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Abstract

In this dissertation we propose the design and analysis of a new illumination invariant

face recognition system. We show that the multiscale analysis of facial structure and

features of face images leads to superior recognition rates for images under varying

illumination. We assume that an image I(x, y) is a black box consisting of a combi-

nation of illumination and reflectance. A new approximation is proposed to enhance

the illumination removal phase. As illumination resides in the low-frequency part

of images, a high-performance multiresolution transformation is employed to accu-

rately separate the frequency contents of input images. The procedure is followed

by a fine-tuning process. After extracting a mask, feature vector is formed and the

principal component analysis (PCA) is used for dimensionality reduction which is

then proceeded by the extreme learning machine (ELM) as a classifier. We then

analyze the effect of the frequency selectivity of subbands of the transformation on

the performance of the proposed face recognition system. In fact, we first propose

a method to tune the characteristics of a multiresolution transformation, and then

analyze how these specifications may affect the recognition rate. In addition, we show

that the proposed face recognition system can be further improved in terms of the

computational time and accuracy. The motivation for this progress is related to the

fact that although illumination mostly lies in the low-frequency part of images, these

low-frequency components may have low- or high-resonance nature. Therefore, for

the first time, we introduce the resonance based analysis of face images rather than

the traditional frequency domain approaches. We found that energy selectivity of the

v



subbands of the resonance based decomposition can lead to superior results with less

computational complexity. The method is free of any prior information about the

face shape. It is systematic and can be applied separately on each image. Several

experiments are performed employing the well known databases such as the Yale B,

Extended-Yale B, CMU-PIE, FERET, AT&T, and LFW. Illustrative examples are

given and the results confirm the effectiveness of the method compared to the current

results in the literature.
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Chapter 1

Introduction

1.1 Face Recognition

In computer vision and pattern recognition the term biometrics is specifically used

to deal with human identification and recognition based on human characteristics

including but not limited to facial information, fingerprint, iris and retina scanning

techniques, voice, ear, signature, or DNA information.

It is evident that in the past two decades or so, face recognition has become one of

the important and popular tools in biometrics due to relatively lower computational

cost and reliability of the application in real life. For instance, although DNA-based

recognition excels in terms of accuracy, it is still an expensive technology for daily

usage. Perhaps fingerprint recognition and identification is the most frequently used

biometrics in a wide range of applications from public security systems to personal

items such as laptops and touch screen games. However, fingerprint analysis needs

a physical contact to take a sample from the subject. Keeping these points in mind,

face recognition is neither that expensive as the DNA-based approaches nor in charge

of a mandatory contact with the subjects to be recognized. Therefore, in the last few

years, face recognition techniques have been developed rapidly not only in general

aspects of recognition purposes, but also narrowed down to specific categories such
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as pose invariant, illumination invariant, and occlusion invariant, few to mention.

In order to reach higher accuracy in uncontrolled environment, these performance

degrading factors need to be well investigated and developed.

1.2 Performance Degrading Factors

In general, performance of a face recognition system is directly related to the en-

vironmental conditions and to the quality of features. By the term environmental

conditions, it is mostly refereed to the controlled and uncontrolled conditions under

which an image is taken. Nowadays the regular face recognition under controlled en-

vironment is a straightforward task and several outstanding techniques are available

both in the literature and in basic practical and educational applications. However,

in reality and in order to deal with real life situations and applications one needs

to come up with several performance degrading factors caused by the uncontrolled

environmental and photographic conditions. The main influencing factors that can

affect the recognition accuracy and computational complexity of any face recognition

system are namely the pose, illumination, occlusion, and blur. While each of these

factors has their own nature to degrade the quality of the system, performance of

a face recognition technique is significantly changed under various illumination and

pose. Fig. 1.1 visually presents the difference between the factors. In this figure,

the first picture in (a) shows a sample image without a notable illumination, pose,

blur or occlusion effects. Other images (b)–(e), however, show the sample image with

illumination effects, pose variation, blur and occlusion from left to right, respectively.

Although by looking at figures one may simply recognize the subject in (b)–(e) if

compared to (a), this is not an easy task for an artificial intelligence system to show

the same performance.

Generally the two factors, illumination and pose, are widely known as the most

influencing factors in deteriorating the quality of features. Illumination is in fact
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(a) (b) (c) (d) (e)

Figure 1.1 – Performance degrading factors. (a) A sample image with no variation
in pose, illumination, blur, and occlusion; The same subject in (a) under: (b) high
illumination effects; (c) pose variation; (d) blur; (e) occlusion.

seduces the feature extraction algorithms due to the redundant shapes and shadows

generated by knobs and ditches of a typical face under various illuminations. Fur-

thermore, partially too bright and dark images require a preprocessing step even if

the lighting angle is not too wide. Similarly, any remarkable variation in pose and

position of head can significantly change the recognition rates. Ideally, a frontal view

with no up-down or left-right position is considered as the most convenient pose to

correctly recognize a face image. However, in real applications, face images contain

notable changes to sides in several directions. It can considerably reduce the num-

ber of informative and useful feature pixels and eventually leads to lower recognition

results. In most cases a 3D face image reconstruction step may be required to map

the shape to a fixed surface to obtain a normalized applicable face image. Face im-

age normalization is in fact a process to geometrically and photometrically normalize

an image. The geometrical normalization contains techniques such as face cropping

and eye-alignment that can provide focused information about important and desired

features in a fixed position for all images in a database. Likewise, the photometric

normalization mostly deals with the illumination and consists of several techniques

to initially enhance and improve the lighting condition effects. In addition to illumi-

nation and pose, as it can be seen in Fig. 1.1 (d) and (e), blur and occlusion are two

other performance affecting factors need to be taken into consideration. There are

plenty of blur invariant and occlusion invariant methods developed for face recogni-

tion purposes. For instance, in [66] the authors proposed a weighted voting scheme
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Figure 1.2 – Block diagram and structure of a typical face recognition system.

that takes an image apart into small blocks first. Based on the amount of occlusion

on each block a weighted voting procedure is applied to blocks to reduce the effect

of unwanted occlusion. Although image deblurring is relatively an old problem in

image processing, it has been quite attractive subject for researchers in face recog-

nition, medical imaging, and space image quality enhancement. For the problem of

blur invariant face recognition, deblurring techniques or blur invariant feature extrac-

tion algorithm are employed. A traditional approach to deblur an image is to find

a mathematical model to describe how the image was blurred. Otherwise, one may

need to estimate the blur for which stochastic and optimization methods are on the

table. While there is no way to get rid of unwanted influencing factors, it is possible

to improve the efficiency of face recognition methods via the feature extraction phase

and classification step. As it is seen in Fig. 1.2, a face recognition system consists

of several sections for which the system works properly if all the involved sections

maintain a satisfactory performance. Feature extraction and classification techniques

are briefly discussed in the following subsections.

1.3 Feature Extraction

The Merriam-Webster Learner’s Dictionary defines the word extraction as “The act

or process of getting something by pulling it out, forcing it out, etc”. The same

dictionary describes the word feature as “An interesting or important part, quality,

ability, etc. A part of the face such as the eyes, nose, or mouth”. Perhaps the term

feature extraction should refer to pulling out the eyes, nose, or mouth from a face
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image. Although it might be a sufficient definition at first glance, the key point

here is how to pull out the desired parts from an image correctly. On the other

hand, selecting and extracting proper features from a given image is considered as an

important part of any recognition technique. Technically speaking, a set of variables

that contain discriminating and characterizing information about a face image are

defined as features. Consequently, a selection from such features to construct an array

is called a feature vector. Feature extraction is indeed a mathematical transformation

applied on the data to generate the feature vector. Plenty of techniques can be found

in the literature and text books. The most widely used transformations are briefly

discussed as follows. It should be noted that the linear transformations are frequently

used in different applications due to lower computational complexity and adequate

performance.

1.3.1 Principal Component Analysis

Principal component analysis (PCA) is one of the oldest methods and at the same

time is the most commonly used dimensionality reduction and feature extraction

algorithm in the literature. The main idea behind the PCA is to map the data from a

higher to a lower dimensional space such that the key information is preserved. PCA

takes advantage of a linear transformation to keep the data with significant variance

using the least number of elements to construct the low dimensional space vector. It

means if a feature possesses higher variation then more information can be obtained

from that feature. The data projection is based on the well known least-squares

minimization and one can show that the optimal approximation of a sample feature

vector is achieved by a linear combination of independent vectors that project the

feature vector onto the eigenvectors corresponding to the largest eigenvalues of the

covariance matrix of the data. Traditionally, the eigenvectors of the covariance matrix

are called as the principal axes and the mapping of the data on these principal axes

are named the principal components. These axes are interpreted as dimensions and
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thus the dimensionality reduction is usually referred to as the procedure of preserving

only the axes that contain most of the high variance information. Implementation

and extensive details on PCA can be found in [44] for instance.

1.3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is basically to consider the information that may

not be necessarily in the same direction as the one with large variations. In other

words, the distances between different clusters are maximized and the sum of distances

between objects in the same cluster is minimized. This helps to take the information

in directions with small variation in the account. The main drawback of LDA is

related to the fact that LDA maps a sample vector from the original source onto a

feature vector. The dimension of the vector can be at most close to but not equal

to the number of classes. This is independent from the dimensionality of the main

data source or pattern. The above mentioned limitation is considered as a serious

restriction. Actually, it can lead to lose of important information when a problem

contains higher dimensions for which the distribution of desired information may be

still meaningful in higher dimensions. In such cases any reduction in the number

of dimensions close to but not equal to the number of classes results in missing the

information. It is worth pointing out that LDA is less effective for the patterns with

overlapped distributions. Linear discriminant analysis or Fisher’s linear discriminant

is discussed in detail in [33] and [34]. The popularity of PCA is due to the property

that if the distinct information remains through the variances then PCA performs

better than LDA.

1.3.3 Other Feature Extraction Methods

Principal component analysis and linear discriminant analysis are widely used in the

literature, however, performance of a feature extraction method may be changed
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from one application to another. On the other hand, depending on the nature of

an application and the type of features required to be extracted, several researchers

have developed different techniques. Basically, it can be considered as defining a

feature vector whose elements are determined based on some strategies. For exam-

ple stochastic moments, Zernike moments, wavelets and other multiresolution based

transformations are some of the examples in which the feature vector is constructed

in view of the desired properties of each tool in accordance with the corresponding

application that the method is aimed to be applied. In [16] the authors presented

a rotation and gray scale transform invariant texture recognition method employing

the combination of wavelet subbands of a quadrature mirror filter bank and hidden

Markov model (HMM). The subbands obtained by decomposing the texture image

are used to derive the gray scale transform invariant features based on the statistics

of the first order distribution of gray levels of each subband. The procedure is then

followed by modeling a feature vector via a hidden Markov model for each class of

textures. Zernike moments is another possible useful feature construction method.

A modified direct method has been shown in [36] for the computation of the Zernike

moments, that is, a novel factorial-free direct method can be developed based on the

use of the Stirlings approximation formula. While the obtained moments are not

exactly identical to the ones that can be achieved via the direct method, they are

sufficiently acceptable in relevant applications.

It should be noted that dimensionality reduction methods and direct feature vector

generating techniques are different in the way they face a pattern. A dimensionality

reduction method may be considered as a type of filtering stage as the data are

mapped from a higher dimensional space to a lower dimension with less number of

features. A feature vector generation algorithm, however, may take advantage of

some transformation or statistical approaches to customize and tailor some features

which may not necessarily configure a lower dimensional feature vector.
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1.4 Classification

In pattern recognition and computer vision the term classification is used to classify

and categorize the objects in a database into one of the classes or feature types, namely

known as classes. A classifier at first look may seem an intelligent machine that can

be trained to learn particular patterns. As it can be seen in Fig. 1.2, classification is

usually the last step in a recognition system as the performance evaluation phase has

nothing to do with the input data and the information regarding the application. In

fact, before being eligible to eventually choose a classifier and its respective training

method, one needs to first pass the data acquisition, preprocessing, core processing,

and feature extraction and dimensionality reduction steps to sift the most important

and key information for better training and classification. In its classic form, clas-

sification is actually a mapping and approximation technique in which a wide range

of approaches from softcomputing and optimization to mathematical techniques are

involved. In the following sections some of the most commonly used classifiers are

briefly described. There are many classifiers each of which has its own advantages

and disadvantages. Bayes, naive Bayes, k -nearest neighbors, neural networks, support

vector machines, hidden Markov model, and extreme learning machine are among the

well known and most frequently used classifiers in the literature. In the following sec-

tion some of the classifiers are discussed briefly to have an idea about the nature of

a classifier. The final decision regarding the choice of a proper classifier in an ap-

plication lies in the type of data and the way a recognition system deals with the

information provided to its different parts.

1.4.1 Bayes Classifier

Bayes classifier is a statistical method that works based on allocating certain prob-

abilities to patterns belonging to a particular class. In fact probability distribution

of data are considered for class assignment where the distributions must be learned
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from the data as it is usually not the case to have a sufficient estimation about these

distributions in advance. In a Bayes classifier it is generally assumed that, given the

class variable, the presence or absence of a specific feature belonging to a class does

not depend on the presence or absence of other features. One of the advantages of

the Bayes classifier is that a small training dataset is quite enough to estimate the

statistic parameters required for classification. Let us consider a feature vector of di-

mension N1 as c = {ci | i = 1, . . . , N1} where ci denote the features of a feature vector

c. A feature vector c needs to be addressed by a class among the existing N2 classes

cj for j = 1, . . . , N2. Using the conditional probability of P(c|cj), the feature vector c

that belongs to class cj is a representative randomly selected from a conditional prob-

ability distribution on class cj. This is what referred to as the so-called likelihood in

the literature. Using the Bayes theorem, the prior likelihood of each class is related

to the conditional probability given the feature vector probability distribution as

P(cj|c) =
P(c ∩ cj)

P(c)
=

P(c|cj).P(cj)
N1∑
l=1

P(c|cl).P(cl)

.

Although a small set of training data is works out for this type of classification, the

main drawback of the Bayes classifier is that it is not always an easy task to determine

the likelihood if the original data belong to higher dimensional spaces.

1.4.2 k-Nearest Neighbors

Perhaps one of the simplest classifiers for recognition purposes is the so-called k -

nearest neighbors (k -NN) method. k -NN actually specifies the decision boundary

locally. The notation k is used to denote that each sample is assigned to the major-

ity class of its k closest neighbors. In fact, for a small positive integer k a sample

is classified and recognized in one of the classes by a majority vote of its k near-

est neighbors where proximity or distance is determined based on Euclidian distance
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measure. Detailed explanations are given in [84] for instance. For some given train-

ing vectors, k -NN detects k nearest neighbors regardless of the class label and then

assigns the feature vector to the class with the maximum number of samples. k -NN

is often considered as a lazy learning approach whereas the method only takes the

local information into account. On the other hand, given a sample to be classified,

the k -NN algorithm figures out the majority class among the k closest points in the

training gallery based on the distance calculation. After carrying out the first step,

then the new situation classified to a particular class. Although k -NN possess a sim-

ple algorithm, easy implementation, remarkably satisfactory performance in several

applications, it has some notable limitations that may restrict its application. The

main drawbacks with k -NN are related to the necessity of a large memory and execu-

tion time for larger training databases as most of the calculations are done at the end

of procedure. Furthermore, k -NN is often sensitive to features that are too different

from the other features and may seem as redundant data. It may be avoided by voting

based feature selection or weighted features that can require more calculations.

1.4.3 Support Vector Machines

Support vector machines known as SVMs [46][98] are one of the mostly used classifi-

cation in recent years. One of the reasons behind this frequent usage is related to the

mechanism of SVMs, that is, a kernel function is used to project the feature space

into a higher dimensional space. It is important to note that the classes in the latter

space are linearly separable. Therefore, one can find the support vectors in a high

dimensional space which is linear. Basically SVMs works based on maximizing the

geometric margin of different classes in a database. In its simple form two parallel

hyperplanes used to identify the separation boundaries for each class in the feature

space. The condition is considered as a deterministic tool that can provide the impor-

tant and desired vectors, named as support vectors, to find the marginal separation

distances. One of the advantages of the SVMs is the ability to separate the classes in
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a condition that the boundaries between classes are not linearly separable. Also, un-

like some other classifiers, SVMs can perform sufficiently even in higher dimensions.

Common assumption regarding the disadvantages of SVMs mostly lies in choice of

the kernels. Despite of the inspiring performance of SVMs and the popularity of the

classifier, practically, another drawback of the SVMs is the complexity and computa-

tional cost of the algorithmic in large scale test data. In the following section a faster

and more convenient classifier is introduced.

1.4.4 Extreme Learning Machine

Perhaps among several existing neural networks, feedforward neural networks are one

the commonly used ones in various applications. A feedforward neural network in-

cludes one input layer that is in contact with external inputs, hidden layers, and an

output layer. Feedforward neural networks are mostly preferred in nonlinear map-

pings that utilize gradient descent approach for weights and bias optimization. In

such learning scheme, a small value of learning parameter can simply lead to slow

convergence of the learning algorithm. In contrast and vice versa, a higher value

of learning parameter may cause instability. In addition, Gradient descent based

learning phase of a traditional feedforward neural network is usually a slow and time

consuming cycle. Huang et al. proposed an interesting approach in which by using a

single hidden layer feedforward neural network the input weights and the hidden layer

biases are not necessarily tuned and the hidden layer output matrix can remain un-

changed once random values have been assigned to these parameters in the beginning

of learning [38][40]. The method which is known as the extreme learning machine

(ELM), and works based on feedforward neural networks, performs remarkably faster

than other learning techniques. Therefore, ELM has been selected as the classifier

used in this dissertation. The required derivations and discussions regarding ELM

has been given in Section 2.4.
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1.5 Outline of the Dissertation

Despite the fact that illumination is one of the major and crucial performance de-

grading factors in face recognition and variety of relevant problems, most of the face

recognition techniques consider the controlled environmental conditions in general.

In the last few years, and due to the fact that traditional face recognition has now

reached a satisfactory performance in recognition rate and computational costs, per-

formance degrading issues such as pose, illumination, occlusion, and facial expression

changes, have been amongst the hot topics for several authors. The objective and

main goal of the research and study in this dissertation is to focus on the design,

analyze, and investigation of the illumination invariant face recognition problem to

find efficient, reasonable and robust solutions in uncontrolled conditions. The rest of

thesis is organized as follows.

In Chapter 2 it is shown that, unlike the commonly used assumption to consider

a pure logarithmic based approximation to linearly separate the reflectance and illu-

mination, input images can be assumed as an unknown combination of illumination

and reflectance. We then propose a new tunable expression that can be controlled by

two parameters to neatly approximate the combination for more flexible separation

of the two components. The design procedure proposed in this chapter is based on

multiresolution analysis of image components in the frequency domain to efficiently

separate the unwanted illumination effects from images under varying illumination.

In order to uphold the quality of edges, we have proposed a versatile method, called

lifting, which is based on shifting down the raw output image just before mask ex-

traction and subtraction phase. The feature vector construction in our work takes the

double-density complex wavelets subbands of the extracted mask. For dimensional-

ity reduction and to prepare training and testing data, principal component analysis

(PCA) has been employed. The classification and system performance evaluation cy-

cle of the method is based on the use of the extreme learning machine (ELM). Several
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experimental results and simulations are presented in Chapter 2 using the well known

databases to elaborate the effectiveness of the proposed approach.

Chapter 3 presents an extensive analysis over the frequency based illumination in-

variant analysis. Our study and research while working on Chapter 2 and frequency

based illumination suppression showed that internal characteristics of a multiresolu-

tion transformation may have an impact on the performance of a face recognition

system. These intrinsic specifications are basically narrowed down to the factors that

can change the quality of the pixels of subbands of a multiresolution transformation

which is in fact based on the characteristics of the frequency responses of some digital

filters. Frequency selectivity of these filters is mainly related to the transition band

width and size of ripples. In Chapter 3 we first propose a general method to deal with

the design and control of the above mentioned characteristics. We then design sets of

filters with different specifications and frequency selectivity range using the proposed

method. We show how frequency selectivity of a multiresolution transformation can

affect the performance and recognition rates of the proposed illumination invariant

method in Chapter 2.

In Chapter 4, for the first time in this field, we introduce the possibility of in-

vestigating the problem of illumination invariant face recognition via the concept of

resonance rather than frequency. Frequency domain analysis has been widely used in

the literature for different purposes including face recognition. Our main motivation

for this research started while facing expressions stating that illumination lies in the

low-frequency part of an image. Although we first attacked the illumination invariant

human face recognition problem based on the mentioned statement, further investiga-

tions regarding this issue left more question at our desk. For instance, if illumination

resides in the low-frequency part of images, do these low-frequency contents contain

low-resonance or high-resonance components? The concept of resonance is substan-

tially different from the frequency; a low-resonance signal can consists of both low-

and high-frequency components. Chapter 4 first draws the reader’s attention to the
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possibility of resonance based illumination enhancement and then proposes a new and

efficient procedure for illumination invariant face recognition via resonance based sig-

nal representation and decomposition. Unlike the method in Chapter 2, the resonance

based technique is free of tuning parameters, and furthermore, the extra fine-tuning

phase has been removed from the procedure. Also, feature vector construction has

been reduced to PCA features only.

Summary of contributions and findings have been presented at the end of each

chapter, and an overview of the dissertation and future research directions are given

in Chapter 5.
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Chapter 2

Design of a New Illumination Invariant

Face Recognition System

2.1 Literature Review

Several authors have demonstrated a number of techniques for face analysis, recogni-

tion and applications [1][10][35][49][66][93][94][97][100][102], few to mention. Illumina-

tion is one of the basic characteristics of a visible surface and it provides information

for scene interpretation. Recent developments in this field have shown that there

is room for improvements. Most of the traditional face recognition algorithms are

satisfactory under controlled conditions, however, when dealing with performance

degrading issues such as variation in pose, illumination, and facial expression, their

accuracy is greatly diminished. As the performance of a face recognition technique

is significantly changed under various illumination and lighting effects, illumination

is known to be one of the key factors that plays an important role in human face

recognition system design.

The approaches proposed for the problem of variable illumination in face recog-

nition are mostly based on illumination modeling, preprocessing, and illumination

invariant feature extraction. Face modeling techniques are basically statistical or

physical models where linear subspaces with low dimensions form different illumina-
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tion conditions to extract the model parameters [8][35][56]. The main limitation of

this category is that the images need to construct a linear subspace. In [55], Lee

et al. show that there exists configurations of single light source directions so that

the obtained images of each object can be directly used as basis images of the linear

subspaces effective for face recognition. Another method for face recognition under

illumination variation is to simulate the distribution of the images with varying illu-

minations and generate new training images for face recognition with single frontal

views [113]. The approaches in this category may have the downside that several

training sample images under varying illumination might be required for training.

The second category, which is known as preprocessing and normalization ap-

proaches, is referred to as improving the illumination and lighting conditions in images

where in most of the cases there is no need to face models or surface information.

Histogram equalization (HE) [85] and gamma intensity correction (GIC) [85] are very

well known techniques in this group. Quotient image (QI) [86] and self-quotient image

(SQI) [100] are also considered as preprocessing ideas although they implicitly indi-

cate illumination invariants. The quotient image approach eventually determines the

ratio between a given test image and linear combination of three other images of the

same face under different illumination effects. This ratio is assumed to be illumination

invariant. The difference between QI and SQI is that the illumination invariant ratio

for SQI is obtained using a given test image and its smoothed version. SQI, which

is in fact a multiscale retinex approach, is simpler than QI as it needs a single image

only. In [103], Xie and Lam proposed a preprocessing and illumination normalization

algorithm for face recognition, in which the intensity of pixels is locally normalized

using a small window centered at the corresponding pixel. For most of the methods

in this category there is a compromise between the simplicity and performance.

For the illumination invariant based techniques, illumination invariant feature

extraction is the main goal. For instance, Chen et al. [18] proposed a discrete cosine

transform (DCT) based method where illumination variations are mainly assumed
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to lie in the low-frequency subbands. Local binary pattern (LBP) [67] is another

illumination invariant approach in which local contrast based image representation

is employed to improve illumination losses. In [1], the authors address that several

commonly used image representations, such as edge maps that are often assumed to be

insensitive to illumination variations, are insufficient for the problem of illumination

invariant face recognition.

Recently, several interesting techniques have been demonstrated for face recogni-

tion that take the frequency information of images into consideration. Zhang et al.

