, where level 3 BLAS kernels are used. Moreover, modern architectures have
a high rate of FLOP per seconds, therefore exploiting that rate at a maximum will bring the
most benefit from increasing the block-size.

• The last step is the sum of the solutions of the augmented systems, and it is related to
the total number of elements to be summed. It can be penalized by the increase in block-
size especially in the parallel case where we have to send parts of the solution between
different processes. We discuss this part in more detail in Chapter 4 when we study the
implementation of the PSA() algorithm.

2.5 Convergence behaviour

We assume that the partitions of the system (2.1) are of similar size. We study in this section
how the ill-conditioning of the matrix A can affect the corresponding iteration matrix of block
Cimmino and therefore affect the convergence.

To illustrate this behaviour we use a realistic test matrix bayer01 obtained from Bayer AG by
Friedrich Grund and available from the sparse matrix collection of the University of Florida [36].
It is of order 57735 and has 277774 nonzero entries. We partition it into 16 uniform partitions,
and we show its pattern in Figure 2.7.

In Figure 2.8, we show the spectrum of the iteration matrix for the bayer01 matrix when
using block Cimmino with these 16 uniform partitions.

We will use figures like Figure 2.8 in the following to show the spectrum of iteration matrices.
The eigenvalues are distributed from the largest at the right to the smallest at the left. Colour
wise, the deep blue is the largest and the red is the smallest. Two red lines are used as markers to
give an idea how many small eigenvalues there are, the left marker is for eigenvalues smaller than
λmax/100 and the right one for eigenvalues smaller than λmax/10.

In Figure 2.8 we notice that there is a good clustering of eigenvalues around the value 1.
This property is common among the iteration matrices of block Cimmino. However, we notice
that there is a subset of small eigenvalues making it badly conditioned. This, combined with the
spread of intermediate eigenvalues, more or less large depending on the size of the system and the
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2. BLOCK CONJUGATE GRADIENT ACCELERATION OF THE BLOCK CIMMINO METHOD

Figure 2.7: Nonzero pattern of the matrix bayer01.

Figure 2.8: Spectrum of block Cimmino iteration matrix for bayer01 with 16 uniform parti-
tions.

partitioning, make it hard for the CG to converge quickly. We will discuss several ways to reduce
this ill-conditioning in Chapter 3.

We shall next compare the convergence history for different block sizes for the bayer01
matrix. To monitor convergence, we use in the following

ωk = ‖r(k)‖∞
‖A‖∞‖x(k)‖1 + ‖b‖∞

,

where r(k) = Ax(k)−b is the residual of the original system at the k-th iteration. We are therefore
checking for convergence of the original system using the iterate x(k) resulting from the CG or the
Block-CG acceleration.

We show in Figure 2.9 the number of iterations required to converge for the matrix bayer01.
The main issue mentioned previously with the eigenvalue distribution, influences the convergence
behaviour and gives it the plateaux-oriented convergence that we see in the classical CG case.
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2.5. Convergence behaviour

However, by using the stabilized Block-CG we notice that the plateaux have been reduced. The
more we increase the block-size, the smaller the plateaux become and the faster we converge. In
fact, a reasonably large block-size can reduce the iteration count substantially from 4473 iterations
for the CG acceleration to 68 iterations with block-size 32. Results are summarized in Table 2.1.

Figure 2.9: Number of iterations needed to converge for different block sizes for the matrix
bayer01 with 16 uniform partitions.

The number of iterations is important but so is the amount of work needed per iteration. We
show in Figure 2.10 the number of matrix-vector operations needed to converge. Indeed, each
iteration requires as many matrix-vector products as the block-size in use (as said earlier, these
matrix-vector products are transformed into a matrix-matrix product that exploits level 3 BLAS
kernels). We notice that increasing the block-size reduces the amount of work until it is halved
and is more or less stabilized for a block-size of 32.

Block-size Nb. iter. M-V ops. Work ratio to 1 Total Time Timing ratio to 1

CG 4473 4473 1.00 567s. 1.00
2 1799 3598 0.80 395s. 0.70
4 784 3136 0.70 221s. 0.39
8 315 2520 0.56 128s. 0.23

16 148 2368 0.53 127s. 0.22
32 68 2176 0.49 120s. 0.21
64 29 1856 0.41 123s. 0.22

128 16 2048 0.45 140s. 0.25

Table 2.1: Convergence results for the bayer01 matrix with the number of iterations, the work
corresponding to the number of matrix-vector operations, the ratio of work with respect to CG,
the total time to convergence and finally the ratio of timings with respect to the time for the CG to
converge.

To get more details on how the block-size affects both the convergence and the timing to
achieve it, we show in Table 2.1 the results when changing the block-size from 1 (classical CG) to
128. Notice that, for this problem, increasing the block-size decreases the amount of matrix-vector
operations needed for convergence until block-sizes 32/64 but then goes in the reverse direction

23
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Figure 2.10: Number of matrix-vector operations needed to converge for different block sizes for
the matrix bayer01 with 16 uniform partitions.

for larger block-sizes. We see from the 4th column in this table that the corresponding reduction
ratio of the amount of work is quite stable with few reductions at the end.

The timings are presented in the last two columns. We notice that they follow the decrease in
amount of work until block-size 32 then rise afterwards. The most important part in that decrease
is that it is faster in the beginning due to level 3 BLAS effects that reduce the matrix-vector
timings.

We show in Table 2.2 the time per iteration when increasing the block-size, the ratio to the
previous block-size and the ratio to classical CG (block-size 1). As long as the ratio to block-size
1 is lower than the block-size tested then results benefit from level 3 BLAS kernels. The ratio to
previous tested block-size shows the improvements during the increase, if it is lower than 2 then
we have improvements, if it is higher then we do not.

Block-size 1 2 4 8 16 32 64 128

Avg. time per iteration 0.13 0.22 0.28 0.41 0.86 1.77 4.22 8.75
Ratio to block-size 1 1.69 2.15 3.15 6.62 13.62 32.46 67.31

Ratio to previous 1.69 1.27 1.46 2.10 2.06 2.38 2.07

Table 2.2: Average time per iteration for bayer01.

For this problem, and on this computer, we notice that we have no more gains after a block-
size of 16, and the gains noticed previously come only from the reduction in the amount of work.
These results are problem dependent and architecture dependent. Having a larger cache and a
smaller matrix will give better results on larger block-sizes, but this will always have an upper
limit after which the performance will degrade.

Numerical experiments. We look now at a larger set of matrices and see how block Cimmino
behaves on different problem orders and applications. The matrices are listed in Table 2.3 which
are available from the sparse matrix collection of the University of Florida [36]. The matrices are
listed by increasing order. We list the number of entries they contain and the number of partitions
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2.5. Convergence behaviour

we create from those matrices. The number of partitions is proportional to the order of the matrix.
In Chapter 3 we study different strategies to create and to select the partitions. In the case of
cage13 and cage14, the number of partitions is high compared to the other matrices, this is
because their augmented systems are quite difficult to factorize by the direct solver unless the
partitions are small.

Problem Order Nonzeros Partitions Application

gre_1107 1107 5664 5 Directed weighted graph
bayer01 57 735 277 774 16 Chemical process simulation problem
lhr71c 70 304 1 528 092 16 Chemical process simulation problem
torso3 259 156 4 429 042 32 Electro-phys, 3D model
cage13 445 315 7 479 343 256 Directed weighted graph
Hamrle3 1 447 360 5 514 242 64 Circuit simulation
cage14 1 505 785 27 130 349 1024 Directed weighted graph

Table 2.3: Matrices to be tested. Coming from different applications, of different sizes and sym-
metry.

We show in Figures 2.11 to 2.17 the number of matrix-vector operations for each block-size
and the time it takes to converge. We stop the block-CG after 5000 iterations. The runs are made
in sequential mode on Conan (AMD Opteron processor) with no threaded BLAS.

From these results, we notice three kinds of behaviour. If the classical CG converges fast
enough then increasing the block-size will usually give worse performance as we see for the
torso3 and the cage matrices. If the decrease in the number of iterations when increasing the
block-size is not enough, the number of matrix-vector operations will increase and this will slow
down the convergence. Moreover, if there is a decrease in amount of work due to a large gain in
number of iterations, but the time per iteration increases excessively, then the convergence will
slow down too.

In the other cases, where classical CG converges slowly, increasing the block-size helps to
some extent as is seen for gre_1107, bayer01 and Hamrle3. In these cases, we notice that
we can achieve a large decrease in the amount of work which will speedup the convergence.
However, due to the fact that the time per iteration will increase, once we increase the block-size
further, the convergence will slow down. In the case of lhr71c, we obtained the best timings
with block-size 32 because of smaller block-sizes result in poorer convergence.
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Figure 2.11: Convergence and timing comparison for the matrix gre_1107 with different block-
sizes.

Figure 2.12: Convergence and timing comparison for the matrix bayer01 with different block-
sizes.
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Figure 2.13: Convergence and timing comparison for the matrix lhr71c with different block-
sizes.

Figure 2.14: Convergence and timing comparison for the matrix torso3 with different block-
sizes.
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Figure 2.15: Convergence and timing comparison for the matrix cage13 with different block-
sizes.

Figure 2.16: Convergence and timing comparison for the matrix Hamrle3 with different block-
sizes.
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Figure 2.17: Convergence and timing comparison for the matrix cage14 with different block-
sizes.
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Chapter 3

Partitioning strategies

The benefit of the block Cimmino algorithm for solving sparse linear systems is that the solution
process is reduced to the solution of a sequence of much smaller independent systems within a
very simple iterative scheme. The Achilles heel of such an approach is that the iterative method
is equivalent to block Jacobi method on the normal equations and so can suffer from slow conver-
gence. This was illustrated at the end of Chapter 2, with some particular examples with very slow
and time consuming convergence.

In this chapter, we examine how novel partitioning schemes can be used to accelerate this con-
vergence while, at the same time, improving the capability of the method in exploiting parallelism
that we will describe in the next chapter.

After our description of how the ill-conditioning affects the block Cimmino algorithm in Sec-
tion 3.1, we indicate, in Section 3.2, why we target orderings to block tridiagonal form and how
this can be used to reduce the iteration count of block Cimmino. We then discuss two algorithms
for obtaining such a form in Section 3.3. In Section 3.4, we describe a different approach to
obtaining a partitioning with similar properties.

3.1 Block Cimmino’s Iteration Matrix

We recall that our approach to solving the linear system

Ax = b (3.1)

involves a partitioning into p strips of rows, with p ≤ n as in:
A1
A2
...
Ap

x =


b1
b2
...
bp

 . (3.2)

As described in Chapter 2, the block Cimmino method projects the current iterate simultane-
ously onto the manifolds corresponding to the strips and takes a convex combination of all the
resulting vectors.

A general study of the convergence of this method and of other related block-row and block-
columns methods can be found in [6]. A block SSOR algorithm of this type introduced in [37], is
accelerated using conjugate gradients. They study its robustness compared to some preconditioned
conjugate gradient methods of the Yale package PCGPACK. Further work on block SSOR as well
as comparisons with block Cimmino can be found in [10, 38, 7, 32]. Our aim, in this chapter, is
to focus on preprocessing and partitioning strategies of the original system (3.1) to bring it to the
form (3.2).
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If the matrix A is ill conditioned then there are some linear combinations of rows that are
almost equal to zero and, as mentioned in [7], these linear combinations may occur inside the
partitions or across the partitions after row partitionings of the form (3.2). Assuming that the
projections in the block Cimmino algorithm are computed exactly on the subspaces (by using a
direct method), then the rate of convergence of the block Cimmino algorithm depends only on the
conditioning across the partitions. If we additionally consider Conjugate Gradient acceleration of
the block Cimmino method, as in Chapter 2, the convergence behaviour of the resulting method
is directly linked to the spectrum of the n × n matrix H formed as the sum of the previously
mentioned projections, and given by

H =
p∑
i=1

Ai
T
(
AiAi

T
)−1

Ai , (3.3)

assuming, for simplicity, that the row partitions Ai have full row rank. An efficient implementa-
tion of Block Cimmino requires a combination of a robust method for computing the projections
and a partitioning strategy that minimizes the ill-conditioning across the partitions.

Let us see now how the ill-conditioning across the partitions can be expressed. Consider that
the matrix is partitioned as in (3.2), and let the QR decomposition of the partitions AiT be given
by

Ai
T = QiRi, i = 1, . . . , p where Ai is an mi × n matrix of full row rank

Qi n×mi, Qi
TQi = Imi×mi

Ri mi ×mi, Ri is a nonsingular upper triangular matrix;

then:

H =
p∑
i=1

Ai
T
(
AiAi

T
)−1

Ai

=
p∑
i=1

QiQi
T

= (Q1 · · ·Qp)(Q1 · · ·Qp)T

(3.4)

But, from the theory of the singular value decomposition (see [39, 40]), the nonzero eigenval-
ues of (Q1 · · ·Qp)(Q1 · · ·Qp)T are also the nonzero eigenvalues of (Q1 · · ·Qp)T (Q1 · · ·Qp).

Thus, the spectrum of the matrix H is the same as that of the matrix

Im1×m1 Q1
TQ2 · · · · · · Q1

TQp

Q2
TQ1 Im2×m2 Q2

TQ3 · · · Q2
TQp

...
. . .

...

Qp
TQ1 · · · Imp×mp


(3.5)

where the QiTQj are matrices whose singular values represent the cosines of the principal angles
between the subspaces R(AiT ) and R(AjT ) (see [41]). These principal angles (see [40, pages
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584-585]) are also defined successively by

cos(Ψk) = max
u∈R(Ai

T )
max

v∈R(Aj
T )

uT v

‖u‖ ‖v‖

= uTk vk
‖uk‖ ‖vk‖

(3.6)

subject to

uTup = 0 p = 1, . . . , k − 1

vT vp = 0 p = 1, . . . , k − 1,

with k varying from 1 tomij = min(dim(R(AiT )),dim(R(AjT ))). The vectors
{
u1, . . . , umij

}
and with

{
v1, . . . , vmij

}
are called the principal vectors between the subspaces R(AiT ) and

R(AjT ).
Note that the principal angles satisfy 0 ≤ Ψ1 ≤ · · · ≤ Ψmij ≤ π/2, and that having Ψk =

π/2, k = 1, . . . , mij , is equivalent toR(AiT ) being orthogonal toR(AjT ). Intuitively, the wider
the principal angles between the subspaces, the closer H is to the identity matrix, and thus the
faster the convergence of the conjugate gradient acceleration.

Nevertheless, even the knowledge of the principal angles between every pair of subspaces
would not in general give us any a priori information about the spectrum and the ill-conditioning
of the resulting matrix H . We will therefore focus in the following on particular partitionings for
which there exists a strong relationship between these principal angles and the spectrum of the
iteration matrix.

3.2 Block tridiagonal structures and two-block partitioning

If the block rows Ai are nearly mutually orthogonal, i.e. AAT is strongly block-diagonally dom-
inant, we can expect that the method will converge very quickly, if the projections are computed
accurately. Conversely, the structure of AAT tells us about the orthogonality of the subspaces
represented by block partitions of A. If the block (i, j)th entry of AAT is zero then the sub-
spaces corresponding to the blocks Ai and Aj are orthogonal. Thus, if AAT is block tridiagonal,
the blocks of A are such that the even numbered blocks are orthogonal to each other as are the
odd-numbered blocks. Thus if we solve the projected subproblems accurately (using say a direct
method) then we also solve the subproblems corresponding to the odd and even numbered blocks
accurately. The partition of A is thus of the form

[
A
]

=
[
B1
B2

]
(3.7)

where B1 =
{⋃

i

Ai / i odd

}
and B2 =

{⋃
i

Ai / i even

}
. The partitioning in equation (3.7)

is called a two-block partitioning. We denote by m1 and m2 the number of rows in B1 and B2
respectively. We call the block of smaller size, say B2 in the above example, the interface block.

With such a partitioning, because of the structural orthogonality between the blocks Ai within
B1 and within B2 respectively, the matrix H in (3.3) can be considered as P1 + P2, where P1 =
PR(B1T ) and P2 = PR(B2T ), where each of these two projectors is in fact a sum of independent
projectors acting on orthogonal subspaces.
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It was shown by [6] that, with such a two-block partitioning, the spectrum of matrix H is

λk = 1 + cos Ψk

λk = 1− cos Ψk−m2

λk = 1

k = 1, . . . ,m2
k = m2 + 1, . . . , 2m2
k = 2m2 + 1, . . . , n

where {Ψk}m2
1 are the principal angles betweenR(B1

T ) andR(B2
T ).

On the one hand, matrices in this form can be easily partitioned into sufficient blocks to utilize
all the processors of the target machine (provided the matrixA is large enough in comparison with
the size of the tridiagonal substructure). On the other hand, the above expression for the spectrum
tells us that the block Cimmino algorithm with conjugate gradient acceleration in general works
better for small interface block sizes (e.g. small m2) and, in exact arithmetic, takes not more than
2m2 steps for convergence.

The idea of exploiting such sparsity structures appropriately in row-projection methods has
already been widely studied and discussed. For instance, [37] have developed a three-block par-
titioning strategy of this type which they have exploited with their block SSOR algorithm accel-
erated with conjugate gradients. Further work and discussions can also be found in [38, 42]. In
[10], some particular scalings used in conjunction with two-block partitioning strategies are also
investigated. These scalings help to open the principal angles between the two subspacesR(B1

T )
and R(B2

T ) and can be related to oblique projections associated with some ellipsoidal norms.
Finally, the potential for parallelism in distributed memory environments of the block-Cimmino
method accelerated with the block-Conjugate gradient algorithm is investigated and discussed in
detail in [43] (see also [44, 45]).

