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SUMMARY

The solution of the linear systems of equation is the most time-consuming part in large-

scale finite element analysis. The development of efficient solution methods are therefore

of utmost importance to the field of scientific computing. Recent advances on solution

methods of linear systems show that Krylov subspace iterative methods have greater

potentials than direct solution methods for large-scale linear systems. However, to be

successful, a Krylov subspace iterative method should be used with an efficient precon-

ditioning method.

The objective of this thesis was to investigate the efficient preconditioned iterative

strategies as well as to develop robust preconditioning methods in conjunction with suit-

able iterative methods to solve very large symmetric or weakly nonsymmetric (which

is assumed to be symmetric) indefinite linear systems arising from the coupled Biot’s

consolidation equations. The efficient preconditioned iterative schemes for large non-

linear consolidation problems also deserve to be studied. It was well known that the

linear systems discretized from Biot’s consolidation equations are usually symmetric in-

definite, but in some cases, they could be weakly nonsymmetric. However, irrespective

of which case, Symmetric Quasi-Minimal Residual (SQMR) iterative method can be

adopted. To accelerate the convergence of SQMR, a block constrained preconditioner

Pc which was proposed by Toh et al. (2004) recently was used and compared to Gen-

eralized Jacobi (GJ) preconditioner (e.g. Phoon et al., 2002, 2003). Pc preconditioner

has the same block structure as that of the original stiffness matrix, but with the (1, 1)

block replaced by a diagonal approximation. As a further development of Pc, a Modi-

fied Symmetric Successive Over-Relaxation (MSSOR) preconditioner which modifies the

diagonal parts of standard SSOR from a theoretical perspective was developed. The

widely investigated numerical experiments show that MSSOR is extremely suitable for

large-scale consolidation problems with highly varied soil properties. To solve the large
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nonlinear consolidation problems, Newton-Krylov (more accurately, Newton-SQMR) was

proposed in conjunction with GJ and MSSOR preconditioners. Numerical experiments

were carried out based on a series of large problems with different mesh sizes and also on

more demanding heterogeneous soil conditions. For large nonlinear consolidation prob-

lems based on modified Cam clay model and ideal von Mises model, the performance

of the Newton-SQMR method with GJ and MSSOR preconditioners was compared to

Newton-Direct solution method and the so-called composite Newton-SQMR method with

PB (e.g. Borja, 1991). Numerical results indicated that Newton-Krylov was very suitable

for large nonlinear problems and both GJ and MSSOR preconditioners resulted in faster

convergence of SQMR solver than available efficient PB preconditioner. In particular,

MSSOR was extremely robust for large computations of coupled problems. It could been

expected that the new developed MSSOR preconditioners can be readily extended to

solve large-scale coupled problems in other fields.

Keywords: Biot’s consolidation equation, nonlinear consolidation, three-dimensional

finite element analysis, symmetric indefinite linear system, iterative solution, Newton-

Krylov, quasi-minimal residual (QMR) method, block preconditioner, modified SSOR

preconditioner
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CHAPTER 1

INTRODUCTION

With the rapid developments of computer and computational technology, ordinary desk-

top computers have been widely used to solve engineering problems by scientists and

engineers. It is well known that in finite element (FE) software packages, the solution

of linear systems is one of the three classes of computationally intensive processes 1 (e.g.

Smith, 2000). The solution of linear equations has received significant attentions because

fast and accurate solution of linear equations is essential in engineering problems and sci-

entific computing. Traditionally, direct solution methods are preferred to linear system

of equations.

A general form of linear system can be given as

Ax = b, A ∈ R
n×n andx, b ∈ R

n (1.1)

It is uncertain whether direct solutions or iterative solutions are better because the

boundaries between these two main classes of methods have become increasingly blurred

(e.g. Benzi, 2002). However, as a result of recent advances of iterative methods and

preconditioning techniques in scientific computing and engineering, more applications

are turning to iterative solutions for large-scale linear systems arising from geotechnical

engineering.

The traditional way to solve a non-singular square linear system is to employ direct

solution methods or its variants which are based on the classical Gaussian elimination

scheme. These direct methods can lead to the exact solution in the absence of roundoff

1The three classes of computationally expensive process are solution of linear equations, solution of

eigenvalue equations and integration of ordinary differential equations in time domain
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errors. However, especially for large sparse linear systems arising from 3-D problems,

direct solution methods may incur a large number of fill-ins, and the large order n of

the matrix makes it expensive to spend about n3 floating point operations (additions,

subtractions and multiplications) to solve such a large linear system. Therefore, for

direct solution methods, the computing cost and memory requirement increase signifi-

cantly with the problem size. On the contrary, iterative solution methods are becoming

attractive for such large-scale linear equations because only matrix-vector products and

inner-products are required in the iteration process.

1.1 Preconditioned Iterative Solutions in Geotechnical Prob-

lems

In recent years, preconditioned iterative methods have been used for some geotechnical

problems. Wang (1996) successfully used element-by-element (EBE) based Precondi-

tioned Conjugate Gradient (PCG) method to solve very large 3-D finite element pile

groups and pile-rafts problems. The author also studied the characteristics of PCG in

elasto-plastic analysis and concluded that although the PCG method was about 30%

slower than the direct method for plastic analysis at that time, but he was very confident

that with some improvements, PCG can be made faster in plastic analysis in the future.

Payer and Mang (1997) proposed two iterative schemes to perform boundary-element

(BE) and hybrid BE-FE simulation of excavations for tunneling. The investigated it-

erative methods were Generalized Minimum Residual (GMRES), Conjugate Gradient

Square (CGS) and Stabilized Bi-CG (Bi-CGSTAB) preconditioned by diagonal scaling,

Symmetric Successive Over-Relaxation (SSOR) as well as incomplete factorization, re-

spectively. Hlad́ık et al. (1997) suggested replacing direct solutions by preconditioned

iterative methods in finite element packages. They tested Conjugate Gradient (CG)

solver preconditioned by two different forms of preconditioners: one is global Incomplete

Cholesky (IC) type preconditioners and the other is symmetrically scaled EBE based

preconditioners. However, it was proved that the proposed EBE based preconditioner is

less efficient than IC on a serial computer, but EBE storage is easily adapted to paral-

lel computing. A range of numerical examples from geotechnical engineering problems
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showed that the Robust Incomplete Cholesky (RIC) preconditioner with a near-optimal

choice of the relaxation parameter can be very efficient and reliable for practical 2-D and

3-D geotechnical problems in elasticity. Smith and Wang (1998) analyzed the piled rafts

in their full three-dimensional complexity by PCG solver, but the numerical experiments

were carried out on a parallel computer with the “element-by-element” or “mesh-free”

strategies. By means of these strategies, the need to assemble the global coefficient ma-

trix is removed. Kayupov et al. (1998) used CGS and GMRES iterative methods with

simple Jacobi preconditioning to enhance Indirect Boundary Element Method (IBEM)

for underground construction problems. They concluded that CGS and GMRES with

simple Jacobi preconditioning appeared to be efficient and robust. By using sparse iter-

ative methods, Mroueh and Shahrour (1999) studied the resolution of three-dimensional

soil-structure interaction problems: a shallow foundation under a vertical flexible load-

ing, a single pile subjected to a lateral loading and construction of a lined tunnel in soft

ground. Because the elastic-perfectly plastic Mohr-Coulomb model was assumed for the

soil materials, the resulting linear systems being nonsymmetric or symmetric depends

on whether the plastic flow is non-associated or associated. For the sparse linear sys-

tems arising from these interaction problems, Bi-CG, Bi-CGSTAB, QMR-CGSTAB have

been used, and the performances of SSOR and Jacobi preconditioners are investigated

and compared. Numerical results show that left preconditioned SSOR preconditioner

gives better performance compared to Jacobi preconditioner for the resolution of soil-

structure interaction problems with high varied material heterogeneity and plasticity.

Furthermore, for a full 3-D finite element analysis of the interaction between tunnels and

adjacent structures, the authors proposed to use sparse Bi-CGSTAB solver coupled with

the SSOR preconditioning.

1.2 Preconditioned Iterative Solutions in Biot’s Consolida-

tion Problems

In geotechnical engineering, the solution of Biot’s consolidation problems has played an

essential role since the pioneer work of Terzaghi (1925) and Biot (1941). To calculate soil

settlement accompanied with dissipating pore water pressure, Terzaghi (1925) developed
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one-dimensional consolidation theory by introducing the interaction between soil skeleton

and pore water pressure through the principle of effective stress. On the basis of Terza-

ghi’s work and the continuity equation, Biot proposed three dimensional consolidation

theory which have received wide applications in many engineering problems (e.g. Sandhu

and Wilson, 1969; Abbo, 1997; Lewis and Schrefler, 1998). In Biot’s theory, the interac-

tion between the soil skeleton and pore water pressure is assumed to be dominated by the

principle of effective stress and the continuity relationship. Therefore, soil consolidation

process is time-dependent. Fast solutions of large coupled linear equations arising from

3-D Biot’s consolidation problems are clearly of major pragmatic interest to engineers.

When Biot’s consolidation equations are discretized by finite element method (FEM)

in space domain and finite difference method in time domain, the coupled linear equa-

tions are coupled with displacement and pore water pressure unknown (e.g. Borja, 1991;

Lewis and Schrefler, 1998; Zienkiewicz and Taylor, 2000). These resultant linear systems

of equations are symmetric indefinite (e.g. Abbo, 1997; Smith and Griffiths, 1998), or

sometimes, nonsymmetric indefinite (e.g., Gambolati et al., 2001, 2002, 2003).

For nonlinear consolidation problems, Borja (1991) compared three different solution

schemes: Newton with direct solution for linearized linear systems, composite Newton-

PCG method and quasi-Newton method with Broyden-Fletcher-Goldfarb-Shanno (BFGS)

inverse updating. Based on numerical experiments, the author concluded that the com-

posite Newton-PCG technique, in which the tangent stiffness matrix at the first iteration

of each time step was used as a preconditioner throughout the time step, possessed con-

siderable potentials for large-scale computations. Smith and Griffiths (1998) employed

PCG method preconditioned by Jacobi preconditioner based on EBE strategy to solve

symmetric indefinite linear equations arising from 2-D consolidation problems. Further-

more, EBE based Jacobi preconditioned CG method was extended to solve large 3-D

consolidation problems in parallel environment (e.g. Smith, 2000; Smith and Griffiths,

2004). Gambolati et al. (2001, 2002, 2003) studied the solution of nonsymmetric sys-

tems arising from Biot’s coupled consolidation problems in a series of papers. The studies

ranged widely including the investigation of the correlation between the ill-conditioning

of FE poroelasticity equations and the time integration step, the nodal ordering effects on

performance of Bi-CGSTAB preconditioned by Incomplete LU factorization with Thresh-

old (ILUT) preconditioner (e.g. Saad, 1996), comparison study of direct, partitioned and
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projected solution to finite element consolidation models, and the diagonal scaling effect

when incomplete factorization is used as a preconditioning technique. Because maintain-

ing symmetry of linear systems can preserve computing and storage efficiency, symmetric

indefinite formulation of 3-D Biot’s consolidation problems was studied by Chan et al.

(2001) and Phoon et al. (2002, 2003). For symmetric indefinite Biot’s linear equations,

a cheaper symmetric iterative method, Symmetric Quasi-Minimal Residual (SQMR) by

Freund and Nachtigal (1994), was adopted. To combine with the SQMR solver, the

authors developed two EBE-based efficient diagonal preconditioners, namely Modified

Jacobi (MJ) and Generalized Jacobi (GJ) preconditioner. Numerical analyses and ex-

periments showed that the two preconditioners performed far better than Standard Jacobi

(SJ) preconditioner especially for large and ill-conditioned Biot’s linear systems. A recent

study by Toh et al. (2004) systematically investigated three forms of block precondition-

ers, namely, block diagonal preconditioner, block triangular preconditioner and block

constrained preconditioner, for symmetric indefinite Biot’s linear systems, and proposed

correspondent efficient implementations.

The above review presents the recent advances on preconditioned iterative meth-

ods for Biot’s consolidation problems. However, there are some important issues that

need to be addressed. For example, for symmetric indefinite linear systems derived from

3-D Biot’s consolidation problems, the specific performances of preconditioned iterative

methods based on partitioned and coupled Biot’s formulations have not been investi-

gated. Secondly, although MJ and GJ preconditioned SQMR methods are significant

improvements over SJ preconditioned counterpart, the convergence rates of the diagonal

preconditioned methods may be still slow compared to sophisticated non-diagonal precon-

ditioning methods, especially for more practical soil-structure interaction problems with

highly varied material properties. In addition, the two proposed preconditioners were pro-

posed based on EBE techniques, their applications with global sparse techniques have

not been studied. Thirdly, the popular SSOR preconditioned methods recommended (e.g.

Mroueh and Shahrour, 1999) for solving soil-structure interaction problems may not be

effective for Biot’s linear systems, and sometimes, breakdown can be observed. Fourthly,

ILU-type preconditioning techniques have been shown to be effective in accelerating the

convergence rate for an iterative method. However, solving linear systems with ILU-type

preconditioners may incur some difficulties such as the need to choose proper pivoting
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strategies, the storage requirement may increase significantly if a small dropping toler-

ance is chosen, and the resultant iteration reduction may easily be counteracted by the

increased computing cost in each iteration. Thus, it is difficult to address the inefficiency

of ILU-type preconditioning methods on a single processor (e.g. Eijkhout, 2003). Last

but not least, preconditioning techniques for large nonlinear consolidation problems are

not well studied.

1.3 Objectives and Significance

It should be emphasized that although the studied problem in this thesis is large 3-D

Biot’s consolidation, the developed methodology in this thesis has a wide variety of appli-

cations in engineering problems and scientific computations. Because Biot’s consolidation

problem can be categorized into saddle point problems, the preconditioners developed in

this thesis can be readily applied to this kind of problems. Benzi et al. (2005) gave a

complete list of those applications which may lead to saddle point problems. This list of

applications includes computational fluid dynamics (e.g. Elman et al., 1997), constrained

optimizations (e.g. Toh and Kojima, 2002; Toh, 2003), economics, finance, image process-

ing, mixed finite element approximations of PDEs (e.g. Brezzi and Fortin, 1991; Perugia

and Simoncini, 2000; Warsa et al., 2002; Wang, 2004), parameter identification problems

and so on.

The objectives of this thesis can be summarized as follows:

(a) To give a detailed comparison between block partitioned and global Krylov subspace

iterative methods for discretized Biot’s symmetric indefinite linear systems, and to

suggest the efficient implementation for such symmetric indefinite linear systems.

(b) To develop more efficient preconditioners than the preconditioners proposed in the

recent literatures in conjunction with the chosen iterative solver. In the past decade,

much attention has been devoted to develop general preconditioners (e.g. Saad,

1996; Saad and van der Vorst, 2000; Benzi, 2002). A good preconditioner, however,

should also exploit properties in the physical problem. Therefore, this thesis is to

develop such good problem-dependent preconditioners.
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(c) To carry out some application studies on large-scale 3-D linear elastic as well as

nonlinear Biot’s consolidation problems. The performance of the developed pre-

conditioners will be investigated and compared to some available preconditioning

methods in the future.

The numerical experiments carried out in this thesis were based on ordinary desktop

platform. Thus, the proposed preconditioning methods, related conclusions and numeri-

cal results should be useful for the purpose of solving large-scale linear systems stemming

from geotechnical engineering problems on a serial computer. These developed precon-

ditioners may also be useful to enhance the preconditioned iterative solvers adopted

in current engineering software packages. Furthermore, the ideas behind the proposed

preconditioning techniques could be helpful in laying the groundwork for developing ad-

vanced preconditioning methods.

1.4 Computer Software and Hardware

The FORTRAN source codes for three-dimensional FEM Biot’s consolidation problems

are based on the 2-D version given by Smith and Griffiths (1998). The FORTRAN codes

on 2-D and 3-D Biot’s consolidation problems are programmed by using Compaq Visual

FORTRAN Professional Edition 6.6A (2000, Compaq Computer Corporation) and listed

in Appendix C. The other software packages used in this thesis are listed as follows:

HSL Packages HSL (Harwell Subroutine Library) is a collection of ISO Fortran codes

for large scale scientific computation. A free version is provided at

http://www.cse.clrc.ac.uk/nag/hsl/

ORDERPACK ORDERPACK contains sorting and ranking routines in Fortran 90 and

the package can be downloaded at http://www.fortran-2000.com/rank/index.html

SPARSKIT A basic tool-kit for sparse matrix computations. The software package can

be obtained from Yousef Saad’s homepage http://www-users.cs.umn.edu/∼saad/software

SparseM The software package is a basic linear algebra package for sparse matrices and

can be obtained from http://cran.r-project.org/ or

http://www.econ.uiuc.edu/∼roger/research/sparse/sparse.html
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Template The software is a package for some popular iterative methods in Fortran,

Matlab and C, and can be used to demonstrate the algorithms of the Template

book (See http://www.netlib.org/templates/).

Except for Chapter 4, for which numerical experiments are performed on a Pentium

IV, 2.0 GHz desktop computer, all numerical experiments are carried out at a Pentium

IV, 2.4 GHz desktop computer. For these numerical studies, 1 GB physical memory

without virtual memory is used.

1.5 Organization

This thesis is organized as follows. Chapter 2 gives a background of preconditioned iter-

ative methods, and some popular iterative methods and some preconditioning methods

are investigated for symmetric and nonsymmetric linear systems in many applications.

Chapter 3 compares some applicable iterative methods for symmetric indefinite linear

systems with coupled block coefficient matrix. Chapter 4 compares the performance be-

tween block constrained preconditioner, Pc and GJ preconditioner in details. Because

the practical geotechnical problem is related to multi-layer heterogeneous soil conditions,

Chapter 5 proposes a modified SSOR preconditioner which will be proved to be very ro-

bust in large-scale consolidation problems. To further study the numerical performance

of GJ and MSSOR preconditioners in large nonlinear consolidation, Chapter 6 presents

to use Newton-Krylov method in conjunction with these effective preconditioners and

compares to available solution strategies. Finally, Chapter 7 gives a closure with some

valuable conclusions and suggestions on future research work.



CHAPTER 2

OVERVIEW OF

PRECONDITIONED

ITERATIVE METHODS FOR

LINEAR SYSTEMS

To solve a linear system, it is necessary to have some basic knowledge of the structure and

the properties of the coefficient matrix so that the solution time and storage usage can

be minimized as much as possible. Some special matrix structures or matrix properties

can be summarized as

(a) Symmetric positive definite matrix

A matrix, which satisfies A = AT and vT Av > 0 for an arbitrary vector v 6= 0, is

Symmetric Positive Definite (SPD). By making use of symmetry, the solution time

and storage usage can be halved compared to direct Gaussian elimination. For a

SPD matrix, Cholesky factorization can achieve about 50% reduction.

(b) Symmetric indefinite matrix

If a symmetric matrix is neither positive definite nor negative definite, the matrix

is called as symmetric indefinite. Similar to a SPD linear system, the solution time

and storage usage can be reduced by making use of the symmetry, but subtle and
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complicated implementations such as pivoting strategies have to be applied (e.g.

Duff and Reid, 1983; Demmel, 1997; Duff and Pralet, 2004).

(c) Band matrix

Band matrix is defined as the matrix with a bandwidth or a half bandwidth (sym-

metric) that is smaller than the dimension n. By making use of “banded” property,

the runtime and storage can be reduced significantly. So far, this property has been

extensively exploited for direct solutions.

(d) Block matrix

Organizing unknowns in terms of some properties such as unknowns type can lead to

partitioned or block matrix, some popular methods may have their corresponding

block variants, such as block Gaussian elimination, block SSOR and block ILU

method and so on. Recent research showed that block implementations can be more

suitable for parallel computing than their pointwise counterparts. However, block

matrix implementations can also lead to some improvement on serial computers.

(e) Sparse matrix

A matrix with a large number of zero entries is called a sparse matrix. Incorporating

sparse techniques to some methods leads to their sparse variants, for instance, direct

Cholesky factorization can be extended to sparse Choleksy factorization by exploit-

ing sparse storage and implementation. For iterative methods, sparse matrix-vector

multiplications can lead to large reductions in solution time.

(f) Dense and smooth matrix

In some cases, dense matrices are unfavorable to storage and computing. However,

dense and smooth (neighboring matrix entries are close in magnitude) can be viewed

as a favorable property because fast wavelet transformation can be used in the

construction of preconditioner or inexact matrix-vector multiplications of iterative

methods (e.g. Chan et al., 1998; Chen, 1999; van den Eshof et al., 2003). In the

application of inexact matrix-vector products, the true linear system to be solved

is perturbed unless no entries are dropped after wavelet transforming.

It is obvious that a coefficient matrix may possess one or more properties described

above. For a large linear system with sparse coefficient matrix, preconditioned iterative
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methods show significant potentials in computing and memory efficiencies.

2.1 Overview of Iterative Methods

The importance of iterative methods can be summarized very well by the quotation,

“. . . Iterative methods are not only great fun to play with and interesting ob-

jects for analysis, but they are really useful in many situations. For truly large

problems they may sometimes offer the only way towards a solution, . . . ”

H.A. van der vorst, 2003

It has been gradually recognized that for very large, especially sparse, linear systems,

iterative methods come into the stage as an leading actor. The earliest iterative methods

can be traced back to the great mathematician and physicist, Gauss, who demonstrated

the basic idea behind iterative methods. Gauss’ idea can be explained by making use

of the matrix expression which has not been developed at his time. Firstly, we may

look for an approximate nearby and more easily solved system, Mx0 = b, instead of the

original linear system Ax = b. Secondly, we correct the approximate solution x0 with

x = x0 + δx0, which results in a new linear system Aδx0 = b − Ax0 = r0 to be solved.

Naturally, we can still use the approximate linear system Mδx1 = r0 and lead to the

iteration x1 = x0 + δx1. By repeating this process, we can hopefully arrive at the desired

solution. Different choice of M leads to different method, by choosing M = diag(A), we

get the Gauss-Jacobi method, while by choosing M to be the lower or upper triangular

part of A, we find the Gauss-Seidel method. Although these methods have a long history,

they are still widely employed in various practical applications.

Iterative methods comprise a wide variety of techniques ranging from classical itera-

tive methods such as Jacobi (or Gauss-Jacobi), Gauss-Seidel, Successive Overrelaxation

(SOR) and Symmetric SOR (SSOR) iterations, to comparatively more recent develop-

ment such as Krylov subspace methods, multigrid and domain decomposition methods

(e.g. Barrett et al., 1994; Saad, 2003). Generally, iterative methods can be classified into

two basic categories: classical stationary iterative methods and non-stationary iterative

methods.
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2.1.1 Stationary Iterative Methods

Stationary iterative methods are traditional methods for the solution of a linear system,

Ax = b with square and nonsingular coefficient matrix A. These iterative methods are

called “stationary” because they follow the same recipe during the iteration process.

In this category, a well-known method is the Richardson iteration (1910): Given a

strictly positive number α ∈ R, then the iteration is defined by

xk+1 = xk + α(b−Axk) = xk + αrk (2.1)

The method converges for α in the range 0 < α < 2/ρ(A) where ρ(·) denotes the spectral

radius of a matrix. The optimal value for the Richardson method is αopt = 2/(λ1 + λn),

where λ1 and λn are the largest and smallest eigenvalues of A, respectively (e.g. Saad,

2003).

The other basic stencils of stationary iterations (or simple iterations) can be derived

from the following perspectives (e.g. Barrett et al., 1994; Greenbaum, 1997; Eijkhout,

2003):

• Based on the matrix spliting, A = M − N with M nonsingular, the linear sys-

tem (1.1) becomes

Mx = Nx + b

This leads to the iteration

xk+1 = M−1Nxk + M−1b

However, when considering Krylov subspace acceleration, it should be more useful

to rewrite the above equation as

xk+1 = xk + M−1(b−Axk) = xk + M−1rk (2.2)

Clearly, the method is said to be convergent if the sequence {xk} converges to the

exact solution, x, for any given initial vector.

• Let rk = b−Axk be the residual vector. By substituting b = rk +Axk into equation

x = A−1b, we get

x = A−1(rk + Axk) = xk + A−1rk
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which leads to the following iteration

xk+1 = xk + M−1rk

when M is use to approximate A.

• Let ek to be the error vector defined by ek = x− xk = A−1(b−Axk). By using the

approximation M−1(b−Axk), we gets the same iteration

xk+1 = xk + M−1(b−Axk) = xk + M−1rk

Several important expressions can be derived from the above stationary iteration:

rk = b−Axk = Ax−Axk = A(x− xk) = Aek (2.3a)

rk+1 = b−A(xk + M−1rk) = (I −AM−1)rk = (I −AM−1)k+1r0 (2.3b)

ek+1 = x− xk+1 = (x− xk)−M−1rk = (I −M−1A)ek = (I −M−1A)k+1e0 (2.3c)

Here, we can write (I −M−1A)k+1 = Pk+1(M
−1A), where Pk+1(·) is a (k + 1)-degree

polynomial satisfying Pk+1(0) = 1. Clearly, the polynomial is Pk+1(x) = (1 − x)k+1 for

stationary iterative methods and the matrix I−M−1A or I−AM−1 is called the iteration

matrix. In most cases, Eq. (2.3b), instead of Eq. (2.3c), is evaluated iteratively because

ek can not be computed in practice, but it can be reflected through the Eq. (2.3a).

From Eq. (2.3b), we can conclude that the stationary iteration can converge provided

‖rk+1‖ ≤ ‖(I −AM−1)‖‖rk‖ (2.4)

with

‖I −AM−1‖ < 1 or ρ(I −AM−1) < 1 (2.5)

Eqs (2.4) and (2.5) demonstrate that smaller spectral radius of the iteration matrix

leads to the faster convergence rate. In other words, the closer to unit the eigenvalues of

the preconditioned matrix AM−1 are, the faster an iterative method converges. There-

fore, the eigenvalue distribution of preconditioned matrix becomes one of the guidelines to

evaluate convergence rate. However, the above convergence conditions given in Eqs (2.4)

and (2.5) may not be necessary for more advanced iterative methods.

By taking a weighted average (i.e., applying a relaxation) of the most recent two

approximate solutions from Gauss-Seidel iteration, Young (1950) noticed that the con-

vergence of Gauss-Seidel iterative method can be accelerated. As a result, he proposed the
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famous SOR iterative method. Usually, the relaxed version of the iteration in Eq. (2.2)

can be derived from the linear system

ωAx = ωb (2.6)

where ω is the relaxation parameter. Naturally, the stationary iteration with relaxation

is given as

xk+1 = xk + ωM−1rk (2.7)

for which the iteration matrix is I − ωM−1A or I − ωAM−1, and different choice of

M leads to different method such as weighted Jacobi and weighted Gauss-Seidel (SOR)

methods.

Several popular stationary iterative methods are described in more details. Consider

the decomposition A = D+L+U , where the matrices D, L and U represents the diagonal,

the strictly lower triangular and the strictly upper triangular part of A, respectively. For

different choices of M that derived from the above three factors, different stationary

iterative methods can be obtained,

(a) Jacobi method:

MJac = D = diag(A) (2.8)

(b) Gauss-Seidel method:

MGS = D + L, for forward Gauss-Seidel method (2.9a)

MGS = D + U, for backward Gauss-Seidel method (2.9b)

(c) SOR method:

MSOR = D + ωL, for forward SOR method (2.10a)

MSOR = D + ωU, for backward SOR method (2.10b)

For SPD matrix A, relaxation parameter, ω ∈ (0, 2), is chosen to guarantee con-

vergence, but the determination of an optimal parameter ωopt could be expensive.

(d) SSOR method:

MSSOR =
1

2− ω

(
L +

D

ω

)(
D

ω

)−1(
U +

D

ω

)
(2.11)
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which can be regarded as the symmetric version of SOR method, that is, each

iteration of the SSOR method is composed of one forward SOR sweep and one

backward SOR sweep, but SSOR iteration is less sensitive to ω than SOR iteration

(e.g. Langtangen, 1999).

Though stationary iterative methods are easier to understand and simpler to imple-

ment, they may be slow or even diverge (e.g. Barrett et al., 1994; Greenbaum, 1997).

2.1.2 Non-stationary Iterative Methods

The non-stationary iterative methods differ from stationary iterative methods in that

there is a varied optimal parameter for convergence acceleration in each iteration. That

is, iterative stencil for a preconditioned non-stationary iterative methods follows

xk+1 = xk + αkM
−1rk (2.12)

Here αk is a scalar defined by some optimal rule. Thus the new iteration is determined

by three ingredients: the previous iteration, the search direction vector (in this case, it

is preconditioned residual) and the optimal scalar. In this class of iterative methods,

Krylov subspace method is the most effective, and thus, it has been ranked as one of

the top ten algorithms of 20-th century by Sullivan (2000). Krylov subspace iterative

methods are so called because a solution can be approximated by a linear combination

of the basis vectors of a Krylov subspace, that is,

xk ∈ x0 +Kk(A, r0), k = 1, 2, . . . (2.13)

where

Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0}, k = 1, 2, . . . (2.14)

is called a k-th Krylov subspace of R
n generated by A with respect to r0 (for the conve-

nience of expressions in the following sections, both A and r0 in Eqs. (2.13) and (2.14)

represent the preconditioned versions). Thus the dimension of the subspace increases

by one for each new iteration. It is also clear that the subspace depends on the initial

vector, and it may be more natural to use r0 though other choices are possible. To
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extend the subspace, only the matrix-vector multiplications are required for Krylov sub-

space methods, and to obtain the approximate solution, only vector related operations

are involved.

There are two essential ingredients for Krylov subspace methods (e.g. Coughran and

Freund, 1997): one is to construct a sequence of basis vectors with orthonormal property

and the other is to generate approximate solutions {xj}j≤k.

The obvious choice for constructing orthonormal basis vectors are based on Krylov

subspace, Kk(A, r0). However, this choice may not be attractive since Ajr0 tend to

point in the direction of dominant eigenvector corresponding to the largest eigenvalue

for increasing subspace dimension, and thus, leads to ill-conditioned set of basis vectors

(e.g. Demmel, 1997; van der Vorst, 2003). In addition, constructing an ill-conditioned

vectors {Ajr0}j≤k followed by their orthogonalization still does not help from numerical

viewpoint, which means that a new sequence of basis vectors span{v1, v2, . . . , vk} =

Kk(A, r0) with good properties should be constructed.

The Arnoldi and Lanczos algorithms can be used for constructing orthonormal basis

vectors. Let subspace Vk ∈ R
n×k be constructed with columns, vj = Aj−1r0, (j =

1, 2, . . . , k), then

AVk = [v2, v3, . . . , vk, vk+1] = Vk[e2, e3, . . . , ek, 0] + vk+1e
T
k = VkEk + vk+1e

T
k (2.15)

Here, Ek ∈ R
k×k with zero entries except for Ek(j+1, j) = 1 (j < k−1) can be viewed as

a special upper Hessenberg matrix. ei is a n-dimensional zero vector except for the unit

entry at ith row. Then, QR decomposition1 of Vk, that is, Vk = QkRk with Qk ∈ R
n×k

and upper triangular matrix Rk ∈ R
k×k, results in

AQkRk = QkRkEk + vk+1e
T
k (2.16)

that is,

AQk = QkRkEkR
−1
k + vk+1e

T
k R−1

k = QkĤk +
vk+1e

T
k

R(k, k)

= QkĤk + hk+1,kqk+1e
T
k (= Qk+1Hk+1,k)

(2.17)

1Basically, there are two ways to compute QR decomposition of a matrix Am×n, m ≥ n: one is to

apply modified Gram-Schmidt algorithm to orthogonalize the columns of A; The other way is to apply

a sequence of unitary matrices to transform it into the upper triangular Rn×n, and the product of the

sequence of unitary matrices is the inverse of Qm×n. For the second way, the often used unitary matrices

are Householder reflection and Givens rotation (e.g. Greenbaum, 1997).
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where Hk+1,k is a k + 1 by k matrix with Ĥk at the top k by k block and the zero k + 1

row except for the (k + 1, k) entry which has the value, hk+1,k. Thus, we get

QT
k AQk = Ĥk + QT

k hk+1,kqk+1e
T
k = Hk (2.18)

where, Ĥk,Hk ∈ R
k×k are both upper Hessenberg matrices because both Rk and R−1

k

are upper triangular can not change the upper Hessenberg property of Ek; R(k, k) is the

(k, k) entry of Rk. Equating the columns on two sides of equation AQk = QkHk with

Qk = [q1, q2, . . . , qk] results in

Aqj = Qkhj =

j+1∑

i=1

hi,jqi =

j∑

i=1

hi,jqi + hj+1,jqj+1, (j ≤ k − 1) (2.19)

where hj represents the jth column of the Hessenberg matrix Hk and hi,j represents the

entry at ith row and jth column. These entries can be computed by multiplying ql, l ≤ j

to two sides of Eq. (2.19), that is,

qT
l Aqj = ql

( j∑

i=1

hijqi + hj+1,jqj+1

)
, (l ≤ j) (2.20)

and thus,

hlj = qT
l Aqj , (l ≤ j) (2.21)

then from Equation (2.19), we get

hj+1,jqj+1 = Aqj −
j∑

i=1

hi,jqi (2.22)

or

qj+1 =
1

hj+1,j

(
Aqj −

j∑

i=1

hi,jqi

)

which indicates that the computation of the new basis vector qj+1 requires all previous

basis vectors. Following the above procedures to compute the coefficient entries hi,j and

the basis vectors {qj}j≤k, we get the Arnoldi algorithm. If A is symmetric, then the

reduced Hessenberg matrix, Hk, become symmetric and tridiagonal, that is, Hk = Tk.

The algorithm which reduces symmetric A to tridiagonal form is the famous Lanczos

algorithm, in which,

Aqj = βj−1qj−1 + αjqj + βjqj+1, (j ≤ k − 1) (2.23)
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where

Tk =




α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk




(2.24)

Usually, the modified Gram-Schmidt method is adopted to construct an orthogonal

space, but there are some other alternate choices. For Lanczos algorithm, the new basis

vector is only required to be orthogonal to previous two vectors, and thus, Lanczos

algorithm has a cheap three-term recurrence. In addition, two-sided (or nonsymmetric)

Lanczos algorithm can be used to solve nonsymmetric linear system. In two-sided Lanczos

algorithm, Tk is a nonsymmetric tridiagonal matrix with the form

Tk =




α1 β1

γ1
. . .

. . .
. . .

. . . βk−1

γk−1 αk




(2.25)

Based on either Lanczos or Arnoldi algorithm for orthonormal basis vectors, iterative

methods differ from each other in that they generate approximate solutions {xj}j≤k in

terms of different optimal rule. In general, iterative methods are developed based on four

different approaches to generate {xj}j≤k: the Ritz-Galerkin approach, the minimal resid-

ual norm approach, the Petrov-Galerkin approach and the minimal error norm approach

(e.g. van der Vorst, 2003).

The history of Krylov subspace methods can be traced back to the middle of 20-th

century. One of the most famous iterative methods is Conjugate Gradient (CG) method

developed by Hestenes and Stiefel (1952) for solving symmetric positive definite linear

systems. CG method belongs to the Ritz-Galerkin approach which requires rk⊥Kk(A, r0).

That is, the approximate solution xk is computed satisfying

R̃T
k (b−Axk) = 0 (2.26)

where R̃k = [r0, r1, . . . , rk−1]. However, the CG method did not show it is a promising

competitor to direct methods until it was combined with preconditioning method which

led to the later popular and robust PCG solver. The Minimal Residual (MINRES) and

Symmetric LQ (SYMMLQ) methods were discovered by Paige and Saunders (1975), the

kth step of MINRES compute xk from

xk = x0 + Qkyk (2.27)
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where yk can be obtained by minimizing

rk = r0 −AQkyk (2.28)

in the least squares sense with Eq. (2.17). That is,

‖rk‖2 = min
y
‖r0 −AQky‖2 = min

y
‖r0 −Qk+1Tk+1,ky‖2

= min
y
‖Qk+1(̺e1 − Tk+1,ky)‖2= min

y
‖̺e1 − Tk+1,ky‖2

(2.29)

where ̺ = ‖r0‖. From various literatures, it can be seen that MINRES has a wide

applications for symmetric and possibly indefinite linear systems. Some authors (e.g.

Warsa et al., 2002) may prefer to use the MINRES method because it is thought more

reliable based on extensive testing. The bi-conjugate gradient (Bi-CG) method developed

by Fletcher (1996) was a “natural” generalization of CG method for nonsymmetric linear

systems.

Significant development in Krylov subspace iterative methods occurred during the

period of 1985∼1995, the Generalized Minimum Residual (GMRES) algorithm, which

was developed by Saad and Schultz (1986) for nonsymmetric systems, is one of the

most widely used iterative method for a general linear system. In GMRES method, the

approximate solution xk is also taken from Eq. (2.27) with yk minimizing the relation

given in Eq. (2.28) in the least squares sense. That is,

‖rk‖2 = min
y
‖r0 −AQky‖2 = min

y
‖r0 −Qk+1Hk+1,ky‖2

= min
y
‖Qk+1(̺e1 −Hk+1,ky)‖2= min

y
‖̺e1 −Hk+1,ky‖2

(2.30)

where, Hk+1,k is the rectangular upper Hessenberg matrix given in Eq. (2.17). However,

as GMRES iterates, the work and storage requirement in each iteration grow linearly

because the method is based on Arnoldi algorithm (e.g. Saad, 1996; Toh, 1997; Saad,

2003; van der Vorst, 2003). Therefore, the full version of GMRES may be prohibitively

expensive and is not widely used in practical applications. Requiring long recurrences

for nonsymmetric CG-like iterative solvers such as GMRES may incur large memory re-

quirement and computational cost. To overcome the problems related to long recurrences

caused by nonsymmetric property, two different artificial strategies can be used: one is to

truncate the last m basis vectors for the next update, which is referred to as truncation

(e.g. de Sturler, 1999); the other is to restart the iteration after m iterations and input

the current approximate solution as the initial guess of next iteration cycle, for instance,
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GMRES(m) method restarts in a m-iteration cycle (e.g. Meerbergen and Roose, 1997;

Simoncini, 2000). However, both the truncation and the restarting strategies inevitably

result in partial subspace methods, thus they may lead to different convergence behavior

(such as a slower convergence rate) from the idealized counterparts (e.g. Bruaset, 1997).

Different from the truncation and restarting strategies, Bi-CG takes another approach to

obtain short recurrences by replacing the orthogonal sequence of residuals by two mutu-

ally orthogonal sequences: apart from the space given in Eq. (2.14), an auxiliary space

Kk(A
T , s0) is constructed, where s0 is an arbitrary vector, but usually s0 = r0 is cho-

sen. In Bi-CG, both rk and sk sequences are generated on coupled two-term recurrences

at the price of no longer providing a minimization2 so that the convergence of Bi-CG

may exhibit an irregular or so-called zigzagging behavior (e.g. Pommerell and Fichtner,

1991). Since the auxiliary space involves with AT , Bi-CG incurs an additional multipli-

cation with AT without further reduction of the residual. Sonneveld (1989) noticed that

both rk and sk sequences converge to zero, but only the convergence of first sequence

is exploited, and thus he developed Conjugate Gradients-Squared (CGS) method by a

minor modification to Bi-CG (e.g. Sonneveld, 1989; van der Vorst, 1992; Golub and van

der Vorst, 1997; Eijkhout, 2003). Notice that Bi-CG’s residual vector rk and the so-called

“shadow” residual vector sk can be written as

rk = Pk(A)r0, and sk = Pk(A
T )s0 (2.31)

Therefore, the bi-orthogonal relation, i.e., rk⊥{sj}j<k and sk⊥{rj}j<k, in Bi-CG leads

to

(rk, sj) = (Pk(A)r0, Pj(A
T )s0) = (Pj(A)Pk(A)r0, s0) = 0, (j < k) (2.32)

Then, we can define that

rj = P 2
j (A)r0 (2.33)

This inner-product transformation makes the distributed convergence efforts concentrate

to the residual rj, and thus results in a stronger contraction on the initial residual r0

than that in Bi-CG as shown in Eq. (2.31) and avoids the auxiliary space. Usually, the

CGS method converges almost twice as fast as Bi-CG, and it is recognized as the start of

2This indicates that convergence associated with residual norm reduction may not occur in every

iteration.
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hybrid iterative methods. However, at the same time of accelerating convergence, CGS

also inherits the irregularity of Bi-CG and even amplifies irregular behavior due to the

squaring effect in Eq. (2.33). The seriousness of irregular convergence behavior has been

discussed in detail by van der Vorst (1992, 2003) and Golub and van der Vorst (1997).

From the 1990s onward, some robust and so far widely used Krylov subspace iterative

methods arose in succession. Freund and Nachtigal (1991) proposed three-term recur-

rences Quasi-Minimal Residual (QMR) algorithm, and then more robust coupled two-

term recurrences version, to overcome the breakdown and numerical instability problems

associated with the original Bi-CG algorithm using look-ahead strategy. Using Lanczos

algorithm constructed basis, the actual QMR iterates are defined by a relaxed minimiza-

tion (quasi-minimal) property which ensure QMR converge smoothly. This relaxation

comes from the following relations,

rk = r0 −AVkyk = Vk+1(̺e1 − Tk+1,kyk) (2.34)

Thus, we have

‖rk‖2 ≤ ‖Vk+1‖2 · ‖̺e1 − Tk+1,kyk‖2 (2.35)

Instead of minimizing ‖rk‖2 (because the columns of Vk+1 are not orthogonal and it

is difficult to choose yk), QMR algorithm compute yk from the following least squares

problem,

min
y
‖̺e1 − Tk+1,ky‖2 (2.36)

Thus, QMR is so called because it does not truly minimize the residual. In some cases, the

operations with AT is impossible, the transpose-free version of QMR method (TFQMR),

which was developed by Freund (1993), can be used. Furthermore, a simplified or sym-

metric version of QMR (SQMR) was also proposed by Freund and Nachtigal (1994) for

symmetric and possibly indefinite systems . As we know, two-sided Lanczos process re-

quires matrix-vector products Av for right Lanczos vectors and products AT w for left

Lanczos vectors. QMR is simplified as long as one can find a nonsingular matrix J

satisfying

AT J = JA (2.37)

(in this case, A is J-symmetric) and if the initial vector w1 is chosen as w1 = ζ1Jv1 with

scalar ζ1 6= 0. As a result, the left Lanzcos vectors can be obtained as follows

wj = ζjJvj , ζj ∈ R and ζj 6= 0 (2.38)
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and matrix-vector products with AT can be replaced by matrix-vector products with J

(e.g. Freund and Nachtigal, 1994). The scalars {ζj} depend on the particular normal-

ization used in Lanczos process. When matrix-vector products with J are cheap, the

storage and computing cost are both reduced.

Bi-CGSTAB, a more smoothly converging variant of Bi-CG or CGS proposed by van

der Vorst (1992), generates the sequences rk and sk in terms of different polynomials as

long as the requirement given in Eq. (2.32) is satisfied. That is,

(rk, sj) = (Pk(A)r0, Qj(A
T )s0) = (Qj(A)Pk(A)r0, s0) = 0 (2.39)

where, the new polynomial is chosen as

Qj(x) =

j∏

i=1

(1− ωix) (2.40)

with suitable ωi to minimize the current residual rj = Qj(A)Pj(A)r0 in 2-norm. In

the Bi-CGSTAB method, residuals rj are generated in an apparently rather stable and

efficient way. So far, Bi-CGSTAB has been one of most widely used solvers for nonsym-

metric linear systems due to its several obvious advantages such as the fast and smooth

convergence and short recurrences.

It may be difficult to make a general statement on how fast these Krylov methods

converge, however, one certain thing is that Krylov methods converge much faster than

the classical iterative methods and often the convergence of a Krylov iterative method

takes place in a wide range of matrix classes. Because different Krylov iterative methods

are applicable for different linear systems, Figure 2.1 gives the flowchart with suggestion

for the selection of iterative methods.

For classical stationary iterative methods and non-stationary Krylov subspace meth-

ods, there is a common phenomenon: the more ill-conditioned a linear system is, the more

iterations an iterative method would take. However, multigrid and domain decomposi-

tion methods may provide the exceptions. Multigrid methods may be very suitable for

large problems since they require less memory and are much faster than a direct solver

(e.g. Ekevid et al., 2004). Thus, it is interesting to introduce the idea behind the multi-

grid iterative method here: the residual based on the fine mesh is a vector composed of

several components of frequency. when a classical iterative method is applied, the high-

frequency component of the residual vector is reduced rapidly, but the low-frequency
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component of the residual vector is difficult to reduce. However, it can be proved that

when the studied problem is transferred to a coarse mesh, the low-frequency become

higher component which can be reduced rapidly. Thus, multigrid iterative methods with

different residual reducing cycles can be developed (e.g. Barrett et al., 1994; Greenbaum,

1997; Briggs et al., 2000).

2.2 Overview of Preconditioning Techniques

Many iterative methods can converge to the true solutions in exact arithmetic with

bounded iteration counts, for examples, the upper limit iteration counts should be n

(n is the dimension of the linear system) for CG, MINRES and GMRES methods with

the minimization property. However, the number is still very large for large-scale lin-

ear systems. For example, the 3-D aquifer’s consolidation problem with n = 127100 was

studied by Gambolati et al. (2002). The possibility to overcome this difficulty is precondi-

tioning (e.g. Keller et al., 2000). As we mentioned previously, preconditioning contributes

to the popularity of iterative methods and it has become an indispensable part in the

notion of preconditioned iterative methods. The essential role of preconditioning can be

accurately expressed by the following quotation (e.g. Benzi, 2002):

“. . . In ending this book with the subject of preconditioners, we find ourselves at

the philosophical center of the scientific computing of the future . . . . Nothing

will be more central to computational science in the next century than the art

of transforming a problem that appears intractable into another whose solution

can be approximated rapidly. For Krylov subspace matrix iterations, this is

preconditioning.”

Trefethen and Bau, 1997

For an ill-conditioned linear system, it may be difficult for an iterative method to

converge. Preconditioning has the role to improve the situation, more accurately, to

improve the spectrum3 of the original coefficient matrix of the linear system so that the

3The set of all the eigenvalues of a matrix is called its spectrum.
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preconditioned linear system can converge at a faster rate. To apply a preconditioner,

three formats can be chosen. For example, given a preconditioner

M = MLMR ∈ R
n×n (2.41)

where ML, MR represent left and right preconditioner, respectively. Then, the precon-

ditioned system of Eq. (1.1) can be written as

M−1
L AM−1

R MRx = M−1
L b or Ãx̃ = b̃ (2.42)

Therefore,

When, ML 6= I, MR 6= I, it is left-right preconditioning approach;

When MR = I , it is left preconditioning approach;

When ML = I, it is right preconditioning approach.

In practice, the choice of preconditioning side often depends on the selected iterative

method to choose and on properties of the coefficient matrix A. The obvious advantage

for right preconditioning approach is that in exact arithmetic, the residuals for right-

preconditioned system are identical to the true residuals, and thus, the convergence

behavior can be monitored accurately. For the left-right preconditioning approach, it is

required that the preconditioner can be expressed explicitly as in Eq. (2.41). It is worth

mentioning that the manner in which a preconditioner is applied has obvious influence

on nonsymmetric problems. Another noteworthy point is that for the simplified QMR

method shown in Eq. (2.38), one can choose J = MT
L M−1

R because it can be verified that

ÃT J = M−T
R AM−1

R = MT
L M−1

R M−1
L AM−1

R = JÃ (M = MLMR = MT
RMT

L = MT )

(2.43)

Thus, Ã is J-symmetric with the choice J = MT
L M−1

R (e.g. Freund and Nachtigal, 1995).

Generally, an efficient preconditioner is largely problem-dependent although there

are some robust preconditioners developed for general purpose. Regardless, it is helpful

to keep in mind the following three basic criteria:

(a) The preconditioned system should converge rapidly, i.e., the preconditioned matrix

should have good eigenvalue clustering which indicates M ≈ A.