[110] proposed a discrete wavelet transform (DWT) based algorithm using denois-

ing techniques to detect and eliminate the illumination effects. In [14], it has been

shown that wavelet based NeighShrink denoising technique, employing two parame-

ters λ1 and λ2, leads to higher recognition rates. El Aroussi et al. [30] introduced

the use of steerable pyramid (S–P) to compute the statistics of each block by di-

viding S–P subbands. Nabatchian et al. [66] showed that a simple lowpass filtering

followed by a weighted voting scheme (WVS) can offer better results for illumination

invariant recognition purposes. In [61], curvelet transform (CVT) was shown to be

useful in recognizing changes in facial expression, however, there is no examples of

images with significant variations in illumination such as the ones in the Extended-

Yale B and CMU-PIE databases. Although some of the mentioned techniques do not

address the problem of illumination invariant face recognition unless a preprocessing

step is applied first, they emphasize the role of multiresolution analysis and frequency

component filtering.

Multiscale representation of signals has been used in a number of image process-

ing and computer vision applications from multiresolution image representation [48]

to our recent work on multifocus image fusion and shape-from-focus [4]. In [13],

optimization of filter banks is investigated for invariant supervised texture segmenta-

tion. Multiscale directional filter bank is discussed extensively in [19] to suppress the

aliasing effect as well as to minimize the reduction in frequency resolution where the
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problem of aliasing in decimated bandpass images on directional decomposition has

been addressed. Multiresolution analysis or multiscale approximation was basically

referred to as the theory and design of discrete wavelet transform (DWT) and filter

banks, and later on extended to multiwavelets, dual-tree complex wavelet transform

(DT-C1WT), curvelets, higher-density discrete wavelet transform (HD-DWT), and

double-density dual-tree complex wavelet transform (DD-DTCWT). Multiresolution

analysis allows the decomposition of a signal into its frequency components known

as approximation and details [23][59][60]. It is basically an analysis-synthesis config-

uration, where a signal is represented in various frequency subbands via the analysis

side of a wavelet filter bank. In a perfect reconstruction filter bank the synthesis side

in turn can reconstruct the original signal.

The double-density dual-tree complex wavelet transform is a powerful multiresolu-

tion tool which is in fact a notable enhancement over the weakness of DWT in general.

As the transformation increases the density (number) of the high-frequency subbands,

and due to the fact that we need to separate and remove illumination, which mostly

lies in the low-frequency part of images, the DD-DTCWT is a reasonable choice of

algorithm to reduce the illumination effects in images.

2.2 Motivation and Problem Statement

In this dissertation we propose a novel multiresolution based method to improve

the recognition rates for the problem of illumination invariant face recognition. As

mentioned earlier, the proposed technique takes advantage of celebrated properties

of the DD-DTCWT; shift-invariance, directionality, and extra wavelets imposition,

which yields a systematic and easy to implement high-performance framework that

works faster than similar methods. The method does not need any prior information

regarding the image contents or face shape, and can be applied separately on each

1The complex number symbol C is used to avoid confusion with the CWT for the continuous
wavelet transform [78].
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image. Experimental results indicate that the technique does not require a compli-

cated feature extraction phase and can be effectively used as a preprocessing scheme

in several applications. It is worth pointing out that, as shown in Section 2.6, the

proposed method shows a robust behavior against the reduction in the number of

training images.

In view of the success of the presented method in illumination invariant face

recognition, and availability of convex optimization techniques and stochastic models,

it is reasonable to expect promising results to answer such questions as 1) is there

a possibility of an analytical model to represent the reflectance and illumination

separately, 2) does an efficient framework exist to deal with shadow and illumination

in color images, 3) is there a reasonable and systematic procedure to purely amplify

only the desired features, and 4) more importantly, how can the whole procedure be

replaced with a system level design concept.

In this chapter we first show that any input image can be considered a black box

which contains a combination of illumination and reflectance. To do so, a new approx-

imation has been proposed and the commonly used assumption regarding the linear

logarithmic based subtraction has been ignored in our proposition. We then propose

a design procedure based on the multiresolution analysis of image components to

efficiently suppress and remove the redundant illumination effects. The procedure is

further developed via the lifting step and extra fine-filtering to amplify and polish

the obtained image to extract an illumination invariant mask. A new feature vector

configuration is defined based on the double-density complex wavelets components

and scaling functions. Principal component analysis (PCA) and the extreme learning

machine (ELM) are used for dimensionality reduction and classification, respectively.

Experimental results and detailed explanations about databases and simulation condi-

tions are provided to show the effectiveness and performance of our proposed method.
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(a) (b) (c)

Figure 2.1 – A sample image without considerable illumination (a). The same subject
partially affected by illumination variation from left (b); right (c).

2.3 Illumination Invariant Representation

2.3.1 Black Box Approximation

Land’s experiments show that it is possible to recover surface reflectance information

from image brightness measurements [50][51]. In the one-dimensional case, a scheme

which is called the retinex works well for certain simple scenes [37]. Now let us

consider a condition in which the surface orientation does not play a critical role. In

that case, scene radiance may be assumed (approximately) to be proportional to the

product of the illumination on the object and the reflectance of the surface as

I(x, y) ∝ R(x, y).L(x, y) (2.1)

where R(x, y) and L(x, y) are the reflectance and illumination at point (x, y) of an

image I(x, y), respectively. The challenge presented here is how to efficiently and

simply extract or estimate R(x, y), the illumination invariant part of an incoming im-

age. Fig. 2.1 (a) shows a sample image without a considerable illumination variation.

The same subject has been affected by nonuniform lighting from left and right, as

depicted in Fig. 2.1 (b) and (c), respectively.

Physiological and biological researches show that human visual system and the

response of retina cells to illumination variation is a nonlinear function that can be

represented and approximated by the logarithm of the intensity of pixels in an image.
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Therefore, the following approximate equality, a common assumption, has been used

in several papers, e.g., in [66], based on the relation in (2.1)

I ′log(x, y) = log(I(x, y)) = log(R) + log(L) = R′log(x, y) + L′log(x, y) (2.2)

where I ′log, R′log and L′log denote the logarithm of the image, reflectance and illumi-

nation, respectively. As the illumination mostly lies in the low-frequency part of the

image I(x, y), a lowpass filter can be used to filter the logarithm image I ′log(x, y)

to extract the illumination variant part (L′log(x, y)) which is then subtracted from

I ′log(x, y) to obtain R′log(x, y), resulting in an approximation of R. To the best of

our knowledge, there is no analytic evidence to realize how such an approximation

may be close to the ideal case. In [110], the authors have addressed a key issue stat-

ing that “the logarithm of the luminance is a crude approximation to the perceived

brightness, hence logarithm transform can partly reduce the effect of lighting... it

is worth pointing out that solving Eq. (2.2) is also an ill-posed problem, absolutely

separating key facial structure R and L is very difficult even if under the common as-

sumption”. This statement motivates the idea that filtering the frequency subbands,

to preserve or to eliminate low- or high-frequency information in an image, should not

be confused with the simple separation of R and L as in (2.2). Ignoring the common

assumption in (2.2), we have assumed a box consisting of a combination of illumina-

tion and reflectance. Subtraction of illumination from this box in our research and in

this chapter is different from algebraic subtraction in (2.2).

Our experiments with human face images under a wide range of illumination

variation show that an expression that may better fit the illumination variation has

an offset from being the exact log function. Although one may find a transformation

to artfully represent the phenomenon, we propose the use of a normalized version of

the log function controlled by two parameters. That is

I ′pro(x, y) = ξ
log(I(x, y))√

log(I(x, y))− ε
(2.3)
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where in this notation pro stands for the proposed, and parameters ε and ξ can offer

a fine-tuning opportunity depending on an application. In [110], a parameter λ is

introduced to find a threshold (T) values. Empirically, the effective range of λ in

[110] was reported to be from 0.01 to 0.30. Likewise, and in [14], higher recognition

rates can be obtained for a wide range of a parameter (λ) from 0.9 to 1.2. Cao et al.

proposed the use of two parameters λ1 and λ2 to be applied to training and testing

images independently, where 0.9 ≤ λ1 ≤ 1.2 and λ2 > 2. It has been illustrated that

the values of parameters to reach the highest recognition rates are λ1 = 0.95 and

λ2 > 2 [14].

In Section 2.5, it is shown that the practical range for ε and ξ to achieve higher

accuracy is 0 < ε ≤ 0.1 and 0.6 ≤ ξ ≤ 1. It should be noted that the parameter

selection in [110][14] and this chapter is not an automatic process. Depending on

the structure of each method, there is an optimum range for parameters which is not

a wide range to be a bottleneck. Our early experiments show that local stochastic

distribution analysis to evaluate the level of illumination on any input image may

lead to a narrower range, however, it computationally expensive to find an optimum

value of parameters for each input image independently.

At this point, the main question is how to efficiently extract the illumination in-

variant part, R′pro, of a given image if the proposed approximation is used. In fact, to

separate L′pro from I ′pro, an efficient frequency information discriminator is required,

that is, multiresolution analysis can be a reasonable solution. As stated in the in-

troduction, multiresolution analysis or multiscale approximation, recalls the theory,

design and application of the transformations such as DWT, multiwavelets, DT-CWT,

CVT, HD-DWT, and DD-DTCWT. First proposed by Kingsbury [65], the dual-tree

complex wavelet transform (DT-CWT) is a recent enhancement to the DWT, with

two important additional properties, that is, the transformation is shift-invariant

and directionally-selective in two and higher dimensions which have addressed the

directionality problem in DWT. The double-density discrete wavelet transform (DD-

22



DWT) [77] is another improvement upon the critically sampled [21] DWT, whereas

the DD-DWT outperforms the standard DWT in several applications such as de-

noising. The transformation can be significantly improved and upgraded in terms of

directionality and shift-invariance. In other words, although DD-DWT takes the ad-

vantage of more wavelets, it is not entirely directionally-selective. A solution to this

problem is provided by Selesnick, introducing the concept of double-density dual-tree

complex wavelet transform (DD-DTCWT) which combines the characteristics of the

DD-DWT and DT-CWT.

In the next section, the double-density dual-tree complex wavelet transform is

briefly introduced. We then show how the directionally- and frequency-selective sub-

bands of the transformation are used to filter and extract the illumination invariant

part of an image.

2.3.2 DD-DTCWT and Illumination Removal via Subband

Filtering

Double-density dual-tree complex wavelet transform is derived using two scaling filters

and four wavelets at the same time, where one scaling and two wavelets are used for

real and imaginary parts of a complex wavelet, respectively. Although each of the

two wavelet pairs hold half a delay as an offset, it is unnecessary to specify any

explicit constraint to ensure the half sample delay [77]. Let us consider two filter

banks F and F̃ , the primary and dual filter banks of a complex transformation,

respectively [77][78], where the analysis and synthesis lowpass (highpass) filters of

F are denoted by H0(z) (H1(z), H2(z)) and F0(z) (F1(z), F2(z)), respectively. The

filters associated with the dual bank are defined similarly with superscript ‘∼’. For

the double-density discrete wavelet transform (DD-DWT) with a single filter bank,

perfect reconstruction condition is derived based on the relation between input and

23



output that can be written as

V (z) =
1

2
([H0(z)H0(

1

z
) +H1(z)H1(

1

z
) +H2(z)H2(

1

z
)]X(z) (2.4)

+[H0(z)H0(
−1

z
) +H1(z)H1(

−1

z
) +H2(z)H2(

−1

z
)]X(−z)) (2.5)

In order to satisfy the perfect reconstruction condition, it is required the input X(z)

and the output V (z) be identical, thus

H0(z)H0(
1

z
) +H1(z)H1(

1

z
) +H2(z)H2(

1

z
) = 1 (2.6)

H0(z)H0(
−1

z
) +H1(z)H1(

−1

z
) +H2(z)H2(

−1

z
) = 0. (2.7)

Apart from the perfect reconstruction, the wavelets and scaling functions are derived

using the iterative equations similar to the ones used in traditional DWT, that is,

the scaling and wavelet functions associated with the analysis side of F are defined

iteratively via two-scale equations

φh(t) = 2
∑
κ

h0[κ]φh(2t− κ) (2.8)

ψhi
(t) = 2

∑
κ

hi[κ]φh(2t− κ) for i = 1, 2 (2.9)

where h0[κ] and hi[κ] are the impulse responses of H0(z) and Hi(z), respectively, and z

refers to the z-transform with z = ejω. The scaling function φf and wavelets ψfi
in the

synthesis side of the primary filter bank F , and the scaling function and wavelets of

the dual bank F̃ in the analysis and synthesis sides are similarly defined. In order for

the primary and dual filter banks to constitute a dual-tree complex wavelet structure,

ψh̃i
(t) and ψfi

(t) must be the Hilbert transform of ψhi
(t) and ψf̃i

(t), respectively. In

other words
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Ψh̃i
(ω) =

−jΨhi
(ω) ω > 0

jΨhi
(ω) ω < 0

, Ψfi
(ω) =

−jΨf̃i
(ω) ω > 0

jΨf̃ i
(ω) ω < 0

where Ψhi
(ω), Ψfi

(ω), Ψh̃i
(ω), and Ψf̃i

(ω) are the Fourier transforms of wavelet func-

tions ψhi
(t), ψfi

(t), ψh̃i
(t), and ψf̃i

(t) respectively, and j =
√
−1. The Hilbert pair

condition is similarly derived and extended for pairs of wavelets for the filters in the

synthesis side, and the transformation possesses desired properties. The three key

properties of DD-DTCWT, 1) shift-invariance, 2) directional-selectivity, 3) double-

density wavelets, play important role in multiresolution based image analysis. The

double-density dual-tree complex wavelet transform contains more wavelet subbands

than the regular DWT. In addition, wavelets associated with the DD-DTCWT are

directional and free of checkerboard effect. This is related to the real and imagi-

nary parts of a dual-tree complex structure, and to the extra wavelets imposed to

the double-density transformation. Fig. 2.2 shows the structure of a typical DD-

DTCWT. Only the analysis (decomposition) side of the filter banks has been shown

in this figure and the synthesis (reconstruction) side can be similarly configured. It is

important to note that, due to the above mentioned properties of the DD-DTCWT,

the transformation can localize features in several directions [77]. Furthermore, as the

transformation contains doubled number of high-frequency subbands in each level, the

so-called density of wavelets, it fits the problem of extracting low-frequency informa-

tion by suppressing more number of high-frequency subbands. As discussed earlier,

the latter is used to be subtracted from the input image to obtain the reflectance part

of the image.

Now considering the concept of double-density strategy, shown in Fig. 2.2 and

discussed in detail in [77] and [82], the two separate filter banks F (tree 1) and F̃

(tree 2) are designed such that the subbands of upper filter bank can be interpreted

as the real part of a complex wavelet transform, and subbands of lower filter bank

are assumed as the imaginary part of the transformation. More specifically, for the
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Figure 2.2 – Structure of the DD-DTCWT. Only the analysis (decomposition) side of
the transformation is shown in this figure and the synthesis (reconstruction) side can
be similarly configured via tree 1 (F) and tree 2 (F̃).
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Figure 2.3 – Block diagram of the proposed method.

filters designed for such a configuration, the wavelets associated with the real part

must be (approximately) the Hilbert transform of the wavelets associated with the

imaginary part of the dual-tree shown in Fig. 2.2. In that case, the DD-DTCWT is

in fact a 2D oriented higher density complex transformation with more directionally-

selective wavelets that can be widely used in relevant applications in image processing

and pattern recognition. Recall that for both the DWT and DD-DWT some of

the wavelets have no dominant orientation, and therefore, DD-DTCWT can simply

outperform the other wavelet family members.

Motivated by these facts, we propose an efficient and customized frequency sub-

band filtering method for the problem of illumination invariant face recognition. The

idea is suggested as a means of preserving the illumination invariant information

and at the same time suppressing the redundant data. The whole idea and problem

statement can be summarized as follows:

1. For a given image, illumination is initially enhanced using (2.3) to obtain I ′pro.

2. I ′pro is decomposed into frequency subbands using DD-DTCWT.

3. Thresholding is performed on the high-frequency subbands.

4. Using the inverse DD-DTCWT, reconstruction is done based on the low-

frequency and thresholded high-frequency subbands to obtain I ′DD.

5. Maximum filter is applied on the reconstructed image to further enhancing any

nonuniform spikes that cannot be considered as illumination.
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6. Amplifying the role of edges to lift the quality of the reconstructed image.

7. Extracting a mask to obtain the illumination-invariant image.

8. Decomposing the obtained mask, R′pro, into frequency subbands via DD-DTCWT

to form a feature vector.

9. Applying PCA to reduce the dimension of feature space.

10. Performing ELM for classification.

The block diagram of the proposed algorithm is shown in Fig. 2.3, where the

discussion in this section refers to the blocks 2 to 4 of the diagram. The input data

to this block, which is in the spatial domain, are transformed to the complex wavelet

domain. Each image, I ′pro(x, y), is first decomposed by DD-DTCWT into frequency

subbands. Unlike the traditional DWT with only three wavelets, DD-DTCWT offers

32 directional wavelet subbands. The 32 wavelets for DD-DTCWT and the 3 wavelets

associated with DWT has been shown in Fig. 2.4 (a) and (b), respectively. Using a

3D representation, Fig. 2.4 (c) shows the variety and differences of the 32 wavelets of

the DD-DTCWT. As can be observed, the frequency subbands of the DD-DTCWT

are more discriminative than the ones in DWT.

We then apply thresholding on each high-frequency subband to essentially deac-

tivate the high-frequency information. The value of threshold is fixed to the mean

of the minimal coefficients of each row of a subband. The coefficients that are less

than threshold remain unchanged and the rest of coefficients are set to zero. In fact,

thresholding the wavelet (high-frequency) subbands preserves low-frequency informa-

tion, which is ideally desired to be subtracted from I ′pro to obtain R′pro. The final step,

at this point, is to reconstruct the thresholded subbands via an inverse DD-DTCWT.

2.3.3 Smoothing and Lifting

Shown as block 5 in Fig. 2.3, additional filtering is applied for fine-tuning. The super-

script f in this figure refers to filtering. Among several existing well known filters such

as the Cohen-Daubechies-Feauveau (CDF) filters, halfband-pair filter bank (HPFB),
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(a)

(b)

(c)

Figure 2.4 – Visual representation of wavelets. (a) 32 wavelets related to the 2D
double-density dual-tree complex wavelet transform; (b) Three wavelets in a regular
DWT; (c) 3D representation of the 32 wavelets in (a) with horizontal and vertical view
of 356.5◦ and 7◦, respectively.

quadrature mirror filter (QMF), median filter, maximum filter, few to mention, we

found that both the CDF and maximum filter perform better than others for this

application. We have used a 3×3 2D statistic maximum filter before sending the re-

sult to block 6, in which the features edges are stimulated and sharpened as is shown

in Fig. 2.5. It should be noted that the maximum filter is a nonlinear filter and it

does not have a frequency domain equivalent. As the images under this operation

lose some sharpness with removed pepper-type noise, it resembles a lowpass filter

nature [66] where the filtered image contains less details than the initial one. One

should note that a single lowpass filtering, regardless of the type of filter that might

be used, cannot compete with the DD-DTCWT which can accurately discriminate
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(a) (b) (c) (d) (e)

Figure 2.5 – Feature stimulation by lifting. (a) A sample image from the Extended-
Yale B database; (b) I ′DD

f; (c) I ′pro − I ′DDf; (d) I ′DD
f`; (e) I ′pro − I ′DDf`.

the frequency information in an image. In other words, the main role of filtering

procedure relies on the use of the DD-DTCWT and the maximum filter is employed

for smoothing and polishing the images.

Our experiments in the design and application of wavelets in multifocus image

fusion [4] and the method of Huang et al. in moving object detection introducing the

concept of the double-change detection (DCD) [42], motivated us to consider a simple

yet versatile approach to stimulate features. Fig. 2.5 (a) shows a randomly selected

image from the Extended-Yale B database. The image I is passed through the blocks

1 to 5, depicted in Fig. 2.3, and the obtained image I ′DD
f is then subtracted from the

enhanced version of the original image I ′pro. The results are given in Fig. 2.5 (b) and

(c), respectively. Now let us shift I ′DD
f down by two rows to obtain I ′DD

f`, followed

by the same subtraction from I ′pro. This is shown in Fig. 2.5 (d) and (e) where the

superscript ` denotes the lifting. As can be observed, the fine features, e.g., eyes,

eyebrows, nose and mouth in Fig. 2.5 (e) are clearly visible and separable more in

details than the ones in Fig. 2.5 (c), resulting in sharper edges and smoother face

which improves the recognition rates. It should be pointed out that the amount of

shift, in general, depends on the size of images. One should note that most of the

recognition systems must resize the input images to a smaller size first, to reduce

the computational complexity and the execution time, and therefore, it is not rea-

sonable to work on images with larger sizes. Roughly, for images of size 32×32 to

128×128, the effective value of shift is only one to four rows. Fig. 2.6 (c) and (d)
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(a) (b) (c) (d)

Figure 2.6 – The mask achieved using the method in [66] and the one obtained by the
proposed method. (a) A sample image from the CMU-PIE database without consid-
erable illumination effect; (b) The same subject with high illumination effects; (c) and
(d) the mask used in [66] and the one obtained by using our method, respectively.

show the masks obtained using one of the recent methods in the literature [66] and

the proposed method, respectively. There is an obvious difference and improvement

between the masks in Fig. 2.6 (c) and (d), where the latter leads to superior results to

recognize an image as dark as in (b). In the next section we shall employ the obtained

masks to extract the feature vector required for the training and testing phases of the

recognition system to evaluate the effectiveness of the proposed framework.

2.4 Feature Extraction and Classification

Principal component analysis (PCA) [34][44], two-dimensional PCA (2D-PCA) [107],

and linear discriminant analysis (LDA) [33][34] are some of the well known general

algorithms for dimensionality reduction and feature extraction used in the literature.

Also, several authors have demonstrated many feature vector construction algorithms

based on innovative techniques such as the Zernike moments [36], statistical moments

[34], and steerable pyramid [30]. Among the existing techniques, PCA has been widely

used for dimensionality reduction in recent relevant papers [30][66][110]. To keep con-

sistency, we have used PCA for dimensionality reduction and feature extraction. The

feature vector in our work is formed by the subbands of the DD-DTCWT multiscale

representation, that is, the obtained mask R′pro = I ′pro − I ′DDf` is convolved with each
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of the 16 complex wavelets (ψ
C

(.)) as well as the four scaling filters. In other words,

given a mask R′pro, scaling coefficients φ1 to φ4, and wavelets ψi for i = 1, . . . , 32, the

feature vector is formed as R′pro ∗ {ψ
C
1 , . . . , ψ

C
16, φ1, . . . , φ4} where notation ‘∗’ denotes

the convolution.

The final step of a recognition system consists of classifiers that can efficiently and

easily handle linear as well as nonlinear mapping amongst features and their classes.

Although out of numerous intelligent techniques neural networks and support vector

machines (SVMs) have had a large impact, they face some challenging issues, e.g.,

slow learning speed, trivial human intervene, and poor computational scalability. A

new learning algorithm, extreme learning machine (ELM), for single-hidden layer

feedforward neural networks (SLFNs) can overcome some of the above-mentioned

limitations [38][41]. In [40], it has been shown that extreme learning machine generally

outperforms SVM in various kinds of cases. Feedforward neural networks (FNN)

have been used in several areas because of the ability of approximation for nonlinear

mappings. Traditionally, parameter tuning techniques such as gradient descent-based

algorithms are used to determine the input weights and hidden layer biases. Gradient

descent-based learning methods are generally slow due to inappropriate or iterative

learning steps. ELM randomly chooses hidden nodes and analytically determines the

output weights of SLFNs, and therefore, the method is extremely fast in learning.

Shown in Fig. 2.7, for N arbitrary distinct samples (xi, ti) a typical ELM with Ñ

hidden nodes and an activation function g(x) is modeled as

Ñ∑
i=1

βigi(xl) =
Ñ∑
i=1

βiG(wi, bi,xl) = ol, l = 1, 2, . . . , N (2.10)

where gi denotes the output function G(wi, bi,x) of the ith hidden node. An activa-

tion function for any additive note can be defined as gi = G(wi, bi,x) = g(wi.x + bi)

and therefore
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Figure 2.7 – A typical structure of an ELM.