3.3 Two complementary Preprocessing Strategies based on
Cuthill-McKee

As discussed in the previous section, the main idea behind the so called two-block partitioning
strategy is to exploit structural orthogonality between the subspacesR(AiT ) defined by the parti-
tioning (3.2). We have indicated that this structural orthogonality can be analysed on the basis of
the sparsity pattern of the normal equations matrixAAT . For example, for two-block partitionings
of the type described above, the sparsity pattern ofAAT is block tridiagonal, with diagonal blocks
of a size corresponding to the number of rows in each block Ai defined by the partitioning (3.2).

Preprocessing strategy I. This simple remark can be used to define a preprocessing strategy
that will enable the construction of two-block partitionings for sparse matrices with any type of
sparsity structure. The idea is to permute first the rows of the matrix A, based on permutations
that transform the normal equations matrix AAT into block tridiagonal form. We thus determine
a permutation matrix P such that

B = PAATP T (3.8)

has a block tridiagonal form. To this end, we exploit an implementation of the Cuthill-McKee
Algorithm (see for instance [46], [47], [48]) for ordering symmetric matrices. We then solve the
row-wise permuted system of equations

Âx = b̂ (3.9)

with Â = PA, and b̂ = Pb, using the block Cimmino algorithm. From the block tridiagonal
structure of the matrix B, the block row partition (3.2) of Â is defined with blocks of rows with
each block determined by the size of the diagonal blocks in the block tridiagonal structure of B,
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3.3. Two complementary Preprocessing Strategies based on Cuthill-McKee

or by the number of rows in a contiguous subset of these diagonal blocks. The row partitioning
we obtain from this still has the properties of the two-block partitioning described in Section 3.2.

This preprocessing strategy, for general sparse matrices, exploits only the sparsity structure in
the normal equations matrix AAT and not the values contained in this matrix. We should men-
tion and will illustrate with experiments in the following sections that, for very general sparsity
patterns, the block tridiagonal structure obtained with the Cuthill-McKee Algorithm has diagonal
blocks with very differing sizes leading to a partitioning with a poor degree of parallelism be-
cause of unbalanced tasks in the block-row projections. From the discussion in Section 3.1, we
recall also that the main objective when defining the partitioning is to minimize the effects of ill-
conditioning across the blocks, which simply means keeping the principal angles between every
pair of subspaces as open as possible. Strict orthogonality between every second block of rows
is only one step in this direction; we may also try to take into account in some way the angles
themselves when defining the reorderings and partitionings.

Preprocessing strategy II. This strategy will take into account the values in the matrix AAT

as well as the sparsity structure of that matrix in an attempt to define a reordering/partitioning
strategy with numerical properties close to that of two-block partitioning but with more flexibility
for building the blocks and potentially much better parallelism.

In this preprocessing strategy, the matrix AAT , is first normalized through:

C = AAT

D = diag(C)

S = D−
1
2CD−

1
2 .

The entries in the normalized matrix S correspond to the cosine of the principal angle between
every pair of rows (in other words, the degree of collinearity between any pair of rows), and we
may expect that if such a cosine is relatively small, then the corresponding pair of rows are almost
orthogonal and can be considered so. Our next step in this preprocessing strategy is then to keep
only the nonzero entries in S which are above a given tolerance value τ in absolute value, viz

F = filter(|S|, τ),

and to permute the resulting matrix F into block tridiagonal form using the Cuthill-McKee algo-
rithm as before

B̂ = PFP T (3.10)

and solve (3.9) by using the row partitioning for Â defined by the block tridiagonal structure of B̂.
In practice, we do not want to form AAT but we first ensure that the diagonal entries will

be one by scaling the original matrix A so that the rows have 2-norm equal to one. This can
be accomplished by using the HSL routine MC77 [21]. Of course, since numerical values have
been dropped from the normal equations matrix, we cannot expect that the resulting partition
will provide two subsets of structurally orthogonal blocks of rows but, if the values dropped are
sufficiently small, we may expect that the numerical properties of the resulting iteration matrix
will be relatively close to that of the “strict” two-block partitioning case. Additionally, since the
filtered matrix F has less entries than the original normal equations matrix C, the resulting block
tridiagonal permuted matrix B̂ will surely have a smaller bandwidth than B and this may help to
define a partitioning on A with more blocks, better balanced projections, and a higher degree of
parallelism. In the following section, we will experiment and compare these two preprocessing
strategies with another strategy that we will now describe.
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3. PARTITIONING STRATEGIES

3.4 Using a hypergraph partitioning

A main aim of the partitioning strategies that we have just described is to decouple the blocks to
reduce the number of block Cimmino iterations. We now look at a way to do this more directly.

A hypergraph H = (V,N ) is a generalization of the concept of graphs, where V are the
vertices and N are the hyperedges, also called nets. In a hypergraph, nets can connect more than
two vertices whereas, in a graph, edges connect only two of them.
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Figure 3.1: A hypergraph representing a sparse matrix. Large circles are the vertices (correspond-
ing to the rows) and small dark circles are the nets (corresponding to the columns).

Hypergraphs can be useful to represent a sparse matrix where the vertices can be linked to the
row numbers and the nets to the column numbers. We show in Figure 3.1 a hypergraph example
with 6 vertices and 6 nets representing a 6 × 6 sparse matrix shown in Figure 3.2. Notice how
we can easily see from the hypergraph all the interconnections between the different rows in the
matrix.

1

1

2

2

3

3

4

4

5

5

6

6

× × × ×
× × ×
× × ×

× ×
× ×
× × ×

Figure 3.2: An illustrative sparse matrix.

If we partition the matrix uniformly in three sets (partitions) as in Figure 3.3, we see that each
partition has overlapping columns with at least another partition. This creates an all-to-all inter-
actions between the partitions. Columns 2,4,5 and 6 are shared by all partitions, whereas columns
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3.4. Using a hypergraph partitioning

1 and 3 are shared between only two partitions. This kind of partitioning will be prohibitive for
parallel runs particularly because of the communication cost.
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Figure 3.3: The partitioning of the illustrative matrix, with the columns on which the communica-
tions will happen shaded in gray.

A k-way hypergraph partitioning creates a partitioning Π = {V1,V2, . . . ,Vk}, where Vi is
a nonempty subset of the vertices V where Vi ∩ Vj = 0, i 6= j and

⋃k
i=1 Vi = V , i.e. all the

parts in Π are pairwise disjoint and their union is equal to V . The problem of minimizing the
interconnections between the partitions is NP-hard [49].
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Figure 3.4: A possible partitioning of the previous hypergraph.

A possible partitioning of the previous hypergraph is shown in Figure 3.4 where the three
regions represent the three partitions. To easily distinguish the three partitions we duplicated
the hyperedges 2, 5 and 6, corresponding to the column overlap (interconnections) between the
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partitions. The partition numbers are, from left to right, partition 1, 3 and 2 respectively. The
interconnections and the resulting permuted matrix are represented in Figure 3.5.
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Figure 3.5: The partitioning using a hypergraph partitioner of the illustrative matrix. The parts in
gray are the interconnections.

We see that the interconnections in the hypergraph are represented by the shaded overlapping
columns in the matrix, with a reduced number of global interconnections from 4 to 2 compared to
the former case, and the total number of interconnections reduced from 6 to 3.

In this manuscript, and in our implementation, we use the PaToH hypergraph partitioner
[50, 51]. This partitioner allows us to do a k-way partitioning of a sparse matrix. It permits
us also to define a balancing between the number of rows of each partition. In the following
experiments, we will use two levels of balancing. The first is a weak balancing where we allow
the partitions to have a large difference in number of rows while reducing greatly the number of
interconnections. This helps to group the interconnected rows within the partitions as much as
possible. The second level of balancing is strong balancing where the target is to have an almost
equal number of rows per partition.

3.5 Partitioning Experiments

In this section, we perform some experiments with the block Cimmino solver using Block-CG ac-
celeration (see [8, 45]) and focus on the effects of the preprocessing strategies on the performance.
We have therefore chosen a fixed block size for the Block-CG acceleration and stop the iterations
on the basis of a normwise backward error (see [52])

ωk = ‖Ax(k) − b‖∞
‖A‖∞‖x(k)‖1 + ‖b‖∞

of less than 10−12. A small value for ωk means that the algorithm is normwise backward stable
(see [53]) in the sense that the solution x(k) is the exact solution of a perturbed problem where the
max norm of the error matrix is less than or equal to ωk.

In Section 3.5.1, block Cimmino is used to solve the SHERMAN3 linear system from the
Harwell-Boeing matrix collection [54]. Section 3.5.2 contains the results from experiments of
runs of block Cimmino on the bayer01 problem from the sparse matrix collection at the Uni-
versity of Florida [36], we then perform some experiments with a larger set of matrices.
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3.5. Partitioning Experiments

3.5.1 A first illustrative example: SHERMAN3 problem

The matrix SHERMAN3 is a symmetric matrix of order 5005. This matrix comes from the dis-
cretization of partial differential equations extracted from a three dimensional oil reservoir simu-
lation model on a 35× 11× 13 grid using a seven-point finite-difference approximation.

The original pattern of matrix SHERMAN3 is shown in Figure 3.6. In the first experiment, a
trivial block-row partition of the linear system is used, with eight equal-sized blocks of rows. This
results in blocks of 625 rows except for the last one of 630.

Figure 3.6: Sparsity pattern of the SHERMAN3 matrix. The matrix has been partitioned into 8
blocks of rows.

Figure 3.7: Eigenvalue distribution spectrum of H for the SHERMAN3 problem.

The spectrum of H from the original matrix with a straightforward partitioning as shown in
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Figure 3.6 is given in Figure 3.7. This shows a large cluster of eigenvalues around 1 but a few
trailing eigenvalues associated with bad conditioning (smallest eigenvalue of the order of 10−8).

(a)

(b)

Figure 3.8: (a) Permuted normal equations matrix from SHERMAN3 using the Cuthill-McKee algorithm. (b) The

SHERMAN3 matrix after row permutations following the preprocessing strategy I and with additional column group-

ing.

Since the block Cimmino method is numerically independent of any column permutations, af-
ter the row-partitioning of the system, we also perform in all cases some column permutations to
group together columns belonging to the same subsets of row-partitions in order to ease the com-
munication phase in the algorithm when merging the results from the different projections. By
doing so, we improve the parallel execution of the block Cimmino method. We do not illustrate
this in the following because it is not very important for the discussion when comparing the differ-
ent preprocessing and partitioning strategies, and we refer to [43] for more technical details on the
distributed memory implementation of the block Cimmino method accelerated with a block-CG
algorithm.
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3.5. Partitioning Experiments

Figure 3.9: Normalized nonzero entries in the normal equations matrix from SHERMAN3. On the x-axis, the entries

are displayed in increasing order of their absolute numerical value (given on the y-axis).

In the second round of experiments, the preprocessing strategy I from Section 3.3 is used.
From the block tridiagonal structure of the permuted normal equations matrix of SHERMAN3,
the matrix is partitioned into blocks of rows. Figure 3.8-b shows the pattern of matrix SHERMAN3
after row permutation following the preprocessing strategy I, using a level set algorithm, Cuthill-
McKee, to permute the normal equations matrix into block tridiagonal form, as indicated in Fig-
ure 3.8-a. The partitioning shown is a two-block partitioning, and columns belonging to the same
subsets of blocks have been grouped together as mentioned before. The block-row partitions have
been defined using the block tridiagonal structure in the normal equations matrix. As in the first
set of experiments described above, we again aim at obtaining 8 blocks of about 625 rows each.

The sparsity pattern of the permuted SHERMAN3 matrix after completion of preprocessing
strategy II is shown in Figure 3.10-b. In this case we dropped the normalized entries of the normal
equations matrix that are below 0.2. We plot in Figure 3.9 the distribution of all the entries of
the normal equations matrix, where we see that dropping at 0.2 will remove less than the half of
entries. The matrix with the entries dropped was permuted using the ordering from the Cuthill-
McKee algorithm. The associated block-row partition, indicated in Table 3.1, has been defined
from the block tridiagonal structure of the matrix B̂ in (3.10), as described in Section 3.3, with
the aim of again obtaining 8 blocks of about 625 rows each whenever possible.

In the case of the hypergraph partitioning we use two different imbalance parameters, a weak
balancing which tolerates partitions up to 8 times larger than other partitions, and a strong balanc-
ing which tolerates up to 50% imbalance.

Also, we notice that the matrix B̂ in Figure 3.10-a has a smaller bandwidth than the matrix in
Figure 3.8-a. Thus the preprocessing strategy II offers more degrees of freedom to define the row
partitions than strategy I, since they are of smaller size. Therefore, we can define more partitions
while maintaining a good balance between the number of rows in each partition.

The spectrum of H for strategies I and II are shown in Figures 3.11 and 3.12, respectively.
Notice that compared to the spectrum of H arising from the original matrix the spectrum presents
a better clustering of the eigenvalues. In strategy I the largest eigenvalue is 2 which confirms a
two-block partitioning. However in strategy II we get a largest eigenvalue only slightly larger than
2 and thus we call strategy II a near two block partitioning. The convergence results in Table
3.2 illustrate the effect of the better clustering of eigenvalues obtained with strategy II.
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(a)

(b)

Figure 3.10: (a) Sparsity pattern of matrix B̂ in (3.10), obtained after removing nonzero entries less than 0.2 from

the normalized SHERMAN3 normal equations matrix, and using the Cuthill-McKee algorithm to permute the result-

ing matrix into block tridiagonal form. (b) Matrix SHERMAN3 after row permutations following the preprocessing

strategy II and with additional column grouping.
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Figure 3.11: Eigenvalue spectrum ofH for the permuted SHERMAN3 problem arising from using
strategy I.

Figure 3.12: Eigenvalue spectrum ofH for the permuted SHERMAN3 problem arising from using
strategy II with a drop at 0.2.
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Number of rows in each partition

Original Matrix A 625 625 625 635 629 628 784 454

Strategy I 625 625 625 635 629 628 784 454

Strategy II (drop 0.1) 625 625 625 744 707 669 628 382

Strategy II (drop 0.2) 625 625 625 627 641 671 630 561

strategy II (drop 0.4) 637 637 637 637 637 637 637 546

PaToH (weak balancing) 1019 396 1015 400 544 544 544 543

PaToH (strong balancing) 626 626 626 625 626 625 626 625

Table 3.1: Description of the 8 block-row partitions obtained for matrix SHERMAN3.

The second column of Table 3.2 shows convergence results from the runs of the block Cim-
mino method using different partitioning strategies. These results should be multiplied by the
block-size – 8 in our case – to obtain the number of matrix-vector operations, we show them in the
last column to easily compare the amount of work. We note that the uniform partitioning requires
the highest number of iterations for convergence since neither the structure of the matrix nor the
value of the matrix entries were taken into account.

However, when we take into account both the value of the entries and the structure of the ma-
trix as in strategy II, we are able to reduce the iteration count to 68 when dropping at 0.2 compared
to 102 when using strategy I. We examine further the effect of dropping on the convergence by
showing counts for dropping at 0.1 and 0.4. We see that, as we increase the dropping value from
0.1 to 0.2, we get a finer partition with the higher values in the blocks. However, as we increase the
dropping value more (to 0.4) we start to lose these connections resulting in an increase in iteration
count.

Using PaToH, we can reduce the iteration count to 52 when we use loose balancing. By doing
this, we have larger partitions and are able to reduce the interconnections between them. We notice
that effect when enforcing stronger balancing where the iteration count rises to 74.

Nb. of iterations M-V operations

Original Matrix A 190 1520

Strategy I 102 816

Strategy II (drop 0.1) 73 584

Strategy II (drop 0.2) 68 544

Strategy II (drop 0.4) 89 712

PaToH (weak balancing) 52 416

PaToH (strong balancing) 74 592

Table 3.2: Convergence of SHERMAN3 in the three different sets of experiments.
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3.5.2 Second illustrative example: bayer01 problem

We now look at these strategies on a larger problem, bayer01. This matrix was obtained from
Bayer AG by Friedrich Grund and is available from the sparse matrix collection at the University
of Florida [36]. It is of order 57735 and has 277774 nonzero entries. We show the pattern of the
matrix in Figure 3.13 where we have superimposed 16 uniform partitions.

Figure 3.13: Nonzero pattern of the matrix bayer01.

Figure 3.14: Spectrum of block Cimmino iteration matrix for bayer01 with 16 uniform parti-
tions.

If we run the block Cimmino algorithm on the matrix partitioned as in Figure 3.13 then the
resulting spectrum of the iteration matrix is shown in Figure 3.14. We see that, while there is
a good clustering of the eigenvalues around the value 1, just as we have noticed with the ma-
trix SHERMAN3, the matrix is still quite badly conditioned. Indeed, many small eigenvalues are
present and these eigenvalues will increase the iteration count when using the conjugate gradient
acceleration.
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If, however, we first reorder the matrix using PaToH and then partition it, we get the spectrum
for the iteration matrix shown in Figure 3.15 where we note that the intermediate eigenvalues have
been shifted towards 1 thus improving the clustering of eigenvalues in the iteration matrix. The
reduction in the number of small eigenvalues is expected to improve the convergence.
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λmin=4.00e−09  λmax=2.00e+00

Figure 3.15: Spectrum of block Cimmino iteration matrix for bayer01 with 16 partitions ob-
tained using the hypergraph partitioner PaToH.