(b) The preconditioner should be cheap to construct and easy to “invert” within each

iteration.
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(c) Last but not least, the preconditioner should not consume a large amount of mem-

ory. It is also preferable to avoid massive indirect memory addressing operations

to exploit the cache architecture in CPUs.

These criteria seem to be self-conflicting, or in other words, there is a conflict between

good approximation and efficiency. Therefore, it seems that designing a good precondi-

tioner requires a delicate balance. A variety of preconditioners are available and a brief

sketch of some popular preconditioning techniques is presented below.

2.2.1 Diagonal Preconditioning

The simplest and probably the most widely used preconditioning technique is to scale

the coefficient matrix with a diagonal matrix D. Diagonal preconditioning is among the

cheapest and most memory effective ones (e.g. Pini and Gambolati, 1990).

2.2.1.1 Standard Jacobi (SJ)

For problems with a diagonally dominant stiffness matrix A, the choice D = diag(A)

results in the preconditioner M = diag(A) which is known as Jacobi preconditioning or

diagonal scaling and is efficient enough for many applications. However, if diag(A) con-

tains comparatively smaller entries with several order’s difference in magnitude than off-

diagonal entries, this preconditioner is often not suitable and possibly counter-productive.

2.2.1.2 Modified Jacobi (MJ)

For the coefficient matrix of an ill-conditioned linear system discretized from Biot’s con-

solidation equations, there may exist unbalanced columns or rows corresponding to the

pore pressure unknowns. That is, the pore pressure part of diag(A) contains significantly

smaller entries in absolute magnitude than the off-diagonal ones such that the SJ scal-

ing may “under-scale” the coefficient matrix conditioning. To avoid this problem, Chan

et al. (2001, 2002) proposed a modified Jocobi preconditioning method, which scales

the rows (left preconditioning) or columns (right preconditioning) corresponding to the
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pore pressure unknowns by using the largest absolute value in the corresponding columns.

2.2.1.3 Generalized Jocobi (GJ)

Compared with the heuristic MJ preconditioner, the motivation for the construction of

GJ preconditioner comes from a theoretical eigenvalue clustering result given by Murphy

et al. (2000) for a linear system with the similar block form as that of Biot’s problems,

but with zero (2, 2) block. Similar to MJ preconditioner, an element-by-element (EBE)

form of GJ was proposed, and numerical examples show that GJ is an efficient choice

for solving Biot’s linear equations due to its cheap diagonal form and robustness to ac-

celerate the convergence of SQMR (e.g. Phoon et al., 2002, 2003; Toh, 2003; Toh et al.,

2004). However, GJ was only proposed to solve the symmetric case. In fact, it can also

be used as a scaling technique for nonsymmetric Biot’s linear systems (e.g. Gambolati et

al., 2003).

2.2.2 SSOR Preconditioning

Symmetric Successive Over-Relaxation (SSOR) iteration belongs to the classical iterative

methods as we mentioned in Section 2.1.1, and it is still used widely in some fields. SSOR

preconditioning can be regarded as a single iteration of SSOR method. A natural idea is to

apply a classical iterative method with only one or several iteration to the preconditioning

step. For example, there are some other preconditioning methods obtained from one

iteration of classical iterative methods such as Gauss-Seidel and SOR preconditioners.

Eq. (2.11) in fact gives the SSOR iteration in a combination form, and more often, it is

used with the split form

ML =
1

2− ω

(
L +

D

ω

)
, MR =

(
D

ω

)−1(
U +

D

ω

)
(2.44)

The scale factor 1/(2 − ω) may be neglected when SSOR preconditioner is used with

Krylov subspace iterative methods, but it may be important if the iterative method is

not scale invariant (e.g. Chow and Heroux, 1998). In addition, the performance of SSOR

preconditioner is not as sensitive to ω as the SSOR iterative method (e.g. Bruaset, 1997).
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2.2.3 Block Preconditioning

Block preconditioning methods are based on the fact that variables can be grouped in

terms of physical properties, and thus, the stiffness matrix can be partitioned into block

form, and the corresponding preconditioners based on the block form are called block

preconditioners. For Biot’s consolidation problems, if we partition the displacement vari-

ables and the pore pressure variables separately, the stiffness matrix becomes a 2 × 2

block matrix. For the Biot’s linear equation with 2× 2 block coefficient matrix, Toh et

al. (2004) studied systematically three classes of block preconditioners from which many

variants can be derived. However, numerical results show that low iteration count does

not imply that a preconditioner is good in practical sense. In practice, choosing a good

preconditioner is not a simple task, but an art of science. For a detailed description on

block preconditioners for saddle point problems, refer to Benzi et al. (2005).

2.2.3.1 Block Diagonal Preconditioner

Following the notations given by Toh et al. (2004), the proposed block diagonal precon-

ditioner takes the form

Pd =

[
K̂ 0

0 αŜ

]
(2.45)

where α is a given nonzero real scalar and possibly negative, but whether α is negative

or positive may be dependent on which iterative method is chosen. In Eq. (2.45), the

matrices with hat symbol are approximations to their counterparts, respectively. For the

ideal case, K̂ = K and Ŝ = S, the eigenvalues of the preconditioned matrix are clustered

around at most 3 points, namely 1 and (1 ±
√

1 + 4/α)/2. A negative α is shown to be

important when K̂ is an inexact form, and α = −4 may lead to at most two clusters of

eigenvalues around at 1 and 1/2 (e.g. Phoon et al., 2002). Obviously, when α is negative,

then SQMR becomes a cheap choice, otherwise, MINRES or SYMMLQ is applicable. It

should be noted that some researchers are becoming interested in using PCG in conjunc-

tion with indefinite preconditioners (e.g. Lukšan and Vlček, 1998; Smith and Griffiths,

1998; Smith, 2000; Rozložńık and Simoncini, 2002).
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2.2.3.2 Block Constrained Preconditioner

This class of preconditioners are so called since they have the same block structure as

the original block coefficient matrix, but the difference is that one or more sub-blocks are

approximated or ‘constrained’. In terms of Toh et al. (2004), the (1, 2) and (2, 1) sub-

blocks are preserved, and only the (1, 1) and (2, 2) blocks are approximated. However,

it can be seen that a more general form is possible as long as the preconditioner is still

nonsingular. Thus, we rewrite the block constrained preconditioner as

Pc =

[
K̂ B̂

B̂T −Ĉ

]
(2.46)

where, B̂ is also the approximation to B, but with a different approximation strategy

compared with K̂ and Ĉ. Here, we propose that B̂ can be obtained by applying a small

threshold tolerance4 to the entries of B, and some numerical results show that computing

time really can be reduced by this strategy at the price of a slightly increased iteration

count. In addition, it is worth noting that B is only geometry-dependent and does not

change with soil properties. When the preconditioner is applied, its inverse can be con-

sidered as suggested by Toh et al. (2004) because the multiplication of P−1
c v is required

in the iterative steps.

2.2.3.3 Block Triangular Preconditioner

Compared with the previous two classes of block preconditioners, block triangular pre-

conditioners do not possess the symmetric property, which is usually useful in iterative

methods.

For left preconditioning method,

Pt =

[
K̂ 0

BT −Ŝ

]
(2.47a)

or for right preconditioning method,

Pt =

[
K̂ B

0 −Ŝ

]
(2.47b)

4How to choose the threshold tolerance can be important and worthy further study.
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Naturally, block matrix B can be replaced by B̂ applied with a threshold strategy. Due

to the nonsymmetric property of Pt, the nonsymmetric iterative methods such as Bi-

CGSTAB, TFQMR or GMRES are required.

2.2.4 Incomplete Factorization Preconditioning

A very popular and broad class of preconditioners is developed based on the sparse in-

complete factorization of the coefficient matrix. More or less, the incomplete factorization

preconditioners simulate the direct solution methods. The previously introduced SSOR

can be categorized into this class. It is already well known that when a sparse matrix

is factored, it usually introduce some fill-ins, that is, triangular factors L and U factors

have nonzero entries in the positions which are zero in the original matrix. When the

fill-ins are reduced or ignored based on some criteria, we obtain the incomplete factor-

ization methods such as ILU or IC.

2.2.4.1 ILU-Type or IC-Type Preconditioners

The incomplete LU (ILU) factorization is obtained by factorizing the coefficient matrix

into sparse triangular factors, while incomplete Cholesky factorization (IC) is designed

for symmetric positive definite system. To derive the triangular factors for ILU or IC,

some criteria should be applied such as ignoring all fill-ins or part of fill-ins to derive

level-of-fill based or threshold based incomplete factorization preconditioners. There are

many powerful ILU-type preconditioners available such as ILUT and ILUM (e.g. Saad,

1994, 1996, 2003). For SPD linear systems, the efficient ICCG (Incomplete Cholesky

preconditioned CG) method was proposed by Meijerink and van der Vorst (1977, 1981).

The no-fill ILU(0), IC(0) and their modified variants are inexpensive, simple to implement

and usually effective enough, and thus, they have a wide application in science and

engineering. Obviously, the incomplete factors (that is, a sparse lower triangular factor

L and a sparse upper triangular factor U) stemming from incomplete factorization are

not a real factorization of the coefficient matrix, they are derived as easily inverted sparse

triangular factors. Generally, the incomplete factorization computes the factors as follows
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(e.g. Barrett et al., 1994; Benzi, 2002),

For each k, and i, j > k : aij ←
{

aij − aika
−1
kk akj, if (i, j) ∈ S

aij , otherwise
(2.48)

where S is the predefined restriction subset. When computing ILU(0) or IC(0) factor,

this subset becomes the subset for nonzero sparsity structure of A. As a result, when

implementing each preconditioning step with an incomplete factorization preconditioner,

two triangular solves are involved.

Another incomplete factorization preconditioner called diagonal ILU (D-ILU) is

worth mentioning due to its success in some packages and its potential to extend to

many other applications. This so-called D-ILU preconditioner has been proposed by

Pommerell and Fichtner (1991) with the stencil,

MD-ILU = (D̂ + L)D̂−1(D̂ + U) (2.49)

where L and U are still the strictly lower and upper triangular of coefficient matrix A,

respectively, but D̂ is computed using ILU factorization procedure.

There are limitations associated with incomplete factorizations. Incomplete factor-

ization methods may fail in strongly nonsymmetric or indefinite cases though they are

recognized to be very effective in many applications. For example, failure may occur due

to zero pivots, very small pivots, or negative pivots in some case. In addition, failure can

also happen due to numerical instability (e.g. Chow and Saad, 1997; Benzi and Tůma,

1999; Eijkhout, 1999).

2.2.4.2 Reordering or Matrix Permutation Algorithms

As we mentioned above, when a sparse matrix is factored, it usually introduces some fill-

ins. To reduce the fill-ins and accelerate the factorization, reordering or permutation of

the variables should be performed before the factorization. Once the permutation matrix

P is obtained, the system required to be factorized becomes (here, it is a symmetric

permutation)

(PAPT )(Px) = Pb (2.50)

Several popular reordering algorithms are given as follows:
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(a) Reverse Cuthill-McKee (RCM) or Banded Ordering

The original Cuthill-McKee ordering method is primarily designed to reduce the

profile of a matrix. The idea of Cuthill-McKee ordering is that numbering begins

from one point, and numbers the neighbors of the point, and then continues to

number the neighbors of the already numbered points. George (1971) observed

that reversing the Cuthill-McKee ordering turns out to be superior to the original

ordering. Figure 2.2(a) shows the sparsity pattern of the naturally ordered stiffness

matrix of Biot’s linear systems, while Figure 2.2(b) gives the sparsity pattern of the

matrix after RCM ordering for naturally ordered matrix showed in Figure 2.2(a).

(b) Minimum Degree Ordering

Minimum Degree (MD) ordering algorithm by George and Liu (1981) is known as

a very fast fill-in-reduction reordering algorithm and it has received much attention

over the last two decades. MD is based on greedy approach such that the ordering

is chosen to minimize some quantities at each step of a simulated-step symmetric

Gaussian elimination process. In the variants of MD, Multiple Minimal Degree

(MMD) algorithm by George and Liu (1985, 1989) and Approximate Minimum

Degree (AMD) algorithm by Davis et al. (1994) are more efficient and popular.

Figure 2.2(c) is the sparsity pattern of MMD reordered matrix, which is very similar

to the sparsity pattern of AMD reordered matrix in Figure 2.2(d).

(c) Nested Dissection

Another alternate approach, Nested Dissection (ND) ordering by George (1971),

is fundamentally a divide and conquer approach. Though ND has some appealing

theoretical properties, it is less competitive to minimum degree ordering. Nested

dissection algorithms are generally much slower than MMD.

(d) Multi-color ordering

In this ordering process, the uncoupled variables are organized into different groups

in terms of colors, but this ordering is best suited for parallel environments because

the variables in each color can be dealt with independently.

There are also some new sparse matrix ordering algorithms developed recently, but

most of them are variants of the ND algorithm or MD algorithm, or the hybrid of the

two algorithms. The ordering algorithms described above are automatic and adaptive.
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However, it may be necessary to reorder a matrix artificially in terms of the physical

property of variables. Following the definitions of variable ordering given by Gambolati

et al. (2001), we get the following three orderings for 3-D Biot’s consolidation problems,

• Natural ordering (iord1): [x1, y1, z1, p1, x2, y2, z2, p2, . . .];

• Block ordering (iord2): [x1, y1, z1, x2, y2, z2, . . . , p1, p2, . . .];

• Block ordering (iord3): [x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , p1, p2, . . .].

Here, x, y and z correspond to the displacement unknowns in three direction, respec-

tively; p corresponds to the pore pressure unknown.

2.2.5 Approximate Inverse Preconditioning

Approximate inverse preconditioning received little attention though the ideas of approx-

imate inverse had been proposed in 1970s. The possible reason is due to the difficulty in

automatically determining an effective nonzero sparsity patten S. The recent develop-

ments of sparse approximate inverse may attribute to the advances of parallel processing

and the good convergence rates of approximate inverses (e.g., Benzi et al., 1996, 1998,

1999, 2000; Grote and Huckle, 1997; Chow and Saad, 1997, 1998; Gould and Scott, 1998).

Basically, there are three classes of approximate inverse preconditioning methods: one is

based on least squares norm-minimization technique, and second one is based on the fac-

torized sparse approximate inverses, and the last one is based on incomplete factorization

followed by an approximate inverse of the incomplete factors.

The proposed approximate inverse preconditioners by Grote and Huckle (1997),

Chow and Saad (1997), which are all based on Frobenius norm minimization, are thought

the most successful. Chow and Saad (1997) noticed that the popular incomplete factor-

ization preconditioners may fail in some cases, especially when the preconditioned error

matrix is very large, the resulted identity matrix may have large perturbations. For

example, given the factorization

A = LU + E (2.51)

where E is the error matrix, the resultant preconditioned error matrix L−1EU−1 can be

too large in some applications. Based on this observation, they proposed to use Minimal
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Residual (MR) method to obtain sparse approximate inverse with the prescribed sparsity

pattern. Grote and Huckle (1997) adopted adaptive sparsity pattern to construct the

approximate inverse, leading to current popular the SParse Approximate Inverse (SPAI)

preconditioners.

To compute the sparse approximate inverse M of matrix A, the idea is to minimize

‖I −MA‖F (or ‖I − AM‖F for right preconditioning) subject to certain sparsity con-

straints. The Frobenius norm, ‖·‖F , is usually chosen since it allows the decoupling of

the constrained minimization problem into independent linear least-squares problems as

min
M∈S
‖I −AM‖2F =

n∑

j=1

min
mj

‖ej −Amj‖2F (2.52)

Where, M = [m1,m2, . . . ,mn], I = [e1, e2, . . . , en] is the identity matrix.

For the other two classes of sparse approximate inverse preconditioners, refer to

Benzi et al. (1996), Benzi and Tůma (1998), Benzi and Tůma (1999), Benzi et al. (2000),

for details.

2.2.6 Other Preconditioning Methods

There are some other popular preconditioning methods which can be adopted in differ-

ent applications. Polynomial preconditioners only require matrix-vector multiplications

with A to approximate the preconditioning steps in iterative methods, they may have

some potential for parallelization due to a series of matrix-vector products, but it has

been shown that they can not compete with the above discussed incomplete factorization

preconditioners in terms of iteration counts (e.g. Bruaset, 1997; Benzi and Tůma, 1999).

For the other preconditioners such as domain decomposition and multigrid methods, see

Saad (2003); Ekevid et al. (2004) for the details.

2.3 Data Storage Schemes

In finite element analysis, several different data structures can be used to store the co-

efficient matrices such as the element-by-element storage, the global compressed sparse

storage and so-called edge-based storage. The comparison between these storages based
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on PCG iterative method was carried out recently, and the advantages and the disad-

vantages of each storage scheme was clarified by Ribeiro and Coutinho (2005). In this

thesis, only the element-by-element storage and global compressed sparse storage are

studied because they are still popular storage schemes in current finite element software

packages.

The element-by-element implementation have essentially removed the requirement

for assembling matrices. In addition, it seems that by making use of EBE-level stiffness

matrices, the storage and even computational cost can be reduced further by grouping the

identical element stiffness matrices into one (e.g. Smith and Wang, 1998). This potential

can be exploited, but it may be limited to regular element property. In EBE-based FE

applications, the applied iterative method and the preconditioner must be implemented

at element level so that the matrix-vector products in each iteration have to be adapted to

the unassembled matrix, which lead to the so-called “Gather” and “Scatter” procedures.

In practice, EBE based preconditioned iterative methods are more suitable for parallel

environment than serial computers in that the matrix-vector products with the element-

level stiffness matrices are more readily parallelized, but they have to be implemented

sequentially on serial computers (e.g. Smith, 2000; Smith and Griffiths, 2004).

On the contrary, it is well known that stiffness matrices derived from discretization

of partial differential equations by finite element method are usually large and sparse due

to the maximum connections of each element to others and there are few nonzero entries

in each row. Global compressed sparse storage as its name implied requires the stiffness

matrix to be assembled and only nonzero entries of stiffness matrix to be stored. The

obvious advantages of sparse technique are that the final storage for the stiffness matrix

may be significantly lower than that of EBE format and much less computer execution

time is spent because only nonzero entries are involved in arithmetic operations. If the

stiffness matrix is symmetric, sparse symmetric storage can be used. Figure 2.4 shows a

simple flow chart of applying sparse preconditioned iterative method to FE applications.

Here, it is necessary to give a brief comparison between EBE and sparse technique

in terms of storage and floating point operations (flops) based on some 3-D Biot’s con-

solidation models. Given a stiffness matrix A ∈ R
n×n, the EBE-based storage required

for the matrix can be computed by

Sebe =
n2

el × ne × 8

10242
(MBytes) (2.53)
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where ne is the number of total elements; nel is the dimension of element matrix which

depends on the adopted element type, for the 20-nodal solid quadrilateral element coupled

with 8-nodal fluid element used in 3-D Biot’s consolidation, nel = 20 × 3 + 8 = 68; The

number ‘1024’ means the conversion, 1MBytes = 1024KBytes = 10242 Bytes. “8” in

the numerator of Eq. (2.53) means one double-precision number requires the storage of

8 bytes.

For a sparse matrix, three vectors are required for Compress Sparse Row storage

(CSR) or Compress Sparse Column storage (CSC). However, to form such compressed

sparse storage, three temporary vectors are needed to collect the element-level nonzero

entries in upper (or lower) triangular part. The storage requirement for the three tem-

porary vectors is almost as same as that for EBE based storage requirement. When

summing up the sorted entries with the same global row and global column number,

the already summed storage can be used to store the global compressed sparse matrix.

Therefore, the truly required memory storage can be computed by

Ssps =

n2
el + nel

2
× ne × (4 + 4 + 8)

10242
(MBytes) (2.54)

The number ‘8’ means one double-precision real number requires 8 bytes, and ‘4’ means

one integer requires 4 bytes. Clearly, the proposed symmetric sparse storage scheme

(only three vectors) uses about
nel × ne × 8

10242
(MBytes) more memory storage compared to

EBE storage scheme. For a 3-D consolidation problem using totally 100000 consolidation

elements (that is ne = 100000) and given 20-node displacement elements coupled with

8-node fluid elements (that is, nel = 68) as an example, the additional incurred storage

by this symmetric sparse storage scheme is only 52 MBytes. A demonstration example

on how to form such a symmetric sparse storage is provided in Appendix B.1.2.

The flops required by one matrix-vector multiplication Av for dense matrix, EBE

matrix and sparse matrix are computed, respectively, as follows:

flops(Av)den = 2n2 (2.55a)

flops(Av)ebe ≈ (2n2
el + nel)× ne (2.55b)

flops(Av)sps ≈ 2n2rs (2.55c)

It is also possible to exploit the sparsity of the vector v when computing flops(Av)sps,

but to be conservative, this sparsity is not considered. Table 2.1 presents the comparison



2.3: Data Storage Schemes 36

between EBE technique and sparse technique in terms of storage requirement and flops

on some Biot’s consolidations problems. The comparison shows that for 3-D Biot’s

consolidation problems, both element-by-element and compressed sparse storages can

save computing cost and storage significantly, but more achievements can be obtained

by adopting compressed sparse storage. This increase with the number of elements is

roughly linear for EBE and sparse storages.

In this thesis, the compressed sparse technique is adopted and this compressed sparse

storage is constructed by assembling global stiffness matrix in the element loop as shown

in Figure 2.4 by collecting nonzero entries in upper (or lower) triangular part of each

newly generated element matrix into three vectors, that is, iebea, jebea and ebea,

which correspond to global row number, global column number and element entry value,

respectively. Taking the natural ordered matrix as an example, the three vectors, iebea,

jebea and ebea, should be sorted (by quick sorting algorithm) in ascending order in terms

of row number, iebea (vectors jebea and ebea should be changed correspondingly with

iebea). Next, for the same iebea, quick sorting is applied to jebea unless the number

of jebea with the same iebea is less than 16, in this case, insertion sorting is adopted for

efficiency. Note that ebea changes correspondingly with jebea (see Numerical Recipes

by Press et al. and ORDERPACK package for these sorting algorithms). Finally, the

entries with the same iebea and jebea number are summed up, the new three global

vectors, icsra, jcsra and csra (or compressed column storage, icsca, jcsca and csca)

are formed for global sparse stiffness matrix A. However, as mentioned above, The three

vectors, iebea, jebea and ebea, can be overwritten by icsca, jcsca and csca) for

efficient storage purpose. That is to say, the vectors, icsca, jcsca and csca) may not

be necessary any more. Clearly, for symmetric matrix, CSR storage of upper triangular

part is also the CSC storage of lower triangular part. For the operations involving block

matrices, each block should be stored, separately. That is,

• icsrk, jcsrk and csrk (or icsck, jcsck and csck ) for upper triangular part of

K;

• icsrb, jcsrb and csrb (or icscb, jcscb and cscb) for B;

• icsrc, jcsrc and csrc (or icscc, jcscc and cscc) for upper triangular part of C.
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2.4 Summary

This chapter gives a broad, but not in-depth, introduction to some popular iterative

methods, preconditioning methods, and some storage schemes. Krylov subspace methods

are especially emphasized because they are widely applied in engineering and science.

During the introduction of preconditioned iterative methods, some related topics are also

described. Finally, we compared the characteristics of the EBE based preconditioned

iterative methods and sparse preconditioned iterative methods, and proposed to use

sparse preconditioned iterative methods in this thesis.

For more details of iterative methods and preconditioning methods, the following

well-written literature are recommended: Axelsson (1994); Barrett et al. (1994); Kelley

(1995); Bruaset, (1995, 1997); Demmel (1997); Greenbaum (1997); Trefethen and Bau

(1997); Dongarra et al. (1998); Duff and van der Vorst (1998); Meurant (1999); Saad and

van der Vorst (2000); Benzi (2002); Eijkhout (2003); Saad (2003); van der Vorst (2003);

Benzi et al. (2005); Simoncini and Szyld (2005); Elman et al. (2005). For sparse matrix

storage schemes and sparse matrix operations, refer to Barrett et al. (1994); Saad (2003).
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Figure 2.1: Flowchart on the selection of preconditioned iterative methods
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Figure 2.2: Sparsity pattern of matrices after reordering.
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(a) Block ordering, iord2
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Figure 2.3: Sparsity pattern of matrices after block reordering.
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For all elements:
For each generated element stiffness matrix,
store the nonzero entries and their global
index (row and column number) into three
vectors, iebea, jebea, ebea.

End for

Setup sparse global matrix:

Sort the element-level three vectors, iebea,
jebea, ebea into sparse global stiffness
matrix storage, ia, ja, va (The requirement
for ia, ja, va can be eliminated if iebea,
jebea, ebea is overwritten by the
compressed sparse storage).

Forming preconditioner:

This step may not be needed for some
preconditioning method.

For all time steps or load increments:

Apply iterative solver with chosen
preconditioner (in some applications, the
stiffness matrix, A, and preconditioner need
to be regenerated).

End for

Figure 2.4: Flow chart of applying sparse preconditioned iterative method in FEM anal-
ysis
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Table 2.1: EBE technique versus sparse technique

Mesh size n ne rs(%) Sebe (MBytes) Ssps (MBytes) flops(Av)den flops(Av)ebe flops(Av)sps

8× 8× 8 7160 512 2.15 18.1 18.3 1.025 × 108 4.770 × 106 2.204 × 106

12× 12× 12 23604 1728 0.72 61.0 61.9 1.114 × 109 1.610 × 107 8.023 × 106

16× 16× 16 55280 4096 0.32 144.5 146.6 6.112 × 109 3.816 × 107 1.956 × 107

20× 20× 20 107180 8000 0.17 282.2 286.4 2.298 × 1010 7.453 × 107 3.906 × 107



CHAPTER 3

ITERATIVE SOLUTIONS FOR

BIOT’S SYMMETRIC

INDEFINITE LINEAR

SYSTEMS

3.1 Introduction

For symmetric and positive definite linear systems, the PCG method is the obvious choice.

However, there are several choices for symmetric indefinite problems with coupled 2× 2

block coefficient matrices though MINRES and SYMMLQ, which exclude symmetric in-

definite preconditioners, are regarded as standard iterative methods for such problems.

Apart from MINRES and SYMMLQ methods, the other possible choices can be summa-

rized as:

Partitioned Iterative Methods

For the symmetric indefinite linear systems with 2× 2 block coefficient matrix, one

possibility is to decouple the linear system, then apply possible different iterative

schemes on the two decoupled systems. For example, the popular Uzawa-type

iterative methods can be categorized into this class.

Coupled Iterative Methods
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(a) Normal Equation Methods

A general nonsymmetric or indefinite linear system can be transformed into

a symmetric positive definite system for which PCG iterative method can be

applied. The “normalized” linear system has the form

AT Ax = AT b, or AAT y = b with x = AT y (3.1)

where the matrix product AT A or AAT is not explicitly formed. CGNE

and CGNR methods are variants of this class, the difference between them

is that CGNR solves the normalized system with AT multiplied from left,

while CGNE solves the normalized system with AT multiplied from right (e.g.

Barrett et al., 1994; Kelley, 1995; Dongarra et al., 1998). However, their con-

vergence is usually slow because the condition number is squared after the

normalization. Therefore, applying PCG to normalized equation are not con-

sidered in our problems.

(b) PCG Method

As we mentioned above, PCG is the first-choice iterative solver for SPD linear

systems. However, PCG has been used with some success for the symmet-

ric indefinite linear systems, and breakdown was observed rarely in practical

problems (e.g., Lukšan and Vlček, 1998, 1999, 2000; Smith, 2000; Lee et al.,

2002; Smith and Griffiths, 1998, 2004). Recent advance shows that symmetric

indefinite CG method (e.g. Lukšan and Vlček, 1998) should be equivalent to

the simplified Bi-CG method for a special choice of the auxiliary vector (e.g.

Rozložńık and Simoncini, 2002).

(c) PCR Method

Preconditioned Conjugate Residual (PCR) method has been mentioned in

many literatures for symmetric indefinite problems (e.g. Ashby et al., 1990;

Hackbusch, 1994; Klawonn, 1995; Toh and Kojima, 2002; Toh, 2003). In fact,

PCR is an alternate name of MINRES algorithm (e.g. Wathen and Silvester,

1993).

(d) SQMR Method

An investigation on iterative methods for symmetric indefinite problems shows

that so far, SQMR can be preconditioned by an arbitrary symmetric precon-



3.2: Linear Systems Discretized from Biot’s Consolidation Equations 45

ditioner with theoretical guarantee. When a symmetric positive definite pre-

conditioner or no preconditioner is used, SQMR is mathematically equivalent

to MINRES (e.g. Freund and Nachtigal, 1994; Freund and Jarre, 1996).

This chapter is intended to compare some currently popular iterative methods for the

solution of Biot’s symmetric indefinite linear systems from perspectives of computer run-

time and memory usage.

3.2 Linear Systems Discretized from Biot’s Consolidation

Equations

Since the pioneering work of Terzaghi (1925), soil consolidation has played an important

role in soil mechanics. As a further development, three-dimensional soil consolidation

theory was put forward by Biot (1941) and it was widely applied in the past decades.

In terms of Biot’s definition, soil consolidation is the process of a gradual adaptation of

the soil to the load variation. The following derivation of the coupled finite element for-

mulation of 3-D Biot’s consolidation problem is based on the weighted residual Galerkin

method which has been used by Abbo (1997). More detailed derivation of finite element

Biot’s consolidation formulation are given by Sandhu and Wilson (1969), Abbo (1997),

Smith and Griffiths (1998), Zienkiewicz et al. (1998), Lewis and Schrefler (1998) and

Zienkiewicz and Taylor (2000).

3.2.1 Biot’s Consolidation Equations

In Biot’s theory, soil is regarded as a porous skeleton filled with water, and the interaction

between soil skeleton and pore water is determined by the principle of effective stress

and the continuity relation. When taking an infinitesimal soil element, the equilibrium
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equations of this element can be expressed as

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ bsx = 0 (3.2a)

∂τyx

∂x
+

∂σy

∂y
+

∂τyz

∂z
+ bsy = 0 (3.2b)

∂τzx

∂x
+

∂τzy

∂y
+

∂σz

∂z
+ bsz = 0 (3.2c)

Eq. (3.2) can be expressed in a more compact form

∇̃T
σ + bs = 0 (3.3)

where bs = γsb is the body force vector of soil skeleton, γs is unit weight of soil and

b = {0, 0, 1}T . ∇̃ is a differential operator defined as

∇̃T =




∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x




(3.4)

In conjunction with the principle of effective stress, σ = σ
′ + 1p, Eq. (3.3) can be

expressed further as

∇̃T (σ′ + p1) + bs = 0 (3.5)

where σ
′ = {σ′

x, σ′
y, σ

′
z, τxy, τyz, τzx}T is the vector of effective stress; 1 = {1, 1, 1, 0, 0, 0}T

is a second-order Kronecker delta in vectorial form, and p = pst + pex is total pore water

pressure decomposed with steady state component, pst, and excess component, pex (pore

pressure in excess of that at steady state), respectively.

For a linear elastic solid element, the stress-strain relation is given as

σ
′ = De

ε (3.6)

where ε = {εx, εy, εz, γxy, γyz, γzx}T is the strain vector, and De is the elastic stress-strain

matrix given as

De =
E′

(1 + ν ′) (1− 2ν ′)




1− ν
′

ν
′

ν
′

0 0 0

ν
′

1− ν
′

ν
′

0 0 0

ν
′

ν
′

1− ν
′

0 0 0

0 0 0 0.5 − ν
′

0 0

0 0 0 0 0.5− ν
′

0

0 0 0 0 0 0.5 − ν
′




(3.7)
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where E′ is the effective Young’s modulus and ν
′

is the effective Poisson’s ratio. The

strain vector is related to the displacement vector in terms of

ε = Buue (3.8)

where ue = {ux1, uy1, uz1, ux2, uy2, uz2, . . . , uxm, uym, uzm}T is the vector of nodal dis-

placement for a m-node solid element and Bu is the strain-displacement matrix.

Another relation between velocity and pore water pressure is given by the continuity

equation. Physically, it means that the volume of fluid flowing in or out is equal to the

volume change of the soil mass (if no sources or sinks are considered)

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
+

∂εv

∂t
= 0 (3.9)

where εv = εx + εy + εz = 1T
ε is the volumetric strain, and thus, Eq. (3.9) is expressed

in a compact form as

div v + 1T
ε̇ = 0 (3.10)

here v = {vx, vy, vz}T is the vector of superficial fluid velocity (i.e., average relative veloc-

ity of seepage measured over the total area). These components in coordinate directions

can be determined by the Darcy’s law





vx

vy

vz





=
1

γw




kxx kxy kxz

kyx kyy kyz

kzx kzy kzz








∂p

∂x
− bwx

∂p

∂y
− bwy

∂p

∂z
− bwz





(3.11)

or in a compact form

v =
[k]

γw
(∇p− bw) (3.12)

where bw = γwb; [k] is the permeability matrix, and usually, kxy = kxz = kyz = 0 is

assumed; γw is the unit weight of pore water taken as 10 kN/m3 in this thesis.

Substituting Eq. (3.12) into the continuity Eq. (3.10) gives

div

[
[k]

γw

(
∇p− bw

)]
+ 1T

ε̇ = 0 (3.13)

Therefore, Biot’s consolidation equations are composed of Eq. (3.5) and Eq. (3.13). To

carry out finite element analysis of Biot’s consolidation problem, it is required to dis-

cretize the consolidation equations in space domain and time domain, respectively. Usu-

ally, weighted residual Galerkin method is adopted for the discretization of space domain.
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3.2.2 Spatial Discretization

Applying the weighting residual method to Eq. (3.5) results in

∫

V

wT
u [∇̃T (σ′ + 1p) + bs] dV = 0 (3.14)

where wu = {wx, wy, wz}T is the vector of weighting functions, and usually, the choice is

the Galerkin-weighted functions

wu = Nuδue (3.15)

where Nu is the displacement shape function matrix for m-node solid element

Nu =




N1 0 0 N2 0 0 · · · Nm 0 0

0 N1 0 0 N2 0 · · · 0 Nm 0

0 0 N1 0 0 N2 · · · 0 0 Nm




3×3m

(3.16)

and δue is the vector of arbitrary increment of element nodal displacements, and ue is

interpolated to derive the displacement at any point in the element through

u = Nuue (3.17)

Similarly, for a solid element coupled with fluid element, we can define that

p = Nppe (3.18)

where Np is the shape function vector for n-node fluid element as

Np = {Np1, Np2, . . . , Npn} (3.19)

and pe = {p1, p2, . . . , pn}T is the vector of element nodal pore water pressure.

By applying Green’s first identity to the first term in Eq. (3.14), we obtain

∫

V

(∇̃wu)T (σ′ + 1p) dV −
∫

S

wT
u t dS −

∫

V

wT
u bs dV = 0 (3.20)

where t = {tx, ty, tz}T is the vector of surface traction force. Substituting Eq. (3.15) into

Eq. (3.20) and integrating in an element domain with volume Ve and surface boundary

Se gives

(δue)
T

[∫

Ve

(∇̃Nu)T σ
′ dV +

∫

Ve

(∇̃Nu)T1p dV −
∫

Se

NT
u t dS −

∫

Ve

NT
ubs dV

]
= 0 (3.21)

Given an arbitrary δũ, Eq. (3.21) holds only if

∫

Ve

(∇̃Nu)T σ
′ dV +

∫

Ve

(∇̃Nu)T1p dV −
∫

Se

NT
u t dS −

∫

Ve

NT
ubs dV = 0 (3.22)
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Due to Bu = ∇̃Nu with the expression

Bu =




∂N1

∂x
0 0

∂N2

∂x
0 0 · · · ∂Nm

∂x
0 0

0
∂N1

∂y
0 0

∂N2

∂y
0 · · · 0

∂Nm

∂y
0

0 0
∂N1

∂z
0 0

∂N2

∂z
· · · 0 0

∂Nm

∂z
∂N1

∂y

∂N1

∂x
0

∂N2

∂y

∂N2

∂x
0 . . .

∂Nm

∂y

∂Nm

∂x
0

0
∂N1

∂z

∂N1

∂y
0

∂N2

∂z

∂N2

∂y
. . . 0

∂Nm

∂z

∂Nm

∂y
∂N1

∂z
0

∂N1

∂x

∂N2

∂z
0

∂N2

∂x
. . .

∂Nm

∂z
0

∂Nm

∂x




6×3m

(3.23)

substituting Eqs. (3.6), (3.8), (3.17) and (3.18) into Eq. (3.22) leads to
(∫

Ve

BT
u DeBu dV

)
ue +

(∫

Ve

BT
u 1Np dV

)
pe =

∫

Ve

NT
ubs dV +

∫

Se

NT
u t dS (3.24)

or

Keue + Lepe = fe (3.25)

In the same way, applying the Galerkin-weighted function

wp = Npδpe (3.26)

to Eq. (3.13) gives
∫

V

wT
p div

[
[k]

γw

(
∇p− bw

)]
dV +

∫

V

wT
p 1T

ε̇ dV = 0 (3.27)

and applying Green’s first identity to the first term of the above equation results in
∫

S

wT
p (∇p− bw)T

[k]

γw
n dS −

∫

V

(∇wp)
T [k]

γw
(∇p− bw) dV +

∫

V

wT
p 1T

ε̇ dV = 0 (3.28)

where n is the unit outward normal. Integrating in an element domain and Substituting

Eqs. (3.8), (3.15), (3.17), (3.18) and (3.26) into Eq. (3.28), we have

(δpe)
T

[∫

Se

NT
p (Bppe − bw)T

[k]

γw

n dS −
∫

Ve

BT
p

[k]

γw

Bp dV pe +

∫

Ve

NT
p 1TBu dV u̇e

+

∫

V

BT
p

[k]

γw

bw dV

]
= 0

(3.29)

where Bp is defined as

Bp = ∇Np =




∂Np1

∂x

∂Np2

∂x
· · · ∂Npn

∂x
∂Np1

∂y

∂Np2

∂y
· · · ∂Npn

∂y
∂Np1

∂z

∂Np2

∂z
· · · ∂Npn

∂z




3×n

(3.30)
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Given an arbitrary δpe, Eq. (3.29) holds only if

∫

Ve

NT
p 1TBu dV u̇e−

∫

Ve

BT
p

[k]

γw
Bp dV pe = −

∫

V

BT
p

[k]

γw
bw dV−

∫

Se

NT
p (Bppe−bw)T

[k]

γw
n dS

(3.31)

or

LT
e u̇e −Gepe = ge (3.32)

In view of the static component of p in Eq. (3.5) and Eq. (3.13) can be eliminated, and

the right side in Eq. (3.32) is usually zero, we obtain the coupled element equation

{
Keue + Lep

ex
e = fe

LT
e u̇e −Gep

ex
e = 0

(3.33)

Clearly, assembling Eq. (3.33) element by element gives the global coupled equation as

{
Ku + Lpex = f

LT u̇−Gpex = 0
(3.34)

where

K =
∑

e

(∫

Ve

BT
uDeBu dV

)
(3.35a)

L =
∑

e

(∫

Ve

BT
u1Np dV

)
(3.35b)

G =
∑

e

(∫

Ve

BT
p

[k]

γw
Bp dV

)
(3.35c)

f =
∑

e

fe (3.35d)

The Eq. (3.34) can also be expressed as matrix form as follows

[
0 0

LT 0

]{
u̇

ṗex

}
+

[
K L

0 −G

]{
u

pex

}
=

{
f

0

}
(3.36)

In Eq. (3.34), the soil stiffness matrix K is defined as linear elasticity as shown in

Eq. (3.35). When nonlinear elasto-plastic soil behavior is considered, the stress-strain

relation is determined by the elasto-plastic stress-strain matrix Dep.

3.2.3 Time Integration

Eq. (3.34) is a first-order ordinary differential equation (ODE), it is required to integrate

it with respect to time. By using the simplest θ-method which can be categorized into
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one-step scheme (by definition, one-step scheme only needs the information in previous

time step to march the iteration, see Borja (1991); Abbo (1997) for the detail), and thus

we obtain
{

θKun+1 + θLpex
n+1 = (θ − 1)Kun + (θ − 1)Lpex

n + f

θLTun+1 − θ2∆tGpex
n+1 = θLTun + θ(1− θ)∆tGpex

n

(3.37)

or
[

θK θL

θLT −θ2∆tG

]{
un+1

pex
n+1

}
=

[
(θ − 1)K (θ − 1)L

θLT θ(1− θ)∆tG

]{
un

pex
n

}
+

{
f

0

}

(3.38)

where θ is a time integrating parameter. The choice of θ = 1/2 leads to the Crank-

Nicolson approximation method, however, oscillatory results may be incurred by this

approximation, and thus, the fully implicit method by choosing θ = 1 is often used (e.g.,

Smith and Griffiths, 1998, 2004). It is worth noting that for the second equation of

Eq. (3.37), integrating with respect to time is processed before or after a θ is multiplied

in order to preserve symmetry.

Eq. (3.38) is more often used in finite element analysis based on linear elastic soil

model. For the soil with nonlinear behavior, an incremental formulation of Biot’s consol-

idation equations is preferred. It is natural that an incremental version of first equation

in Eq. (3.34) is derived as

K∆u + L∆pex = ∆f (3.39)

For the second equation in Eq. (3.34), it can be written as the equations at two time

steps, respectively {
LT u̇n+1 −Gpex

n+1 = 0

LT u̇n −Gpex
n = 0

(3.40)

By making use of the linear interpolation in time

∆u

∆t
= θu̇n+1 + (1− θ)u̇n (3.41)

we can obtain

LT ∆u−∆tG(θ∆pex + pex
n ) = 0 (3.42)

Therefore, in terms of Eqs. (3.39) and (3.42), the incremental formulation of Biot’s

consolidation equation can be written as
[

K L

LT −θ∆tG

]{
∆u

∆pex

}
=

{
∆f

∆tGpex
n

}
(3.43)
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Note that this incremental formulation has been mentioned as the d-form implementation

because only displacement and pore pressure are required to march the iteration (e.g.

Borja, 1991). No matter whether Eq. (3.38) or the incremental formulation (3.43) is

used, a symmetric indefinite linear system has to be solved in each time step. In a more

general form, the linear system can be written as
[

K B

BT −C

]{
x

y

}
=

{
f

g

}
with A =

[
K B

BT −C

]
(3.44)

Here A ∈ R
N×N is a sparse 2 × 2 block symmetric indefinite matrix; K = K ∈ R

m×m

corresponding to soil stiffness is symmetric positive definite (SPD) , B = L ∈ R
m×n is

the connection matrix and has full column rank, and C = θ∆tG ∈ R
n×n corresponding

to fluid stiffness is symmetric positive semi-definite.

When employing the Sylvester’s inertia theorem, the congruence transform

A =

[
K B

BT −C

]
=

[
I 0

BTK−1 I

][
K 0

0 −S

][
I K−1B

0 I

]
(3.45)

indicates the indefiniteness because A has m positive eigenvalues and n negative eigen-

values (e.g. Wathen and Silvester, 1993; Demmel, 1997; Elman et al., 1997). Figure 3.1

shows the eigenvalue distribution of the coefficient matrix of a small Biot’s linear system.

S = C +BTK−1B in Eq. (3.45) is called Schur complement matrix, which arises in many

applications.

3.3 Partitioned Iterative Methods

If we rewrite Eq. (3.44) in a more general form
[

A11 A12

A21 A22

]{
x

y

}
=

{
f

g

}
(3.46)

then block Gauss elimination of Eq. (3.46) leads to
[

A11 A12

0 A22 −A21A
−1
11 A12

]{
x

y

}
=

{
f

g −A21A
−1
11 f

}
(3.47)

Where, S = A11 − A21A
−1
11 A12, is the corresponding Schur complement matrix. One

solution method based on this decoupled systems in Eq. (3.47) has been given by Algo-

rithm 3.1.
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Algorithm 3.1 Algorithm for the solution of 2× 2 block linear system of Eq. (3.46).

Constructing Schur complement matrix,
S = [s1, s2, · · · , sn] ∈ R

n×n,
for j = 1 to n do

Solve A11t = A12ej

Form sj = A22ej −A21t
end for
Solve the block unknowns, y

Solve A11h = f
Solve Sy = g −A21h

Solve the block unknowns, x
Solve A11x = f −A12y

Where, t and h are temporary vectors, while ej = {0, . . . , 1︸︷︷︸
j−th

, . . . , 0}T is used to exact

the j-th column of a matrix. However, the obvious disadvantage of this method is that

exact Schur complement matrix has to be constructed and computational cost during

this constructing process is very expensive due to a series of solution of linear systems

with coefficient matrix A11. Therefore, many partitioned iterative solution methods have

been proposed to avoid this explicit construction.

3.3.1 Stationary Partitioned Iterative Methods

3.3.1.1 Preconditioned Inexact Uzawa Methods

Recently, preconditioned inexact Uzawa methods attract some attentions because inex-

act Uzawa methods are simple, does not need inner products involved in each iteration

and have low memory requirements. Inexact Uzawa methods have been used in the en-

gineering community for large-scale scientific applications. (e.g. Chen, 1998; Cao, 2003).

Preconditioned inexact Uzawa method for solving Eq. (3.44) can be written as

{
xk+1 = xk + G−1(f −Kxk −Byk)

yk+1 = yk + H−1(BT xk+1 − Cyk − g)
(3.48)

where G ∈ R
m×m and H ∈ R

n×n are symmetric positive definite preconditioners that

should satisfy certain conditions to ensure convergence of Eq. (3.48).
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3.3.1.2 SOR-like Iterative Methods

A class of SOR-like iterative method has been proposed by Golub et al. (2001) for the

solution of Eq. (3.44) with a zero (2, 2) block, i.e. C = 0 ∈ R
n×n. This solution procedure

can be readily generalized to the linear systems shown in Eq. (3.44). When the original

2× 2 coefficient matrix in Eq. (3.44) is decomposed into

A = L+D + U (3.49)

where D =

[
K 0

0 −Ŝ

]
, L =

[
0 0

BT 0

]
, U =

[
0 B
0 Q

]
and Ŝ = C + Q is an ap-

proximate Schur complement matrix. Next, over-relaxation is implemented based on the

following splitting: ωA = (D + ωL) − [(1 − ω)D − ωU ], which leads to the following

iterative scheme
{

xk+1

yk+1

}
=Mω

{
xk

yk

}
+ ω(D + ωL)−1

{
f

g

}
(3.50)

with

Mω = (D+ωL)−1[(1−ω)D−ωU ] =

[
(1− ω)I −ωK−1B

ω(1− ω)Ŝ−1BT −ωŜ−1(ωBT K−1B + C) + I

]

(3.51)

From Eq. (3.50), the SOR-like algorithm is derived as

{
xk+1 = (1− ω)xk + ωK−1(f −Byk)

yk+1 = yk + ωŜ−1(BT xk+1 − Cyk − g)
(3.52)

Clearly, in each iteration of this SOR-like method, there are two solves about K and Ŝ,

respectively.

3.3.1.3 A More General Iteration Method

In fact, many partitioned iterative methods including preconditioned inexact Uzawa and

SOR-like method fall into one class for which Richardson’s iteration is applied to un-

knowns x (displacement) and y (excess pore pressure), respectively. Note that applying

block Gauss elimination to Eq. (3.44) leads to the decoupled linear systems

{
Kx = f −By

Sy = BT K−1f − g with S = C + BTK−1B
(3.53)
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Therefore, applying Richardson’s iteration uk+1 = uk + ωrk (e.g. Saad, 1996; Meurant,

1999; Saad and van der Vorst, 2000) to the above decoupled linear systems results in

{
xk+1 = xk + ωxrk

yk+1 = yk + ωyr̃k

(3.54)

where rk and r̃k are the residual vectors of the corresponding linear system in Eq. (3.53).

One natural extension of Eq. (3.54) is to choose ωx and ωy in terms of appropriate

corresponding preconditioning matrices with suitable relaxation parameter ξ and η, i.e.