Ñ∑
i=1

βigi(xl) =
Ñ∑
i=1

βig(wi.xl + bi) = ol, l = 1, 2, . . . , N (2.11)

where xi = [xi1, xi2, . . . , xin]t ∈ Rn, ti = [ti1, ti2, . . . , tik]
t ∈ Rk, and wi = [wi1, wi2,

. . . , win]t and βi = [βi1, βi2, . . . , βik]
t denote the weight vectors connecting the input

nodes to ith hidden node, and from the ith hidden node to the output nodes, respec-

tively. bi is a threshold for the ith hidden node, wi.xl indicates the inner product of

wi and xl, and superscript ‘t’ stands for the transpose. This model can approximate

N samples with zero error
∑Ñ

l=1 ‖ol − tl‖ = 0, that is, there exist βi, wi, and bi

such that
∑Ñ

i=1 βig(wi.xl + bi) = tl, l = 1, 2, . . . , N . These equations can be written

as Υβ = T where β = [βt

1, . . . , β
t

Ñ
]t
Ñ×k and T = [tt1, . . . , t

t

N ]tN×k [38][41]. With this

notation, Υ denotes the hidden layer output matrix of ELM where ith column of Υ

is the output of ith hidden node with respect to inputs x1,x2, . . . ,xN .

If the activation function g is infinitely differentiable, it is proved that the required

number of hidden nodes satisfy Ñ � N [38]. Traditionally, in order to train an ELM,

one may need to minimize the error function defined as η =
∑N

l=1(
∑Ñ

i=1 βig(wi.xl

+bi) − Tl)
2. Generally, gradient based algorithms are employed to search for the

33



minimum of ‖Υβ −T‖. Gradient descent-based learning schemes are generally slow,

that is, if the learning rate is too small, the learning algorithm converges very slowly.

In contrast, if the learning rate is too large, then the algorithm becomes unstable and

may diverge. Huang et al. show that the input weights and the hidden layer biases are

not necessarily tuned and the hidden layer output matrix can remain unchanged once

random values have been assigned to these parameters in the beginning of learning

[38][40][41]. Therefore, for fixed input weights and the hidden layer biases, training

an ELM is equivalent to find a least-squares solution β̂ of the linear system Υβ = T,

that is

‖Υ(w1, . . . ,wÑ , b1, . . . , bÑ)β̂ −T‖ (2.12)

= min
β
‖Υ(w1, . . . ,wÑ , b1, . . . , bÑ)β −T‖. (2.13)

In most cases the number of hidden nodes is much less than the number of distinct

training samples, and therefore, Υ is a nonsquare matrix. If the number of hidden

nodes is equal to the number of distinct training samples, SLFNs can approximate

these training samples with zero error. In case of Υ being nonsquare, the smallest

norm least-squares solution of the above linear system is β̂ = Υ∗T, where Υ∗ is the

moore-penrose generalized inverse of a matrix Υ, and the smallest training error can

be reached by this special solution as

‖Υβ̂ −T‖ = ‖ΥΥ∗T−T‖ (2.14)

= min
β
‖Υβ −T‖. (2.15)

Although almost all learning algorithms wish to approach the minimum training

error, most of them cannot reach it because of local minimum or infinite training

iteration that is usually not allowed in applications (see Section 3.2 in [38]). Details

and discussions on extreme learning machine are given in [38]–[41].
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2.5 Experiments and Results

Our experiments can be basically divided into two categories. The first group contains

the highly illuminated databases, e.g., the Yale B, Extended-Yale B, and CMU-PIE.

The experiments on these databases show the performance of the proposed method

to extract illumination invariants under notable illumination variations. The results

of these experiments have been compared with the papers in this category in which

the problem of illumination invariant face recognition is investigated. In the second

group, we use the FERET, AT&T, and LFW databases. These databases contain a

low or moderate illumination effects, however, they have notable variations both in

pose and facial expressions.

2.5.1 The Yale B and Extended-Yale B Databases

The Yale B database [105] contains 5760 single light source images of size 192×168 for

10 subjects with 576 viewing conditions, i.e., 9 poses× 64 illumination conditions, for

each individual. The database was expanded to 38 subjects, known as the Extended-

Yale B [106], with 21,888 single light source images each of which is seen under the

same 576 viewing conditions as in the Yale B. Similar to previous papers, and to

keep consistency for comparison, the same setup has been taken into account for

the subsets, that is, the databases are divided into five subsets corresponding to

the different light source directions which is in fact the angle (τ) between the light

source and camera axis. Subset 1 consists of 70 (266) images with τ < 12◦. Subsets

2 to 5 contain 120 (456) {20◦ < τ < 25◦}, 120 (456) {35◦ < τ < 50◦}, 140 (532)

{60◦ < τ < 77◦}, and 190 (722) {τ > 78◦} images, respectively, where the numbers

inside parenthesis denote the number of images for the corresponding subset in the

Extended-Yale B database. Thus, for the Yale B and the Extended-Yale B databases,

each individual has 7+12+12+14+19=64 images. Detailed information about the two

databases, including photographic conditions and subsets, is given in [105][106]. All
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(a) Subset 1

(b) Subset 2

(c) Subset 3

(d) Subset 4

(e) Subset 5

Figure 2.8 – Sample representation for
individual 1 in the Extended-Yale B
database.

(a) Subset 1

(b) Subset 2

(c) Subset 3

(d) Subset 4

(e) Subset 5

Figure 2.9 – The corresponding masks
obtained by the proposed method for
images in Fig. 2.8.

images are first eye-aligned and then cropped and resized into 128×128 gray level

pixels for which we set the lifting value ` = 3 and follow the rest of procedure via

a single-stage decomposition to obtain the illumination invariant masks required for

recognition. Subset 1 contains seven images per person, taken under low illumination

variations, which is used to train the recognition system. The level of illumination

is related to the angle between the light source direction and the camera axis and is
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Figure 2.10 – Visual representation of the proposed algorithm for the Yale B and the
Extended-Yale B databases, respectively. In the first row, (a) shows a sample image
without considerable illumination effect from the Yale B database; (b) and (c) indicate
the same subject as in (a) but under an average and high illumination, respectively.
The same is shown for a sample image from the Extended-Yale B database in (d)–(f),
respectively. The second row shows the obtained mask for each image in the first row,
respectively.

increased for the remaining subsets, Subset 2 to Subset 5, which are used for testing

purposes. The images of a sample subject are shown in Fig. 2.8 for Subsets 1 to

5, followed by the extracted mask in Fig. 2.9 using the proposed method on each

image in subsets, respectively. To have a visual perception, three different samples

for a particular individual from each database and the corresponding mask, have been

shown in Fig. 2.10 for the Yale B and Extended-Yale B databases, respectively.

The first row shows an individual from the Yale B database under three different

illumination effects labeled as (a), (b) and (c) where the same is shown for a randomly

selected individual from the Extended-Yale B database depicted in (d), (e) and (f),

respectively. The second row shows the obtained mask for each image in the first row,

respectively. To maintain consistency with other works, we have used seven images of

Subset 1 for training, and the remaining Subsets 2–5 for the testing gallery. The re-

sults are given in Tables 2.1 and 2.2 for the Yale B and Extended-Yale B, respectively.

The difference between the Yale B and Extended-Yale B is that the former contains

10 individuals while the latter includes 38 subjects, which makes the experiments
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(a) Subset 2 (b) Subset 3

(c) Subset 4 (d) Subset 5

Figure 2.11 – Recognition rate versus ξ and ε for the Yale B database.

more difficult. The results indicate that the proposed method can outperform the

previous approaches in terms of the recognition accuracy. Some authors reported the

results on different training subsets. For example, state-of-the-art method in [102],

which is eventually an excellent feature extraction algorithm with robustness against

occlusion, uses half of the images ((7+12+12+14+19)/2 = 32 images per individ-

ual) in the Extended-Yale B database for training and the other half for the testing

phase. Ignoring the commonly used Extended-Yale B settings for the illumination
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(a) Subset 2 (b) Subset 3

(c) Subset 4 (d) Subset 5

Figure 2.12 – Recognition rate versus ξ and ε for the Extended-Yale B database.

invariant face recognition in the literature, we have performed the same experiment

as in [102] on this database. The obtained recognition rate of 99.42%, employing our

method, compares favorably with 98.1% in [102]. Recognition rate versus ξ and ε

has been shown in Fig. 2.11 (a)–(d) for Subsets 2–5 for the Yale B database. It is

important to note that the recognition rate varies marginally along the ε axis in con-

trast to the changes in ξ direction. Therefore, the role of ε is mostly to calibrate the

highest accuracy in applications such as Subset 4 of the Extended-Yale B database.
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Table 2.1 – Yale B: Recognition rate for different techniques (%).

Method Subset 2 Subset 3 Subset 4 Subset 5

PCA [11] 98.33 79.17 30.00 15.79

Cones Attached [56] 100 100 91.40 N/A

QI [86] 99.30 61.90 34.10 23.30

QIR [86] 100 100 90.60 78.80

Cones Cast [56] 100 100 100 N/A

Hist. Equz. [85] 100 89.00 55.10 44.40

Linear Subspace [8] 100 100 85.00 N/A

GIC [85] 100 88.10 39.90 27.50

SQI [100] 100 100 96.40 97.90

LTV+PCA [17] 100 99.17 96.43 92.12

PP+LTP [92] 100 100 99.20 97.20

LBP [92] 100 97.60 65.20 44.40

MQI [112] 100 100 100 98.40

Wavelet+PCA [110] 100 100 100 100

Wavelet+PCA [14] 100 100 100 100

S–P [30] 100 100 87.70 45.68

S–P+PP [30] 100 100 100 100

II+PCA [66] 100 100 98.60 98.90

II+PCA+DVS [66] 100 100 99.29 99.47

II+PCA+WVS [66] 100 100 100 99.47

Proposed [3] 100 100 100 100

In all experiments, except Subset 4 and Subset 5 of the Extended-Yale B database,

one may represent the recognition accuracy versus the ξ by setting the variable ε to

a constant value. The same experiments on the Extended-Yale B database leads to

similar results which are depicted in Fig. 2.12 (a)–(d) for Subsets 2–5, respectively. In

Section 2.6, we show that the method presents a resistive nature against the reduction

in the number of training samples (NTR).

2.5.2 The CMU-PIE Database

This database contains 41,368 images from 68 subjects with different pose, illumi-

nation and expression (PIE) conditions. Depending on these factors, the images are

classified into different sets. For each subject, 13 poses and 43 illumination conditions
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Table 2.2 – Extended-Yale B: Recognition rate for different techniques (%).

Method Subset 2 Subset 3 Subset 4 Subset 5

PCA[11] 90.16 41.23 6.37 3.24

LDA[10] 100 98.12 38.35 5.13

II+PCA+SVM [66] 100 99.78 95.44 94.68

II+PCA+1NN [66] 100 100 96.01 92.44

II+PCA+DVS [66] 100 100 96.60 95.40

II+PCA+WVS [66] 100 100 97.91 96.54

Proposed [3] 100 100 98.68 99.03

 

 

Figure 2.13 – Visual representation of the proposed algorithm for the CMU-PIE
database. In the first row (a) shows a sample image without considerable illumina-
tion effect from the lights-on setting; (b) and (c) indicate the same subject as in (a) but
under an average and high illumination, respectively. The same is shown for a sample
image from the lights-off setting in (d)–(f), respectively. The second row shows the
obtained mask for each image in the first row, respectively.

are available. All images were taken at the Carnegie Mellon University 3D Room be-

tween October and December 2000 [2]. As in [66] and [87], only frontal images have

been used in experiments. The images are first eye-aligned and cropped, and then

resized into 96×96 pixels. As discussed earlier, we select ` =3 and the procedure in

Fig. 2.3 is applied to the images to obtain required masks.

For the lights-on setting with 24 images, the images named as {I06, I08, I11 I20}

from each of 68 individuals are selected for training due to their better illumination

conditions [87]. The rest of images (20 images) are used for testing. This has been
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Table 2.3 – CMU-PIE: Recognition rate for different lighting conditions (%). The
second row in each experiment shows the results obtained via [66].

lighting condition NTR NTS Total %

off 3 18 21 99.59

94.85

on 4 20 24 100

100

on/off 7 38 45 99.92

99.74

6 39 45 99.77

99.55

5 40 45 99.70

98.99

shown in Table 2.3. Note that the names used for images here are the ones that

appear in the corresponding database [2]. For the lights-off setting with 21 images

for each of the 68 individuals the images {i08, i11, i20} are used for training and the

rest of images are kept for the testing phase. Some samples from different individuals

have been shown for the lights-on and lights-off settings in Fig. 2.13, respectively.

Recognition rate versus ξ and ε has been shown in Fig. 2.14 (a)–(d), for instance, for

different lighting settings, respectively.

The results are given in Table 2.3 for the CMU-PIE database for the settings of

lights-on and lights-off, as well as the results obtained by 4, 5, 6, and 7 number of

sample images for training for the case of lights-on/off where the 21+24=45 images

are considered as a single set. In this table, NTR and NTS denote the number of

training and the number of testing samples, respectively. A minimum accuracy of

99.70% is achieved for the lights-on/off setting with five images for training.

2.5.3 The FERET Database

The Face Recognition Technology (FERET) program database [72] is a large database

of facial images, divided into development and sequestered portions. The FERET
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(a) NTR=3, NTS=18, Lights-off (b) NTR=4, NTS=20, Lights-on

(c) NTR=7, NTS=38, Lights-on/off (d) NTR=6, NTS=39, Lights-on/off

Figure 2.14 – Recognition rate versus ξ and ε for the CMU-PIE database.

database consists of 14,051 eight-bit gray scale images of human heads with views

ranging from frontal to left and right profiles. The database contains several subsets

based on regular facial expression, alternative expression under different illumination,

subject faces to his left, subject faces to his right, quarter left and right, half left and

right, profile left and right, and random images with angles. For each individual

in the database, Subset ba [72] indicates regular frontal images. Subset bj contains
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(a) (b) (c) (d) (e) (f)

Figure 2.15 – In the first row (a)–(c) and (d)–(f) show sample images (32×32 pixels)
for two differen individuals from subsets bj, bk, and ba from the FERET database, re-
spectively. Second row shows the obtained mask for each image employing the proposed
method.

alternative frontal images corresponding to the ba images. Subset bk is also a frontal

image set that corresponds to ba but taken under different lighting. Following the

previous approaches, 600 frontal face images from 200 individuals are provided via

the Subsets ba, bj, and bk respectively, where Subsets bj and bk are used to train

the recognition system, and Subset ba is reserved for the testing phase. Fig. 2.15

shows some randomly selected subjects from the FERET database subsets. The

images of size 256×384 in subsets are first cropped and resized to small images of

size 32×32 for which ` is set to 1 and a three-stage DD-DTCWT decomposition is

applied on all images in subsets to obtain the mask required for training and testing.

As the size of images is reduced, the decomposition tree is further extended to three

stages in this example. As mentioned before, the databases can be divided into two

groups. Our experiments show that for the databases with notable variation in pose

and facial expressions, the best performance and recognition rate is achieved when

smaller images and more number of decomposition stages are used.

For visual representation, two randomly selected individuals have been shown in

Fig. 2.15. In this figure, in the first row, (a)–(c) show sample images for an individual
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Figure 2.16 – Recognition rate versus ξ and ε for the FERET database.

Table 2.4 – FERET: Recognition rate for different techniques (%).

PCA [11] Gabor Contourlet Curvelet DWT S–P [30] Proposed [3]

78.50 89.66 64.14 85.52 82.07 91.72 96.00

from Subsets bj, bk, and ba, respectively. The same is shown for another individual

in (d)–(f), respectively. The mask obtained by using the proposed procedure is given

in the second row. Similar to previous examples, recognition rate versus ξ and ε

has been shown in Fig. 2.16 for the FERET database. The result is summarized

in Table 2.4. It is seen that the proposed method significantly improves previously

reported recognition rates in the literature.

2.5.4 The AT&T Database

The AT&T database, formerly known as the Olivetti Research Lab (ORL) database,

contains 10 different images for each of 40 distinct subjects. For some subjects, the

images were taken at different times over a period of 2 years, varying the lighting and

facial expressions, i.e., open/closed eyes, smiling/not smiling, glasses/no glasses. The

images were taken against a dark homogeneous background with the subjects in an
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(a) (b) (c) (d) (e) (f)

Figure 2.17 – In the first row (a)–(c) and (d)–(f) show sample images (32×32 pixels)
for two differen individuals from the AT&T database, respectively. Second row shows
the obtained mask for each image employing the proposed method.

Table 2.5 – AT&T: Recognition rate for different techniques (%).

PCA Gabor DWT CVT+LDA CVT+PCA CVT+PCA+LDA [61] Proposed [3]

91.92 95.50 96.00 95.60 96.60 97.70 97.50

upright frontal position with tolerance for some side movement. The 8-bit gray scale

images of size 92×112 pixels have been resized to 32×32 pixels in our experiments.

For this small size and similar to the previous example ` is set to 1, and using a

three-stage decomposition, the proposed algorithm is applied to images. From 10

images per individual, the first five is used for training, that is, 200 images are used

for training and the remaining 200 images are reserved for testing phase [30][61].

Figure 2.17 shows three distinct images, (a)–(c) and (d)–(f), from two different

individuals randomly selected from the database, respectively. The mask obtained

by employing the proposed method is presented in the second row. Recognition rate

versus ξ and ε has been shown in Fig. 2.18 for the AT&T database. The result is

given in Table 2.5. It should be noted that the block-based steerable pyramid method

in [30] achieves the 99% accuracy for the best performing subband fusion.
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Figure 2.18 – Recognition rate versus ξ and ε for the AT&T database.

Figure 2.19 – Sample images from the LFW database for four different individuals.
All images, aligned with commercial face alignment software in [91], are available in
[43][91]. As it can be seen, the images in LFW are mostly uncontrolled in terms of
variation in facial expression, age, race, pose, and occlusion.

2.5.5 The Labeled Faces in the Wild Database

The Labeled Faces in the Wild (LFW) database [43] is a relatively new source of

face images designed for studying the problem of unconstrained face recognition.

It has been widely used to determine if a pair of face images belong to the same

individual or not, where each face image has been labeled with the name of the

person pictured. LFW contains 13,233 images of 5749 different individuals collected

from the web. Out of 13,233 images in the database, only 1680 of subjects have two or

more distinct photos. We use the aligned version of the LFW database [91] available
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(a) (b) (c) (d) (e) (f)

Figure 2.20 – Two examples from Subsets 12 and 16 of the LFW database. In the
first row, (a)–(f) show sample images (64×64 pixels) for a randomly selected individual
from Subset 12. The second row shows the corresponding mask for each image in the
first row. The same is represented in rows three and four for another individual from
Subset 16, respectively.

online at [43][91]. Fig. 2.19 shows sample images from the LFW database for different

individuals. As it can be seen, the images in LFW are mostly uncontrolled in terms

of variations in pose, facial expression, lighting, illumination, and occlusion.

To evaluate the performance of the proposed method on this database, we use

subsets of the LFW that contain individuals having 10, 11,. . ., 16 images for in-

stance. Note that the face images with rotation angles more than 30◦ to left or right,

and images with high occlusion have been removed from subsets in our experiments.

Subjects with eye-glasses, hat, and the ones with various facial expressions such as

closed-eyes remain unchanged. For example, the 19 images of the individual Nicole
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Table 2.6 – LFW: Recognition rate for different subsets.

Subset (%) NTR NTS Subjects Total images

16 76.25 8 8 10 160

15 89.43 8 7 10 150

14 80.95 7 7 15 210

13 67.78 7 6 15 195

12 72.50 6 6 20 240

11 74.54 6 5 11 121

10 71.42 5 5 21 210

Kidman in the original LFW database has been reduced to 12 images and included

in Subset 12 in our experiments. The images and constructed subsets used in our ex-

periments with the LFW database are available from the authors. For the images per

individual in each subset, the first half is used for training and the remaining images

in the corresponding subset are reserved for testing phase. If the numbers of images

are odd, the first half plus one is used for training. All the images were cropped and

resized to 64×64 pixels gray level images. We set ` = 2 and the proposed algorithm

is applied to all images in subsets, via a three-stage decomposition, to extract the

mask required for training and testing. For visual evaluation, some random images

have been selected from two different individuals from Subsets 12 and 16, respectively.

This has been shown in Fig. 2.20 where in this figure, in the first row, (a)–(f) show

sample images for a randomly selected individual from Subset 12. The second row

shows the corresponding mask obtained by using the proposed method. The same is

shown for another subject from Subset 16, respectively. The recognition results are

given in Table 2.6 for different subsets. Similar to previous examples, recognition rate

versus ξ and ε can be presented for each of the subsets in Table 2.6.

The results indicate that as the total number of images per subset and the number

of images used for train and test cycles are different, LFW database contains variety

of images in terms of facial expression, age, race, pose, occlusion, and illumination

conditions, where the illumination is not the dominant performance degrading fac-
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tor. The most influencing characteristics for these images are facial expression and

nonuniform photographic style. Subset 15 contains less number of such images, and

therefore, a remarkable accuracy difference is observed in contrast with other subsets

in this database in Table 2.6.

2.6 Robustness and Training Sample Reduction

Generally, decreasing number of the training samples (NTR) makes the recognition

problem more difficult resulting in lower recognition accuracy. Therefore, it is rea-

sonable to reduce the number of images in the training gallery to investigate the

effectiveness of the proposed method. Starting from the maximum number of images

used for training in each example for the Yale B, Extended-Yale B, and the CMU-

PIE databases for instance, we have reduced the training samples until NTR=1.

The results of this study have been summarized in Tables 2.7 to 2.9 for the Yale B,

Extended-Yale B, and CMU-PIE, respectively. Note that the names of images pre-

sented in tables are the same as the ones appear in the corresponding databases in

[2][105][106]. This information is given in the last column of the Tables, where TIN

denotes the training image name. In each experiment, the remaining images are kept

for the testing cycle.

The accuracy obtained by employing our method, even using less number of train-

ing samples, compares favorably with recent results in the literature. For example, the

results presented in Table 2.1 are obtained using seven images for training (NTR=7).

In Table 2.7, we show that the perfect accuracy is guaranteed with only three images

for training (NTR=3). Note that the recently proposed method II+PCA+WVS in

[66] cannot reach perfect accuracy using seven training samples (Table 2.1). The

results in Tables 2.7 to 2.9 indicate that our proposed method is not fully invariant

or robust to any reduction in the number of training samples, however, it exhibits a

notable robust behavior in the presence of high illumination if compared to similar
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Table 2.7 – Yale B: Recognition rate vs. number of training samples.

NTR Subset 2 Subset 3 Subset 4 Subset 5 TIN

7 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0, +5E+10, +5E-10

6 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0, +5E+10

5 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0

4 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10

3 100 100 100 100 -10E+0, -5E-10, +10E+0

2 100 100 100 100 -10E+0, -5E-10

1 100 100 99.29 100 -10E+0

Table 2.8 – Extended-Yale B: Recognition rate vs. number of training samples.

NTR Subset 2 Subset 3 Subset 4 Subset 5 TIN

7 100 100 98.68 99.03 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10, +5E+10, +10E+0

6 100 100 98.50 98.89 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10, +5E+10

5 100 100 98.31 98.75 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10

4 100 100 98.12 98.61 -5E-10, +0E+0, -5E+10, -10E+0

3 100 99.78 97.74 98.47 -5E-10, +0E+0, -10E+0

2 100 99.56 96.80 98.20 -5E-10, -10E+0

1 98.27 98.90 95.87 97.37 -5E-10

existing methods. It is worth pointing out that, we have focused only on the use of

PCA for feature extraction. In Table 2.1, the results obtained by S–P and S–P+PP

(rows 5 and 6 from the bottom in Table 2.1), indicate that how the recognition rate

can be significantly improved if a preprocessing step is added to the S–P technique

in [30]. Keeping this point in mind and in view of the promising results achieved

by the proposed method based on PCA only, it is expected that replacing PCA by

a state-of-the-art feature extraction algorithm may improve the results presented in

this chapter provided that the computational complexity remains reasonable.

The computational time required for the training is usually an offline process.

The execution time, using the proposed method, to process an incoming image of

size 128×128 pixels via a three level DD-DTCWT in MATLAB is 58 milliseconds

(ms/image) using a Core 2 Duo 2.40 GHz processor and 2GB of memory. This is the
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Table 2.9 – CMU-PIE: Recognition rate vs. number of training samples.

lighting condition NTR NTS Total % TIN

lights-off 4 17 21 100 i8, i9, i11, i20

3 18 21 99.59 i8, i11, i20

2 19 21 99.42 i11, i20

1 20 21 98.97 i11

lights-on 4 20 24 100 I8, I9, I11, I20

3 21 24 100 I8, I11, I20

2 22 24 100 I8, I11

1 23 24 100 I8

lights-on/off 7 38 45 99.92 i8, i11, i20, I8, I9, I11, I20

6 39 45 99.77 i8, i11, i20, I8, I11, I20

5 40 45 99.70 i8, i11, I8, I11, I20

4 41 45 99.64 i8, i11, I8, I11

3 42 45 99.02 i8, I8, I11

2 43 45 98.70 i8, I11

1 44 45 84.59 I20

Table 2.10 – Computational time for different methods for an incoming image of size
128×128 pixels.