Smallest partition Largest partition Ratio

Original Matrix A 3608 3615 1.002

Strategy I 1673 4342 2.595

Strategy II (drop 0.05) 1448 4017 2.774

Strategy II (drop 0.1) 3318 3660 1.103

Strategy II (drop 0.2) 3522 3634 1.032

PaToH (weak balancing) 952 7597 7.98

PaToH (strong balancing) 3608 3609 1

Table 3.3: Information on the 16 block-row partitions obtained for matrix bayer01.

Table 3.3 summarizes the partitioning information after applying the different strategies. As
there are 16 partitions, we show only the smallest, the largest and the ratio between the largest
and the smallest partition. We notice that when using strategy I we are constrained by the size of
the level sets so that size balancing of the partitions is quite difficult, and the largest partition is
more than 2.5 times the size of the smallest partition. As expected, by using strategy II we obtain
better load balancing between partitions and this improves as we increase the dropping parameter.
In the case of PaToH, weak balancing gives the greatest freedom for partitioning, and our largest
partition is nearly 8 times larger than the smallest. If we constrain this freedom by strengthening
the balancing, we obtain a partition with almost equal-sized blocks.
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Nb. of iterations M-V operations

Original Matrix A 426 3408

Strategy I 459 3672

Strategy II (drop 0.05) 270 2160

Strategy II (drop 0.1) 204 1632

Strategy II (drop 0.2) 343 2744

PaToH (weak balancing) 76 608

PaToH (strong balancing) 205 1640

Table 3.4: Convergence of bayer01 with the different partitioning strategies using block-CG with block-size 8.

We show in Table 3.4 the convergence results for the matrix bayer01 with a block-size 8.
We notice a similar behaviour as with the SHERMAN3 matrix where the preprocessing strategy II
improves the iteration count when dropping until a certain threshold. However, the preprocessing
strategy I is worse than just partitioning the original matrix uniformly. This behaviour was seen
on several problems which makes this strategy unreliable. Finally, using PaToH both with weak
and strong balancing gives good results for these two problems.

More experiments. The results above are not universal, as we see from runs on some of our
test problems in Table 3.5, uniform partitioning can give the best result. We take the results
presented in the previous chapter and select the block-size that gives the best timings with uniform
partitioning and compare it with PaToH partitioning with 50%, 150% and 200% imbalance.

Problem Block-size Uniform P (50%) P (150%) P (200%)

gre_1107 8 121 72 64 65
SHERMAN3 8 190 74 60 52
bayer01 8 426 205 315 76
lhr71c 32 529 2505 518 Failed
torso3 1 22 32 28 29
Hamrle3 4 2717 759 759 683

Table 3.5: Number of iterations when using uniform and hypergraph partitioning for some test
problems. Failed means that over 5000 iterations were performed without convergence. Best
results are shown in bold.

We notice that increasing the partitioning freedom by increasing the imbalance usually im-
proves the convergence as seen for SHERMAN3 and bayer01. Hamrle3 behaves similarly
except for 50% and 150% where it gives the same partitioning and thus the same number of itera-
tions. Convergence in the case of gre_1107 improves slightly at 150% then worsen afterwards.
This happens also with torso3 showing that increasing the imbalance does not always mean
better convergence. torso3 on the other hand gives better results with uniform partitioning.

The lhr71c is an interesting case where strong balancing makes the method converge slowly
and fails to converge after more than 5000 iterations. An other interesting aspect for this problem
is that the uniform partitioning gives comparable results to a medium imbalancing, we prefer in
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such a case to use uniform partitioning. This shows that different partitionings will lead to different
iteration matrices, and therefore we cannot predict in advance how it will behave.

In addition to the fact that some test problems work better with uniform partitioning, we have
to take into account that if we obtain only small iteration count improvements using hypergraph
partitioning it may not always be the best way to go. Indeed, using libraries such as PaToH will
generate an overhead which, if not covered by the gains in block-CG, will degrade the overall
performance, we noticed this situation with the matrices cage13 and cage14.

3.6 Concluding remarks

The results show that preprocessing the original system of equations to obtain a different partition-
ing of the system can have a profound effect on the convergence of the block Cimmino algorithm
resulting in a more robust and efficient implementation. Indeed, a good preprocessing strategy can
minimize the ill-conditioning between the different blocks.

Our Strategy I did this by enforcing a two-block partitioning but it was not very good at
obtaining a good blocking of the original matrix. We thus tried Strategy II which did much better
with respect to a regular partitioning but at the cost of losing, to a controlled extent, the two-block
partitioning. Although this did better than Strategy I, it was still not a robust approach and did not
always provide an improvement over a straight partitioning of the original system. It also required
the selection of a dropping parameter that was dependent on the problem being solved and so was
hard to choose in advance. We thus examined a strategy that uses a hypergraph model to partition
the original system with the aim of directly reducing the interconnection between block partitions.
We use the PaToH library to effect this partition and found that it compared very favourably to our
strategies based on the normal equations and was also more robust in that it produced partitions
better than a uniform partition of the initial matrix in most cases. It was also possible to use
PaToH to obtain a well balanced partitions with roughly the same number of rows.
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Chapter 4

Hybrid implementation of the parallel
block Cimmino method

As in many solvers, the solution phase is always preceded by a preprocessing phase that prepares
the data structures and tries to make the solution phase as efficient as possible.

For the following, consider the illustrative linear system Ax = b shown in the Figure 4.1
partitioned uniformly into 3 partitions, we use this system solely for description purposes.

=

A x b

A1

A2

A3

b1

b2

b3

Figure 4.1: Illustrative example of a uniform partitioning of a linear system of equations.

This chapter is divided in two main parts, the preprocessing phase in which we prepare the
data for the second part which is the solution phase. We talk about the preprocessing phase in
Section 4.1, we show the different algorithms used during that phase and how the data structures
are handled to facilitate the solution phase. Next, we describe the different steps for the solution
phase, starting with the first master-slave parallel version described in Section 4.2. Then we
introduce the new fully distributed hybrid scheme in Section 4.3. Throughout this description,
we take a look at the different pieces contributing to the design of the whole block-Cimmino
distributed solver.

4.1 Preprocessing

In the preprocessing phase the matrix and the right-hand side go through different manipulations
that help the solution phase to go faster. In this section, we describe these steps in order of their
execution.
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4.1.1 Scaling

It is shown (see [32] and [6]) that the convergence of the block-Cimmino is unaffected by the row
scaling but depends only on the principal angles between the partitions of the matrix. However,
the column scaling affects this convergence and can be considered as a diagonal preconditioner
of the block-Cimmino iterative scheme. The only gain we will obtain from row scaling is the
improvements in the quality of the factorization of the augmented systems, and in particular on
the numerical pivoting.

4.1.2 Partitioning

We have shown in Chapter 3 the different partitioning strategies we have implemented. We have
seen that we can either partition the matrix uniformly without any permutations, or we can reorder
the rows so that the partitions create good properties for the iteration matrix which will help to
speedup the convergence.

One effect the partitioning has on the parallel version is the number of interconnections (over-
lapping columns) between the partitions. A partitioning that targets a small number of intercon-
nections will reduce the communications during the different steps. We can also use a partitioning
that tries to build two sets of partitions where the inner partitions of each set are mutually orthog-
onal to each other.

4.1.3 Augmented Systems

We have seen in Chapter 2 that the block-Cimmino method needs to compute a set of projections
and to do a sum afterwards. We have seen that our preferred way of computing these projections
is to use an augmented system approach.

In Section 2.4, in particular in Algorithm 2.3, we described the algorithm PSA used to com-
pute the sum of projections. In this algorithm, we sequentially compute the solution to each of the
augmented systems (

I ATi
Ai 0

)(
ui
vi

)
=
(

0
Aip

(j)

)
.

We also indicate that the sum of the vectors ui, the projections, is actually the matrix-vector
operation needed in the block Cimmino iteration.

Rather than building the augmented systems with the full partition, we decided to compress
each partition by reducing its number of columns, by removing null columns when building the
augmented system. For the case of the previous illustrative example, we show the parts to be kept
in Figure 4.2, where Âi is the non-null part of the partition Ai.

For the linear system in Figure 4.1, the augmented system for the second partition is as shown
in Figure 4.3.

Â2

ÂT2I

0

Figure 4.3: An example of a compressed augmented matrix.
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A

Â1

Â2

Â3

Figure 4.2: Illustration of the important parts to be kept for each partition.

Notice that we removed all the null columns from the partition which made the augmented
system smaller. This compression, depending on the sparsity of A and on the partitioning, can
also happen anywhere within the columns of each block independently.

The issue that arises is the fact that the solution is compressed as well. To recover the orig-
inal solution –more precisely, to be able to sum the projections correctly– we keep track of the
compression and create a vector that we call ColumnIndexi. This vector indexes each column
of the compressed partitions to its original column. We show in Figure 4.4 an example of how
this compression works on a vector. In this case the 3rd item in the ColumnIndexi, shown in the
middle, has the value 5. We take the 5th element from the original vector and put it into the 3rd
position in the compressed one, this process is easily reversible.

2
3
5
6
7
10

ui,1

ui,2

ui,3

ui,4

ui,5

ui,6

ui,7

ui,8

ui,9

ui,10

ui,11

ûi,1

ûi,2

ûi,3

ûi,4

ûi,5

ûi,6

Figure 4.4: The compression process of a vector, left to right, using the ColumnIndexi vector,
in the middle.

4.2 Master-Slave Block Cimmino Implementation

In this section we assume the conjugate gradient method runs on a single process and has all the
matrix available in memory. It is important to first describe this implementation in detail as it will
be generalized in the fully parallel implementation described in Section 4.3. The following strat-
egy is architecture-independent, therefore we suppose that we have a generic hybrid architecture
containing processes with both shared and distributed memory.
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4. HYBRID IMPLEMENTATION OF THE PARALLEL BLOCK CIMMINO METHOD

We know that the most computationally heavy operation in a conjugate gradient iterative
scheme is the matrix-vector operation, especially if we are using a stabilized block-CG accel-
eration where the vector becomes a matrix (a set of vectors).

Computing the projections. When all the partitions are on the same process we have to avoid a
sequential one-by-one factorization of the augmented matrices; the same thing goes for computing
the solutions. Also, the factorization of all these augmented matrices needs computational power,
therefore we aim to factorize the augmented matrices using all the processes available to us.

The idea is to do all the factorization in a single shot and this can be done by combining all the
augmented systems into a single large system with a block-diagonal structure where each diagonal
block is one of the augmented matrices, coming from the partitions, as shown in Figure 4.5.

u1

v1

u2

v2

...

up

vp

=

0

r1

0

r2

...

0

rp

Figure 4.5: Linear system with a block diagonal matrix grouping all the augmented matrices.

Notice also from this figure that we are able to specify larger blocks, corresponding either to
larger partitions or less compressible ones. This freedom in size should not overly perturb the
performance of the direct solver and it is important for convergence purposes as we have seen in
Chapter 3. We will call this matrix, temporarily, the B matrix.

Both the factorization and the solution of this linear system can be done in parallel. Indeed,
the slave processes in this strategy are used only to help with the factorization and the solution
within the direct solver.

The projection sum algorithm has to be adapted to handle this structure. We propose here
a rewriting of the PSA algorithm as shown in Algorithm 4.1. The first modification is in the
introduction of two input variables α and β which will help to identify if we want to compute the
residual (when both variables are 1), or a matrix-vector product (when α = 0 and β = −1). The
second change is the use of the hat symbol to describe the compressed vector ẑ or compressed
partitions Âi. However, the output is guaranteed to be exactly the same as the result obtained with
the non-compressed case.

In this algorithm, we start by computing ri for each partition (α = 1 and β = 1). Then we
stack them piecewise into the sparse vector v by respecting the sparse structure of the right-hand
side described in Figure 4.5. This vector is then used to compute the solution s to the block
diagonal system, the direct_solve() call supposes that the B matrix has already been factorized.
Next, we extract the vectors ûi from the solution at line 10, the length of which corresponds to the
number of columns in the compressed partition. To extract the next vector we advance by the size
of each augmented system which corresponds to the sum of the number of rows and columns of
the partition.
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Algorithm 4.1 Projections Sum (PSA)
Input: w, ẑ, α and β
Output:

∑p
i=1A

+
i (α× wi − β ×Aiz)

1: δ ←
[
0 . . . 0

]T
2: for i = 1→ p do
3: ri ← α× wi − β × Âiẑ
4: end for
5: v ←

[
0 r1 . . . 0 rp

]T
6: s← direct_solve (Bs = v)
7: pos = 0
8: for i = 1→ p do
9: size_asi ← nbrows(Âi) + nbcols(Âi)

10: ûi ← s(pos : pos+ nbcols(Âi)− 1)
11: pos← pos+ size_asi
12: δ ← δ + expand(ui, ColumnIndexi)
13: end for
14: return δ

The result is obtained through the sum of the decompressed ûi. The expand() function uses
the ColumnIndexi vector to do this. In reality, the vectors are not uncompressed, the values of
ûi are summed with their corresponding values in the compressed vector δ. This way, no extra
memory is required. One drawback of this approach is the double indirect reference, to get the
column number and then to access the actual entry.

In the case of our illustrative example, the columns of each partition are contiguous therefore
it becomes easy to do the sum. We show in Figure 4.6 the columns of each partition that are
interconnected to other partitions in red (dotted) and in green (non-dotted) the columns that are
not interconnected.

A

Â1

Â2

Â3

Figure 4.6: Illustration of the interconnections between the partitions in red and the columns that
are not interconnected in green.

The interconnections between the partitions, shown in red (dotted pattern), are to the parts in
the ui (corresponding to the partition Ai) to be summed and the rest, shown in green, corresponds
to the columns linked to only this partition and that are to be copied into the δ vector directly.
We reproduce this colour scheme in Figure 4.7 to illustrate how this sum is performed in the
contiguous case.

In a more generic case, where columns are not contiguous, we have to use the indirections
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+ =

+ =

u1 u2 u3 δ

Figure 4.7: The sum of projections in the case of our illustrative example where the columns are
contiguous.

defined by the vectors ColumnIndexi and ColumnIndexj , an illustration of this case is shown
in Figure 4.8, where we do a sum of two vectors ui and uj , shown on the sides, into a large vector
in the middle corresponding to δ. Notice that the indirections obtained by ColumnIndexi permit
us to find the elements that need to be summed and those to copy into δ when no sum is needed,
the summed elements are represented in red (hatched pattern) and the copied ones are in green
(dotted pattern).

Notice that the δ vector, that is going to be used to update the solution vector later on, is not
compressed and its length corresponds to the number of columns of the original matrix. If we
compress it then we suppose that the corresponding column in the matrix is null which contradicts
our initial supposition that the problem is not rank deficient. However, this limit is only present in
the master-slave case, where the master handles the whole matrix.

ui ujδ

Summed element Copied element

Figure 4.8: Sum of compressed projections.

One can permute the columns of each partition to create contiguous sets of columns so that
the sum becomes easier and faster. This is not implemented yet, and should greatly improve the
performance as it is cache-friendly.

Work-flow summary. Once the master has created the augmented systems and concatenated
them into a block-diagonal matrix that we have calledB, it sends it to the direct solver for analysis
and factorization as shown in Figure 4.9. Once it is factorized, we launch a sequential Block-CG
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in which at each iteration, as we have seen in Chapter 2.4, we compute either a matrix-vector or
matrix-matrix product depending on whether the block-size in Algorithm 4.1 is 1 or larger.

A

FactorizeAnalyze Solve

Direct Solver

Augmented System Creation

∑p

i=1 A
+
i Aip

Block-CG

Figure 4.9: The master-slave strategy work-flow

The fact that the bottom box, the direct solver, is independent from the rest of the code makes
it possible to launch it in parallel mode. The slaves in our work-flow are all to be used within the
direct solver and contribute to the factorization and solution phase.

4.3 Distributed block Cimmino

There are two main issues with the master-slave scheme. Firstly, it may create a bottleneck during
the sum due to the fact that all the slaves have to send their results back to the master and the
master has to do the sum by itself while the slaves are idling. The second one is that increasing the
number of processes will not help during the projection sum due to the more limited scalability of
the direct solver’s solution phase.

The solution to this problem is simple. Rather than delegating the whole block-CG to a single
process, we create a distributed version of it and exploit the available processes to do that. That
way, we will reduce the amount of work to be done during the block-CG (during the matrix-matrix
products and sum of projections) and unclog the processes during the recovery of the solutions of
the augmented systems.

The issue that arises now is that the data structures about the matrix, i.e. the partitions and
the compression of columns, no longer resides on a single process (the former master process) but
have to be distributed over a few processes that will take part in the distributed block-CG.

4.3.1 Mapping data

There are three cases to consider when running block Cimmino in parallel. Either we have as
many processes as partitions, more processes than partitions or fewer processes than partitions.

Similar numbers. In this case, the basic idea is to distribute one partition per process and all
processes become part of the distributed block-CG. Therefore each process will build a single aug-
mented system and will call a direct solver instance to solve it sequentially. The communications
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between processes will be limited to the interconnections between the partitions belonging to each
of these processes.

More processes than partitions. This case is quite similar to the previous one, the only differ-
ence is that the remaining processes that did not get a partition will become slaves to the processes
participating in the distributed block-CG. The solution of the augmented systems can be performed
in parallel if a slave is assigned to it, or in sequential if no slave is assigned to it. We will call the
process assigned to a block-CG as masters and the rest as slaves.

