18 research outputs found

    Bearing incipient fault diagnosis based upon maximal spectral kurtosis TQWT and group sparsity total variation denoising approach

    Get PDF
    Localized faults in rolling bearing tend to result in periodic shocks and thus arouse periodic responses in the vibration signal. In this paper, a novel fault diagnosis method based on maximal spectral kurtosis tunable Q-factor wavelet transformation (TQWT) and group sparsity total variation denoising (GS-TVD) is proposed to address the issue of bearing incipient failure. Firstly, the range of Q-factor was pre-selected according to the spectral distribution of impulse component, and bearing vibration signal was transformed by the TQWT method. Then, the spectral kurtosis of each scale transform coefficients was calculated, and the optimal Q-factor and decomposition scale can be selected according to the kurtosis maximum principle. In order to remove the interference components and high-frequency noise from the reconstructed vibration signal generated by inverse TQWT, the GS-TVD approach is employed, thus the cyclic periodicity characteristic and transient impulses can be detected obviously. The two cases experimental results indicate that the proposed technique is more effective and applicable for bearing incipient fault diagnosis compared with traditional method

    Early fault detection model for rolling bearing based on an iterative tunable Q-factor wavelet transform

    Get PDF
    To reduce the adverse effect of incorrect parameters for the traditional iterative tunable Q-factor wavelet transform, this paper proposes an iterative tunable Q-factor wavelet transform method for fault feature extraction. Firstly, before decomposing the bearing vibration signal by an iterative tunable Q-factor wavelet transform, the initial values of 3 basic factors should be set: the quality factor Q, redundancy r and the number of decomposition level J. Secondly, the kurtosis of a high resonance component, which is the result of an iterative tunable Q-factor wavelet transform, is calculated through multistep iteration until it meets the iteration stop condition. Finally, the envelope spectrum of the final low resonance component is calculated, and the type of bearing fault can be recognized according to the frequency of extreme points. The results show that this method can effectively suppress noise and in-band interference and avoid fault identification inaccuracies caused by improper parameters and can also identify the fault feature frequency more clearly

    Fault Diagnosis of Gearbox based on ITD-Tunable Q-Factor Wavelet Transform

    Get PDF
    Gearboxes are an important part of the mechanical drives element that provides the several applications like automotive industry, wind turbine industry and power plant industry, etc. The condition monitoring of the gearbox reduces its operational cost, maintenance cost and avoid hazardous losses. The features selected forthe health status of the gearbox has important parameter to calculate classification accuracy. In the current study the intrinsic time-scale decomposition (ITD) and tunable Q-factor wavelet transform (TQWT) are used to diagnose the faults in the gear. The ITD method decomposed the input signal into the baseline signal with instantaneous parameters of signal and sequence of the proper rotation components (PRCs). The PRC of higher kurtosis value is the input signal for TQWT. The TQWT is a discrete wavelet transform and decomposed the vibration signals of the gearbox into sub-bands. The feature vector is calculated for each sub-band of the TQWT. The proposed approach is analyzed by the classification accuracy of the feature vector. The recommended method is evaluated using experimental data of 2009 PHM Data of gearbox under various health conditions. The SVM and KNN methods are investigated that the improved classification accuracy with ITD-TQWT model are 97.9% and 96.9% respectively

    Fault Diagnosis of Gearbox based on ITD-Tunable Q-Factor Wavelet Transform

    Get PDF
    223-228Gearboxes are an important part of the mechanical drives element that provides the several applications like automotive industry, wind turbine industry and power plant industry, etc. The condition monitoring of the gearbox reduces its operational cost, maintenance cost and avoid hazardous losses. The features selected for the health status of the gearbox has important parameter to calculate classification accuracy. In the current study the intrinsic time-scale decomposition (ITD) and tunable Q-factor wavelet transform (TQWT) are used to diagnose the faults in the gear. The ITD method decomposed the input signal into the baseline signal with instantaneous parameters of signal and sequence of the proper rotation components (PRCs). The PRC of higher kurtosis value is the input signal for TQWT. The TQWT is a discrete wavelet transform and decomposed the vibration signals of the gearbox into sub-bands. The feature vector is calculated for each sub-band of the TQWT. The proposed approach is analyzed by the classification accuracy of the feature vector. The recommended method is evaluated using experimental data of 2009 PHM Data of gearbox under various health conditions. The SVM and KNN methods are investigated that the improved classification accuracy with ITD-TQWT model are 97.9% and 96.9% respectively