{
xk+1 = xk + ξG−1rk

yk+1 = yk + ηH−1r̃k

(3.55)

or {
xk+1 = xk + ξG−1(f −Kxk −Byk)

yk+1 = yk + ηH−1(BTxk+1 − Cyk − g)
(3.56)

Here, G and H are the preconditioning matrices as shown in Eq. (3.48). The conver-

gence behavior for linear systems with zero (2, 2) block has been studied by Cui (2004).

Obviously, when relaxation parameters ξ = η = 1.0, Eq. (3.56) reduces to preconditioned

inexact Uzawa method, and when ξ = η = ω, G = K and H = Ŝ, Eq. (3.56) reduces to

SOR-like methods given in Eq. (3.52).

A more general partitioned iterative method derived from Eq. (3.55) was suggested

by Hu and Zou (2001), but the relaxation parameters ξ and η varied in each iteration.

Their method exhibits some similarity to the CG method.

3.3.2 Nonstationary Partitioned Iterative Methods

It is obvious that the method suggested by Hu and Zou (2001) does not follow the stencil

of stationary iterative method, and can be expected to converge faster with the choice

of optimal relaxation parameters. Another nonstationary partitioned iterative method

was proposed by Prevost (1997). Prevost’s PCG iterative procedure can be readily

applied to the two decoupled linear systems given in Eq. (3.53), while the outer PCG

iteration is applied to the Schur complement system. The Schur complement matrix

need not be formed explicitly. More specifically, the Prevost’s PCG iterative scheme

is applied in terms of the following steps: (1) Outer PCG method is applied to Schur

complement linear system S y = BT K−1f − g; (2) When implementing the first step,
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only one matrix-vector product with Schur complement S is involved, that is, qk = S pk,

which is decomposed into several steps without forming S explicitly by carrying out the

matrix-vector products of qk = S pk = (C + BT K−1B)pk separately.

The algorithm of Prevost’s PCG iterative procedure applied to Eq. (3.53) is provided

by the following Algorithm 3.2.

Algorithm 3.2 Prevost’s inner-outer PCG algorithm for the solution of 2 × 2 block
linear system of Eq. (3.44).

Choose y0, solve Kx0 = f −By0,
set r̃0 = BT x0 − g − Cy0,
z0 = H−1r̃0, p0 = z0.
for k = 0 to max it do

Solve Ktk = Bpk by inner PCG
qk = Cpk + BT tk (i.e., qk = S pk)
αk = (r̃k, zk)/(qk, pk)
yk+1 = yk + αkpk

r̃k+1 = r̃k − αkqk

Check convergence
zk+1 = H−1r̃k+1

βk+1 = (r̃k+1, zk+1)/(rk, zk)
pk+1 = zk+1 + βk+1pk

end for

Remark 3.1 Prevost’s PCG iterative procedure is applied to Schur complement system

and the excess pore pressure unknown y is obtained when residual r̃k+1 is assumed small

enough. There are two obvious methods to solve for the displacement unknown x: (1) one

natural way is to solve Kx = f−Byk+1 after the solution yk+1 is solved by Algorithm 3.2;

(2) The displacement unknown can be updated at the same time with pore pressure by

xk+1 = xk − αktk (e.g. Prevost, 1997; Gambolati et al., 2002).

Remark 3.2 There is one linear system of K in each iteration. Thus, an inner PCG

can be used for such a linear system. However, Ktk = Bpk must be solved with sufficient

precision (that is, this inner linear system of K must be solved by PCG method with a

very small tolerance such as 10−12) so that the resultant solution xk+1 is accurate enough.

Otherwise, xk+1 may not be accurate even though convergence criterion on the residual

r̃k+1 is satisfied. In this study, the inner linear system is solved by SSOR preconditioned
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PCG method with so-called Eisenstat trick, and the algorithm is given in Algorithm 3.3

(e.g., Eisenstat, 1981; Saad, 1996; Meurant, 1999; van der Vorst, 2003).

The standard SSOR preconditioner based on K = LK + DK + LT
K for solving the linear

system Kx = b can be written as

PSSOR = (Lk + Dk)D
−1
k (Dk + LT

k ) (3.57)

where LK , DK are strictly lower triangular part and diagonal part of K, respectively.

Algorithm 3.3 SSOR(ω = 1.0) preconditioned PCG algorithm with Eisenstat trick for
the solution of inner linear system.

Choose x0 as initial guess, set z0 = 0,
Compute r0 = (LK + DK)−1b, sk = DKrk, p0 = s0.
for k = 0 to max it do

tk = K̃pk carried out by Procedure PMatvec of Eq. (3.60)
αk = (rk, sk)/(tk, pk)
zk+1 = zk + αkpk

rk+1 = rk − αktk
sk+1 = DKrk+1

Check convergence, if converged, set xk+1 = x0 + (DK + LT
K)−1zk+1

βk+1 = (rk+1, sk+1)/(rk, sk)
pk+1 = sk+1 + βk+1pk

end for

Remark 3.3 Notice that when applying SSOR preconditioned PCG method with Eisen-

stat trick, the preconditioned matrix must be symmetric positive definite so that PCG can

work. Therefore, SSOR preconditioner is used separately so that preconditioned matrix

(which is still symmetric positive definite) is,

K̃ = (LK + DK)−1K(LT
K + DK)−1 (3.58)

furthermore,

K̃ = (LK + DK)−1[(LK + DK)−DK + (LT
K + DK)](LT

K + DK)−1 (3.59)

but with a right preconditioner DK , which does not need to be inverted in this situa-

tion. This efficient SSOR preconditioned PCG algorithm has been mentioned by Meurant

(1999). Eisenstat trick takes effect when the preconditioned matrix K̃ is multiplied by a
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vector pk, thus leading to the following four steps:

Procedure PMatvec :

(1) f = (LT
K + DK)−1pk

(2) g = DKf

(3) h = (LK + DK)−1(pk − g)

(4) tk = f + h

(3.60)

3.4 Global Krylov Subspace Iterative Methods

By applying suitable global Krylov subspace iterative methods for symmetric indefinite

Biot’s linear systems, problems can be solved directly instead of decoupling it into two

SPD linear systems. In Section 3.1, the brief review of iterative solution methods for

symmetric indefinite linear systems shows that theoretically, only SQMR can be used

with an indefinite preconditioner for Biot’s linear systems. However, some recent practi-

cal applications and analyses show that breakdown may rarely occur when PCG is used

for indefinite problems, and MINRES can not be used, without risk, with symmetric

preconditioner unless the preconditioner is positive definite (Dongarra et al., 1998). We

attempt to use PCG and MINRES though the restrictions related to PCG and MINRES

may be avoided. Therefore, all three iterative methods preconditioned by positive defi-

nite and indefinite preconditioners are tested, respectively. The algorithms for PCG and

SQMR are given in Appendix A. There exist two versions of MINRES. One makes use

of Lanczos algorithm and Givens Rotations (e.g. Paige and Saunders, 1975; Greenbaum,

1997; Dongarra et al., 1998). The second version has been analyzed by Neytcheva and

Vassilevski (1998) or Wang (2004). In this study, the preconditioned MINRES method

given by Wang (2004) is used, but a small change is made to reduce two matrix-vector

products to one in each iteration. The resultant preconditioned MINRES method with

one matrix-vector product and one preconditining solve is given by Algorithm 3.4

Algorithm 3.4 Preconditioned MINRES Algorithm for the solution of linear system of
Eq. (3.44).
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choose an initial guess x0,
set r0 = b−Ax0, p0 = z0 = M−1r0,
q0 = Ap0, t0 = Az0 (= q0).
for k = 0 to max it do

Compute
uk = M−1qk

αk = (zk, qk)/(qk, uk)
xk+1 = xk + αkpk

rk+1 = rk − αkqk

zk+1 = zk − αkuk

tk+1 = Azk+1

βk+1 = (zk+1, tk+1)/(zk, tk)
pk+1 = zk+1 + βk+1pk

qk+1 = tk+1 + βk+1qk

end for

3.5 Preconditioning Strategies

As emphasized in Section 2.2, preconditioning is always an essential issue when using

iterative methods. For the above discussed partitioned iterative methods, two precon-

ditioning matrices need to be chosen for the two decoupled SPD linear systems. For

Prevost’s inner-outer PCG procedure, only preconditioning matrix, H, for Schur com-

plement matrix is needed. Therefore, both in stationary partitioned iterative method

given by Eq. (3.56) and in Prevost’s PCG algorithm, only two simple schemes for pre-

conditioning matrix H are studied:

Scheme (1): Diagonal preconditioning H = β diag(Ŝ) = β diag
(
C+BTdiag(K)−1B

)
;

Scheme (2): SSOR preconditioning based on H = β Ŝ = β
(
C + BTdiag(K)−1B

)
.

Here, the scalar β = 4 is chosen to enhance the preconditioning matrix. There are also

many choices for the other preconditioning matrix G when implementing stationary par-

titioned iterative method, but only SSOR preconditioning G = (LK +DK)D−1
K (LT

K +DK)

is considered for computational efficiency.

As for global Krylov subspace iterative methods such as MINRES and SQMR, all

three methods preconditioned by GJ preconditioner are compared. It is recognized that

we are violating theoretical restrictions, namely, PCG is meant for SPD linear systems

and MINRES should be combined with SPD preconditioners. GJ preconditioner was
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proposed by Phoon et al. (2002) as a diagonal scaling with the form,

PGJ =

[
diag(K) 0

0 αdiag
(
C + BTdiag(K)−1B

)
]

(3.61)

and α < −1 was recommended. The use of indefinite GJ preconditioner was found

to be more suitable. The recommendation agrees with some recent observations that an

indefinite preconditioner may be more effective than a definite one for the problems arising

from mixed finite element approximations (e.g. Lukšan and Vlček, 1998; Perugia and

Simoncini, 2000). In practical implementation, the above global form of PGJ is proposed

with an element-by-element (EBE) form constructed from the following pseudo-code:

for i = 1 to m, do

p̃ii = K(i, i) (3.62)

for j = 1 to n, do

p̃m+j,m+j = α

[( m∑

i=1

B(i, j)2

K(i, i)

)
+ C(j, j)

]

= α




(
m∑

i=1

(ne∑
e

B(i, j)e

)2

K(i, i)

)
+ C(j, j)




≈ α




(
m∑

i=1

ne∑
e

(B(i, j)e)
2

K(i, i)

)
+ C(j, j)




(3.63)

where B(i, j)e is the entry in the B-block of the eth finite element referenced globally

and ne is the total number of elements in the finite element mesh. In addition, only the

storage of one vector {p̃ii}1≤i≤N for PGJ preconditioner is required. For sparse iterative

solutions, the construction procedure for diagonal GJ preconditioner is provided in Al-

gorithm 3.5.

Algorithm 3.5 Constructing GJ preconditioner with a vector {ãii}1≤i≤N .
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Set S as the nonzero sparsity structure of (1, 2) block B ∈ R
m×n

for i = 1 to m do
ãii = K(i, i)

end for
for j = 1 to n do

Set ãm+j,m+j = C(j, j)
for i = 1 to m do

If (i, j) ∈ S
Set ãm+j,m+j = ãm+j,m+j + B(i, j)2ã−1

ii

end if
end for
ãm+j,m+j = αãm+j,m+j

end for

To compare the behaviors of CG, MINRES and SQMR preconditioned by GJ precon-

ditioner, GJ preconditioner is made to be positive-definite or indefinite by changing the

sign of α.

3.6 Numerical Examples

3.6.1 Convergence Criteria

An iterative method can be terminated when the approximate solution is deemed suffi-

ciently accurate. In this study, the following relative residual convergence criterion with

zero initial guess is adopted:

Iteration stops when k ≥ max it or Rb =
‖rk‖2
‖r0‖2

=
‖b−Axk‖2
‖b‖2

≤ stop tol (3.64)

where ‖·‖2 denotes the 2-norm, max it and stop tol are the maximum iteration number

and stopping tolerance, respectively. In this study, max it = 20000 and stop tol = 10−6

are designated for all the iterative methods discussed above. For the inner linear sys-

tem in Prevost’s method, a more stringent stopping tolerance, stop tol(in) = 10−12 is

required.
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3.6.2 Problem Descriptions

The studied finite element mesh sizes range from 8× 8× 8 to 20× 20× 20 basing on one

flexible square footing problem with uniform vertical pressure of 0.1 MPa. Figure 3.2

shows the largest 20×20×20 finite element mesh, and the symmetry property allows only

a quadrant of the footing to be considered. The adopted finite elements are 20-node solid

quadrilateral elements coupled to 8-node fluid elements. Therefore, each 3-D element

consists of 60 displacement degrees of freedom and 8 excess pore pressure degrees of

freedom, which explains why the total number of DOFs of displacements would be much

larger than that of excess pore pressure, usually, the ratio is larger than 10. The details

of those 2× 2 stiffness matrices for the meshes from 8× 8× 8 to 20× 20 × 20 has been

given in Table 3.1.

The ground water table is assumed to be at the ground surface and is in hydrostatic

condition at the initial stage. The base of the mesh is assumed to be fixed in all directions

and impermeable, side face boundaries are constrained in the transverse direction, but

free in in-plane directions (both displacement and water flux). The top surface is free in

all direction and free-draining with pore pressures assumed to be zero. The soil material is

assumed to be isotropic, homogeneous and linear elastic with constant effective Poisson’s

ratio ν
′

= 0.3. In this study, two homogeneous soil profiles with significantly different

effective Young’s modulus E′ and hydraulic permeability parameter k are defined as:

Soil profile 1: homogeneous soft clay with E′ = 1 MPa and k = 10−9 m/s;

Soil profile 2: homogeneous dense sand with E′ = 100 MPa and k = 10−5 m/s.

The 0.1 MPa uniform footing load is applied “instantaneously” over the first time

step of 1s. Time increment is taken as t = 1 s.

3.6.3 Numerical Results

The performances of iterative methods or preconditioning methods are evaluated over a

range of mesh sizes and material properties based on the following indicators:

(a) RAM usage during iteration.

(b) Number of iterations required to achieve a residual norm below 10−6 (iteration

count).
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(c) CPU time spent prior to execution of iterative solver (overhead) includes time spent

on computation of element stiffness matrices, assembly of global stiffness matrix

and construction of preconditioners.

(d) CPU time spent within iterative solver (iteration time), which is a function of the

iteration count and the time consumed per iteration.

Compressed sparse storage schemes are used for the 2 × 2 coefficient matrix. More

specifically, for partitioned iterative methods, the blocks, upper triangular part of K, B

and upper triangular part of C, are stored separately, but for global Krylov subspace

iterative methods, the upper triangular part of coupled matrix A is stored. The number

of nonzero entries in each block has been provided in Table 3.1. For more details about

compressed sparse storages, refer to Barrett et al. (1994) and Saad (1996). Table 3.2

shows the performance of stationary partitioned iteration given by Eq. (3.56) for the

footing problems. The relaxation parameters have such a standard choice, ξ = 1.0 and

η = 1.0, though optimal choices could be possible to obtain a better convergence rate. A

rigorous study of the parameters choice for partitioned stationary iterative methods can

be derived by Golub et al. (2001) for the special case where the C = 0. It can be seen

that the scheme 2 for H may not lead to less iteration than the scheme 1 for the soil

profile 1, but for the soil profile 2, the scheme 2 for H can lead to less iteration than the

scheme 1. However, due to the cheap diagonal implementation, scheme 1 may need less

computer runtime.

Table 3.3 provides the numerical results of Prevost’s inner-outer PCG method with

two preconditioning schemes for H. The provided iteration counts are outer PCG itera-

tion counts and the average iteration counts required by inner PCG are given in bracket.

Similar to stationary partitioned iterative methods, in Prevost’s iterative method, scheme

1 for H leads to faster convergence than scheme 2, while for the soil profile 2, precondi-

tioning scheme 2 for H results in faster convergence. A common phenomenon in Table 3.2

and Table 3.3 is that the performance (including iteration count and runtime) of the par-

titioned iterative methods is not consistent for the same preconditioning choice, but it is

related closely to soil properties. Therefore, one suitable preconditioning matrix should

be selected for different soil property. This inconsistency of performance of scheme 1 or 2

could be explained as: the effect of BT diag(K)−1B in Ŝ = C + BT diag(K)−1B plays an
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important role for a preconditioning scheme because matrix B(L) is constant as shown in

Eq. (3.35c). Specifically speaking, for soil profile 1, the diagonal part of BTdiag(K)−1B

dominates the property of Ŝ, while for soil profile 2, the approximation quality of Ŝ

is dominated by both C and BTdiag(K)−1B. From this observation, it is known that

for partitioned iterative methods, care should be taken when selecting a preconditioning

scheme of H for different soil conditions.

For the 2× 2 block symmetric indefinite linear systems given by Eq. (3.44), the per-

formances of PCG, MINRES and SQMR methods are compared, and numerical results

are given in Table 3.4 for positive definite GJ preconditioner and in Table 3.5 for indef-

inite GJ preconditioner, respectively. It must be emphasized that though it is widely

thought that PCG should be used for SPD linear systems and MINRES method should

be combined with symmetric positive definite preconditioner, we still take a risk to use

them for Biot’s symmetric indefinite linear systems. As shown in Tables 3.4 and 3.5, scal-

ing factor α = +4.0 and α = −4.0 are used in GJ to make this preconditioner positive

definite and indefinite, respectively. When comparing Prevost’s PCG procedure with GJ

preconditioned methods, It can be seen that GJ preconditioned methods do not show

obvious advantage unless an indefinite GJ preconditioner, that is α = −4, is selected.

This effect is obvious for all three methods because the selection of the parameter α = −4

can significantly improve the performance of GJ preconditioned iterative method with

α = +4. More specifically, the selection of α = −4 in GJ preconditioner can lead to

about 75% saving of computer runtime based on the studied problems. This observation

can be verified by the suggestions of Phoon et al. (2002) and Toh et al. (2004) to choose

a negative α to obtain faster convergence when a preconditioner does not select the exact

K as its (1, 1) block.

In terms of Figure 3.3, Tables 3.4 and 3.5, it is interesting to note that the iterations

required by PCG and SQMR are same and convergence behaviors of two methods also

coincide, but due to the cheaper iteration, PCG may spend a little less computer runtime

than SQMR method. This similarity could be explained that on the indefinite problems,

the two methods may be closely related by simplified Bi-CG method (e.g. Rozložńık and

Simoncini, 2002). However, using indefinite preconditioned CG for indefinite linear sys-

tems may not always be guaranteed theoretically.
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3.7 Conclusions

To solve symmetric indefinite linear systems stemming from Biot’s consolidation prob-

lems, two basic iterative solution strategies are studied, one is partitioned iterative meth-

ods and the other one is coupled iterative methods. The following observations can be

summarized:

(a) With suitable choice of a preconditioner such as an indefinite preconditioner, pre-

conditioned coupled iterative methods are superior to partitioned iterative methods.

(b) Though it is widely accepted that PCG is used for SPD linear systems and MINRES

should be used with a positive definite preconditioner, numerical results show that

PCG and MINRES can be used successfully even though the theoretical restrictions

are violated.

(c) MINRES shows a better convergence rate than PCG and SQMR when the same

preconditioner is chosen, but at the cost of two additional recurrence relations. PCG

and SQMR have the same convergence behaviors, which may be explained from the

observation that they are closely connected by the simplified Bi-CG method.

(d) From the above studies, it is clear that given a symmetric preconditioner, there are

no obvious distinctions (on iteration counts and computing cost) between MINRES,

PCG and SQMR. But when choosing an iterative method, reliability without nu-

merical breakdown is still a considering factor. Thus, it is recommended to choose

preconditioned SQMR method for further fast solution strategies of symmetric in-

definite Biot’s linear systems.



Figures 66

−10 −5 0 5 10 15 20 25 30 35 40 45 50 55 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

There are total 1820 eigenvalues, in
which 1640 are positive and 180 are
negative.

Figure 3.1: Eigenvalue distribution of stiffness matrix A (m = 1640, n = 180) of Biot’s
linear system.
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Figure 3.2: 20× 20× 20 finite element mesh of a quadrant symmetric shallow foundation
problem.
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Figure 3.3: Convergence history of GJ(α = −4.0) preconditioned coupled iterative meth-
ods, solid line is for PCG and SQMR methods, while dashed line is for MINRES method;
(a). Homogeneous problem with soil profile 1; (b) Homogeneous problem with soil profile
2.
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Table 3.1: 3-D finite element meshes
Mesh size
8× 8× 8 12× 12× 12 16× 16× 16 20× 20× 20

Number of elements(ne) 512 1728 4096 8000
Number of nodes 2673 8281 18785 35721

DOFs
Pore pressure(n) 648 2028 4624 8820
Displacement (m) 6512 21576 50656 98360
Total (N = m + n) 7160 23604 55280 107180

No. non-zeros (nnz)
nnz(triu(K)) 443290 1606475 3920747 7836115
nnz(B) 103965 375140 907608 1812664
nnz(triu(C)) 7199 24287 57535 112319

nnz(Ŝ) 51714 187974 461834 921294
nnz(A)/N2 (%) 2.15 0.72 0.32 0.17
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Table 3.2: Performance of stationary partitioned iterations (ξ = 1.0, η = 1.0) over mesh
refining.

Mesh Size 8× 8× 8 12× 12× 12 16× 16× 16 20 × 20 × 20

Homogeneous problem with soil profile 1

Stationary partitioned iteration by Eq. (3.56) with Scheme 1 for H
RAM (MB) 28.0 73.0 166.5 328.0
Iteration count 927 1899 3220 4893
Overhead time (s) 11.0 37.5 89.6 177.3
Iteration time (s) 76.6 569.6 2363.1 7217.3
Total runtime (s) 88.3 609.0 2457.1 7403.1
Stationary partitioned iteration by Eq. (3.56) with Scheme 2 for H

RAM (MB) 28.0 73.0 167.0 330.0
Iteration count 929 1911 3242 4918
Overhead time (s) 12.3 51.6 168.2 474.3
Iteration time (s) 79.0 588.1 2442.2 7445.3
Total runtime (s) 92.0 641.6 2614.8 7928.2

Homogeneous problem with soil profile 2

Stationary partitioned iteration by Eq. (3.56) with Scheme 1 for H
RAM (MB) 28.0 73.0 166.5 328.0
Iteration count 937 1992 3301 5062
Overhead time (s) 11.0 37.4 89.5 176.3
Iteration time (s) 77.4 597.2 2422.5 7452.0
Total runtime (s) 89.0 636.6 2516.5 7636.8
Stationary partitioned iteration by Eq. (3.56) with Scheme 2 for H

RAM (MB) 28.0 73.0 167.0 330.0
Iteration count 939 1930 3274 4966
Overhead time (s) 12.3 51.6 168.3 474.5
Iteration time (s) 79.7 593.1 2483.3 7500.8
Total runtime (s) 92.6 646.6 2656.0 7983.8
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Table 3.3: Performance of Prevost’s inner-outer PCG method over mesh refining
Mesh Size 8× 8× 8 12× 12× 12 16× 16× 16 20 × 20 × 20

Homogeneous problem with soil profile 1

Prevost’s PCG iteration by Algorithm 3.2 with Scheme 1 for H
RAM (MB) 28.0 73.0 166.5 328.0
Iteration count 30 (115) 28 (160) 28 (210) 28 (260)
Overhead time (s) 11.0 37.5 89.5 176.2
Iteration time (s) 140.0 675.2 2153.5 5336.8
Total runtime (s) 151.5 714.5 2247.4 5521.5
Prevost’s PCG iteration by Algorithm 3.2 with Scheme 2 for H

RAM (MB) 28.0 73.0 167.0 330.0
Iteration count 26 (115) 31 (160) 36 (210) 39 (260)
Overhead time (s) 12.3 51.5 167.8 473.7
Iteration time (s) 123.2 746.1 2762.5 7426.5
Total runtime (s) 136.1 799.5 2934.7 7908.7

Homogeneous problem with soil profile 2

Prevost’s PCG iteration by Algorithm 3.2 with Scheme 1 for H
RAM (MB) 28.0 73.0 166.5 328.0
Iteration count 17 (85) 19 (120) 25 (160) 32 (200)
Overhead time (s) 11.0 37.5 89.5 176.1
Iteration time (s) 58.4 333.7 1403.2 4406.1
Total runtime (s) 70.0 373.1 1497.2 4590.7
Prevost’s PCG iteration by Algorithm 3.2 with Scheme 2 for H

RAM (MB) 28.0 73.0 167.0 330.0
Iteration count 17 (85) 17 (120) 17 (160) 17 (200)
Overhead time (s) 12.3 51.5 167.7 474.0
Iteration time (s) 59.7 312.9 1016.1 2542.2
Total runtime (s) 72.6 366.3 1188.3 3024.7
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Table 3.4: Performance of preconditioned by GJ(+4) method over mesh refining for
homogeneous problems.

Mesh Size 8× 8× 8 12× 12× 12 16 × 16 × 16 20× 20× 20

RAM(MB) 26.5 84.0 194.5 386.0

Homogeneous soil with soil profile 1

SQMR
Iteration count 1792 2947 4616 6350
Overhead (s) 10.8 37.0 88.2 173.6
Iteration time (s) 65.3 388.8 1486.0 4106.8
Total runtime (s) 76.7 427.6 1578.5 4288.6

PCG
Iteration count 1792 2947 4616 6350
Overhead (s) 10.8 36.9 88.0 173.0
Iteration time (s) 64.9 385.1 1473.7 4070.2
Total runtime (s) 76.4 423.8 1566.1 4251.6

MINRES
Iteration count 1676 2597 4288 5899
Overhead (s) 10.9 37.1 89.4 175.9
Iteration time (s) 62.7 348.9 1421.3 3907.2
Total runtime (s) 74.3 387.9 1515.1 4091.8

Homogeneous soil with soil profile 2

SQMR
Iteration count 1306 2495 4517 6655
Overhead (s) 10.8 37.0 88.2 173.7
Iteration time (s) 47.5 328.5 1454.9 4295.5
Total runtime (s) 59.0 367.4 1547.3 4477.4

PCG
Iteration count 1306 2495 4517 6655
Overhead (s) 10.8 36.8 88.0 173.4
Iteration time (s) 47.2 325.6 1440.5 4263.5
Total runtime (s) 58.6 364.4 1532.9 4445.3

MINRES
Iteration count 1237 2294 3991 6236
Overhead (s) 10.8 37.5 88.5 174.0
Iteration time (s) 45.8 308.0 1304.8 4095.1
Total runtime (s) 57.2 347.4 1397.6 4277.7
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Table 3.5: Performance of GJ(−4) method over mesh refining for homogeneous problems.

Mesh Size 8× 8× 8 12× 12× 12 16 × 16 × 16 20× 20× 20

RAM(MB) 26.5 84.0 194.5 386.0

Homogeneous soil with soil profile 1

SQMR
Iteration count 379 700 1067 1455
Overhead (s) 10.8 37.0 88.2 173.5
Iteration time (s) 13.8 91.8 342.0 935.3
Total runtime (s) 25.2 130.7 434.4 1117.1

PCG
Iteration count 379 700 1067 1455
Overhead (s) 10.8 36.9 87.9 173.0
Iteration time (s) 13.67 91.0 339.3 928.0
Total runtime (s) 25.1 129.9 431.6 1109.4

MINRES
Iteration count 368 652 1002 1424
Overhead (s) 10.8 36.8 87.9 173.0
Iteration time (s) 13.5 86.7 324.8 926.1
Total runtime (s) 25.0 125.5 417.0 1107.6

Homogeneous soil with soil profile 2

SQMR
Iteration count 345 575 839 1251
Overhead (s) 10.8 37.0 88.2 173.7
Iteration time (s) 12.5 75.2 268.5 803.9
Total runtime (s) 23.9 114.1 360.9 985.8

PCG
Iteration count 345 575 839 1251
Overhead (s) 10.8 36.9 87.9 172.9
Iteration time (s) 12.4 74.6 266.1 797.8
Total runtime (s) 23.8 113.4 358.4 979.2

MINRES
Iteration count 323 559 807 1251
Overhead (s) 10.8 36.9 87.9 173.3
Iteration time (s) 11.9 74.2 261.0 813.3
Total runtime (s) 23.3 113.0 353.3 995.1



CHAPTER 4

BLOCK CONSTRAINED

VERSUS GENERALIZED

JACOBI PRECONDITIONERS

4.1 Introduction

The finite-element discretization of Biot’s consolidation equations typically give rises to

a large symmetric indefinite linear system of Eq. (3.43) or Eq. (3.44). A more detailed

description of Biot’s consolidation equations is given in Section 3.2. It suffices to note

here that the number of displacement degrees of freedom (DOFs) m and the number of

pore pressure DOFs n has a ratio of about 10 (see Table 4.1 for examples). The matrix A

is generally sparse. Figure 2.3(a) illustrates the sparsity pattern of A with block ordering

(iord = 2) from a 5×5×5 meshed footing problem. A wide class of constrained problems

involving mixed finite element formulations also produces the above 2 × 2 block matrix

structure (e.g. Zienkiewicz et al., 1985).

As shown in the study of Chapter 3, there are several possible symmetric iterative

methods for solving symmetric indefinite Eq. (3.44), such as PCG, MINRES, and SQMR.

Though numerical results provided in Chapter 3 have shown that no breakdowns occurred

for PCG and MINRES methods in the iteration process when the restrictions related to

CG or MINRES are violated, SQMR is still preferred as the iterative solver for Eq. (3.44)

in view of the fact that theoretically, it can admit an arbitrary symmetric preconditioner.
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For the linear system arising from Biot’s consolidation equations, one preconditioner

has been demonstrated to be effective in terms of time and storage for solution of large-

scale 3-D problems on a modest PC platform. This preconditioner is the Generalized

Jacobi (GJ) diagonal preconditioner with the form given by Eq. (3.61), and the EBE-

based construction of GJ is provided by the pseudo-code in Eqs. (3.62) and (3.63), and

the sparse construction is given by Algorithm 3.5. The motivation for the construction

of the above GJ preconditioner comes from a theoretical eigenvalue clustering result

developed by Murphy et al. (2000) for a linear system of the form given by Eq. (3.44)

but with C = 0 ∈ R
n×n. The constant α is chosen to be −4 and the motivation comes

from the theoretical result developed by Phoon et al. (2002). In recent years, explicit

approximate inverses have been derived as preconditioners and used in conjunction with

explicit preconditioned conjugate gradient methods for parallel computing (e.g. Lipitakis

and Gravvanis, 1995; Huckle, 1999; Gravvanis, 1999). However, such preconditioners

are designed for implementation on parallel computers and are not suitable for the PC

environment assumed in this thesis.

Although the GJ preconditioned SQMR method has been demonstrated to have very

good performance in that it converges in a moderate number of iterations compared to

the dimension of the linear system, it is highly desirable to find other more sophisticated

preconditioners that can cut down the iteration count further while at the same time

keeping the cost of each preconditioning step at a reasonable level. To design such a

preconditioner, it is useful to keep in mind the three basic criteria given in Section 2.2.

Toh et al. (2004) systematically analyzed three types of block preconditioners to

solve the linear system given by Eq. (3.44) and evaluated their practical effectiveness

using the first two criteria. It was assumed that sufficient memory is available to store

the entire global coefficient matrix A in random access memory (RAM). On a limited

set of numerical experiments on problems with DOFs less than 24,000 (so that global A

can be stored), the block constrained preconditioner (Pc) considered in that paper was

demonstrated to have superior performance (time-wise) compared to the block diagonal

and block triangular preconditioners. However, the feasibility of implementing Pc to

satisfy criterion (3) was not addressed. This issue is of paramount practical importance

if the block constrained preconditioner is to be applicable for solving very large linear

system of equations on PC platforms commonly found in most engineering design offices.
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The first objective of this Chapter is to address the efficient implementation and

memory management of Pc. The second objective is to push the envelope of problem

sizes studied by Toh et al. (2004) to ascertain the generality of the comparative advan-

tages Pc has over GJ on significantly larger linear systems of equations. The last objective

is to explain semi-empirically why a Pc-preconditioned system is expected to converge

faster than one that is preconditioned by GJ based on eigenvalue distributions.

4.2 Block Constrained Preconditioners

4.2.1 Overview

Recall that if no threshold is applied to block B, the block constrained preconditioner

introduced in Section 2.2.3.2 is a 2× 2 block matrix of the form:

Pc =

[
K̂ B

BT −C

]
(4.1)

where K̂ is a symmetric positive definite approximation of K. To solve a very large linear

system of equations, the only practical choice for K̂ at the moment is K̂ = diag(K).

Approximations that are based on incomplete Cholesky factorizations of K would be

extremely expensive to compute (in terms of storage and time) because K needs to be

assembled and stored explicitly. Throughout this thesis, the approximation K̂ = diag(K)

is used.

To apply the preconditioner Pc within an iterative solver, it is not necessary to

compute its LU factorization explicitly - it can be applied efficiently by observing that

its inverse has the following analytical form:

P−1
c =

[
K̂−1 − K̂−1BŜ−1BT K̂−1 K̂−1BŜ−1

Ŝ−1BT K̂−1 −Ŝ−1

]
(4.2)

where Ŝ = C + BT K̂−1B is the Schur complement matrix associated with Pc. With the

expression in Eq. (4.2), the preconditioning step in each iterative step can be implemented

efficiently via the following pseudo-code (e.g. Toh et al., 2004):
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



Given [u; v]

Compute w = K̂−1u

Compute z = Ŝ−1(BT w − v)

Compute P−1
c [u; v] = [K̂−1(u−Bz); z]

(4.3)

Assuming that the sparse Cholesky factorization Ŝ = LLT has been computed, It can

be readily seen that one preconditioning step involves two multiplications of K̂−1 with

a vector, the multiplications of the sparse matrices B and BT with a vector, and the

solution of two triangular linear systems. The multiplication of K̂−1 with a vector can

be done efficiently since it is a diagonal matrix, and this involves only m scalar multipli-

cations. In the next subsection, the implementation details on the construction of Ŝ as

well as operations involving the sparse matrices B, BT , and C will be presented. Given

the small number of non-zeros in B and Ŝ (see Table 4.1 for examples), sparsity has to

be exploited to maximize computational speed and minimize memory usage.

4.2.2 Implementation Details

For large finite element problems, the data related to the linear system can be stored in

an unassembled form (e.g. van der Vorst, 2003; Saad, 1996, 2003), and the matrix-vector

multiplications involved in the solution process can be carried out using an element-by-

element (EBE) implementation. For the GJ preconditioner, the multiplication of A with

a vector in each iterative step of SQMR is implemented at the element level as follows:

Av =

( ne∑

i=1

JT
i Ae

iJi

)
v (4.4)

where A is the global coefficient matrix, Ji ∈ R
p×N is a connectivity matrix transforming

local to global DOFs (e.g. Dayde et al., 1997), p is the number of DOFs in one element,

ne is the number of elements, and Ae
i ∈ R

p×p is the ith element stiffness matrix, which

can be expressed further as:

Ae
i =

[
Ke

i Be
i

Be
i
T −Ce

i

]
(4.5)

In the preconditioning step described in Eq. (4.3), it would be too expensive from the

perspective of CPU time if BTw and Bz are implemented at the EBE level because

this requires scanning through all the element stiffness matrices for assembly. Given
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the relatively smaller dimensions of B, BT and C relative to K (i.e., n ≪ m), it is

more reasonable to assemble these sparse matrices in global form prior to applying the

SQMR solver. In addition, the availability of the global matrices B, BT and C allows

the computation of Av to be done efficiently through the following procedure:





Given [u; v]

Compute z1 = Bv, z2 = BTu, z3 = Cv

Compute w = Ku at EBE level

Compute A[u; v] = [w + z1; z2 − z3]

(4.6)

where only the multiplication of Ku is done at the EBE level in a manner analogous to

Eq. (4.4). From Eqs.(4.3) and (4.6), It can be seen that in each SQMR step, there are

two pairs of sparse matrix-vector multiplications involving B and BT .

In assembling the sparse global matrices B, BT , and C, careful memory manage-

ment is a must to avoid incurring excessive additional memory allocation. In imple-

mentation, one first stores all the nonzero entries of B at the element level into three

vectors, where the first and second store the global row and global column indices, and

the last stores the nonzero element-level value. Next, one sorts the three vectors by the

row and column indices, and then add up the values that have the same row and column

indices. With the sorted vectors, a final step is performed to store the sparse matrix

B in a Compressed Sparse Row (CSR) format with associated 1-D arrays icsrb(m+1),

jcsrb(bnz), csrb(bnz), where bnz is the total number of nonzero entries in sparse B

matrix (e.g. Barrett et al., 1994; Saad, 1996, 2003). The Compressed Sparse Column

(CSC) format of B can be obtained readily from the CSR format (via SPARSKIT at

http://www-users.cs.umn.edu/∼saad/software/home.html). The arrays associated with

the CSC format of B are denoted by jcscb(n+1), icscb(bnz), cscb(bnz). Given the

CSR and CSC format of B, the multiplications BTw and Bz can then be efficiently com-

puted via Algorithm 4 and 5 described in the Appendix B.2. In our implementation, the

global sparse matrices B and BT are stored implicitly as the CSC and CSR format of B,

respectively, and C is stored in the CSC format. Note that storing these global sparse

matrices in the CSC or CSR format requires less RAM than storing their unassembled

element versions because overlapping degrees of freedom and zero entries within element

matrices are eliminated.

In constructing Pc, the next issue that needs to be addressed is the efficient compu-
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tation of the Schur complement Ŝ = C + BT K̂−1B. The way it is done is shown in the

following algorithm.

Algorithm 4.1 Computing Ŝ = G = C+BTdiag(K)−1B given the CSC and CSR form
at of B, and the CSC format of C. Let d be the diagonal of diag(K)−1.

Allocate integer arrays rowG, colG and double array nzG.
Set w = zeros(m, 1), z = zeros(n, 1);
for j = 1 to n do

(1) initialize w = zeros(m, 1), z = zeros(n, 1);
(2) extract the jth column of B from the CSC format and put it in w;
(3) for i = 1 to m do; w(i) = w(i) × d(i); end for;
(4) compute z = BTw;
(5) scan through the vector z to add the jth column of C,
and at the same time store the row and columns indices
and the values of the values of the non-zero elements
of z in the arrays rowG, colG, nzG.

end for

Once the n × n matrix Ŝ is computed, it is required to compute its sparse Cholesky

factorization so as to compute Ŝ−1v for any given vector v. It is well known that directly

factorizing a sparse matrix may lead to excessive fill-ins and hence uses up a large amount

of memory space. To avoid excessive fill-ins, the matrix is usually re-ordered by the

reverse Cuthill-McKee (RCM) or the Multiple Minimal Degree (MMD) algorithms (see

George and Liu, 1981, 1989) prior to applying the Cholesky factorization. In this thesis,

the MMD method is adopted, MMD is an effective reordering algorithm that usually

leads to a sparser factor than other reordering algorithms. For readers who are not

familiar with the solution process of a sparse symmetric positive definite linear system,

Hx = b, it is noted that the sparse Cholesky factorization process is generally divided

into four stages (e.g. George and Liu, 1981; Lee et al., 1999):

(a) Reordering: Permutate symmetrically the columns and rows of matrix H using

one reordering method. Suppose the permutation matrix is P.

(b) Symbolic factorization: Set up a data structure for the Cholesky factor L of

PHPT .

(c) Numerical factorization: Perform row reductions to find L so that PHPT =

LLT .
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(d) Triangular solution: Solve LLTPx = Pb for Px by solving two triangular linear

systems. Then recover x from Px.

In applying the Pc preconditioner in the SQMR solver, the reordering and Cholesky

factorization of Ŝ are performed only once before calling the SQMR solver. However, in

the preconditioning step within the SQMR solver, the triangular solves must be repeated

for each iterative step. One may use the sparse Cholesky factorization subroutine from

the SparseM package (http://cran.r-project.org/). The algorithm was developed by Ng

and Peyton (1993).

4.3 Numerical Examples

4.3.1 Convergence Criteria

In this study, the relative residual norm convergence criteria given by Eq. (3.64) is used,

but with stop tol = 10−6 and max it = 2000. More details about various stopping crite-

ria can be found in Appendix A.2.

4.3.2 Problem Descriptions

Figure 4.1 shows a sample finite element mesh of a flexible square footing resting on

homogeneous soil subjected to a uniform vertical pressure of 0.1 MPa. Symmetry con-

sideration allows a quadrant of the footing to be analysed. Mesh sizes ranging from

12 × 12 × 12 to 24 × 24 × 24 were studied. These meshes result in linear systems of

equations with DOFs ranging from about 20,000 to 180,000, respectively. The largest

problem studied by Toh et al. (2004) contains only about 24,000 DOFs. Similar to the

problems studied in Chapter 3, Twenty-node brick elements were used. Each brick el-

ement consists of 60 displacement degrees of freedom (8 corner nodes and 12 mid-side

nodes with 3 spatial degrees of freedom per node) and 8 excess pore pressure degrees of

freedom (8 corner nodes with 1 degree of freedom per node). Details of the 3-D finite

element meshes are given in Table 4.1. Other problem details are same as those given in

Chapter 3. All the numerical studies are conducted using a Pentium IV, 2.0 GHz desktop
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PC with a physical memory of 1 GB.

4.3.3 Comparison Between GJ and Pc

Figure 4.2(a) shows that both GJ and Pc are very efficient for this class of problem from

an iteration count point of view. For practical applications, it is worth noting that these

preconditioners actually become even more efficient when the problem size increases. For

example, iteration count for GJ decreases from about 3% of the problem dimension for

the smaller 12 × 12 × 12 footing problem to only 1% of the problem dimension for the

24×24×24 footing problem. Despite this efficiency, Pc is able to out-perform GJ on two

counts. First, the iteration count for Pc is almost the same for the two material types

studied (Figure 4.2(a)). This implies better scaling with respect to the effective Young’s

modulus and hydraulic permeability. Second, iteration count for Pc is less than half of

that for GJ and more significantly, this ratio decreases with problem size as shown in

Figure 4.2(b). The ratio for the largest problem studied is only about one-third.

Reductions in iteration count do not translate in a straightforward way to savings

in total runtime. Overhead and CPU time consumed per iteration are additional factors

to consider. For the former, it is not surprising that Pc is more expensive given the

fairly elaborate steps discussed in Section 4.2.2 (Figure 4.3(a)). Computation of the

n× n Schur complement Ŝ and the ensuing sparse Cholesky factorization are significant

contributors to this overhead expense. Nevertheless, the increase in overhead with DOFs

could have been more onerous than power of 1.27 if sparsity of B were not exploited

for computation of Ŝ = C + BT K̂−1B and Cholesky factorization. For fully dense

matrices, one expects the overhead to grow with DOFs to the power of 3. As for time per

iteration, one preconditioning Pc step involves two multiplications of K̂−1 with a vector,

the multiplications of the sparse matrices B and BT with a vector, and the solution of two

triangular linear systems. The corresponding GJ step only involves multiplication of PGJ

with a vector, which can be done efficiently in (m+n) scalar multiplications since PGJ is a

diagonal matrix. Nevertheless, Pc is only marginally more expensive within each SQMR

iteration because available sparse matrix-vector multiplications and triangular solves are

very efficient (growing with DOFs to the power of 1.11 as shown in Figure 4.3(b)).

Although overhead and time per iteration are more costly for Pc, it is still possible
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to achieve total runtime savings over GJ as shown in Figure 4.3(c). This may be illus-

trated using the 24× 24× 24 footing problem with 184,296 DOFs for soil profile 1. The

reduction in iteration count is about 32% (Figure 4.2(b)). However, time per iteration

and total runtime/iteration runtime for Pc are about 1.42 (Tables 4.2 and 4.3) and 1.18

(Figure 4.3(b)) that of GJ, respectively. Hence, it can be deduced that the reduction in

total runtime would be 0.32 × 1.42 × 1.18 = 0.54, which reproduces the result shown in

Figure 4.3(c). An interesting question is how much savings in total runtime is achievable

(if any) when the DOFs increase by one order of magnitude (i.e., in the millions). It is

not unreasonable to extrapolate from Figure 4.2(b), 4.3(b) and 4.3(d) that iteration

count, time per iteration and total runtime/iteration runtime for Pc are about 0.3, 1.8

(1.42 × 100.11), and 1.25 that of GJ, respectively, in this case. These crude extrapolated

data imply a reduction in total runtime to be about two-thirds.

The final practical aspect that needs to be considered is to compare RAM usage

between Pc and GJ as shown in Figure 4.4. For the largest 24× 24× 24 footing problem,

Pc requires about 20% more RAM than GJ (Tables 4.2 and 4.3). For a problem with one

order of magnitude larger DOFs, Pc would probably require about 1.2 × 100.08 ≈ 1.45

times the RAM required by GJ. This requirement may be reasonable when PCs with few

GB RAM become more commonly available in engineering design offices.

4.3.4 Eigenvalue Distribution of Preconditioned Matrices and Conver-

gence Rates

Figure 4.5 shows the convergence history of the relative residual norm ‖rk‖2/‖r0‖2 as a

function of iteration number k for the solution of 5× 5× 5 meshed problem using SQMR

preconditioned by GJ and Pc. It is clear that the Pc-preconditioned method converges

much faster than the GJ-preconditioned counterpart, with the former terminating at 105

steps while the latter at 192 steps. It is possible to explain semi-empirically this difference

on the convergence rate if one looks at the eigenvalue distributions of the preconditioned

matrices. Figure 4.6 shows these eigenvalue distributions. It is noted that the real part

of the eigenvalues of the GJ preconditioned matrix are contained in the interval [0.0132,

5.4476], while those of the Pc-preconditioned matrix are contained in the interval [0.0131,

5.0270]. Thus the real part of the eigenvalues of both preconditioned matrices has very
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similar distributions. But there is an important difference when one look at the imaginary

part of the eigenvalues. While the Pc-preconditioned matrix has only real eigenvalues

(follows from Theorem 2 given by Toh et al. (2004), the GJ-preconditioned matrix has 288

eigenvalues that have imaginary parts (appear as ”wings” near the origin in Figure 4.6).

Based on the eigenvalue distribution, it is possible to get an estimate of the asymptotic

convergence rate of the SQMR method when applied to the preconditioned linear system.

For the Pc-preconditioned system, the convergence rate is roughly given by:

ρpc
=

√
k − 1√
k + 1

= 0.903 (4.7)

where k(condition number) = 5.0270/0.01321 = 383.741.

The estimation of the convergence rate associated with the eigenvalue distribution for

the GJ-preconditioned system is less straightforward, but is achievable with the help of

Schwarz-Christoffel mapping for polygonal region. The idea is to approximately enclose

the eigenvalues in a polygonal region, and find the Schwaz-Christoffel map Φ that maps

the exterior of the polygonal region to the unit disk. Then the convergence rate for an

eigenvalue distribution that has eigenvalues densely distributed throughout the polygon

is given by:

ρGJ = Φ(0) (4.8)

The used polygonal region is shown in Figure 4.7, where the extreme left vertex of the

polygon coincides with the eigenvalue 0.0132. Based on that polygonal approximation,

the estimated convergence rate is ρGJ = 0.958. To compute the mapping Φ, the highly

user friendly MATLAB software package developed by Driscoll (1996) is used. One can

use the estimated asymptotic convergence rates to predict how the number of required

preconditioned SQMR steps would differ. Recall that for a method with convergence

rate ρ to achieve:
‖rk‖2
‖r0‖2

< 10−6 (4.9)

The number of steps k required is given by:

k ≈ −6

log10 ρ
(4.10)

Thus the estimated ratio of the number of steps required for convergence for the GJ and

Pc-preconditioned iterations is given by:

log10 ρPc

log10 ρGJ
= 2.38 (4.11)
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The actual ratio obtained is 192/105 = 1.83. Based on the asymptotic convergence rates

estimated, there is a strong reason to assume that the significant reductions in iteration

count shown in Figure 4.2(b) are applicable to problem sizes beyond those presented in

this thesis.