Less processes than partitions. This situation is a hybrid of the master-slave scheme and the
distributed scheme. Indeed, as we are not able to handle a single partition per process, some of
them will get more partitions. If they do, they will handle these partitions in a similar way as
the master-slave case, i.e. they will build a local block diagonal matrix containing the augmented
systems of the partitions they got and they will solve them sequentially. Those processes that got
a single partition will behave just like the first case described above.

We show in Figure 4.10 how the processes are distributed in a generic case. The circles repre-
sent the processes, the Mk circles are the masters assigned to a block-CG and the empty ones are
the slaves. The central, blue, area represents the MPI (Message Passing Interface) communicator
to be used by the block-CG masters during their exchanges. The triangular shaped areas, in red,
are the communicators that each master will use with its slaves to solve the augmented systems. In
this figure we suppose that we have 4 partitions meaning that we cannot (following the scheme we
have defined previously) have more masters in the distributed block-CG, and that we have many
more processes available to us that are assigned as slaves. The numbering starts from 0 to respect
the MPI standard.

M0 M1

M2M3

. . . . . .

. . .. . .

Figure 4.10: Representation of how the processes are organized. The Mk circles are the masters,
the other circles are the slaves.

The third case, where we have less processes than partitions, requires a special treatment when
distributing the partitions. Indeed, in the first two cases we can simply distribute the partitions
successively. However, in the last case we have to do the distribution so that each master has
similar work to do and data to store as the others. The simplest way is to use a greedy algorithm
that will go through all the partitions, using a weight criteria that determines which partition goes
where.

We show in Algorithm 4.2 how this greedy algorithm works. It simply tries to group partitions
into sets so that the sets have similar weights. In our case, this algorithm receives as input the
weights of the partitions and partitions them into sets that correspond to the numbers of partitions
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for each master. The weights can be either the number of rows, the number of entries, or any other
criteria related to the partitions that might improve the performance.

Algorithm 4.2 Greedy partitioning
Input: weights and nb_masters
Output: partitions

for i = 1→ nb_masters do /* Initialize partitions with empty sets and their weights to 0 */
partitions[i]← [ ]
set_weight[i]← 0

end for
w ← 1
s← 1
while w 6= size(weights) do

for i = 1→ nb_masters do /* Try to find a set of partitions with less weight than the last one */
if set_weight[i] ≤ set_weight[s] then

s← i;
end if

end for
set_weight[s]← set_weight[s] + weights[w] /* Increase the weight of the current set */
partitions[s].push(w)
w ← w + 1

end while
return partitions

This version of the algorithm has a major drawback, it distributes the first partitions in a cyclic
manner. Therefore, we may finish by having partitions that are not close to each other on the same
master. Depending on the structure of the matrix, this can reduce the amount of work needed
during the local sums (by having local partitions with few interconnections) but increases the
communications with other masters as they might have the closest partitions.

Another way to do this partitioning can be by using a graph partitioner by putting weights
onto the vertices and partitioning the graph to get equilibrated sets. A linear graph, as shown
in Figure 4.11 where each vertex is connected to its successive vertex will give us the ability to
create partition sets partk containing matrix partitions that are contiguous, which can sometimes
be good for communications especially when the interconnected partitions are neighbours. The
wi value is the weight of the matrix partition Ai. As stated previously this can be any property of
the partition that the user decides but it is set by default to the number of rows in the partition.

w1 w2 w3 w4 w5 w6

part1 part2 part3

Figure 4.11: Partitioning using a linear graph.

A more complex way to create the partition sets would be to create a graph where the vertices
are the weights of each partition and the edges represent the weight of the interconnection (this
can be for example the number of columns in the interconnection) represented here by vi,j being
the weight of the interconnection between the partition Ai and Aj . To create the partition sets in
this case, we will use a multi-criteria graph partitioner so that the weights of each of the vertices
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are distributed among the sets and the weights of the edges are maximized inside the set. This
would reduce the communication footprint during the sum of projections.

w1 w2

w3 w4w5

w6

v1,2

v1,3v1,5 v2,3
v2,4

v2,6

v3,4

v4,5

v4,6

Figure 4.12: Partitioning using a graph defining the interconnections.

After the mapping is done, the partitions are sent to each master with the ColumnIndexi
vector corresponding to each partition. Each master defines mk as being the total number of rows
(sum of the number of rows of all the partitions it has) and nk as being the number of distinct
columns in all its partitions. The value nk is not the sum of the number of columns due to the
simple fact that the partitions can contain overlapping columns. We will see how it works in
Section 4.3.3.

4.3.2 Determining the slaves

Once each master has its partition, it creates its augmented system and gives it to the direct solver
for an initial analyses, the different analyses are done simultaneously between the masters but
each of them runs sequentially. This analysis will determine how many FLOPs are needed for the
factorization of the augmented system. The selection of slaves is done sequentially to avoid any
conflict between the masters.

The selection is simple, we assign to each master a priority corresponding to the relative local
FLOP count. Once a slave is assigned to the top priority master, we reduce this master’s priority
by 10% and repeat the process.

Once all the slaves are assigned to their masters, we create for each set of master/slaves a com-
municator that we shall call intra_communicator. This communicator is the red (triangularly
shaped) set that we have seen in Figure 4.10. The analysis is launched one more time if the size
of the communicator is larger than one so that the direct solver does the extra work needed in the
parallel case (the mapping). To avoid having too long an analysis phase, we extract from the first
analysis the ordering obtained and give it as input to the direct solver for the second analysis.

4.3.3 Sum of projections

The sum of projections goes through three main steps. The first two steps are similar to Al-
gorithm 4.1 and are applied locally on each master, except if this master has a single partition.
Indeed, if we have one partition on a master we do not need to do any sum between the ui as we
have only one of them. The third step is the combination of the δk, where k is the current master’s
number.

We show in Figure 4.13 how the distributed sum of projections work. Each Mk master, com-
putes its ui, if it has many then it sums them into δk; if not, it expands u1 (as there is only one) into
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δk. Next, each Mk master communicates with the other masters that it has interconnections with,
then sends the elements that are interconnected and receives at the same time its interlocutors’
elements. This way every master gets the data it needs and does the sum locally without waiting
for others to finish the communications with their other interlocutors. We can of course do the sum
on one of two communicating masters. However, it would create a hard synchronization between
them.

. . .

u1 uj

M1 M2 M3

δ1 δ2 δ3

u1 u1

Figure 4.13: Sum of compressed and distributed projections. Red (pattern less) entries are locally
computed, green ones (dotted) have been exchanged then summed. The hashed green entries are
the entries that have been exchanged with more than one master.

We observe from the previous figure that if two masters do not have interconnections, they do
not need to communicate. Moreover, the size of deltak can be different from a master to another,
which means that in the Block-CG iterations, the different matrices R,P , and X have different
sizes from one master to another.

4.3.4 Distributed block-CG

The distributed version of the block-CG algorithm uses the same stabilized Algorithm 2.4, shown
in Section 2, with one main difference, the matrix-matrix product HP is done using the pro-
cess described in Section 4.3.3 and the dense matrix-matrix product done during the stabilization
processes is done in a distributed manner.

The dense matrix-matrix product is performed using PBLAS’s PDGEMM routine that will com-
pute it in a distributed manner. However, two issues arise for our case:

• The fact that some entries in P and R are duplicated between the different masters, requires
an additional step before launching the product. For each couple of communicating masters,
we define which master will handle the duplicate entries, this selection can be done by a
simple criteria that can be either the number of local entries or just on a first-arrived first-
served basis.
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• A redistribution is needed to arrange the data in a block manner. Indeed, PBLAS requires
either a block, a cyclic or a block-cyclic distribution of data.

This solution requires additional communication and has some a priori requirements such as the
distribution of data in a grid manner which is not true in our case.

Our solution uses a simple algorithm, defined in Algorithm 4.3 where we handle both the case
of P THP and RTR. In this algorithm, the matrix to be transposed is called D and the other W ,
if we are in the case of RTR, we work only on D and suppose that W is empty.

Algorithm 4.3 Parallel Stabilization: pstab()
Input: D and W
Output: D̄, W̄ and U

1: if D 6= W then
2: D̂ ← local(D)
3: Ŵ ← local(W )
4: Ĉ ← D̂T Ŵ
5: else/* Handle the case of DTD */
6: D̂ ← local(D)
7: Ĉ ← D̂T D̂
8: end if
9: C ← all_reduce

(
Ĉ
)

10: U ← chol(C)
11: D̄ ← DU−1

12: if D 6= W then
13: W̄ ←WU−1

14: end if

In the lines 2,3 and 6, we use the function local() that uses a local vector called CommMapk
that defines which entries the current master k will handle. The i-th position of this vector contains
1 if the i-th value in P , R or X is used in the computation and hence it is kept, and contains -1 if

A

A1

A2

A3

A4

A5

M0

Create Aug. Syst.

Analyse Aug. Syst.

Find slaves

Create Intra-comm.

Feed Dir.Solver

Block-CG

M1

M2

M3

Figure 4.14: The distributed work-flow of the Block-Cimmino method. In blue, the steps
that have inter-master communications. In red, the steps that have communications inside the
intra_communicator. In gray, the steps that are done sequentially.

60



4.4. Numerical experiments

it is not. The resulting vectors D̂ and Ŵ are smaller and contain less rows than the original D and
W respectively. We then compute in lines 4 and 7 the local dense matrix-matrix product using the
DGEMM routine and then do a global sum in line 9. This global sum, using MPI’s all_reduce()
ensures that all the masters have the same data and avoids a reduce followed by a broadcast
implementation. All the masters then do the same factorization at line 10 of an s×smatrix, where
s is the block-size. The block-size is generally small, we do not need a parallel implementation
for this factorization. We then return the stabilized vectors D̄ and W̄ corresponding to P̄ and HP̄
respectively or R̄ only depending on the case.

Workflow. We summarize in Figure 4.14 the workflow of our distributed block-Cimmino im-
plementation. This implementation accepts different levels of parallelism: distributed block-CG
only, if we have fewer or as many processes as partitions, and distributed block-CG combined
with a parallel direct solver if we have more processes than partitions.

4.4 Numerical experiments

We run the test problems listed in Table 4.1, using our distributed solver and using the block-size
that gives the best timings. For the partitioning, we use hypergraph partitioning with medium
imbalance. The experiments are performed on Oakleaf with 2 MPI processes per node to avoid
any memory congestion.

Problem Order Nonzeros Partitions Block-size

N1 - EDF/R6 132 106 2 103 332 16 16
N2 - lhr71c 70 304 1 528 092 16 32
N3 - torso3 259 156 4 429 042 32 1
N4 - Hamrle3 1 447 360 5 514 242 64 4
N5 - Hamrle3 1 447 360 5 514 242 128 4
N6 - cage13 445 315 7 479 343 256 1
N7 - cage14 1 505 785 27 130 349 1024 1
N8 - nlpkkt80 1 062 400 28 192 672 64 4

Table 4.1: Matrices to be tested. We show their orders, number of partitions and block-size used
in block-CG.

Problem N1 N2 N3 N4 N5 N6 N7 N8

Factorization 1.61 1.02 5.72 16.85 13.99 16.81 60.68 30.93
B-CG iteration 0.90 0.99 0.35 6.73 6.77 3.51 15.35 5.03

Table 4.2: Timings for factorization and for a single Block-CG iteration on 4 MPI processes.

We are interested in the time for factorization of the augmented systems (Figure 4.15) , the
average time per iteration (Figure 4.17) and the average memory consumption during the factor-
ization (Figure 4.16). We run with 4 MPI processes, for which timings of factorization and a single
block-CG iteration are shown in Table 4.2. We show the time for a single iteration because the
number of iterations can have small variations when changing the number of processes because
the order of operations may be different and have different rounding properties.
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For the factorization we see that the speedups depend greatly on the number of augmented
systems (number of partitions) but also on their order and density. We notice the effect of the den-
sity of augmented systems when comparing N4 and N8; both have the same number of partitions,
and although N4 is larger, N8 is denser and so are its augmented systems. Hence, the speedups
of the latter problem are better than the former. The same happens with N1 and N2, the former is
denser and has better speedups with the same number of partitions. We notice also that for small
augmented systems, increasing the number of cores further will result in the reverse situation. We
discuss this behaviour (especially on this machine) at the end of Chapter 5.

The number of augmented systems has an important effect on the speedup, indeed we notice
that when having more partitions, speedups are better until we have a higher number of processes.
To illustrate this effect, we took the same matrix Hamrle3 and partitioned it into 64 (problem
N4) and 128 partitions (problem N5). We notice that with 128 augmented systems, we do not see
a slow down as we do with 64 augmented systems on 64 processes. However, starting from 128
processes, N4 has better speedup.

To understand this behaviour we have to look at the two phases in these speedups. Firstly,
when we have less processes than partitions, the factorization on each master is sequential, thus
increasing the number of processes will increase the number of masters, hence decreasing the
workload for the factorization. We notice that until we have one partition per process, the speedups
are good for all problems with little slow down. Secondly, when we go over this ratio of one
partition per master, the factorization becomes parallel and the speedups are related to how parallel
the factorization of these augmented systems is. If they are large, the speedups keep a good slope;
otherwise we see a lower speedup which explains why N4 has better speedups at higher process
count than N5.
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Figure 4.15: Speedups of the factorization of augmented systems. The gray (symbol-less) line
represents the ideal speedup.

The direct solver needs a lot of memory to factorize the augmented systems. We see in Fig-
ure 4.16 that, as expected, increasing the number of processes decreases greatly the memory usage
per process. It is linear in most cases until we have one partition per process, and then becomes
super-linear when we have two processes per partition. On some of them, a slowdown is noticed
afterwards as expected. These results are an important aspect of the block-Cimmino method, split-
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ting the problem more breaks the problem complexity and hence its memory requirement during
the factorization.
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Figure 4.16: The evolution of the average memory (MB) per process when increasing their num-
ber.
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Figure 4.17: Speedups of the block-cg acceleration. The gray (symbol-less) line represents the
ideal speedup.

Now, we look at the speedups obtained during block-CG acceleration. Just as for the factor-
ization we have two phases, one when there are less processes than partitions or an equal number
and another with more processes than partitions. At the beginning, each master computes the
sum of projections sequentially. Therefore reducing the amount of work to be done by increasing
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the number of processes will speedup the sum of projections. This gain is not sustained as the
communication between the different masters, to update the iterate and during the dot product (or
matrix-matrix, depending on the block-size) for stabilization, will slow down the iterations.

A deeper analysis of the different steps in block-CG will reveal possible improvements to our
implementation such as computing in parallel the matrix-vector product Âiẑ, in the projection sum
algorithm, adding a higher level of distribution of block-CG by using the available slaves during
the other steps of each iteration.

We compare now the results obtained using the direct solver MUMPS with the results obtained
using block-Cimmino. The runs are done on Conan as this machine has a large enough memory.
We show in Table 4.3 the timings for Analysis and Factorization and memory consumption dur-
ing the factorization in the direct solver and compare them to preprocessing, augmented systems
factorization, block-CG timings and average memory consumption per process.

Problem N1 N2 N3 N5 N6 N7 N8 N8 (256)

[MUMPS] Analysis 1.0 3.10 4.54 171 31 24
[MUMPS] Fact. 0.56 0.39 6.39 1112 1716 Failed 1802
[MUMPS] MEM. 21 13 100 1140 5158 38 386 927

[BC] Preprocess 4.9 2.05 1.32 18.29 11.23 142.81 10 57
[BC] Aug.Sys. Fact. 0.27 1.23 4.10 3.69 2.48 3.79 303 33
[BC] Block-CG 162 173 3.15 346 4.46 19.03 2194 2149
[BC] MEM. 57 59 189 247 186 666 3200 1310

Table 4.3: Comparison of MUMPS and distributed implementation of block-Cimmino (BC). We use
the same problems used earlier and we test with a different partitioning of the matrix in problem
N8 with 256 partitions.

We notice from these results that on small problems such as N1 and N2, the direct solver
consumes less memory than our approach and is able to analyse and factorize the linear system
faster. On N3, we are able to get comparable timing with slightly more memory usage. The larger
problem N8 gives extremely slow convergence with 64 partitions and consumes more memory
than the direct solver, however increasing the number of partitions decreases the factorization
time of augmented systems, the memory usage per core and slightly the time to converge.

On the other hand, on the other problems we are able to achieve better results in term of timing
and memory usage. The factorization of the augmented systems becomes negligible compared to
factorizing the original linear system. The most time consuming part in our method is the block-
CG and in the direct solver it is the factorization. On the problems N5 and N6, our method
performs better than the direct solver in term of time and memory usage. Indeed, we use only
20% and 4% respectively of the memory required by the direct solver. For problem N7, we did
not put factorization results as it failed for lack of memory. The analysis estimated an average of
38GB of memory per core while our method used only 666MB per core to solve this problem.

4.5 Concluding remarks

We have described in this chapter the hybrid parallel implementation of the block Cimmino
method. We started by describing our earliest attempt to build a parallel solver using the master-
slave model. Then we migrated into a fully distributed model for both the block-CG and the direct
solver. We discussed the different algorithms involved in that implementation and suggested pos-
sible improvements to reach better speedups.
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4.5. Concluding remarks

We performed runs on a variety of problems with different sizes and numerical properties that
showed the parallel potential of our implementation. Moreover, we compared it against a direct
solver and have seen that, on some large problems our implementation can be faster and that it
consumes much less memory in general than the direct solver. This is thanks to the splitting of the
original problem and the consequent reduction of its complexity during the factorization which
induces lower fill-in and hence the lower memory usage. The large memory usage by the direct
solver MUMPS is also being investigated in [5] by using low-rank approximation techniques.
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Chapter 5

The Augmented Block Cimmino

We introduce and study a novel way of accelerating the convergence of the block Cimmino method
by augmenting the matrix so that the subspaces corresponding to the partitions are orthogonal.
This results in building and solving a relatively smaller symmetric positive definite system.