    Development of electroencephalogram (EEG) signals classification techniques

    Get PDF
    Electroencephalography (EEG) is one of the most important signals recorded from humans. It can assist scientists and experts to understand the most complex part of the human body, the brain. Thus, analysing EEG signals is the most preponderant process to the problem of extracting significant information from brain dynamics. It plays a prominent role in brain studies. The EEG data are very important for diagnosing a variety of brain disorders, such as epilepsy, sleep problems, and also assisting disability patients to interact with their environment through brain computer interface (BCI). However, the EEG signals contain a huge amount of information about the brain’s activities. But the analysis and classification of these kinds of signals is still restricted. In addition, the manual examination of these signals for diagnosing related diseases is time consuming and sometimes does not work accurately. Several studies have attempted to develop different analysis and classification techniques to categorise the EEG recordings. The analysis of EEG recordings can lead to a better understanding of the cognitive process. It is used to extract the important features and reduce the dimensions of EEG data. In the classification process, machine learning algorithms are used to detect the particular class of EEG signal based on its extracted features. The performance of these algorithms, in which the class membership of the input signal is determined, can then be used to infer what event in the real-world process occurred to produce the input signal. The classification procedure has the potential to assist experts to diagnose the related brain disorders. To evaluate and diagnose neurological disorders properly, it is necessary to develop new automatic classification techniques. These techniques will help to classify different EEG signals and determine whether a person is in a good health or not. This project aims to develop new techniques to enhance the analysis and classification of different categories of EEG data. A simple random sampling (SRS) and sequential feature selection (SFS) method was developed and named the SRS_SFS method. In this method, firstly, a SRS technique was used to extract statistical features from the original EEG data in time domain. The extracted features were used as the input to a SFS algorithm for key features selection. A least square support vector machine (LS_SVM) method was then applied for EEG signals classification to evaluate the performance of the proposed approach. Secondly, a novel approach that combines optimum allocation (OA) and spectral density estimation methods was proposed to analyse EEG signals and classify an epileptic seizure. In this study, the OA technique was introduced in two levels to determine representative sample points from the EEG recordings. To reduce the dimensions of sample points and extract representative features from each OA sample segment, two power spectral density estimation methods, periodogram and autoregressive, were used. At the end, three popular machine learning methods (support vector machine (SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN)) were employed to evaluate the performance of the suggested algorithm. Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was developed for epileptic EEG feature extraction. The extracted features were forwarded to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the proposed feature extraction technique. The proposed TQWT method was tested on two different EEG databases. Finally, a new classification system was presented for epileptic seizures detection in EEGs blending frequency domain with information gain (InfoGain) technique. Fast Fourier transform (FFT) or discrete wavelet transform (DWT) were applied individually to analyse EEG recording signals into frequency bands for feature extraction. To select the most important feature, the infoGain technique was employed. A LS_SVM classifier was used to evaluate the performance of this system. The research indicates that the proposed techniques are very practical and effective for classifying epileptic EEG disorders and can assist to present the most important clinical information about patients with brain disorders

    Advances in power quality analysis techniques for electrical machines and drives: a review

    Get PDF
    The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version

    Design and Analysis of A New Illumination Invariant Human Face Recognition System

    Get PDF
    In this dissertation we propose the design and analysis of a new illumination invariant face recognition system. We show that the multiscale analysis of facial structure and features of face images leads to superior recognition rates for images under varying illumination. We assume that an image I ( x,y ) is a black box consisting of a combination of illumination and reflectance. A new approximation is proposed to enhance the illumination removal phase. As illumination resides in the low-frequency part of images, a high-performance multiresolution transformation is employed to accurately separate the frequency contents of input images. The procedure is followed by a fine-tuning process. After extracting a mask, feature vector is formed and the principal component analysis (PCA) is used for dimensionality reduction which is then proceeded by the extreme learning machine (ELM) as a classifier. We then analyze the effect of the frequency selectivity of subbands of the transformation on the performance of the proposed face recognition system. In fact, we first propose a method to tune the characteristics of a multiresolution transformation, and then analyze how these specifications may affect the recognition rate. In addition, we show that the proposed face recognition system can be further improved in terms of the computational time and accuracy. The motivation for this progress is related to the fact that although illumination mostly lies in the low-frequency part of images, these low-frequency components may have low- or high-resonance nature. Therefore, for the first time, we introduce the resonance based analysis of face images rather than the traditional frequency domain approaches. We found that energy selectivity of the subbands of the resonance based decomposition can lead to superior results with less computational complexity. The method is free of any prior information about the face shape. It is systematic and can be applied separately on each image. Several experiments are performed employing the well known databases such as the Yale B, Extended-Yale B, CMU-PIE, FERET, AT&T, and LFW. Illustrative examples are given and the results confirm the effectiveness of the method compared to the current results in the literature

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications
    corecore