4.4 Conclusions

This chapter compares the performance of the Generalized Jacobi (GJ) preconditioner

and the block constrained preconditioner (Pc) for solving large linear systems produced

by finite element discretization of Biot’s consolidation equations on the commonly avail-

able PC platform. The GJ preconditioner is very cheap to construct and apply in each

iteration because it is a diagonal matrix. The Pc preconditioner uses the same 2×2 block

structure of the coefficient matrix but its (1, 1) block is replaced by a diagonal approx-

imation. Due to its non-diagonal nature, it is obviously more costly to construct and

apply in each iteration. However, it is able to out-perform GJ in total runtime primarily

because of significant reductions in iteration count. Note that GJ is already very efficient

from an iteration count point of view. Numerical studies indicate that iteration count for

GJ decreases from about 3% of the problem dimension for the smaller 12×12×12 footing

problem to only 1% of the problem dimension for the 24× 24× 24 footing problem. The

Pc preconditioner reduces these iteration counts by a further 50% and 35% for the small

and large footing problem, respectively. In other words, iteration count for Pc only con-

stitutes 1.3% and 0.3% of the problem dimension for the small and large footing problem,

respectively. Based on the asymptotic convergence rates estimated from eigenvalues of

both preconditioned matrices, there is a strong reason to assume that these significant

reductions in iteration count are applicable to problem sizes beyond those presented in

this thesis. In addition, the iteration count for Pc is almost the same for the two material

types studied, indicating better scaling with respect to the effective Young’s modulus and

hydraulic permeability. The key disadvantage to the Pc preconditioner is the additional

RAM required for implementation. This chapter presents the application of the Com-

pressed Sparse Column (CSC) and Compressed Sparse Row (CSR) formats for efficient

storage of global sparse matrices appearing in the construction of Pc and pseudo-codes for
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sparse matrix-vector multiplications and computation of the sparse Schur complement.

Using these sparse formats, numerical results show that overhead costs (construction

of Schur complement and sparse Cholesky factorization), time per iteration (triangular

solves in preconditioning step), and RAM usage only grow at a power of 1.27, 1.11, and

1.08, respectively with DOFs over the range from about 24,000 to 180,000. A crude

extrapolation to problem dimensions with one order of magnitude larger DOFs indicates

that Pc is still practical and preferable over GJ.



Figures 86

Figure 4.1: 24× 24× 24 finite element mesh of a quadrant symmetric shallow foundation
problem.
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Figure 4.2: (a) Iteration count as a percentage of DOFs, and (b) Comparison of iteration
count between GJ and Pc “Material 1” and“Material 2” refers to soft clays and dense
sands, respectively).
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Figure 4.3: (a) Rate of increase in overhead with DOFs, (b) Rate of increase in
time/iteration with DOFs, (c) Total runtime ratio between Pc and GJ, and (d) To-
tal/iteration time ratio between Pc and GJ (“Material 1” and “Material 2” refers to soft
clays and dense sands, respectively).
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Table 4.1: 3-D finite element meshes
Mesh size
5× 5× 5 12× 12× 12 16× 16× 16 20× 20× 20 24× 24× 24

Number of elements(ne) 125 1728 4096 8000 13824
Number of nodes 756 8281 18785 35721 60625

DOFs
Pore pressure(n) 180 2028 4624 8820 15000
Displacement(m) 1640 21576 50656 98360 169296
Total (N = m + n) 1820 23604 55280 107180 184296
n/m (%) 11.0 9.4 9.1 9.0 8.9

No. non-zeros (nnz)
nnz(B) 22786 375140 907608 1812664 3174027
nnz(B)/(nm) (%) 7.72 0.86 0.39 0.21 0.125
nnz(C) 3328 46546 110446 215818 373030
nnz(C)/(n2) (%) 10.27 1.13 0.52 0.28 0.17

nnz(Ŝ) 10944 187974 461834 921294 1614354

nnz(Ŝ)/(n2) (%) 33.78 4.57 2.16 1.18 0.72
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Table 4.2: Performance of the GJ preconditioner over different mesh sizes and soil prop-
erties

Mesh size 12× 12× 12 16× 16× 16 20× 20× 20 24 × 24× 24

RAM (MB) 65 153 297 513

Material 1: E′ = 1 MPa, k = 10−9 m/s (typical of soft clays)
Iteration count 666 1003 1463 1891
Overhead (s) 38.8 91.6 178.9 312.9
Iteration time (s) 247.2 879.4 2519.7 5620.5
Total runtime (s) 288.5 976.8 2709.8 5952.8
Total/iteration time 1.16 1.10 1.07 1.06

Material 2: E′ = 100 MPa, k = 10−6 m/s (typical of dense sands)
Iteration count 582 871 1260 1654
Overhead (s) 38.8 91.8 179.0 309.7
Iteration time (s) 214.2 764.9 2161.4 4877.8
Total runtime (s) 255.5 862.6 2351.7 5206.9
Total/iteration time 1.18 1.12 1.08 1.06
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Table 4.3: Performance of the Pc preconditioner over different mesh sizes and soil prop-
erties

Mesh size 12× 12× 12 16× 16× 16 20× 20× 20 24 × 24× 24

RAM (MB) 68 167 365 610

Material 1: E′ = 1 MPa, k = 10−9 m/s (typical of soft clays)
Iteration count 310 412 515 613
Overhead (s) 44.2 115.1 267.5 614.9
Iteration time (s) 132.7 441.1 1151.9 2580.3
Total runtime (s) 179.3 561.8 1430.3 3213.9
Total/iteration time 1.33 1.26 1.23 1.24

Material 2: E′ = 100 MPa, k = 10−6 m/s (typical of dense sands)
Iteration count 307 406 507 606
Overhead (s) 43.7 117.0 268.3 614.3
Iteration time (s) 130.6 430.7 1136.4 2554.6
Total runtime (s) 176.7 553.3 1415.5 3187.8
Total/iteration time 1.33 1.27 1.24 1.25



CHAPTER 5

A MODIFIED SSOR

PRECONDITIONER

5.1 Introduction

In Chapter 4, a block constrained preconditioner Pc proposed by Toh et al. (2004) was

investigated, and some crucial performances between Pc and GJ have been compared. Al-

though Pc is significantly more complicated than PGJ , each preconditioning step P−1
c [u; v]

can be computed efficiently by solving 2 triangular linear systems of equations whose co-

efficient matrices involve the sparse Cholesky factor of the Schur complement matrix Ŝ.

The detailed pseudocode for constructing Ŝ and the implementation procedure for sparse

Cholesky factorization have been given by Toh et al. (2004) as well as in Chapter 4. It

has been demonstrated that Pc preconditioned SQMR method can result in faster conver-

gence rate than the GJ preconditioned counterpart. On some fairly large linear systems

arising from FE discretization of Biot’s equations, the saving in CPU time can be up to

40%.

However, in pragmatic geotechnical problems, homogeneous soil is rarely encountered

and more problems involve soil-structure interaction or heterogeneous soil profiles with

significantly different soil properties. In these situations, the diagonal GJ preconditioner

and Pc preconditioner cannot lead to satisfactory convergence rates of SQMR method.

This observation can be explained that the diagonal form of GJ preconditioner and the

cheap diagonal choice of (1, 1) block for Pc preconditioner cannot provide good approxi-
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mation for the soil stiffness matrix, K. In this chapter, a variant of SSOR preconditioner

is proposed, and this preconditioner can address this problem very well.

Standard SSOR preconditioner has been used by Mroueh and Shahrour (1999) to

solve soil-structure interaction problems and they recommended left SSOR precondition-

ing. However, nonsymmetric iterative methods such as Bi-CGSTAB and QMR-CGSTAB

were used for elastic-perfectly plastic problems with associated flow rule, even though

SQMR method would be more efficient (in terms of CPU time) based on our experience

(e.g. Toh et al., 2005). Therefore, not only the preconditioning methods but also the

iterative methods themselves have not been exploited to the greatest efficiency. For lin-

ear systems arising from pore-water-soil-structure interaction problems, the behavior of

the standard SSOR preconditioner may be seriously affected by small negative diagonal

elements corresponding to the pore pressure DOFs and as a result, the convergence of

the standard SSOR preconditioned iterative method may be exceedingly slow. In this

chapter, based on an exact factorization form of the coefficient matrix A, a new modified

block SSOR preconditioner is proposed. The modified block SSOR preconditioner is ex-

pensive to construct. However, it serves as a useful theoretical basis to develop a simpler

pointwise variant (named MSSOR from hereon) that can exploit the so-called Eisenstat

trick (e.g. Eisenstat, 1981; Chan and van der Vorst, 1994; Freund and Nachtigal, 1995;

Saad, 1996; Dongarra et al., 1998; van der Vorst, 2003) for computational efficiency.

It should be noted that the modified SSOR preconditioner can readily be extended to

nonsymmetric 2× 2 block systems.

To benchmark the proposed modified SSOR preconditioner, it is necessary to briefly

describe the GJ and Pc preconditioners for clarity although the forms of GJ and Pc has

been introduced in previous chapters.

5.1.1 The GJ Preconditioner

Recall that the GJ preconditioner developed by Phoon et al. (2002) has the form:

PGJ =

[
diag(K) 0

0 αdiag(Ŝ)

]
(5.1)

where Ŝ = C + BT diag(K)−1B is an approximate Schur complement matrix; α is a real

scalar, and it is recommended by Phoon et al. (2002) to choose α ≤ −1 for a reasonable



5.2: Modified SSOR preconditioner 98

convergence rate.

5.1.2 The Pc Preconditioner

Recall that the block constrained preconditioner Pc was derived from A by replacing K

by diag(K) as (see Toh et al., 2004):

Pc =

[
diag(K) B

BT −C

]
(5.2)

It should be noted that in 3-D consolidation problems, the dimension of block K is signif-

icantly larger than that of block C, that is, m≫ n. The cheap diagonal approximation

for (1, 1) block inevitably neglects the influence of varied soil properties embodied in K

matrix.

5.2 Modified SSOR preconditioner

The SSOR iteration is a symmetric version of the well-known SOR iteration. When the

SSOR method is used as a preconditioning technique, it is in fact equivalent to a single

iteration of the standard SSOR method with zero initial guess (e.g. Axelsson, 1994;

Mroueh and Shahrour, 1999). In addition, the SSOR preconditioner, like the Jacobi

preconditioner, can be constructed from the coefficient matrix without any extra work.

For a symmetric matrix A with the decomposition, A = L + D + LT , where L and

D are the strictly lower triangular and diagonal parts of A (pointwise factorization), or

the corresponding block parts if A is a block matrix (block factorization), the standard

SSOR preconditioner has the following factorized form (e.g. Eisenstat, 1981; Chan and

van der Vorst, 1994; Freund and Nachtigal, 1995)

PSSOR = (L + D)D−1(LT + D) (5.3)

It is obvious that the factorization form of Eq. (5.3) follows the stencils for LDU , so

SSOR can also be regarded as an incomplete factorization preconditioner. For symmet-

ric indefinite linear system with zero diagonal subblock, direct application of Eq. (5.3)

is impossible. To avoid this difficulty, Freund et al. (1995, 1997) proposed applying

permutation P to the original matrix A, that is, Ā = PAPT = L̄ + D̄ + L̄T where L̄
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and D̄ are resultant strictly lower triangular and block diagonal parts of Ā, respectively.

The objective of the permutation P is to obtain a trivially invertible and in some sense

“as large as possible” diagonal D̄ with a series of 1 × 1 and 2 × 2 blocks. Therefore,

the corresponding modified SSOR preconditioner to combine with SQMR solver can be

obtained from the permuted matrix as

P̄SSOR = PT (L̄ + D̄)D̄−1(L̄T + D̄)P (5.4)

However, it may be difficult to find a permutation that totally avoids zero or small di-

agonal elements in the reordered matrix. In addition, incomplete factorization methods

such as the SSOR preconditioner are sensitive to permutations, and thus may incur a

larger number of iterations than the same incomplete factorization applied to the original

matrix (e.g. Duff and Meurant, 1989; Chow and Saad, 1997; Eijkhout, 1999).

5.2.1 Derivation of a New Modified Block SSOR Preconditioner

For the 2× 2 block symmetric indefinite linear system (3.44) arising from Biot’s consol-

idation problem, the standard pointwise SSOR preconditioner (5.3) has small negative

diagonal elements corresponding to pore pressure DOFs, and they may cause the iterative

solver to stagnate, diverge or even breakdown. The permutation approach has limita-

tions as noted above. This motivated us to consider a different approach involving the

modification of D without the need for choosing a permutation. First, observe that the

2× 2 block matrix of Eq. (3.44) can be factorized as

[
K B

BT −C

]
=

[
K 0

BT −S

][
K 0

0 −S

]−1 [
K B

0 −S

]
(5.5)

Here S = C + BTK−1B is the exact Schur complement matrix. The factorization shown

in Eq. (5.5) has been mentioned as block LDU factorization by Chan and van der Vorst

(1994), or generalized SSOR form by Chow and Heroux (1998). In this chapter, a new

modified block SSOR (MBSSOR) preconditioner can be derived from Eq. (5.5), that is,

PMBSSOR =

[
K̂ 0

BT −Ŝ

][
K̂ 0

0 −Ŝ

]−1 [
K̂ B

0 −Ŝ

]
(5.6)

Here, K̂ and Ŝ are the approximations of K and S, respectively, and the approximate

matrix K̂ may differ from the approximation of K appearing in Ŝ. Many variants can
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be obtained from this modified block SSOR preconditioner. It is interesting to note

that the factorized form in Eq. (5.6) contains all three block preconditioners discussed

by Toh et al. (2004), and the Pc preconditioner in Eq. (5.2) is the exact product form

of Eq. (5.6) with K̂ = diag(K) and Ŝ = C + BT K̂−1B. The eigenvalue analysis of

PMBSSOR preconditioned matrix is similar to that for the Pc preconditioner given in Toh

et al. (2004), and thus shall not be repeated here.

5.2.2 A New Modified Pointwise SSOR Preconditioner

A complicated near-exact preconditioner is not always the most efficient, because the cost

of applying the preconditioner at each iteration could obviate the reduction in iteration

count. The pragmatic goal is to reduce total runtime and simpler variants could poten-

tially achieve this even though iteration counts might be higher. With this pragmatic

goal in mind, a parameterized pointwise variant of PMBSSOR is proposed as

PMSSOR =

(
L +

D̂

ω

)(
D̂

ω

)−1(
LT +

D̂

ω

)
= (L + D̃)(D̃)−1(LT + D̃) (5.7)

where L is the strictly lower triangular part of A, D̂ is a diagonal matrix that is to be

chosen, D̃ = D̂/ω, and ω ∈ [1, 2] is a relaxation parameter. The choice of D̂ is crucial.

Pommerell and Fichtner (1991) and Pommerell (1992) proposed a D-ILU preconditioner,

for which the diagonal matrix D̂ = {ãii} is chosen from the ILU(0) factorization procedure

as follows:

Algorithm 5.1 Algorithm of constructing diagonal D̂ of D-ILU Preconditioner, S is
the non-zero sparsity structure of coefficient matrix A (e.g. Barrett et al., 1994).

for i = 1 to N do
Set ãii = aii

end for
for i = 1 to N do

for j = i + 1 to N do
if (i, j) ∈ S and (j, i) ∈ S

Set ãjj = ãjj − ajiã
−1
ii aij

end if
end for

end for
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However, our numerical experiences indicate that SQMR is unable to converge when

the linear systems stemming from Biot’s consolidation equations are preconditioned by

D-ILU .

The GJ preconditioner is a more natural candidate for D̂. Phoon et al. (2002) has

already demonstrated that PGJ is a good approximation to Murphy’s preconditioner

(2000), which is the un-inverted block diagonal matrix in Eq. (5.6). Hence, Eq. (5.7)

would be studied based on choosing D̂ = PGJ from hereon. Another important parameter

in Eq. (5.7) is the relaxation parameter ω. The optimal choice of ω is usually expensive

to estimate, but practical experiences suggest that choosing ω slightly greater than 1

usually result in faster convergence than the choice ω = 1 (where SSOR preconditioner

reduces to the symmetric Gauss-Seidel preconditioner). It should be mentioned that

picking ω too far away from 1 can sometimes result in significant deterioration in the

convergence rate. Thus, it is advisable not to pick ω larger than 1.5 unless the optimal

choice of ω is known. Rewriting the expression for PMSSOR in Eq. (5.7) as PMSSOR =

(L+D̃)(D̃)−1(LT +D̃) = A+LD̃−1 +D̃−D, it is quite obvious that PMSSOR can better

approximate A when the error matrix E = LD̃−1LT + D̃ −D is small.

Note that for the matrix A in Eq. (3.44), it is easy to see that the (1, 1) block of

PMSSOR is equal to

(LK + DK/ω)(DK/ω)−1(LK + DK/ω)T

where LK and DK are the strictly lower and diagonal parts of K. Thus the (1,1) block

K in A is approximated by its SSOR matrix.

5.2.3 Combining With Eisenstat Trick

Eisenstat (1981) exploited the fact that some preconditioners such as generalized SSOR

(1972), ICCG(0) (1977) and MICCG(0) (1978) contain the same off-diagonal parts of

the original coefficient matrix to combine the preconditioning and matrix-vector mul-

tiplication step into one single efficient step. This trick is obviously applicable to any

preconditioner of the form shown in Eq. (5.7).

The pseudo-code for the SQMR algorithm coupled with the MSSOR preconditioner

is provided as follows (e.g. Freund and Nachtigal, 1995; Freund and Jarre, 1996):
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Algorithm 5.2 MSSOR Preconditioned SQMR Method

Start: choose an initial guess x0, then set z0 = 0,

s0 = (L + D̃)−1(b−Ax0), v0 = s0, w0 = D̃v0,
τ0 = sT

0 s0, and ρ0 = sT
0 w0

set d0 = 0 ∈ R
N , and ϑ0 = 0 ∈ R.

for k = 1 to max it do
Compute

tk−1 = Ãvk−1 (Procedure PMatvec).
σk−1 = wT

k−1tk−1, if σk−1 = 0, then stop.

αk−1 =
ρk−1

σk−1
and sk = sk−1 − αk−1tk−1

Compute

ϑk =
sT
k sj

τk−1
, ck =

1

1 + ϑk

, τk = τk−1ϑkck,

dk = ckϑk−1dk−1 + ckαk−1vk−1.
Set zk = zk−1 + dk.
Check convergence

every fifth step, compute rk = (L + D̃)sk.

if converged, then set xk = x0 + (LT + D̃)−1D̃zk, then stop.
Compute

ρk = sT
k D̃sk, βk =

ρk

ρk−1
,

vk = sk + βkvk−1 and wk = D̃vk.
end for

In Algorithm 5.2, the Eisenstat trick is applied to the left-right preconditioned matrix of

the form:

Ã = (L + D̃)−1A(LT + D̃)−1D̃ (5.8)

Following Chan’s implementation (e.g. Eisenstat, 1981; Chan and van der Vorst, 1994),

the preconditioned matrix can be written as

Ã = (L + D̃)−1[(L + D̃) + (D − 2D̃) + (LT + D̃)](LT + D̃)−1D̃ (5.9)

Thus, given a vector vk−1, the product tk−1 = Ãvk−1 in the SQMR algorithm can be

computed from the following procedure:

Procedure PMatvec :

(1) f = (LT + D̃)−1wk−1 where wk−1 = D̃vk−1

(2) g = (D − 2D̃)−1f + wk−1

(3) h = (L + D̃)−1g

(4) tk−1 = f + h

(5.10)
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When applying the above PMatvec procedure to the Pc preconditioned matrix , we get

the resultant vector,

tk−1 =


 t

(1)
k−1

t
(2)
k−1


 = Ã


 v

(1)
k−1

v
(2)
k−1




=


 K̂−1Kv

(1)
k−1 − K̂−1KK̂−1Bv

(2)
k−1 + K̂−1Bv

(2)
k−1

Ŝ−1BT (K̂−1Kv
(1)
k−1 − K̂−1KK̂−1Bv

(2)
k−1 + K̂−1Bv

(2)
k−1 − v

(1)
k−1) + v

(2)
k−1




(5.11)

This computation can be carried out by the following steps:




Compute u = K̂−1Bv
(2)
k−1

Compute s = K̂−1K(v
(1)
k−1 − u) + u

Compute and set tk−1 = [s; Ŝ−1BT (s− v
(1)
k−1) + v

(2)
k−1]

(5.12)

Thus the computational cost of each Pc preconditioned SQMR step combined with the

Eisenstat trick can broadly be summarized as: 1 K; 1 B; 1 BT ; 2 K̂; 2 Ŝ; 1 Ŝ−1; 2 K̂−1.

On the other hand, for Pc preconditioned SQMR method without applying the Eisen-

stat trick, the matrix-vector product and preconditioning steps at each iteration are sepa-

rately carried out in terms of Eqs. (4.3) and (4.6) (The difference is that no element-level

implementation is involved any more). Thus the main computational cost for each Pc

preconditioned SQMR iteration without using the Eisenstat trick can be summarized as:

1 K; 1 C; 2 B; 2 BT ; 1 Ŝ−1; 2 K̂−1. Since the number of nonzero elements of B is

only about 10% that of K, it is clear that the implementation of Pc combined with the

Eisenstat trick is only marginally cheaper than the efficient implementation described in

Chapter 4 for Pc without using the Eisenstat trick.

In contrast to the modified block SSOR-type preconditioners such as factorized Pc,

the pointwise MSSOR preconditioner proposed in Eq. (5.7) is very promising in that it

heavily exploits the Eisenstat trick. Each step of the MSSOR-preconditioned iterative

method is only marginally more expensive than that of the original matrix-vector product

because the strictly off-diagonal parts of PMSSOR and A canceled one another and only

two triangular solves are involved at each iteration. Eq. (5.8) or Eq. (5.9) demonstrated

the Eisenstat trick in left-right form; in fact, it is also applicable in the left or right form

for nonsymmetric solvers (e.g. Pommerell and Fichtner, 1991; Pommerell, 1992).
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5.2.4 Other Implementation Issues of GJ, Pc and PMSSOR

In practical finite element programming, the displacement unknowns and pore pressure

unknowns can be arranged in different order. Gambolati et al. (2001) have studied the

effect of three different nodal orderings on ILU-type preconditioned Bi-CGSTAB method,

and these nodal orderings have been presented in Section 2.2.4. In this study, GJ and

MSSOR preconditioners are applied to linear systems based on iord1, while Pc is applied

to linear systems based on iord2. Numerical results discussed in the next section support

the above choices.

Because of the symmetry in A, only the upper triangular part of A needs to be

stored. In our implementation of GJ or MSSOR-preconditioned SQMR methods, the

upper triangular part of A is stored in the CSC (Compressed Sparse Column) format

(icsc, jcsc, csca) (refer to Barrett et al., 1994; Saad, 1996, 2003, for sparse storage

formats). Clearly, the CSC storage of the upper triangular part of A is also the CSR

(Compressed Sparse Row) storage of the lower triangular part for A. Both the “forward

solve step” and “backward solve step” at each iteration of the SQMR method can be

executed quite rapidly from the CSC storage. The pseudo-code of the forward and

backward solves are given as follows:

Algorithm 5.3 Forward substitution (1 → N) with CSC storage (icsc, jcsc, csca)
of upper triangular part of A. The modified diagonal is stored in a vector {ãjj}1≤j≤N ,

Compute x = (L + D̃)−1y as follows:

x(1) = y(1)/ã11

for j = 2 to N do
k1 = jcsc(j); k2 = jcsc(j + 1)− 1;
for i = k1 to k2− 1 do

y(j) = y(j)− csca(i) × x(icsc(i))
end for
x(j) = y(j)/ãjj

end for

Algorithm 5.4 Backward substitution (N → 1) with CSC storage (icsc, jcsc, csca)
of upper triangular part of A. The modified diagonal is stored in a vector {ãjj}1≤j≤N ,

Compute x = (LT + D̃)−1y as follows:
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for j = N to 2 do
x(j) = y(j)/ãjj

k1 = jcsc(j); k2 = jcsc(j + 1)− 2;
for i = k1 to k2 do

y(icsc(i)) = y(icsc(i)) − csca(i) × x(j)
end for

end for
x(1) = y(1)/ã11

Other than the CSC storage for the upper triangular part of A, only a few additional

vectors are required to store the original and modified diagonal elements in MSSOR.

In the case of Pc, it is natural to store K, B and C separately in order to obtain the

approximate Schur complement matrix and its sparse Cholesky factor. The detailed im-

plementation is described in Chapter 4.

5.3 Numerical Experiments

5.3.1 Convergence Criteria

An iterative solver typically produces increasingly accurate solutions with iteration count,

and one can terminate the solver when the approximate solution is deemed sufficiently

accurate. A standard measure of accuracy is based on the relative residual norm. Sup-

pose xi is the approximate solution at the i-th iterative step, then ri = b − Axi is the

corresponding residual vector. In Algorithm 5.5, the true residual with respect to the

original linear system can be obtained from the preconditioned residual.

Algorithm 5.5 Compute r = (L + D̃)s given the CSC storage (icsc, jcsc, csca) of
upper triangular part of A, and the modified diagonal is stored in a vector {ãjj}1≤N .
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r = zeros(N, 1)
r(1) = r(1) + ã11 × s(1)
for j = 2 to N do

k1 = jcsc(j); k2 = jcsc(j + 1)− 1;
for k = k1 to k2− 1 do

r(j) = r(j) + csca(k)× s(icsc(k))
end for
r(j) = r(j) + ãjj × s(j)

end for

For the purpose of comparing with other preconditioned SQMR methods, the true relative

residual for the SQMR method preconditioned by MSSOR or Pc combined with the

Eisenstat trick is returned at every fifth iteration. Note that the true relative residual

(modulo rounding errors) is easily computed from the equation b−Axk = PL(b̃− Ãx̃k) =

(L + D̃)(b̃− Ãx̃k).

Given an initial guess x0 (usually zero initial guess), an accuracy tolerance stop tol,

and the maximum number max it of iterative steps allowed, the iterative process will be

stopped if the relative residual based on true residuals given by Eq. (3.64) is satisfied.

In this study, the initial guess x0 is taken to be the zero vector, and stop tol = 10−6,

max it = 5000. More details on various stopping criteria can be found in Barrett et al.

(1994) van der Vorst (2003).

5.3.2 Problem Descriptions

Figure 5.1 shows a 7 × 7 × 7 finite element mesh for a flexible square footing resting

on homogeneous soil subjected to a uniform vertical pressure of 0.1 MPa. The sparsity

pattern of the global matrix A with natural ordering obtained from the 7× 7× 7 meshed

footing problem is also shown in the figure. Figure 5.2, a 20× 20× 20 mesh for the same

square footing problem resting on a layered soil is plotted. Symmetry consideration

allows a quadrant of the footing to be analyzed. Mesh sizes ranging from 8 × 8 × 8

to 20 × 20 × 20 were studied. These meshes result in linear systems of equations with

DOFs ranging from about 7,000 to 100,000, respectively. In our FE discretization of the

time-dependent Biot’s consolidation problems, the twenty-node hexahedral solid elements

coupled with eight-node fluid elements were used. Therefore, each hexahedral element
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consists of 60 displacement degrees of freedom (8 corner nodes and 12 mid-side nodes

with 3 spatial degrees of freedom per node) and 8 excess pore pressure degrees of freedom

(8 corner nodes with 1 degree of freedom per node). Thus the total number of DOFs of

displacements is much larger than that of excess pore pressure, the ratio is usually larger

than ten. Details of these 3-D finite element meshes are provided in Table 5.1.

In summary, the footing problem resting on the following 3 soil profiles are studied:

(a) Soil profile 1: homogeneous soft clay, E′ = 1MPa, k = 10−9m/s;

(b) Soil profile 2: homogeneous dense sand, E′ = 100MPa, k = 10−5m/s;

(c) Soil profile 3: heterogeneous soil consisting of alternate soft clay and dense sand

soil layers with parameters E′ = 1MPa, k = 10−9m/s and E′ = 100MPa,

k = 10−5m/s, respectively.

The other descriptions on the footing problem are given Chapter 3.

5.3.3 Choice of Parameters in GJ(MSSOR) and Eigenvalue Distribu-

tions of GJ(MSSOR) Preconditioned Matrices

Figure 5.3 shows the eigenvalue distributions of two GJ preconditioned matrices, for the

7 × 7 × 7 meshed problem on soil profile 1, corresponding to the parameters α = −4,

and α = −20, respectively. It is interesting to observe that the “imaginary” wing is

considerably compressed when |α| is larger. Thus one would expect the GJ precondi-

tioned matrix associated with a larger |α| to have a faster asymptotic convergence rate.

Unfortunately, the minimum real part of the eigenvalues also decreases with |α| and the

resultant effect is to slow down the asymptotic convergence rate. Therefore, to obtain the

optimal asymptotic convergence rate, a balance has to be maintained between the above

two opposing effects: reducing the span of the imaginary wing, and having eigenvalues

closer to the origin. With the help of Schwarz-Christoffel mapping for polygonal region,

the asymptotic convergence rates for both eigenvalue distributions are estimated to be

0.98 for α = −1 and 0.95 for α = −20. These estimated convergence rates indicate that

it is beneficial to use GJ with α < −1. For completeness, the eigenvalue distribution

of the Pc preconditioned matrix is also shown in Figure 5.3, and the asymptotic conver-

gence rate associated with the spectrum is 0.92. Interestingly, the eigenvalue distribution
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of the Pc preconditioned matrix (which can be proven to have only real eigenvalues) is

almost the same as the real part of the eigenvalue distribution of the GJ preconditioned

matrix with α = −1. This could partially be attributed to the fact that both GJ and Pc

preconditioners use the same diagonal approximation to the (1, 1) block K.

In Section 5.2.4, it has been mentioned that the performance of MSSOR precondi-

tioner can be influenced by different ordering scheme. This is shown by the results in

Table 5.2. In this table, the performance of MSSOR with ω = 1.0 and α = −4 is evalu-

ated under three different ordering schemes (iord1, iord2 and iord3). Homogeneous and

layered soil profiles are considered. The performance indicators are: (1) iteration count

(iters), (2) overhead time (to) which covers formation of sparse coefficient matrix and

construction of the preconditioner, (3) iteration time (ti), and (4) total runtime for one

time step (tt). Regardless of the mesh size and soil profile, it can be seen that the natural

ordering scheme always lead to less iteration count and less total runtime. Hence, only

MSSOR for the natural ordering scheme in the numerical examples discussed below is

implemented.

It is interesting to also investigate how the choice of α and ω would affect the asymp-

totic convergence rate of the MSSOR preconditioned matrix. It must be emphasized that

the intention here is not to search for the optimal pair of parameters but to use the ex-

ample problems to investigate the benefit of taking D̂ to be the GJ preconditioner with

|α| different from 4 recommended by Toh (2003). For MSSOR(ω = 1.0) preconditioned

SQMR solver, the effect of varying α over the range from -1 to -80 is shown in Table 5.3

for the 7 × 7 × 7 and 16 × 16 × 16 meshed problems over different soil conditions. It is

clear that the optimal α value is problem-dependent. It appears that |α| should be larger

for a larger mesh. The iteration count under α = −4 is at most 1.5 times the iteration

count under the optimal α in the problems studied.

Next, the effect of varying the relaxation parameter ω in the MSSOR preconditioner

for α = −50 is investigated. The results for ω ranging from 1.0 to 1.8 for the 7×7×7 and

16×16×16 meshed problems under different soil conditions are shown in Table 5.4. It is

obvious that there exists optimal values of ω for different soil conditions, and appropriate

choices of ω may lead to smaller iteration counts and shorter total runtimes. However,

as mentioned previously, the optimal value of ω is expensive to determine and usually

can only be obtained through numerical experiments. It seems that the performance
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of MSSOR preconditioned SQMR method is not very sensitive to ω compared with the

effect of varying α. Based on the numerical results provided in Table 5.4, a reasonably

good choice for ω is located in the interval [1.2, 1.4].

Table 5.4 also gives the performance of standard SSOR preconditioned SQMR method,

it is clear that for soil profile 1 and soil profile 3, standard SSOR preconditioner may

breakdown (more exactly near-breakdown). The breakdown is likely to be the conse-

quence of unstable triangular solves produced by the irregular distribution of small neg-

ative entries in the leading diagonal under natural ordering. To avoid this breakdown,

block ordering strategy can be used; moreover, block ordering can significantly improve

the performance of standard SSOR preconditioner for soil profile 2, but the performance

of block ordering for SSOR preconditioned SQMR method is still inferior to that achieved

by using the MSSOR preconditioned version.

Figure 5.4 shows the eigenvalue distributions of three MSSOR preconditioned ma-

trices corresponding to the pair of parameters (α = −4, ω = 1.0), (α = −20, ω = 1.0)

and (α = −20, ω = 1.3), respectively. Again, these estimated convergence rates indicate

that it is beneficial to use α < −1. A larger |α| value has a compression effect on the

imaginary part of the eigenvalues. By taking ω > 1.0, the interval containing the real

part of the eigenvalues may be enlarged, but the eigenvalues with nonzero imaginary

parts are moved further way from the origin. Observe that the eigenvalue distributions

of the MSSOR preconditioned matrices have more compressed real parts compared to

the GJ preconditioned counterparts (Fig. 5.3b). The MSSOR preconditioner contracts

the range of the real part of eigenvalues by adopting the SSOR approximation to the

(1, 1) block. From the compactness of the eigenvalue distributions, it is quite clear that

the MSSOR preconditioned matrices would have faster convergence rates than the GJ

preconditioned ones.

5.3.4 Performance of MSSOR versus GJ and Pc

Table 5.5 and 5.6 give the numerical results of the SQMR method preconditioned by GJ,

Pc and MSSOR in homogeneous soft clay and dense sand, respectively. Numerical ex-

periments to compare the performance of these preconditioners in the layered soil profile

are also performed, and the results are tabulated in Table 5.7. The Pc preconditioner is
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implemented with and without the Eisenstat trick. It is clear that the Eisenstat trick

works in principle on block SSOR preconditioners, but has little practical impact on the

runtime. In contrast, the simple pointwise variant (see Eq. (5.7)) is able to exploit the

Eisenstat trick intensively in terms of runtime.

Figure 5.5(a) displays the convergence histories of SQMR solver preconditioned by

GJ, Pc and MSSOR preconditioners, respectively for the 7×7×7 meshed footing problem

on homogeneous soil profiles. It can be seen that the MSSOR preconditioner leads to

faster convergence rate than GJ and Pc. The convergence histories of these preconditioned

methods for the layered soil profile problem are shown in Figure 5.5(b). The iteration

counts are larger, but the MSSOR preconditioner still out-performs the others.

Figure 5.6 shows the iteration counts versus DOFs. The basic trend for all the 3

preconditioned SQMR methods is that the iteration counts increase sub-linearly, but

each with a different growth rate with GJ preconditioned method being the fastest and

MSSOR preconditioned method being the slowest. In fact, for more difficult layered

soil problem, the iteration count for the MSSOR preconditioned method only increases

2.1 times when the DOFs increases 15 times from 7160 to 107180 (corresponding to the

8 × 8 × 8 and 20 × 20 × 20 problems). Figure 5.7 compares the cost of each iteration

of the various preconditioned methods. MSSOR is only marginally more expensive than

GJ. This result is very significant because the cost per iteration in GJ is almost minimal

(it is just a simple diagonal preconditioner). It is obvious that the Eisenstat trick is very

effective when exploited in the right way.

Figure 5.8 gives the same example provided by Smith and Griffiths (2004), in this

example, consolidation analysis was carried out with 20× 20× 20 uniform finite element

mesh, and the ramp load varies from 0 KPa to 1 KPa over 10 time steps. The numerical

results for displacements and excess pore pressures have been provided in Figure 5.9. It

also can be seen that even for the “ideal”1 consolidation problem, the SQMR method

preconditioned by the proposed MSSOR preconditioner shows fast computing capacity.

1Here, “ideal” means the soil condition is homogeneous without varied layers
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5.4 Conclusions

The main contribution in this work is to propose a cheap modified SSOR precondi-

tioner (MSSOR) which is applicable across a wide class of soil profiles. The modification

is carefully selected to exploit the Eisenstat trick intensively in the terms of runtime.

Specifically, each MSSOR preconditioned SQMR step is only marginally more expensive

than a single matrix-vector product step. This is close to the minimum achievable from

simple Jacobi type preconditioners, where the preconditioner application step is almost

cost free. For the diagonal matrix forming part of the MSSOR preconditioner, the GJ

preconditioner is adopted to overcome the numerical difficulties encountered by the stan-

dard SSOR preconditioner for matrices having very small (or even zero) diagonal entries.

These matrices occur in many geomechanics applications involving solution of large-scale

symmetric indefinite linear systems arising from FE discretized Biot’s consolidation equa-

tions. The eigenvalue distributions of the MSSOR preconditioned matrices are analyzed

empirically and it can be concluded that the associated asymptotic convergence rates to

be better than those of GJ or Pc preconditioned matrices. Numerical experiments based

on several footing problems including the more difficult layered soil profile problem show

that our MSSOR preconditioner not only perform (in terms of total runtime) far better

than the standard SSOR preconditioner, but it is also much better than some of the

effective preconditioners such as GJ and Pc published very recently. Moreover, with in-

creasing problem size, the performance of our MSSOR preconditioner against GJ or Pc

is expected to get better. Another major advantage is that with a better approximation

to the (1,1) K block, iteration count increases more moderately from homogeneous to

layered soil profiles. Nevertheless, it is acknowledged that improvements are possible and

should be further studied because one should ideally construct a preconditioner that is

minimally affected by the type of soil profile or mesh size. It is worth noting that the

proposed MSSOR preconditioners can be generalized readily to nonsymmetric cases or

problems with a zero (2, 2) block.
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Figure 5.1: 7× 7× 7 finite element mesh for simple footing problem.
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Figure 5.2: 20×20×20 finite element mesh and soil layer profile of a quadrant symmetric
shallow foundation problem.
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Figure 5.3: Eigenvalue distributions in complex plane (a) of GJ (α = −4) preconditioned
matrix; (b) of GJ (α = −20) preconditioned matrix; (c) of Pc preconditioned matrix, for
7× 7× 7 FE mesh with soil profile 1.
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Figure 5.4: Eigenvalue distributions in complex plane of MSSOR preconditioned matrices
(a) MSSOR (α = −4, ω = 1.0); (b) MSSOR (α = −20, ω = 1.0); (c) MSSOR (α = −20,
ω = 1.3).
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Figure 5.5: Convergence history of SQMR method preconditioned by GJ (α = −4), Pc,
SSOR (ω = 1.0) and MSSOR (α = −4, ω = 1.0), respectively, for 7× 7× 7 finite element
mesh (a) with soil profile 1 (solid line) and with soil profile 2 (dashed line), respectively;
(b) with soil profile 3.
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Figure 5.6: Iteration count versus DOFs for SQMR method preconditioned by GJ (α =
−4), Pc and MSSOR (α = −4, ω = 1.0), respectively for three soil profile (SP) cases.
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This job ran on 32 (16) processors:

There are 35721 nodes, 28862 restrained and 107180 equations

The current time is 0.1000E+01

(SJ preconditioned) CG took 360 iterations to converge

The nodal displacements and porepressures are :

-0.2591E+00 -0.5907E-02 -0.2582E+00 -0.1201E-01

The Gauss Point effective stresses for element 1 are :

Point 1

-0.2061E-01 -0.2061E-01 -0.9442E-01 0.6251E-03 -0.2071E-03 -

0.2071E-03

The current time is 0.2000E+01

(SJ preconditioned) CG took 262 iterations to converge

The nodal displacements and porepressures are :

-0.5495E+00 -0.1402E-01 -0.5478E+00 -0.2875E-01

The Gauss Point effective stresses for element 1 are :

Point 1

-0.5057E-01 -0.5057E-01 -0.1929E+00 0.3545E-02 -0.1009E-02 -

0.1009E-02
...

The current time is 0.2000E+02

(SJ preconditioned) CG took 313 iterations to converge

The nodal displacements and porepressures are :

-0.3638E+01 -0.1177E+00 -0.3623E+01 -0.2354E+00

The Gauss Point effective stresses for element 1 are :

Point 1

-0.4145E+00 -0.4145E+00 -0.99533E+00 0.5245E-02 0.6459E-02

0.6459E-02

This analysis took : 255.71 (538.00) seconds.

This job ran on desktop PC platform (single processor):

There are 35721 nodes, 28862 restrained and 107180 equations

The current time is 0.1000E+01

MSSOR preconditioned SQMR took 121 iterations to converge

The nodal displacements and porepressures are :

-0.2591E+00 -0.5906E-02 -0.2582E+00 -0.1201E-01

The Gauss Point effective stresses for element 1 are :

Point 1

-0.2060E-01 -0.2060E-01 -0.9442E-01 0.6283E-03 -0.2098E-03 -

0.2101E-03

The current time is 0.2000E+01

MSSOR preconditioned SQMR took 19 iterations to converge

The nodal displacements and porepressures are :

-0.5312E+00 -0.1351E-01 -0.5293E+00 -0.2732E-01

The Gauss Point effective stresses for element 1 are :

Point 1

-0.4698E-01 -0.4669E-01 -0.1920E+00 0.1466E-02 0.1462E-03

0.4161E-05
...

The current time is 0.2000E+02

MSSOR preconditioned SQMR took 73 iterations to converge

The nodal displacements and porepressures are :

-0.3547E+01 -0.1156E+00 -0.3533E+01 -0.2323E+00

The Gauss Point effective stresses for element 1 are :

Point 1

-0.4126E+00 -0.4123E+00 -0.1002E+01 0.1083E-01 0.1542E-02

0.1403E-02

This analysis took : 1935.67 seconds.

Figure 5.9: Results for parallel computing versus desktop PC
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Table 5.1: 3-D finite element meshes

Mesh size 8× 8× 8 12× 12× 12 16× 16× 16 20× 20 × 20

Number of elements(ne) 512 1728 4096 8000

Number of nodes 2673 8281 18785 35721

Pore pressure(n) 648 2028 4624 8820
DOFs Displacement (m) 6512 21576 50656 98360

Total (m+n) 7160 23604 55280 107180

nnz(triu(K)) 443290 1606475 3920747 7836115
nnz(B) 103965 375140 907608 1812664

nnz nnz(triu(C)) 7199 24287 57535 112319

nnz(S̃) 51714 187974 461834 921294
nnz(A)/(m + n)2, % 2.15 0.72 0.32 0.17

Total memory required(MB) 6.6 24.1 58.6 117.1
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Table 5.2: Effect of ordering on MSSOR(ω = 1, α = −4) preconditioned SQMR method.

Soil Profile 1 Soil Profile 2 Soil Profile 3
Mesh size iord1 iord2 iord3 iord1 iord2 iord3 iord1 iord2 iord3

iters 100 110 105 95 105 105 270 300 310
8× 8× 8 to(s) 10.9 11.0 11.2 10.8 11.1 11.3 11.1 11.3 11.5

ti(s) 4.5 5.0 4.8 4.3 4.8 4.8 12.2 13.4 13.8
tt(s) 15.5 16.2 16.1 15.3 16.0 16.2 23.8 25.4 25.9

iters 160 175 165 155 165 170 470 520 500
12× 12× 12 to(s) 37.0 38.0 38.7 37.0 38.0 38.6 37.5 38.4 39.1

ti(s) 25.7 28.1 26.4 24.8 26.4 27.1 74.7 82.7 79.1
tt(s) 63.0 6.3 65.3 62.1 64.7 65.9 114.2 123.1 120.2

iters 225 270 265 220 250 240 725 790 740
16× 16× 16 to(s) 88.3 90.7 92.5 88.3 90.7 92.5 89.4 91.9 93.6

ti(s) 87.6 105.5 103.5 85.5 97.6 93.8 280.7 307.5 288.0
tt(s) 176.2 196.6 196.3 174.1 188.6 186.7 374.5 403.7 386.0

iters 330 365 360 290 315 330 965 1045 1170
20× 20× 20 to(s) 173.7 178.8 182.5 173.6 178.7 182.4 177.8 181.4 185.0

ti(s) 258.0 286.2 283.1 226.6 247.4 259.6 755.9 814.0 914.1
tt(s) 432.3 465.6 466.1 400.9 426.7 442.6 942.2 1003.9 1107.6
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Table 5.3: Effect of α on iterative count of MSSOR(ω = 1.0) preconditioned SQMR
method

−α 1 4 10 20 30 40 50 60 70 Itα=−4

Itmin

Mesh size: 7× 7× 7
Soil profile 1 70 65 90 120 145 145 165 165 165 1.00
Soil profile 2 65 65 65 85 95 100 100 110 115 1.00
Soil profile 3 245 175 150 140 155 165 180 180 210 1.25

Mesh size: 16× 16× 16
Soil profile 1 405 225 215 205 200 210 210 225 235 1.13
Soil profile 2 215 220 200 180 165 155 155 165 170 1.42
Soil profile 3 1540 725 600 550 505 500 490 485 495 1.49

Table 5.4: Effect of ω on iterative count of standard SSOR and MSSOR(α = −50)
preconditioned SQMR methods, respectively.

−α 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mesh size: 7× 7× 7

Soil SSOR * * * * * * * * *
profile 1 MSSOR 165 155 145 155 160 165 180 205 245

Soil SSOR 745 1830 – – – – – – –
profile 2 MSSOR 100 105 110 110 115 120 135 140 180

Soil SSOR * * * * * * * * *
profile 3 MSSOR 180 175 185 190 195 220 240 270 285

Mesh size: 16× 16× 16

Soil SSOR * * * * * * * * *
profile 1 MSSOR 210 205 185 190 190 210 220 260 335

Soil SSOR 380 480 720 3600 – – – – –
profile 2 MSSOR 155 155 145 140 155 165 175 200 240

Soil SSOR * * * * * * * * *
profile 3 MSSOR 490 460 445 420 415 415 440 485 570

(*) means ‘Breakdown’; (–) means no convergence.
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Table 5.5: Performance of several preconditioners over different mesh sizes for soil profile
1 with homogeneous soft clay, E′ = 1 MPa, ν

′

= 0.3, k = 10−9 m/s.

Mesh size 8× 8× 8 12× 12× 12 16 × 16 × 16 20× 20× 20

GJ (α = −4)
RAM(MB) 26.5 84.0 194.5 386.0
Iteration count 378 654 1062 1448
Overhead (s) 11.1 37.8 90.1 177.2
Iteration time (s) 14.0 87.5 347.5 951.2
Total runtime (s) 25.7 127.3 442.0 1136.9

Pc

RAM (MB) 27.5 84.5 196 387
Iteration count 220 333 444 554
Overhead (s) 11.4 41.0 106.7 247.5
Iteration time (s) 11.4 66.9 232.9 636.8
Total runtime (s) 23.4 109.8 343.9 892.8

Pc with Eisenstat trick
RAM (MB) 27.5 84.5 196 387
Iteration count 220 335 445 560
Overhead (s) 11.1 39.5 102.3 238.1
Iteration time (s) 11.0 65.6 227.3 629.5
Total runtime (s) 22.7 107.0 334.0 876.1

MSSOR (ω = 1.0, α = −4)
RAM (MB) 26.5 84.5 195.0 387.0
Iteration count 100 160 225 330
Overhead (s) 10.9 37.0 88.3 173.7
Iteration time (s) 4.5 25.7 87.6 258.0
Total runtime (s) 15.5 63.0 176.2 432.3

MSSOR (ω = 1.3, α = −50)
RAM (MB) 26.5 84.5 195.0 387.0
Iteration count 205 185 190 215
Overhead (s) 10.9 37.1 88.3 173.6
Iteration time (s) 9.2 29.6 73.8 168.3
Total runtime (s) 20.1 66.9 162.5 342.5
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Table 5.6: Performance of several preconditioners over different mesh sizes for soil profile
2 with homogeneous dense sand, E′ = 100 MPa, ν

′

= 0.3, k = 10−5 m/s.