Method DWT Gabor Curvelet Contourlet S–P

ms/image 29 123 59 17 50

time to complete the full procedure from block 1 to 7 in Fig. 2.3 to read an input

image and to generate its corresponding illumination invariant mask. The execution

time for different algorithms has been shown in Table 2.10 (see Table 10 in [30]) for

reference. The experiments in [30] were carried out via a Dual Core processor at

2.00 GHz and 2GB of RAM. Note that feature extraction, dimensionality reduction,

and classification are separate and independent procedures where PCA and ELM

have been used in our experiments. Compared with other approaches, the proposed

method offers promising results for recognition accuracy and at the same time per-

forms reasonably well in terms of computational complexity. It should be noted that

for most of the cases there is a trade-off between accuracy and execution time. For

example, for the WVS-based method [66] and using the same processor as in our
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experiments, it takes seconds to calculate several types of weights for each window

in a single image. Recall that, implementation of face recognition algorithms in real

applications usually deals with massive databases when several subjects are involved.

It is quite computationally expensive, if one may desire to employ a recognition tech-

nique with higher accuracy but lower execution timing rate on a large database. It

should be noted that the proposed method is not a feature extraction and dimen-

sionality reduction algorithm but an efficient illumination removal technique. Being

more specific, most of the feature extraction techniques are eventually used in pres-

ence of pose and facial expression variation. However, to apply these algorithms on

databases such as Subsets 4 and 5 in the Extended-Yale B, one needs to perform a

preprocessing step first. We believe that in case the feature vector formation and

dimensionally reduction phase in Fig. 2.3, blocks 8 and 9, is replaced by a specific

feature extractor algorithm like [102], the whole procedure can be applied to highly

illuminated version of uncontrolled databases such as the Labeled Faces in the Wild

to reach higher accuracy.

2.7 Conclusions and Summary

In this chapter we have proposed a new and efficient method for human face recog-

nition under varying illumination. The proposed method is based on enhancing the

illumination effects of images first, and then suppressing the illumination via mul-

tiresolution decomposition of input images. In view of the directional-selectivity,

shift-invariance, and extra number of wavelets of the double-density dual-tree com-

plex wavelet transform, redundant illumination can be reduced by thresholding the

high-frequency subbands to construct a raw image. We have also suggested an addi-

tional step, the so-called lifting and fine-tuning process, which amplifies the role of

fine features and key points in an image. The extracted face image masks significantly

facilitate the illumination invariant face recognition task. Principal component anal-
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ysis (PCA) is used for dimensionality reduction and the extreme learning machine

(ELM) is employed as a classifier, which offers classification at considerably higher

speed in comparison with other learning approaches. Several experiments have been

performed using available well documented databases used in traditional face recog-

nition problems. The results indicate that the proposed method compares favorably

to the recent results in the literature in terms of recognition rate and computational

complexity.

Further work in this direction may also include finding 1) an analytical model

to represent the reflectance part of an image only, 2) a similar strategy for object

recognition (not necessarily face) in color images, 3) a fully automated approach to

determine the parameter ξ depending on an input image, 4) embedded solutions, the

so-called system level design technique, to combine the algorithm steps as a compact

system. The latter is left as an open problem where we expect that the proposed

framework can be further studied in embedded-classifier design. We are currently

investigating the classifiers attributes and feature selection/extraction algorithms,

to be controlled analytically in the wavelet domain, for the design of customized

classifiers in complex applications such as military image recognition problems and

biomedical instrumentation.

54



Chapter 3

Frequency Selectivity and Illumination

Invariant Analysis

3.1 Literature Review

In Chapter 2, we proposed a novel method for the problem of illumination invari-

ant human face recognition based on illumination suppression via multiresolution

analysis. As discussed before, multiresolution analysis allows the decomposition of

a signal into its frequency components. It is basically an analysis-synthesis configu-

ration, where a signal is represented in various frequency subbands via the analysis

side of a wavelet filter bank. In a perfect reconstruction filter bank the synthesis

side in turn can reconstruct the original signal. Now a valid and important question

is how can the characteristics of the filters of such a structure affect the recogni-

tion results? Being more specific, how the frequency selectivity of the filters of the

transformation may change the performance in an application. By the term filter

characteristics, it is technically referred to as the transition band and magnitude of

ripples of the frequency response of the filters designed and employed in a transfor-

mation. This chapter answers to these questions analytically and theoretically, and

provides a unique contribution to the relation between the frequency selectivity of

the transformation and the recognition accuracy of a face recognition system.
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Technically, multiresolution analysis or multiscale approximation is used to deal

with the theory and design of discrete wavelet transform (DWT), multiwavelets, dual-

tree complex wavelet transform (DT-CWT), higher-density discrete wavelet transform

(HD-DWT), curvelets and framelets [23][59][60][73][77][78][89][99]. This family con-

tains several desired properties such as orthogonality, biorthogonality, regularity, and

continuity. Although these wavelets cannot be explicitly expressed, they can be writ-

ten as a function of another wavelet in the family. In addition, there is a small group

of wavelets in literature known as crude wavelets, for which the wavelet filters are

generated using an explicit mathematical equation. Even with explicit, continuous,

and theoretically infinite mathematical equations for these crude wavelets, still one

needs to produce discrete finite filters for digital applications. The literature on pulse

shaping and crude wavelets is vast and various pulses such as Gaussian, Mexican hat,

hyperbolic, Meyer and Morlet, which belong to the crude wavelet group have been

studied by researches for decades [52]. An interesting approach to edge detection

in hyperbolic- and Gaussian-distributed pixel-intensity images using hyperbolic and

Gaussian masks has been presented in [53]. In [54], hyperbolic kernels are further in-

vestigated and auto-term functions of the first-order hyperbolic kernel, Choi-Williams

(CW) kernel and nth-order hyperbolic kernel have been explicitly derived.

Although many state-of-the-art applications take advantage of existing multires-

olution transformations, the theory and design of new multiresolution systems is a

difficult and challenging problem whose solution helps to improve relevant applica-

tions in image processing and pattern recognition. This chapter deals with the design

of a class of wavelet filter banks, halfband pair filter bank (HPFB), which is referred

to as tunable halfband pair (THP) throughout the text. The proposed design scheme

offers wavelet filters ranging from the lowest frequency selectivity to the sharpest

transition band along with a control and tuning opportunity over the filters charac-

teristics required in multiresolution based applications. Traditional maximally flat

wavelet filters [23] are highly regular but have poor frequency selectivity. In [76],
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Rioul and Duhamel showed that regularity and frequency selectivity are in an inverse

relationship. In its basic form a lowpass filter is regular if it has at least one zero

at z = −1, the so-called number of vanishing moments (NVM). While regularity is

an important task in wavelet based compression, frequency selectivity is also another

significant factor to be considered within applications such as denoising, subband

coding, classification and recognition.

In order to analyze the effect of the frequency selectivity of the filters of a multires-

olution transformation on the performance of a face recognition system, the challenge

here is first to propose a wavelet design method that can provide a tuning opportu-

nity to control the desired specifications. In other words, the problem is defined as

how to design wavelet filters with the sharpest transition band for a fixed number of

vanishing moments. This chapter is motivated by the possibility, and the need for

improvements of wavelet filters characteristics in two-channel perfect reconstruction

filter banks. The necessity stems from the lack of a clear control over the frequency

response of the filters in terms of passband/stopband edges, number of vanishing mo-

ments, and ripples. Various approaches have been considered for the design of perfect

reconstruction filter banks, e.g., the Remez exchange algorithm, least squares, and

Eigenfilter [73]. In [13], optimization of filter banks is investigated for invariant super-

vised texture segmentation. Multiscale directional filter bank is discussed extensively

in [19] to suppress the aliasing effect, as well as to minimize the reduction in fre-

quency resolution where the problem of aliasing in decimated bandpass images on

directional decomposition has been addressed. Dumitrescu formulated an SDP prob-

lem [28] that improved the orthogonality error of our earlier orthogonal filter banks.

In [29], and based on an SDP framework to guarantee the global optimality, it has

been shown that an implicit form of regularity constraint imposition is much more

appropriate in terms of numerical accuracy. The idea of using parametric Bernstein

polynomial in wavelet design has been investigated by several researchers. In [108], a

sum of squares based method was proposed for the design of halfband product filters
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for orthogonal wavelets. Zhang indicates that the well-known Remez exchange algo-

rithm is an efficient approach for equiripple design of orthogonal FIR filters [111]. A

generalized parametric quadrature mirror filter bank design technique was suggested

in [22], where the authors introduced parametric polynomials to approximate the or-

thogonal wavelet filters. Phoong et al. [73], proposed a design procedure for halfband

pair filter bank (HPFB) with the structural perfect reconstruction property, where

the lowpass analysis filter, which is assumed to be a halfband filter, was used in a

one-stage optimization process employing two kernels where the kernels are mostly

assumed to be the same. Tay suggested a two-stage least squares design of HPFB,

defining two different polynomial based kernels [95], where the objective function to

be minimized to extract free parameters is the energy of ripples. Another method

was proposed by Patil et al. [71] to design FIR wavelet filter banks using factorization

of a halfband polynomial in the frequency domain.

3.2 Motivation and Problem Statement

Motivated by the capability of parametric polynomials in filter design and in the

light of notable progress in semidefinite programming techniques we first derive filter

coefficients in the polynomial domain (in the variable x) in terms of the coefficients

of the corresponding function in z-domain. We then define a new objective function

and problem formulation based on SDP representation of the obtained polynomial.

It is pointed out that due to the use of SDP and the way we define the problem, for a

fixed filter length and pre-specified filter characteristics, solution to this problem can

generate filter pairs ranging from the widest to the sharpest transition band width.

The proposed technique offers tuning opportunity on the passband and stopband

widths, amplitude of ripples, and number of vanishing moments. Based on these

factors, one can tune the specified requirements in an application.

As it was mentioned earlier the main purpose of this chapter is to analyze the effect

58



of the frequency selectivity of a multiresolution transformation on the performance

of a face recognition system which requires to first designing the corresponding filters

such that the desired characteristics can be tuned and controlled. While the accuracy

of pixel information highly depends on its frequency content in wavelet subbands,

it is reasonable to use wavelets with the sharpest transition band width. Knowing

that the performance of a face recognition system is mostly related to the quality

of the extracted features, informative and healthy feature extraction is an important

phase of the recognition problem. On the other hand, several classifiers may be

employed for the recognition and classification part, however, the quality of features

is the dominant factor. We have implemented and realized several experiments to

evaluate and study the effect of the frequency selectivity employing the tunable filters.

Illustrative examples are provided and varieties of experiments have been carried out

using the well-known databases such as the Yale B and CMU-PIE to support the

analysis and results.

Also, to validate the quality filters designed and the effect of the frequency se-

lectivity analysis approach shown in this chapter, a similar analysis has been carried

out in multifocus image fusion and shape from focus. The reconstruction of a geo-

metric object and to retrieve spatial information from one or multiple observation is

a challenging problem in computer vision. When a 3D scene is projected into a 2D

image plane, depth information is lost. Considering the advantage of tunable and

frequency selective filter pairs proposed in this chapter the effect of frequency selec-

tivity is inspected in multifocus imaging to select the best fitting feature pixels from

the input images. Experimental results and quantitative comparisons show how the

performance of a multiresolution based multifocus imaging system can be affected via

the use of various filters with different sharpness.
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3.3 Problem Formulation and Derivations

Let us consider a two-channel filter bank with the analysis and synthesis lowpass

(highpass) filters denoted by H0(z) (H1(z)) and F0(z) (F1(z)), respectively. It is

now well known that the scaling and wavelet functions associated with the analysis

side of the filter bank are defined by the two-scale equations in terms of the impulse

response of the filters in the filter bank, h0 and h1. The scaling function and wavelets

associated with the synthesis side of the filter bank are similarly defined via the

corresponding impulse responses f0 and f1, respectively [99]. Considering the typical

structure of a two-channel filter bank, the goal here is to design H0(x) and F0(x), and

consequently obtain H1(x) and F1(x). Representation of a complicated function (in

the variable z for instance) in the polynomial domain (in the variable x) motivates

to derive and optimize the filter functions in the variable x. The philosophy of such

a strategy is twofold. First, unlike a polynomial in the x-domain, the filter function

in the variable z in the frequency domain cannot be simply tailored for a desired

response. Secondly, in case one could find a reasonable way to define the problem

in the z-domain, the main question is how to easily search or solve for the desired

solution. Recent progress in optimization techniques, e.g., Genetic algorithm and

convex optimization, provide the opportunity to efficiently search for an optimum

solution in the polynomial domain.

Fig. 3.1 (a) shows a typical sample filter pair characteristics in the frequency

domain in the variable z where z = ejω. The same filters are represented in Fig. 3.1

(b) in the variable x in terms of a univariate polynomial. xcp and xcs denote the

passband and stopband edges, H1(x) and F1(x) are the highpass versions of F0(x)

and H0(x), respectively, and the notations Λ(x) and Ω(x) are used to define filter

kernels as is described later. The filter function, which has been defined in the z-

domain, is transformed into the x-domain through the change of variable, and thus

the problem is converted to a semidefinite programming problem which can be solved
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Figure 3.1 – Typical specifications of filters in a sample HPFB pair. (a) in the variable
z; (b) in the variable x. Passband and stopband edges, xcp and xcs respectively, are
shown for H0 for instance.

efficiently in the variable x to enforce for and to control the desired characteristics.

The whole idea and problem statement can be briefly summarized as follows [4].

1. General form of a halfband filter function, P (z), is taken into consideration to

be optimized for its coefficients (a) such that the desired characteristics are met.

2. Following the discussion above and employing a univariate polynomial, T (x),

with the coefficient vector b, T (x) is to be written in terms of a, the coefficient vector

of the frequency domain function P (z).

3. After transformation of P (z) from z-domain into the x-domain, T (x) can be

represented via SDP, i.e, the frequency response can be bounded for a given transition

band and ripples.

4. Finally, for a given filter length and number of vanishing moments, we define

an optimization problem to determine b, and consequently a, such that the passband

and stopband widths be maximized (the sharpest transition band) subject to the

desired design characteristics.

The design procedure starts by defining a filter function in the frequency domain.

Daubechies wavelet filters contain the maximum possible number of vanishing mo-

ments for a fixed filter length, however, there is no free parameter to have some degree

of freedom to control the frequency response of the wavelet filters to be able to in-
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crease the frequency selectivity of the filters obtained. We want to incorporate free

parameters to control the design specifications, and therefore, we first map a general

halfband polynomial from z- into the x-domain by a variable transformation. While

it is possible to directly optimize the desired specifications in x-domain, it cannot be

easily performed in the variable z. Knowing that a halfband filter function can be

defined by the following expression [59], [89]

P (z) = a0 + a2z
−2 + . . .+ aK/2−1z

−K/2+1 + aK/2z
−K/2 (3.1)

+ aK/2−1z
−K/2−1 + . . .+ a2z

−K+2 + a0z
−K

= R(z)(z + 1)−2m (3.2)

where R(z) is the reminder term with symmetric coefficients, our aim is to obtain the

optimal values for the coefficients a = {a0, a2, . . . , aK/2−1, aK/2} such that for a fixed

filter length, pre-specified NVM and ripples, the corresponding filter has the sharpest

transition band, leading to the best frequency selectivity in its class. In this notation,

K is an even integer, K/2 must be odd, and m is the representative for the number

of required zeros at z = −1. Let us assume T (x) be a univariate polynomial in the

variable x defined by

T (x) = (bMx
M + bM−1x

M−1 + . . .+ b1x+ b0)(x− 1)m (3.3)

= fN(b)xN + fN−1(b)xN−1 + . . .+ f1(b)x+ (−1)mb0 (3.4)

where M + m = N , m is the number of zeros at x = 1, N = K/2, f(.)(b) refers to

a function of bis with i = 0, . . . ,M to denote coefficients of the polynomial in (3.4),

and we define b = {bM , . . . , b1, b0}. The polynomial in (3.4), which represents filter

function in the variable x, can be transformed into the z-domain through a change of

variable, that is, x = 1
2
(1− cosω) = 1

2
(1− ejw+e−jw

2
) = 1

2
(1− z+z−1

2
) = −1

4
z(1− z−1)2

with z = ejω. It must satisfy the halfband condition T (x) +T (1−x) = 1 required for

perfect reconstruction. Assuming that the final goal is to find optimal values for a,

we shall find the relationship between {a0, a2, . . . , aK/2−1, aK/2} and {bM , . . . , b1, b0}
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before performing an optimization cycle in the variable x. For the class of filters

discussed here although H0(x) is an antisymmetric function about the point (x =

0.5, H0(x) = 0.5), F0(x) is not necessarily an antisymmetric function and thus, similar

to [95] the following kernels are used to design H0 and F0.

Λ(x) , T1(x) (3.5)

Ω(x) , T1(x) + 2T2(x)− 2T1(x)T2(x) (3.6)

where T1 and T2 are derived from (3.4) with different free parameter vectors b1 and

b2, and the lowpass filters in the analysis and synthesis sides of the filter bank are

determined by

H0(z) = Λ(
−z(1− z−1)2

4
) (3.7)

F0(z) = Ω(
−z(1− z−1)2

4
) (3.8)

with the corresponding highpass filters given by H1(z) = z−1F0(−z) and F1(z) =

zH0(−z). Note that H1 and F1 are the highpass versions of F0 and H0 respectively,

and therefore, it is sufficient to design either H0 and F0, or H1 and F1. Selection in

(3.5) and (3.6) ensures perfect reconstruction which can be verified using the property

T (x) + T (1− x) = 1, that is

H0(−z) ≡ T1(1− x) = 1− T1(x) (3.9)

F0(−z) ≡ T1(1− x) + 2T2(1− x) (3.10)

− 2T1(1− x)T2(1− x) (3.11)

= 1 + T1(x)− 2T1(x)T2(x). (3.12)

From (3.5), (3.6), (3.9), and (3.12) it is verified that perfect reconstruction is achieved

and H0(z)F0(z) +H0(−z)F0(−z) = 1 [89]. It is important to note that the condition

holds if the halfband property of T (x) is assured. In the following section it is shown

that how this property is imposed within the design procedure. The obtained lowpass

filters, H0(z) and F0(z), structurally hold the desired number of vanishing moments,
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i.e., NVMΛ = 2mT1 , LΛ = 2NT1 + 1, NVMΩ = 2min{mT1 ,mT2}, and LΩ = 4NT2 +

1 where L refers to filter length. Relations (3.5) and (3.6) employ two different

polynomials T1 and T2 with mT1 and mT2 zeros at x = 1, respectively. NVMΛ and

NVMΩ denote the number zeros at z = −1 after the variable transformation from x

to z. Performing a change in the variable in (3.4), T (x) is then written in terms of z,

where the equivalency of T (z) ≡ P (z) results in


1 0 . . . 0

(−1)1
(
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)
1 . . . 0
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and therefore
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0
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gN(a)
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...
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(3.14)
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where the right hand side of the latter equality indicates how f(.)(b)s are related

to functions of a, denoted by g(.)(a). It should be noted that fN(b) = bM , and

thus, bM is written based on a. fN−1(b) depends on fN(b), and therefore, fN−1(b) is

written based on bM and consequently in terms of a. Similarly, fN−2(b) needs fN−1(b)

and fN(b) and so on. Therefore, starting from top to bottom and substituting the

values, all f(.)(b)s are derived based on g(.)(a)s. In order to structurally impose the

desired number of vanishing moments, one may factorize either P (z) as in (3.2) to

extract R(z), or T (x) as in (3.3). Recall that x = 1 in x = −1
4
z(1 − z−1)2 yields

z = −1. In practice, the expression in (3.3) is more convenient than extracting

R(z) in (3.2). It is worth pointing out that the matrix equality in (3.14) represents

the direct relation between the coefficients of T (x) and P (z) in general taking into

account that the number of vanishing moments have been structurally imposed. In

addition to this relationship, T (x) must be halfband, i.e., T (x) must satisfy T (1) = 0,

T (0) = 1, T (0.5) = 0.5, and T (x) must be an antisymmetric function about the

point (x = 0.5, T (x) = 0.5). T (1) = 0 is automatically satisfied due to the existence

of the term (x − 1)m. T (0) = 1 results in b0 = (±1)m, and T (0.5) = 0.5 presents

another relationship between the coefficients. The antisymmetry of T (x) is achieved

by replacing x and T with x + 0.5 and T + 0.5, respectively, and then applying the

antisymmetric condition at origin, that is, −T (x) = T (−x). Now the coefficients

of T (x), b, are tightly related to the coefficients of P (z), a, holding the required

conditions for perfect reconstruction and number of vanishing moments.

In Section 3.4 it is shown that T (x) is bounded in desired intervals depending

on the size of ripples and the transition band width. In other words, T (x), which is

the filter function in the variable x, is bounded to be optimized for its coefficients,

b, where they are already written in terms of the coefficient vector a. The following

two examples give a preview regarding the idea, whereas the details are extensively

discussed in Section 3.4.3.

Let us start with the maximally flat filter for the case N = 7. We must set m = 4
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and thus

P (z) = a0 + a2z
−2 + a4z

−4 + a6z
−6 + a7z

−7 + a6z
−8 + a4z

−10 + a2z
−12 + a0z

−14

= R(z)(z + 1)−8

where the factor R(z) is of degree −6 and a = {a0, a2, a4, a6, a7}. The equivalent

polynomial in the variable x is then written as

T (x) = (b3x
3 + b2x

2 + b1x+ b0)(x− 1)4

where b = {b3, b2, b1, b0}, and consequently

1b3

1b2

1b1

1b0

−4b0

6b0

−4b0

1


+



0

−4b3

−4b2 + 6b3

−4b1 + 6b2−4b3

6b1 − 4b2 + 1b3

−4b1 + 1b2

+1b1

0


=



−16384 0 0 0 0 0 0 0

57344 4096 0 0 0 0 0 0

−78848 −12288 −1024 0 0 0 0 0

53760 13824 2560 256 0 0 0 0

−18816 −7168 −2240 −512 −64 0 0 0

3136 1680 800 320 96 16 0 0

−196 −144 −100 −64 −36 −16 −4 0

2 2 2 2 2 2 2 1


×



a0

0

a2

0

a4

0

a6

a7


(3.15)

Starting from the first row, b3 is obtained based on a, and by substituting it in

the second row, b2 is also written in terms of a and the procedure is stopped in the

fourth row. That is, b3 = −16384a0, b2 = −8192a0, b1 = −13312a0 − 1024a2. As

T (0) = 1, then b0 = 1 and from the fourth row −15872a0 − 1536a2 − 1 = 0. Also

T (0.5) = 0.5 results in −672a0 − 32a2 − 7
16

= 0. Therefore, a0 = −0.001220703125,

a2 = 0.011962890625, and consequently b3 = 20, b2 = 10, b1 = 4, and from the other

rows in (3.15) we have a4 = −0.059814453125, a6 = 0.299072265625, and a7 = 0.5.

While the maximally flat can be obtained without any optimization process, that is

not the case if one demands a sharper transition band at the price of lower number

of vanishing moments. This is shown through the following example.

