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Gearboxes are an important part of the mechanical drives element that provides the several applications like automotive 

industry, wind turbine industry and power plant industry, etc. The condition monitoring of the gearbox reduces its 

operational cost, maintenance cost and avoid hazardous losses. The features selected forthe health status of the gearbox has 

important parameter to calculate classification accuracy. In the current study the intrinsic time-scale decomposition (ITD) 

and tunable Q-factor wavelet transform (TQWT) are used to diagnose the faults in the gear. The ITD method decomposed 

the input signal into the baseline signal with instantaneous parameters of signal and sequence of the proper rotation 

components (PRCs). The PRC of higher kurtosis value is the input signal for TQWT. The TQWT is a discrete wavelet 

transform and decomposed the vibration signals of the gearbox into sub-bands. The feature vector is calculated for each sub-

band of the TQWT. The proposed approach is analyzed by the classification accuracy of the feature vector. The 

recommended method is evaluated using experimental data of 2009 PHM Data of gearbox under various health conditions. 

The SVM and KNN methods are investigated that the improved classification accuracy with ITD-TQWT model are 97.9% 

and 96.9% respectively.  
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1 Introduction 

Gearbox is the most critical elements in machinery 

components which are used to adjust speed or torque 

as per the requirement of several industries such as 

automobile and power plant. As the versatile many 

applications of gearbox, its fault detection and 

diagnosis is very important arena to detect the fault 

and its severity.  

Tong et al.
1 advised that gear meshing frequency 

contains much information regarding the health state 

of gear. They use multi-input single-output (MISO) 

model to recognize the resonance agitated by impact 

and verified experimentally by taking forklift. Hu et 

al.
2
uses extreme learning machine for fault diagnosis 

of gearbox. The vibration signals of gearbox are 

decomposed by wavelet packet. The gearbox with 

different faults under variation of speed is analyzed 

by Sharma et al.
3
. The vibration signals are 

decomposed by vibrational mode decomposition 

(VMD). Li et al.
4
 introduced optimized rational 

Hermite interpolation method to diagnosis of gear 

faults. Qin et al.
5
 presented the wavelet transform for 

planetary gearbox which is M-band flexible 

transformation. The proposed methodology is verified 

by experimental also. The fault related mode 

extraction by empirical wavelet transform is 

established by Kong et al.
6
. The featuresvectors for 

several types of faults are calculated from envelope 

spectrums of the extracted modes. The proposed 

methodology is verified by experimental and 

simulation results. The intrinsic time scale 

decomposition (ITD) is the well-known technique to 

decomposed the vibration signals into proper 

rotational components (PRCs) with capability to 

overcome mode mixing and contain time-based 

information
7
. Hu et al.

8
 investigatedan ensemble 

intrinsic time-scale decomposition (EITD) and 

fractal dimension to predict the fault type of 

gearbox. It is concluded that the proposed 

technique has a good noise cancellation capability 

and capable to extract operative features. The 

tunable Q-factor wavelet transforms are used by 

Upadhyay et al.
9
 for fault diagnosis of ball bearings. 

The decomposition of vibration signal of bearing 

by TQWT shows good classification results by SVM 

with fractal features. He et al.
10

 used TQWT with 

double Q-factor for the faults detection in the 

gearbox. The useful components of the noisy 

vibration signal of the gearbox are estimated by 

sparse optimization. The proposed methodologyis 
—————— 
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able to take out periodical transient component  

with high-resonance from signals of the gearbox. 

Teng et al.
11

 uses the integrated concept of the effects 

of the TQWT and non-convex penalty with noise 

optimization for the correctly break down the raw 

vibration signal of the planetary gearbox into 

resonance components and noises. The resonance 

components of the vibration signals are capable to 

recognize the possible faults in the gearbox by using 

multi-stage envelope spectrogram. The usefulness of 

the projected methodology is confirmed by the 

simulated defective signal and experimental work 

with wind turbine.  