Mesh size 8× 8× 8 12× 12× 12 16 × 16 × 16 20× 20× 20

GJ (α = −4)
RAM(MB) 26.5 84.0 194.5 386.0
Iteration count 346 578 866 1292
Overhead (s) 10.9 37.3 89.0 174.9
Iteration time (s) 12.7 76.3 278.7 837.4
Total runtime (s) 24.2 115.5 371.9 1020.8

Pc

RAM (MB) 27.5 84.5 196 387
Iteration count 215 322 432 540
Overhead (s) 11.4 40.9 106.7 247.1
Iteration time (s) 11.1 64.4 226.5 620.8
Total runtime (s) 23.1 107.3 337.5 876.3

Pc with Eisenstat trick
RAM (MB) 27.5 84.5 196 387
Iteration count 215 325 435 540
Overhead (s) 11.0 39.5 102.3 237.5
Iteration time (s) 10.8 63.5 222.5 606.6
Total runtime (s) 22.4 105.0 329.1 852.7

MSSOR (ω = 1.0, α = −4)
RAM (MB) 26.5 84.0 194.5 386
Iteration count 95 155 220 290
Overhead (s) 10.8 37.0 88.3 173.6
Iteration time (s) 4.3 24.8 85.5 226.6
Total runtime (s) 15.3 62.1 174.1 400.9

MSSOR (ω = 1.3, α = −50)
RAM (MB) 26.5 84.0 194.5 386
Iteration count 115 115 140 185
Overhead (s) 10.9 37.1 88.3 173.6
Iteration time (s) 5.2 18.4 54.5 144.7
Total runtime (s) 16.2 55.8 143.2 319.0
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Table 5.7: Performance of several preconditioners over different mesh sizes for soil profile
3 with alternative soil properties E′ = 100 MPa, ν

′

= 0.3, k = 10−5 m/s and E′ = 1
MPa, ν

′

= 0.3, k = 10−9 m/s
Mesh size 8× 8× 8 12× 12× 12 16 × 16 × 16 20× 20× 20

GJ (α = −4)
RAM(MB) 26.5 84 194.5 386
Iteration count 1143 2023 2994 4318
Overhead (s) 10.9 37.0 88.6 174.2
Iteration time (s) 41.6 266.2 961.3 2779.5
Total runtime (s) 53.0 305.0 1054.2 2962.1

Pc

RAM (MB) 27.5 84.5 196 387
Iteration count 572 883 1186 1477
Overhead (s) 11.4 41.1 107.1 247.2
Iteration time (s) 29.5 176.7 620.6 1696.3
Total runtime (s) 41.6 219.7 732.0 1952.0

Pc with Eisenstat trick
RAM (MB) 27.5 84.5 196 387
Iteration count 575 880 1190 1480
Overhead (s) 11.0 39.2 101.8 236.8
Iteration time (s) 28.8 172.1 607.9 1662.0
Total runtime (s) 40.4 213.2 714.1 1907.2

MSSOR (ω = 1.0, α = −4)
RAM (MB) 26.5 84.0 194.5 386
Iteration count 270 470 725 965
Overhead (s) 11.1 37.5 89.4 177.8
Iteration time (s) 12.2 74.7 280.7 755.9
Total runtime (s) 23.8 114.2 374.5 942.2

MSSOR (ω = 1.3, α = −50)
RAM (MB) 26.5 84.0 194.5 386
Iteration count 240 330 420 515
Overhead (s) 10.9 37.3 88.9 174.9
Iteration time (s) 10.6 52.4 162.3 397.8
Total runtime (s) 22.2 91.7 255.5 581.2



CHAPTER 6

NEWTON-KRYLOV

ITERATIVE METHODS FOR

LARGE-SCALE NONLINEAR

CONSOLIDATION

6.1 Introduction

Three-dimensional Biot’s consolidation equations have been widely used to simulate soil

consolidation problems in geotechnical engineering (e.g. Biot, 1941; Lewis and Schre-

fler, 1998; Zienkiewicz et al., 1998). Nonlinearity is quite commonly incorporated into

finite element analysis to obtain more realistic answers. Hence, it is necessary to con-

sider nonlinear behavior of soil skeleton or fluid flow (e.g. Siriwardane and Desai, 1981).

The nonlinearity in a general consolidation problem may arise from two sources: one is

soil material nonlinearity which is dominated by the constitutive relation of soil model

and the other is geometrical nonlinearity which may arise due to large deformation of

soil skeleton. In this chapter, only material nonlinearity is considered. For nonlinear

finite element equations involving elasto-plastic problems, there are well-known itera-

tive schemes including Newton method, modified Newton methods and so-called initial

stiffness method. Newton method is popular because of its asymptotically quadratic

convergence rate. When applying Newton method to finite element analysis, it is neces-
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sary to form and factorize the tangent stiffness matrix in each iteration, and this process

could be expensive. In some applications, modified Newton method may be preferred.

Newton iteration have been exploited due to its fast convergence rate in some elasto-

plastic finite element analysis. However, this quadratic convergence rate may lose due to

some reasons. Simo and Taylor (1985) introduced the notion of the consistency between

integration algorithm and tangent stiffness operator and suggested the use of a consis-

tent tangent operator which plays a crucial role in preserving the quadratic convergence

behavior of global Newton iteration. This consistency of integration and tangent stiff-

ness operator has been emphasized by many researches (e.g. Borja and Lee, 1990; Borja,

1991; Crisfield, 1991; Hashash and Whittle, 1992; Jeremić and Sture, 1997; Hickman and

Gutierrez, 2005).

Linearizing the nonlinear problems may always produce many linear equations for

which direct or iterative methods can be adopted. Recently, Newton-Krylov iterative

methods have received some attention in engineering problems because they are believed

to provide robust solution for large-scale nonlinear problems. By definition, the term

“Newton-Krylov” means that Newton-type iterative scheme is used for linearizing non-

linear problems, and Krylov subspace iterative method is adopted for the linearized linear

systems. Instead of using direct solution methods which are based on Gauss elimination

algorithm, Krylov subspace iterative methods are particularly valuable because iteration

can be stopped when the desired precision is acquired. Wang (1996) also studied the char-

acteristics of PCG in elasto-plastic analysis and concluded that although the PCG method

was about 30% slower than the direct method for plastic analysis at that time, but he was

very confident that with some improvements, PCG can be made faster in plastic analysis

in the future. For nonlinear Biot’s consolidation problems, Borja (1991) compared the

composite Newton-PCG method to Newton-Gauss method and quasi-Newton method

(rank-two BFGS inverse update). Numerical results which were based on both the ideal

von Mises elasto-plastic model and the more realistic modified Cam-Clay model showed

that the composite Newton-PCG method possesses promising potentials for large-scale

computations. Based on the square footing problems, Axelsson et al. (1997) suggested

using efficient preconditioned linear solver in inexact Newton solvers for 3-D elasto-plastic

problems. Jones and Woodward (2001) used multigrid Newton-Krylov solvers in satu-

rated flow simulations because one obvious advantage is that matrix-vector products in
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Krylov subspace method can be approximated by the finite difference method.

In view of the recent rapid developments on fast preconditioners and robust linear

solvers for large consolidation problems (e.g. Chan et al., 2001; Phoon et al., 2002; Toh

et al., 2004), it is worthwhile to investigate the numerical performance of fast precondi-

tioned Newton-Krylov methods in large-scale computations of nonlinear consolidations.

In this chapter, modified Cam clay soil model and ideal von Mises soil model are adopted,

and fully implicit backward Euler return algorithm is used to integrate the stress-strain

relation. Explicit tangent operator is derived to maintain consistency with the integra-

tion algorithm and preserve fast convergence of global Newton iteration. For each weakly

nonsymmetric indefinite linear system in each global Newton iteration (e.g. Borja, 1991),

symmetric quasi-minimal residual (SQMR) is used in conjunction with recently developed

robust preconditioners such as generalized Jacobi (GJ) and modified SSOR (MSSOR)

preconditioners as well as the preconditioner proposed by Borja (1991). In chapter 4,

numerical results have shown that Pc preconditioned SQMR with proposed implementa-

tions can be faster than GJ preconditioned SQMR method. However, GJ is chosen for

nonlinear consolidation problems for two reasons: one reason is that GJ is very simple to

implement and almost cost-free to construct, but Pc needs one more complicated sparse

Cholesky solve in each iteration. The other reason is that a higher convergence tolerance

(such as 10−3 or 10−4) may be needed for nonlinear consolidations so that iteration time

savings may not overwhelm the cost of constructing the Pc preconditioner, and thus, Pc

will not be considered in this chapter for nonlinear consolidation problems.

6.2 Nonlinearity of FE Biot’s Consolidation Equations

Biot’s consolidation equations are composed of the equilibrium equations and the conti-

nuity equation as follows (e.g. Abbo, 1997)

{
∇̃T (σ′ + βp1) + b = 0

div v + 1T
ε̇ = 0

(6.1)

where ∇̃ is a differential operator; σ
′ = {σ′

x, σ′
y, σ

′
z, τxy, τyz, τzx}T is the vector of ef-

fective stress, and β is the Biot coefficient which is often assumed to be unity; 1 =

{1, 1, 1, 0, 0, 0}T is the second-order Kronecker delta in vectorial form; b = {bx, by, bz}T is

the vector of body force; ε̇ is time differentiation of strain vector ε = {εx, εy, εz , γxy, γyz , γzx}T ;
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p = ps + pe is total pore water pressure decomposed with steady state component ps,

and excess component pe (pore pressure in excess of that at steady state), respectively.

v = {vx, vy, vz}T is the vector of superficial fluid velocity (i.e., average relative velocity

of seepage measured over the total area). The components of the velocity vector can be

determined by Darcy’s law as follows,

v =
[k]

γw

(∇p + bw) (6.2)

where [k] is the permeability matrix, and usually, kxy = kxz = kyz = 0 is assumed; γw is

the unit weight of pore water; bw = γwb.

Spatial discretization and time integration result in the incremental formulation of

Biot’s consolidation equation for which only displacement and pore pressure are required

to march the iteration,
[

K L

LT −θ∆tG

]{
∆u

∆pe

}
=

{
∆f

∆tGpe
n

}
(6.3)

where L is solid-fluid connection matrix; G is the fluid stiffness matrix; θ is time inte-

gration parameter, the choice θ = 1 corresponds to the fully implicit method (e.g. Smith

and Griffiths, 1998); ∆t is time increment, ∆u is the displacement increment, ∆pe is

the increment of excess pore water pressure and ∆f is applied force increment; K is a

stress-dependent solid stiffness matrix

K =
∑

e

(∫

Ve

BT
uDepBu dV

)
(6.4)

in which, Bu is the strain-displacement matrix and Dep is elasto-plastic constitutive ma-

trix. Obviously, if only material nonlinearity is considered, the nonlinear stress-strain

relation is one source of the nonlinearity, while the other source, which is not considered

in this chapter, may arise from G or more accurately, the permeability matrix [k] due to

the compaction of soil skeleton. Because G is assumed to be positive definite, and thus,

the symmetry of the coupled stiffness matrix in Eq. (6.3) is obviously determined by the

stress-strain matrix Dep.

6.3 Incremental Stress-Strain Relations

In computational elasto-plastic analysis, it is convenient to distinguish the stress states

in terms of elastic and plastic components by introducing a “yield” function (or surface)
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f(σ,q), where σ = {σx, σy, σz, τxy, τyz, τzx}T is the effective stress vector (here, prime

symbol is omitted for clarity) and q = {q1, q2, . . . , qn}T is the vector with n internal

variables. Whether a stress state is elastic or plastic depends on its the current location.

It is said that the a stress state goes into plasticity from elasticity when it changes from

the inside of the yield surface onto the the yield surface, and a stress state lying outside

of the yield surface is inadmissable.

Once the elastic limit is exceeded in an elasto-plastic analysis, it is assumed that the

total strain increment, dε, is composed of two components: elastic strain increment and

plastic strain increment,

dε = dε
e + dε

p (6.5)

and the total strain increment is related to the stress increment by the relation

dσ = Depdε (6.6)

where

Dep = De −Dp (6.7)

Because the stress increment is only generated by the elastic strain increment, we have

dσ = Dedε
e = De(dε− dε

p) (6.8)

The plastic strain increment, which is normal to the plastic potential surface denoted by

g(σ,q), is determined by the plastic flow rule

dε
p = dλ

{
∂g

∂σ

}
(6.9)

where dλ is the change of the plastic multiplier, ∆λ. If the strain increment is purely

elastic, i.e., ∆εp
v = 0, no hardening occurs. In more details, it can be observed from the

following Karush-Kuhn-Tucker form

f(σ, q) ≤ 0 (6.10a)

dλ ≥ 0 (6.10b)

fdλ = 0 (6.10c)

Eqs. (6.10b)∼ (6.10c) must be satisfied simultaneously in any loading process. By making

use of Karush-Kuhn-Tucker form, elastic behavior can be identified with f < 0 and
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dλ = 0, and plastic yielding can be characterized by dλ > 0 (e.g. Jeremić and Sture,

1997; Hickman and Gutierrez, 2005).

Once a stress state reaches the yield surface, it remains on the surface. This process

is dictated by the consistency condition,

df =

{
∂f

∂σ

}T

dσ +

{
∂f

∂q

}T

dq = 0 (6.11)

with the assumed relation,

dq = dλh(σ,q) (6.12)

Substituting Eqs. (6.8), (6.9) and (6.12) into Eq. (6.11), we get the plastic multiplier,

dλ =

{ ∂f

∂σ

}T

De dε

{ ∂f

∂σ

}T

De
{ ∂g

∂σ

}
− cT h

(6.13)

Thus, substituting Eqs. (6.9) and (6.13) into Eq. (6.8) leads to

dσ = Depdε = (De −Dp)dε =

(
De − DebaTDe

aTDeb− cT h

)
dε (6.14)

where

a =

{
∂f

∂σ

}
=

{
∂f

∂σx
,

∂f

∂σy
,

∂f

∂σz
,

∂f

∂τxy
,

∂f

∂τyz
,

∂f

∂τzx

}T

(6.15a)

b =

{
∂g

∂σ

}
=

{
∂g

∂σx
,

∂g

∂σy
,

∂g

∂σz
,

∂g

∂τxy
,

∂g

∂τyz
,

∂g

∂τzx

}T

(6.15b)

c =

{
∂g

∂h

}
=

{
∂g

∂h1
,

∂g

∂h2
, . . . ,

∂g

∂hn

}T

(6.15c)

It is worth noting that in Eq. (6.14), the denominator is a scalar, and thus, the symmetry

of Dp or Dep depends on the product of baT . In the physical sense, b = a leads to an

associated plastic flow rule (that is, the vector of plastic strain increment should be

normal to the yield surface) and a symmetric elasto-plastic stress-strain matrix, while

b 6= a results in non-associated plastic flow rule and nonsymmetric elasto-plastic stress-

strain matrix.

In Eq. (6.14), Dep is known as standard or continuum tangent matrix though it

is not required to be formed explicitly. A widely adopted consistent tangent stiffness

operator with backward Euler integration was proposed by Simo and Taylor (1985).

This consistent tangent stiffness operator can be derived by making use of the complete

expression of dε
p which incorporates the change of plastic flow direction,

dε
p = dλb + ∆λ

[
∂b

∂σ

]
dσ + ∆λ

[
∂b

∂q

]
dq (6.16)
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Substituting the complete expression of plastic strain into Eq. (6.8) gives

dσ = Rdε− dλRt (6.17)

where Q = I + ∆λDe
[∂b

∂σ

]
, R = Q−1De and t = b + ∆λ

[∂b

∂q

]
h. Further substituting

Eqs. (6.12) and (6.17) into Eq. (6.11) results in

dλ =
aTRdε

aTRt− cT h
(6.18)

Thus, Eq. (6.17) and Eq. (6.18) give the stress-strain relation as

dσ =

(
R− RtaTR

aTRt− cTh

)
dε = Depcdε (6.19)

where Depc is the consistent tangent matrix. By incorporating second-derivative term

of plastic potential function which are ignored in standard elasto-plastic stress-strain re-

lations, the consistent tangent matrix technique can recover a good convergence rate of

global Newton iteration. It can been seen that the symmetry of Depc depends on
[∂b

∂σ

]

as well as taT . However, it is important to distinguish strong nonsymmetry and weak

nonsymmetry because symmetric iterative solver can be employed for weakly nonsym-

metric linear system. Strong nonsymmetry may arise from the non-associated plastic

flow rule, while weak nonsymmetry may arise from the associated plastic flow rule with

exact linearization (e.g. Borja, 1991).

6.4 Backward Euler Return Algorithm

In a strain-driven finite element analysis, the stress state at previous time step and current

strain increment are known. The new stress state can be obtained by using the backward-

Euler return algorithm without the need of computing the intersection point between the

stress path and the yield surface which is required in substepping schemes of elasto-plastic

stress-strain integration (e.g. Sloan, 1987; Abbo, 1997; Potts and Zdravković, 1999). The

new stress state with backward Euler return can be expressed as

σn+1 = (σn + ∆σ
tr
n+1)−∆λDebn+1 = σ

tr
n+1 −∆λDebn+1 (6.20)

where ∆σ
tr
n+1 is the stress increment by assuming the input strain increment is purely

elastic. If the stress increment causes a change from elasticity to plasticity, plastic relax-

ation is required, and this process is named as elastic estimation with a plastic corrector
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(e.g. Ortiz and Simo, 1986; Crisfield, 1991). The objective of this plastic correction as

shown in Eq. (6.20) is to minimize f(σn+1,qn+1). When considering first order Taylor

expansion at σ
tr
n+1, we get

f(σn+1,qn+1) ≈ f(σtr
n+1,qn) +

{
∂f

∂σ

}T

∆σ +

{
∂f

∂q

}T

∆q

= f(σtr
n+1,qn)−∆λaTDeb + ∆λcTh

(6.21)

As a result, ∆λ can be obtained as follows

∆λ =
f(σtr

n+1,qn)

aTDeb− cT h
(6.22)

and the stress state and internal variables can be updated as follows





σ
st
n+1 = σ

tr
n+1 −∆λDeb

qst
n+1 = qn + ∆λh

∆λst = ∆λ

(6.23)

This start state, (σst
n+1,q

st
n+1,∆λst), is called semi backward Euler starting point (e.g.

Jeremić and Sture, 1997). By using this starting point to approximate σn+1, the differ-

ence between the two stress states (or stress residual) can be written as

rσ = σn+1 − (σtr
n+1 −∆λDebn+1) (6.24)

The stress residual for j + 1 iteration can be computed in terms of truncated first-order

Tayler expansion,

(rσ)j+1 = (rσ)j + δσ + δ∆λDeb + ∆λDe

[
∂b

∂σ

]
δσ + ∆λDe

[
∂b

∂q

]
δq (6.25)

Because the objective of this iterative process is to minimize (rσ)j+1 and δq can be given

as

δq = δ∆λh (6.26)

we get

δσ = −Q−1[(rσ)j + δ∆λDet] (6.27)

in which, the expressions of t and Q have been given in Eq. (6.17). Parameter δ∆λ can

be derived from the consistency condition

fj+1 = fj + aT δσ + cT δq = fj + aT δσ + δ∆λcT h (6.28)
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With the objective to minimize fj+1, substituting Eq. (6.27) into Eq. (6.28) leads to

δ∆λ =
fj − aTQ−1(rσ)j

aTRt− cT h
(6.29)

where the expression of R has been given in Eq. (6.17). Updating stress state and internal

variables with δσ and δ∆λ as follows



σn+1,j+1 = σn+1,j + δσ

qn+1,j+1 = qn+1,j + δq

∆λn+1,j+1 = ∆λn+1,j + δ∆λ

with





σn+1,0 = σ
st
n+1

qn+1,0 = qst
n+1

∆λn+1,0 = ∆λst
n+1

and 0 ≤ j ≤ i

(6.30)

This iterative process is terminated until the final stress is “corrected” within a preset

tolerance to the yield surface.

6.5 Modified Cam Clay Model

In three-dimensional stress space, the two-invariant yield function of the modified Cam

clay model is given as

f =
q2

M2
+ p′(p′ − p′c) (6.31)

where M is the slope of the critical state line; p′c, the so-called preconsolidation pressure,

is the diameter of ellipsoid of modified Cam clay model and it is also the hardening

parameter which controls the size of yield locus; p′ is the mean effective stress and q is

the deviatoric stress expressed, respectively, as

p′ = −1

3
tr(σ) (6.32a)

q =

√
3

2
‖s‖ where s = σ + p′1 (6.32b)

in which s is the stress deviator.

For modified Cam clay model with an associated plastic flow (f = g), we have

a = b =
∂f

∂σ

=
∂f

∂p′
∂p′

∂σ

+
∂f

∂q

∂q

∂σ

(6.33)

where

∂f

∂p′
= 2p′ − p′c (6.34a)

∂f

∂q
=

2q

M2
(6.34b)

∂f

∂p′c
= −p′ (6.34c)
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and
∂p′

∂σ

,
∂q

∂σ

can be given as

∂p′

∂σ

= −1

3
1 (6.35a)

∂q

∂σ

=

√
3

2
n̂ =

3

2q
s where n̂ =

s

‖s‖ (6.35b)

Thus, Eq. (6.33) can be derived as

a = b = −1

3
(2p′ − p′c)1 +

3

M2
s (6.36)

Thus, the second derivative of f about stress is

∂b

∂σ

=
∂2f

∂σ
2

= −2

3
1⊗ ∂p′

∂σ

+
3

M2

∂s

∂σ

=
2

9
1⊗ 1 +

3

M2
Id (6.37)

where Id = I − Iv with Iv = 1
31 ⊗ 1, and the symbol “⊗” denotes tensor product. In

critical state soil mechanics, it is more convenient to distinguish the two components

of plastic strain increment: the plastic volumetric strain increment dεp
v which governs

isotropic hardening behavior and the plastic deviatoric strain increment dεp
d which gov-

erns deviatoric or kinematic hardening behavior. When only isotropic hardening plastic-

ity is considered in modified Cam clay model, the hardening process dominated by the

increasing p′c is related to the plastic volumetric strain increment as follows

dp′c =
p′cv

(χ− κ)
dεp

v = dλϑp′c
∂g

∂p′
(6.38)

where ϑ =
v

χ− κ
, in which χ is the virgin compression index, κ is the swelling or

recompression index and v = 1 + e is the specific volume, while e is the void ratio of soil.

The specific volume can be calculated from the following equation which is appropriate

for normally consolidated soils under isotropic or anisotropic condition,

v = vχ − χ ln p′c + κ ln(p′c/p
′) (6.39)

Here, vχ is the corresponding value of v at ln p′ = 0 or p′ = 1KPa. Comparing Eq. (6.38)

to Eq. (6.12), we have

h(σ,q) = h = ϑp′c(2p
′ − p′c) (6.40)

and thus, the expression of t in Eq. (6.17) can be

t = b +
1

3
∆λh1 (6.41)
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It should be more convenient to formulate the elastic stress-strain matrix as

De = K ′ 1⊗ 1 + 2G′
Id (6.42)

where, for conventional soil models such as Mohr-Coulomb or von Mises soil models, the

elastic bulk modulus K ′ and the elastic shear modulus G′ can be given as

K ′ =
E′

3(1− 2ν ′)
(6.43a)

G′ =
3(1− 2ν

′

)K ′

2(1 + ν ′)
(6.43b)

in which, E′ is the effective Young’s modulus and ν
′

is the effective Poisson’s ratio.

However, for pressure-dependent soil models such as critical state soil models, the elastic

stress-strain matrix is nonlinear with the elastic bulk modulus K ′ = K ′(p′). For the

second elastic parameter, there are several different choices (e.g. Potts and Zdravković,

1999; Hickman and Gutierrez, 2005), if the Poisson’s ratio ν
′

is assumed to be constant,

the elastic bulk and shear modulus can be given as

K̂ =
dp′

dεe
v

=
vp′

κ
(6.44a)

Ĝ =
3(1− 2ν

′

)K̂

2(1 + ν ′)
(6.44b)

in which dεe
v is the elastic volumetric strain increment. Eq. (6.44) gives tangent bulk and

shear modulus, and integrating Eq. (6.44) results in the so-called secant bulk and shear

modulus

K̄ =
∆p′

∆εe
v

=
p′n

∆εe
v

[
exp

(v

κ
∆εe

v

)
− 1
]

(6.45a)

Ḡ =
3(1 − 2ν

′

)K̄

2(1 + ν
′

)
(6.45b)

Therefore, if the secant bulk modulus are used to describe the elastic nonlinearity in crit-

ical state soil models, the elastic stress-strain matrix should be replaced with the secant

elastic stress-strain matrix D̄e = De(K̄, Ḡ), and the corresponding elastic predictor can

be computed from

∆σ
tr
n+1 = D̄e∆ε (6.46)
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6.6 von Mises Model

The von Mises model without hardening can be expressed as

f =

√
3

2
‖s‖ − σY = q − qY (6.47)

where without hardening, σY = qY is fixed, the expression of s has been shown in

Eq. (6.32b). For associated plastic flow rule, the plastic flow can be obtained as

a = b =
∂q

∂σ

=

√
3

2
n̂ =

3

2q
s where n̂ =

s

‖s‖ (6.48)

and the correspondent second derivative of f about stress is

∂b

∂σ

=
∂2f

∂σ
2

=
3

2

q
[ ∂s

∂σ

]
− s⊗

{ ∂q

∂σ

}

q2
=

3

2q

(
Id −

3

2q2
s⊗ s

)
(6.49)

It should be mentioned that without hardening, t = b, the consistent tangent matrix as

shown in Eq. (6.19) is strictly symmetric.

6.7 Global Newton-Krylov Iteration in Finite Element Im-

plementation

In strain-driven finite element analysis, it is required to calculate iteratively the displace-

ment increment for each load increment or each time step. In each load increment, a

series of linear systems can be derived from Newton linearization, the linear systems with

the solid-fluid coupled stiffness matrices have the form

An+1, i =

[
Kn+1, i L

LT −θ∆tG

]
(6.50)

in which Kn+1, i has been defined by Eq. (6.4), and to obtain good convergence rate, the

consistent tangent matrix given in Eq. (6.19) is used, while the subscript i denotes the

converged iteration counter of Newton method in each load increment. In Eq. (6.3), ∆f

is the residual vector or the out-of-balance force which can be defined as

∆fn+1,i =
∑

e

(∫

V

BT
u ∆σ

p
n+1,idV

)
(6.51)
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in which ∆σ
p defined at Gauss point can be computed from

∆σ
p
n+1,i = (σn,i + ∆σ

tr
n+1,i)− σn+1,i (6.52)

It has been recognized that there are two types of sources of out-of-balance forces: one is

due to the yielding and stress correction, this out-of-balance force is normal and permit-

ted. The other unacceptable source may be due to numerical problems such as very stiff

structures locating in soft soil or inappropriate time step used for consolidation analysis

(e.g. Woods, 1999).

In a more general form without bold symbol, the linear system as shown in Eq. (6.3)

can be rewritten as

Ax = b with A =

[
K B

BT −C

]
(6.53)

Here K ∈ R
m×m, B ∈ R

m×n and C ∈ R
n×n are correspondent to K, L and θ∆tG,

respectively. To solve such symmetric or weakly nonsymmetric indefinite linear system,

Krylov subspace iterative method, SQMR, developed by Freund and Nachtigal (1994)

is adopted because it is believed to be more appropriate for symmetric and possible

indefinite linear systems. However, an efficient preconditioner is crucial. To combine

with Newton-PCG method, Borja (1991) proposed to use the stiffness matrix at the first

iteration of each time step as a preconditioner, that is,

PB = Pn+1,i = An+1,1 (6.54)

and thus, there is one factorization in each time step and this factorization is used in

the preconditioning steps of the following plastic iterations. This preconditioner was

believed to be effective for symmetric or weakly nonsymmetric systems. However, a

direct linear solver (In this chapter, sparse direct solution subroutine MA47 developed

by Duff and Reid (1995) is adopted because the subroutine is well suited for saddle point

matrices (e.g. Benzi et al., 2005)) is needed to obtain the factorization, and for large-

scale problems, it may be expensive to use direct solution method from the perspectives of

memory requirement and computer runtime. A cheap and efficient diagonal generalized

Jacobi (GJ) preconditioner was proposed by Phoon et al. (2002) for 3-D linear elastic soil

consolidation with the form given in Eq. (5.1). Toh et al. (2004) and in Chapter 4 also

proposed a so-called block constrained preconditioner which has the same block structure

as that of original block matrix, and the preconditioner can lead to faster convergence and
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saving in computing time. Derived from block LDU factorization, Chapter 5 developed

a modified SSOR preconditioner with the form given in Eq. 5.7. It should be noted that

the MSSOR preconditioner falls into the class which can be used in conjunction with

Eisenstat trick, the computing time can be reduced about half in each iteration (e.g.

Eisenstat, 1981; Saad, 1996).

6.8 Numerical Examples

6.8.1 Convergence Criteria

In the following numerical examples, the relative residual convergence criterion is adopted

for the linear iterative solver and the convergence criterion with zero initial guess is given

as

Iteration stops when k ≥ max it or
‖rk‖2
‖r0‖2

=
‖b−Axk‖2
‖b‖2

≤ stop tol (6.55)

where ‖·‖2 denotes the 2-norm, max it and stop tol are the maximum iteration number

and stopping tolerance, respectively. In this study, max it = 500 and stop tol = 10−2

are designated for SQMR iterative method. For nonlinear Newton iterative method, the

convergence criterion is still based on the relative residual (unbalanced force) norm

‖∆fn+1,i‖2
‖∆fn+1,1‖2

< nonlin tol (6.56)

nonlin tol = 10−2 is the corresponding stopping tolerance for the Newton iteration.

Another tolerance, yield function tolerance to stop trial stress return, is set to be Y tol =

10−6.

6.8.2 Problem Descriptions

Figure 6.1 shows a 8×8×8 finite element mesh of a quadrant symmetric shallow founda-

tion (due to the symmetry property of the analyzed footing problem) applied by a ramp

loading, it simulates a flexible square footing resting on homogeneous soil and a vertical

ramp loading varies 0.01 MPa from 1st time step to 10th time step. In our 3-D finite el-

ement analysis, the twenty-node hexahedral solid elements coupled with eight-node fluid

elements were used, and as a result, the dimension of each element stiffness matrix is 68

and the total number of DOFs of displacements is much larger than that of excess pore

pressure.
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The ground water table is assumed to be at the ground surface and is in hydrostatic

condition at the initial stage. The base of the mesh is assumed to be fixed in all directions

and impermeable, side face boundaries are constrained in the transverse direction, but

free in in-plane directions (both displacement and water flux). The top surface is free in

all direction and free-draining with pore pressures assumed to be zero. Two different soil

models, normally consolidated modified Cam clay model and ideal von Mises model, are

adopted for the nonlinear consolidation analysis. In fact, von Mises model in geotechnical

analysis is applicable to “undrained clay” and only applicable in the context of total stress

analysis, but here it is adopted just to test Newton-Krylov subspace iterative methods

from a numerical viewpoint. The parameters required by the two models are listed in

Table 6.1 and Table 6.2, respectively. The coefficient of permeability are same for two

models as kx = ky = kz = 10−7m/s, and for the two models, the initial stress state is

σ′
x = σ′

y = σ′
z = 0.1MPa and τxy = τyz = τzx = 0.

6.8.3 Numerical Results

Based on the 8 × 8× 8 finite element mesh, the performance of Newton-SQMR method

preconditioned by PB , PGJ and PMSSOR, respectively, are compared to Newton-MA47

method. The nonlinear iteration counts (Nonlinear ITs), the average iteration counts per

nonlinear iteration and the total computer runtime for the whole nonlinear consolidation

analysis are provided in Table 6.3 for modified Cam clay model and Table 6.4 for von

Mises model. The “0” average iteration count per nonlinear iteration for Newton-MA47

means that sparse direct solution method, MA47, does not require iterations to solve a

linear system. PB preconditioner can be more efficient than PGJ and PMSSOR precondi-

tioners from the perspective of reducing iteration counts of SQMR because the stiffness

matrix at first plastic iteration is a good approximation to the stiffness matrices in fol-

lowing plastic iterations. However, as mentioned previously, the direct solver, MA47, is

still used to obtain the factorization which could be prohibitive for large problems, and

as a result, PGJ and PMSSOR can outperform PB in total computer runtime. For a small

problem such as this 8× 8× 8 problem, PB preconditioner still can compete with PGJ or

even PMSSOR because the computing time spent on the factorization can be amortized

by the fast convergence of SQMR methods, but the computation of factorization would

become a bottleneck for PB when problem size increases. A possible remedy for this
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problem is to use incomplete factorization as a preconditioner such as ILU(0) or ILUT

(e.g. Saad, 1996) at the price of slowing down the convergence rate. Another obvious

disadvantage for PB preconditioner as well as ILU-type preconditioners is that in the

following plastic iterations, the physical RAM should have the capability to store L, U

factors and the stiffness matrix concurrently. For 8 × 8 × 8 finite element mesh, the

memory requirement for Newton-SQMR method preconditioned by PB is 134 MBytes

and the memory requirement for Newton-MA47 is a little less than 130 MBytes, but the

memory requirement for PGJ or PMSSOR preconditioned methods is only 32 MBytes.

For a larger 12× 12× 12 as shown in Table 6.5 and 6.6, the computing is already impos-

sible and the error “out of memory” may occur for PB preconditioned SQMR method,

and the memory requirement for Newton-MA47 method increases significantly to 670

MBytes, but the required memory for PGJ and PMSSOR preconditioned methods is only

102 MBytes. For the two different size problems, it can be seen that SQMR methods

preconditioned by PGJ and PMSSOR should be more efficient as problem size increases.

It should be mentioned that when using Newton-Krylov methods, it is not necessary

to set a stringent tolerance for stop tol because the results provided by a loose tolerance

are very close to those by direct solution method. This can be verified in Figure 6.2 by

plotting settlements computed by different strategies.

6.9 Conclusions

Newton-Krylov methods in conjunction with efficient preconditioners have been used to

large-scale nonlinear consolidation problems. In this thesis, three different precondition-

ers have been used and compared in nonlinear consolidation problems based on both

modified Cam clay model and ideal von Mises model, and numerical examples show that

Newton-Krylov methods have several advantages such as the less computer runtime and

memory requirement than Newton-Gauss type method. It should be emphasized that

a robust preconditioner is very crucial for Newton-Krylov methods, PGJ and PMSSOR

perform far better than that suggested by Borja (1991), and thus, they are recommended

for large-scale computations.
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Figure 6.1: 3-D 8×8×8 finite element mesh of a quadrant symmetric shallow foundation

with ramp loading P .
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Figure 6.2: Vertical settlements at point “A” with time steps.
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Table 6.1: Parameters of modified Cam clay model.
Parameter M χ κ vχ ν

′

Value 1.20 0.16 0.05 3.176 0.25

Table 6.2: Parameters of von Mises model.
Parameter E′ ν

′

σY

Value 10 MPa 0.0 0.05 MPa

Table 6.3: Nonlinear consolidation analysis based on 8×8×8 finite element mesh (DOFs
= 7160) and modified Cam clay model.

Average iteration counts per nonlinear iteration
Time step Nonlinear ITs MA47 SQMR + PB SQMR + PGJ SQMR + PMSSOR

1 5 0 2 151 42
2 6 0 2 152 44
3 8 0 2 95 26
4 9 0 2 91 24
5 10 0 2 139 23
6 11 0 2 139 24
7 12 0 2 137 24
8 13 0 2 150 24
9 13 0 2 140 26
10 14 0 2 141 24
Total runtime (s) 6924.4 1887.5 1827.8 1259.8
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Table 6.4: Nonlinear consolidation analysis based on 8×8×8 finite element mesh (DOFs
= 7160) and von Mises model.

Average iteration counts per nonlinear iteration
Time step Nonlinear ITs MA47 SQMR + PB SQMR + PGJ SQMR + PMSSOR

1 1 0 0 181 50
2 1 0 0 180 50
3 1 0 0 182 50
4 1 0 0 183 50
5 1 0 0 183 50
6 2 0 3 124 35
7 3 0 2.5 117 48
8 3 0 3 138 55
9 2 0 3 159 35
10 2 0 2 140 35
Total runtime (s) 1280.7 927.3 273.8 201.9

Table 6.5: Nonlinear consolidation analysis based on 12 × 12 × 12 finite element mesh
(DOFs = 23604) and modified Cam clay model.

Average iteration counts per nonlinear iteration
Time step Nonlinear ITs MA47 SQMR + PB SQMR + PGJ SQMR + PMSSOR

1 5 0 – 214 69
2 6 0 – 195 40
3 8 0 – 112 39
4 9 0 – 153 34
5 11 0 – 177 32
6 11 0 – 172 57
7 12 0 – 176 58
8 13 0 – 170 58
9 13 0 – 174 51
10 14 0 – 205 36
Total runtime (s) 106283.0 – 6439.7 4653.2
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Table 6.6: Nonlinear consolidation analysis based on 12 × 12 × 12 finite element mesh
(DOFs = 23604) and von Mises model.

Average iteration counts per nonlinear iteration
Time step Nonlinear ITs MA47 SQMR + PB SQMR + PGJ SQMR + PMSSOR

1 1 0 – 309 80
2 1 0 – 329 80
3 1 0 – 337 80
4 1 0 – 318 95
5 1 0 – 318 100
6 2 0 – 204 55
7 2 0 – 192 58
8 3 0 – 220 83
9 3 0 – 234 95
10 3 0 – 214 75
Total runtime (s) 21983.0 – 1273.2 813.5



CHAPTER 7

CONCLUSIONS & FUTURE

WORK

7.1 Summary and Conclusions

The solution of the linear systems of equations is the most time-consuming part in large-

scale engineering problems. For example, finite element discretization of time-dependent

or elastic-plastic problems can lead to a large number of linear systems with hundreds of

thousands of DOFs. The developments of efficient iterative solution methods as well as

efficient preconditioning methods are therefore of importance to large-scale finite element

analysis. In this thesis, efficient preconditioned iterative methods were investigated and

used for large-scale linear systems arising from 3-D Biot’s consolidation equations. The

linear system up to about 200,000 DOFs were solved successfully on a modest personal

computer. To accelerate the convergence of SQMR method, two recently developed

preconditioners, GJ and Pc, were compared in detail and then, a robust preconditioning

technique named as MSSOR was proposed for large symmetric indefinite linear systems

arising from 3-D Biot’s consolidation equations. One important and noteworthy practical

advantage of MSSOR is that it can handle heterogeneous soils better than previous

preconditioners.

This thesis is organized as follows. In Chapter 1, the advances of preconditioned

iterative methods in geotechnical engineering were described, and then the objective and

significance of this thesis was given. In Chapter 2, a brief review of iterative methods,
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preconditioning techniques and data storage schemes were introduced from a histori-

cal perspective. In Chapter 3, several iterative solution strategies including partitioned

iterative methods and global Krylov subspace iterative methods were investigated and

compared after FE discretization and time integration of 3-D Biot’s consolidation. In

Chapter 4, block constrained preconditioner, Pc, which was already studied by Toh et

al. (2004), was investigated and then compared with the recently developed GJ pre-

conditioner. The numerical results show that Pc can further lead to computer runtime

saving. From the observation of a theoretical block factorization, a modified block SSOR

preconditioner was proposed in Chapter 5. However, a cheap pointwise modified SSOR

preconditioner, PMSSOR, was strongly recommended for practical applications. Both

theoretical and numerical results demonstrated that PMSSOR is very robust when com-

bining with Eisenstat trick. In Chapter 6, the proposed preconditioners were suggested

in conjunction with Newton-Krylov methods for nonlinear consolidation problems based

on the modified Cam clay soil model and the von Mises soil model, respectively. Numeri-

cal studies showed that the proposed preconditioned iterative methods far outperformed

some popular solution methods. Based on the above studies, some concluding remarks

were given in this concluding chapter.

In more details, these useful concluding remarks can be summarized as follows:

(a) Iterative methods only need matrix-vector products and inner products which make

them quite suitable for large, especially sparse, linear systems arising from partial

differential equations by finite element method discretization. For large-scale linear

systems of equations, iterative methods should be more efficient than direct solution

methods in terms of computer runtime and memory usage. It is not easy to decide

on a threshold DOF limit beyond which iterative method is more efficient than di-

rect solution method, because there are many efficient direct solution methods and

preconditioned iterative methods and one method may achieve fast solution (run-

time efficiency) but may not be memory efficient. However, based on the author’s

experiences on linear solvers for 3-D consolidation problems, it is recommended

that direct solution method can be used when total DOFs may fall below 10,000,

otherwise, preconditioned iterative methods should be used from the perspective

of memory efficiency and fast runtime. As for consolidation problems, theoreti-

cal and numerical evidences show that SQMR should be used with a symmetric
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indefinite preconditioner. Preconditioning methods are very crucial for iterative

methods to be successful. A good preconditioner has the desirable properties: the

preconditioned linear system has a faster convergence rate than the original one,

but the computing time incurred by the construction of the preconditioner and pre-

conditioning steps must be compensated by the resultant faster convergence rate.

Moreover, the construction of a good preconditioner should minimize the memory

usage. Many numerical applications show that diagonal and SSOR-type precon-

ditioners are very simple to implement and very efficient (in memory storage and

computing time) for most cases. Thus, diagonal and SSOR-type preconditioners

should be used as basic preconditioners to evaluate other more complicated precon-

ditioners. At present, an EBE version of the MSSOR preconditioner is not available

and GJ has an edge in a parallel computing environment.

(b) For an iterative method, the data storage scheme is another important factor to be

considered. A brief comparison between compressed sparse storage and element-

by-element storage was given in Chapter 2. Although element-by-element storage

could be extremely memory efficient, the compressed sparse storage was chosen

in this thesis because in symmetric case, the compressed sparse storage can be

kept as almost same as that of EBE storage and matrix-vector products can be

carried out more efficiently in the compressed sparse storage (See Section 2.3 and

Appendix B.1.2 for the detail). It is believed that element-by-element storage

may be more suitable for parallel computers than ordinary desktop computers.

Sometimes, it may be difficult to decide which storage to choose. However, it

should be kept in mind that in the iterative process, when the coefficient matrix

is stored in compressed sparse storage, the matrix-vector products can be carried

out directly to achieve fast solution time. To optimize memory efficiency (no need

to assemble the global matrix) or parallel operations, the matrix-vector products

should be carried out element-by-element, which is slower. Hence, there is a trade-

off between memory and runtime.

(c) For symmetric indefinite linear systems with 2 × 2 block coefficient matrix, parti-

tioned iterative methods or global Krylov subspace iterative methods can be used.

From the investigations and comparisons given in Chapter 3, it is clear that global



7.1: Summary and Conclusions 151

iterative methods can be more efficient when combining with efficient precondi-

tioners than partitioned iterative methods. For indefinite Biot’s linear systems, the

indefinite preconditioners can significantly improve the convergence of an iterative

method (including PCG, MINRES and SQMR) compared to the corresponding pos-

itive definite ones. For a certain preconditioner, MINRES can lead to slightly faster

convergence than PCG and SQMR. It is interesting to notice that numerical results

shown that PCG and MINRES can be successfully used with symmetric indefinite

preconditioners for Biot’s linear systems though theoretically, PCG is restricted

to SPD linear systems and MINRES is restricted to combine with SPD precon-

ditioner. If theoretical guarantee is desired, SQMR is the only iterative method

which is applicable to symmetric indefinite linear systems in conjunction with an

arbitrary symmetric preconditioner. Theoretical guarantee is desirable because it

ensures generality. Therefore, the SQMR was adopted for symmetric indefinite

linear systems arising from Biot’s consolidation equations.

(d) As a further study of block constrained preconditioner which has been investigated

by Toh et al. (2004), a Pc preconditioner with diagonal approximation to (1, 1)

block was proposed and compared to the GJ preconditioner (e.g. Phoon et al.,

2002, 2003). When applying Pc preconditioner, it has been shown that it is more

beneficial to express the inverse of Pc explicitly and then by following the efficient

implementations given by Toh et al. (2004), each iteration of Pc preconditioned

SQMR can be performed efficiently. Numerical results based on a series of finite

element meshes showed that Pc can lead to about 40% computer runtime compared

to GJ preconditioner.

(e) A modified SSOR (MSSOR) preconditioner was developed in this thesis. In the

theoretical perspective, a modified block SSOR derived from a LDU factorization

was proposed for the first time, however, this factorized form could be believed to

be expensive. A cheap pointwise variant of the modified block SSOR preconditioner

can be derived to combine with Eisenstat trick so that each iteration of MSSOR

preconditioned method can be performed as cheap as that of unpreconditioned one.

In practical application, MSSOR has been proved to be very robust for large-scale

Biot’s consolidation problems with highly varied soil properties, and perform much
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better than recently developed GJ and Pc preconditioners. This improvement can

be explained that the diagonal approximation of K in GJ or Pc is a bad approxima-

tion to soil stiffness K when heterogeneous soils with highly varied soil properties

are involved although it is cheap. MSSOR was thus developed to overcome this

problem as well as to overcome the numerical difficulties encountered by standard

SSOR preconditioner. The numerical problem with standard SSOR preconditioner

may result from the small entries in the diagonal, and these small entries may lead

to numerical instability and convergence difficulty. Therefore, the modified SSOR

preconditioner can be expected to be efficient for large-scale computation involving

multi-phases. MSSOR is as cheap as a diagonal preconditioner (cheapest possible)

when preconditioning step and matrix-vector product is combined by the Eisenstat

trick.

(f) For large nonlinear consolidation problems, the Newton-Krylov iterative methods

has been presented and several preconditioners including GJ, MSSOR and PB (see

Borja, 1991) combined with Newton-SQMR method have been compared. Newton-

Krylov methods have been chosen because they have the obvious advantage that

the linear systems in each linearized iteration need not be solved with high accuracy.

This conclusion can be verified by comparing the numerical results given by Newton-

Gauss (Newton-MA47) method and Newton-SQMR. It has been shown that the

GJ and MSSOR are also readily adapted to the plastic iterations involved in each

nonlinear iteration (or time step). The two preconditioners gave excellent numerical

performance compared to the PB preconditioner.

7.2 Future Work

To give a closure of this thesis, some suggestions of future work on preconditioned iterative

methods can be given for large-scale linear systems arising from Biot’s consolidation

equations:

(a) MSSOR preconditioner was proposed in sparse storage and sparse implementation,

but the MSSOR can be explored to combine with element-by-element strategy in

parallel computing. The extension is very natural because the element-by-element

SSOR and GJ were both developed (e.g. Dayde et al., 1997; Phoon et al., 2002), and
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these strategies can be borrowed directly, but the possibly encountered difficulty is

how to carry out triangular solves efficiently at element level. The performance of

MSSOR in parallel computing should be worth investigating.

(b) The other efficient preconditioning techniques such as multigrid preconditioner or

domain decomposition preconditioner can be studied and used for large linear sys-

tems of Biot’s consolidation problems on parallel environment or on a serial com-

puter.

(c) The linear systems discretized from Biot’s consolidation equations were all sym-

metric indefinite or weakly nonsymmetric indefinite. However, they may be non-

symmetric or strongly nonsymmetric in some cases, for example, if soil model with

non-associated plastic flow rule or unsaturated soil model (e.g. Sheng et al., 2003)

is considered, the resultant linear systems could be strongly nonsymmetric. Some

efficient preconditioning techniques should be developed, and the performance of

MSSOR preconditioner which can be extended naturally to nonsymmetric cases is

also worth studying. As we mentioned above, the memory storage requirement can

be kept almost as same as that required by EBE technique for symmetric linear

system by using the symmetric compressed sparse storage strategy proposed in this

thesis. Although, it can be predicted that by using the same global matrix assembly

strategy, for nonsymmetric linear system but with symmetric nonzero structure,

the memory requirement is about 1.5 times of that required by EBE technique,

and for nonsymmetric linear with nonsymmetric nonzero structure, the memory

requirement is about 2.0 times of that required by EBE technique. The practical

applicability of compressed sparse storage scheme is also worth investigating for

nonsymmetric linear systems.
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Benzi, M., M. Tůma. A Comparative Study of Sparse Approximate Inverse Precondi-
tioners, Applied Numerical Mathematics, 30:pp.305–340. 1999.
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APPENDIX A

SOME ITERATIVE

ALGORITHMS AND

CONVERGENCE CRITERIA

A.1 Algorithms for PCG and SQMR

Algorithm 1 Preconditioned CG Method (e.g. Erhel, 2001)

CG algorithm for symmetric positive definite system Ax = b, using a symmetric precon-
ditioner M .