In our discussion on the theoretical properties of our algorithm, we will use a realistic test
matrix to illustrate this behaviour. This is the matrix bayer01 obtained from Bayer AG by
Friedrich Grund and available from the sparse matrix collection at the University of Florida [36].
It is of order 57735 and has 277774 nonzero entries. We partition it into 16 uniform partitions,
and we show its pattern in Figure 5.1. In Figure 3.15, we have shown the spectrum of the iteration
matrix, H , for the bayer01 matrix when using block Cimmino with these 16 uniform parti-
tions. This matrix has been studied in Chapter 2 and Chapter 3. Later, in Section 5.4, we extend
the study by testing the method on larger problems.

Although we see that there is a good clustering of eigenvalues around the value 1 (and this
property is true in general) the matrix may still be badly conditioned. One way to increase the
clustering while reducing the ill-conditioning is to open the angles between subspaces correspond-
ing to the different partitions. One method for doing this is to reorder the matrix and partition it
following the level sets obtained from the use of the Cuthill-McKee algorithm on AAT [55]. Al-
though this helps to open the angles, it is costly, difficult to implement in a distributed memory
environment, and does not always give better results.

Figure 5.1: Nonzero pattern of the matrix bayer01.

As an alternative, we use a hypergraph partitioner PaToH [56] to find a row permutation
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5. THE AUGMENTED BLOCK CIMMINO

that will make the partitions less interconnected. PaToH provides permutations so that the re-
ordered matrix is in bordered block diagonal form where the blocks on the diagonal will usually
be underdetermined. We notice that, with the matrix in this form, the overlap is only within the
boundary columns that PaToH is trying to minimize. One can input to PaToH the desired num-
ber of partitions and, in this present comparison, we use the value 16, the same number as for
our uniform partition. A deeper comparison of the benefits of using a hypergraph partitioner with
block-Cimmino was discussed in Chapter 3.

As we have seen in the previous chapters, a better partitioning combined with stabilized block-
CG may improve the convergence of the method. Further techniques, such as the combination of
Chebyshev preconditioning with CG can be beneficial to extract some near-invariant subspace
(corresponding to all eigenvalues below some threshold, typically λmax/100) from the Krylov
subspace and to reuse this spectral information to speed up further solutions with the same matrix
but new right-hand sides [31]. Such techniques are, however, limited because there may be many
eigenvalues in such fixed intervals especially for very large size linear systems, and so the memory
requirements may become prohibitive in some cases.

5.1 The augmented block Cimmino method

For simplicity, assume that we have a matrix with a block tridiagonal structure as shown in Figure
5.2(a). Note that the block Cimmino method can work with any matrix structure.

In this figure we have defined four partitionsA1 toA4. As we can see in this practical example,
each partition is interconnected only with its neighbours. Thus, the product of these partitions can
be represented by the following :

AiA
T
j =

{
0 if j 6= i± 1
AijA

T
ji if j = i± 1

where Aji and Aij are the submatrices of Ai and Aj respectively that overlap column-wise with
each other, see Figure 5.2(a).

We then augment the matrix A to generate a matrix Ā with partitions Āi so that the inner
products ĀiĀTj are zero. We consider three different ways to augment the matrix to obtain these
zero matrix products.

• One can repeat the submatrices Aij and Aji, reversing the signs of one of them as in the
following A1,1 A1,2 A1,2

A2,1 A2,2 A2,3 −A2,1 A2,3
A3,2 A3,3 −A3,2

 (5.1)

• We can also use the normal equations so that, for each pair of neighbouring partitions Ai
and Aj , we expand them on the right with Cij = AijA

T
ji and −I respectively as in the

following A1,1 A1,2 C1,2
A2,1 A2,2 A2,3 −I C2,3

A3,2 A3,3 −I

 (5.2)

It would also be possible to expand with −I and CTij which will reduce the number of
augmenting columns if Cij has more columns than rows.

• Finally, we can use an SVD decomposition of Cij , viz. Cij = UijΣijVij . We then replace
Cij by the product UijΣij and −I by −Vij . We will discuss the possible benefits of this
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5.1. The augmented block Cimmino method

A1

A2

A3

A4

Interconnections Nonzeros

(a) Block tridiagonal structure

C1,2

−I
C2,3

−I
C3,4

−I

(b) Normal equations based augmentation

Figure 5.2: Illustrative example of an augmentation process.

approach in Chapter 6 when investigating ways to compress information in these various
augmentation approaches.

Once we build these submatrices, we place them so that they start in the same column as
shown in Figure 5.2(b).

In the case of augmentation by repeating the submatricesAij andAji, the product of each pair
of partitions Āi and Āj gives

ĀiĀ
T
j = AijA

T
ji −AijATji,

and in the case of the augmentation using normal equations Cij we obtain

ĀiĀ
T
j = AijA

T
ji − Cij .

Notice that in both cases we get ĀiĀTj = 0.
Which of these alternatives to use will depend on the structure of the overlaps and we want

to choose the one that minimizes the number of augmenting columns. In the following, we first
concentrate on the Cij and −I augmentation as shown in Figure 5.2(b) before we compare, in Ta-
ble 5.2, its behaviour with the approach (5.1). To prevent the Cij blocks from different neighbours
creating new interconnections, we shift them side by side columnwise as shown in the illustrative
example. We note that in cases where there is a largely full column in the submatrices Aij , the
second formulation (5.2) might involve a full Cij and so become too expensive with respect to the
first formulation (5.1).

The resulting augmented matrix is in all cases of the generic form Ā =
[
A C

]
. However,

to ensure that our new system Ā

[
x
y

]
= b has the same solution x, we add extra constraints to

the system to force y to be equal to 0, resulting in the new system[
A C
0 I

] [
x
y

]
=
[
b
0

]

hence Ax+ Cy = b
and y = 0
thus Ax = b.

Now that we have shown that we have the same solution from our new system, we have one
remaining problem. The partitions in

[
A C

]
are mutually orthogonal, but they are not orthogonal
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5. THE AUGMENTED BLOCK CIMMINO

with the extra rows in the bottom partition Y =
[
0 I

]
, where I has the same size as the number

of columns of C. Therefore, we project Y T onto the orthogonal complement of the upper part
using the orthogonal projector

P = PR(ĀT ) = P⊕p

i=1R(ĀT
i ) =

p∑
i=1

PR(ĀT
i )

which holds as a sum because of the enforced numerical orthogonality between the blocks Āi of
Ā.

The resulting projected set of rows[
B S

]
= W = Y (I − P ) (5.3)

is orthogonal to all other partitions of Ā. However, the right-hand side has to change to maintain
the same solution, viz

f =
[
B S

] [x
0

]
= Y (I − P )

[
x
0

]

= −Y P
[
x
0

]

= −Y Ā+Ā

[
x
0

]
= −Y Ā+b

resulting in the new linear system [
A C
B S

] [
x
y

]
=
[
b
f

]
(5.4)

which, if f = −Y Ā+b, has the same solution as the previous one, with x corresponding to the
solution of the original system (2.1).

Once the new augmented matrix has been built, we can apply block Cimmino to it by keeping
the partitions that were defined for Ā and including W as a single partition. The eigenvalues of
the iteration matrix in this case are all 1. This contrasts with the spectrum of the non-augmented
system shown in Figures 3.14 and 3.15. Since all eigenvalues of the iteration matrix are 1, the
block Cimmino method will converge in one step. That is, because of the orthogonality of W =
[B S] with Ā, the solution is given by:[

x
y

]
= Ā+b+W+f. (5.5)

To illustrate what we said previously, we show a picture of the partitioned Ā built from the
bayer01 matrix in Figure 5.3, and the S matrix generated from the augmentation process in
Figure 5.4. This is a graphic illustration of the relative sizes of the unaugmented matrix and the
matrix S. Although it is relatively much smaller, the dimension of S is still 918 which can be
reduced to 804 by using transposes of the submatrices Cij if they are rectangular and have more
columns than rows (as mentioned above). Although the order of C is 1.4% of the dimension of
the original matrix, the construction and solution of this matrix can still be a significant part of the
overall computation which is why we seek to reduce this order in Chapter 6.

We compare in Table 5.1 the size of S for three of our test matrices partitioned either uniformly
with p equally sized partitions, or using PaToH with the same number of partitions. From this
we see that, in the case of uniform partitioning, the dimension of S can be even greater than the
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5.1. The augmented block Cimmino method

Figure 5.3: Pattern of the [A C] part when augmenting the matrix bayer01.

Figure 5.4: Pattern of the S matrix for the augmented system for the matrix bayer01.

original dimension and also that the strategy of using Cij or CTij , whichever has fewer columns
(shown in the column Reduced S in the table), can be very beneficial. Similar results are found in
all our test cases. Therefore, we will use these parameters (PaToH partitioning and S reduction)
throughout the rest of this paper.

Keeping in mind the previous assumptions, we compare in Table 5.2 the size of S, on a larger
set of matrices, when augmenting the matrix either using the normal equations Cij or using the
submatricesAij/−Aji. We notice that most of the time, except for the gre_1107 and EDF/R6,
the Aij/−Aji augmentation gives a smaller S.

In addition to all these parameters, the number of partitions has a considerable effect on the
size of S. If we partition the matrix Hamrle3 for instance into 128 partitions, the size of S
increases to 67679. However, as we will show in Section 5.4, increasing the number of partitions

71



5. THE AUGMENTED BLOCK CIMMINO

Matrix Size #Part. Partitioning Size of S Reduced S

bayer01
57735 16

Uniform 2951 2469
PaToH 918 804

lhr34c
35152 8

Uniform 10 108 1803
PaToH 1815 1470

lhr71c
70304 16

Uniform 20 283 3671
PaToH 3203 2452

Table 5.1: Dimension of S for some test matrices with Cij augmentation.

Matrix Size #Part. Augmentation Size of reduced S

gre_1107
1107 5

Cij based 373
Aij based 412

lhr34c
35152 8

Cij based 1470
Aij based 919

bayer01
57735 16

Cij based 804
Aij based 542

lhr71c
70304 16

Cij based 2452
Aij based 2044

EDF/R6
132106 16

Cij based 6400
Aij based 6506

bmw3_2
227362 16

Cij based 19 255
Aij based 16 695

Hamrle3
1447360 64

Cij based 64 130
Aij based 46 564

Table 5.2: Comparison of the size of S with different augmentation approaches.

can be helpful when exploiting parallelism.

5.2 The matrices W and S

In this subsection, we examine some properties of the matrices W and S. The size of S depends
directly on the number of columns in the C block. Thus, fewer interconnections between the
partitions imply a reduced size of C and S.

Since
[
B S

]
= Y (I − P ), we see that

S = Y (I − P )Y T (5.6)

from which, as P is an orthogonal projection matrix, we can immediately see that S is symmetric.
Since S is a restriction of the orthogonal projector (I −P ) whose eigenvalues are in the range

[0, 1], the eigenvalues of S are in the range [0, 1]. We see this in Figure 5.5.

72



5.2. The matrices W and S

Figure 5.5: Eigenvalues of S matrix for bayer01.

From the definition of W ,

WW T = [B S][B S]T
= BBT + SST

= BBT + S2
(5.7)

but also from equation (5.3) and because (I − P ) is an orthogonal projector, we can compute
WW T as

WW T = Y (I − P ) (I − P )T Y T

= Y (I − P )2 Y T

= Y (I − P )Y T

= S

(5.8)

and thus

BBT = S − S2 (5.9)

(which also shows that the eigenvalues of S lie between 0 and 1).
The matrix S = Y (I − P )Y T reflects the bad conditioning of the Cimmino iteration matrix.

Hopefully, the size of S is small enough for this approach to be better than the original Cimmino
iteration. This helps to reduce the length of plateaux in the convergence of conjugate gradients
while having Krylov spaces of smaller dimensions. This aspect is also seen in domain decomposi-
tion methods where the problem is condensed into a smaller matrix called the Schur complement
that is usually denoted by S (we have chosen the S notation as an analogy with this).

As W is a partition in our augmented block Cimmino algorithm, the solution obtained us-
ing equation (5.5) involves W+. Since W+ can be expressed as W T (WW T )−1, we have from
equation (5.8) that

W+ = W TS−1 = (I − P )Y TS−1. (5.10)

This involves only S and P . Therefore, the computation using W+ can be easily performed.
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5. THE AUGMENTED BLOCK CIMMINO

5.3 Solving the augmented system

Due to the orthogonality between the partitions of Ā, we have

Ā+b =
∑p
i=1 Ā

+
i bi and P =

∑p
i=1 PR(ĀT

i ) (5.11)

which can be used jointly with equation (5.10) to build a solution of the augmented system[
A C
B S

] [
x
y

]
=
[
b
f

]
,

through equations (5.5) and (5.3). This solution can be expressed as[
x
y

]
= Ā+b+W+f

=
∑p
i=1 Ā

+
i bi − (I − P )Y TS−1Y

∑p
i=1 Ā

+
i bi.

Solving this system becomes quite simple to do and can be done by following the steps de-
scribed in Algorithm 5.1.

Algorithm 5.1 Solve using ABCD
Input: Ā and b
Output: x

1: Build w = Ā+b, using equation (5.11), and then by simple restriction set f = −Y w
2: Solve Sz = f (using, for instance, a direct solver as S should be small)
3: Expand z̄ = Y T z and then project it onto the null space of Ā viz. u = (I − P ) z̄

4: Then sum w + u to obtain the solution

[
x
y

]
, where y = 0

Note that we don’t need to build B explicitly, only S is used. In that respect, since S is
of smaller size and symmetric positive definite, we can either build S and factorize it or use it
implicitly in a conjugate gradient procedure through matrix-vector products with Y (I − P )Y T

which implies a sequence of contraction, projections and expansion of the vector.
In this section we have introduced a new technique to solve linear systems based on this aug-

mentation approach for the block-Cimmino method, and we shall call it the ABCD method, that
stands for Augmented Block Cimmino Distributed method. Next, we will investigate the perfor-
mance of the ABCD method on the set of problems listed previously.

5.4 Parallel ABCD and Numerical results

We shall now investigate in detail the building of S in parallel. We recall the three main postulates
that we have discussed in Chapter 4 about the parallel implementation of the method.

• If we have more partitions than processes, we will distribute one or more partitions per
process so that each process has similar work to do.

• If we have as many partitions as processes, we distribute one partition per process.

• If we have more processes than partitions, we distribute the partitions just like in the previ-
ous case, and the remaining processes are incorporated as slaves within the different MPI
communicators created for parallel factorization and solution of the augmented systems.
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5.4. Parallel ABCD and Numerical results

A process containing a partition is called a master and is denoted by Mk where k is the process
number. Figure 5.6 illustrates how the processes are distributed, large circles are the masters
and small ones are the slaves. This figure assumes that there are 4 partitions and many more
processes. Each Mk process has its own partition (or set of partitions) and works with the slaves
in its communicator (triangularly shaped area).

M0 M1

M2M3

. . . . . .

. . .. . .

Figure 5.6: Representation of how the processes are organized, the Mk circles are the masters, the
other circles are the slaves.

We know that each column of S is a sum of projections applied to the corresponding canonical
vectors. By rewriting S as being

S = Y (I − P )Y T = Y D,

we see that each column of D can be defined as

D(:, l) = el −
p∑
i=1

Ā+
i Āiel.

The vector resulting from the product Āiel is sparse, therefore we can use the direct solver’s
feature of sparse right-hand side inputs. This feature in MUMPS improves greatly the speed of the
solution phase as we will see later.

What we also know is that each column of S, hence D, corresponds to one and only one
pair of partitions that are interconnected. Indeed, as we have seen in the previous section, the
augmentation is done by pairs of partitions, therefore a canonical vector will trigger only one
particular couple of partitions and the other partitions will yield a zero vector during the projection
simply because Āiel = 0 in most cases (in the summation above) . Hence, we are able to rewrite
the previous equation as

D(:, l) = el −
(
Ā+
i Āiel + Ā+

j Ājel
)
, (5.12)

where the column l, in this case, is related to the pair of partitions Āi and Āj . This aspect opens
an opportunity to compute the columns of S in parallel in a very cheap way.

Distributed computation. Suppose that we have many processes available to us, each of those
holding one or more partitions. We build Dk, a partial computation of D, where k is the k-th
master. The l-th column of Dk satisfies equation (5.12) and is written as:

Dk(:, l) =
(1

2el − Ā
+
i Āiel

)
+
(1

2el − Ā
+
j Ājel

)
, (5.13)
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5. THE AUGMENTED BLOCK CIMMINO

and we can easily see that D is the sum of all the Dk partial contributions.
To illustrate this process we introduce a simple example in Figure 5.7 with four partitions and

three masters sharing these partitions. We can illustrate all the possibilities related to the pair of
partitions Ai and Aj using process M0:

• The pair of partitions are on this process.

• Only one partition of the pair is on this process.

• The pair of partitions are on other processes.

Ā1

Ā2

Ā3

Ā4

M0

M1

M2

l1 l2 l3

Figure 5.7: A representation of the different cases when computing a column of D. Mk is the k-th
master, M0 holds two partitions while the others have only one.