In the present paper, ITD-TQWT technique is 

investigated to accurately predict the defects in the 

gearbox. The vibration signals produced by gearbox 

are decomposed by ITD into different PRCs.  

The PRC which has highest kurtosis value is the  

input signal for the TQWT. The constraints of the 

TQWT are the Q-factor, oversampling rate and 

decomposition level and represented by Q, r and J 

respectively. The constraints of the TQWT are 

selected by genetic algorithm to minimize absolute 

reconstruction error. The vibration signal of the 

gearbox which is obtained after ITD decomposes  

into several sub-bands by TQWT. Higuchi and  

Katz fractal dimension are calculated for all  

sub-band of TQWT. Besides of this, statistical 

features: mean, standard deviation, kurtosis and 

skewness of these sub-bands are also calculated.  

The feature vector is formed by the extracted  

features, which is used for the classification model of 

the machine learning methodology. 
 

2 Methodology 

Gearbox failure leads to breakdown of machines. 

The detailed understanding of the failure of gearbox 

required to mitigate downtime of machines in 

industries. For diagnosis of failure of gearboxes, the 

vibration signature analysis is most widely used 

technique. For vibration signature analysis of 

gearbox, firstly vibration signals of gearbox are 

extracted with the help of specified accelerometer. 

Secondly, specific features (mean, standard deviation, 

kurtosis, skewness, etc.) are obtained through these 

vibration signals. Based upon the selected features, a 

machine learning technique is investigated to 

categorize the types of faults. There are several 

machine learning technique
9
 available in 

literature.The vibration signals obtained by gearbox 

are non-stationary, complicated and includes noise. 

This makes the thought-provoking of fault detection 

in gearbox. The main objectives of these techniques 

are to minimize cost and time for maintenance of 

gearbox and avoid breakdown. 

The methodology adopted in this research is shown 

in Fig. 1. 
 

2.1 Intrinsic time-scale decomposition 

ITD is a methodology which is used for  

effective and accurate time frequency energy 

investigation of the rotational vibration signals.  

It is capable to deal with the non-static and  

irregular distinctive nature of the vibration signal  

of the gearbox. ITD decomposed the signal into 

PRCs and the result preserve the temporal 

information of the signal. The PRC contain 

information about frequency and predominant 

energy which is used to diagnose fault feature of  

the gearbox. The vibration signal of the gearbox  

‗xg‘ with operator ‗l‘, take out a baseline signal  

from xg such that the residual to be a proper rotation. 

 
 

Fig. 1 — Scheme of the proposed methodology 
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ggg
xllxx )1(    … (1) 

where lxgbaseline is signal and (1-l)xgis the proper 

rotation. 
 

2.2 Tunable Q-factor wavelet transform 

TQWT is a kind of wavelet convert of vibration 

signals in which Q-factor is tunable. These vibration 

signals are discrete time signals of gearbox which is 

obtained by accelerometer. It is supposed that the 

vibration signal can be disintegrated into n different 

components. 

 
n
i i

xx 1   … (2) 

Here vibration signals ‗x‘ can be decomposed  

into ‗n‘ numbers of sub-bands with different 

oscillation distinctive. The input signal ‗xi‘ at each 

decomposition level, have sampling frequency fs is 

decomposed into sub-bands that are low-pass  

sub-bands and high-pass sub-bands. The key 

constraints of TQWT are Q-factor, oversampling  

rate and number of levels which are denoted by  

Q, r and J respectively. The selections of these 

constraints are such that the maximum absolute 

difference between wavelet transforms and its  

inverse transforms is minimized. The Q-factor  

of the TQWT, measure the number of fluctuations 

that the wavelet reveals. The frequency resolution  

of higher Q-factor is improve compared to lower  

Q-factor. 