Start: choose an initial guess x0,
Set r0 = b−Ax0; z0 = M−1r0; p0 = z0.
for k = 0 to max it do

qk = Apk

αk = (rk, zk)/(qk, pk)
xk+1 = xk + αkpk

rk+1 = rk − αkqk

Check convergence
zk+1 = M−1rk+1

βk+1 = (rk+1, zk+1)/(rk, zk)
pk+1 = zk+1 + βk+1pk

end for
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Algorithm 2 Preconditioned SQMR Method (e.g. Freund and Nachtigal, 1994; Freund,

1997)

The Symmetric QMR algorithm for the symmetric system Ax = b, using a symmetric
preconditioner M = MLMR.

Start: choose an initial guess x0 ∈ R
n, then set

s0 = b−Ax0, t = M−1
L s0, q0 = M−1

R t, τ0 = ‖t‖2, ϑ0 = 0, ρ0 = sT
0 q0, d0 = 0.

for k = 1 to max it do
Compute

t = Aqk−1, σk−1 = qT
k−1t, αk−1 =

ρk−1

σk−1
, sk = sk−1 − αk−1t

Compute

t = M−1
L sk, ϑk =

‖t‖2
τk−1

, ck =
1√

1 + ϑ2
k

, τk = τk−1ϑkck,

dk = c2
kϑ

2
k−1dk−1 + c2

kαk−1qk−1

Set
xk = xk−1 + dk,
Check convergence
Compute

uk = M−1
R t, ρk = sT

k uk, βk =
ρk

ρk−1
, qk = uk + βkqk−1.

end for

A.2 Convergence Criteria for Iterative Methods

In iterative algorithms, an essential component is convergence criterion or stopping cri-

terion by which we can determine when to stop the iteration process with acceptable

approximate solution.

In general, a convergence criterion is applied in the following iterative framework:

for k = 1 to max it (user-supplied maximum iterations), do

Compute current approximate solution, xk;

Compute current residual, rk = b−Axk, if necessary;

Apply convergence criteria with stop tol

(convergence tolerance) until convergence.

end for

A good convergence criterion should be capable of identifying the true error, ek =

x−xk, indirectly by other quantities, such as residual vector which is inherently available

for many iterative methods (However, there is no guarantee that a small residual indicates

a small error, especially for very ill-conditioned system (e.g. Bruaset, 1997). Iteration
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process stops when it is identified as convergence and controls the maximum iteration

time. There are several popular convergence criteria as follows:

(a) Relative residual norm criterion

Iteration continues until

Rr =
‖rk‖
‖r0‖

=
‖b−Axk‖
‖b−Ax0‖

≤ stop tol, k = 1, 2, . . . ,max it. (A.1)

where x0 is the initial guess of the solution, and ‖·‖ represents any vector norm,

but 2-norm is commonly used. Because of rk = Aek or ek = A−1rk , the criterion

has the following error bound:

‖ek‖ ≤ ‖A−1‖ · ‖rk‖ ≤ stop tol · ‖A−1‖ · ‖r0‖

The obvious disadvantage of the above criterion is that convergence strongly de-

pends on the initial guess, x0. In some applications, the choice of previous step

solution for initial guess may significantly reduce the total computational time.

However, when solving a time-dependent problem for which the current time-step

solution can be provided as the initial guess for the next time stop, the relative

residual norm criterion may have to become stricter with time. An absolute crite-

rion by testing whether the residual has dropped below a threshold. When there

is no good initial guess available, the following more stricter convergence criterion

(i.e., set x0 = 0 for criterion Rr) can be adopted,

Rb =
‖rk‖2
‖b‖2

=
‖b−Axk‖2
‖b‖2

≤ stop tol, k = 1, 2, . . . ,max it. (A.2)

It should be mentioned that when the “penalty” technique is used to implement

the prescribed displacements or the prescribed pore water pressures, the right hand

vector b has to be modified with “big” numbers. This modification makes Rr or Rb

be satisfied even though ‖rk‖2 is still very large. In this situation, the true residual

norm ‖rk‖2 should also be checked.

(b) Relative ‘improvement’ norm criterion

This convergence criterion has been used with PCG iterative method in many

geotechnical applications (e.g. Smith and Griffiths, 1998; Smith and Wang, 1998;
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Smith, 2000; Smith and Griffiths, 2004), in which the stopping criterion is defined

as:

Iteration continues until

Ri =
‖xk − xk−1‖∞
‖xk‖∞

≤ stop tol, k = 1, 2, . . . ,max it. (A.3)

where ‖·‖∞ represents the infinity norm.

(c) Relative error energy-norm criterion

Iteration continues until

Re =
‖ek‖A
‖e0‖A

≤ stop tol, k = 1, 2, . . . ,max it.

As we mentioned in section (2.1.1), error vector ek can not be evaluated directly

due to unavailable exact solution, thus direct computing of value Re is impossible.

Notice that (e.g. Mitchell and Reddy, 1998; Lee et al., 2002)

‖ek‖A
‖e0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

≤ stop tol, k = 1, 2, . . . ,max it.

where κ(A) denotes the condition number of matrix A and is computed by

κ(A) = ‖A‖2 · ‖A−1‖2 =
σmax

σmin
(A.4)

where σmax and σmin represent the maximum and the minimum singular values, re-

spectively. When matrix A is symmetric and positive definite, its condition number

is

κ(A) =
λmax

λmin

(A.5)

Where λmax and λmin denote the maximum and the minimum eigenvalues, respec-

tively. Clearly, It is natural to choose Re as

Re = 2

(√
κ(A)− 1√
κ(A) + 1

)k

≤ stop tol, k = 1, 2, . . . ,max it. (A.6)
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(d) R4 criterion

Iteration continues until

R4 =
‖rk‖

‖A‖ · ‖xk‖+ ‖b‖ ≤ stop tol, k = 1, 2, . . . ,max it. (A.7)

This criterion yields the forward error bound

‖ek‖ ≤ ‖A−1‖ · ‖rk‖ ≤ stop tol · ‖A−1‖ · (‖A‖ · ‖xk‖+ ‖b‖)

(e) R5 criterion

Iteration stops until

R5 =
‖A−1‖ · ‖rk‖
‖xk‖

≤ stop tol, k = 1, 2, . . . ,max it. (A.8)

which guarantees that
‖ek‖
‖xk‖

≤ stop tol.

(f) R6 and R7 criteria

For CG iterative method, the following criteria are recommended as (e.g. Bruaset,

1997; van der Vorst, 2003),

R6 convergence criterion:

‖rk‖2 ≤ λn · ‖xk‖2 ·
ε

ε + 1
(A.9)

Where ε = stop tol, and λn still denotes smallest eigenvalue. This criterion ensures

that ‖x − xk‖2/‖xk‖2 is bounded by ε. If the Ritz value, λ
(k)
n , is computed to

approximate λn (for the procedure of eigenvalues approximated by Ritz values

(refer to Bruaset, 1997; Bruaset and Langtangen, 1997), we get the rather robust

convergence criterion,

R7 convergence criterion:

‖rk‖2 ≤ λ(k)
n · ‖xk‖2 ·

ε

ε + 1
(A.10)
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It is obvious that Re and R4−7 all require additional estimation or computation such

as eigenvalue (singular number) or matrix norm. Thus they are not used widely in

FEM programming like Rr and Ri criteria. The behaviors of relative residual, relative

improvement and relative energy error criteria (Rr, Ri and Re) have been compared

and analyzed in several geotechnical applications by Lee et al. (2002). Another problem

one may encounter is that for some problems such as consolidation problem, there are

two or more types of degree-of-freedoms with significantly different magnitude. The set

of degrees-of-freedom with large numerical values may overpower the set with smaller

numerical values so that the convergence check is dominated by the large numerical

values. Therefore, in a practical FEM analysis, it is recommended to use two or more

convergence criteria to mitigate this undesirable situation. (see reference Barrett et al.,

1994; Langtangen, 1999, for more details) on convergence criteria of iterative methods.



APPENDIX B

SPARSE MATRIX

TECHNIQUES

Standard discretization of partial differential equations (PDEs) by finite element or finite

difference method typically leads to large sparse stiffness matrices because each node is

only connected with a small number of neighboring nodes which indicates that there are a

small number of entries in each row of stiffness matrix. Therefore, for large linear systems

discretized from PDEs of 3-D problems, sparsity should be exploited for preconditioned

iterative methods. By storing only nonzero entries of a matrix, the required storage and

arithmetic operations can both be reduced more or less depending on the sparsity ratio.

B.1 Storage Schemes for Sparse Matrix

B.1.1 Some Popular Storages

Sparse storage schemes allocate continuous storage space in memory for the nonzero

entries and perhaps a limited number of zeros. Saad (1996) and Barrett et al. (1994)

described many methods for storing the data, for example, Compressed Sparse Row

(CSR) storage, Compressed Sparse Column (CSC) storage, Modified Sparse Row (MSR)

storage scheme, and so on. Here, we only give some matrix-vector operations by CSR

and CSC storage schemes as demonstrated in Figure B.1.
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Given an example matrix

A =




11.0 0 1.0 0 3.3
0 6.0 0 0 0.9

1.0 0 5.0 0.2 0
0 0 0.2 9.2 0

3.3 0.9 0 0 4.8




(B.1)

jcsca icsca csca

1 1 11. (1)

4 3 1.0 (2)

6 5 3.3 (3)

9 2 6.0 (4)

11 5 0.9 (5)

14 1 1.0 (6)

3 5.0 (7)

4 0.2 (8)

3 0.2 (9)

4 9.2 (10)

1 3.3 (11)

2 0.9 (12)

5 4.8 (13)

(14)

jcsc icsc csc

1 1 11. (1)

2 2 6.0 (2)

3 1 1.0 (3)

5 3 5.0 (4)

7 3 0.2 (5)

10 4 9.2 (6)

1 3.3 (7)

2 0.9 (8)

5 4.8 (9)

(10)

Figure B.1: CSC storage of matrix A and CSC storage of its upper triangular part.

B.1.2 Demonstration on How to Form Symmetric Compressed Sparse

Storage

Assume that there are three symmetric element stiffness matrices in a finite element

analysis

Element 1:




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 , aij = aji (i, j = 1, . . . , 4)
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Element 2:




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44


 , bij = bji (i, j = 1, . . . , 4)

Element 3:




c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


 , cij = cji (i, j = 1, . . . , 4)

Therefore, in this example, the dimension of element stiffness matrix is nel = 4 and the

total number of elements is ne = 3. Then, assume that the final assembled global matrix

with dimension n = 8 is given as

A =




a11 a12 a13 a14 0 0 0 0
a22 a23 a24 0 0 0 0

a33 + b11 a34 + b12 b13 b14 0 0
a44 + b22 b23 b24 0 0

b33 + c11 b34 + c12 c13 c14

symmetry b44 + c22 c23 c24

c33 c34

c44




8×8

(B.2)

The compressed sparse storage scheme tries to assemble and stores only the nonzero

entries in the above global stiffness matrix A. The compressed sparse storage scheme

demonstrated here uses only three vectors, namely iebe, jebe and ebea, respectively,

and these three vectors collect the global row numbers and the global column numbers of

nonzero element entries in the upper triangular part element by element. When allocating

the storage of the three vectors, i.e., iebe, jebe and ebea, the dimension (i.e., the length

of the three vectors) can be defined as

nzebe =
n2

el + nel

2
× ne (B.3)

Thus, the allocated storage for each vector is about nzebe =
42 + 4

2
× 3 = 30. When

using these three vectors to collect the nonzero element entries in the upper part in

column-wise and element by element (notice that in each element, the collection can be

carried out in column-wise or in row-wise), we can get these three vectors demonstrated

as follows,
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iebe jebe ebea

1

1

2

1

2

3

1

2

3

4

3

3

4

3

4

5

3

4

5

6

5

5

6

5

6

7

5

6

7

8

1

2

2

3

3

3

4

4

4

4

3

4

4

5

5

5

6

6

6

6

5

6

6

7

7

7

8

8

8

8

a11

a12

a22

a13

a23

a33

a14

a24

a34

a44

b11

b12

b22

b13

b23

b33

b14

b24

b34

b44

c11

c12

c22

c13

c23

c33

c14

c24

c34

c44

With these three vectors which store nonzero element entries, we sort the first vector

(iebe) which stores the global row number for each nonzero element entry, at the same

time, the other two vectors change their orders correspondingly. After the first vector is

sorted in the ascending order, we can sort the second vector (jebe) which stores the global

column number, at the same time, the vector ebea changes its order correspondingly.

Clearly, by summing up the values in vector ebea with both the same global row number

and the same global column number, the assembly can be carried out. This is the CSR

storage assembly scheme. For the CSC storage assembly scheme, the only difference is

that we need to sort jebe first and then to sort iebe. Given the CSC storage assembly

scheme for an example, firstly, we sort jebe in the ascending order as follows
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First step: ⇒ Second step: ⇒ Assembly step:
iebe jebe ebea iebe jebe ebea iebe jebe ebea

1

1

2

1

2

3

3 ↑
1

2

3

4

3

4

3

4

5

5 ↑
3

4

5

6

5

6

5

6

7

5

6

7

8

1

2

2

3

3

3

3 ↑
4

4

4

4

4

4

5

5

5

5 ↑
6

6

6

6

6

6

7

7

7

8

8

8

8

a11

a12

a22

a13

a23

a33

b11 ↑
a14

a24

a34

a44

b12

b22

b13

b23

b33

c11 ↑
b14

b24

b34

b44

c12

c22

c13

c23

c33

c14

c24

c34

c44

1

1

2

1

2

3

3

1

2

3

3 ↑
4

4

3

4

5

5

3

4

5

5 ↑
6

6

5

6

7

5

6

7

8

1

2

2

3

3

3

3

4

4

4

4

4

4

5

5

5

5

6

6

6

6

6

6

7

7

7

8

8

8

8

a11

a12

a22

a13

a23

a33

b11

a14

a24

a34

b12 ↑
a44

b22

b13

b23

b33

c11

b14

b24

b34

c12 ↑
b44

c22

c13

c23

c33

c14

c24

c34

c44

1

1

2

1

2

3

1

2

3

4

3

4

5

3

4

5

6

5

6

7

5

6

7

8

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

6

6

7

7

7

8

8

8

8

a11

a12

a22

a13

a23

a33 + b11

a14

a24

a34 + b12

a44 + b22

b13

b23

b33 + c11

b14

b24

b34 + c12

b44 + c22

c13

c23

c33

c14

c24

c34

c44

In the second step, we sort the segments (denoted in the same color) in vector iebe

with the same global column number to make all numbers in their segments increase

in the ascending order. In the assembly stage, we add up all the numbers with both

the same global row number and the same global column number. It should be noted

that the assembled compressed sparse storage can over write the data of these three

vectors in the second step for memory efficiency. In addition, the spare storage after the

assembly can be reused for other purposes, and in this example, the spare storage length

is 6. This symmetric compressed sparse storage scheme can be verified by the assembled

8 × 8 matrix in Eq. B.2. For a detailed comparison between EBE storage scheme and

compressed sparse storage scheme, see Section 2.3.
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B.1.3 Adjacency Structure for Sparse Matrix

To implement the sparse Cholesky routines of SparsM package introduced in section 1.4,

the adjacency structure (XADJ, ADJNCY) for a sparse matrix is required to represent the

the graph of the matrix, the array pair (XADJ, ADJNCY) is used in ordering algorithm

such as MMD algorithm and also in the symbolic factorization process (e.g., Gorge and

Liu, 1981). The array pair (XADJ, ADJNCY) for the matrix in Equation B.1 can be

illustrated as follows:

1

5 2

3 4

node # XADJ ADJNCY

1 1 3 (1)

2 3 5 (2)

3 4 5 (3)

4 6 1 (4)

5 7 4 (5)

8 3 (6)

1 (7)

2 (8)

(9)

Figure B.2: Adjacency structure for matrix A of Equation (B.1)

It is clear that the adjacency structure (XADJ, ADJNCY) is the the index arrays of

CSR storage for A− diag(A).
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B.2 Basic Sparse Matrix Operations

Algorithm 3 y = Bx with CSR format B

Computation of y = Bx, given the CSR format of B, icsrb(m+1), jcsrb(bnz),
csrb(bnz) (bnz is the number of nonzero entries in matrix B). Suppose m and n are
the number of rows and columns of B, respectively.

y = zeros(n, 1)
for i = 1 to m do

if x(i) 6= 0 then
for k = icsrb(i) to icsrb(i + 1)− 1 do

r = jcsrb(k)
y(r) = y(r) + x(i) ∗ csrb(k)

end for
end if

end for

Algorithm 4 y = BTx with CSR format B

Computation of y = BTx, given the CSR format of B, icsrb(m+1), jcsrb(bnz),
csrb(bnz) (bnz is the number of nonzero entries in matrix B). Suppose m and n are
the number of rows and columns of B, respectively.

y = zeros(n, 1)
for i = 1 to m do

if x(i) 6= 0 then
for k = icsrb(i) to icsrb(i + 1)− 1 do

r = jcsrb(k)
y(r) = y(r) + x(i) ∗ csrb(k)

end for
end if

end for
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Algorithm 5 y = Bx with CSC format B

Computation of y = Bx, given the CSC format of B, jcscb(n+1), icscb(bnz),
cscb(bnz) (bnz is the number of nonzero entries in matrix B). Suppose m and n are
the number of rows and columns of B respectively.

y = zeros(m, 1)
for j = 1 to n do

if x(j) 6= 0 then
for k = jcscb(j) to jcscb(j + 1)− 1 do

r = icscb(k)
y(r) = y(r) + x(j) ∗ cscb(k)

end for
end if

end for

Algorithm 6 y = BTx with CSC format B

Computation of y = Bx, given the CSC format of B, jcscb(n+1), icscb(bnz),
cscb(bnz) (bnz is the number of nonzero entries in matrix B). Suppose m and n are
the number of rows and columns of B respectively.

y = zeros(n, 1)
for j = 1 to n do

for k = jcscb(j) to jcscb(j + 1)− 1 do
if x(icscb(k)) 6= 0 then

y(j) = y(j) + cscb(k) ∗ x(icscb(k))
end if

end for
end for



APPENDIX C

SOURCE CODES IN FORTRAN

90

C.1 Main Program for 3-D Biot’s Consolidation FEM Anal-

ysis

This program is a 3-D extension of program 9.1 or program 9.2 of book “Programming the

Finite Element Method” (called PFEM book from hereon) written by Smith and Griffiths

(1998). For 3-D linear elastic FEM analysis of Biot’s consolidation problems, 20-node

solid brick elements coupled to 8-node fluid elements are used. Thus, the dimension of

element “stiffness” matrices are 20× 3+8 = 68. Sparse preconditioned iterative solver is

used for the discretized linear system in each time step. Apart from standard Jacobi and

standard SSOR preconditioners, the newly developed GJ or MSSOR preconditioner can

be chosen to combine with SQMR, PCG and MINRES solvers. Furthermore, two different

convergence criteria, relative “improvement” norm criterion and relative residual norm

criterion, are available. To use sparse preconditioned SQMR method, a new sparse lib

library was developed and several subroutines were added in the available new library

library.

Some descriptions of using sparse iterative methods for 3-D Biot’s consolidation

problem are given as follows:

(a) Input:
nels,nxe,nye,nze,nn,nip,permx,permy,permz,e,v,dtim,nstep,theta,maxit,

tol,coef,omega,isolver,icho,ipre,icc,iinc
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Apart from the parameters used in original main program of PFEM book, the re-

quired new parameters are listed as: maxit,tol,omega,isolver,icho,ipre,icc,iinc.

(b) Call nfinfo(nn,nodof,nxe,nye,nze,nf,neq,sneq,fneq)

This subroutine generates the array nf for 3-D Biot’s consolidation models studied

in this thesis and outputs the numbers, neq,sneq(sn),fneq(fn).

(c) Input: loadl, nmesh, unipval

These inputs are provided for the following subroutine loadid, then loaded node

number is calculated from loaded nodes = (nmesh*2+1)*(nmesh+1)+(nmesh+1)*nmesh.

loadl: length (m) of loaded area in each direction;

nmesh: mesh (element) number of loaded area in each direction, and these meshes

should be uniform in the loaded area;

unipval: value (MPa) of uniform pressure.

(d) Call
loadid(nxe,nye,nze,nf,nels,nn,nodof,ntot,loadl,nmesh,unipval,&

loaded nodes,nodnum,load val,id,ebeanz)
This subroutine is designed for uniform pressure loaded area with uniform meshes

for the examples in the thesis. The loaded node number and equivalent concentrated

load can be input directly if the subroutine is not adopted.

nodnum: array of loaded node number;

load val: array of load value corresponding to lnn array;

id: identifier array for displacement or pore pressure DOF.

(e) Call formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz)

This subroutine is embedded in elements 2 loop, and collects all nonzero entries

element by element (only upper triangular part is scanned).

(f) Call
sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz),ebea(1:ebeanz),neq+1,&

uanz,jcsc,icsc,csca)
This subroutine sorts iebe,jebe,ebea into compresses sparse (column) storage.
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(g) Call formda(n,icsc,jcsc,csca,icho,ipre,coef,omega,id,d,da,da1)

This subroutine constructs standard or modified diagonal (by GJ algorithm) for

Jacobi or SSOR preconditioners.

(h) Call kpu(icsc,jcsc,csca,theta,id,loads(1:),ans(1:))

This subroutine generates the part correspondent to pore water pressure of right-

hand-side vector for incremental formulation of 3-D Biot’s consolidation equations.

loads(1:): current solution;

ans(1:): returned right-hand-side vector (incremental formulation), only the part

correspondent to pore water pressure is generated.

(i) Applied load

This part can be combined with the subroutine kpu, but the codes are simple, thus

can be written into main program directly. After this part, the true right-hand-side

vector of incremental formulation is generated. In addition, the load can be applied

in first time step or in a “ramp” loading form.

(j) Call
psolver(neq,icsc,jcsc,csca,diag,diaga,diaga1,ans(1:),maxit,tol,&

isolver,ipre,icho,icc,iinc,iters,resi)
This subroutine solves the generated linear system in each time step by standard

(or generalized) Jacobi or standard (or modified) SSOR preconditioned iterative

method.

(k) Input file ‘p3dbiot.dat’ of a small example for a 5× 5× 5 problem

Here, MSSOR preconditioned SQMR method is chosen.
nels nxe nye nze nn nip permx permy permz e v dtim nstep theta ←−
125 5 5 5 756 27 1.e-7 1.e-7 1.e-7 1. 0.3 1. 1 1.

maxit tol coef omega isolver icho ipre icc iinc ←−
1000 1.e-6 -4. 1.0 1 2 2 2 5

widthx(i), i = 1, nxe + 1 ←−
.0 1.0 3.25 5.5 7.75 10.0

widthy(i), i = 1, nye + 1 ←−
.0 1.0 3.25 5.5 7.75 10.0

depth(i), i = 1, nze + 1 ←−
.0 -1.0 -3.25 -5.50 -7.75 -10.0

loadl nmesh unipval ←−
1. 1 0.1
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(l) Output file ‘p3dbiot.res’ for the above problem

**********************************************
The current time is 0.1000E+01
---> MSSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
Psolver took 65 iterations to converge to 0.5120E-06
The nodal displacements and porepressures are :

1 0.00000E+00 0.00000E+00 -0.14503E+00 0.00000E+00
2 -0.70824E-02 0.00000E+00 -0.14199E+00 0.00000E+00
3 -0.13808E-01 0.00000E+00 -0.90871E-01 0.00000E+00
4 -0.70046E-02 0.00000E+00 -0.18951E-01 0.00000E+00
5 0.12224E-02 0.00000E+00 -0.11831E-01 0.00000E+00
6 0.51799E-03 0.00000E+00 -0.28245E-02 0.00000E+00
7 -0.24022E-03 0.00000E+00 0.75205E-03 0.00000E+00
8 0.15517E-03 0.00000E+00 0.29346E-02 0.00000E+00
9 0.40951E-03 0.00000E+00 0.37435E-02 0.00000E+00

10 0.23098E-03 0.00000E+00 0.43290E-02 0.00000E+00
11 0.00000E+00 0.00000E+00 0.45353E-02 0.00000E+00
12 0.00000E+00 0.00000E+00 -0.11212E+00 0.00000E+00
13 0.13639E-01 0.00000E+00 -0.77092E-01 0.00000E+00
14 0.25257E-02 0.00000E+00 -0.10092E-01 0.00000E+00
15 0.14592E-02 0.00000E+00 0.69487E-03 0.00000E+00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

750 0.00000E+00 0.00000E+00 0.00000E+00 -0.47693E-03
751 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
752 0.00000E+00 0.00000E+00 0.00000E+00 -0.33150E-03
753 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
754 0.00000E+00 0.00000E+00 0.00000E+00 -0.21429E-03
755 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
756 0.00000E+00 0.00000E+00 0.00000E+00 -0.16963E-03

Overhead time is: 5.26800012588501
Iterative time (the last time step) is: 1.70199990272522
Total runtime for the FEM program is 7.34100008010864 seconds.

The main program for 3-D Biot’s consolidation problem is given as:

!-----------------------------------------------------------------------
program p3dbiot ! 3-D Biot Consolidation Analysis
!-----------------------------------------------------------------------
! Program for 3-D consolidation analysis using 20-node solid brick
! elements coupled to 8-node fluid elements, incremental formulation.
! Iterative solver is used for solving the linear system in each time
! step, GJ preconditioner and MSSOR preconditioner are available.
! isolver=1 for SQMR; isolver=2 for PCG; isolver=3 for MINRES.
!-----------------------------------------------------------------------
use new_library ; use geometry_lib; use sparse_lib; use dfport ;
implicit none
integer::i,j,k,l,nn,nels,nxe,nye,nze,nip,nodof=4,nod=20,nodf=8,nst=6,&

ndim=3,nodofs=3,ntot,ndof,iel,ns,nstep,inc,loaded_nodes,neq,&
nband,sneq,fneq,nmesh,ebeanz,uanz,maxit,iters,isolver, icho,&
ipre,icc,iinc

real(8)::permx,permy,permz,e,v, det, dtim, theta,ttime,loadl,unipval,&
tol,coef,omega,resi,ot1,ot2,it1,it2,tt1,tt2

logical:: converged
character (len=15):: element = ’hexahedron’

!------------------------ dynamic arrays--------------------------------
real(8),allocatable ::dee(:,:), points(:,:), coord(:,:), derivf(:,:),&

jac(:,:),kay(:,:),der(:,:),deriv(:,:),weights(:), derf(:,:), &
funf(:),coordf(:,:),bee(:,:),km(:,:),eld(:),sigma(:),kp(:,:),&
ke(:,:), g_coord(:,:), kd(:,:), fun(:), c(:,:), bk(:),vol(:),&



Appendix C: Source Codes In Fortran 90 186

volf(:,:),widthx(:),widthy(:),depth(:), load_val(:),loads(:),&
ans(:),ebea(:),csca(:),diag(:),diaga(:),diaga1(:)

integer,allocatable:: nf(:,:), g(:), num(:), g_num(:,:), g_g(:,:), &
nodnum(:),iebe(:),jebe(:),icsc(:),jcsc(:),id(:)

!----------------------- input and initialization ----------------------
open (10,file=’p3dbiot.dat’,status= ’old’,action=’read’)
open (11,file=’p3dbiot.res’,status=’replace’,action=’write’)

print*," Preconditioned Iterative Solution Method "
write(11,*)" Preconditioned Iterative Solution Method "
print*," The program is running, please wait...................... "

read (10,*) nels,nxe,nye,nze,nn,nip,permx, permy,permz,e,v,dtim, &
nstep,theta,maxit,tol,coef,omega,isolver,icho,ipre,icc,iinc

ndof=nod*3; ntot=ndof+nodf ;
allocate(dee(nst,nst),points(nip,ndim),coord(nod,ndim),jac(ndim,ndim),&

derivf(ndim,nodf),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod),&
derf(ndim,nodf), funf(nodf), coordf(nodf,ndim), bee(nst,ndof), &
km(ndof,ndof),eld(ndof),sigma(nst),kp(nodf,nodf),ke(ntot,ntot),&
g_g(ntot,nels), fun(nod), c(ndof,nodf), vol(ndof),nf(nodof,nn),&
g(ntot),volf(ndof,nodf),g_coord(ndim,nn),num(nod),weights(nip),&
g_num(nod,nels),widthx(nxe+1),widthy(nye+1),depth(nze+1) )

!
kay=0.0; kay(1,1)=permx; kay(2,2)=permy; kay(3,3)=permz
read (10,*) widthx, widthy, depth
call nfinfo(nn,nodof,nxe,nye,nze,nf,neq,sneq,fneq)
!----------------------------------------------------
call deemat (dee,e,v); call sample(element,points,weights)

!------------- loop the elements to set up global arrays----------------
tt1=rtc()

elements_1: do iel = 1, nels
call geometry_20bxz(iel,nxe,nze,widthx,widthy,depth,coord,num)
inc=0 ;
do i=1,20; do k=1,3; inc=inc+1;g(inc)=nf(k,num(i));end do;end do
do i=1,7,2; inc=inc+1;g(inc)=nf(4,num(i)); end do
do i=13,19,2; inc=inc+1;g(inc)=nf(4,num(i)); end do
g_num(:,iel)=num;g_coord(:,num)=transpose(coord);g_g(:,iel)= g
if(nband<bandwidth(g))nband=bandwidth(g) ;

end do elements_1
write(11,’(a)’) "Global coordinates "
do k=1,nn;
write(11,’(a,i7,a,3e12.4)’)"Node",k," ",g_coord(:,k);

end do
write(11,’(a)’) "Global node numbers "
do k = 1 , nels;
write(11,’(a,i6,a,20i7)’) "Element ",k," ",g_num(:,k);

end do
write(11,’(2(a,i5))’) &

"There are ",neq, " equations and the half-bandwidth is ",nband
!----------------------------------------------------
read(10,*) loadl, nmesh, unipval

loaded_nodes=(nmesh*2+1)*(nmesh+1)+(nmesh+1)*nmesh ;
allocate(nodnum(loaded_nodes),load_val(loaded_nodes),id(1:neq))
call loadid(nxe,nye,nze,nf,nels,nn,nodof,ntot,loadl,nmesh,unipval, &

loaded_nodes,nodnum,load_val,id,ebeanz)
!----------------------------------------------------
allocate( iebe(ebeanz),jebe(ebeanz), ebea(ebeanz) )

!------------- element stiffness integration and assembly --------------
ebeanz=0 ! used for counting the true number
ot1=rtc() ;

elements_2: do iel = 1 , nels
num = g_num(: , iel ); coord=transpose(g_coord(:,num))
g = g_g( : , iel ) ; coordf(1 : 4 , : ) = coord(1 : 7 : 2, : )
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coordf(5 : 8 , : ) = coord(13 : 19 : 2, : )
km = .0; c = .0; kp = .0

gauss_points_1: do i = 1 , nip
call shape_der(der,points,i); jac = matmul(der,coord)
det = determinant(jac ); call invert(jac);
deriv = matmul(jac,der); call beemat(bee,deriv);
vol(:)=bee(1,:)+bee(2,:)+bee(3,:)

km=km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
!-----------------------now the fluid contribution----------------------

call shape_fun(funf,points,i); call shape_der(derf,points,i) ;
derivf=matmul(jac,derf)

kp=kp+matmul(matmul(transpose(derivf),kay),derivf)*det*weights(i)*dtim ;
do l=1,nodf; volf(:,l)=vol(:)*funf(l); end do
c= c+volf*det*weights(i)

end do gauss_points_1
call formke(km,kp,c,ke,theta) ! for incremental formula
!---collect nonzero entries from element stiffness matrices---
call formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz)

end do elements_2
!-----------------------------------------------------------------------

uanz = int(neq - nband/2)*nband ! This is a conservative estimation
! uanz = int(0.58*ebeanz)
! 0.58 is the estimated ratio of assembled to element-level nonzero.

allocate( icsc(uanz), jcsc(neq+1), csca(uanz), diag(neq), diaga(neq),&
diaga1(neq) )

call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz),ebea(1:ebeanz), &
neq+1,uanz,jcsc,icsc,csca)

deallocate(iebe,jebe,ebea)
! form GJ preconditioner or modified diagonal for MSSOR preconditioner

call
formda(neq,icsc,jcsc,csca,icho,ipre,coef,omega,id,diag,diaga,diaga1)
ot2=rtc() ; ot2=ot2-ot1

! --------------------- enter the time-stepping loop--------------------
allocate(loads(0:neq), ans(0:neq) )

ttime = .0; loads = .0
time_steps: do ns = 1 , nstep

write(*, ’(a, i5,a)’) ’ Current Time Step is No.’, ns , ’ Step. ’
write(11,*)’********************************************** ’

ttime=ttime+dtim; write(11,’(a,e12.4)’)" The current time is",ttime
ans=.0; call kpu(icsc,jcsc,csca,theta,id,loads(1:),ans(1:));ans(0)=.0

! ----------------------- Apply Constant Loading -----------------------
if(ns <= 10) then ! the Load is applied at the first step.
do i=1,loaded_nodes

ans(nf(3, nodnum(i))) = - load_val(i)*0.1
end do

end if
!----------------- Preconditioned Iterative Solver ---------------------

it1=rtc()
call psolver(neq,icsc,jcsc,csca,diag,diaga,diaga1,ans(1:),maxit, &

tol,isolver,icho,ipre,icc,iinc,iters,resi); ans(0)=.0 ;
it2=rtc() ; it2=it2-it1
write(11,’(a,i5,a,e12.4)’)" Psolver took", iters," iterations to &

converge to ",resi
loads=loads+ans
write(11,’(a)’) " The nodal displacements and porepressures are :"
do k=1,nn; write(11,’(i7,a,4e13.5)’)k," ",loads(nf(:,k)); end do

!-------------------recover stresses at Gauss-points-------------------
elements_5 : do iel = 1 , nels
num = g_num(:,iel); coord=transpose(g_coord(:,num))
g = g_g( : , iel ); eld = loads( g ( 1 : ndof ) )
! print*,"The Gauss Point effective stresses for element",iel,"are"
gauss_points_2: do i = 1,nip

call shape_der (der,points,i); jac= matmul(der,coord)
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call invert ( jac ); deriv= matmul(jac,der)
bee= 0.;call beemat(bee,deriv);
sigma= matmul(dee,matmul(bee,eld))
! print*,"Point ",i ;! print*,sigma

end do gauss_points_2
end do elements_5

end do time_steps
tt2=rtc() ; tt2=tt2-tt1
write(11,*) " Overhead time is: ",ot2
write(11,*) "Iterative time (the last time step) is: ",it2
write(11,*) " Total runtime for the FEM program is ",tt2, "seconds."

end program p3dbiot
!-----------------------------------------------------------------------
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C.2 New Subroutines for Module new library

module new_library
contains

!-----------------------------------------------------------------------
subroutine nfinfo(nn,nodof,nx,ny,nz,nf,neq,sn,fn)
! This subroutine generates nf array with only 0 and 1 integer value
! for 3-D Biot’s consolidation problems, and this
! subroutine is restricted to the geometric model
! discussed in this thesis.
! nn: total number of nodes;
! nodof: number of freedoms per node;
! nx, ny, nz: i.e. nxe, nye, nze(element number in each direction)
! nf: generated nodal freedom array,
! nf(:,:) = 1, free DOF;
! nf(:,:) = 0, restricted DOF.
! neq: number of DOFs in the mesh (or number of equations);
! sn: number of DOFs corresponding to displacement;
! fn: number of DOFs corresponding to pore pressure;
! and there exists "neq = sn + fn".

integer::i,j,k,nf(:,:),nn,nodof,nx,ny,nz,nodplane,nodbetwplane,neq,&
sn,fn

!-----------------
nodplane=(2*nx+1)*(nz+1)+(nx+1)*nz ; ! node number for each x-z plane
nodbetwplane=(nx+1)*(nz+1) ! node number between two x-z planes
!
nf = 1 ; ! initialize all nodes unrestricted
xdirection1: do i=0, ny
xloop1: do j=0, nz

nf(1,i*(nodplane+nodbetwplane)+2*nx+1+j*(3*nx+2))=0 ;
!
nf(1,i*(nodplane+nodbetwplane)+1+j*(3*nx+2))=0 ;

end do xloop1
!
xloop2: do j=1, nz

nf(1,i*(nodplane+nodbetwplane)+j*(3*nx+2))=0 ;
!
nf(1,i*(nodplane+nodbetwplane)+j*(3*nx+2)-nx)=0 ;

end do xloop2
end do xdirection1
!
xdirection2: do i=1, ny
xloop3: do j=1, nz+1

nf(1,i*nodplane+(i-1)*nodbetwplane+j*(nx+1))=0 ;
end do xloop3
!
xloop33: do j=0, nz

nf(1,i*nodplane+(i-1)*nodbetwplane+j*(nx+1)+1)=0 ;
end do xloop33

end do xdirection2
!---------------------------
ydirection1: do i=1, nodplane

nf(2,ny*(nodplane+nodbetwplane)+i)=0
!
nf(2,i)=0

end do ydirection1
!---------------------------
xyzdirection1: do i=0, ny
xyzloop1: do j=1,2*nx+1

nf(1,i*(nodplane+nodbetwplane)+nodplane-2*nx-1+j)=0 ;
nf(2,i*(nodplane+nodbetwplane)+nodplane-2*nx-1+j)=0 ;
nf(3,i*(nodplane+nodbetwplane)+nodplane-2*nx-1+j)=0 ;

end do xyzloop1
end do xyzdirection1
!
xyzdirection2: do i=1, ny
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xyzloop2: do j=1,nx+1
nf(1,i*(nodplane+nodbetwplane)-(nx+1)+j)=0 ;
nf(2,i*(nodplane+nodbetwplane)-(nx+1)+j)=0 ;
nf(3,i*(nodplane+nodbetwplane)-(nx+1)+j)=0 ;

end do xyzloop2
end do xyzdirection2
!---------------------------
pp1: do i=0,ny
ploop1: do j=0, nz

ploop2: do k=1, nx
nf(4, i*(nodplane+nodbetwplane)+j*(3*nx+2)+2*k)=0 ;

end do ploop2
end do ploop1
!
ploop3: do j=1, nz

ploop4: do k=1, nx+1
nf(4, i*(nodplane+nodbetwplane)+j*(2*nx+1)+(j-1)*(nx+1)+k)=0 ;

end do ploop4
end do ploop3

end do pp1
!
pp2: do i=1,ny
ploop5: do j=1,nodbetwplane

nf(4, i*nodplane+(i-1)*nodbetwplane+j)=0 ;
end do ploop5

end do pp2
!
pp3: do i=0, ny
ploop6: do j=1, 2*nx+1

nf(4, i*(nodplane+nodbetwplane)+j)=0 ;
end do ploop6

end do pp3
!---------------------------
fn=0; do i=1, nn; fn = fn + nf(4,i); end do ;
call formnf(nf); neq=maxval(nf); sn = neq - fn ;
!
return

end subroutine nfinfo
!-----------------------------------------------------------------------
subroutine loadid(nx,ny,nz,nf,nels,nn,nodof,ntot,loadl,nmesh,unipval, &

nlnod,lnn,lnv,id,ebenz)
! This subroutine computes nodal loads from uniform load pressure.
! In this subroutine
! nx, ny, nz: i.e. nxe, nye, nze(element number in each direction);
! nels: total element number;
! nodof: DOF number per node;
! loadl: length (m) of loaded area in each direction;
! nmesh: mesh (element) number of loaded area in each direction;
! these meshes should be uniform in the loaded area.
! unipval: value (MPa) of uniform pressure;
! lnn: array of loaded node number
! lnv: array of load value correspondent to lnn array.
! id: identifier array for displacement or porepressure DOF;
! id(i) = 1, displacement DOF;
! id(i) = 0, pore pressure DOF.
! elenz: estimated number of total nonzero entries of all element
! stiffness matrices.

integer:: i,j,k,l,m, nx, ny, nz, nf(:,:),nels,nn,nodof,ntot,nmesh, &
nlnod,nodplane,nodbetwplane,lnn(:),id(:),ebenz

real(8):: loadl, unipval,lnv(:)
!
sval=unipval*(loadl/nmesh)**2/12. ! the special value
nodplane=(2*nx+1)*(nz+1)+(nx+1)*nz ; ! node number for each x-z plane
nodbetwplane=(nx+1)*(nz+1) ; ! node number between two x-z planes
!
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m=0 ;
do i=1, nmesh
k=(i-1)*(nodplane+nodbetwplane)+1 ;
if(i==1)then

do j=0, 2*nmesh
if(mod(j, 2)==0)then

m=m+1; lnn(m)=k+j ; lnv(m)=-2*sval ;
else

m=m+1; lnn(m)=k+j ; lnv(m)=4*sval ;
end if

end do
else

do j=0, 2*nmesh
if(mod(j,2)==0)then

m=m+1; lnn(m)=k+j ; lnv(m)=-4*sval ;
else

m=m+1; lnn(m)=k+j ; lnv(m)=8*sval ;
end if

end do
end if
!
k=i*nodplane+(i-1)*nodbetwplane+1 ;
do j=0, nmesh

if(j==0.or.j==nmesh)then
m=m+1; lnn(m)=k+j; lnv(m)=4*sval ;

else
m=m+1; lnn(m)=k+j; lnv(m)=8*sval ;

end if
end do

end do
!----------------------
k=nmesh*(nodplane+nodbetwplane)+1
do j=0,2*nmesh
if(mod(j,2)==0)then

m=m+1; lnn(m)=k+j ; lnv(m)=-2*sval ;
else

m=m+1; lnn(m)=k+j ; lnv(m)=4*sval ;
end if

end do
!--Modify the two sides--
do i=1,nmesh+1
l=(i-1)*(3*nmesh+2)+1; lnv(l)=-2*sval ;
l=(i-1)*(3*nmesh+2)+2*nmesh+1; lnv(l)=-2*sval ;

end do
lnv(1)=-sval; lnv(2*nmesh+1)=-sval ;
lnv(nlnod)=-sval; lnv(nlnod-2*nmesh)=-sval ;

!------------------------
id(:)=1; do i=1,nn; if(nf(nodof,i)/=0) id(nf(nodof,i))=0 ; end do;
!------------------------
ebenz = ntot*int(ntot/2)*nels ;
!------------------------
return

end subroutine loadid
!-----------------------------------------------------------------------

end module new_library
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C.3 A New Module sparse lib

For sparse GJ and MSSOR-preconditioned iterative solvers for 3-D Biot’s consolidation

problems, a sparse lib module is built. The Fortran 90 source code of sparse lib is

provided as following.

module sparse_lib
contains

!----------------------------BASIC INFORMATION--------------------------
!-----------------------------------------------------------------------

!
subroutine snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebenz)

! This subroutine computes the displacement DOFs (sn)
! and pore pressure DOFs (fn).
! Then it gives an estimation (ebenz).
implicit none

integer:: i,nf(:,:),nn,nodof,ntot,ndim,nels,sn,fn,ebenz
sn=0 ; fn = 0;
fn = sum(nf(nodof,:)) ;
do i=1,ndim ; sn = sn + sum(nf(i,:)) ; end do
ebenz = ntot*int(ntot/2)*nels ; ! Estimated number
return

end subroutine snfn
!
subroutine form_id(nf,nn,nodof,id)
! This subroutine for the identifier array, "id".
! nf(:,:) is the original input node freedom array.
! nn - total node number.
! nodof - number of freedoms per node.
implicit none

integer:: i,nf(:,:),nn,nodof,id(:)
id(:) = 1;
do i = 1,nn ;

if(nf(nodof,i)/=0)id(nf(nodof,i))=0;
end do;
!
return

end subroutine form_id
!---------------------------SORTING SUBROUTINES-------------------------
!-----------------------------------------------------------------------
subroutine quicksort(uanz,arr,brr,crr)
! This subroutine
! Quicksort - sorts arr into ascending order, brr and crr change
! correspondingly.
! quicksort chooses a "pivot" in the set, and explores the array
! from both ends, looking for a value > pivot with the increasing
! index, for a value <= pivot with the decreasing index, and
! swapping them when it has found one of each. ! The array is then
! subdivided in 2 ([3]) subsets: { values <= pivot} {pivot}
! {values > pivot}. One then call recursively the program to sort
! each subset. When the size of the subarray is small enough, one
! uses an insertion sort that is faster for very small sets.
! Sorting an array arr(1:n) into ascending order with quicksort,
! while making the corresponding rarrangements of arrays brr(1:n)
! and crr(1:n).
! (Revised from ORDERPACK codes)
! uanz: the nonzero number of arr (or brr, crr).
!--------------------------------

implicit none
real(8):: crr(:)
integer::uanz,arr(:),brr(:)
!
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call subsort(arr,brr,crr,1, uanz) ;
call inssor(arr,brr,crr,uanz) ;
!
return

end subroutine quicksort
!-----------------------------------------------------------------------
Recursive subroutine subsort(arr,brr,crr, ideb1, ifin1)
! This subroutine sorts arr from ideb1 to ifin1

real(8):: crr(:), zwrk
integer, intent (in) :: ideb1, ifin1
integer :: arr(:), brr(:), icrs, ideb, idcr, ifin, imil, xpiv, &

xwrk, ywrk, nins = 16 ! Max for insertion sort
ideb = ideb1
ifin = ifin1

! if we don’t have enough values to make it worth while, we leave
! them unsorted, and the final insertion sort will take care of them.

if ((ifin - ideb) > nins) Then
imil = (ideb+ifin) / 2

! One chooses a pivot, median of 1st, last, and middle values
!

if (arr(imil) < arr(ideb)) Then
xwrk = arr(ideb) ; ywrk=brr(ideb); zwrk=crr(ideb)
arr(ideb) = arr(imil); brr(ideb) = brr(imil); crr(ideb) = crr(imil)
arr(imil) = xwrk; brr(imil) = ywrk; crr(imil) = zwrk

end if
!
if (arr(imil) > arr(ifin)) Then

xwrk = arr(ifin); ywrk = brr(ifin); zwrk = crr(ifin)
arr(ifin) = arr(imil); brr(ifin) = brr(imil); crr(ifin) = crr(imil)
arr(imil) = xwrk; brr(imil) = ywrk; crr(imil) = zwrk

if (arr(imil) < arr(ideb)) Then
xwrk = arr(ideb); ywrk = brr(ideb); zwrk = crr(ideb)
arr(ideb) = arr(imil); brr(ideb) = brr(imil); crr(ideb) = crr(imil)
arr(imil) = xwrk; brr(imil) = ywrk; crr(imil) = zwrk

end if
end if
xpiv = arr(imil)

!
! One exchanges values to put those > pivot in the end and
! those <= pivot at the beginning
!

icrs = ideb
idcr = ifin
ech2: do !---------------------------

do
icrs = icrs + 1
if (icrs >= idcr) Then

!
! the first > pivot is idcr
! the last <= pivot is icrs-1
! Note: if one arrives here on the first iteration, then
! the pivot is the maximum of the set, the last value is equal
! to it, and one can reduce by one the size of the set to
! process, as if arr (ifin) > xpiv
!

exit ech2
!