For N = 7, and in case of m = 2 instead of maximally flat (m = 4), still we have

P (z) = a0 + a2z
−2 + a4z

−4 + a6z
−6 + a7z

−7 + a6z
−8 + a4z

−10 + a2z
−12 + a0z

−14
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however, P (z) = R(z)(z + 1)−4, where R(z) is of degree −10, a = {a0, a2, a4, a6, a7},

and

T (x) = (b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0)(x− 1)2

where b = {b5, b4, b3, b2, b1, b0} and therefore

1b5

1b4

1b3

1b2

1b1

1b0

−2b0

b0


+



0

−2b5

−2b4 + 1b5

−2b3 + 1b4

−2b2 + 1b3

−2b1 + 1b2

+1b1

0


=



−16384 0 0 0 0 0 0 0

57344 4096 0 0 0 0 0 0

−78848 −12288 −1024 0 0 0 0 0

53760 13824 2560 256 0 0 0 0

−18816 −7168 −2240 −512 −64 0 0 0

3136 1680 800 320 96 16 0 0

−196 −144 −100 −64 −36 −16 −4 0

2 2 2 2 2 2 2 1


×



a0

0

a2

0

a4

0

a6

a7


(3.16)

Following the same procedure as in the previous example, we have b4 = −3b3−6b2,

b5 = 2b3 + 4b2, and therefore, b5 = −16384a0, b4 = 24576a0, b3 = −13312a0− 1024a2,

b2 = 2560a0 +512a2, b1 = 2, and b0 = 1. Now depending on the desired ripple size and

the transition band width, the optimum values for coefficients must be determined

via an optimization cycle which has been shown in Case 1 in Section 3.4.3. This is

the technical elaboration of the development procedure summarized at the beginning

of Section 3.3. In the next section, we shall apply the bound conditions on T (x) to

incorporate filters characteristics in the formulation in the variable x. Our aim here is

to find filter coefficients a, which are directly defined as a semi-definite programming

problem variables. Note that coefficients of T (x), b, have been written in terms of a.

3.4 Kernels and the Design of THPs

The nonnegativity of the frequency response of the product filter on the unit circle

is a critical condition that shall be taken into consideration in orthogonal design

[25][64][108]. Since the nonnegativity of the frequency response of the product filter is

not a needed condition to be satisfied in biorthogonal design, the strict nonnegativity
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is relaxed to have some negative ripples. Therefore, we first study the nonnegativity

of polynomials in intervals and then show that T (x) can be represented via SDP

decompositions. The latter leads to the point that the frequency response can be

bounded for a given tolerance error.

3.4.1 Nonnegativity of Polynomials on Domains

For a univariate polynomial p(x), nonnegativity for a finite and bounded interval

denoted by D, is utilized via sums of squares. In other words, a necessary and

sufficient condition for a univariate polynomial to be positive semidefinite (PSD) is

to write it in a sum of squares form [12]. Note that if p(x) ≥ 0 for all x ∈ R, then

the polynomial is said to be PSD.

Theorem 1: Let s(x) be a univariate polynomial of degree 2k with monomials of

degree less than or equal to k, i.e., v = [1, x, x2, . . . , xk]. If s(x) can be expressed

as a positive semidefinite quadratic form s = vt∆v, where ∆ ∈ S+
1, then s is a sum

of squares. Conversely, s can be expressed as a positive semidefinite quadratic form

in the monomials, that is, s = vt∆v for some ∆ ∈ S+.

Proof. See Chapter 4 in [12].

Theorem 2: Let p(x) be a univariate polynomial of odd degree 2k + 1. If p(x) is

nonnegative on a domain D = {x| x∈ [α β], α, β∈R}, that is, p(x) ≥ 0 for all x ∈ D,

then there exist sum of squares sµ(x) and sη(x) of degree not more than 2k such that

p(x) = (x− α)sµ(x) + (β − x)sη(x). (3.17)

Likewise, if polynomials of even degree are to be used, i.e., p(x) of degree 2k, then

p(x) ≥ 0 on D = {x| x∈ [α β], α, β ∈R}, if and only if there exist sum of squares

sµ(x) and sη(x) of degree not more than 2k − 2 such that

p(x) = sµ(x) + (x− α)(β − x)sη(x). (3.18)

Proof. See [74], or Section III in [25].

1S+ denotes the set of symmetric positive semidefinite square matrices and t stands for transpose.
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It is pointed out that not all positive polynomials are necessarily sum of squares.

For real polynomials the condition holds for 1) univariate polynomials of any degree,

2) quadratic polynomials of any number of variables, and 3) quartic polynomials of

two variables. In general, the condition holds for trigonometric polynomials, where

all variables are bounded. The condition that a polynomial be written as sum of

squares and viewed as a constraint on its coefficients turns out to be equivalent to a

linear programming problem and therefore a variety of optimization problems with

such constraints can be posed as SDPs [12]. Strictly speaking, it is shown that the

condition s = vt∆v is a set of linear equality constraints relating the coefficients of s

and the matrix ∆. Combined with Theorem 1 and 2, this shows that the condition

is then equivalent to a set of linear equalities relating ∆ and the coefficients of the

polynomial, and the matrix inequality ∆ ≥ 0. See Chapter 17 in [64] and Problem

4.45 in [12].

3.4.2 Representation of Kernels

Noting that N is an odd integer [22, 89], the representation in (3.17) is used to define

sets of inequalities required in biorthogonal design scheme illustrated in Fig. 3.1, where

the strict positivity in (3.17) is relaxed to have some negative ripples. Thus, Λ(x) has

passband and stopband edges xcp and xcs respectively, if the following inequalities

and consequently the corresponding equality decompositions are satisfied

1− δ ≤ Λ(x) ≤ 1 + δ, x ∈ [0, xcp ] (3.19)

Λ(x)− 1 + δ = (x− 0)sµ1(x) + (xcp − x)sη1(x) (3.20)

1 + δ − Λ(x) = (x− 0)sµ2(x) + (xcp − x)sη2(x) (3.21)

0.5 ≤ Λ(x) ≤ 1− δ, x ∈ (xcp , 0.5] (3.22)

Λ(x)− 0.5 = (x− xcp)sµ3(x) + (0.5− x)sη3(x) (3.23)

1− δ − Λ(x) = (x− xcp)sµ4(x) + (0.5− x)sη4(x) (3.24)
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where δ denotes ripples, and polynomials sµr(x), sηr(x), for r = 1, . . ., 4, have degrees

equal to or less than k. Note that similar derivations, required for the stopband region

with xcs = 1 − xcp , are not necessary due to antisymmetry of Λ(x). Likewise, and

noting to the structure of Ω(x) as in (3.6) and shown in Fig. 3.1, we can write

1− δ ≤ Ω(x) ≤ 1 + δ, x ∈ [0, xcp ] (3.25)

Ω(x)− 1 + δ = (x− 0)sµ1(x) + (xcp − x)sη1(x) (3.26)

1 + δ − Ω(x) = (x− 0)sµ2(x) + (xcp − x)sη2(x) (3.27)

1− δ ≤ Ω(x) ≤ δmx, x ∈ (xcp , 0.5] (3.28)

Ω(x) + 1− δ = (x− xcp)sµ3(x) + (0.5− x)sη3(x) (3.29)

δmx − Ω(x) = (x− xcp)sµ4(x) + (0.5− x)sη4(x) (3.30)

δ ≤ Ω(x) ≤ 1− δ, x ∈ (0.5, xcs ] (3.31)

Ω(x)− δ = (x− 0.5)sµ5(x) + (xcs − x)sη5(x) (3.32)

1− δ − Ω(x) = (x− 0.5)sµ6(x) + (xcs − x)sη6(x) (3.33)

−δ ≤ Ω(x) ≤ δ, x ∈ (xcs , 1] (3.34)

Ω(x) + δ = (x− xcs)sµ7(x) + (1− x)sη7(x) (3.35)

δ − Ω(x) = (x− xcs)sµ8(x) + (1− x)sη8(x) (3.36)

where polynomials sµr(x), sηr(x), for r = 1, . . ., 8, have degrees equal to or less than

k, and δmx in (3.28) refers to the amount of overshoot of the corresponding maximally

flat filter which can be determined via the maximally flat function. In fact, we want

to control and maintain the overshoot to be less than the corresponding maximally

flat in each design. In general, given the ideal H0 and using the perfect reconstruction

equation H0(z)F0(z)+ H0(−z)F0(−z) = 1, one can obtain the ideal F0 defined by 1
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for x ∈ [0, 0.5) and 0 for x ∈ (0.5, 1]. The problem is that F0(x) = 1 at x = 0.5 but

H0(0.5)=0.5. The overshoot is a consequence of the perfect reconstruction condition;

when H0 is small in the passband region, F0 needs to compensate to achieve perfect

reconstruction, and therefore, by increasing the passband/stopband width of H0 the

amount of overshoot must be decreased. In a recent paper [47] it has been shown

that triplet halfband filter banks can improve the image compression due to better

frequency selectivity. Though the overshoot is one of the limitations of HPFB class,

this does not seem to pose problems in certain applications, e.g., the 5/3 JPEG2000

filter pair belongs to this class. The class of triplet halfband filter banks does not

have this limitation, however, the design procedure is computationally expensive. It

is expected that a similar approach as presented in this chapter may lead to a simpler

design for the class of triplet halfband filters.

It should be noted that the design procedure contains two cycles. First the co-

efficients of T1(x) (Λ(x)), b1 written based on a1, are obtained. Then a new set of

coefficients b2 (in terms of a2), which are the coefficients of T2(x) are determined via

optimization for bounding Ω(x). Note that Λ(x) depends on the coefficients of T1(x)

only, however, Ω(x) requires b1 and b2. Substituting T1(x) and T2(x) in (3.5) and

(3.6) respectively, Λ(x) and Ω(x) in (3.19)–(3.33) are derived based on polynomials

coefficients. Now let us define the following problems.

Problem 1. Let Λ(x) be in the form of (3.5) with pre-specified N , m, and δ. We

want to determine b1 such that the passband and stopband widths, defined using xcp

and xcs , be maximized subject to inequalities in (3.20) and (3.22).

Problem 2. Let Ω(x) be in the form of (3.6) with pre-specified N , m, δ, δmx, and

the coefficients b1 obtained in Problem 1. We want to determine b2 such that the

passband and stopband widths of Ω(x) be maximized subject to inequalities in (3.25),

(3.28), (3.31), and (3.34).

Solution to these nonconvex problems cannot be determined if the passband or

stopband edges are considered as unknown variables. A traditional approach is to
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Table 3.1 – Performance analysis of the filters designed in Case 1 for N = 7.

m ω̄H0
cp

ω̄H0
cs

ω̄H1
cp

ω̄H1
cs

δH0
p δH0

s δH1
p δH1

s Overshoot s.a.H0 s.a.H1

4 0.2728 0.7272 0.7249 0.2318 0 0 0 0 1.1250 - -
2 0.3801 0.6199 0.6173 0.3375 0.02 0.02 0.02 0.02 1.1024 -34 -34

solve the problem by changing the role of variables [12] first; ripples and edges, and

then iteratively find the optimal solution. However, in order to efficiently search for

the solution and to reduce the computational complexity, we have used the Genetic

Algorithm. Furthermore, we have supplemented the procedure with Bisection [12]

due to the existence of two edges to be optimized. The Bisection step is quite fast

as the bisecting interval is not a wide range. It is usually less than half of the

passband/stopband width. It is worth pointing out that although we do not solve the

problem directly for ripples, the exact desired ripple size is obtained at the end of the

cycle. We use a MATLAB toolbox for optimization over symmetric cones [90] and

the Genetic Algorithm Toolbox of MATLAB as the solvers. In the following section,

the proposed method is used to design sets of new wavelets with various frequency

response characteristics, which will eventually be employed along with the proposed

face recognition system in Chapter 2 to analyze the performance of a face recognition

system under different frequency response characteristics.

3.4.3 Design Examples and Discussions

Various combinations may be considered, depending on filter length, number of van-

ishing moments, passband and stopband widths, and ripples. For a given filter length

and specified number of vanishing moments and ripples, we can obtain a set of THP

wavelet filter pairs ranging from the maximally flat to the sharpest transition band.

Case 1: For N = 7, m = 2 and δ = 0.02, we consider the possible maximal pass-

band/stopband width to determine coefficients of the polynomials T1 and T2 required

to implement the corresponding wavelet filter kernels Λ(x) and Ω(x). Performance

72



Table 3.2 – Coefficients to implement H0(z) and F0(z) in Case 1 for N = 7 and m = 2.
Note that a1 and a2 result in T1(x) and T2(x), respectively, where Λ(x) = T1(x),
however, Ω(x) = T1(x) + 2T2(x)− 2T1(x)T2(x).

a a1 a2 b b1 b2

a0 -0.0109558471679687 -0.0044677734375000 b5 179.5006 73.2000
a2 0.0414515014648589 0.0246503906250143 b4 -269.2509 -109.8000
a4 -0.0898694213864434 -0.0783945312497395 b3 103.3979 34.2330
a6 0.3093737670909270 0.3082119140635260 b2 -6.8238 1.1835
a7 0.5 0.5 b1 2.0000 2.0000

b0 1.0000 1.0000

of the designed filters is presented in Table 3.1 and compared to maximally flat fil-

ters with the same length. In this table, ω̄ refers to the normalized frequency and

s.a. denotes the stopband attenuation in decibel (dB). The optimization variables

a1 and a2 are obtained and given in Table 3.2. Recall that since the biorthogonal

filter banks designed in this chapter belong to the class of HPFB [73], the analysis

lowpass and synthesis highpass filters H0 and F1 must be halfband, that is, H0 (and

F1) is an antisymmetric function with respect to the point (x = 0.5, H0(x) = 0.5).

In other words, passband and stopband widths are exactly identical, and equiripple

behavior is preserved. However, F0 (and H1) is not necessarily an antisymmetric

function and the stopband and passband characteristics are quite different, knowing

that F0(x = 0.5) = 1 but H0(x = 0.5) = 0.5 [95] (see Fig. 3.1). One should note that

the two functions T1(x) and T2(x), used to define kernels in (3.5) and (3.6), are anti-

symmetric functions. As Λ(x) = T1(x), this property is observed for H0(x), however,

Ω(x) 6= T2(x) (see (3.6) and (3.8)) and therefore Ω(x) and consequently F0(x) and

H1(x) cannot be antisymmetric functions. The proposed formulation in polynomial

domain can control the design specifications and provide a trade-off between regu-

larity and frequency selectivity. The increased sharpness of the transition band over

the maximally flat, and consequently the better frequency selectivity of the filters has

been given in Table 3.1.

Case 2: For the case N = 13 and m = 1, we set δ = 0.02 both for H0 and F0.
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Table 3.3 – Performance analysis of the filters designed in Case 2 for N = 13 with
m = 7, 5, 3, 1.

m ω̄H0
cp

ω̄H0
cs

ω̄H1
cp

ω̄H1
cs

δH0
p δH0

s δH1
p δH1

s Overshoot s.a.H0 (dB) s.a.H1 (dB)

7 0.3268 0.6732 0.6713 0.2934 0 0 0 0 1.1250 - -
5 0.4161 0.5839 0.5817 0.3853 0.02 0.02 0.02 0.02 1.1018 -34 -34
3 0.4350 0.5650 0.5630 0.4109 0.02 0.02 0.02 0.02 1.0996 -34 -34
1 0.4408 0.5592 0.5573 0.4174 0.02 0.02 0.02 0.02 1.0976 -34 -34

It should be noted that although equiripple must be preserved for halfband filter H0,

this is not a necessity for F0, and therefore, one may choose a different ripple size for

F0. The filter characteristics for this case are given in Table 3.3, where ω̄ refers to the

normalized frequency and s.a. denotes the stopband attenuation in dB. Coefficients

of the polynomials, T1(x) and T2(x), required to implement the corresponding wavelet

filter bank are given in Table 3.4. We have also shown the results for the maximally

flat with m = 7, and also for the cases with m = 3 and m = 5 in the same table.

Similar to Case 1, Fig. 3.2 (a) and (b) show the filters responses in the variable x and

z, respectively, where the sharpness of transition band is clearly observed in Fig. 3.2

in contrast to poor frequency selectivity and wide transition band of the maximally

flat filter pairs.

In terms of computational code and programming, a technical question is how can

polynomials sµ and sη be determined? Although working with univariate polynomials

is the simplest case of the problem of positivity of polynomials, in general, it is difficult

to find an analytic solution to this question. The authors are aware of some partic-

ular techniques such as Sturm sequences and similar ideas based on root counting

algorithms which contain some restrictions. Besides its obvious theoretical interest,

this is also a relevant question in applied mathematics and engineering. While some

algebraic techniques have been proposed to address the problem analytically [75], re-

cent research and results in literature suggest that this problem can be solved more

efficiently using numerical techniques such as SDP. Using convex optimization and

SDP, the problem is then converted to a standard question of computing eigenval-
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Table 3.4 – Coefficients to implement H0(z) and F0(z) in Case 2 for N = 13 and
m = 1. Note that a1 and a2 result in T1(x) and T2(x), respectively, where Λ(x) = T1(x),
however, Ω(x) = T1(x) + 2T2(x)− 2T1(x)T2(x).

a a1 a2 b b1 b2

a0 0.0148422480940819 0.00252524529099464 b12 -996046.4088 -169466.3428
a2 -0.0171503426671027 -0.00825489069819463 b11 5478255.2484 932064.8854
a4 0.0220590517280641 0.01623159040212130 b10 -13063428.2652 -2200213.8746
a6 -0.0373170116231449 -0.02908116489754780 b9 17698512.8304 2910475.7952
a8 0.0551050808024911 0.05110726157896290 b8 -15003655.5256 -2364308.4338
a10 -0.1030607602008620 -0.09815436501173560 b7 8267521.2032 1217313.3385
a12 0.3155217328204610 0.31562632333562400 b6 -2982873.0376 -397017.7799
a13 0.5 0.5 b5 693633.2816 80046.8653

b4 -99811.4848 -9469.1327
b3 8218.8662 593.6343
b2 -333.9638 -17.1759
b1 3.6280 -0.8895
b0 -1.0000 -1.0000
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Figure 3.2 – Filter functions and responses for the case N = 13, m = 1, and δ = 0.02
using the proposed method (solid-curve) compared with the corresponding maximally
flat (dashed-curve) for the same example. Both the lowpass and highpass filters, H0

and H1, are shown (H1 is the highpass version of F0). (a) in the variable x; (b) in the
variable z. Insets show magnification of some portions.

ues. The whole idea with SDP representation of sum of squares decomposition is to

generate the positive semidefinite quadratic forms [58][70].
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For filters with larger degree (e.g. length of 27 and 53 for H0(z) and H1(z)

respectively), the SDP problem, including both optimization cycles, is solved in less

than a second for each round and less than a minute for the entire problem using a

Core 2 Duo PC at 2.80 GHz.

3.5 Frequency Selectivity and the Performance of

a Face Recognition System

In order to analyze the effect of frequency selectivity of a multiresolution transfor-

mation on the performance of a face recognition system we first need to design the

corresponding filters such that the frequency response characteristics could be con-

trolled accordingly. In view of the tuning opportunity of the wavelets proposed and

designed in this chapter, and based on the proposed multiresolution based face recog-

nition method in Chapter 2 from the other hand, we are now able to analyze and

find the relation between the frequency selectivity and the recognition rate. The

proposed face recognition system in Chapter 2 is modified in terms of replacing the

DD-DTCWT with the frequency selective filters designed in this chapter, and also,

removing the maximum filter block. The maximum filter is removed to avoid any

outer affect on the pure performance of the proposed filter pairs. It is worth pointing

out that, feature vector construction has been removed as well. The generated mask

is directly sent to the PCA for dimensionality reduction. The block diagram of the

new proposition has been shown in Fig 3.3 and the procedure is discussed in details

as follows.

3.5.1 Illumination Invariant Face Recognition via THPs

Although for images with low variation in illumination the performance of a face

recognition system is mostly related to the quality of the features and the feature
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Figure 3.3 – Block diagram of the proposed method in Chapter 2 with modification in
terms of the thresholding via THPs, removing the maximum filter, and direct feature
extraction.

extraction strategy, that is not the case for the images which are too dark or too

bright. One should note that fine features such as eyes, eyebrows, nose and mouth

are distinguished by edges which are in fact mostly detectable in high frequency

subbands. Increasing or decreasing the sharpness of the filters associated with a

multiresolution transformation eventually enables one to keep or discard specific types

of information. For the problem of illumination invariant human face recognition, as

discussed extensively in Chapter 2, illumination is mostly assumed to lie in the low-

frequency part of an image. Therefore, an intelligent approach is to keep healthy

high-frequency information as much as possible away from the image. Then the

rest could be interpreted as the illumination that can be subtracted from the image

to reduce the effect of illumination on recognition rates. Taking the advantage of

multiresolution analysis as shown in Chapter 2, and the tunable biorthogonal filter

pairs with various frequency selective characteristics designed and proposed in this

chapter, one can evaluate and investigate the effect of the frequency selectivity of the

transformation on performance of a recognition system. In Chapter 2, we proposed
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Table 3.5 – Characteristics of the filters designed with different sharpness and ripples
for N = 7.

Case m ω̄H0
cp

ω̄H0
cs

ω̄H1
cp

ω̄H1
cs

Ripple Overshoot s.a.H0 s.a.H1

filt1 4 0.2728 0.7272 0.7249 0.2318 0.00 1.1250 - -
filt2 2 0.3801 0.6199 0.6173 0.3375 0.02 1.1024 -34 -34
filt3 2 0.4069 0.5931 0.5877 0.3639 0.04 1.0956 -34 -34
filt4 2 0.4228 0.5772 0.5671 0.3784 0.06 1.0898 -34 -34
filt5 2 0.4340 0.5660 0.5468 0.3892 0.08 1.0855 -34 -34

to form the feature vector using the DD-DTCW subbands, and then obtained vector

was dimensionally reduced via PCA. In this chapter we would like to specifically

investigate the effect of frequency selectivity of a multiresolution transformation on

the performance of a face recognition system. To reach this aim, and using the

proposed method in this chapter, we first design and extract the filter pairs with the

desired characteristics. For N = 7, the ripple size is increased from 0 to 0.08 with the

step size of 0.02. Consequently, the transition band is narrowed down resulting in a

sharper filter. The frequency response information of the designed filters is given in

Table 3.5. As it has been shown in Fig. 3.3, a multiresolution based face recognition

system can be developed using the filter pairs introduced in this chapter. In fact, the

filter pairs of a traditional DWT are replaced by filt1 to filt5. The face images in

databases are now decomposed, thresholded and reconstructed with these customized

filters. At this point, we can answer to the main question regarding the effect of

the frequency response characteristics to the performance of a multiresolution based

face recognition system. In other words, how do ripples, transition band, number

of vanishing moments may affect the recognition rates? Ideally, the narrower the

transition band, the better the frequency selectivity, however, there is a trade-off

between the transition band width and the amplitude of ripples. In fact, the filter

length, number of moments, ripples and sharpness of the transition band width are

tightly related to each other and interpret the same concept.
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3.5.2 Experiments and Results

To verify the discussions above regarding how the frequency selectivity of the sub-

bands of a multiresolution transformation may affect the recognition accuracy, several

comprehensive experiments have been performed using the well known databases in-

cluding the Yale B and the CMU-PIE. These databases have been already introduced

in Section 2.5 of Chapter 2.

For the Yale B database, each individual has 64 images. All images are first eye-

aligned and cropped into 64×64 gray level pixels The seven images of Subset 1 for

each individual is used for training. It should be noted that Subset 1 contains the

images with low illumination variations. The remaining subsets, Subsets 2–5, are

kept for testing phase of the procedure. As mentioned before, and to analyze the

frequency selectivity versus recognition accuracy, the filters associated with a typical

DWT are replaced with new sets of filters as listed in Table 3.5. Fig. 3.4 shows

sample images of an individual from Subset 1 to Subset 5 of the Yale B database. For

this experiment and employing filt1 the obtained masks are presented in the second

row of the figure, respectively. We then replace the filters of the DWT with filt2

to filt5 (See details in Table 3.5). The results are given in Table 3.6 for the Yale

B database. As it was expected, the sharper the filters, the higher the recognition

accuracy. However, as the ripple size is increased, the recognition rate is reduced. It

can be seen in Fig. 3.5 (d) and (e) for instance. Also, Table 3.6 indicates that for

Subsets 2 and 3, which contain images with low variation in illumination, all filters

perform satisfactory as the perfect accuracy is achieved. It is then concluded that

the role of frequency selectivity is more evident for the subsets consist of darker and

highly illuminated images difficult to recognize.

Recognition rate versus ξ and ε has been shown in Fig. 3.5 and Fig. 3.6 for Subsets

4 and 5 of the Yale B database, respectively. Note that only the most difficult

experiments have been visualized, that is, the representations for Subsets 2 and 3

are excluded. The effect of filters and frequency selectivity can be elaborated via
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Table 3.6 – Recognition rate for the Yale B and the CMU-PIE databases employing
the designed filters (%).