This affects the computation of the columns of D0 as the column l is also one of the three
cases l1, l2 and l3. The corresponding computed column D0(:, l) is handled differently depending
on the position of the column l as follows

• As l1 involves Ā1 and Ā2 the computed column D0(:, l1) corresponds directly to the fully
summed column D(:, l1) (performed locally on M0).

• As l2 involves Ā2 and not Ā1 the computed column D0(:, l2) contains only part of the in-
formation in the corresponding column in D (shared by M0 and M1). It should be summed
later with the other partial computation of the column l2 computed by the other master
holding it as a local column. This can be done by doing a distributed sum between the two
related processes, we will see later that we can avoid this explicit sum and perform it at the
factorization time as the matrix S is being factorized.

• As l3 does not involve Ā1 or Ā2 this column is not used in the computation of D0 and is
considered empty. Therefore, there is no need to do the projection.

By following these rules, we are able to reduce the amount of work each process has to do to
compute its part Dk of the final D. Notice also that we do not need to store the whole Dk but we
can store only the bottom part corresponding to partials of the matrix S that we shall denote as Sk.

Assembly of S. Building the final S before giving it to the direct solver can be done either
by summing the local parts Sk held by each master and building the fully summed matrix in
a centralized way, or by exchanging the corresponding columns to do the sum in a distributed
manner, then giving the direct solver a distributed matrix as input. We see that the later solution
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5.4. Parallel ABCD and Numerical results

is more appealing, as S will be kept distributed, and the only communication to be done is related
to the columns in the second case –the l2 one.

One way to do this distributed sum is by asking the masters to send their interconnected
columns to the master of their paired partition. The master that has less work will do the sum of
duplicate entries (entries with same row/column indices), and ignores the remaining entries. The
other master will just nullify the duplicate entries in its local Sk. In this way we avoid having the
same entries (duplicates) on both masters.

Another way to do the sum is by relying on the direct solver to handle it. Indeed, the direct
solver MUMPS detects duplicate entries and does the sum during the factorization when assembling
the fully summed variables. The matrix S can be given both in a distributed manner and with
duplicate entries to the direct solver, therefore no modification is done to the Sk matrices before
giving them to the direct solver. This method is expected to be more reliable than doing the sum
explicitly (error prone and communication hog), and this contributes even better to the hybrid
scheme we are trying to settle.

Problem Size Nonzeros Partitions Application

N1: lhr71c 70 304 1 528 092 16 Chemical Process simulation

N2: EDF/R6 132 106 2 103 332 16 Structural Problem

N3: bmw3_2 227 362 5 757 996 16 Structural Problem

N4: Hamrle3 1 447 360 5 514 242 64 Circuit Simulation

Table 5.3: The list of problems tested with ABCD.

Parallel experiments. We first look at the effect of the blocking factor (the number of columns
of Sk) to be computed at once by the direct solver. We consider matrix Hamrle3, partitioned into
64 partitions, and we compare the building of S with a blocking factor of 64, 128 and 256. The
runs are made on a 32 core (8 sockets) AMD machine with 500GB of shared memory. Results are
presented in Table 5.4 where we list the time to build S and the average memory consumption.
We show the average total memory used by ABCD while it is building S, it contains the memory
used by the direct solver to factorize the augmented systems, the memory to store the multiple
right-hand sides, and the memory used by ABCD to store the partitions, the vectors and the Sk
matrix.

32 64 128 256

Time to build S (seconds) 66.2 54.3 51.9 53.3
Average memory per core (MB) 316 385 441 618

Table 5.4: Comparison of the time it takes to build S and the average memory needed when
changing the blocking factor.

We see from these results that increasing the blocking factor can help to speedup the building
of S but will get worse at higher levels. This effect is architecture dependent (size of cache)
and the optimal value could be significantly different on other machines. Moreover, our current
implementation can be improved to avoid the conversion from dense solution vectors obtained
from the direct solver to sparse vectors to be stored in Sk. If the direct solver supports sparse
solution output, this operation will be seamless.
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In the following, we test ABCD on some of the matrices considered previously. They are all
coming from the sparse matrix collection at the University of Florida [36], except for the EDF/R6
from EDF. The matrices are listed in Table 5.3 in which we show the matrices name, their sizes,
the partitioning applied and the application category.

The number of partitions is chosen based on the results obtained in the previous chapters. A
smaller number of partitions will increase the time to factorize the augmented systems and, as we
will see later, can decrease the performance of ABCD.

The runs are performed on the Hyperion supercomputer. For each problem we will test
three cases: p/2, p and 2× p cores, where p is the number of partitions. This enables us to test all
the possible situations that our algorithm might encounter. We compare in Tables 5.5, 5.6, 5.7 and
5.8 the results of running block-Cimmino and ABCD on each of the problems listed in Table 5.3.
The results shown in these tables are split into two sets of columns, the first set lists the block-size
used for the block-CG acceleration, the time to factorize the augmented systems resulting from
the partitions of the matrix A and the time it takes for the block-CG to converge. In the second
set, we show the size of S, the time it takes to augment the matrix A and build Ā, the time it takes
to factorize the partitions of the augmented matrix Ā, the time it takes to build S in parallel and
the time to factorize S.

We use a developer version of the direct solver MUMPS in these runs. This version has an
improved solution phase with multiple right-hand sides and is optimized for sparse right-hand
sides. We will discuss later how the direct solver, and its parameters, affect the results.

lhr71c (16 parts) Block-Cimmino (blk. size = 32) ABCD (size S = 2044)
Nb. processes 8 16 32 8 16 32

Building Ā - - - 0.04 s.
Augmented Sys. factorization 3.62 s. 3.12 s. 2.22 s. 4.61 s. 4.33 s. 2.77 s.
Block-CG 340 s. 175 s. 172 s. - - -
Building S - - - 10.14 s. 7.08 s. 6.73 s.
Factorization S - - - 0.08 s. 0.08 s. 0.08 s.

Table 5.5: Comparison of timings of the different steps involved in block-Cimmino and ABCD
on the problem lhr71c.

R6 (16 parts) Block-Cimmino (blk. size = 16) ABCD (size S = 6506)
Nb. processes 8 16 32 8 16 32

Building Ā - - - 0.08 s.
Augmented Sys. factorization 0.56 s. 0.34 s. 0.26 s. 0.57 s. 0.37 s. 0.33 s.
Block-CG 119 s. 95 s. 84 s. - - -
Building S - - - 7.31 s. 2.65 s. 2.44 s.
Factorization S - - - 1.01 s. 0.79 s. 1.14 s.

Table 5.6: Comparison of timings of the different steps involved in block-Cimmino and ABCD
on the problem R6.

The first thing that we notice by comparing the ABCD approach to the block-Cimmino one
is that the augmentation does not really penalize the factorization of the augmented systems. The
highest increase in time was in the case of the lhr71c matrix where we notice a 27% increase
with 8 processes. We notice also that the factorization of the augmented systems presents nice
speedups in general and especially for large problems.

Another important aspect is the generally low cost of the augmentation (building Ā). The
time presented in the tables is common to all parallel cases as this augmentation is sequential (the
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bmw3_2 (16 parts) Block-Cimmino ABCD (size S = 16695)
Nb. processes 8 16 32 8 16 32

Building Ā - - - 0.04 s.
Augmented Sys. factorization 4.61 s. 4.33 s. 2.77 s.
Block-CG Failed - - -
Building S - - - 10.14 s. 7.08 s. 6.73 s.
Factorization S - - - 0.08 s. 0.08 s. 0.08 s.

Table 5.7: Comparison of timings of the different steps involved in block-Cimmino and ABCD
on the problem bmw3_2.

Hamrle3 (64 parts) Block-Cimmino (blk. size = 4) ABCD (size S = 46564)
Nb. processes 32 64 128 32 64 128

Building Ā - - - 2.88 s.
Augmented Sys. factorization 2.54 s. 2.08 s. 1.17 s. 2.96 s. 2.25 s. 1.22 s.
Block-CG 177 s. 152 s. 139 s. - - -
Building S - - - 32.91 s. 21.28 s. 20.83 s.
Factorization S - - - 10.18 s. 14.39 s. 26.15 s.

Table 5.8: Comparison of timings of the different steps involved in block-Cimmino and ABCD
on the problem Hamrle3.

distributed version has not been implemented yet). This timing includes the detection of the Aij
and Aji blocks for all partitions and the augmentation process (the duplication of these columns).

Building the columns of S is the most time consuming part. We notice also that in most cases
the speedups are good until we reach as many processes as there are partitions (the number is given
in Table 5.3). This is explained by the fact that under that ratio each process has a larger amount
of columns to compute and a lot of explicit sums to handle too. Once we have as many processes
as there are partitions we reach the minimum number of columns to be handled per process (first
level of parallelism). Hence, when increasing the number of processes we are adding slaves that
should help during the solution phase and the factorization of S (second level of parallelism).

The results we obtain during the building of S are not satisfactory when increasing the number
of processes above the number of partitions. A deeper analysis of the behaviour of our solver and
the direct solver used to compute the columns might reveal the problem. However, we know that
two factors are involved in building the columns of S. The first is the number of columns to be
computed per process that stays unchanged when the number of processes increases. The second
is that except for the computation of the dense solutions in parallel by the direct solver the rest is
sequential. This is spent preparing the input for the direct solver and creating a sparse local Sk
matrix from the solutions.

Before we analyse the factorization of S (at the end of the chapter), let us look at a possible
solution, but a temporary one. We can try to decrease the average number of columns to be handled
per process. We can achieve that by increasing the number of partitions, which will increase the
size of S but at the same time decrease the size of the interactions between partitions, hence the
number of columns to be computed per process.

To illustrate that, consider the Hamrle3 case, if we partition it into 128 partitions the size of
S increases from 46, 564 (in the case of 64 partitions) to 67, 679. In this case, the average number
of columns to be handled per process (in the partition per process ratio) is 1057 which is less
than what we had to compute when we partitioned the matrix into 64 partitions which was 1455
columns per process on average. This reduction should, with the same number of processes, give
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Hamrle3 64 parts (size S = 46, 564) 128 parts (size S = 67, 679)
Cores 64 128 256 64 128 256

Build S 21.98 s. 20.83 s. 18.31 s. 13.83 s. 8.35 s. 7.71 s.
Fact. S 14.39 s. 26.15 s. 26.62 s. 9.65 s. 14.84 s. 14.27 s.

Table 5.9: Comparison of timings to build and factorize S resulting from Hamrle3 partitioned
into 64 and 128 partitions respectively.

better results in the case of 128 partitions. The results when we partition the matrix Hamrle3
into 128 partitions are shown in Table 5.9.

Notice that 128 partitions on 128 processes brings a dramatic improvement over the 64 parti-
tions case when building S. However, just as in the previous cases, we did not get good improve-
ments when increasing the number of processes over the number of partitions (going from 128 to
256 processes). However, these results show that for ABCD, the first level of parallelism is really
efficient as on the same number of processes increasing the number of partitions decreased the
time to build S from 26.15 seconds to 14.84 seconds.

On the other hand, building and solving a linear system with the matrix S will consume more
memory especially during the factorization. We show in Table 5.10 the amount of memory re-
quired for the different problems with the three test cases (p/2, p and 2× p processes). We notice
that the amount of memory per process, required to factorize S is not excessive.

lhr71c EDF/R6 bmw3_2 Hamrle-64 Hamrle-128

Nb. entries 397 346 4 800 395 35 102 290 65 132 957 169 649 936
Avg. memory/process 0.4 4.6 33.5 15.5 20.2

p/2 processes 45 89 318 378 340
p processes 85 116 270 437 312
2× p processes 83 109 231 424 312

Table 5.10: Comparison of the average amount of memory per process in MB to store S over the
different processes that build S , and the average amount of memory used during the factorization
of S in the different cases.

Another performance issue that we noticed in these results is that the factorization timing
increases with the number of processes. This behaviour can be easily understood if we break down
the factorization into computational and data distribution steps as shown in Table 5.11. We forcus
on using 64 and 128 processes since the matrix S is distributed exactly the same way. Timings
were obtained on a different computer (Oakleaf) which has slower network infrastructure and
will thus illustrate better the extra-cost of communication.

Cores 64 128

Computational timing 6.82s. 4.47s.
Data distribution timing 57.53s. 125.56 s.

Total time to factorize 64.35s. 130.03 s.

Table 5.11: Detailed timing of the factorization of S from the matrix Hamrle3 partitioned into
64 partitions.

Table 5.11 clearly shows that the time spent in data distribution doubles when doubling the
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number of processes. This excessive communication time is due to a data duplication related to
dynamic scheduling that we explain in the following.

To explain it let us first recall how the distributed multifrontal solver MUMPS handles factoriza-
tion. During the analysis phase, an assembly tree that defines a partial order of the factorization’s
tasks is built. This assembly tree is processed from the leaf nodes to the root nodes and corre-
sponds to the dependency graph of the factorization phase. A so called master process is assigned
to each node during the analysis phase. For each node, the master process can then dynamically
assign processes (called slaves), among candidates computed during analysis phase, to help the
master process handling the current task. The nodes in the task tree that exploit this parallelism
are called type 2 nodes (type 1 nodes are those handled by a single process). The wider the tree is,
the more tree parallelism can be exploited. Near the root node, tree parallelism is less and more
processes are then dynamically assigned to collaborate in processing the node.

In the context of type 2 nodes, since the slaves are not known in advance, the data distribution
related to part of the original matrix is only known by the slave processes during the factorization.
To overcome this issue, MUMPS duplicates corresponding data among all candidates participating
in each node.

On sparse matrices (with few entries per column) and with a relatively large number of nodes,
this extra volume of communication is very small. Our matrix S is less sparse, with very few
almost dense nodes that are all processed as type 2 nodes. Hence, the volume of communication
to duplicate data over all candidates will thus significantly increase when increasing the number
of participating processes. This increase is higher than the gain we will get from the parallelism
expected from type 2 nodes (that we indeed notice in our results).

Cores 64 128

Computational timing 6.79s. 9.49s.
Data distribution timing 1.70s. 1.94s.

Total time to factorize 8.49s. 11.43s.

Table 5.12: Detailed timing of the factorization of S from the matrix Hamrle3, partitioned into
64 partitions, when disabling data duplication prior to factorization.

MUMPS offers the possibility to force all nodes to be of type 1 and thus suppresses data dupli-
cation. Results when this option is enabled are shown in Table 5.12. We notice a clear reduction
in the data distribution time in both cases as there is no data duplication. The drawback of this
option lies in the fact that we only exploit tree parallelism and thus the parallelism of the factoriza-
tion phase is degraded. On such matrices and probably on all block structured matrices, the data
distribution of the original matrix should be redesigned. One simple solution would be to have
only the master process of a type 2 node storing all the data associated with the original matrix.
Then, once the master process has selected the candidates that will collaborate in processing the
node, it sends without duplication the correct data to the correct slave processes. Such a scheme,
not available in the current version of the MUMPS solver, would completely suppress the extra cost
of duplication while ensuring a high level of parallelism.

All the results we have seen previously, show clearly that for these matrices the ABCD method
offer a faster solution than the block-Cimmino method. However, the common thing about all
these problems is the difficulty for block-Cimmino to converge fast enough. Indeed, we had to
use large block-sizes to attain convergence which increased the timings. In the case where block-
Cimmino converges fast enough (such as cage13, cage14 and torso3), it is more appropriate
to use it than the ABCD method.
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5.5 Conclusions

The block Cimmino method for solving sets of sparse linear equations has the merit of being
embarrassingly parallel, but its convergence is equivalent to block Jacobi on the normal equations
and can be slow. Preprocessing techniques, partitioning strategies and the use of block conjugate
gradients can improve its convergence. However, all of these have their drawbacks or limitations.

We have proposed a novel technique to augment the systems to force the block Cimmino
subspaces to be orthogonal so that only one iteration is required. This involves the solution of a
relatively smaller positive definite system that we solve by forming the matrix and using a direct
solver. When this system is small, the method works well. However, when it is large, the memory
costs can become prohibitive. We study in the next chapter two possible solutions for this. We
see in the next chapter possible improvements to this approach and analyse the gains we might get
when solving successive right-hand sides.
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Chapter 6

Possible improvements to ABCD

One of the main issues with ABCD is the size of S and its number of entries. On some larger
problems it can become prohibitive to build, store and factorize such a large matrix. In this chapter
we study two approaches to overcome this issue; in the first we try to reduce the size of S and in
the second we try to avoid building S.

6.1 Filtered augmented block Cimmino

In this section we study an approach that permits us to build a smaller S and therefore helps in the
cases where memory is a strong constraint. We do this by reducing the number of columns of C
which exactly determines the order of the matrix S. Of course, one way of doing this is to use a
partitioning where there is already good orthogonality between subspaces so that there are only a
few columns in C [45]. We discuss, in this section, the theory involved in this approach and what
benefits it might offer and how this idea can be exploited later.

We study three dropping strategies to reduce the order of S:

• We drop columns from C after it is generated, removing from Cij the columns where the
maximum element is smaller than some predefined threshold. Thus, the columns that have
at least one element larger than the threshold are kept in Cij , and we keep only the corre-
sponding columns in the matrix −I . We illustrate the results of this dropping strategy in
Section 6.1.1.

• In the case where we augment the matrix using the submatrices Aij , a drop based on a
straight threshold for entries in each column is not the correct way to go as it can destroy
useful information present in these columns. We propose to drop a column depending on a
relative scaled norm of the column. We discuss this in more detail in Section 6.1.2.