end if
if (arr(icrs) > xpiv) exit

end do
!
do

if (arr(idcr) <= xpiv) exit
idcr = idcr - 1
if (icrs >= idcr) Then

!
! The last value < pivot is always icrs-1
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!
exit ech2

end if
end do

!
xwrk = arr(idcr); ywrk = brr(idcr); zwrk = crr(idcr)
arr(idcr)=arr(icrs); brr(idcr)=brr(icrs); crr(idcr)=crr(icrs)
arr(icrs)=xwrk; brr(icrs)=ywrk; crr(icrs)=zwrk

end do ech2 !---------------------------
!
! One now sorts each of the two sub-intervals
!

call subsort (arr,brr,crr, ideb1, icrs-1)
call subsort (arr,brr,crr, idcr, ifin1)

end if
!
return

end subroutine subsort
!-----------------------------------------------------------------------
subroutine inssor(arr,brr,crr,uanz)
! This subroutine sorts arr into increasing order (Insertion sort)

integer :: arr(:),brr(:),uanz, icrs, idcr, xwrk,ywrk
real(8) :: crr(:),zwrk

!
do icrs = 2, uanz
xwrk = arr(icrs); ywrk = brr(icrs); zwrk = crr(icrs);
if (xwrk >= arr(icrs-1)) cycle
arr(icrs)=arr(icrs-1); brr(icrs)=brr(icrs-1); crr(icrs)=crr(icrs-1)
do idcr = icrs - 2, 1, - 1
if (xwrk >= arr(idcr)) exit
arr (idcr+1) = arr (idcr)
brr (idcr+1) = brr (idcr)
crr (idcr+1) = crr (idcr)

end do
arr(idcr+1) = xwrk; brr(idcr+1) = ywrk; crr(idcr+1) = zwrk

end do
!
return

end subroutine inssor
!-----------------------------------------------------------------------
subroutine sortadd(uanz,arr,brr,crr,ni,nnz,ia,ja,aa)
! For the same arr index, subsort brr, and at the same time, crr
! changes correspondingly with brr. After this work, adding up all crr
! components with the same (arr, brr) or (brr, arr) index, and the
! zero-value crr entry will be removed. Finally forming the Compressed
! Sparse Row (CSR) format or Compressed Sparse Column (CSC) format
! given by (ia,ja,aa).
! uanz: the nonzero number of arr (or brr, crr).
! arr,brr,crr: three vectors required to be sorted.
! ni: = n + 1 (n is dimension of A)
! nnz: the nonzero number of aa.
! ia,ja,aa: the CSR or CSC storage of A.

integer:: i,j,k,k1,k2,m,arr(:),brr(:),uanz,nnz,ni,ia(:),ja(:)
integer, allocatable:: itep(:)
real(8):: crr(:) ,aa(:)
allocate (itep(ni))
call quicksort(uanz,arr,brr,crr) ; ! sorting three vectors
k=1; itep(1)=1
do i=2, uanz

if(arr(i)/=arr(i-1)) then
k=k+1 ; itep(k)=i

end if
end do
itep(k+1)=uanz+1

!----------------------------
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do i=1, k
k1=itep(i); k2=itep(i+1)-1
j=k2-k1+1
if(j<=16) then ! sub-brr sorting by Insertion sort if j <= 16.
call subbrr2(brr(k1:k2),crr(k1:k2),j)

else ! quick sorting when j is larger (>16).
call quicksort2(j,brr(k1:k2),crr(k1:k2))

end if
end do

!----------------------------
m=0; aa=.0
do i=1, k

k1=itep(i); k2=itep(i+1)-1 ; m=m+1; ia(i)=m ; ja(m)= brr(k1)
do j=k1, k2-1
aa(m)=aa(m)+crr(j)
if(brr(j+1)/=brr(j) ) then
if(aa(m)/=.0) then

m=m+1 ; ja(m)= brr(j+1) ! aa(m) is removed when it is zero.
else

ja(m)= brr(j+1)
end if

end if
end do
aa(m)=aa(m)+crr(k2)
if(aa(m)==.0) m=m-1

end do
ia(k+1)=m+1; nnz=m
!
return

end subroutine sortadd
!-----------------------------------------------------------------------
subroutine quicksort2(uanz,arr,crr)
! This subroutine Quicksort2
! - sorts arr into ascending order, crr changes correspondingly.
! Sorts arr into ascending order - Quicksort
! Quicksort chooses a "pivot" in the set, and explores the
! array from both ends, looking for a value > pivot with the
! increasing index, for a value <= pivot with the decreasing
! index, and swapping them when it has found one of each.
! The array is then subdivided in 2 ([3]) subsets:
! { values <= pivot} {pivot} {values > pivot}
! One then call recursively the program to sort each subset.
! When the size of the subarray is small enough, one uses an
! insertion sort that is faster for very small sets.
! Sorting an array arr(1:n) into ascending order with quicksort,
! while making the corresponding rarrangements of arrays crr(1:n).
! (Revised from ORDERPACK codes)
!-------------------------------

real(8):: crr(:)
integer::uanz,arr(:)
!
call subsort2(arr,crr,1, uanz)
call inssor2(arr,crr,uanz)
!
return

end subroutine quicksort2
!-----------------------------------------------------------------------
Recursive subroutine subsort2(arr,crr, ideb1, ifin1)
! This subroutine sorts arr from ideb1 to ifin1

real(8):: crr(:), zwrk
integer, intent (in) :: ideb1, ifin1
integer :: arr(:), icrs, ideb, idcr, ifin, imil, xpiv, &

xwrk, nins = 16 ! Max for insertion sort
ideb = ideb1
ifin = ifin1

! if we don’t have enough values to make it worth while, we leave
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! them unsorted, and the final insertion sort will take care of them
if ((ifin - ideb) > nins) Then

imil = (ideb+ifin) / 2
! One chooses a pivot, median of 1st, last, and middle values
!

if (arr(imil) < arr(ideb)) Then
xwrk = arr(ideb) ; zwrk=crr(ideb)
arr(ideb) = arr(imil); crr(ideb) = crr(imil)
arr(imil) = xwrk; crr(imil) = zwrk

end if
if (arr(imil) > arr(ifin)) Then

xwrk = arr(ifin); zwrk = crr(ifin)
arr(ifin) = arr(imil); crr(ifin) = crr(imil)
arr(imil) = xwrk; crr(imil) = zwrk

if (arr(imil) < arr(ideb)) Then
xwrk = arr(ideb); zwrk = crr(ideb)
arr(ideb) = arr(imil); crr(ideb) = crr(imil)
arr(imil) = xwrk; crr(imil) = zwrk

end if
end if
xpiv = arr(imil)

!
! One exchanges values to put those > pivot in the end and
! those <= pivot at the beginning
!

icrs = ideb
idcr = ifin
ech2: do !-------------------------

do
icrs = icrs + 1
if (icrs >= idcr) Then

!
! the first > pivot is idcr
! the last <= pivot is icrs-1
! Note: if one arrives here on the first iteration, then
! the pivot is the maximum of the set, the last value is equal
! to it, and one can reduce by one the size of the set to
! process, as if arr(ifin) > xpiv
!

exit ech2
!

end if
if (arr(icrs) > xpiv) exit

end do
!
do

if (arr(idcr) <= xpiv) exit
idcr = idcr - 1
if (icrs >= idcr) Then

!
! The last value < pivot is always icrs-1
!

exit ech2
end if

end do
!
xwrk = arr(idcr); zwrk = crr(idcr)
arr(idcr) = arr(icrs); crr(idcr) = crr(icrs)
arr(icrs) = xwrk; crr(icrs) = zwrk

end do ech2 !---------------------------
!
! One now sorts each of the two sub-intervals
!

call subsort2 (arr,crr, ideb1, icrs-1)
call subsort2 (arr,crr, idcr, ifin1)

end if
!
return
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end subroutine subsort2
!-----------------------------------------------------------------------
subroutine inssor2(arr,crr,uanz)
! This subroutine sorts arr into increasing order (Insertion sort)

integer :: arr(:),uanz, icrs, idcr, xwrk
real(8) :: crr(:),zwrk

!
do icrs = 2, uanz

xwrk = arr (icrs); zwrk = crr (icrs);
if (xwrk >= arr(icrs-1)) cycle
arr (icrs) = arr (icrs-1); crr (icrs) = crr (icrs-1)
do idcr = icrs - 2, 1, - 1

if (xwrk >= arr(idcr)) exit
arr (idcr+1) = arr (idcr)
crr (idcr+1) = crr (idcr)

end do
arr (idcr+1) = xwrk; crr (idcr+1) = zwrk

end do
!
return

end subroutine inssor2
!-----------------------------------------------------------------------
subroutine subbrr2(br,cr,n)
! For the same arr index, subsort brr, and at the same time, crr
! changes correspondingly with brr. Because of small number of sub-brr,
! Insertion sort should be faster.

integer:: br(n), icrs,idcr,n,ywrk
real(8):: cr(n), zwrk
!
do icrs = 2, n

ywrk = br (icrs); zwrk = cr (icrs)
if (ywrk >= br(icrs-1)) Cycle
br (icrs) = br (icrs-1); cr (icrs) = cr (icrs-1)
do idcr = icrs - 2, 1, - 1

if (ywrk >= br(idcr)) exit
br (idcr+1) = br (idcr)
cr (idcr+1) = cr (idcr)

end do
br (idcr+1) = ywrk; cr (idcr+1) = zwrk

end do
end subroutine subbrr2
!-----------------------------------------------------------------------
subroutine formspars(ntot,g,ke,iebea,jebea,ebea,ebeanz)
! This subroutine collect non-zero entries for each new generated &
! element stiffness matrix, forming the element-level&
! three vectors which store nonzero entries of upper &
! triangular part of A.
! ntot: total freedoms per element;
! g: element steering vector;
! ke: element "stiffness" matrix;
! iebea: global row index;
! jebea: global column index;
! ebea: correspondent value of the nonzero element stiffness&
! entry;
! ebeanz: returned true total number of nonzero element-level
! entries, not estimated number any more when returned.
implicit none
real(8):: ke(:,:),ebea(:)
integer::i,j,ntot,ebeanz,g(:),iebea(:),jebea(:)
!--- Storing upper triangle of element stiffness column by column ---

do j=1, ntot
do i=1, j
if(g(i)/=0.and.g(j)/=0) then

if(ke(i,j)/=.0)then
if(g(i)<=g(j) )then

ebeanz=ebeanz+1 ; iebea(ebeanz)=g(i)
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jebea(ebeanz)=g(j) ; ebea(ebeanz)=ke(i,j)
else

ebeanz=ebeanz+1 ; iebea(ebeanz)=g(j)
jebea(ebeanz)=g(i) ; ebea(ebeanz)=ke(i,j)

end if
end if

end if
end do

end do
!
return

end subroutine formspars
!-----------------------------------------------------------------------

!---- SUBROUTINES FOR MATRIX-VECTOR PRODUCTS AND TRIANGULAR SOLVERS ----
!-----------------------------------------------------------------------
subroutine cscbx(icscb,jcscb,cscb,x,y)
! Compute y=B*x, and B is stored in CSC (icscb,jcscb,cscb) format.
! x: input vector
! y: output vector

implicit none
real(8):: cscb(:),x(:),y(:)
integer::i,j,n,k1,k2,icscb(:),jcscb(:)
n=ubound(jcscb,1)-1 ; y=.0 ;
do i=1, n

if(x(i)/=.0) then
k1=jcscb(i); k2=jcscb(i+1)-1
do j=k1, k2

y(icscb(j))=y(icscb(j))+cscb(j)*x(i)
end do

end if
end do

end subroutine cscbx
!-----------------------------------------------------------------------
subroutine cscbtx(icscb,jcscb,cscb,x,y)
! Compute y=B’*x, and B is stored in CSC (icscb,jcscb,cscb) format.
! x: input vector
! y: output vector

implicit none
real(8):: cscb(:),x(:),y(:)
integer::i,j,n,k1,k2,icscb(:),jcscb(:)
n=ubound(jcscb,1)-1 ; y=.0 ;
do j=1, n

k1=jcscb(j); k2=jcscb(j+1)-1
do i=k1, k2
y(j)=y(j)+cscb(i)*x(icscb(i))

end do
end do

end subroutine cscbtx
!-----------------------------------------------------------------------
subroutine csrbx(icsrb,jcsrb,csrb,x,y)
! Compute y=B*x, and B is stored in CSR (icsrb,jcsrb,csrb) format.
! x: input vector
! y: output vector

implicit none
real(8):: csrb(:),x(:),y(:)
integer::i,j,k1,k2,n,icsrb(:),jcsrb(:)

n=ubound(icsrb,1)-1 ; y=.0 ;
do i=1, n
k1=icsrb(i); k2=icsrb(i+1)-1
do j=k1, k2

y(i)=y(i)+csrb(j)*x(jcsrb(j))
end do

end do
end subroutine csrbx
!-----------------------------------------------------------------------
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subroutine csrbtx(icsrb,jcsrb,csrb,x,y)
! Compute y=B’*x, and B is stored in CSR (icsrb,jcsrb,csrb) format.
! x: input vector
! y: output vector

implicit none
real(8):: csrb(:),x(:),y(:)
integer::i,j,n,k1,k2,icsrb(:),jcsrb(:)
n=ubound(icsrb,1)-1 ; y=.0 ;
do i=1, n

if(x(i)/=.0) then
k1=icsrb(i); k2=icsrb(i+1)-1
do j=k1, k2

y(jcsrb(j))=y(jcsrb(j))+csrb(j)*x(i)
end do

end if
end do

end subroutine csrbtx
!-----------------------------------------------------------------------
subroutine csrax(icsr,jcsr,csra,x,y)
! Compute y = Ax with A is symmetric and square, only upper triangular&
! part is stored.
! n: dimension of coefficient matrix A;
! icsr,jcsr,csra: CSR storage of upper triangular part of matrix A;
! x: is input vector;
! y: is output vector.
implicit none
real(8):: csra(:),x(:),y(:)
integer::i,j,k1,k2,n,icsr(:),jcsr(:)

n = ubound(icsr,1)-1 ; y=.0 ;
do i=1, n
k1=icsr(i); k2=icsr(i+1)-1
do j=k1, k2
y(i)=y(i)+csra(j)*x(jcsr(j))

end do
!
if(x(i)/=.0) then
do j=k1+1, k2
y(jcsr(j))=y(jcsr(j))+csra(j)*x(i)
end do

end if
end do

end subroutine csrax
!-----------------------------------------------------------------------
subroutine cscax(icsc,jcsc,csca,x,y)
! Compute y = Ax with A is symmetric and square, only upper triangular&
! part is stored.
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! x: is input vector;
! y: is output vector.
implicit none
real(8):: csca(:),x(:),y(:),tmp
integer::j,k,r,k1,k2,n,jcsc(:),icsc(:)

n = ubound(jcsc,1)-1 ; y=.0
do j=1, n
if(x(j)/=.0)then

k1=jcsc(j); k2=jcsc(j+1)-1 ;
do k=k1, k2
r=icsc(k) ;
y(r)=y(r)+csca(k)*x(j) ;

end do
end if
!
tmp=.0 ; k1=jcsc(j); k2=jcsc(j+1)-2 ;
do k=k1, k2
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r=icsc(k) ;
tmp = tmp+x(r)*csca(k) ;

end do
y(j) = y(j)+tmp ;

end do
!
return

end subroutine cscax
!-----------------------------------------------------------------------
subroutine lsolve(n, da1,icsc,jcsc,csca,b, x)
! This subroutine performs forward solve of MSSOR, that is,
! (L+DA)x = b (provided for sqmrmssor subroutine).
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da1: inverse of da (da: modified diagonal for MSSOR);
! b: it is right hand vector b;
implicit none
real(8):: da1(:), csca(:), b(:), x(:), tmp
integer::i, j, k1, k2, n, icsc(:), jcsc(:)
! -------- forward substitution --------

x(1)=b(1)*da1(1);
do j=2, n

k1=jcsc(j); k2=jcsc(j+1)-1 ; tmp=.0
do i=k1, k2-1
tmp = tmp + csca(i) * x(icsc(i)) ;

end do
tmp = b(j) - tmp
x(j) = tmp*da1(j) ;

end do
!
return

end subroutine lsolve
!-----------------------------------------------------------------------
subroutine usolve(n, da1,icsc,jcsc,csca,b, x)
! This subroutine performs backward solve of MSSOR, that is,
! (DA+U)x = b (provided for sqmrmssor subroutine).
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da1: inverse of da (da: modified diagonal for MSSOR);
! b: it is right hand vector b;
implicit none
real(8):: da1(:),csca(:),b(:),x(:)
real(8),allocatable:: tmp(:)
integer::j,r,k,k1,k2,n,icsc(:), jcsc(:)
allocate(tmp(n) )
! ----- backward substitution -----

tmp = b ;
do k = n, 2, -1
x(k) = tmp(k)*da1(k)
do j = jcsc(k), jcsc(k+1)-2

r = icsc(j)
tmp(r) = tmp(r) - x(k)*csca(j)

end do
end do
x(1) = tmp(1)*da1(1)
!
return

end subroutine usolve
!-----------------------------------------------------------------------
subroutine gtor(n,icsc,jcsc,csca,da,g,r)
! This subroutine performs lower triangular product, that is,
! (L+DA)g = r (provided for sqmrmssor subroutine).
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da: the modified diagonal for MSSOR;
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! g: it is input vector(preconditioned residual);
! r: output vector (returned true residual).
implicit none
real(8):: da(:),csca(:),g(:),r(:)
integer::i,j,n,k1,k2,icsc(:), jcsc(:)

r=.0 ; r(1)=r(1)+da(1)*g(1);
do j=2, n
k1=jcsc(j); k2=jcsc(j+1)-2
do i= k1, k2
r(j)=r(j)+csca(i)*g(icsc(i))

end do
r(j)=r(j)+da(j)*g(j);

end do
!
return

end subroutine gtor
!-----------------------------------------------------------------------
subroutine kpu(icsc,jcsc,csca,theta,id,x,y)
! this subroutine performs the KP*u product for Biot’s incremental
! formula.
! icsc,jcsc,csca: CSC storage of upper triangular part of A.
! theta: implicit time-stepping parameter [0.5, 1].
! id: identifier array for displacement or porepressure DOF;
! id(i) = 1, displacement DOF;
! id(i) = 0, pore pressure DOF.
! x: x = u is the current excess pore pressure.

implicit none
real(8):: theta, csca(:), x(:), y(:)
integer::j,k,r,k1,k2,n,jcsc(:),icsc(:),id(:)
!
n=ubound(jcsc,1)-1 ; y =.0
do j=1, n

if( id(j)==0 ) then ! pore pressure DOF
if( x(j)/=.0)then

k1=jcsc(j); k2=jcsc(j+1)-1
do k = k1, k2
if(id(icsc(k))==0) y(icsc(k))=y(icsc(k)) + csca(k)*x(j)

end do
end if
!
k1=jcsc(j); k2=jcsc(j+1)-2
do k = k1, k2

if(id(icsc(k))==0) y(j)=y(j) + csca(k)*x(icsc(k))
end do

end if
end do
!
do j=1, n;

if(id(j)==0) y(j)=-y(j)/theta ;
end do
!
return

end subroutine kpu

!-----------------------------------------------------------------------
!-------------- PRECONDITIONED SPARSE SOLVER
SUBROUTINES----------------
!-----------------------------------------------------------------------
subroutine formda(n,icsc,jcsc,csca,icho,ipre,coef,omega,id,d,da,da1)
! This subroutine forms GJ diagonal vector - da (d and da1);
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! icho: choose standard or modified preconditioenr.
! =1: standard preconditioner.
! =2: generalized or modified preconditioner.
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! ipre: choose preconditioner,
! =1: Jacobi preconditioner.
! =2: SSOR preconditioner (omega should be applied).
! coef: the scaling factor for GJ diagonal vector.
! omega: relaxation parameter, which is applied to MSSOR.
! id: a vector to indicate the type of current DOF,
! id(j)= 0 for pore water pressure DOF;
! id(j)= 1 for displacement DOF.
! d: diagonal of A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;

implicit none
real(8):: coef,omega,d(:),da(:),da1(:),csca(:),absv, maxabs,minabs
integer::n,j,r,k,k1,k2,icho,ipre,id(:),icsc(:), jcsc(:)
!
do j=1, n;

r=jcsc(j+1)-1 ; da(j) = csca(r);
end do
!
if(ipre==2) d = da ; ! Transfer diagonal of A from da to d;
if(icho == 2)then ! For generalized or modified preconditioner

!
do j=2, n
k1=jcsc(j) ; k2=jcsc(j+1)-2
if(id(j)==1) then

do k=k1 , k2
if(id(icsc(k))==0 ) then

da(icsc(k))=da(icsc(k))-csca(k)**2/da(j) ;
end if

end do
else ! id(j)==0

do k=k1 , k2
if(id(icsc(k))== 1 ) then

da(j)=da(j)-csca(k)**2/da(icsc(k)) ;
end if

end do
end if

end do
!
coef = coef/omega ;
do j=1, n ! coef-scaling factor (negative is preferred)
if(id(j)==0)then ! modified diagonal with relaxation parameter.

da(j)=coef*abs(da(j))
else ! id(j)==0

da(j)=da(j)/omega
end if

end do
end if
da1 = 1./da ;
!
return

end subroutine formda
!-----------------------------------------------------------------------
subroutine sqmrmssor(n,icsc,jcsc,csca,d,da,da1,rhs,maxit,tol,icc, &

iinc,qmriters,relres)
! Modified SSOR preconditioned SQMR for symmetric Ax=b linear system.
! Combining with Eisenstat trick.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! d: diagonal of A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
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! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion.
! = 2, relative residual norm criterion (x0=.0)
! iinc: Check convergence every ’iinc’ iteration.
! qmriters: the iterative count when SQMR converges;
! relres: the relative residual when SQMR converges.
implicit none
integer::i,n,maxit,icc,iinc,qmriters,ic,icsc(:),jcsc(:)
real(8)::tol,relres,tao,theta0,theta,rho0,rho,phi,nrmb,nrmr,sigma, &

kesa,beta,rhs(:),csca(:),d(:),da(:),da1(:)
real(8),allocatable::x(:), xold(:), z(:), r(:), g(:),v(:),w(:),c(:), &

t1(:),t2(:),t(:),p(:),q(:)
allocate(x(n),xold(n),z(n),r(n),g(n),v(n),w(n),c(n),t1(n),t2(n),t(n),&

p(n),q(n) )
!---------- initialize vectors ------------

x = .0 ; z = .0 ! initial guess
r=rhs;
call lsolve(n,da1,icsc,jcsc,csca,r, g); ! preconditioned residual
v =g; w=da*v;
tao = dot_product(g, g);
rho0 = dot_product(g, w)
c=.0 ; theta0=.0 ;
nrmb=sqrt(dot_product(r, r))*tol ;
p=d-2.0*da ; ! p is used in each iteration
ic = 0;

!---------- SQMR iteration ----------
iteration: do i=1, maxit

!----- matrix-vector product with Eisenstat trick -----
call usolve(n, da1,icsc,jcsc,csca,w, t1);
t2 = p*t1+w ;
call lsolve(n, da1,icsc,jcsc,csca,t2, t);
t = t1 + t;

!-----------------------------------------------------
sigma=dot_product(w, t);
if(sigma==.0) then

write(11,*) ’SQMR stops due to Sigma=0 ’; stop
end if
kesa=rho0/sigma ; g = g - kesa*t ;
theta=dot_product(g, g)/tao ;
phi=1./(1.+theta) ;
tao=tao*theta*phi ;
c=phi*(theta0*c+kesa*v) ;
z = z + c ;
select case (icc)

case (1)
call ccri(n,i,icsc,jcsc,csca,da,da1,z,iinc,tol, xold, &

rhs,ic,qmriters,relres)
case (2)
call ccrb(n,i,icsc,jcsc,csca,da,da1,g,z,iinc,tol,nrmb,&

rhs,ic,qmriters,nrmr,relres)
end select
if(ic==1) return ;
if(rho0==.0)then

write(11,*) ’SQMR stops due to rho0=0 ’ ; stop
end if
q = da * g ;
rho=dot_product(g, q) ;
beta = rho/rho0 ; v= g + beta*v;
w= da*v;
theta0=theta; rho0= rho

end do iteration
!--------- End iteration --------
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write(11,*)’********************************************** ’
write(11,*) ’SQMR does not converge to user-defined tolerance. ’

z = da * z;
call usolve(n, da1,icsc,jcsc,csca,z, x)
if(icc==1) relres = nrmr*tol/nrmb ;
qmriters = maxit ; rhs = x ;

return
end subroutine sqmrmssor
!-----------------------------------------------------------------------
subroutine ccrb(n,i,icsc,jcsc,csca,da,da1,g,z,iinc,tol,nrmb,rhs,ic, &

iters,nrmr,relres)
! This subroutine performs convergence check in terms of relative
! residual with x0=.0 is chosen,
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! g: preconditioned residual;
! z: "preconditioned" solution;
! iinc: Check convergence every ’iinc’ iteration.
! tol: it is the user-defined stopping tolerance;
! nrmb: computed initial residual (b) norm multiplied by tol;
! rhs: at input, it is right hand vector b;
! at convcergence,it is returned approximate solution x;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! nrmr: norm of true residual.
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iinc,iters,ic,icsc(:),jcsc(:)
real(8):: tol,nrmb,nrmr,relres,csca(:),da(:),da1(:),g(:),z(:),rhs(:)
real(8),allocatable:: r(:)
allocate( r(n) )
!
if(mod(i, iinc)==0)then ! per iinc steps, check convergence

call gtor(n,icsc,jcsc,csca,da,g,r) ; ! true residual is computed
nrmr=sqrt(dot_product(r, r)) ;
if(nrmr < nrmb)then ! solver converged
write(11,*)’********************************************** ’
write(11,*) ’SQMR converges to user-defined tolerance. ’
z = da * z ;
call usolve(n,da1,icsc,jcsc,csca,z,rhs) ! rhs is the solution.
ic =1 ; iters = i ; relres = nrmr*tol/nrmb ;
return

end if
end if
!
return

end subroutine ccrb
!-----------------------------------------------------------------------
subroutine ccri(n,i,icsc,jcsc,csca,da,da1,z,iinc,tol,xold,rhs,ic,iters,&

relres)
! This subroutine performs convergence check in terms of rleative
! ’improvement’ norm criterion ( when set icc = 2 )
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! z: "preconditioned" solution;
! iinc: Check convergence every ’iinc’ iteration.(iinc > 1)
! tol: it is the user-defined stopping tolerance;
! xold: solution of the previous iterative step;
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! rhs: at input, it is right hand vector b;
! at convcergence, it is returned solution;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iinc,iters,ic,icsc(:),jcsc(:)
real(8):: big,tol,ratio,relres,csca(:),da(:),da1(:),rhs(:),z(:),&

xold(:)
real(8),allocatable:: t(:)
allocate(t(n) )
!
if( mod(i, iinc)==0 )then ! per iinc steps, compute a xold;
t = da * z ;
call usolve(n, da1,icsc,jcsc,csca,t, rhs) ;
xold = rhs ;
!

else if( mod(i, iinc)==1 )then ! check convergence, closely next
! per iinc iterations;

t = da * z ;
call usolve(n, da1,icsc,jcsc,csca,t, rhs) ;
big=.0 ;
do j = 1, n; if( abs(rhs(j)) > big ) big=abs(rhs(j)); end do
relres =.0
do j = 1, n;

ratio = abs(rhs(j)-xold(j))/big;
if(ratio > relres ) relres = ratio;

end do
if(relres < tol) ic=1; ! Solver converged
if(ic==1)then

write(11,*)’********************************************** ’
write(11,*) ’SQMR converges to user-defined tolerance. ’
iters = i
!
return

end if
!

end if
!
return

end subroutine ccri
!-----------------------------------------------------------------------
subroutine psqmr(n,icsc,jcsc,csca,pr,rhs,maxit,tol,icc,qmriters,relres)
! This subroutine uses SQMR to solve Ax=b linear system with a right
! diagonal preconditioner.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of coefficient matrix A;
! pr: right preconditioner (which is inverted at input);
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion
! = 2, relative residual norm criterion (x0=.0)
! ic: indentifier of convergence;
! = 1, solver converged;
! = 0, not converge.
! qmriters: the iterative count when SQMR converges;
! relres: the relative residual when SQMR converges.
implicit none
integer::i,n,maxit,qmriters,icc,ic,icsc(:),jcsc(:)
real(8)::tol,relres,tao,theta0,rho0,rho,nrmb,nrmr,sigma,alpha,beta,&

theta,cj,rhs(:),csca(:),pr(:)
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real(8),allocatable::x(:),xold(:),r(:),t(:),q(:),d(:),u(:)
allocate(x(n),xold(n),r(n),t(n),q(n),d(n),u(n) )
!------ Initial vectors of SQMR iterations ------

x=.0 ! assumed initial guess
r=rhs;
t=r; ! left preconditioning
q=pr*t; ! right preconditioning
tao=sqrt(dot_product(t, t) );
theta0=.0;
rho0=dot_product(r,q);
nrmb=sqrt(dot_product(r, r))*tol;
d=.0; ic=0 ; xold = x ;

!------------ Sart SQMR iterations -------------
iteration: do i=1, maxit

call cscax(icsc,jcsc,csca,q,t) ! t=A*q, Matrix-vector product.
sigma=dot_product(q,t);
alpha=rho0/sigma ;
r = r-alpha*t ;
t= r; ! left preconditioning
theta=sqrt(dot_product(t, t) )/tao ;
cj=1./sqrt(1+theta*theta);
tao=tao*theta*cj;
d=(cj*theta0)**2*d+(cj*cj)*alpha*q ;
x = x + d;
nrmr=sqrt(dot_product(r, r)) ;
select case (icc)
case (1)

call pccri(n,i,xold,x,rhs,tol,ic,qmriters,relres)
xold = x ;

case (2)
call pccrb(n,i,r,x,rhs,tol,nrmb,ic,qmriters,nrmr,relres)

end select
if(ic==1) return ; ! SQMR converged
u=pr*t ; ! right preconditioning
rho=dot_product(r,u);
beta=rho/rho0; q = u + beta*q ;
!
rho0=rho; theta0=theta;

end do iteration
write(11,*)’********************************************** ’
write(11,*) ’SQMR does not converge to user-defined tolerance. ’
relres=nrmr*tol/nrmb ; qmriters = maxit ; rhs=x
!
return

end subroutine psqmr
!-----------------------------------------------------------------------
subroutine pccrb(n,i,r,x,rhs,tol,nrmb,ic,iters,nrmr,relres)
! This subroutine performs convergence check in terms of relative
! residual with x0=.0 is chosen,
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! r: current residual;
! rhs: at input, it is right hand vector b;
! at convcergence,it is returned approximate solution x;
! tol: it is the user-defined stopping tolerance;
! nrmb: computed initial residual (b) norm multiplied by tol;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! nrmr: norm of true residual.
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iters,ic
real(8):: tol,nrmb,nrmr,relres,r(:),x(:),rhs(:)
!
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nrmr=sqrt(dot_product(r, r)) ;
if(nrmr < nrmb)then ! solver converged
write(11,*)’********************************************** ’
write(11,*) ’Psolver converges to user-defined tolerance. ’
ic =1 ; iters = i ; relres = nrmr*tol/nrmb ; rhs = x;
!
return

end if
!
return

end subroutine pccrb
!-----------------------------------------------------------------------
subroutine pccri(n,i,xold,x,rhs,tol,ic,iters,relres)
! This subroutine performs convergence check in terms of rleative
! ’improvement’ norm criterion ( when set icc = 2 )
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! xold: approximate solution of the previous iterative step;
! x: approximate solution of current iterative step;
! rhs: at input, it is right hand vector b;
! at convcergence, it is returned solution;
! tol: it is the user-defined stopping tolerance;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iters,ic
real(8):: big,tol,ratio,relres,rhs(:),xold(:),x(:)
!

big=.0 ;
do j = 1, n; if( abs(x(j)) > big ) big=abs(x(j)); end do
relres =.0
do j = 1, n;

ratio = abs(x(j)-xold(j))/big;
if(ratio > relres ) relres = ratio;

end do
if(relres < tol) ic=1; ! Solver converged
if(ic==1)then

write(11,*)’********************************************** ’
write(11,*) ’Psolver converges to user-defined tolerance. ’
iters = i ; rhs = x ;
!
return

end if
!
return

end subroutine pccri
! ----------------------------------------------------------------------
! --------- Preconditioned CG Method for Linear System Ax = b ---------
! ----------------------------------------------------------------------
subroutine pcg(n,icsc,jcsc,csca,pr,rhs,maxit,tol,icc,iters,relres)
! This subroutine uses PCG to solve Ax=b linear system with a right
! diagonal preconditioner.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of coefficient matrix A;
! pr: right preconditioner (which is inverted at input);
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion
! = 2, relative residual norm criterion (x0=.0)
! ic: indentifier of convergence;
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! = 1, solver converged;
! = 0, not converge.
! iters: the iterative count when PCG converges;
! relres: the relative residual when PCG converges.
! This subroutine is for preconditioned PCG iterative method.
! Refer to the PCG Algorithm by van der Vorst’s book or Template Book.

integer:: i,n,ic,icc,icsc(:),jcsc(:),maxit,iters
real(8):: pr(:),csca(:),tol,rhs(:),nrmb,nrmr,rho,rho0,alpha,beta,relres
real(8),allocatable:: r(:),z(:),p(:),q(:),x(:),xold(:)
allocate (r(n),z(n),p(n),q(n),x(n),xold(n) )
! b -- is RHS vector when inputting, while it is the Solution Vector
! when returning.

x = .0 ; r = rhs ; ! x0=0 is the initial solution guess
nrmb=sqrt(dot_product(rhs, rhs))*tol;
ic=0 ; xold = x ;

pcg_iter: do i=1, maxit
z = pr*r ; rho = dot_product(r, z) ;

if ( i > 1 )then ! direction vector
beta = rho/rho0;
p = z + beta*p;

else
p = z;

end if
call cscax(icsc,jcsc,csca,p,q) ! q=Ap, Matrix-vector product.
alpha = rho/dot_product(p, q) ;
x = x + alpha * p ;
r = r - alpha * q ;
nrmr=sqrt(dot_product(r, r)) ;
select case (icc)

case (1)
call pccri(n,i,xold,x,rhs,tol,ic,iters,relres)
xold = x ;

case (2)
call pccrb(n,i,r,x,rhs,tol,nrmb,ic,iters, nrmr,relres)

end select
if(ic==1)return ; ! PCG converged
rho0 = rho

end do pcg_iter
write(11,*)’********************************************** ’
write(11,*) ’PCG does not converge to user-defined tolerance. ’
relres=nrmr*tol/nrmb ; iters = maxit ; rhs=x

return
end subroutine pcg
! ----------------------------------------------------------------------
subroutine pcgmssor(n,icsc,jcsc,csca,d,da,da1,rhs,maxit,tol,icc,iinc, &

iters,relres)
! Modified SSOR preconditioned PCG for symmetric Ax=b linear system.
! Combining with Eisenstat trick.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! d: diagonal of A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion.
! = 2, relative residual norm criterion (x0=.0)
! iinc: Check convergence every ’iinc’ iteration.
! iters: the iterative count when PCG converges;
! relres: the relative residual when PCG converges.
implicit none
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integer:: i,n,icc,ic,iinc,icsc(:),jcsc(:),maxit,iters
real(8):: csca(:),d(:),da(:),da1(:),tol,rhs(:), nrmb, nrmr, rho,rho0,&

alpha,beta,relres
real(8),allocatable:: tmp(:),x(:),xold(:),z(:),t(:),t1(:),t2(:),r(:),&

g(:),p(:),q(:)
allocate(tmp(n),x(n),xold(n),z(n),t(n),t1(n),t2(n),r(n),g(n),p(n),q(n))
!---------- initialize vectors ------------
! b is RHS vector when inputting, while it is the Solution Vector &
! when returning.
x = 0 ; z =.0; r = rhs ; ! x0=0 is the initial solution guess
nrmb=sqrt(dot_product(r, r))*tol;
call lsolve(n,da1,icsc,jcsc,csca,r, g); ! preconditioned residual
tmp = d - 2.0*da ; ic=0 ;

pcg_iter: do i=1, maxit
t = da*g ; rho = dot_product(g,t) ; !(t = z ; g =r)
if(i==1)then

p = t;
else
beta = rho/rho0 ; p = t + beta*p ;

end if
! q=Ap, Matrix-vector product.
!----- matrix-vector product with Eisenstat trick -----

call usolve(n, da1,icsc,jcsc,csca,p, t1);
t2 = tmp*t1 + p ;
call lsolve(n, da1,icsc,jcsc,csca,t2, q);
q = t1 + q;

!-----------------------------------------------------
alpha = rho/dot_product(p, q) ;
z = z + alpha * p ;
g = g - alpha * q ;
select case (icc)

case (1)
call cgccri(n,i,icsc,jcsc,csca,da,da1,z,iinc,tol, xold, &

rhs,ic,iters,relres)
case (2)

call cgccrb(n,i,icsc,jcsc,csca,da,da1,g,z,iinc,tol,nrmb,&
rhs,ic,iters,nrmr,relres)

end select
if(ic==1) return ;
rho0 = rho

end do pcg_iter
!
write(11,*)’********************************************** ’
write(11,*) ’PCG does not converge to user-defined tolerance. ’

call usolve(n, da1,icsc,jcsc,csca,z, x)
if(icc==1) relres = nrmr*tol/nrmb ;
iters = maxit ; rhs = x ;

return
end subroutine pcgmssor
!-----------------------------------------------------------------------
subroutine cgccrb(n,i,icsc,jcsc,csca,da,da1,g,z,iinc,tol,nrmb,rhs,ic, &

iters,nrmr,relres)
! This subroutine performs convergence check in terms of relative
! residual with x0=.0 is chosen,
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! g: preconditioned residual;
! z: "preconditioned" solution;
! iinc: Check convergence every ’iinc’ iteration.
! tol: it is the user-defined stopping tolerance;
! nrmb: computed initial residual (b) norm multiplied by tol;
! rhs: at input, it is right hand vector b;
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! at convcergence,it is returned approximate solution x;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! nrmr: norm of true residual.
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iinc,iters,ic,icsc(:),jcsc(:)
real(8):: tol,nrmb,nrmr,relres,csca(:),da(:),da1(:),g(:),z(:),rhs(:)
real(8),allocatable:: r(:)
allocate( r(n) )
!
if(mod(i, iinc)==0)then ! per iinc steps, check convergence

call gtor(n,icsc,jcsc,csca,da,g,r) ; ! true residual is computed
nrmr=sqrt(dot_product(r, r)) ;
if(nrmr < nrmb)then ! solver converged

write(11,*)’********************************************** ’
write(11,*) ’PCG converges to user-defined tolerance. ’
! z = da * z ;
call usolve(n,da1,icsc,jcsc,csca,z,rhs) ! rhs is the solution.
ic =1 ; iters = i ; relres = nrmr*tol/nrmb ;
return

end if
end if
!
return

end subroutine cgccrb
!-----------------------------------------------------------------------
subroutine cgccri(n,i,icsc,jcsc,csca,da,da1,z,iinc,tol,xold,rhs,ic, &

iters,relres)
! This subroutine performs convergence check in terms of rleative
! ’improvement’ norm criterion ( when set icc = 2 )
! n: i.e. neq - number of total DOFs or equations;
! i: current iteration # ;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! da: modified diagonal for MSSOR preconditioner;
! da1: inverse of da;
! z: "preconditioned" solution;
! iinc: Check convergence every ’iinc’ iteration.(iinc>1)
! tol: it is the user-defined stopping tolerance;
! xold: solution of the previous iterative step;
! rhs: at input, it is right hand vector b;
! at convcergence, it is returned solution;
! ic: = 1 converged (ic is a identifier);
! = 0 doesn’t satisfy the convergence criterion;
! iters: returned iteration count when converged;
! relres: returned relative residual when converged.

implicit none
integer:: i,j,n,iinc,iters,ic,icsc(:),jcsc(:)
real(8):: big,tol,ratio,relres,csca(:),da(:),da1(:),rhs(:),z(:), &

xold(:)
real(8),allocatable:: t(:)
allocate(t(n) )
!
if( mod(i, iinc)==0 )then ! per iinc steps, compute a xold;
! t = da * z ;
call usolve(n, da1,icsc,jcsc,csca,z, rhs) ;
xold = rhs ;
!

else if( mod(i, iinc)==1 )then ! check convergence, closely next
! per iinc iterations;

!t = da * z ;
call usolve(n, da1,icsc,jcsc,csca,z, rhs) ;
big=.0 ;
do j = 1, n; if( abs(rhs(j)) > big ) big=abs(rhs(j)); end do
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relres =.0
do j = 1, n;

ratio = abs(rhs(j)-xold(j))/big;
if(ratio > relres ) relres = ratio;

end do
if(relres < tol) ic=1; ! Solver converged
if(ic==1)then

write(11,*)’********************************************** ’
write(11,*) ’PCG converges to user-defined tolerance. ’
iters = i
!
return

end if
!

end if
!
return

end subroutine cgccri
! ----------------------------------------------------------------------
! ------ MINRES method for symmetric and possible indefinite Ax=b ------
! ----------------------------------------------------------------------
subroutine minres(n,icsc,jcsc,csca,pr,rhs,maxit,tol,icc,iters,relres)
! This subroutine uses MINRES to solve Ax=b linear system with a right
! diagonal preconditioner.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of coefficient matrix A;
! pr: right preconditioner (which is inverted at input);
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion
! = 2, relative residual norm criterion (x0=.0)
! ic: indentifier of convergence;
! = 1, solver converged;
! = 0, not converge.
! iters: the iterative count when MINRES converges;
! relres: the relative residual when MINRES converges.
! This subroutine is Jacobi preconditioned MINRES iterative method.
! Refer to the MINRES Algorithm. (Wang,2004)

integer:: i,n,icc,ic,icsc(:),jcsc(:),maxit,iters
real(8):: pr(:),csca(:),tol,rhs(:),nrmb,nrmr,rho,rho0,alpha,beta,relres
real(8),allocatable::r(:),u(:),p(:),q(:),x(:),xold(:),z0(:),z(:),t0(:),&

t(:)
allocate (r(n),u(n),p(n),q(n),x(n),xold(n),z0(n),z(n),t0(n),t(n) )

x = 0; r = rhs ! x0=0 is the initial guess.
p = pr*r ; z0 = p ;
call cscax(icsc,jcsc,csca,p,q) ! q=Ap, Matrix-vector product.
t0 = q; nrmb = sqrt(dot_product(r, r))*tol ;
ic=0 ; xold = x ;

mr_iter: do i=1, maxit
u = pr * q ;
alpha = dot_product(z0,q)/dot_product(q,u);
x = x + alpha * p ;
r = r - alpha * q ;
z = z0 - alpha * u ;
call cscax(icsc,jcsc,csca,z,t) ! t = Az, Matrix-vector product.
beta = dot_product(z, t)/dot_product(z0, t0) ;
p = z + beta*p ;
q = t + beta*q ;
nrmr = sqrt(dot_product(r, r));
select case (icc)

case (1)
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call pccri(n,i,xold,x,rhs,tol,ic,iters,relres)
xold = x ;

case (2)
call pccrb(n,i,r,x,rhs,tol,nrmb,ic,iters,nrmr,relres)

end select
if(ic==1) return ; ! MINRES converged
z0 = z ; t0 = t ;

end do mr_iter
write(11,*)’********************************************** ’
write(11,*) ’MINRES does not converge to user-defined tolerance. ’
relres=nrmr*tol/nrmb ; iters = maxit ; rhs=x

return
end subroutine minres
!-----------------------------------------------------------------------
subroutine mrmssor(n,icsc,jcsc,csca,d,da,da1,rhs, maxit, tol, icc,iinc,&

iters,relres)
! Modified SSOR preconditioned MINRES for symmetric Ax=b linear system.
! Combining with Eisenstat trick.
! In this routine:
! n: dimension of coefficient matrix A;
! icsc,jcsc,csca: CSC storage of coefficient matrix A;
! pr: right preconditioner (which is inverted at input);
! rhs: at input, it is right hand vector b;
! at output,it is returned approximate solution x;
! maxit: user-defined maximum iteration count;
! tol: it is the user-defined stopping tolerance;
! icc: choice for convergence criterion;
! = 1, relative improvement norm criterion
! = 2, relative residual norm criterion (x0=.0)
! ic: indentifier of convergence;
! = 1, solver converged;
! = 0, not converge.
! iters: the iterative count when MINRES converges;
! relres: the relative residual when MINRES converges.
! This subroutine is Jacobi preconditioned MINRES iterative method.
! Refer to the MINRES Algorithm. (Wang,2004)

integer::i,n,icc,ic,iinc,icsc(:),jcsc(:),maxit,iters
real(8)::d(:),da(:),da1(:),csca(:),tol,rhs(:),nrmb,nrmr,rho,rho0,alpha,&

beta,relres
real(8),allocatable::tmp(:),r(:),g(:),u(:),p(:),q(:),x(:),xold(:),y(:),&

y0(:),z(:),t0(:),t1(:),t2(:),t(:)
allocate (tmp(n),r(n),g(n),u(n),p(n),q(n),x(n),xold(n),y(n),y0(n),z(n),&

t0(n),t1(n),t2(n),t(n) )
x = .0 ; z = .0 ; r = rhs ;
! x0 = 0 is the initial guess, y is the preconditioned solution.
call lsolve(n,da1,icsc,jcsc,csca,r,g); ! g -preconditioned residual
p = da*g ; y0 = p ; tmp = d - 2.0*da ;
!----- matrix-vector product q=A*p with Eisenstat trick ------
call usolve(n, da1,icsc,jcsc,csca,p,t1);
t2 = tmp*t1+p ;
call lsolve(n, da1,icsc,jcsc,csca,t2,q);
q = t1 + q;
!-------------------------------------------------------------
t0 = q ; ic=0 ; nrmb = sqrt(dot_product(r, r))*tol ;

mr_iter: do i=1, maxit
u = da * q ;
alpha = dot_product(y0,q)/dot_product(q,u);
z = z + alpha * p ;
g = g - alpha * q ;
y = y0 - alpha * u ;
!----- matrix-vector product t=A*y with Eisenstat trick -----

call usolve(n, da1,icsc,jcsc,csca,y, t1);
t2 = tmp*t1+y ;
call lsolve(n, da1,icsc,jcsc,csca,t2, t);
t = t + t1;
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!-------------------------------------------------------------
beta = dot_product(y, t)/dot_product(y0, t0) ;
p = y + beta*p ;
q = t + beta*q ;
select case (icc)

case (1)
call cgccri(n,i,icsc,jcsc,csca,da,da1,z,iinc,tol, xold, &

rhs,ic,iters,relres)
case (2)

call cgccrb(n,i,icsc,jcsc,csca,da,da1,g,z,iinc,tol,nrmb,&
rhs,ic,iters,nrmr,relres)

end select
if(ic==1) return ; ! MINRES converged
y0 = y ; t0 = t ;

end do mr_iter
write(11,*)’********************************************** ’
write(11,*) ’MINRES does not converge to user-defined tolerance. ’

call usolve(n, da1,icsc,jcsc,csca,z, x)
if(icc==1) relres = nrmr*tol/nrmb ;
iters = maxit ; rhs = x ;

return
end subroutine mrmssor
!-----------------------------------------------------------------------
subroutine psolver(n,icsc,jcsc,csca,d,da,da1,b,maxit,tol,isolver,icho, &

ipre,icc,iinc,iters,relres)
! Choose preconditioned iterative methods:
! n: i.e. neq - number of total DOFs or equations;
! icsc,jcsc,csca: CSC storage of upper triangular part of matrix A;
! d: true diagonal of A;
! da: modified diagonal basing on GJ;
! da1: inverse of da;
! b: right hand side vector;
! maxit: user-defined maximal iteration number;
! tol: user-defined stopping tolerance;
! isolver: Iterative solver selection;
! = 1, SQMR iterative solver;
! = 2, PCG iterative solver;
! = 3, MINRES iterative solver;
! icho: choose standard or modified preconditioenr.
! =1: standard preconditioner.
! =2: generalized or modified preconditioner.
! ipre: choose preconditioned iterative solver;
! = 1, GJ preconditioned iterative method;
! = 2, MSSOR preconditioned iterative method;
! icc: choose convergence criterion;
! = 1, relative improvement norm criterion;
! = 2, relative residual norm criterion;
! iinc: check convergence every "iinc" step when ipre = 2;
! iters: returned iteration number when converged;
! relres: returned relative residual when converged;
implicit none
integer::n,icsc(:),jcsc(:),maxit,isolver,icho,ipre,icc,iinc,iters
real(8)::csca(:),d(:),da(:),da1(:),b(1:),tol, relres
!real(8),allocatable::d1(:)
!allocate(d1(n))
!d1(1:n) = 1./d(1:n) ;
if(isolver==1)then ! (SQMR Iterative Solver)

select case (ipre)
case(1)
if(icho==1) write(11,*) ’ ---> SJ preconditioned SQMR solver’
if(icho==2) write(11,*) ’ ---> GJ preconditioned SQMR solver’

select case (icc)
case (1)

write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
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end select
!
call psqmr(n,icsc,jcsc,csca,da1,b,maxit,tol,icc,iters,relres)

case(2)
if(icho==1)write(11,*) ’ ---> SSOR preconditioned SQMR solver’
if(icho==2)write(11,*) ’ ---> MSSOR preconditioned SQMR solver’

select case (icc)
case (1)

write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
end select
call sqmrmssor(n,icsc,jcsc,csca,d,da,da1,b,maxit,tol,icc, &

iinc,iters,relres)
case default
write(*,*) ’ No preconditioned solver is chosen, stop here! ’
Stop

end select
else if(isolver==2)then ! (PCG Iterative Solver)

select case (ipre)
case(1)
if(icho==1)write(11,*) ’ ---> SJ preconditioned PCG solver’
if(icho==2)write(11,*) ’ ---> GJ preconditioned PCG solver’
select case (icc)
case (1)

write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
end select
!
call pcg(n,icsc,jcsc,csca,da1,b,maxit,tol,icc,iters,relres)

case(2)
if(icho==1)write(11,*) ’ ---> SSOR preconditioned PCG solver’
if(icho==2)write(11,*) ’ ---> MSSOR preconditioned PCG solver’
select case (icc)
case (1)

write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
end select
call pcgmssor(n,icsc,jcsc,csca,d,da,da1,b,maxit,tol,icc, &

iinc,iters,relres)
case default
write(*,*) ’ No preconditioned solver is chosen, stop here! ’
Stop

end select
else if(isolver==3)then ! isolver =3 ! (MINRES Iterative Solver)

select case (ipre)
case(1)

if(icho==1)write(11,*) ’ ---> SJ preconditioned MINRES solver’
if(icho==2)write(11,*) ’ ---> GJ preconditioned MINRES solver’
select case (icc)
case (1)

write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
end select
!

call minres(n,icsc,jcsc,csca,da1,b,maxit,tol,icc,iters,relres)
case(2)
if(icho==1)write(11,*) ’ ---> SSOR preconditioned MINRES solver’
if(icho==2)write(11,*) ’ --->MSSOR preconditioned MINRES solver’

select case (icc)
case (1)
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write(11,*) ’ with relative improvement norm criterion!’
case (2)

write(11,*) ’ with relative residual norm criterion!’
end select
call mrmssor(n,icsc,jcsc,csca,d,da,da1,b,maxit,tol,icc, &

iinc,iters,relres)
case default
write(*,*) ’ No preconditioned solver is chosen, stop here! ’
Stop

end select
!

else
write(11,*) ’ No Iterative Solver is selected, and STOP! ’ ;
stop

end if
!
return

end subroutine psolver
!-----------------------------------------------------------------------

end module sparse_lib

C.4 How to Use sparse lib in FEM Package

C.4.1 Introduction

Sparse lib library is built compatibly with the Fortran 90 programs given in the book

“Programming the Finite Element Method” authored by Smith and Griffiths (1998).