Yale B CMU-PIE
Case Subset 2 Subset 3 Subset 4 Subset 5 Lights-off Lights-on
filt1 100 100 98.67 98.68 98.43 100
filt2 100 100 98.77 98.70 98.47 100
filt3 100 100 98.88 98.71 98.64 100
filt4 100 100 98.97 98.87 98.58 100
filt5 100 100 98.75 98.77 98.32 100

(a) (b) (c) (d) (e)

Figure 3.4 – The first row (a)–(e) show sample images of an individual from Subsets
1–5 of the Yale B database. The second row shows the obtained mask by using filt1 for
each image in the first row, respectively.

Fig. 3.5 and Fig. 3.6 (a)–(e). In these figures, it can be seen that sharper filters with

shorter transition bands, such as filt4, perform reasonably better for the illumination

invariant recognition task. In contrast, extra reduction in the transition band width

which is along with the mandatory increment in the ripple size, e.g. filt5, can reduce

the recognition accuracy. This phenomenon and the range of remarkable performance

of the filters have been shown and highlighted by arrows in Fig. 3.5 and Fig. 3.6 (a)–(e)

for Subsets 4 and 5 of the Yale B database, respectively.

For the CMU-PIE database there are two lighting conditions known as the lights-

off and lights-on settings. All images are cropped, eye-aligned and resized into 64×64

80



(a) filt1 (b) filt2

(c) filt3

(d) filt4 (e) filt5

Figure 3.5 – Recognition rate versus ξ and ε for Subset 4 of the Yale B database
employing the designed filters.
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(a) filt1 (b) filt2

(c) filt3

(d) filt4 (e) filt5

Figure 3.6 – Recognition rate versus ξ and ε for Subset 5 of the Yale B database
employing the designed filters.
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(a) (b) (c) (d) (e) (f)

Figure 3.7 – The first row (a)–(c) and (d)–(f) show sample images of two individuals
from the lights-off and lights-on settings of the CMU-PIE database, respectively. The
second row shows the obtained mask by using filt1 for each image in the first row,
respectively.

pixels. For the lights-off setting with 21 images, three images from each of the 68

individuals are chosen to make a training gallery. The remaining 18 images are

reserved for the testing phase of the experiments. Similar to the experiments with

the Yale B database, the filters of the DWT decomposition bank are replaced with

the ones given in Table 3.5 from filt1 to filt5. Some sample images from the lights-off

and lights-on settings have been shown in the first row of Fig. 3.7. The corresponding

masks obtained using the proposed filters are presented in the second row of the figure,

respectively. The recognition rates are given in Table 3.7 and the visual representation

of the findings are illustrated as the recognition accuracy versus ξ and ε in Fig. 3.8

and Fig. 3.9 for the lights-off and lights-on settings, respectively. Similar discussion,

as elaborated above for the Yale B database, is valid for the CUM-PIE images. The

lights-off setting contains images with notable variation in illumination. Therefore,

compared to the Yale B database and in contrast to the lights-on setting, it resembles

the level of difficulty between Subsets 4,5 and Subsets 2,3 of the Yale B database.

While filt3 and filt4, that possess wider tuning for higher recognition rates due to

the sharpness of filters, clearly perform better than the other filters for the lights-off
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setting it cannot be seen for the lights-on setting. In fact, and similar to the discussion

regarding the Subsets 2 and 3 of the Yale B database, the images in subset lights-on

contain a low or moderate illumination variation and it is easy to reach the perfect

accuracy employing any of the filters given in Table 3.5. The discussion has been

visualized by arrows in Fig. 3.8 and Fig. 3.9 for the lights-on and lights-off settings,

respectively.

In reality, there is a trade-off between the sharpness of the frequency response,

amplitude of ripples, filter length, smoothness of the frequency response at vanishing

points, difficulty of design, and the recognition rate. It is too complicated if one may

desire to find the finest and the optimum value for each and every parameter to reach

the best performance. However, generally speaking, the shorter the filter length, the

lower the complexity and realization. In terms of number of vanishing moments,

although higher NVM results in a smoother wavelet, it significantly reduces the fre-

quency selectivity by reducing the sharpness of the transition band. A systematic

comparison shows that for a fixed filter length, frequency selectivity plays the main

role in multiresolution based imaging. Reducing the transition band by increasing the

amplitude of ripples leads to better results for recognition, if the ripples are not too

large. Our experiments show that N = 5, 7, . . . , 15, 17 is the suitable range to design

the filters for such applications. In general, very short filters are simple to implement

but suffer from a wide transition band. Also, very long filters may not perform well

in real applications. In addition, longer filters are computationally expensive and not

practical to implement as common time invariant FIR filters. In terms of oscillations,

ripples larger than δ = 0.2 may not lead to remarkable results, although the transition

band width can be significantly decreased.
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(a) filt1 (b) filt2

(c) filt3

(d) filt4 (e) filt5

Figure 3.8 – Recognition rate versus ξ and ε for the CMU-PIE database under the
lights-off setting employing the designed filters.
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(a) filt1 (b) filt2

(c) filt3

(d) filt4 (e) filt5

Figure 3.9 – Recognition rate versus ξ and ε for the CMU-PIE database under the
lights-on setting employing the designed filters.

86



3.6 Frequency Selectivity and Multifocus Fusion

While performing the experiments and investigation for the relation between the

frequency selectivity and performance of a face recognition system and in view of our

experience in multifocus imaging and shape from focus we are motivated to employ

the wavelet filters designed in this chapter to further analyze the effect of frequency

selectivity of the filters of a multiresolution filter bank in multifocus image fusion

(MFIF). The term focus is used to measure the degree of blurring in an image which is

increased with the distance of imaging system from the focus plane. To retrieve depth

information, and subsequently to reconstruct a geometric object from one or multiple

observations, is a challenging problem in computer vision and sensing systems. The

shape-from-focus (SFF) and depth map estimation is a technique to determine the

depth of every image point from the camera lens and then to reconstruct the 3D

shape of the object. Multifocus image fusion is therefore a process of obtaining a

fully-focused image from a set of registered input images. The main goal of multifocus

image fusion is to transfer the most relevant information found in source images into

a fused image. In the following section, we show how the performance of an MFIF

may be affected under frequency response characteristic variations.

3.6.1 Multiresolution Based MFIF Employing THPs

In general, the ability of any focus measure technique to calculate the sharpness value

of each image pixel shows the success of a method. To calculate the sharpness value

of pixels and subsequently to find the depth of each pixel, we proposed the use of

the wavelet transform along with the so-called distance transformation employing an

exponentially decaying function [62]. As it has been shown in [62], a multiresolution

based MFIF can be developed as is described as follows and shown in Fig. 3.10. The

entire multifocus image sequence is decomposed via wavelet transform into scaling

and wavelet subbands using the filters designed in Chapter 3.
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Figure 3.10 – Depth map estimation and image fusion procedure using the proposed
wavelet based algorithm employing THPs.

It is technically an important task to know which pixel comes from which image.

Also, in order to avoid pixel index complexity, we do not perform downsampling

between stages while decomposing data by wavelet transform, and thus, each subband

has the same size as of the input image. The larger values in wavelet subbands

correspond to sharper brightness changes, and therefore, a good integration rule is to

choose the maximum scheme known as the maximum selection rule [57] to pick the

coefficient with the larger activity level [68] and discard the others. The intermediate

subband with higher pixel value is computed applying maximum selection rule on

subbands of each image in the wavelet domain. Finally, a decision map is determined

employing the distance transform with the exponentially decaying function. Being

more specific, a focus measure which is characterized by the exponentially decaying

function is employed to compute the sharpness of each pixel in an image. Such

decaying function uses neighborhood information of extracted feature points assuming

that the pixel value far from a feature point is equal to 1 and it approaches this limiting
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value exponentially. Given an arbitrary point ρ and the set of feature points, the focus

measure (FM) is estimated as

FM(x, y) = e
−D(x,y)

2 I(x, y) + (1− e
−D(x,y)

2 ) (3.37)

where D is the distance between point ρ and the nearest feature pixel of the interme-

diate subband. The decision map for fusion is constructed by comparing the value of

subbands; the frame number with higher value is mapped onto the decision map. Us-

ing the decision map, pixels are extracted from corresponding subbands of the image

sequence and an inverse wavelet transform yields the final fused image.

Fig. 3.11 (a) and (b) show this trade-off in terms of the signal-to-noise ratio (SNR)

for the case with N = 7 and N = 9, respectively, for the Simulated Cone dataset.

For N = 7, the number of vanishing moments must be 2, where the maximally flat

(with m = 4 and δ = 0) is also shown for reference. For the case N = 9, the possible

moments are 1 and 3, with m = 5 and δ = 0 for the corresponding maximally flat

filter. Similar SNR plots, as is shown in Fig. 3.11, are obtained for the values of N

up to 17 with a slight modification in SNR values. Increasing the length of filters,

although offering sharper filters in terms of transition band width, the SNR begins

to be reduced considerably. Among the possible designs, we have selected the case

with N = 7, m = 2, and δ = 0.02 for instance.

3.6.2 Experiments and Discussions

The proposed filter pair with sharper transition band and better frequency selectiv-

ity is compared to other traditional focus measure systems in the literature, namely

Tenengrade (Tenen), gray level variance (GLV) [20] and sum of modified Laplacian

(SML) [63], and to the Daubechies orthogonal filter bank (db4), Cohen-Daubechies-

Feauveau (CDF) 9/7 biorthogonal filter bank used in JPEG2000, Mexican hat (Mexh),

Morlet, and Meyer. Several available multifocus image sequence datasets, e.g., Sim-

ulated Cone {72 frames, 318×318}, Chess {29, 800×600}, Lab {6, 512×512}, Clock
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Figure 3.11 – Trade-off between the SNR and ripples.

{2, 512×512}, FlyEye {37, 325×217}, and Rifle {24, 200×150}, have been used in

experiments. Fig. 3.12, (a1–a2) and (b1–b2) show some randomly selected sample

frames at different focus from the Simulated Cone and Rifle datasets, respectively. It

is followed by the corresponding depth map, depth map under Gaussian noise with

zero mean and variance of 0.001, fused image, 3D shape reconstruction employing

the depth map under noisy condition, in Figs. 3.13 and 3.14, respectively. For the

depth maps, shown in Figs. 3.13 and 3.14 (a1)–(a9) and (b1)–(b9), the contour plane

axes denote the image size and the vertical axis is obviously the number of frames

in each dataset, indicating which pixel comes from which image. Also, the fused im-

ages are given in Figs. 3.13 and 3.14 (c1) to (c9) for each example set, respectively.

The proposed filters with better frequency selectivity provide promising results when

compared to other approaches as well as the crude wavelets family. For the crude

wavelets, the worst results belong to the Mexican hat. Using the fused image and

the depth map, it is straightforward to extract the 3D shape as is shown in Figs. 3.13

and 3.14 (d1) to (d9) for the Simulated Cone and Rifle datasets, respectively.

To assess the fusion performance statistical measurements such as signal-to-noise

ratio (SNR), peak signal-to-noise ratio (PSNR), and mean square error (MSE) may

be used if the reference image, fully-focused image in all depths, is available. How-
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(a1) (a2) (b1) (b2)

Figure 3.12 – (a1) and (a2) are randomly selected samples from the Simulated Cone
dataset. (b1) and (b2) show some sample images from the Rifle dataset. Note to the
position of the focus plane in each image.

ever, in practice it can be achieved for simulated and synthetic images such as the

Simulated Cone dataset, as the reference image is rarely known for real images. Re-

cent image fusion assessment methods can evaluate the fusion technique without any

reference image. These methods assess the fusion on input-output relationship. In

[109] a mutual information (MI) based principle has been used to evaluate the fusion

technique. MI calculates the quantity of information transferred from source images

(input) to a fused image (output). Xydeas and Petrovic [104] proposed a fusion as-

sessing technique based on pixel level (Qp) analysis, in which visual information or

perceptual information is directly associated with the edge information while region

information is ignored. Among several available quality assessment methods struc-

tural similarity (SSIM) index [101] has been widely used in imaging applications in

literature when the reference images are not available. SSIM image quality index

in fact measures three elements of image patches; the similarity of local brightness,

contrast, and structures. The SSIM comparison without noise and in presence of a

Gaussian noise are given in Tables 3.7 and 3.8, confirming the experimental results

and visual improvements obtained. In these tables, db4, pro, and 9/7 stand for the

Daubechies, the proposed, and the CDF 9/7 filter banks. It is seen that for the pro-

posed wavelet based technique the results are independent of the images and datasets,

in contrast, the results obtained by other approaches may be affected by the nature

of images in each dataset, i.e., a uniform priority cannot be assigned. It can be seen

in Tables 3.7 and 3.8 for Tenen, GLV, and SML.
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3D Reconstruction via Depth Map

       (b1) Mexh                         (b2) Morlet                         (b3) Meyer                          (b4) Tenen                         (b5) GLV            

             

(b6) SML             (b7) DWTdb4                             (b8) DWTpro

                              (b9) DWT9/7

                      

            

          

                  
(c7) DWTdb4                     (c8) DWTpro                       (c9) DWT9/7

                

                       

          

                  (d7) DWTdb4                       (d8) DWTpro                       (d9) DWT9/7
              

                      

       
(c1) Mexh                         (c2) Morlet                         (c3) Meyer                       (c4) Tenen                        (c5) GLV            

              

(c6) SML

       (d1) Mexh                       (d2) Morlet                        (d3) Meyer                       (d4) Tenen                       (d5) GLV            

              

(d6) SML

——————————————————————————————————————

——————————————————————————————————————

——————————————————————————————————————

Figure 3.13 – Cone: (a1–a9) depth map without noise; (b1–b9) depth map under
Gaussian noise; (c1–c9) fused image; (d1–d9) reconstructed shape using fused image
and depth map under Gaussian noise.
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Figure 3.14 – Rifle. (a1–a9) depth map without noise; (b1–b9) depth map under
Gaussian noise; (c1–c9) fused image; (d1–d9) reconstructed shape using fused image
and depth map under Gaussian noise.
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Table 3.7 – SSIM for different datasets using various methods (No noise).

Type Sim.Cone Chess Lab Clock FlyEye Rifle

Mexh 0.2216 0.6602 0.8961 0.8473 0.5753 0.4654

Morlet 0.2268 0.6643 0.9015 0.8505 0.5811 0.4723

Meyer 0.2391 0.7278 0.9254 0.8823 0.6153 0.4965

Tenen 0.2432 0.6757 0.9212 0.8702 0.5929 0.4875

GLV 0.2391 0.7111 0.9193 0.8617 0.6041 0.4997

SML 0.2400 0.7082 0.9240 0.8797 0.6004 0.4884

DWTdb4 0.2468 0.7215 0.9253 0.8835 0.6091 0.4941

DWTpro [4] 0.2498 0.7749 0.9339 0.8812 0.6112 0.5170

DWT9/7 0.2511 0.7765 0.9369 0.8821 0.6148 0.5204

Table 3.8 – SSIM for different datasets using various methods (σ = 0.001).

Type Sim.Cone Chess Lab Clock FlyEye Rifle

Mexh 0.1998 0.2912 0.7203 0.6572 0.3004 0.2959

Morlet 0.2033 0.2992 0.7281 0.6624 0.3076 0.3016

Meyer 0.2195 0.3341 0.7315 0.6728 0.3203 0.3323

Tenen 0.2335 0.3104 0.7386 0.6815 0.3173 0.3271

GLV 0.2142 0.3156 0.7373 0.6707 0.3253 0.3153

SML 0.2319 0.3083 0.7401 0.6802 0.3214 0.3128

DWTdb4 0.2212 0.3382 0.7282 0.6721 0.3157 0.3305

DWTpro [4] 0.2349 0.3447 0.7429 0.6829 0.3309 0.3363

DWT9/7 0.2387 0.3491 0.7493 0.6882 0.3376 0.3398

3.7 Conclusions and Summary

In this chapter, we have analyzed and investigated the effect of the frequency selec-

tivity of filters associated with a multiresolution transformation on the performance

and accuracy of a face recognition system. In order for this analysis being carried out,

we first propose a general method to the design of the wavelets used in biorthogonal

filter banks. The method structurally incorporates the desired number of moments

and perfect reconstruction. The proposed formulation is, in general, a systematic
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representation of a parametric polynomial. The rationale of the idea is to prove and

show that the filter coefficients in the polynomial domain can be written in terms of

the coefficients of the corresponding function in the frequency domain in general. The

proposed technique offers tuning opportunity on the passband and stopband width

and ripples, that is, we can incorporate free parameters to control the transition band,

amplitude of ripples and number of moments. Depending on an application and the

required trade-off between the filter pair characteristics, one can select different num-

ber of free parameters and tuning terms to have several alternatives to control the

desired specifications. Based on the properties of the proposed method, and noting

that the traditional maximally flat wavelet filters have poor frequency selectivity due

to their wide transition band, we can then analyze the effect of the frequency response

characteristics of the filters in a multiresolution transformation on the performance

and accuracy of a face recognition system.

To this end, a multiresolution based face recognition system can be developed

using the filter pairs introduced and designed in this chapter. In other words, the

filter pairs of a typical discrete wavelet transform is replaced by our proposed tunable

biorthogonal filters. The face images in databases are then decomposed to frequency

subbands and high-frequency subbands are thresholded. The reconstruction is per-

formed employing the customized tunable filter pairs. Therefore, the effect of the

frequency selectivity of subbands of the multiresolution transformation on the per-

formance of a face recognition system can be studied in details. We found that there

is a relation between the sharpness of the frequency response of the filters and the

recognition rate of a face recognition system. The amplitude of ripples was also found

to be another factor that can influence the recognition accuracy. In general, it is con-

cluded that sharper filters with possibly smaller ripples lead to higher recognition

rates. It is interesting that the sharpness of the transition band of the filters are more

important than the amplitude of ripples although unreasonably larger ripples degrade

the results as in that case the nature of the filters, to act as a filter, may be lost.
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Chapter 4

Resonance Based Image Analysis for

Illumination Suppression

4.1 Literature Review

The literature on resonance based signal decomposition and oscillatory behavior of

resonance components is not that vast as the idea has been just recently introduced

in [79]. Therefore, it is expected that, similar to widely used transformations such as

wavelets, curvelets, and Fourier transform, resonance based design and analysis will

grow up rapidly in the near future. Basically, the representation of signals via tra-

ditional frequency based approaches like Fourier transform have been used for many

years, where the respective techniques are mostly appropriate for signals with finite

duration. In reality, the signals are not necessarily well expressed based on frequency

components as they may consist of oscillatory components that cannot be elaborated

using the traditional frequency based approaches. In [79], Selesnick shows that pro-

cessing and study of non-stationary signals and pulses with oscillations can be well

described based on a new nonlinear signal decomposition method in view of the con-

cept of resonance rather than the frequency. The method in [79] describes how a signal

can be considered as a combination of high-resonance and low-resonance components,
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where the terms high- and low-resonance components refer to a signal with sustained

and transient oscillations, respectively. Examples of such signals are widely found in

medical systems such as electroencephalography, and in speech and voice processing

field. In [81], it has been shown that using the rational-dilation wavelet transform

(RDWT) and proposes that the high-resonance component can represented by a high

Q-factor wavelet transform. Similarly, and as expected, the low-resonance component

can be represented via a low Q-factor wavelet transforms. In order to simultaneously

decompose a signal into its components, morphological component analysis (MCA)

has been shown to be effective to separate the two components. In addition, it-

erated soft-thresholding approach and split augmented Lagrangian shrinkage have

been investigated for the same purpose [81]. Resonance based signal analysis has

been studied from a different point of view in [83] in which rational-dilation wavelet

transform is used for the sparse representation of resonance components. It has been

also shown that the split augmented Lagrangian shrinkage algorithm can be employed

instead of MCA to speed up the optimization cycle of the procedure for the problem

investigated in [83].

As mentions earlier, the resonance based signal representation is a very new topic,

and therefore, the literature and research based on this concept is relatively seldom.

In this chapter we show that by transferring a face image into signal domain and

employing the resonance based analysis the oscillatory and transient components, the

so-called high- and low-resonance components, promising results are achieved for the

illumination invariant analysis of face images to the design of an efficient illumination

invariant human face recognition system. The idea of designing a resonance based

face recognition system in our research is motivated by the possibility of analyzing the

nature of unwanted illumination effects in terms of resonance components. In fact,

necessity of such investigation is twofold; the recognition accuracy can be further

improved, and more importantly the number of tuning parameters can be reduced to

lower the computational complexity.
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Although illumination is mostly considered as the low-frequency part of images,

these low-frequency contents may possess low- and/or high-resonance nature. In this

chapter we first assume that an input image can be considered as a combination of

illumination and reflectance. We then decompose the images into low- and high-

resonance components simultaneously. Because the energy distributions of subbands

via resonance decomposition are different for an image with good illumination effects

and an image with high illumination variations, the energy of subbands of the two

components can be thresholded to deactivate the subbands with unwanted energy

distribution created by illumination effects. For dimensionality reduction and clas-

sification the principal component analysis and the extreme learning machine have

been used, respectively. Experiments and comparisons illustrate the effectiveness of

the proposed resonance-based method in illumination invariant face recognition.

4.2 Motivation and Problem Statement

In Chapter 2 we proposed a new method for the problem of illumination invariant hu-

man face recognition. The approach is essentially based on the frequency component

analysis for which frequency subbands of a discriminator multiresolution transforma-

tion the so-called double-density dual-tree complex wavelet transform are taken into

account. In Chapter 3, we go deeper and investigate how the frequency selectivity of

a transformation may influence the performance of a recognition system. Accordingly

a general solution was proposed to the design of tunable biorthogonal filter pairs for

which we can control and tune the desired characteristics. We then analyzed how the

recognition rate can be affected via these characteristics. While the approaches in

Chapter 2 and Chapter 3 are actually based on the density of wavelets and the fre-

quency selectivity of the wavelet subbands, they are in fact expressed in terms of the

resolution of frequency subbands. In other words, low- and high-frequency compo-

nents and overall frequency information is used to design and analyze the recognition
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system. In this chapter concept of resonance is admitted to the problem of illumi-

nation invariant face recognition [7]. Although frequency based analysis is perhaps

the most widely used approach in signal processing, it is indeed suitable for signals

that are periodic and possess an oscillatory behavior. Nevertheless, many applica-

tions in reality, such as speech, biomedical, and communication signals, as well as

physiological phenomena like human vision system, are a mixture of frequency and

resonance. The nature of such signals makes it difficult to be studied by linear and

frequency based methods. These non-stationary, nonlinear, and oscillatory signals are

hard to be analyzed by linear, stationary, and frequency based approaches. In most

of the cases, solutions to these problems are a linear approximation in the frequency

domain. Recently it has been shown that nonlinear signal analysis based on signal

resonance can open doors to investigate and answer to the weakness of the Fourier

and wavelet transforms to some extent. In fact, resonance based analysis represents

a signal as the sum of high-resonance and low-resonance components rather than

traditional high-frequency and low-frequency subbands. In the next section, first the

concept of resonance is briefly reviewed in contrast to the frequency based filtering.

We then, for the first time, propose a new method for the problem of illumination

invariant face recognition based on the resonance components of images.

4.3 Resonance versus Frequency

The concept of resonance based signal decomposition has been introduced and dis-

cussed in couple of excellent papers by Ivan W. Selesnick [79]–[83]. Fig. 4.1 shows

a sample signal along with its basic and constructive elements. As it can be seen,

the elements can have different natures, that is, Low-resonance Low-frequency, Low-

resonance High-frequency, High-resonance Low-frequency and High-resonance High-

frequency. In other words, and for example, Fig. 4.1 illustrates low-resonance signals

where there is no persistency in oscillation. Shown in this figure, a low-resonance

99



Figure 4.1 – Resonance based signal decomposition.
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signal may contain either a high- or low-frequency pulse. The same explanation is

valid for other components. On the other hand, Fig. 4.1 also shows examples of high-

resonance signals with sustained oscillation behavior. Similar to discussion above, a

high-resonance signal may contain either high- or low-frequency pulses. It is worth

pointing out that the pulses shown in Fig. 4.1 are indeed time scaled representation

of one another, that is, the degree of resonance is not affected by time scaling.

In general, and as it is shown in Fig. 4.2, there is a fundamental difference be-

tween frequency and resonance representation. For further explanation, a signal of six

pulses with different frequencies and two resonance bands is depicted in Figure 4.2 for

instance. It has been clearly observed that the information and content of resonance

based and frequency based representations are substantially different. To tell the

end of story at the beginning; as the illumination is believed to lie in low-frequency

resolutions, we would like to put a question mark as if the low-frequency components

may need to have a low- or high-resonance nature as well before being considered as

illumination.