• We finish by studying another way to drop columns in C by building an SVD UijΣijV
T
ij of

each Cij . From usual data compression techniques, we then keep only the k largest singular
values and the corresponding columns in Uij and Vij . We thus obtain a compressed matrix
Uij1,k

Σij1,k
V T
ij1,k

of k columns. Rather than taking a fixed number of the largest columns,
we can can just select those columns with singular values above a given threshold. We study
both cases in Section 6.1.3.

The main problem, when filtering out columns in C, is that the partitions of the augmented
matrix Ā will no longer be mutually orthogonal, so that the matrix

∑p
i=1 PR(ĀT

i ) will no longer be
an orthogonal projector. Thus, when solving systems involving

∑p
i=1 PR(ĀT

i ), we will no longer
get the projector P⊕p

i=1R(ĀT
i )directly. However, we can recover this, based on intrinsic properties
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of both the block Cimmino iterative scheme and of the conjugate gradient method on semi-positive
definite systems.

Block Cimmino gives the minimum norm solution u = Ā+y to the system Āu = y as shown
by Elfving [6]. The iteration matrix of block Cimmino,

∑p
i=1 Ā

+
i Āi, is symmetric semi-positive

definite, and solving the consistent linear system

p∑
i=1

Ā+
i Āiu =

p∑
i=1

Ā+
i yi

with conjugate gradients will obtain the minimum norm solution as shown by Kaasschieter [57].
Using these properties, we are able to recover w = Ā+b, needed in step 1 of our solution scheme
in Section 5.3, through using conjugate gradient iterations to solve the system

p∑
i=1

Ā+
i Āiw =

p∑
i=1

Ā+
i bi,

in which the matrix is the iteration matrix of block Cimmino applied to the system

Āw = b (6.1)

with the same partitioning as originally used on A.
The same issue arises in the construction of the matrix S = Y (I − P )Y T which involves the

projector P = Ā+Ā. We can use the same approach as above simply replacing the right-hand side
b in (6.1) by Āej where ej are canonical vectors from the columns of the matrix Y T .

Solving the system
Āz = Āej

gives the minimum norm solution
z = Ā+Āej

= Pej

where ej is a canonical vector from the matrix Y T . Accelerating this solution using conjugate
gradients amounts to solving the system

p∑
i=1

Ā+
i Āiz =

p∑
i=1

Ā+
i Āiej .

We solve the previous system for all ej in Y T to obtain the matrix PY T that can be used to
build S = Y (I−P )Y T explicitly. As the solutions associated with these columns are independent
from each other we may also exploit an extra level of parallelism.

If we can keep the dimension of S small enough and easy to handle by a direct solver, then it
is attractive to build it explicitly and factorize it using a direct method. This is the approach we
will consider in the following.

Just like we have done in the previous chapters, we will illustrate the different algorithms with
the matrix bayer01.

6.1.1 Filtering Cij

We now examine the effect of dropping entries in the contributing subblocks Cij on the dimension
of S and on the subsequent solution of the problem.

We show in Figure 6.1 the reduction in the order of S for bayer01 as we increase the relative
dropping tolerance τ for filtering out entries in the Cij . Since the structure of S has large dense
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Figure 6.1: Number of columns of S against filtering level on C, for bayer01.

Filtering threshold τ 0 0.1 0.3 0.4 0.45

Size of S 804 192 72 62 39
Min. Iterations to build S 1 4 11 13 13
Avg. Iterations to build S 1 15 26 34 62
Max. Iterations to build S 1 48 55 60 101
Nb. Iter. w = Ā+b 1 58 91 281 402
Nb. Iter. u = (I − P ) z̄ 1 51 71 212 202
‖r‖/ (‖A‖‖x‖+ ‖b‖) 3e− 16 1e− 11 1e− 11 1e− 11 1e− 11
‖r‖/‖b‖ 2e− 15 6e− 11 6e− 11 4e− 11 5e− 11
‖x∗ − x‖∞/‖x∗‖∞ 3e− 11 4e− 10 1e− 09 4e− 09 9e− 09

Table 6.1: Filtering columns of Cij/− I in ABCD on bayer01.

blocks, the value of reducing its dimension from nearly 804 to less than 192 when dropping at 0.1
is obvious. The effect of this dropping on the convergence of the block Cimmino iteration used to
build w = Ā+b is shown in Figure 6.3.

We notice that as one might expect, the more columns that we drop the slower the conver-
gence. This is due to the fact that the more columns of C that we drop, the more we destroy the
orthogonality between partitions and, in the limit, we may just be left with the original Cimmino
iteration matrix and its bad conditioning. Looking at the eigenvalue distribution of the iteration
matrix in each case, as shown in Figure 6.2, we see that the more we drop, the more intermediate
eigenvalues appear. So when the smallest eigenvalue changes from 4.59×10−3 to 2.44×10−3 (for
a filtering threshold of 0.1 and 0.3 respectively), we require an additional 43 iterations. Moreover,
when dropping more columns, two very small eigenvalues appear, one at 4× 10−9 and another at
1× 10−5. This explains the appearance of plateaux in the convergence profile in Figure 6.3 when
filtering at 0.4 and 0.45.

We summarize the results of filtering C for the bayer01 matrix in Table 6.1. The order of
S decreases quite significantly as we increase the filtering level although, after a certain point, the
gains are less noticeable. As we expect, at larger filtering thresholds, when the partitions of Ā
depart more and more from being orthogonal, we observe that CG requires more iterations. The
same goes for the construction of S which also requires more iterations. The resulting accuracy is
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Figure 6.2: Eigenvalues of the iteration matrix after filtering C columns with different filtering
thresholds.
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Figure 6.3: The effect of dropping columns of C on the convergence of the block Cimmino pro-
cess.

still good, even if somewhat degraded from the unfiltered case.

6.1.2 Filtering Aij

We examine now the effect of dropping entries in the submatrices Aij and its corresponding−Aji
when using the first variant (5.1) for the augmentation process. To avoid losing important infor-
mation when dropping, we look at the norm of the outer product of the k-th column from each
submatrix with respect to the number of entries generated by this outer product. This is imple-
mented by applying the following steps on each couple Aij/−Aji in C:

• We compute the Frobenius norm of each rank-one update corresponding to the k-th column[
Aij(∗,k) −Aji(∗,k)

]T
. Denoting this by frobij(k), we can compute it by :

frobij(k) = ‖ Aij(∗,k) ‖2‖ Aji(∗,k) ‖2.

• We denote by dij , an underestimate of the number of entries in AijATji, by :

dij = max
k

(card{|Aij(∗, k)| > 0} × card{|Aji(∗, k)| > 0}) ,

where card{y} is the number of entries in y.

• To identify the dominant contributions from the different rank-one updates, we first compute
as a reference value the mean distribution of the rank-one contributions :

νij = average (frobij(k))√
dij

.

• For each column, we then count the number of influential entries :

cardij(k) = card{
∣∣∣Aij(∗,k)

∣∣∣ ≥ νij
‖ Aji(∗,k) ‖∞

},
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cardji(k) = card{
∣∣∣Aji(∗,k)

∣∣∣ ≥ νij
‖ Aij(∗,k) ‖∞

}.

If cardij , respectively cardji, is zero, we set it tomij , respectivelymji, the number of rows
in Aij , respectively Aji.

• Next, we define for each of the columns a scaled norm

µij(k) = frobij(k)√
cardij(k)× cardji(k)

. (6.2)

• Finally, using a given threshold τ we select the columns to retain in the couple Aij/− Aji
satisfying µij(k) ≥ τ .

By following these steps, we try to extract some information regarding the numerical density
of each rank-one update corresponding to the columns of a given couple Aij/ − Aij . This nu-
merical density is then used to select the most influential columns in each couple (those above the
threshold τ ).

We show in Figure 6.4 the reduction in the order of S for bayer01 as we increase the relative
dropping tolerance τ for filtering the entries in the Aij/−Aji couples. We show in Figure 6.5 the
effect of this dropping strategy on the block Cimmino iteration cost when computing w = Ā+b.
More detailed results are summarized in Table 6.2.
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Figure 6.4: Number of columns of S against the filtering level on Aij , for bayer01.

We notice the same behaviour as when filtering the Cij normal equations subblocks in the
sense that, the more we drop the slower the convergence. We notice that we require 152 iterations
to build w with the Aij/ − Aji strategy when we have 62 columns in S, while we require 281
iterations using the Cij/− I strategy with the same number of columns in S. We are also able to
reduce the number of columns to 19 without seeing too strong a degradation in the convergence
while still keeping good numerical properties.

We compare in Figure 6.6 the values of two different scalings of the frobij(k) norms, µij(k)
and µ̄ij(k) = frobij(k)√

nnz{Aij(:,k)}×nnz{Aji(:,k)}
. We notice that using the scaled norms µij(k) we retain

more columns since nnz is the total number of entries in the column whereas cardji(k) in equa-
tion (6.2) is only the number of entries in the column greater than a threshold. We show the effect
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Figure 6.5: The effect of dropping columns on the convergence of the block Cimmino process.

Filtering threshold τ 0 0.1 0.15 0.2 0.3 0.4

Size of S 542 181 103 62 50 19
Min. Iterations to build S 1 4 4 4 6 14
Avg. Iterations to build S 1 18 23 25 29 72
Max. Iterations to build S 1 51 55 63 63 120
Nb. Iter. w = Ā+b 1 97 130 152 168 323
Nb. Iter. u = (I − P ) z̄ 1 91 121 141 160 76
‖r‖/ (‖A‖‖x‖+ ‖b‖) 6e− 16 1e− 11 1e− 11 1e− 11 1e− 11 3e− 11
‖r‖/‖b‖ 3e− 15 5e− 11 6e− 11 6e− 11 6e− 11 8e− 11
‖x∗ − x‖∞/‖x∗‖∞ 2e− 11 1e− 10 2e− 10 5e− 10 6e− 10 1e− 09

Table 6.2: Filtering columns of Aij/−Aji in ABCD on bayer01.

of using these two measures for the scaled norm of the rank-one updates in Figure 6.6 where we
have ordered the columns using the scaled norm µ̄ij(k). We then see that, when filtering at 0.4 for
example, there are four spikes that increase the size of S from 15, when using µ̄ij(k), to 19. When
we look at the number of iterations, we notice that adding those four columns reduces the number
of iterations from 498 (not shown in the graphs before), when using µ̄ij , to 323 so clearly the
influence of these four columns is a strong one. We thus use the scaled norm µij(k) to determine
which columns to retain when using the couples Aij/−Aji.

6.1.3 Compressing Cij with SVD

We now study the SVD approach in which we decompose each Cij into UijΣijV
T
ij . We then try to

select the minimum number of columns with enough information to maintain good convergence
and reduce at the same time the order of S. The resulting augmented matrix is of the following
form: A1,1 A1,2 Û1,2Σ̂1,2

A2,1 A2,2 A2,3 −V̂1,2 Û2,3Σ̂2,3
A3,2 A3,3 −V̂2,3

 (6.3)

where Ûij , Σ̂ij and V̂ij are respectively the reduced Uij , Σij and Vij , with only those selected
columns.
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Figure 6.6: Comparison of two different scaled norms for each rank-one update in Aij/−Aji.

We look first at a simple case where we compute the k largest singular values and build the
augmented matrix as in (6.3). The results from this approach are shown in Table 6.3. We notice
that the results are slightly worse than when filtering using Cij/− I or Aij/−Aji for comparable
size of S.

Singular values kept per block 5 10 12 15

Size of S 108 209 249 308
Nb. Iter. w = Ā+b 188 102 94 46

Table 6.3: Selecting the k largest singular values from Cij in ABCD on bayer01.

We try now to improve the previous selection by looking at the smallest singular value within
the complete set of selected columns. This is implemented as follows:

• Select k columns from all the SVD decompositions applied to the Cij blocks.

• Find the smallest singular value among them.

• Use it as a threshold to select further columns whose singular value is larger than this value.

We show in Table 6.4, the results obtained on the bayer01 matrix when using this approach. For
instance, by selecting 2 columns initially, we see that the smallest singular value is 0.2. Then, we
select all columns whose corresponding singular value is larger than 0.2. The results show that we
are able to improve the previous results for comparable sizes of S. However, we lose the ability
to control explicitly the number of columns.

6.1.4 Cost analysis

An important aspect of the ABCD method is the reusability of the S matrix for multiple, succes-
sive, solves for different right-hand sides. To evaluate the gains obtained using our method, we
look at the operation counts needed to solve several, successive, right-hand sides using classical
block Cimmino, and using the ABCD method with and without filtering.
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6.1. Filtered augmented block Cimmino

Singular values initially selected per block 2 3 4 5

Smallest singular value 0.2 0.11 0.049 0.02

Size of S 96 171 376 481
Nb. Iter. w = Ā+b 141 107 45 12

Table 6.4: Selecting singular values larger than a threshold from Cij in ABCD on bayer01.

We first define the cost of each solution. The costly part in each block Cimmino iteration is
the computation of P⊕p

i=1R(AT
i )y. Its cost is basically the number of flops needed by a sparse

direct solver to compute a forward-backward substitution. We will denote this cost by CBC(A).
In the case of ABCD, the cost of computing w =

∑p
i=1 Ā

+
i bi is CBC(Ā) per iteration. We can

obtain a value for these quantities from MUMPS.
The initial cost of solving Sz = f is a combination of a Cholesky factorization on S with a

forward-backward substitution. As we treat the matrix S as a dense matrix, the estimation of the
first step is

CS,init = 1
3n

3
s + 2n2

s,

while for the later steps we need only a forward-backward substitution, a bound on this cost is

CS = 2n2
S .

We show in Table 6.5 the estimations for solving a linear system, with multiple right-hand
sides successively, using the classical block Cimmino method, using ABCD without filtering and
using ABCD with different filtering thresholds. We denote by itbc the number of iterations needed
to solve a single right-hand side using block Cimmino, by itp the number of iterations to compute
both w =

∑p
i=1 Ā

+
i bi and u = (I − P )z̄ and by its the sum over the number of iterations needed

to build all the columns of S. In the case where we use ABCD without filtering, the number of
iterations itp is equal to 2 as we need one to build w and another to build u.

The cost estimate in floating-point operations
First right-hand side Next right-hand sides

Block Cimmino itbc × CBC(A) itbc × CBC(A)
ABCD (no filtering) (ns + 2)× CBC(Ā) + CS,init 2× CBC(Ā) + CS

ABCD (with filtering) (its + itp)× CBC(Ā) + CS,init itp × CBC(Ā) + CS

Table 6.5: Estimation of flops needed per step.

We use the estimations from Table 6.5 to generate the graphs in Figure 6.7 where we show the
amount of work needed to solve multiple right-hand sides successively when using the Cij/ − I
augmentation strategy, where we compare the plain block Cimmino on the original matrix, the
augmented version without filtering, and with multiple filtering thresholds. We illustrate in this
figure how quickly we may expect to recover the extra work induced by the augmentation process.

We notice that using the full augmentation process without filtering recovers this extra work
after just two solutions. Further solutions require very much less work, they require only one
block Cimmino iteration plus the cost of a Forward/Backward substitution, making the graph look
flat.

Filtering at 0.1 requires more work on the first run. Indeed, the number of columns in S
combined with the number of iterations to build a single column of S makes the initial cost very
large. This initial cost is less when dropping at 0.3, as the size of S is dramatically reduced while
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Figure 6.7: Comparison of solving multiple right-hand sides successively when using Cij/ − I
couples.
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Figure 6.8: Comparison of solving multiple right-hand sides successively when using Aij/−Aji
couples.

the number of iterations increases only slightly. But this cost increases again when dropping
further; the number of iterations needed for each column increases faster than the reduction in the
number of columns in S.

With higher filtering thresholds, it takes more solutions to recover the original cost, and each
of these solutions requires more CG iterations, which can be seen in the increased slope of the
corresponding straight lines in Figure 6.7. We observe that when the filtering threshold gets too
large, the gain per solution is not so effective. When using a filter level of 0.4, we require around
30 solutions to compensate for the extra work which is not unreasonable given the low memory
requirements at that level of filtering. Finally, increasing the filtering threshold even further makes
the approach useless or counterproductive with respect to the plain block Cimmino solve.

We show in Figure 6.8 the costs when using the Aij/ − Aji augmentation strategy. Without
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filtering, we perform much better than the original block Cimmino iteration. This is due to the fact
that S is very small. However, and contrary to what we have seen with the Cij/− I augmentation
strategy, the combination of the small size of S and the small number of iterations to build columns
of S makes it possible to use a filter threshold of 0.4, for which the size of S is only 19, and we
recover the cost of generating S after only 10 subsequent solves. In this augmentation strategy it
is possible to reduce the storage for S while requiring relatively few iterations to build a single
column.

6.2 Iterative solution of S

We look in this section at how we can solve the system Sz = f iteratively without building S.
Since the matrix S is known to be symmetric positive definite when using a full augmentation (see
Section 5.2), we can use the conjugate gradient method to solve the linear system Sz = f . We
show in Section 6.2.1 how the conjugate gradient method could be used to solve the system. We
then discuss a possible preconditioner in Section 6.2.2 that should improve the convergence.

6.2.1 Conjugate gradient on S

We start by recalling the conjugate gradient algorithm in Algorithm 6.1 applied to the system
Sz = f when the matrix S is available.