The library is designed to replace direct solution method or element-by-element based

iterative method. It can be used for a general FEM package, but for special problems,

some basic information should be provided. Many iterative solvers and preconditioners

can be used for fast solutions of large-scale linear systems arising from finite element dis-

cretization, but, currently, only symmetric PCG, SQMR and MINRES iterative solvers

and standard (or generalized) Jacobi and standard (or modified) SSOR preconditioners

are added in. Further extension of this library with nonsymmetric iterative solvers and

other preconditioning techniques is not a difficult task.

C.4.2 Three Basic Components in sparse lib

The sparse lib library is mainly composed of the following three components:

• Sorting Subroutines:

The sorting subroutines contains quicksort and insertion sort routines, which can

be obtained from ORDERPACK package. Sorting three vectors (arr, brr and

crr) which stores element-level nonzero entries of global stiffness matrix and then
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assembling them by using the subroutine sortadd lead to the final CSC or CSR

storage.

Subroutine sortadd functions as follows: sort arr (global row number) index in

ascending order and at the same time, brr, crr are reordered correspondingly.

For the same arr index, sub-sort brr (global column index), and at the same

time, crr (corresponding nonzero entry value collected from elements) changes

correspondingly with brr. After this work, add up all crr components with the

same (arr, brr), and the zero-value crr entry will be removed. Finally forming

the Compressed sparse Row (CSR) format or Compressed Sparse Column (CSC)

format. The true nonzero number of the compressed sparse storage is also returned.

• Sparse Operations Subroutines:

This part includes those subroutines for matrix-vector products and triangular

solves, these subroutines are required by sparse preconditioned solvers. For sym-

metric matrix, only CSR or CSC storage of upper triangular part of this matrix

is stored, and thus, the corresponding matrix-vector product is implemented with

the symmetric storage. This part can be extended by including the operations with

other sparse storages.

• Sparse Preconditioned Iterative Solvers Subroutines:

In this library, only SQMR, PCG and MINRES iterative methods are included.

To combine with any included iterative method, standard (generalized) Jacobi and

standard (modified) SSOR preconditioners are proposed. It is worth mentioning

that to switch generalized (or modified) preconditioner to standard one. This switch

can be realized by choosing icho.

C.4.3 Parameters or Basic Information for sparse lib Library

To use the library sparse lib, some parameters or basic information should be provided.

These parameters and basic information can be described as following.

C.4.3.1 Input Parameters

integer:: maxit,isolver,icho,ipre,icc,iinc

real(8):: tol,coef,omega
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maxit: user-defined maximum iteration number, when this number is reached, iteration

is stopped no matter whether the convergence tolerance is satisfied.

isolver: choose a preferred iterative solver, isolver = 1 means to select SQMR method,

isolver = 2 means to select PCG method and isolver = 3 means to select MIN-

RES method.

icho: choose a standard or modified diagonal. icho = 1 means to select standard pre-

conditioner, while icho = 2 means to select modified (or generalized) precondi-

tioner.

ipre: choose a preconditioner, ipre = 1 for Jacobi preconditioner and ipre = 2 for

SSOR preconditioner. ipre should be used in conjunction with icho with the

following combinations:

• icho = 1 and ipre = 1, choose standard Jacobi preconditioner;

• icho = 1 and ipre = 2, choose standard SSOR preconditioner;

• icho = 2 and ipre = 1, choose Generalized Jacobi preconditioner;

• icho = 2 and ipre = 2, choose Modified SSOR preconditioner.

icc: choose convergence criterion, icc = 1 for relative ‘improvement’ norm criterion.

icc = 2 for relative residual norm criterion.

iinc: check convergence every “iinc” step when ipre = 2 because the true residual

can not be monitored directly. This parameter can be selected in the range iinc∈
[4, 8] if users have no experiences on this selection.

tol: user-defined convergence (stopping) tolerance for a selected convergence criterion.

This parameter can be selected to be tol = 10−6 if users have no experiences on

this selection.

coef: This parameter is used for the modified diagonal in GJ or MSSOR preconditioner.

When using a GJ or MSSOR preconditioned iterative method, this parameter can

also be made positive or negative in terms of the selected iterative method. This

parameter can be selected to be coef = -4.0 if users have no experiences on this

selection, but for MINRES iterative method, a positive coef = 4.0 can be used.
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omega: relaxation parameter for MSSOR preconditioning methods. omega can be se-

lected in the range [1.0, 1.4] if users have no experiences on this choice.

C.4.3.2 Parameters or Basic Information to Be Obtained

integer::neq,sneq,fneq,id(neq),ebeanz,iebe,jebe,ebea,uanz,iters

real(8)::resi

neq,sneq(sn),fneq(fn): neq is total number of DOFs in the mesh (or number of equa-

tions), sneq is the number of DOFs corresponding to displacement and fneq is the

number of DOFs corresponding to the pore water pressure. There exists the rela-

tion, neq = sneq + fneq. The computation to get sneq or fneq is not necessary

if no pore water pressure is involved.

id(neq): id is an identifier array for displacement or pore pressure DOF;

id(i) = 1 for displacement DOF (i=1, neq);

id(i) = 0 for pore pressure DOF (i=1, neq).

ebeanz: an estimated (or returned true) number for total nonzero entries collected from

all element stiffness matrices; the formula for the estimated ebeanz is ebeanz =

ntot*int(ntot/2)*nels, ntot is the dimension of element stiffness matrices as

mentioned above. When no pore pressure unknowns are involved, ntot = ndof

should be set.

iebe,jebe,ebea: global row index, global column index and correspondent value, re-

spectively, collected from element matrices.

uanz: this value is used to estimate storage for CSC (or CSR) format of upper triangular

part of coefficient matrix A. We can use half bandwidth “nband” to give a con-

servative estimation of uanz, i.e., uanz = int(neq - nband/2)*nband. Alterna-

tively, the estimated formula is uanz = int(0.6*ebeanz) for large 3-D problems,

here ebeanz is the returned true number of nonzero entries collected from element

“stiffness” matrices. 0.6 is an estimated ratio. In practical implementation, the ra-

tio can be determined based on a small-size or middle-size problem before running

a very large problem because the ratio usually decreases with problem size.

jcsc,icsc,csca: subroutine sortadd sorts element based storage, iebe,jebe,ebea,

and leads to compressed sparse column storage jcsc,icsc,csca.
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diag,diaga,diaga1: For GJ or MSSOR preconditioner, diag stores the true diagonal

of coefficient matrix A, diaga returns modified diagonal constructed by GJ algo-

rithm and diaga stores the inverse of diaga. But for standard Jacobi or SSOR

preconditioner, diaga = diag stores the diagonal of A and diaga1 = 1./diaga.

iters: returned iteration number. When iterative solver converges, it stores the iterative

number corresponding to the convergence tolerance, and it is equal to maxit when

the iterative solver doesn’t converge.

resi: returned residual, it has different meaning for different convergence criteria.
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C.4.4 Flowchart of Using sparse lib Library

The flowchart of calling sparse lib subroutines is given as following.

use sparse lib

Input Parameters with suggested
values: maxit = 5000, tol = 10−6,
coef = -4, omega = 1.0, isolver,
icho, ipre, icc = 2, iinc = 5

Compute: neq, sneq#, fneq#, id(:)# (form id by
allocating id(neq) and calling form id#(nf,nn,nodof,id) )

Compute: ebeanz∗ = ntot*int(ntot/2)*nels
Allocate: iebe(ebeanz∗), jebe(ebeanz∗), ebea(ebeanz∗)

set ebeanz=0
For element loop 2:

For each generated element stiffness matrix, ke, by calling
formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz), we get
iebe, jebe, ebea and ebeanz

End for

Compute: uanz∗ = int(neq - nband/2)*nband
Allocate: icsc(uanz∗), jcsc(neq+1), csca(uanz∗),
diag(neq), diaga(neq), diaga1(neq)

Setup sparse global matrix: calling sortadd (ebeanz,
jebe,iebe,ebea,neq+1,uanz,jcsc,icsc, csca) to
compress iebea,jebea,ebea into sparse global stiffness
matrix storage, icsc,jcsc,csca with returned true uanz.

Form preconditioner (standard or modified diagonal):
call formda (neq,icsc,jcsc,csca,icho,ipre,coef,
omega,id,diag,diaga,diaga1) to form diag,diaga,diaga1

For all time steps or load increments:

call kpu#(icsc,jcsc,csca,theta,id,loads(1:),
ans(1:)) to form right hand side, and then call psolver
(neq,icsc,jcsc,csca,diag,diaga,diaga1,ans(1:),maxit,
tol,isolver,icho,ipre,icc,iinc,iters,resi).

End for
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In the above flowchart, the number with star symbol (*) means it is an estimated number,

while the numbers or subroutines with # symbol is specially for coupled problems such as

consolidation problem. Therefore, when solving the drained problems, the computing or

calling of the numbers and subroutines with # symbol may not be necessary. Moreover,

it should be noted that icho = 1 must be set for these cases.

C.4.5 Demonstration of Using sparse lib in Program p92

To demonstrate the application of module sparse lib, the input file, the main program

and output file can be changed or generated correspondingly.

C.4.5.1 Input File p92.dat

In the following input file ‘p92.dat’ of the test example, the new parameters required by

the sparse preconditioned iterative solvers are provided in the underline part.

nels nxe nye nn nip ←− 4 1 4 23 4
permx permy e v ←− 1.0 1.0 1.0 .0
dtim nstep theta maxit tol coef omega isolver icho ipre icc iinc

1.0 20 1.0 1000 1.e-6 -4.0 1.0 1 2 2 2 5
width(i), i = 1, nxe + 1 ←− 0.0 1.0
depth(i), i = 1, nye + 1 ←− 0.0 -2.5 -5.0 -7.5 -10.0
nr ←− 23
k, nf(:,k), k=1, nr ←−
1 0 1 0 2 1 1 0 3 0 1 0 4 0 1 0 5 0 1 0
6 0 1 1 7 1 1 0 8 0 1 1 9 0 1 0 10 0 1 0
11 0 1 1 12 1 1 0 13 0 1 1 14 0 1 0 15 0 1 0
16 0 1 1 17 1 1 0 18 0 1 1 19 0 1 0 20 0 1 0
21 0 0 1 22 0 0 0 23 0 0 1

C.4.5.2 Main Program of P92 with Direct Solver Replaced By Sparse Pre-
conditioned Iterative Method

program p92
!-----------------------------------------------------------------------
! program 9.2 plane strain consolidation of a Biot elastic
! solid using 8-node solid quadrilateral elements
! coupled to 4-node fluid elements : incremental version
! Linear systems are solved by sparse iterative methods
!-----------------------------------------------------------------------
use new_library; use geometry_lib; use sparse_lib ; implicit none !<--(1)

integer::nels,nxe,nye,neq,nband,nn,nr,nip,nodof=3,nod=8,nodf=4,nst=3,&
ndim=2,ndof,i,k,l,iel,ns,nstep,ntot,nodofs=2,inc, &

sn,fn,ebeanz,uanz,isolver,icho,ipre,icc,iinc,iters,maxit !<--(2)

real(8):: permx,permy,e,v,det,dtim,theta,time, &
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coef,omega,resi,tol !<--(3)

character(len=15):: element = ’quadrilateral’
!----------------------------- dynamic arrays---------------------------
real(8),allocatable ::dee(:,:), points(:,:), coord(:,:), derivf(:,:),&

jac(:,:),kay(:,:),der(:,:),deriv(:,:),weights(:),&
derf(:,:),funf(:),coordf(:,:), bee(:,:), km(:,:),&
eld(:), sigma(:), kp(:,:), ke(:,:), g_coord(:,:),&
fun(:),c(:,:),width(:), depth(:),vol(:),loads(:),&
ans(:) ,volf(:,:), &

! bk(:),store_kp(:,:,:),phi0(:),phi1(:) !-->(4)

ebea(:),csca(:),diag(:),diaga(:),diaga1(:) !<--(5)

integer, allocatable :: nf(:,:),g(:),num(:),g_num(:,:), g_g(:,:), &

id(:),iebe(:),jebe(:),icsc(:),jcsc(:) !<--(6)

!---------------------------input and initialisation--------------------
open (10,file=’p92.dat’,status=’old’,action=’read’)
open (11,file=’p92.res’,status=’replace’,action=’write’)
read (10,*) nels,nxe,nye,nn,nip, &

permx, permy, e,v, dtim, nstep, theta , &

maxit,tol,coef,omega,isolver,icho,ipre,icc,iinc !<--(7)

ndof=nod*2; ntot=ndof+nodf
allocate ( dee(nst,nst), points(nip,ndim), coord(nod,ndim), &

derivf(ndim,nodf),jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod), &
deriv(ndim,nod), derf(ndim,nodf),funf(nodf),coordf(nodf,ndim), &
bee(nst,ndof), km(ndof,ndof),eld(ndof),sigma(nst),kp(nodf,nodf), &
g_g(ntot,nels),ke(ntot,ntot),fun(nod),c(ndof,nodf),width(nxe+1), &
depth(nye+1),vol(ndof),nf(nodof,nn), g(ntot), volf(ndof,nodf), &
g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip) )

! store_kp(nodf,nodf,nels),phi0(nodf),phi1(nodf) ) !-->(8)

kay=0.0; kay(1,1)=permx; kay(2,2)=permy
read (10,*)width , depth

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)

call snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebeanz) !<--(9)

call formnf(nf); neq=maxval(nf)

allocate(id(neq)); !<--(10)

call form_id(nf,nn,nodof,id); !<--(11)

call deemat(dee,e,v); call sample(element,points,weights)
!--------- loop the elements to find nband and set up global arrays-----
nband = 0
elements_1: do iel = 1 , nels

call geometry_8qxv(iel,nxe,width,depth,coord,num)
inc=0
do i=1,8;do k=1,2;inc=inc+1;g(inc)=nf(k,num(i));end do;end do
do i=1,7,2;inc=inc+1;g(inc)=nf(3,num(i)); end do
g_num(:,iel)=num;g_coord(:,num)=transpose(coord);g_g(:,iel)= g
if(nband<bandwidth(g))nband=bandwidth(g)

end do elements_1
write(11,’(a)’) "Global coordinates "
do k=1,nn;write(11,’(a,i5,a,2e12.4)’)"Node",k," ",g_coord(:,k);end do
write(11,’(a)’) "Global node numbers "
do k = 1 , nels; write(11,’(a,i5,a,8i5)’) &

"Element ",k," ",g_num(:,k); end do
write(11,’(2(a,i5))’) &

"There are ",neq, " equations and the half-bandwidth is ",nband

allocate(loads(0:neq),ans(0:neq),iebe(ebeanz),jebe(ebeanz),ebea(ebeanz))

!<-->(12)
loads = .0 ; ebeanz = 0 ; !<-- (13)
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!------------- element stiffness integration and assembly---------------
elements_2: do iel = 1 , nels

num = g_num( : ,iel ); coord= transpose(g_coord(:,num))
g = g_g ( : , iel ) ; coordf = coord(1 : 7 : 2, : )
km = .0; c = .0; kp = .0

gauss_points_1: do i = 1 , nip
call shape_der(der,points,i); jac = matmul(der,coord)
det = determinant(jac); call invert(jac);deriv = matmul(jac,der)
call beemat(bee,deriv); vol(:)=bee(1,:)+bee(2,:)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)

!-----------------------now the fluid contribution----------------------
call shape_fun(funf,points,i)
call shape_der(derf,points,i) ; derivf=matmul(jac,derf)

kp=kp+matmul(matmul(transpose(derivf),kay),derivf)*det*weights(i)*dtim
do l=1,nodf; volf(:,l)=vol(:)*funf(l); end do
c= c+volf*det*weights(i)

end do gauss_points_1

! store_kp( : , : , iel) = kp ! -->(14)

call formke(km,kp,c,ke,theta);
!---collect nonzero entries from element stiffness matrices---
call formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz) !<-->(15)

!@@ call formkv(bk,ke,g,neq)
end do elements_2

!------------------------factorise left hand side-----------------------
uanz = int(neq - nband/2)*nband !<-- (16)

allocate (icsc(uanz), jcsc(neq+1), csca(uanz), diag(neq), diaga(neq), &
diaga1(neq))

call sortadd (ebeanz, jebe(1:ebeanz), iebe(1:ebeanz), ebea(1:ebeanz), &
neq+1,uanz,jcsc,icsc,csca)

deallocate(iebe,jebe,ebea)
!-form standard or modified diagonal for the chosen preconditioner-

call formda (neq,icsc,jcsc,csca,icho,ipre,coef,omega,id,diag,diaga,diaga1)
! --------- enter the time-stepping loop--------------------------------

time = .0
time_steps: do ns = 1 , nstep

time = time +dtim ;
write(11,’(a,e12.4)’) "The time is ",time

ans=.0; call kpu(icsc,jcsc,csca,theta,id,loads(1:),ans(1:)) ;ans(0)=.0

!<-->(17)
! ramp loading

if(ns<=10) then
ans(1)=ans(1)-.1/6.; ans(3)=ans(3)-.2/3.
ans(4)=ans(4)-.1/6.

end if
call psolver(neq,icsc,jcsc,csca,diag,diaga,diaga1,ans(1:),maxit, &

tol,isolver,icho,ipre,icc,iinc,iters,resi) ; ans(0)=.0 ;

write(11,’(a,i5,a,e12.4)’)" Iterative solver took", iters," iterations &
to converge to ",resi !<-->(18)

loads = loads + ans
write(11,’(a)’) " The nodal displacements and porepressures are :"

do k=1,23,22; write(11,’(i5,a,3e12.4)’)k," ",loads(nf(:,k)) ; end do
!-------------------recover stresses at Gauss-points-------------------

elements_4 : do iel = 1 , nels
num = g_num(: , iel ); coord=transpose(g_coord(:,num))
g = g_g( : , iel ) ; eld = loads( g ( 1 : ndof ) )

! print*,"The Gauss Point effective stresses for element",iel,"are"
gauss_pts_2: do i = 1,nip

call shape_der (der,points,i); jac= matmul(der,coord)
call invert ( jac ); deriv= matmul(jac,der)
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bee= 0.;call beemat(bee,deriv);sigma= matmul(dee,matmul(bee,eld))
! print*,"Point ",i ;! print*,sigma

end do gauss_pts_2
end do elements_4

end do time_steps
end program p92

The numbered arrow shown in the above program p92 can be explained as follows:

real(8): Replace real by real(8) for the main program and all subroutines.

<--(1): Include the module sparse lib into the main program p92.

<--(2): Include the new integer parameters, sn,fn,ebeanz,uanz,isolver,icho,ipre,

icc,iinc,iters,maxit.

<--(3): Include the new integer parameters, coef,omega,resi,tol .

-->(4): Delete the storages, bk(:),store kp(:,:,:),phi0(:),phi1(:) .

<--(5): Include the storages, ebea(:),csca(:),diag(:),diaga(:),diaga1(:) .

<--(6): Include the storages, id(:),iebe(:),jebe(:),icsc(:),jcsc(:).

<--(7): Include the new input parameters, maxit,tol,coef,omega,isolver,icho,

ipre,icc,iinc.

-->(8): Delete the storages, store kp(nodf,nodf,nels),phi0(nodf),phi1(nodf).

<--(9): Call subroutine, snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebeanz), which

is given as

subroutine snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebenz)
! This subroutine computes the displacement DOFs (sn)
! and pore pressure DOFs (fn).
! Then it gives an estimation (ebenz).
implicit none

integer:: i,nf(:,:),nn,nodof,ndim,nels,sn,fn,ntot,ebenz
sn=0 ; fn = 0;
fn = sum(nf(nodof,:)) ;
do i=1,ndim ; sn = sn + sum(nf(i,:)) ; end do
ebeanz = ntot*int(ntot/2)*nels ;
return

end subroutine snfn

<--(10): Include the storage, allocate(id(neq)) , for the identifier array.

<--(11): To form id, call the subroutine, form id(nf,nn,nodof,id) which is given as
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subroutine form_id(nf,nn,nodof,id)
! This subroutine for the identifier array, "id".
! nf(:,:) is the original input node freedom array.
! nn - total node number.
! nodof - number of freedoms per node.
implicit none

integer:: i,nf(:,:),nn,nodof,id(:)
id(:) = 1;
do i = 1,nn ;

if(nf(nodof,i)/=0)id(nf(nodof,i))=0;
end do;
!
return

end subroutine form_id

<-->(12): Delete bk(neq*(nband+1)), and allocating loads(0:neq),ans(0:neq),

iebe(ebeanz),jebe(ebeanz),ebea(ebeanz).

<-- (13): Set ebeanz = 0 .

--> (14): Delete store kp( :, :, iel) = kp .

<-->(15): Replace call formkv(bk,ke,g,neq) by call formspars(ntot,g,ke,iebe,

jebe,ebea,ebeanz).

<-- (16): Give an estimation in terms of uanz = int(neq - nband/2)*nband, which

may be a conservative estimation. Call subroutine sortadd, and then call subrou-

tine formda.

<-->(17): Compute right hand side by ans=.0; call kpu(icsc,jcsc,csca,theta,id,

loads(1:),ans(1:)); ans(0)=.0 in terms of sparse storage instead of the element-

by-element implementation.

<-->(18): Replace the direct solver with sparse preconditioned iterative method by call-

ing subroutine psolver.

C.4.5.3 Output File p92.res

Numerical results for the simple consolidation problem are generated by three different

solution methods: original direct solution method, GJ preconditioned SQMR method

and MSSOR preconditioned SQMR method, respectively. The input has been given in

section C.4.5.1, but for direct solution method, the underline part is not necessary. For

standard Jacobi preconditioned SQMR method, it is to set ‘isolver =1, icho = 1,
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ipre = 1’, while for standard SSOR preconditioned SQMR method, we set isolver =

1, icho = 1, ipre = 2. For GJ preconditioned SQMR method, it is just required to set

‘isolver = 1, icho = 2, ipre = 1’ and for MSSOR preconditioned SQMR method,

it is to set ‘isolver = 1, icho = 2, ipre = 2’. It is noteworthy that for such a small

problem, MSSOR preconditioned SQMR may need more iterations than GJ precon-

ditioned counterpart to converge to a preset tolerance because convergence is checked

every fifth iteration for MSSOR preconditioned SQMR method. But for large problems,

MSSOR is expected to more effective. On the other hand, standard Jacobi and SSOR

preconditioners are still very effective in this example, but their performance can be

seriously influenced when highly varied soil properties are involved.

(a) Output file generated by direct solution method

Global coordinates
Node 1 0.0000E+00 0.0000E+00
Node 2 0.5000E+00 0.0000E+00
Node 3 0.1000E+01 0.0000E+00
Node 4 0.0000E+00 -0.1250E+01
Node 5 0.1000E+01 -0.1250E+01
Node 6 0.0000E+00 -0.2500E+01
Node 7 0.5000E+00 -0.2500E+01
Node 8 0.1000E+01 -0.2500E+01
Node 9 0.0000E+00 -0.3750E+01
Node 10 0.1000E+01 -0.3750E+01
Node 11 0.0000E+00 -0.5000E+01
Node 12 0.5000E+00 -0.5000E+01
Node 13 0.1000E+01 -0.5000E+01
Node 14 0.0000E+00 -0.6250E+01
Node 15 0.1000E+01 -0.6250E+01
Node 16 0.0000E+00 -0.7500E+01
Node 17 0.5000E+00 -0.7500E+01
Node 18 0.1000E+01 -0.7500E+01
Node 19 0.0000E+00 -0.8750E+01
Node 20 0.1000E+01 -0.8750E+01
Node 21 0.0000E+00 -0.1000E+02
Node 22 0.5000E+00 -0.1000E+02
Node 23 0.1000E+01 -0.1000E+02
Global node numbers
Element 1 6 4 1 2 3 5 8 7
Element 2 11 9 6 7 8 10 13 12
Element 3 16 14 11 12 13 15 18 17
Element 4 21 19 16 17 18 20 23 22
There are 32 equations and the half-bandwidth is 13
The time is 0.1000E+01
The nodal displacements and porepressures are :

1 0.0000E+00 -0.1233E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.1000E+00

The time is 0.2000E+01
The nodal displacements and porepressures are :

1 0.0000E+00 -0.2872E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.2000E+00

The time is 0.3000E+01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time is 0.1900E+02
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4277E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8811E+00
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The time is 0.2000E+02
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4424E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8636E+00

(b) Output file generated by SJ preconditioned SQMR method (isolver=1, icho = 1,

ipre = 1, icc = 2)

There are 32 equations and the half-bandwidth is 13
The time is 0.1000E+01

---> SJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
Psolver converges to user-defined tolerance.
SQMR took 18 iterations to converge to 0.1718E-06
The nodal displacements and porepressures are :

1 0.0000E+00 -0.1233E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.1000E+00

The time is 0.2000E+01
---> SJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
Psolver converges to user-defined tolerance.
SQMR took 20 iterations to converge to 0.5179E-07
The nodal displacements and porepressures are :

1 0.0000E+00 -0.2872E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.2000E+00

The time is 0.3000E+01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time is 0.1900E+02
---> SJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
Psolver converges to user-defined tolerance.
SQMR took 24 iterations to converge to 0.4783E-08
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4277E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8811E+00

The time is 0.2000E+02
---> SJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
Psolver converges to user-defined tolerance.
SQMR took 21 iterations to converge to 0.3795E-06
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4424E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8636E+00

(c) Output file generated by SSOR preconditioned SQMR method (isolver=1, icho =

1, ipre = 2, icc = 2, iinc = 5)

There are 32 equations and the half-bandwidth is 13
The time is 0.1000E+01

---> SSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 20 iterations to converge to 0.4189E-08
The nodal displacements and porepressures are :

1 0.0000E+00 -0.1233E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.1000E+00

The time is 0.2000E+01
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---> SSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 20 iterations to converge to 0.1259E-08
The nodal displacements and porepressures are :

1 0.0000E+00 -0.2872E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.2000E+00

The time is 0.3000E+01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time is 0.1900E+02
---> SSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 20 iterations to converge to 0.8254E-09
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4277E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8811E+00

The time is 0.2000E+02
---> SSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 20 iterations to converge to 0.4956E-09
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4424E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8636E+00

(d) Output file generated by GJ preconditioned SQMR method (isolver=1, icho =

2, ipre = 1, icc = 2)

There are 32 equations and the half-bandwidth is 13
The time is 0.1000E+01

---> GJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 18 iterations to converge to 0.2636E-07
The nodal displacements and porepressures are :

1 0.0000E+00 -0.1233E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.1000E+00

The time is 0.2000E+01
---> GJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 19 iterations to converge to 0.9199E-08
The nodal displacements and porepressures are :

1 0.0000E+00 -0.2872E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.2000E+00

The time is 0.3000E+01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time is 0.1900E+02
---> GJ preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 24 iterations to converge to 0.1061E-06
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4277E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8811E+00

The time is 0.2000E+02
---> GJ preconditioned SQMR solver
with relative residual norm criterion!
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**********************************************
SQMR converges to user-defined tolerance.
SQMR took 23 iterations to converge to 0.4996E-06
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4424E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8636E+00

(e) Output file generated by MSSOR preconditioned SQMR method (isolver=1, icho

= 2, ipre = 2, icc = 2, iinc = 5)

There are 32 equations and the half-bandwidth is 13
The time is 0.1000E+01

---> MSSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 25 iterations to converge to 0.3545E-07
The nodal displacements and porepressures are :

1 0.0000E+00 -0.1233E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.1000E+00

The time is 0.2000E+01
---> MSSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 25 iterations to converge to 0.3329E-07
The nodal displacements and porepressures are :

1 0.0000E+00 -0.2872E+00 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.2000E+00

The time is 0.3000E+01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time is 0.1900E+02
---> MSSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 25 iterations to converge to 0.6407E-09
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4277E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8811E+00

The time is 0.2000E+02
---> MSSOR preconditioned SQMR solver
with relative residual norm criterion!

**********************************************
SQMR converges to user-defined tolerance.
SQMR took 25 iterations to converge to 0.4624E-09
The nodal displacements and porepressures are :

1 0.0000E+00 -0.4424E+01 0.0000E+00
23 0.0000E+00 0.0000E+00 -0.8636E+00
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C.4.6 An Improved Version of sparse lib

In Section C.3, the three compressed sparse storage, icsc,jcsc,csca, is required apart

from the temporary storage, iebe,jebe,ebea. In fact, the storage for icsc,jcsc,csca

can be avoided by overwriting the temporary storage iebe,jebe,ebea with assembled

compressed sparse storage. By using this strategy, the memory storage requirement can

be kept almost as same as that required by EBE technique for symmetric linear system.

It can be predicted that by using the same global matrix assembly strategy, for nonsym-

metric linear system but with symmetric nonzero structure, the memory requirement is

about 1.5 times of that required by EBE technique, and for nonsymmetric linear with

nonsymmetric nonzero structure, the memory requirement is about 2.0 times of that

required by EBE technique.

This improvement comes from a minor modification of subroutine sortadd in sparse lib.

This improved subroutine sortadd is given as follows:

subroutine sortadd(uanz,arr,brr,crr,ni,nnz)
! For the same arr index, subsort brr, and at the same time, crr
! changes correspondingly with brr. After this work, adding up all crr
! components with the same (arr, brr) or (brr, arr) index, and the
! zero-value crr entry will be removed. Finally forming the Compressed
! Sparse Row (CSR) format or Compressed Sparse Column (CSC) format
! to overwrite arr,brr,crr.
! uanz: the nonzero number of arr (or brr, crr).
! arr,brr,crr: three vectors required to be sorted.
! ni: = n + 1 (n is dimension of A)
! nnz: the nonzero number of crr.

integer:: i,j,k,k1,k2,m,arr(:),brr(:),uanz,nnz,ni
integer, allocatable:: itep(:)
real(8):: crr(:), aa
allocate (itep(ni))
call quicksort(uanz,arr,brr,crr) ; ! sorting three vectors
k=1; itep(1)=1
do i=2, uanz

if(arr(i)/=arr(i-1)) then
k=k+1 ; itep(k)=i

end if
end do
itep(k+1)=uanz+1

!----------------------------
do i=1, k

k1=itep(i); k2=itep(i+1)-1
j=k2-k1+1
if(j<=16) then ! sub-brr sorting by Insertion sort if j <= 16.
call subbrr2(brr(k1:k2),crr(k1:k2),j)

else ! quick sorting when j is larger (>16).
call quicksort2(j,brr(k1:k2),crr(k1:k2))

end if
end do

!----------------------------
m = 0 ;
do i=1, k

k1=itep(i); k2=itep(i+1)-1 ; m=m+1;
arr(i) = m ; brr(m) = brr(k1) ; aa = .0



Appendix C: Source Codes In Fortran 90 231

do j=k1, k2-1
aa = aa + crr(j) ;

if(brr(j+1)/=brr(j) ) then
if(aa /=.0) then
crr(m) = aa
m=m+1 ;
brr(m)= brr(j+1)
aa = .0

else ! aa is removed when it is zero.
brr(m)= brr(j+1)

end if
end if

end do
crr(m) = aa + crr(k2)
if(crr(m)==.0) m=m-1

end do
arr(k+1)=m+1; nnz=m
!
return

end subroutine sortadd

Replacing the old subroutine with the above new one, the storage requirement for assem-

bled (or compressed) sparse storage is removed, and the final CSC or CSR storage can

overwrite this three vectors (arr, brr and crr). That is to say, before calling subroutine

sortadd, the three vectors denote global row index, global column index and corre-

spondent value, respectively, collected from element matrices. After calling subroutine

sortadd, it is the compressed sparse storage in CSC format or CSR format.

Here, we give the revised flowchart and demonstration example when using the

improved sparse lib.
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The flowchart of calling the improved sparse lib is given as following.

use sparse lib

Input Parameters with suggested
values: maxit = 5000, tol = 10−6,
coef = -4, omega = 1.0, isolver,
icho, ipre, icc = 2, iinc = 5

Compute: neq, sn#, fn#, id(:)# (form id by allocating
id(neq) and calling form id#(nf,nn,nodof,id) )

Compute: ebeanz∗ = ntot*int(ntot/2)*nels
Allocate: iebe(ebeanz∗), jebe(ebeanz∗), ebea(ebeanz∗)

set ebeanz=0
For element loop 2:

For each generated element stiffness matrix, ke, by calling
formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz), we get iebe,
jebe, ebea and ebeanz

End for

Allocate: diag(neq), diaga(neq), diaga1(neq)

Setup sparse global matrix: calling
sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz),
ebea(1:ebeanz),neq+1,uanz) to sort iebea,jebea,ebea and
overwrite them with global sparse stiffness matrix storage, with
returned number of nonzero entries uanz.

Form preconditioner (standard or modified diagonal):
call formda (neq,iebe,jebe(1:neq+1),ebea,icho,
ipre,coef,omega,id,diag,diaga,diaga1) to form
diag,diaga,diaga1

For all time steps or load increments:

call kpu#(iebe,jebe(1:neq+1),ebea,theta,id,
loads(1:),ans(1:)) to form right hand side, and then call
psolver (neq,iebe,jebe(1:neq+1),ebea,diag,diaga,
diaga1,ans(1:),maxit,tol,isolver,icho,ipre,icc,iinc,
iters,resi).

End for
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The demonstration example of using the improved sparse lib is given as following.

program p92
!-----------------------------------------------------------------------
! program 9.2 plane strain consolidation of a Biot elastic !
solid using 8-node solid quadrilateral elements ! coupled to
4-node fluid elements : incremental version ! Linear systems
are solved by sparse iterative methods
!-----------------------------------------------------------------------
use new_library; use geometry_lib; use sparse_lib ; implicit none !<--(1)

integer::nels,nxe,nye,neq,nband,nn,nr,nip,nodof=3,nod=8,nodf=4,nst=3,&
ndim=2,ndof,i,k,l,iel,ns,nstep,ntot,nodofs=2,inc, &

sn,fn,ebeanz,uanz,isolver,icho,ipre,icc,iinc,iters,maxit !<--(2)

real(8):: permx,permy,e,v,det,dtim,theta,time, &

coef,omega,resi,tol !<--(3)

character(len=15):: element = ’quadrilateral’
!----------------------------- dynamic
arrays---------------------------
real(8),allocatable ::dee(:,:), points(:,:), coord(:,:), derivf(:,:),&

jac(:,:),kay(:,:),der(:,:),deriv(:,:),weights(:),&
derf(:,:),funf(:),coordf(:,:), bee(:,:), km(:,:),&
eld(:), sigma(:), kp(:,:), ke(:,:), g_coord(:,:),&
fun(:),c(:,:),width(:), depth(:),vol(:),loads(:),&
ans(:) ,volf(:,:), &

! bk(:),store_kp(:,:,:),phi0(:),phi1(:) !-->(4)

ebea(:),diag(:),diaga(:),diaga1(:) !<--(5)

integer, allocatable :: nf(:,:),g(:),num(:),g_num(:,:), g_g(:,:), &

id(:),iebe(:),jebe(:) !<--(6)

!---------------------------input and
initialisation--------------------
open (10,file=’p92.dat’,status=’old’,action=’read’)
open (11,file=’p92.res’,status=’replace’,action=’write’)
read (10,*) nels,nxe,nye,nn,nip, &

permx, permy, e,v, dtim, nstep, theta , &

maxit,tol,coef,omega,isolver,icho,ipre,icc,iinc !<--(7)

ndof=nod*2; ntot=ndof+nodf
allocate ( dee(nst,nst), points(nip,ndim), coord(nod,ndim), &

derivf(ndim,nodf),jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod), &
deriv(ndim,nod), derf(ndim,nodf),funf(nodf),coordf(nodf,ndim), &
bee(nst,ndof), km(ndof,ndof),eld(ndof),sigma(nst),kp(nodf,nodf), &
g_g(ntot,nels),ke(ntot,ntot),fun(nod),c(ndof,nodf),width(nxe+1), &
depth(nye+1),vol(ndof),nf(nodof,nn), g(ntot), volf(ndof,nodf), &
g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip) )

! store_kp(nodf,nodf,nels),phi0(nodf),phi1(nodf) ) !-->(8)

kay=0.0; kay(1,1)=permx; kay(2,2)=permy
read (10,*)width , depth

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)

call snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebeanz) !<--(9)

call formnf(nf); neq=maxval(nf)

allocate(id(neq)) ; !<--(10)

call form_id(nf,nn,nodof,id) !<--(11)

call deemat(dee,e,v); call sample(element,points,weights)
!--------- loop the elements to find nband and set up global
arrays-----
nband = 0
elements_1: do iel = 1 , nels
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call geometry_8qxv(iel,nxe,width,depth,coord,num)
inc=0
do i=1,8;do k=1,2;inc=inc+1;g(inc)=nf(k,num(i));end do;end do
do i=1,7,2;inc=inc+1;g(inc)=nf(3,num(i)); end do
g_num(:,iel)=num;g_coord(:,num)=transpose(coord);g_g(:,iel)= g
if(nband<bandwidth(g))nband=bandwidth(g)

end do elements_1
write(11,’(a)’) "Global coordinates "
do k=1,nn;write(11,’(a,i5,a,2e12.4)’)"Node",k," ",g_coord(:,k);end do
write(11,’(a)’) "Global node numbers "
do k = 1 , nels; write(11,’(a,i5,a,8i5)’) &

"Element ",k," ",g_num(:,k); end do
write(11,’(2(a,i5))’) &

"There are ",neq, " equations and the half-bandwidth is ",nband

allocate(loads(0:neq),ans(0:neq), iebe(ebeanz),jebe(ebeanz),ebea(ebeanz) )

!<-->(12)
loads = .0 ; ebeanz = 0 ; !<-- (13)

!------------- element stiffness integration and
assembly---------------
elements_2: do iel = 1 , nels

num = g_num( : ,iel ); coord= transpose(g_coord(:,num))
g = g_g ( : , iel ) ; coordf = coord(1 : 7 : 2, : )
km = .0; c = .0; kp = .0

gauss_points_1: do i = 1 , nip
call shape_der(der,points,i); jac = matmul(der,coord)
det = determinant(jac); call invert(jac);deriv = matmul(jac,der)
call beemat(bee,deriv); vol(:)=bee(1,:)+bee(2,:)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)

!-----------------------now the fluid
contribution----------------------

call shape_fun(funf,points,i)
call shape_der(derf,points,i) ; derivf=matmul(jac,derf)

kp=kp+matmul(matmul(transpose(derivf),kay),derivf)*det*weights(i)*dtim
do l=1,nodf; volf(:,l)=vol(:)*funf(l); end do
c= c+volf*det*weights(i)

end do gauss_points_1

! store_kp( : , : , iel) = kp ! -->(14)

call formke(km,kp,c,ke,theta);
!---collect nonzero entries from element stiffness matrices---
call formspars(ntot,g,ke,iebe,jebe,ebea,ebeanz) !<-->(15)

!@@ call formkv(bk,ke,g,neq)
end do elements_2

!------------------------factorise left hand
side-----------------------
allocate( diag(neq), diaga(neq), diaga1(neq) ) ; !<-- (16)

call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz),ebea(1:ebeanz), &

neq+1,uanz) !<-- (17)

!-form standard or modified diagonal for the chosen preconditioner-

call formda(neq,iebe,jebe(1:neq+1),ebea,icho,ipre,coef,omega,id,diag, &

diaga,diaga1) !<-- (18)

! --------- enter the time-stepping
loop--------------------------------

time = .0
time_steps: do ns = 1 , nstep

time = time +dtim ;
write(11,’(a,e12.4)’) "The time is ",time
ans=.0;

call kpu(iebe,jebe(1:neq+1),ebea,theta,id,loads(1:),ans(1:)) ;!<-->(19)
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ans(0)=.0
! ramp loading

if(ns<=10) then
ans(1)=ans(1)-.1/6.; ans(3)=ans(3)-.2/3.
ans(4)=ans(4)-.1/6.

end if
call psolver(neq,iebe,jebe(1:neq+1),ebea,diag,diaga,diaga1,ans(1:) ,&

maxit,tol,isolver,icho,ipre,icc,iinc,iters,resi) ; !<-->(20)

ans(0)=.0 ;
write(11,’(a,i5,a,e12.4)’)" SQMR took", iters," iterations to &

converge to ",resi
loads = loads + ans
write(11,’(a)’) " The nodal displacements and porepressures are :"

do k=1,23,22; write(11,’(i5,a,3e12.4)’)k," ",loads(nf(:,k)) ; end do
!-------------------recover stresses at
Gauss-points-------------------

elements_4 : do iel = 1 , nels
num = g_num(: , iel ); coord=transpose(g_coord(:,num))
g = g_g( : , iel ) ; eld = loads( g ( 1 : ndof ) )

! print*,"The Gauss Point effective stresses for
element",iel,"are"

gauss_pts_2: do i = 1,nip
call shape_der (der,points,i); jac= matmul(der,coord)
call invert ( jac ); deriv= matmul(jac,der)
bee= 0.;call beemat(bee,deriv);sigma= matmul(dee,matmul(bee,eld))

! print*,"Point ",i ;! print*,sigma
end do gauss_pts_2

end do elements_4
end do time_steps
end program p92

Aside from replacing real by real(8) for the main program and all subroutines.

The numbered arrow shown in the above program p92 can be explained as follows:

<--(1): Include the module sparse lib into the main program p92.

<--(2): Include the new integer parameters, sn,fn,ebeanz,uanz,isolver,icho,ipre,

icc,iinc,iters,maxit.

<--(3): Include the new integer parameters, coef,omega,resi,tol .

-->(4): Delete the storages, bk(:),store kp(:,:,:),phi0(:),phi1(:) .

<--(5): Include the storages, ebea(:),diag(:),diaga(:),diaga1(:).

<--(6): Include the storages, id(:),iebe(:),jebe(:).

<--(7): Include the new input parameters, maxit,tol,coef,omega,isolver,icho,

ipre,icc,iinc.

-->(8): Delete the storages, store kp(nodf,nodf,nels),phi0(nodf),phi1(nodf).
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<--(9): Call subroutine, snfn(nf,nn,nodof,ndim,nels,ntot,sn,fn,ebeanz).

<--(10): Include the storage, allocate(id(neq)) , for the identifier array.

<--(11): To form id, call the subroutine, call form id(nf,nn,nodof,id).

<-->(12): Delete bk(neq*(nband+1)), and allocating loads(0:neq),ans(0:neq),

iebe(ebeanz),jebe(ebeanz),ebea(ebeanz).

<-- (13): Set ebeanz = 0 .

--> (14): Delete store kp( :, :, iel) = kp .

<-->(15): Replace call formkv(bk,ke,g,neq) by call formspars(ntot,g,ke,iebe,

jebe,ebea,ebeanz).

<-- (16): Allocate storage allocate( diag(neq), diaga(neq), diaga1(neq) ).

<-- (17): By using the collected nonzero entries in element stiffness matrices, then call

sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz),ebea(1:ebeanz),neq+1,uanz

to sort the three vectors, iebe(1:ebeanz),jebe(1:ebeanz),ebea(1:ebeanz), and

form the compressed sparse data which is still stored in this three vectors. It should

be noticed that whether the final compressed sparse storage is CSC or CSR depends

on the relative positions between jebe(1:ebeanz) and iebe(1:ebeanz). When

iebe(1:ebeanz) is located behind jebe(1:ebeanz), it is CSC storage, otherwise,

it is CSR storage.

<-- (18): call formda(neq,iebe,jebe(1:neq+1),ebea,icho,ipre,coef,omega,id,

diag,diaga,diaga1) to form the standard or modified diagonal for Jacobi or SSOR

preconditioner. It should be noticed that the data in the range 1:neq+1 in jebe

should be called because it is CSC storage as shown in item <-- (17).

<-->(19): Compute right hand side by call kpu(iebe,jebe(1:neq+1),ebea,theta,

id,loads(1:),ans(1:)) in terms of sparse storage instead of the element-by-

element implementation.

<-->(20): Replace the direct solver with sparse preconditioned iterative method by call-

ing subroutine psolver.