In this figure, the sample signal shown in (a) has been decomposed to its compo-

nents first using a resonance based decomposition and then via the frequency based

filtering. It has been shown in Fig. 4.2 (b) and (c), respectively. As it is seen, the

beauty of the resonance based representation is that the signal information is not

necessarily bounded in frequency resolution subbands. An immediate contribution of

such decomposition lies in the fact that linear frequency domain filtering cannot be

used to discriminate the low- or high-resonance components of a signal. The separa-

tion in Fig. 4.2 indicates that the sample signal is the summation of the high- and

low-resonance components, where it is assumed that the reconstruction error is al-

most zero. Clearly, traditional linear time-invariant filters cannot offer such separation

shown in Fig. 4.2 (b) as the frequencies specified in the high-resonance component

are exactly the same as the frequencies involved in the low-resonance component.

In other words, some parts of the low- and high-frequency components, shown in
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Figure 4.2 – Resonance based decomposition and frequency based filtering of a sample
signal. (a) Sample signal; (b) Resonance based decomposition of the signal in (a); (c)
Frequency based filtering of the signal in (a).
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Fig. 4.2 (c), may appear in low- and high-resonance components in Fig. 4.2 (b) with

different degrees of resonance. In [79], Selesnick draws the reader’s attention to an

interesting observation, that is, what if a sample signal of one-cycle low-resonance

and five-cycle high-resonance contain a three-cycle resonance based component? On

the other hand, how and under what category such a component should be classi-

fied? In general, and to the best of our knowledge, while it is not clear how the

resonance of a signal should be defined, a generic signal can be indeed separated into

low- and high-resonance components. It is eventually in contrast to the frequency

based analysis where the frequency response along with the linearity of the filtering

operation, convolution, can simply determine the formal relation between input and

output of a system, the so-called transfer function. Although at first glance the res-

onance based decomposition and representation may seem complicated and elusive,

the way it deals with signal analysis is unique and outstanding. One should note

that frequency based multiresolution filtering can be written analytically via the use

of convolution. In contrast, resonance based decomposition is definitely a nonlinear

procedure for which numerical iterative techniques must be employed.

It should be noted that, in general, there is no priority or intention to show whether

the resonance based representation or the frequency based filtering may outperform

each other. One should note that while they are fundamentally different, each of

which may have its own advantages and drawbacks. For instance, applications such

as communication, image processing, power systems, few to mention, may demand

a specific representation of signals either in terms of frequency or resonance or a

combination of both. In this dissertation, we first introduced a new face recognition

system. We then analyzed how the frequency filtering and frequency selectivity of

subbands may affect the performance of the proposed system. Consequently, and in

view of the resonance based representation of signals, a novel illumination invariant

face recognition system is proposed in this chapter. The latter is then compared to

the recent results in the literature including our frequency based approach.
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4.4 Tunable Q-Factor Wavelet Transform

The tunable Q1-factor wavelet transform (TQWT) is a new and interesting transfor-

mation that has been recently proposed as an efficient and powerful tool to look at

the multiresolution analysis from a different point of view [80].

The necessity and importance of the Q-factor of a wavelet becomes more obvious

when the problem of signal analysis needs to be tailored application wise. In other

words, it can attack a problem based on the oscillatory nature of the signal rather

than linear frequency based analysis. For instance, imagine one may face two different

problems, that is, processing of an oscillatory signal and processing a signal with less

or no oscillation. While the first issue can be addressed with the wavelet transform

of relatively high Q-factor, the second problem is better analyzed if a low Q-factor

transformation is used. In terms of design, the TQWT possesses technically remark-

able structure such as the perfect reconstruction property, reasonably overcomplete

rate, and discrete Fourier transform (DFT) based implementation. It can be also im-

plemented more efficiently using radix-2 fast Fourier transform (FFT) [79]. It should

be noted that unlike other similar transforms, such as the rational-dilation wavelet

transform (RADWT) [9], its parameters can be directly specified by the Q-factor and

oversampling rate of the TQWT.

The tunable Q-factor wavelet transform is defined and derived based on two main

parameters, that is, the Q-factor and its oversampling rate also known as the redun-

dancy. The TQWT is derived based on two additional blocks, known as the lowpass

and highpass scaling blocks, to a regular wavelet filter bank. Shown in Fig. 4.3, the

sampling rate for the analysis side subband signals x1(n) and x2(n) are αfs and βfs,

respectively and 0 < β ≤ 1, 0 < α < 1, and fs is the sampling rate of the input signal.

Note that for the strict perfect reconstruction β + α > 1. For perfect reconstruction

it is required to have x(n) and u(n) identical. Let us consider the Fourier transforms

1The notation Q in Q-factor stands for the term Quality.
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Figure 4.3 – Typical structure of a tunable Q-factor wavelet transform.

of u0(n) and u1(n) as

U0(ω)=

|H0(ω)|2X(ω) |ω|≤απ

0 α< |ω|≤π
, U1(ω)=

0 |ω|<(1− β)π

|H1(ω)|2X(ω) (1− β)π≤|ω|≤π
(4.1)

and therefore the Fourier transform of the output u(n) can be written as

U(ω)=


|H0(ω)|2X(ω) |ω|<(1− β)π

(|H0(ω)|2 + |H1(ω)|2)X(ω) (1− β)π≤|ω|<απ

|H1(ω)|2X(ω) απ≤|ω|≤π.

(4.2)

Recall that for perfect reconstruction the followings must be held

U0(ω)=

|H0(ω)| = 1 |ω|≤(1− β)π

H0(ω) = 0 απ≤|ω|≤π
, U1(ω)=

H1(ω) = 0 |ω|≤(1− β)π

|H1(ω)| = 1 απ≤|ω|≤π
(4.3)

also, the transition band needs to satisfy

|H0(ω)|2 + |H1(ω)|2 = 1, ω ∈ (1− β)π≤|ω|<απ. (4.4)

The tunable Q-factor wavelet transform is designed based on the iterative proce-

dure in a two-channel filter bank shown in Fig. 4.3. Note that only two stages of

the transformation, in the analysis and synthesis sides of the filter bank, have been
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shown in this figure and the number of stages (J) can be iteratively increased. The

configuration and setup in Fig. 4.3 yields

H
(J)
0 (ω)
α≤1

=


J−1∏
i=0

H0(ωα−i) |ω|≤αJπ

0 αJπ < |ω|≤π
(4.5)

and

H
(J)
1 (ω)

α≤1,β≤1

=

H1(ωα1−J)
J−2∏
i=0

H0(ωα−i) (1− β)α(J−1)π≤ |ω|≤α(J−1)π

0 ω∈ [−π, π]

(4.6)

It should be noted that although the two frequency responses H0(ω) and H1(ω)

are identically unity and zero in their passbands and stopbands, respectively, they

are definitely not ideal lowpass and highpass filters in reality. Therefore, there is

a transition band in each case in which the magnitude of the respective frequency

response may vary from zero to one; the interval that is often called as the ‘don’t care’

area. In fact, the transition band width is equal to (α + β − 1)π which is actually

the same as the overpassed critical sampling rate of the corresponding filter bank

where for α+ β = 1 the filter bank is technically is in the so-called critically sampled

condition for which a zero-width transition band is assumed to be the case. If it

happens, theoretically the time domain responses are not adequately localized and

that would not be a desired situation in most applications. To avoid this situation

it is required to keep α + β > 1. Detailed explanations are given in [79][80]. Now

at this point we need to consider the parameters defined and used in a tunable Q-

factor wavelet transform. Basically, the main concern here is how parameters such

as the Q-factor, bandwidth of the transformation, and redundancy may be related

to each other. As already discussed above, for a two-channel configuration shown

in Fig. 4.3, the rate of oversampling or the redundancy is defined as α + β. As the

sampling rate at subband J is given by α(J−1)βfs, iteration on lowpass output to reach

the wavelet transform redundancy is given by r = β(1 − α)−1. Before introducing
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the meaning of Q-factor, first it is required to define the center frequency and the

bandwidth of the transformation. From the signal processing point of view, the

frequency response of H1(ω) at stage J , H
(J)
1 (ω) is nonzero in (ω1, ω2) where we have

ω1 = (1− β)α(J−1)π and ω2 = α(J−1)π [80]. With this notation the center frequency

at stage J is defined as ωc = ω1+ω2

2
= (2−β)α(J−1)π

2
. An immediate outcome of the

discussion is that clearly the band width of the transformation is then defined as

BW= ω2−ω1

2
= βαJ−1π

2
. In physics and communication, quality factor or the so-called

Q-factor, is defined as the ratio of the center frequency to the band width, that is,

Q = ωc

BW
= 2−β

β
. Interestingly, and due to the independency on the recent equality

to the number of stages, the tunable Q-factor wavelet transform is a constant-Q

transformation. Furthermore, noting that r = β(1 − α)−1, one can write β = 2
Q+1

.

Increasing the value of Q makes the wavelets to oscillate more. Technically speaking,

the higher the Q-factor, the higher the resonance of the signals in subbands of the

transformation. Noting that there is no restriction for Q and r to be integers, it is

not desired to set the value of redundancy to unity as it leads to the sinc wavelet for

which the transition band for H0(ω) and H1(ω) will be too narrow to perform the

required time-domain response localization. Higher and lower Q-factor representation

provides an outstanding opportunity to study and analyze the behavior of a given

signal in terms of its resonance components. This is not exactly in contrast to, but

very different from the traditional Fourier based or multiresolution based frequency

component analysis. In the next section it is shown that how a sample signal can be

decomposed into its high- or low-resonance components. We then go one step further

and show that how a signal can be decomposed into its high- and low-resonance

components simultaneously. The latter is used to design a resonance based human

face recognition system that can significantly suppress unwanted illumination effects

to notably improve the recognition rates for the problem of illumination invariant

face recognition.
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4.4.1 Higher and Lower Q-Factor Representations

The tunable Q-factor wavelet transform lets specifying the amount of oscillation for

windows to view a given signal in terms of the degree of resonance. It has been shown

in Figs. 4.4 and 4.5 in which an image from Subset 5 of the Extended-Yale B database

has been transformed into the signal domain first. Fig. 4.4 shows the decomposition

of the signal into high-resonance components where the energy of subbands have

been depicted in the right corner of the figure for each subband individually. For

this decomposition the value of Q-factor, redundancy, and the number of stages are

Q = 4, r = 3, and J = 31, respectively. Fig. 4.5 illustrates the same representation

for the low-resonance components of the signal via Q = 1, r = 3, J = 10 followed by

the energy of each subband.

It can be seen that by increasing the value of Q the wavelets perform more oscil-

lations which means the frequency responses are more narrow. One should note that

by increasing the oscillations the number of stages is required to be increased too to

be able to span the respective frequency range as the frequency responses become

narrow. The signal representation based on the concept of resonance is essentially

different from the frequency based signal filtering and this has been shown in these

figures. For instance the signals in subbands in Fig. 4.4 contain high-resonance ele-

ments although they might be either high- or low-frequency information. The same

discussion is valid for the subbands in Fig. 4.5 in which the low-resonance elements

are shown regardless of being high- or low-frequency contents. Now one may come

up with a question that if a signal could be presented in terms of its resonance com-

ponents simultaneously, that is, to separate the signal into two visible parts rather

than several basic elements to clearly see the high- and low-resonance portions at the

same time. In [79] it has been shown that the dual Q-factor signal decomposition

can lead to this observation. It is discussed in the next section. In Section 4.5 we

propose a new method for the problem of the illumination invariant face recognition

that is based on the above mentioned simultaneous resonance based signal decompo-
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Figure 4.4 – Resonance based signal decomposition to separate the high-resonance
components. A sample image is shown as a signal at top. High-resonance components
have been presented via Q = 4, r = 3, J = 31.
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Figure 4.5 – Resonance based signal decomposition to separate the low-resonance
components. A sample image is shown as a signal at top (the same image in Fig. 4.4).
Low-resonance components have been presented via Q = 1, r = 3, J = 10.
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sition and energy-thresholding of the transformation subbands to reduce the effect of

unwanted illumination.

4.4.2 Dual Q-Factor Signal Decomposition

In previous section it was shown that an input signal can be illustrated in terms of its

high- or low-resonance components. It has been shown in Fig. 4.4 and Fig. 4.5, for a

sample image from Subset 5 of the Extended-Yale B database, respectively. Although

the single representation, in terms of only the high- or low-resonance components,

has its simplicity to be used in several relevant applications, one may come up with

a valid and important question as how to possibly describe the representation of a

signal using two Q-factors simultaneously. On the other hand, how to decompose

a signal into high- and low-resonance components. This can be seen as higher and

lower Q-factors Q1 and Q2 shown in Fig. 4.6 (d) and (e) for a sample image given in

(a). In this figure, (b) presents the image in (a) after applying (4.19).

Now let us consider a given signal x to be decomposed into an oscillatory signal and

a non-oscillatory signal, x1 and x2, respectively, defined by x = x1 + x2 accordingly.

Note that technically speaking, the oscillatory and non-oscillatory terms may

be frequently used in physics, however, we rely on the signal processing equivalent

phrases as the signal x is desired to be represented by its high- and low-resonance

components. According to the discussion in Section 4.3, the procedure to simultane-

ously represent a signal via its resonance components requires a nonlinear approach

where the frequency based techniques such as filtering fail. It is worth pointing out

that a high resonance signal cannot be efficiently represented with a low Q-factor

transform and similarly a low resonance input cannot not be well represented by us-

ing a high Q-factor transform. This is why resonance based signal decomposition is

considered as an efficient transformation for which the way that the transformation

looks at the problem is entirely different from the frequency based representation of

signals. Feasibility of the discrimination of x1 and x2 is an optimization problem in

111



0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

(a)                                                 (b)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

(c)

0 2000 4000 6000 8000 10000 12000 14000 16000
-1

-0.5

0

0.5

1

(e)

(d)

    

Figure 4.6 – Resonance based image decomposition to separate the high- and low-
resonance components simultaneously. (a) A sample image from the Extended-Yale B
database; (b) Equality in (4.19) is applied to the image in (a); (c) Signal representation
for the image in (b); (d) High Q-factor channel (high-resonance components) viaQ1 = 6,
r1 = 3, J1 = 31; (e) Low Q-factor channel (low-resonance components) via Q2 = 1,
r2 = 6, J2 = 10.
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which both high and low Q-factors are employed jointly to represent the signal x. In

[88] the authors present a new method, known as morphological component analysis

(MCA), to separate images into texture and piecewise smooth parts in which both

the variational and sparsity mechanisms have been taken into consideration. Using

MCA, the components x1 and x2 can be extracted individually and separately.

As it has been discussed in [15] traditional signal representation intends to decom-

pose signals via superposition of sinusoids, the Fourier based representation, which

possesses several drawbacks although the transformation is the most famous technique

for signal representation. Therefore, there has been a remarkable attempt by authors

to propose signal representation methods that can sparsely perform the decomposi-

tion. The development and progress on overcomplete multiresolution transformations,

e.g., wavelets, curvelets, wavelet packets, higher-density dual-tree real and complex

wavelets, chirplets, framelets, and the fact that decomposition into overcomplete sys-

tems is not necessarily unique, demands efficient methods to possibly represent the

signals with less number of significant coefficients. In fact, traditional signal rep-

resentation techniques mostly focus on gaining sufficient accuracy under reasonable

computational complexity. However, sparsity of such representations remains unde-

veloped. Basis pursuit [15] is a recent and notable progress on signal representation

that takes the overcomplete transformations into account in which the decomposition

is achieved via the `1 norm minimization of the coefficients dealing with the repre-

sentation. Being more specific, basis pursuit assumes that there are in general many

representations due to number of overcomplete waveform bases as mentioned above.

Let us assume x1 and x2 are represented as weighted sum of matrices S1 and S2.

The basis pursuit analysis suggests the following convex problem where the approach

indeed offers the sparsest solution amongst all representations [26][27][31], that is

argmin
w1,w2

λ1‖w1‖1 + λ2‖w2‖1 subject to x = S1w1 + S2w2. (4.7)
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Considering possible noise, the problem above can be written as

argmin
w1,w2

λ1‖w1‖1 + λ2‖w2‖1 subject to ‖x− S1w1 − S2w2‖2 ≤ ε (4.8)

where the unconstrained form of the problem

O(w1,w2) := ‖x− S1w1 − S2w2‖2
2 + λ1‖w1‖1 + λ2‖w2‖1 (4.9)

must be minimized with respect to w1 and w2 where S1w1 and S2w2 are the estimated

components to represent x1 and x2, respectively.

Before investigating possible solutions for this problem, it is noted that the use of

`2 norm cannot lead to prominent approximation. If the `2 norm is employed in (4.9)

to impose a penalty in an unconstrained form of the problem, the minimizing w1 and

w2 may be written in closed form [79], and consequently the estimated components

x1 and x2 can be obtained in terms of λ1, λ2 and x. It means that the estimated

representatives, x1 and x2, are just a ratio of x. It is also worth pointing out that

the basis pursuit approach is not a simple replacement between `2 and `1 norms as

it creates major consequences. Technically speaking, the traditional `2 norm based

approximation is a quadratic problem with linear equality constraints, however, the

basis pursuit is actually a nonquadratic problem while it still remains convex; solution

to the basis pursuit requires more effort and thus it has been investigated in depth

due to its importance [15].

The minimization of the objective function in (4.9) can be derived based on the

morphological component analysis. That is, the equality in (4.9) can be written as

O(w1,w2) = ‖x− Sw‖2
2 + λ1‖w1‖1 + λ2‖w2‖1 (4.10)

where S = [S1 S1], w = [w1 w2]t, and t stands for transpose.

In [32], Figueiredo et al proposed a method known as the majorization-minimization
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that is an iterative algorithm to find the minimizer argument

υi = wi +
1

ς
St(x− Swi) (4.11)

wi+1 = argmin
w

[ς‖υi −w‖2
2 + λ1‖w1‖1 + λ2‖w2‖1] (4.12)

where the value of ς is greater than the maximum eigenvalue of StS to ensure stability

and convergence [81]. It should be noted that because

υi =

 wi
1

wi
2

+
1

ς

 St1
St2

x− [S1 S2]

 wi
1

wi
2

 =

 υi1
υi2

 (4.13)

it is sufficient to apply iterated soft-thresholding algorithm [24] on w to minimize

O(w1,w2), that is

wi+1
1 = sft(υi1,

λ1

2ς
) (4.14)

wi+1
2 = sft(υi2,

λ2

2ς
) (4.15)

where sft denotes the iterated soft-thresholding operator and it is defined as follows

for a given input x and the threshold value of T

sft(x,T) := sgn max (0, |x| − T) (4.16)

where sgn is the signum function [81].

The derivations can be adopted in terms of the above mentioned resonance based

discussion. In fact, the resonance based decomposition can be defined as solving the

constraint optimization problem as

argmin
w1,w2

λ1‖w1‖1 + λ2‖w2‖1 ≡ argmin
w1,w2

J1+1∑
j=1

λ1,j‖w1,j‖1 +

J2+1∑
j=1

λ2,j‖w2,j‖1 (4.17)

such that x = TQ−1
1 (w1) + TQ−1

2 (w2) where TQ stands for the tunable Q-factor

wavelet transform, wi,j for i = 1, 2 represent subband j in the transformation, x1 =
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TQ−1
1 (w1) and x2 = TQ−1

2 (w2). It should be noted that, in practice and software

coding, the rate of convergence of the algorithm used for optimization is a considerable

factor. The discussion above regarding the use of soft-thresholding operator is to

describe one possible simple solution. In [79] it has been shown that split augmented

Lagrangian shrinkage algorithm converges faster and it can be more effective for

resonance based decomposition in terms of software development. The following

example visualizes the above formulations. For the given image in Fig. 4.6 (b), the

image is first converted to a signal, x, as is shown in Fig. 4.6 (d) and (e). Employing

the solver function dualQ given in [82] one can solve the optimization problem in

(4.17) to obtain the signal components x1 and x2, as well as the wavelet coefficients

w1 and w2, respectively. As it can be seen, the signal is divided into two components.

The high Q-factor channel contains mostly oscillatory parts of the signal where as

the low Q-factor channel represents the signals that are not remarkably sustained in

oscillations. Also, it is clear that both channels may consist of low- and high-frequency

components. This is obviously different in comparison with a frequency based signal

decomposition in which a given signal is divided based on frequency contents, that is,

the low-frequency channel cannot support high-frequency information and vice versa.

This is a kind of expertness to decide whether or not a frequency based or a resonance

based representation might be suitable in an application.

4.5 Illumination Invariant Representation and Con-

cept of Resonance

4.5.1 Enhanced Black Box Approximation

In Section 2.3.1 of Chapter 2 we proposed the use of an enhanced version of log func-

tion to approximate the combination of reflectance and illumination. The common

assumption in the literature is based on approximating I(x, y) ∝ R(x, y).L(x, y) with
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Figure 4.7 – (a) and (b) are the block diagrams of the proposed methods in Chapter 2
and Chapter 4, respectively.

I ′log(x, y) = log(I(x, y)) = log(R) + log(L) = R′log(x, y) + L′log(x, y) where R(x, y) and

L(x, y) are the reflectance and illumination of a given image I(x, y), and I ′log, R′log and

L′log stand for the logarithm of the image, reflectance and illumination, respectively.

In order to enhance the recognition rates, we have used the following expression that

can expand the range of dark pixel values and at the same time can be controlled by

tuning parameters ξ and ε, that is,

I ′pro(x, y) = ξ
log(I(x, y))√

log(I(x, y))− ε
(4.18)

In [5] we have shown that satisfactory performance can be obtained with less number

of parameters to reduce the computational time. Consequently, in this chapter we put

steps forward and suggest to remove the tuning parameters if the resonance based rep-

resentation is employed for illumination suppression and recognition purposes [6][7].

We show that using the proposed resonance based method, as described below, the
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necessity of dealing with the time consuming process of finding tuning parameters is

ignorable. Therefore, in this chapter we have used the following expression

I ′ntp(x, y) =
log(I(x, y))√
log(I(x, y))

(4.19)

where the notation ntp stands for the no-tuning-parameters as the tuning parameters

are removed and only the range of dark pixel values has been expanded.

The block diagram of the proposed frequency based method in Chapter 2 has

been shown in Fig. 4.7 (a) followed by the resonance based illumination invariant

framework in (b) proposed in this chapter. As it is shown in the next sections via

results and discussions while the recognition accuracy remains satisfactory for the

proposed system in Fig. 4.7 (b), the computational time is significantly reduced.

At the same time, the most important note to be contributed is that the tuning

parameters ξ and ε in (4.18) are entirely removed. It is a very important progress

and finding in our study and investigation as the recognition process is now fully

automatic.

4.5.2 Illumination Suppression via Energy of Subbands

Although it has been assumed by several authors that the illumination mostly resides

in the low-frequency part of images, we would like to put a question mark as if these

low-frequency signals need to be low-resonant or high-resonant components [6]. To

analyze the effect of resonance on the performance of the face recognition system

proposed in Chapter 2 we have studied the energy distribution of subbands of the

high- and low-resonance components of the images in databases. Fig. 4.8 (a) shows

the energy distribution of the resonance based components for an image from Subset

1 of the Extended-Yale B database. The images in Subset 1 contain low illumination

variations and therefore as it can be seen in this figure, the energy distribution over

the subbands remains focused on a single subband. In contrast, Fig. 4.8 (b) shows
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Figure 4.8 – Distribution of energy for sample images from the Extended-Yale B
database. (a) An image from Subset 1 with low illumination variation; (b) An image
from Subset 5 with high illumination effects (Fig.4.6 (a)). In this figure, Q1 = 4, r1 = 3,
J1 = 31 and Q2 = 1, r2 = 3, J2 = 10.
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an image from Subset 5 of the respective database. Subset 5 contains images with

high variation in illumination and the images are partially or mostly covered by dark

portions. To have a better visual perception, we have selected a Q-factor of degree

four for the presentations in this figure. It is quite evident that the energy distribution

varies considerably among the subbands. This unusual distribution is considered as

the effect of unwanted illumination in our work.