Algorithm 6.1 Conjugate Gradient Algorithm
Input: S and f
Output: z

1: k ← 0
2: zk ← 0
3: rk ← f
4: pk ← r0
5: while not converged do
6: αk ←

(
rTk rk

)
/
(
pTk Spk

)
7: zk+1 ← zk + αkpk
8: rk+1 ← rk − αkpk
9: βk ←

(
rTk+1rk+1

)
/
(
rTk rk

)
10: pk+1 ← rk+1 + βkpk
11: k ← k + 1
12: end while

In a classical conjugate gradient algorithm, we use S for matrix-vector products as in the 6th
line. This product can be formed without first constructing S. We know that

S = Y (I − P )Y T , (6.4)

hence, the product Spk is defined by

Spk = Y (I − P )Y T pk
= pk − Y PY T pk,

(6.5)

where P is the orthogonal projector onto the range of ĀT and Y =
[
0 I

]
. In the case of a fully

augmented system, the orthogonal projector onto the range of ĀT is simply the sum of projectors
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onto the ranges of ĀTi . Therefore, we can write P as

P = Ā+Ā =
p∑
i=1

Ā+
i Āi.

If we use (6.5) in Algorithm 6.1 we obtain Algorithm 6.2 with implicit computations of the
matrix-vector product in the 6th line.

Algorithm 6.2 Conjugate Gradient Algorithm with Implicit S
Input: S and f
Output: z

1: k ← 0
2: zk ← 0
3: rk ← f
4: pk ← r0
5: while not converged do
6: p̄k ← pk − Y PY T pk
7: αk ←

(
rTk rk

)
/
(
pTk p̄k

)
8: zk+1 ← zk + αkpk
9: rk+1 ← rk − αkpk

10: βk ←
(
rTk+1rk+1

)
/
(
rTk rk

)
11: pk+1 ← rk+1 + βkpk
12: k ← k + 1
13: end while

6.2.2 Preconditioned conjugate gradient on S

We have seen in Section 5.2 that the matrix S is very ill-conditioned and, as we will show later,
the classical conjugate gradient would not give good convergence results if used alone. We study
in this section one way to improve the convergence by preconditioning the linear system. We have
seen in Section 6.1 that we are able to select specific columns of C using different criteria. We
can use this process to build an approximation of S containing a subset of columns from S that
are selected so that this approximation contains, hopefully, the most important information in S.

In the following, we use selected_columns and skipped_columns to describe re-
spectively the set of columns used in building our preconditioner and the set of columns not in-
cluded in this computation. Let Wsc and Wns be the restriction matrices for these two respective
sets. As an illustrative example we define them as the following:

Wsc =


I 0 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 0 I

 and Wns =


0 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 .

In Figure 6.9 we notice the relationship between C, Y and S. Replacing the identity present
in Y = [0 I] by the matrix Wsc makes it possible to build only these columns in S, and let
Ysc = [0 Wsc]T be that matrix. The resulting submatrix of S is described by

Ssub = Ysc(I − P )Y T
sc .
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Figure 6.9: The relationship between C, Y and S. The width of the different Aij blocks corre-
spond to the width of the different set of columns (presented by vertical dashed lines) in Y T and
in S.

Ssub is a restriction of a symmetric positive definite matrix S which itself is a restriction of an
orthogonal projector and hence its diagonal entries are bounded by one. Putting the identity on
the empty diagonal entries as follows

S̃ = Ssub +Wns, (6.6)

allows S̃ to be symmetric positive definite.
The team behind the direct solver MUMPS are developing a feature that allows a user to com-

pute only a set of entries in the solution. We can use this feature to build only the diagonal of the
matrix S thus obtaining the preconditioner

S̃ = Ssub + diagonal(WnsSW
T
ns). (6.7)

A representation of the process of building S̃ is shown in Figure 6.10. Additionally, a sparse
approximation of S can also be built (once the feature is available in the direct solver) and, to
maintain its definiteness, the diagonal can be shifted.

Built Columns Resulting Ssub S̃

Figure 6.10: Computing parts of S and the resulting S̃. Starting from left to right, the built
columns of S using the matrix Ysc, the resulting restricted matrix corresponding to these built
columns and finally the preconditioner S̃ arising from this restriction.

We show in Algorithm 6.3 the preconditioned version of the conjugate gradient algorithm
shown in the previous section. The preconditioning matrix S̃ is given in entry and computing
S̃−1rk is performed with MUMPS in parallel.
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Algorithm 6.3 Preconditioned Conjugate Gradient Algorithm with Implicit S.

Input: S̃ and f
Output: z

1: k ← 0
2: zk ← 0
3: rk ← f
4: uk ← S̃−1rk
5: pk ← uk
6: while k < max_iter do
7: p̄k ← pk − Y PY T pk
8: αk ←

(
rTk uk

)
/
(
pTk p̄k

)
9: zk+1 ← zk + αkpk

10: rk+1 ← rk − αkp̄k
11: if converged then
12: return zk
13: end if
14: uk+1 ← S̃−1rk+1
15: βk ←

(
uTk+1rk+1

)
/
(
uTk rk

)
16: pk+1 ← uk+1 + βkpk
17: k ← k + 1
18: end while

6.2.3 Numerical experiments

Due to the experimental nature of this section, the diagonal of S used for the preconditioner was
obtained by also building the remaining columns (skipped_columns), which means that we
do all the operations needed to build the full matrix S but store only the entries we are interested
in. As the augmentation was done using the Aij/− Aji strategy, we use the filtering strategy de-
scribed in Section 6.1.2 to obtain the selected columns. This strategy requires a filtering threshold
(selection threshold) to chose a set of columns in S to be used to build S̃.

We show in Table 6.6 the results of solving Sz = f iteratively using classical CG, precon-
ditioned CG with diagonal preconditioner, and with an S̃ obtained with two different selection
thresholds. We set 10−5 as the stopping criteria and the order of S as a maximum number of
iterations. We test the method on the matrix bayer01 for which the size of the auxiliary system
is 865. We notice from these results that the convergence is very slow even when selecting a high
number of columns to create the preconditioner.

CG iterations Selection thresh. Number of selected cols for S̃ PCG iterations

Failed (2.8× 10−3)
diagonal 0 Failed (1.7× 10−3)

0.1 457 401
0.2 83 461

Table 6.6: Number of iterations in CG and PCG to solve Sz = f arising from ABCD applied to
the problem bayer01, and the number of columns used to build the preconditioner depending
on a given threshold. If the number of iterations reaches the order of S, we mark Failed and put
the final scaled residual between parentheses.

Another possibility was tested in matlab in which we built a different kind of preconditioner
where the columns were selected based on the diagonal entries of S. We used different thresholds
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to select columns corresponding to the largest entries on the diagonal and chose the threshold
so that we have a similar number of columns as in the previously tested strategy. Using this
preconditioner gave worse results than in the previous cases. However, we were able to get better
results using MINRES with that preconditioner and we show the results in Table 6.7.

MINRES iter. Selection thresh. Number of selected cols for S̃ Precond. MINRES iter.

471
diagonal 0 269

0.45 478 265
0.595 84 268

Table 6.7: Number of iterations for MINRES to solve Sz = f arising from ABCD applied to the
problem bayer01, and the number of columns used to build the preconditioner depending on a
given threshold.

We see from these results that MINRES gives better results than preconditioned CG, and a
simple diagonal preconditioning already improves the results (even if it is not yet satisfactory).
Further analysis has to be done to understand these results and their implications, more tests are
also needed to identify better preconditioners.

6.3 Concluding remarks

The augmented block Cimmino method introduced a way to alleviate some of the drawbacks of
using block Cimmino, namely slow convergence because of small eigenvalues in the lower part
of the spectrum of the iteration matrix. We were indeed able to create a pseudo-direct solver, but
that was at a cost of building the auxiliary system.

In this chapter we proposed two possible solutions to handle the auxiliary system. Firstly,
we tried to reduce its size by reducing our requirement on the orthogonality generated by the
augmentation. To achieve this objective we used three different augmentation models. Each of the
different strategies reduced the size of the auxiliary system, but the one applied on the Aij/−Aji
augmentation strategy worked better than the others. Yet, compared to a full augmentation, we did
not obtain as good a reduction in the size of S as we had hoped. Additionally, the cost of building
a smaller auxiliary system is higher than building a full size one because of the embarrassingly
parallel method involved in forming the full auxiliary system.

Secondly, we proposed a way to avoid building the auxiliary system and to use it implicitly
to obtain the solution. This model is based on two important properties of the augmented block
Cimmino method that are the symmetric positive definiteness of the auxiliary system, and the
fact that a matrix-vector product using this system amounts to a solution computed using a direct
solver. These two properties make it possible to use a conjugate gradient algorithm to obtain the
solution without any extra memory cost (that is, without storing the auxiliary system).

We have seen that CG did not give good results on the tested problem as it failed to con-
verge, and that the preconditioners did not give the expected convergence improvements either.
Moreover, we have seen that MINRES with a diagonal preconditioner performed better than the
preconditioned CG as it converged using all the solution criteria.
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Chapter 7

General conclusion

In this manuscript we considered the solution of large sparse linear systems, using a hybrid imple-
mentation of a method from the class of row projection techniques. We started, in Chapter 2, by
introducing some of the properties of this class of techniques by recalling the theory introduced by
Elfving in [6]. We have seen that they offer an opportunity to solve problems with unsymmetric
matrices, by implicitly using a symmetric positive definite iteration matrix in a conjugate gradient
acceleration process. This acceleration was discussed by Bramley and Sameh in [7] who also
investigated numerically the robustness of this acceleration.

In Chapter 2, we introduced and discussed the algorithms lying behind this acceleration pro-
cess, and we have shown that a classical conjugate gradient acceleration worked poorly on some
problems. Indeed, the iteration matrix has small eigenvalues at the end of the spectrum inducing
plateaux in the convergence curve. We then introduced the stabilized block conjugate gradient
method, studied by Arioli, Duff, Ruiz and Sadkane in [8], to partly resolve these convergence
issues. We showed that the block-size used had a great influence on the convergence of some
problems, and that the cost of using a moderate block-size is not prohibitive and is able to exploit
BLAS kernels to achieve better gains.

In our implementation of this block iterative method, the matrix-vector operations in the con-
jugate gradient method are computed using a direct solver. Indeed, this operation amounts to
solving augmented systems related to the partitions of our linear system. Hence, we introduced
different ways in which a direct solver can successfully factorize and solve such augmented sys-
tems. This mix of iterative method (conjugate gradients) and direct method creates the hybrid
aspect of our approach.

We then discussed different ways to obtain the partitions of the linear system in Chapter 3.
Rather than uniformly split the linear system into strips of rows, we tried some sophisticated
techniques that rely on the structural and numerical properties of the matrix. The first strategy
was to apply the Cuthill-McKee algorithm on the normal equations pattern of the original matrix,
using the level sets and the row permutations to create partitions that can be grouped into two
sets. The partitions in each set are mutually orthogonal to each other; this partitioning is called a
Two-Block partitioning and is effective at clustering the eigenvalues of the iteration matrix around
1. As the level sets can be large, we tried to reduce them by introducing a relaxed version where
we apply the Cuthill-McKee algorithm on a filtered normal equations matrix. This strategy creates
more freedom in partitioning than the previous one as it create much smaller level sets.

Noticing that these two strategies are computationally expensive, we introduced a hypergraph
based partitioning of the matrix. This approach regroups the rows of the matrix into subsets so
that there are only a few overlapping columns between these sets of rows. Experiments on large
matrices showed that in most cases hypergraph partitioning gives better results than the previously
studied strategies including uniform partitioning. However, we also showed that occasionally it
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is better to uniformly partition the matrix if it then converges quickly, or if the convergence gains
by using a hypergraph partitioner do not cover the cost of using the partitioner itself. Sadly, the
partitioning of the linear system is problem dependent and thus one cannot predict how the method
will behave a priori.

After this preliminary analysis of the numerical properties and algorithmic components of
this method we investigated its parallel implementation. In Chapter 4, we discussed in detail
the algorithms involved in this implementation. We started by describing an early master-slave
implementation where the conjugate gradient acceleration was sequential and the computation of
the matrix-vector by the direct solver was parallel. We discussed why this implementation has
very low parallel potential and how it introduces many bottlenecks. We then proposed exploiting
another level of parallelism by implementing a distributed conjugate gradient acceleration that is
combined with a parallel direct solver. We saw how partitions can be mapped appropriately on the
processes participating in the distributed conjugate gradient algorithm, and discussed two other
approaches to improve this mapping strategy.

Next, we did runs with matrices from different applications in parallel and studied the speedup
of the factorization of the augmented systems, the average memory usage and the speedup of the
conjugate gradient acceleration. We saw the effect on the speedup of the number and the size of
partitions on both the factorization and the conjugate gradient acceleration where we noticed that,
on a small number of processes, a larger number of partitions induces a faster factorization and a
faster conjugate gradient iteration. However, on a large number of processes, larger partitions will
get more speedup as they continue to utilize more slaves in the direct solver. On the other hand,
we noticed that the average memory usage when increasing the number of processes decreases
linearly and can get superlinear when we have one partition per process.

Afterwards, we made some comparisons with the direct solver MUMPS, where we showed that
on a few cases we are able to drastically reduce the memory usage. This also allowed us to solve
problems that the direct solver was not able to solve due to lack of memory on the testing machine.
We also showed that on some problems we were able to obtain the solution faster than the direct
solver. This situation happens especially when the factorization suffers from a large amount of
numerical pivoting, which slows it down. This opens the way to being able to solve even larger
problems and shows that we were able to achieve our initial goal of both breaking the complexity
of the problem and at the same time achieving good convergence timings.

In some problems, the number of iterations was however too large because of the ill condi-
tioning of the iteration matrix. In Chapter 5 we introduced a novel approach that tries to reduce
the number of iterations by enforcing orthogonality between the partitions of the original matrix.
This augmentation process results effectively in an identity iteration matrix which yields conver-
gence in a single iteration. We then introduced some solution steps that do not require any iterative
method, giving a pseudo-direct method that we called ABCD method (Augmented Block Cim-
mino Distributed method). In this method we create an auxiliary system that is built using many
solutions using the direct solver MUMPS. As these solutions are independent, they are done in a
distributed fashion which leads to an embarrassingly parallel construction of this auxiliary matrix.
Moreover, we avoid explicit communication by exploiting the feature of giving a distributed ma-
trix with duplicated entries as input to the direct solver. This solver then handles implicitly the
final assembly (sum of the duplicate entries) in the course of its factorization. This contributes
even further to the hybrid aspect we are trying to generate through the ABCD method. We also
proposed three possible augmentation schemes for obtaining orthogonality that give auxiliary sys-
tems of different sizes. We also showed that using hypergraph partitioner gives usually the best
results in terms of size of the auxiliary system. Tests on ABCD showed that this method resolved
the iteration matrix problems we had had with straight block Cimmino accelerated using block
conjugate gradients. We also draw attention to the fact that when the convergence of the classical
conjugate gradient acceleration is fast enough, the overhead of building and factorizing the aux-
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iliary system can bring no gains. Hence, our hybrid ABCD method incorporates a parameter to
either solve the linear system with classical CG acceleration (iterative mode) or to build and solve
the auxiliary system directly (pseudo-direct mode).

Finally, in Chapter 6, we investigated how to reduce the overhead generated by the auxiliary
system. Two approaches were discussed, firstly we talked about reducing the size of the matrix
by relaxing the augmentation. This reduction exploits properties of the augmentation columns
and drops columns that would less disturb the numerical orthogonality. Three strategies were
investigated depending on the augmentation scheme. The results of this strategy were not entirely
satisfactory as the process of building the reduced auxiliary system loses most of the parallel
capabilities of the process of building the full auxiliary system. Moreover, ill conditioning of
the iteration matrix quickly increases as we relax more and more the augmentation. Also the
computation of the columns of the auxiliary matrix is done via a conjugate gradient process which
slows down the construction of this matrix.

Secondly, we proposed a way to use the auxiliary system arising from a full augmentation
without building it. This solution exploits the fact that the auxiliary matrix is symmetric positive
definite and that a matrix-vector computation amounts to a solution using a direct solver. We
tested this approach using the conjugate gradient method on small problems and noticed it was
difficult to obtain good convergence without any preconditioning. We proposed a preconditioner
that can be built in parallel, following the strategies developed in the previous filtering approach
to select the columns to be used in this preconditioner. We also discussed a possible way to create
this preconditioner easily using a forthcoming feature in the direct solver MUMPS that allows the
computation of a few selected entries from the solution. Using this preconditioner in a precondi-
tioned conjugate gradient method allowed the method to converge on some problems, but that was
still not satisfactory enough in general. Another test was made using MINRES, and surprisingly
this method gave better results than the preconditioned conjugate gradient approach.

Overall. We showed through this work that our method lives up to its promises. It is breaks
the complexity of the problems so that memory constraints no longer prohibit us from obtaining
the solution. It also offers a parameter that switches the method from an iterative-direct hybrid
solver to a pseudo-direct solver. This later, novel, approach solves the convergence problems of
the iterative version of our method and also pushes the hybrid approach further by exploiting more
features of the direct solver.

Perspectives. This work, and especially the implementation used to obtain the results, are in
their early stages. Therefore, much work has still to be done to introduce the improvements we
talked about in the manuscript. Among these we have the improved mapping of the partitions on
the available processes, using a parallel partitioner and investigating other partitioning libraries.
To increase the parallel capabilities of the solver by distributing even more the conjugate gradient
acceleration, we can exploit the available slave processes that are currently only used for the
direct solver. Finally, we will investigate other preconditioners to better solve the auxiliary system
iteratively.
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