The low-pass scaling factor ( ) and high-pass 

scaling factor )(  are calculated by oversampling 

rate and Q-factor as
12

: 

 Q 12   … (3) 

)(1 r    … (4) 

The oversampling rate decides the interpretation  

of the measurement of overlap of spectral occurs 

among nearby band-pass filters. It is known that 

oversampling rate is directly proportional to the 

overlap in band-pass filter. That means the value of 

the oversampling rate ―r‖ increases with the 

increments in overlap in the spectral plot of the band-

pass filters. The constraint ‗J‘ is the measure of the 

quantity of the filter bank. The decomposition of the 

‗J‘ stage filter bank creates (J+1) sub-bands. The 

maximum number of the filter bank is restricted by 

the size of the input signal ‗N‘ and scaling parameters 

of the filters (  and ): 

 
 


1log

8log
max

N
J    … (5) 

 

2.3 Classification model based on machine learning 

Several classification models which are based on 

machine learning, able to classify the vibration data 

based upon the selected features. Some example of 

machine learning models are support vector machine 

(SVM), artificial neural network (ANN), decision 

tree (DT), and k-nearest neighbor (KNN), etc. These 

models are based on the algorithm and adapted 

features from input data.  

SVMs are influential and flexible algorithms  

for classification problems. It is based on the 

methodology that, to split the dataset into classes 

such that a maximum marginal hyper plane can be 

obtained. The hyper plane is created among the 

categories of the dataset and the data points 

adjoining to the plane are recognized as support 

vector. 

KNN algorithm is the non-parametric algorithm 

based on features relationship approach. In this 

approach, all training data are used for testing  

phase. In KNN, K is the numeral of adjoining 

neighbors. The advantage of using KNN that, it 

performance is better with smaller number of 

features. 
 

3 Experiments 

The representational diagram of the gearbox is 

exposed in Fig. 2. The vibration signals are  

extracted with the help of accelerometers. The details 

of vibration signals are taken from 2009 PHM 

Gearbox Data
13

. The data acquisition system is 

Endevco, whose sensitivity is 10mv/g and the 

sampling rate is 66,666.67 Hz.The measured signal  

 
 

Fig. 2 — Test rig of gearbox 
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of gearbox contains of two accelerometer signal  

and one tachometer signal. The vibration signals of 

the gearbox have eight different labels, in which  

one is a healthy state of gearbox and remaining  

seven are different fault condition of the gearbox  

as shown in Table 1. The numbers of tooth on 

different four gears are 32, 96, 48 and 80 respectively. 

The five different speeds of input shaft are 30, 35,  

40, 45 and 50 Hz with four different types of  

loading. Henceforth, total 160 samples are obtained 

consisting different health state of the gearbox with 

this experiment. 
 

4 Feature Extraction  
 

4.1 Fractal dimension features 
 

Higuchi’s fractal dimension(HFD)  

Higuchi‘s fractal dimension is a qualitative measure 

of dynamics of vibration signals. The signal is 

considered as geometric entity
12

. Consider the vibration 

signal of gearbox is )}(),.......3(),2(),1({ Nyyyy , where 

‗N‘ is the number of the sample points in the signal. 

From the available signal of gearbox, a new signal of 

sample ‗k‘ such that 

)}(),........2(),(),({ Mkmykmykmymyy
k

m
 and

kmNM )(   where km ,.......,3,2,1 . 

The average length 
k

m
L  is 

kM
j MkNkjmyjkmy

k
mL    1 ))1())1(()((   … (6) 

Next, the average length of the curve is calculated.  
 

Katz’s fractal dimension (KFD) 

Katz‘s fractal dimension of the sample is calculated 

as 
13

, 

)/log(

)/log(

AD

AS
FD    … (7) 

where, S and A are summed and mean of the 

Euclidean distance concerning the consecutive  

points. The distance between first point and target 

point is D. 
 

4.2 Statistical features 

Statistical features
13

 like mean, standard deviation, 

kurtosis and skewness are calculated by the equations 

8-11. Considered the vibration signals of gearbox are

}.,..........3,2,1{ Nyyyy , N is the number of discrete 

signal points and y  is the mean of the signal. 

