195 research outputs found

    Novel control approaches for the next generation computer numerical control (CNC) system for hybrid micro-machines

    Get PDF
    It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section.It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section

    Toolpath interpolation and smoothing for computer numerical control machining of freeform surfaces : a review

    Get PDF
    Driven by the ever increasing demand in function integration, more and more next generation high value-added products, such as head-up displays, solar concentrators and intra-ocular-lens, etc., are designed to possess freeform (i.e., non-rotational symmetric) surfaces. The toolpath, composed of high density of short linear and circular segments, is generally used in computer numerical control (CNC) systems to machine those products. However, the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration, which will decrease the machining efficiency and product surface finish. Driven by the ever-increasing need for high-speed high-precision machining of those products, many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry, aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods. This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications. The advantages and disadvantages of these approaches are discussed. Possible future research directions are also offered

    Reparameterization of ruled surfaces: toward generating smooth jerk-minimized toolpaths for multi-axis flank CNC milling

    Get PDF
    This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are unknowns in an optimization-based framework. The total jerk of the tool's motion is minimized, implying the tool is moving as smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case studies.RYC-2017-2264

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    On initialization of milling paths for 5-axis flank CNC machining of free-form surfaces with general milling tools

    Get PDF
    We propose a path-planning algorithm for 5-axis flank CNC machining with general tools of varying curvature. Our approach generalizes the initialization strategy introduced for conical tools [Bo et al., 2017] to arbitrary milling tools. Given a free-form (NURBS) surface and a rotational milling tool, we look for its motion in 3D to approximate the input reference surface within a given tolerance. We show that for a general shape of the milling tool, there exist locally and generically four 3D directions in which the point-surface distance follows the shape of the tool up to second order. These directions form a 3D multi-valued vector field and its integration gives rise to a set of integral curves. Among these integral curves, we seek straight line segments that correspond to good initial positions of the axes of the milling tool. We validate our method against synthetic examples with known exact solutions and, on industrial datasets, we detect approximate solutions that meet fine machining tolerances. We also demonstrate applicability of our method for efficient flank milling of convex regions that is not possible using traditional conical tools.RYC-2017-2264

    Smooth and Time-Optimal Trajectory Planning for Multi-Axis Machine Tools

    Get PDF
    This thesis presents novel methods for feedrate optimization and toolpath smoothing in CNC machining. Descriptions of the algorithms, simulation test cases, and experimental results are presented. Both feedrate optimization and toolpath smoothing are essential for increasing manufacturing efficiency while retaining part quality in CNC machining. The application of high-speed machining also necessitates the use of high feedrates, and smooth toolpaths which can be safely traversed at high feeds. However, problems occur when the feedrate is increased without check. High tracking error in machining may cause part tolerance errors. Transient vibrations due to jerky movement can lead to poor part surface quality. High speed trajectories may also demand greater torque than what the feed drives are capable of producing, which affects the motion controller’s ability to follow the trajectory correctly. The condition of the machine is also a concern, with the potential for damage or excessive wear on the machine’s components, if excessive axis velocity or jerk (i.e., rate of change of acceleration) is commanded. The feedrate scheduling algorithm developed in this thesis combines linear and nonlinear programming in a dual-windowed implementation. Linear programming (which is computationally fast) is used to quickly provide a near-optimal guess, based on axis velocity, acceleration, and jerk constraints. The solution is then refined through the use of nonlinear optimization. In the latter step, requiring more computations, the commanded motor torque and expected servo error are constrained directly, leading to shorter movement time. A windowing alignment procedure is presented which allows for these two optimization methods, each with different problem constraints and solutions horizons, to work in tandem with one another without risking infeasible boundary conditions between the windows. The algorithm is validated in simulation and experiment studies. Case studies analyzing the parameters of the optimization algorithm are also presented, and the configuration which is most computationally efficient is determined. A toolpath generation method is presented in which Euler-spiral pairs are used to smooth sharp corners, with an algorithm that integrates directly with the developed feedrate optimization The result is an exactly arc-length parametrized, G2-continuous toolpath whose axis derivatives can be computed very efficiently, which helps reduce the overall computation time. A repositioning toolpath method is also developed to reduce the cycle time of multi-layer contouring operations. This method replaces circular arc based repositioning segments between contouring passes (commonly used in industry) with a smooth Euler spiral based curve. This avoids tangent and curvature discontinuities, allowing for smoother motion with lower velocity and acceleration demands, while also reducing the overall motion. The repositioning toolpath has also been integrated with feedrate optimization and validated in simulation results

    Virtual reality based creation of concept model designs for CAD systems

    Get PDF
    This work introduces a novel method to overcome most of the drawbacks in traditional methods for creating design models. The main innovation is the use of virtual tools to simulate the natural physical environment in which freeform. Design models are created by experienced designers. Namely, the model is created in a virtual environment by carving a work piece with tools that simulate NC milling cutters. Algorithms have been developed to support the approach, in which the design model is created in a Virtual Reality (VR) environment and selection and manipulation of tools can be performed in the virtual space. The desianer\u27s hand movements generate the tool trajectories and they are obtained by recording the position and orientation of a hand mounted motion tracker. Swept volumes of virtual tools are generated from the geometry of the tool and its trajectories. Then Boolean operations are performed on the swept volumes and the initial virtual stock (work piece) to create the design model. Algorithms have been developed as a part of this work to integrate the VR environment with a commercial CAD/CAM system in order to demonstrate the practical applications of the research results. The integrated system provides a much more efficient and easy-to-implement process of freeform model creation than employed in current CAD/CAM software. It could prove to be the prototype for the next-generation CAD/CAM system

    Smooth Tool Motions Through Precision Poses

    Get PDF
    • …
    corecore