The distributions such as the ones in Figs. 4.8 (b) and 4.11 (b) contain remark-

able subband energies if compared to the same energy distribution representation

for images with almost normal illumination effects as in Figs. 4.8 (a) and 4.11 (a),

respectively. It is worth pointing out that as stated earlier, increasing the amount of

Q-factor to some extent leads to more narrow frequency responses bands and therefore

as it has been illustrated in Fig. 4.11 the energy distribution can be controlled via the

Q-factor value. However, this improvement may not be satisfactory to significantly

suppress the illumination effects. Figs. 4.9 and 4.10 show signal decompositions with

a higher oscillation factor of degree six if compared to the decompositions already

presented in Figs. 4.4 and 4.5 with Q = 4. To come up with this problem we propose

a thresholding strategy to reduce or eliminate the role of unwanted illumination ef-

fects based on thresholding the energy of subbands that present a notable change in

comparison to the last subband with the highest energy. It should be noted that a

hard-thresholding approach would remove all subbands and keeps only the subband

with the maximum energy. However, the subbands consisting of small amount of

energies may need to remain unchanged as they are most probably the fine features

rather than being redundant illumination. Therefore, we define the value of threshold

such that if the value of the energy of a subband is less than two percent of the energy

of the last subband then it is kept for the reconstruction phase, otherwise the wavelet

coefficients associated with the corresponding subband are set to zero before recon-

struction. Fig. 4.12 shows the thresholded subbands for the distributions already

shown in Fig. 4.11 (b). This strategy has been applied to all images in the training
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Figure 4.9 – Resonance based signal decomposition to separate the high-resonance
components. A sample image is shown as a signal at top. High-resonance components
have been presented via Q = 6, r = 3, J = 31.
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Figure 4.10 – Resonance based signal decomposition to separate the low-resonance
components. A sample image is shown as a signal at top. Low-resonance components
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and testing galleries of all databases to construct a mask required for recognition. To

sum up, the idea is proposed as preserving the illumination invariant information and

at the same time suppressing the redundant data which mostly lie in the subbands

of the resonance based decomposition.

The block diagram of the proposed method has been shown in Fig. 4.7. Given

an image I, illumination is initially enhanced using (4.19) to obtain I ′ntp. It is worth

pointing out that the proposition is free of tuning parameters and the computational

complexity of searching for the optimal range for parameters has been removed from

the whole procedure. I ′ntp is then decomposed into the high- and low-resonance com-

ponents as depicted in Fig. 4.6 (d) and (e) for instance. The two components for

each image are analyzed in terms of energy of subbands. Noting that the tunable Q-

factor wavelet transform satisfies Parseval’s theorem, the total energy of the wavelet

coefficients equals the energy of the signal. The obtained energy distributions are

thresholded based on the fact that for an image with less illumination variation the

significant portion of energy resides in the last subband of the transformation. In

other words, and in contrast, for an image with higher changes in illumination the

energy of the last subband is decreased and instead, visible amount energy is seen

for some of the subbands. Therefore, thresholding is performed based on this find-

ing, that is, the value of threshold is set to the two percent of the energy of the

last subband to keep or kill a subband. Note that the last subband anyways is kept

for reconstruction. This procedure is applied to both the high- and low-resonance

components. The thresholded subbands of the two components for each image are

reconstructed via an inverse tunable Q-factor transformation to obtain I ′RES. Unlike

the proposed method in Chapter 2, the maximum filter is removed from the proce-

dure which in turn reduces the computational complexity. Similarly, the lifting stage

is carried out on I ′RES to amplify the role of edges and fine features to obtain I ′RES
`

where the notation ` denotes the lifting operation. As discussed before, the value of

shift depends on the size of images, e.g., for images of size 32×32 to 128×128, the
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Figure 4.11 – Distribution of energy for via dual Q-factor decomposition with Q1 = 6,
r1 = 3, J1 = 31 and Q2 = 1, r2 = 6, J2 = 10. (a) an image from Subset 1 of the
Extended-Yale B database with low illumination variation; (b) an image from Subset 5
of the Extended-Yale B database with high illumination effects.
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Figure 4.12 – Thresholded distribution of energy for the image shown in Fig. 4.6 (b)
(See the distribution of energy in Fig. 4.11 (b) before thresholding) with Q1 = 6, r1 = 3,
J1 = 31 and Q2 = 1, r2 = 6, J2 = 10.

effective value of shift is only one to four rows. In order to extract a mask to obtain

the illumination invariant image I ′RES
` is subtracted from I ′ntp to complete the mask

extraction procedure. Unlike our approach in Chapter 2 in which R′pro is decomposed

into frequency subbands via DD-DTCWT to form a feature vector, we have totally

removed this phase as well. The features are only selected based on the use of PCA;

the computational complexity is further reduced. In fact, we apply PCA to reduce

the dimension of feature space and to make a feature vector. Finally, the extreme

learning machine (ELM) is used for classification to evaluate the effectiveness and

performance of the proposed resonance based recognition system. ELM has been

already discussed in details in Section 2.4.

In the next section we employ the proposed resonance based method in this chap-
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ter using the well known databases in the literature used for the problem of the

illumination invariant human face recognition. It is shown that the technique can

significantly facilitate the redundant illumination suppression task.

4.6 Experiments and Results

Several face image databases are available to study and develop experiments to eval-

uate the performance of a face recognition method. The databases in the literature

are basically divided into different groups in terms of the corresponding application

each database can have a remarkable impact. For instance pose, illumination, age,

occlusion, blur and several other factors can significantly change the accuracy and

performance of a face recognition system. For the problem of the illumination invari-

ant face recognition, which is the main interest in this dissertation, the most famous

and well known databases such as the Yale B, Extended-Yale B and the CMU-PIE

databases have been used by several pioneer researchers in recent years. Similarly and

to keep consistency with previous works we have performed the experiments and sim-

ulations using the same databases and settings. During the experiments, the lighting

conditions, camera and flash angles, the number and type of images in each subset of

each database, and all other experimental setups are exactly the same as the ones in

the literature unless otherwise stated. In the following section the performance of the

proposed resonance based illumination invariant face recognition system is analyzed

employing the Yale B, Extended-Yale B and the CMU-PIE databases.

4.6.1 The Yale B and Extended-Yale B Databases

The two databases, already explained in Section 2.5, are extensively discussed in

[105] and [106], respectively. The Yale B database contains 5760 images with nine

poses and 64 illumination conditions for each of the ten subjects in the database.

The difference between the Yale B and Extended-Yale B is that the former contains
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Figure 4.13 – Sample images and the corresponding masks for the Yale B (first column)
and the Extended-Yale B (third column) databases respectively using the proposed
resonance based method.

ten individuals while the latter includes 38 subjects with some images under high

illumination changes. The Extended-Yale B database therefore consists of 21,888.

Similar to previous works the same setup and number of images have been allocated

to the training and testing galleries in our experiments. Each of the two databases

contain five subsets representing the different light source directions and flash; the

angle τ between the light source and camera axis. With this configuration for {τ <

12◦, 20◦ < τ < 25◦, 35◦ < τ < 50◦, 60◦ < τ < 77◦, τ > 78◦} there are {70, 120, 120,

140, 190} and {266, 456, 456, 532, 722} images in each of the subsets, Subsets 1–5,

for the Yale B and Extended-Yale B databases respectively. It yields 64 images per

individual in the databases.

All the images of size 192×168 are first eye-aligned, cropped and then resized into

128×128 gray level pixels. In all experiments in this section with the Yale B and the

Extended-Yale B databases, {Q1 = 6, r1 = 3, J1 = 31} and {Q2 = 1, r2 = 6, J2 = 10}

are set to represent the signal in terms of the high- and low-resonance components.

The proposed method is applied on images to obtain the masks required for the rest

of procedure. Similar to previous approaches, Subset 1 is used for training and the
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Table 4.1 – Yale B: Recognition rate for different techniques (%) employing the pro-
posed resonance based method.

Method Subset 2 Subset 3 Subset 4 Subset 5

PP+LTP [92] 100 100 99.20 97.20

MQI [112] 100 100 100 98.40

S–P [30] 100 100 87.70 45.68

S–P+PP [30] 100 100 100 100

II+PCA [66] 100 100 98.60 98.90

II+PCA+DVS [66] 100 100 99.29 99.47

II+PCA+WVS [66] 100 100 100 99.47

Wavelet+PCA [110] 100 100 100 100

Wavelet+PCA [14] 100 100 100 100

Proposed in Chapter 2 100 100 100 100

Proposed in this Chapter 100 100 100 100

Table 4.2 – Extended-Yale B: Recognition rate for different techniques (%) employing
the proposed resonance based method.

Method Subset 2 Subset 3 Subset 4 Subset 5

PCA[11] 90.16 41.23 6.37 3.24

LDA[10] 100 98.12 38.35 5.13

II+PCA+SVM [66] 100 99.78 95.44 94.68

II+PCA+1NN [66] 100 100 96.01 92.44

II+PCA+DVS [66] 100 100 96.60 95.40

II+PCA+WVS [66] 100 100 97.91 96.54

Proposed in Chapter 2 100 100 98.68 99.03

Proposed in this Chapter 100 100 99.21 99.17

remaining subsets are employed during the testing phase. Fig. 4.13 shows two individ-

uals from the Yale B and the Extended-Yale B databases, respectively. In this figure,

column one and three show the two subjects under different illumination conditions,

respectively. The obtained masks for each individual are presented in columns two

and four, respectively. The average of 50 separate execution of simulations are given

in Tables 4.1 and 4.2 for the Yale B and the Extended Yale B databases, respec-

tively. It is seen that the proposed method performs reasonably well compared to

the approaches in the literature as well as the proposed method in Chapter 2. It
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Figure 4.14 – Sample images and the corresponding masks for the CMU-PIE database
using the proposed resonance based method. The images have been randomly selected
from both the lights-off and lights-on settings.

is important to note that due to eliminating the tuning parameter selection phase,

removing the maximum filtering stage as well as the feature vector construction step,

the implementation and computational complexity of the proposed method has been

greatly improved. It has been discussed numerically in Section 4.7 in terms of the

required time to analyze an input image.

4.6.2 Results for the CMU-PIE Database

The Carnegie Mellon University Pose, Illumination and Expression (CMU-PIE) database

which consists of 41,368 images from 68 individuals with 13 different poses and 43

illumination conditions already presented in Section 2.5 and has been discussed ex-

tensively in details in [2]. Similar to the previous methods in the literature such as

[66] frontal images have been used in our experiments. All images in this database

are eye-aligned and resized into 96×96 gray level pixels and the proposed algorithm

is applied to the images to extract the corresponding mask. For the two lighting

conditions, lights-off and lights-on [87], the images {i08, i11, i20} and {I06, I08, I11

I20} of each individual are used for training, respectively. The remaining images are
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Table 4.3 – CMU-PIE: Recognition rate for different lighting conditions (%) employing
the proposed resonance based method. The second row in each experiment shows the
results obtained by using our proposed method in Chapter 2. The third row indicates
the results reported in [66].

lighting condition NTR NTS Total %

off 3 18 21 100

99.59

94.85

on 4 20 24 100

100

100

on/off 7 38 45 100

99.92

99.74

6 39 45 99.97

99.77

99.55

5 40 45 99.94

99.70

98.99

considered for testing. Fig. 4.14 presents some randomly selected individuals from

the lights-off and lights-on settings, respectively. Similar representation can be offered

for the lights-off/on setting. The result are given in Table 4.3 and it is seen that the

proposed method can significantly improve the recognition accuracy compared to one

of the recent approaches [66] in the literature as well as our proposed method in [3].

4.7 Robustness and Training Sample Reduction

Similar to the experiments we carried out in Chapter 2 to evaluate the robustness

of our proposed method against the reduction in number of training images we have

investigated the performance of our proposed resonance based approach under the

condition in which the number of training samples are decreased to one image only.

In general, reduction in the number of training samples is directly related to the
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reduction in the probability of obtaining desired features which can negatively affect

the accuracy of a recognition system and consequently can be considered as a potential

problem where there are only few training images. In order to analyze this issue

employing the resonance based method and to compare the results with the ones

obtained in Chapter 2, we have reduced the number of images in the training gallery

for the Yale B, Extended-Yale B and the CMU-PIE databases to reach NTR=1 where

NTR denotes the number of training samples and TIN indicates the training image

name. Obviously, the remaining images in each experimental setting are transferred

to the testing gallery. Table 4.4 shows the results for the Yale B database. As it

can be seen, and if compared to the previous approaches already shown in Table 4.1,

both the frequency based and resonance based methods proposed in this dissertation

not only significantly improve the recognition results in terms of accuracy but also

persist against any reduction in the number of training images. Table 4.5 illustrates

the results obtained via the Extended-Yale B database. While the Extended-Yale

B database consists of some images that almost fully dark, it is difficult to reach

high recognition rates on this database. However, as it can be seen, the proposed

resonance based method can further improve the results compared to our frequency

based method in Chapter 2 as well as the results reported in previous papers given

in Table 4.2.

The experiments with the CMU-PIE database have been given in Table 4.6. For

the lights-on setting and as it was expected, the perfect accuracy is achieved even if

a single image is used for training. The experiments under the lights-off and lights-

on/off conditions show that the results obtained by using the proposed resonance

based method compare favorably to the frequency based approach in Chapter 2.

Overall, it is concluded that the recognition rates are improved by using the resonance

based method. Furthermore, the method presents a robust behavior for any reduction

in the number of training samples. A detailed discussion about particular examples

to elaborate the robustness of the proposed frequency based method in Chapter 2 has
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Table 4.4 – Recognition rate (%) with reduction in the number of training samples for
the Yale B database. The second row in each experiment shows the results obtained
by using our proposed method in Chapter 2.

NTR Subset 2 Subset 3 Subset 4 Subset 5 TIN

7 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0, +5E+10, +5E-10

100 100 100 100

6 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0, +5E+10

100 100 100 100

5 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10, +0E+0

100 100 100 100

4 100 100 100 100 -10E+0, -5E-10, +10E+0, -5E+10

100 100 100 100

3 100 100 100 100 -10E+0, -5E-10, +10E+0

100 100 100 100

2 100 100 100 100 -10E+0, -5E-10

100 100 100 100

1 100 100 99.29 99.48 -10E+0

100 100 99.29 100

Table 4.5 – Recognition rate (%) with reduction in the number of training samples for
the Extended-Yale B database. The second row in each experiment shows the results
obtained by using our proposed method in Chapter 2.

NTR Subset 2 Subset 3 Subset 4 Subset 5 TIN

7 100 100 99.21 99.17 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10, +5E+10, +10E+0

100 100 98.68 99.03

6 100 100 99.28 99.00 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10, +5E+10

100 100 98.50 98.89

5 100 100 99.24 98.45 -5E-10, +0E+0, -5E+10, -10E+0, +5E-10

100 100 98.31 98.75

4 100 100 99.32 98.47 -5E-10, +0E+0, -5E+10, -10E+0

100 100 98.12 98.61

3 100 99.78 98.72 98.12 -5E-10, +0E+0, -10E+0

100 99.78 97.74 98.47

2 97.50 99.82 95.48 97.76 -5E-10, -10E+0

100 99.56 96.80 98.20

1 97.63 98.16 93.97 97.48 -5E-10

98.27 98.90 95.87 97.37
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Table 4.6 – Recognition rate (%) with reduction in the number of training samples for
the CMU-PIE database. The second row in each experiment shows the results obtained
by using our proposed method in Chapter 2.

lighting condition NTR NTS Total % TIN

lights-off 4 17 21 100 i8, i9, i11, i20

100

3 18 21 100 i8, i11, i20

99.59

2 19 21 100 i11, i20

99.42

1 20 21 99.60 i11

98.97

lights-on 4 20 24 100 I8, I9, I11, I20

100

3 21 24 100 I8, I11, I20

100

2 22 24 100 I8, I11

100

1 23 24 100 I8

100

lights-on/off 7 38 45 100 i8, i11, i20, I8, I9, I11, I20

99.92

6 39 45 99.97 i8, i11, i20, I8, I11, I20

99.77

5 40 45 99.94 i8, i11, I8, I11, I20

99.70

4 41 45 99.96 i8, i11, I8, I11

99.64

3 42 45 99.74 i8, I8, I11

99.02

2 43 45 99.25 i8, I11

98.70

1 44 45 84.26 I20

84.59

been given in Section 2.6. As the resonance based method compares reasonably well

with the frequency based technique in general, the same discussion in Section 2.6 is

also valid here. Finally, it should be noted that to the best of our knowledge none of

the techniques in the literature, including our proposed methods, are fully invariant
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against any reduction in the number of training samples to reach the perfect accuracy.

Taking the trade-off between complexity of design, recognition rate and number of

training samples into account, one may investigate the role of various classifiers to

further improve the robustness of a respective technique.

In Chapter 2 we indicated that the computational time required to process an in-

coming image of size 128×128 pixels to obtain a mask was 58 milliseconds (ms/image)

using a Core 2 Duo 2.40 GHz CPU and 2GB RAM. Although single Q-factor based

decomposition of a signal into low- or high-resonance components is so fast, in or-

der to decompose an image via a dual Q-factor representation, one needs to solve

an iterative optimization problem to obtain the low- and high-resonance components

simultaneously. This procedure is not that fast and takes 0.87 seconds for an input

image of size image 128×128. While it may seem to be slow at the first glance the key

point here is that, unlike the proposition in Chapter 2, and as extensively discussed in

in this chapter we have removed the two tuning parameters ξ and ε from the design

procedure for the resonance based method (See (4.18) and (4.19) in Sections 4.5.1

and 2.3.1). It is very important that although it may seem that the technique in

Chapter 2 is faster, finding the optimal values for the two parameters is not an au-

tomatic process. The resonance based method is in fact one step further to reach a

fully automated high performance recognition system.

4.8 Conclusions and Summary

This chapter proposes a novel multiresolution based method for the problem of il-

lumination invariant face recognition that relies on illumination suppression via the

concept of resonance. This is the first time in the literature that the concept of

resonance is introduced to the community of face recognition. It is assumed that an

image can be represented as a combination of illumination and reflectance. Unlike our

proposed frequency based model in Chapter 2, the resonance based technique does
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not need tuning parameters to control the image representation and enhancement

step. Furthermore, the approach is free of using extra filtering and fine-tuning phase,

that is, the maximum filter has been removed from the procedure. Additionally, the

feature vector construction introduced and used in Chapter 2 has been removed as

well. Because this is the first attempt to employ the concept of resonance in this

field, indeed there is room for further development and design in several aspects.

Our analysis and investigation show that the energy distributions of subbands via

resonance decomposition are different for an image with normal illumination effects

and an image with high illumination variation. This key point has been the main

philosophy behind our proposed method in this chapter. Being more specific, we

have thresholded the energy of subbands of a dual Q-factor based decomposition to

first deactivate the subbands with unwanted energy distribution created by illumi-

nation effects. The transformation facilitates redundant illumination effect removal

task by thresholding unwanted components. For dimensionality reduction and classi-

fication, and to keep consistency with experiments in Chapters 2 and 3, the principal

component analysis and the extreme learning machine have been used, respectively.

Experiments and comparison with the recent best results in the literature as well as

the findings in previous chapters suggest that the proposed resonance based method

significantly outperforms the current available techniques for the problem of illumi-

nation invariant face recognition.
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Chapter 5

Conclusions

5.1 Summary

In reality and especially in implementation of real world applications, the cost of

design is the most important factor whereas the difference between 99% and 100%

recognition rates is negligible in most commercial applications. In other words, com-

putational complexity plays an important role and deserves more attention from the

community. As already stated through chapters, we believe that face recognition sys-

tems in recent years are well developed in terms of required accuracy for most of the

current databases available for research. In our opinion, further investigation would

be more valuable if new and complex databases could be generated by the pioneers,

and in the case of working on current available databases, the priority of a technique

should reflect the simplicity and low-complexity of the design rather than a minor

and negligible improvement in recognition accuracy only.

In Chapter 2, we proposed a novel method to deal with the problem of illumination

invariant face recognition. The proposed method is based on enhancing the lighting

effects of images first and then suppressing the illumination part via multiresolution

decomposition and filtering of input images. It can enhance the face image masks and

facilitates the illumination invariant face recognition task. It can be achieved in view

of the unique properties of the double-density dual-tree complex wavelet transform
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and especially due to increased density of the wavelets in this transformation. Several

experiments have been done on available well documented databases used in illumi-

nation invariant face recognition, as well as the databases used in pose invariant and

facial expression based recognition techniques. The results indicate that the proposed

method outperforms the previously reported results both in terms of the recognition

rate and computational complexity, and thus performs reasonably well compared to

the current best results in the literature. Unlike most of the recent techniques, the

proposed method is systematic for softcomputing simulations and implementations,

significantly faster, more accurate even if trained with fewer images, and not depen-

dent of any prior information about the face shape or illumination. Also, the method

does not need a complicated feature extraction or dimensionality reduction process,

and a PCA based feature dimensionality reduction phase can outperform the recent

results in the literature.

The proposed method in Chapter 2 is further investigated in Chapter 3 to see

whether or not frequency-selectivity of the subbands of a multiresolution transforma-

tion may affect the performance of a frequency domain based face recognition system.

This has been the core topic in Chapter 3 where we found that internal characteristics

of a multiresolution transformation such as the transition band width and magnitude

of ripples of the frequency responses of the filters involved in the structure of the

transformation can considerably change the recognition accuracy. To this end, first

it is required to have reliable control over the frequency specifications of the filters.

Several filters with various characteristics have been designed
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mulation and design in Chapter 3. The filters are substituted in the structure of a two

channel filter bank, and performance of each filter pair is evaluated under the illumi-

nation invariant recognition framework proposed in Chapter 2. We found that there

is a compromise between the characteristics of filters of a multiresolution transfor-

mation and the recognition accuracy. These characteristics mainly include sharpness

of the frequency response, amplitude of ripples, filter length and smoothness of the

using the proposed for-



frequency response at vanishing points. Generally, for a fixed filter length, frequency

selectivity has an important impact on multiresolution based imaging. Also, shorter

transition band with relatively small ripples can offer higher accuracy. The trade-off

between the accuracy and frequency selectivity of the subbands of the transformation

has been discussed extensively in 3.5.2.

Chapter 4 presents a challenging idea in which the concept of resonance has been

admitted to the face recognition area. As it was stated earlier in the introduction, the

common assumption regarding the low-frequency nature of illumination led us into

doubt to think about if these low-frequency contents belong to high- or low-resonance

components. While any image can be considered as a mixture of illumination and

reflectance, we found that unlike our proposed frequency based model in Chapter 2

there is no need to extra tuning parameters to represent the combination. Addition-

ally, feature selection phase of the system can be simplified and limited to the principal

component analysis and the maximum filtering step can be entirely removed. Despite

the frequency based subband thresholding approach used in Chapter 2 and Chapter 3,

the resonant components have been thresholded in terms of the energy of high- and

low-resonance components. This strategy is proposed in view of remarkable energy

distribution differences between a good quality image and a too dark or too bright

image under variety of illumination effects. The results show that the proposed res-

onance based approach performs better than the frequency based methods proposed

and analyzed in Chapter 2 and Chapter 3. It should be noted that our frequency

based method already outperformed the current best results in the literature [3].
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5.2 Future Research

One of the main goals of this research is to answer a question we first proposed it

in Chapter 2, that is, to initiate the concept of embedded illumination invariant face

recognition in which it is expected that the whole procedure could be replaced with

a system-level design approach. In other words, the idea is basically to design and

develop a method in which the output of the system in Chapter 2 or Chapter 4 is

the input to an unknown system defined by a z-domain multitask function. The

aim here is to determine the polynomial coefficients for which the two systems, i.e.,

the separate algorithm and the embedded one, share almost the same output. It

means that, in terms of recognition accuracy the two systems are almost identical,

where the complexity of design and processing has been significantly reduced. We

believe that it can be done if an illumination index or metric could be defined first.

Then the metric may be characterized using a similar approach as in Chapter 3. It

should be noted that such a metric can be formulated and controlled either by energy

based thresholding of resonance components or frequency selectivity of subbands of

a multiresolution transformation. If the embedded design could be implemented,

attribute and nature of features could be tailored application-wise that can lead to

the design of specific classifiers in complex applications such as space imaging and

biomedical instrumentation.

Another step in direction of this research will be finding an analytical model to

represent the reflectance and illumination part of an image separately. One should

note that our propositions in Chapter 2 and Chapter 4 enhance the illumination effects

and at the same time provide more flexibility to tune the approximation per image.

However, it is worth pointing out that up to now and to the best of our knowledge

there has been no direct and exact model to elaborate reflectance or illumination

individually. Therefore, in view of the findings in this research it is hoped to go one

step further and investigate such challenging issues in the future.

139



Further investigation may include robustness analysis using few numbers of train-

ing images. It would be an impressive case if one could reach the same accuracy with

competitively low computation time using only one sample image for each subject

within the training cycle. In addition to resistivity for lower training samples, sen-

sitivity analysis and robustness in presence of noise and resolution changes of facial

image is another interesting topic needs to be studied in details.
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