 
N

Y
YMean

N
j j




1
  … (8) 

 
 

1

1

2



 




N

YjY
DeviationSandard

N
j

   … (9) 

4

1








 












N
j

j

N

YY

Kurtosis   … (10) 

 
N

YY
Skewness

N
j j

3

1 



  … (11) 

 

5 Result and Discussion 

In the present paper, PHM 2009 data sets  

for gearbox are used. The data set of gearbox has 

eight different labels, in which ‗1‘ represent healthy 

condition and remaining numbers shows different 

faults in the gearbox. There are five different  

speeds of input shaft and four types of loading,  

thus total twenty vibration sample for each case or 

label of gearbox are obtained. The data set for  

this experiment comprises 160 samples, including 

different labels of the gearbox. For each types  

of label vibration signal, two fractal features and  

four statistical features are calculated. Based upon 

these calculated features the model is trained. The 

classification accuracies are 86.9 % and 84.4 % by  

the model KNN and SVM respectively. For further 

improvements of the model performance, the raw 

vibration data obtained from the gearbox are 

decomposed by ITD and the series of PRCs 

calculated. The PRC whose kurtosis value is  

largest among other PRCs for each label of vibration 

signal is selected for further analysis purpose.  

The selected PRC is decomposed by TQWT as shown 

in Fig. 3 for all types of label vibration signal and 

sub-bands of vibration signals are obtained. For each 

sub-bands, features are calculated. The constraints  

Table 1 — Details of labels of gear 

Gear type Labels Conditions 

Spur 

1 Healthy 

2 Tooth chipped and gear eccentric 

3 Gear eccentric 

4 Gear eccentric and broken tooth 

5 
Tooth chipped and gear 

Eccentric and bearing fault 

6 Broken tooth and bearing faults 

7 Bearing faults 

8 Bearing faults and shaft imbalance 
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of the TQWT are selected based on genetic algorithm. 

The dataset has now increased by 480 samples.  

The constraints ‗Q‘, ‗r‘ and ‗J‘ are chosen such  

that it minimizes the maximum absolute difference 

between the original vibration signal and inverse 

TQWT of sub-bands of high entropy. The 

classification accuracy after decomposition by  

ITD-TQWT is 97.7 % and 96.9 % by SVM and  

KNN respectively. The  effectiveness  of  ITD-TQWT 

is clearly analyzed and shown in Table 2. The 

confusion matrix is shown in Fig. 4. 

 

 
 
Fig. 3 — TQWT based decomposition of vibration signal of the gearbox (a) Label-1 (b) Label-2 (c) Label-3 (d) Label-4 (e) Label-5 (f) 

Label-6 (g) Label-7 (h) Label-8 

 
Table 2 — Classification accuracy of different models 

Methods SVM KNN 

Features with ITD-TQWT 97.7 % 96.9 % 

Features without ITD-TQWT 84.4% 86.9 % 
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Fig. 4 — Confusion matrix (a) Features with ITD-TQWT  
(b) Features without ITD-TQWT 
 

6 Conclusion 
The following conclusions are obtained in the 

present paper, 
 The classification accuracy of the gearbox is 

improved with the decomposition of vibration 
signals by ITD- TQWT. 

 The signal decomposed by ITD contains temporal 
information of the signal. 

 The TQWT is suitable for efficient diagnosis of 
gear’s defects with small number of features. 

 The proposed methodology eliminates the 
requirement of the feature selection technique. 

 The SVM and KNN models are included the 
signal decomposition by ITD – TQWT technique 

to investigate the classification accuracy of  
the present gearbox is 97.7% and 96.9 % 
respectively.  

 The SVM and KNN methods showed the 
classification accuracy for the without 
decomposition signal are 84.4% to 86.9% 
respectively.  
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