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ABSTRACT 

Multi-axis machining requires the ability to define 

and manipulate the free-form motion of the cutting 

tool. In particular, there is a need to fit a smooth 

motion through a number prescribed precision poses. 

One approach is to deal separately with the 

translational and rotational components. This leads 

to two formulations with differing parameterizations 

which need to be combined. This paper considers the 

use of geometric algebra as a means for handling 

translations and rotations together and so generating 

motions in a single form. It considers the research 

question: is it possible to generate a smooth tool 

motion in a single form to pass through a number of 

prescribed precision poses. The methodology is to 

extend the corresponding approach for free-form 

curves and then to compare the results obtained 

using a specific case study example with those given 

in the literature. It is found that a tool motion can be 

achieved in a single form and it is at least as good as 

that obtained by considering the aspects of the 

motion separately. The fitting problem requires a 

distance function to be established between precision 

poses. Problems arise if measures based on length 

and angle are combined since the units are 

incompatible. A new distance function is proposed 

and demonstrated which avoids these problems. 
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1. INTRODUCTION 

Usually, in multi-axis machining, smooth motions are 

required. This is partly so that the motion of the tool 

with respect to the work piece is well behaved and the 

cutting operation is successful. It is also desirable that 

the motions of the various axes of the machine tool itself 

are smooth so that these can be better controlled. This 

requires the ability to represent and manipulate smooth 

free-form motions [27]. 

It is also important to be able to fit a motion through 

a number of precision poses, where a pose represents 

the position and orientation of the cutting tool. Such 

fitting is needed within the CAM software where the 

tool path is planned off-line. It is also needed within 

the controller of the machine tool so that the cutter is 

driven on a motion through the discrete poses 

provided by the NC instructions. 

The equivalent problem for free-form curves has 

been well explored and has led to the widespread use 

of Bézier and B-spline parametric forms [25] and 

various techniques for curve fitting [13]. One 

approach to deal with the motion of a cutting tool is 

to treat separately its translational and rotational 

motions [10, 36]. Curve-based methods can deal with 

each aspect and this leads to separate parametric 

functions. However, the two parts then need to be 

combined into a single form. This is made difficult 

by the fact that their units (length and angle) are 

incompatible. Additionally, the two 

parameterizations are different, so some form of 

reparameterization is needed, possibly based on the 

arc length of the path traced out by the tool tip. 

Recently, the advantages of using geometric algebra 

have been rediscovered. Several formulations are 
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available [3, 4, 12] but all allow rigid-body 

transforms (translations and rotations) to be 

represented in a single form. By letting such 

transforms vary, free-form motions can be generated, 

and the standard types of motion required for 

machining can be generated [5]. Since the algebra 

allows transforms to be combined additively, the 

techniques of using Bézier and B-spline forms pass 

across from the ideas of free-form curves. 

This paper investigates the use of geometric algebra 

representations in handling the problem of motion 

fitting for tool paths. The specific research question 

is whether it is possible to work with a single form of 

the required motion, rather than two parts 

representing separately the translational and 

rotational aspects. The methodology adopted is as 

follows: firstly to extend the approach used for free-

form curves to one for fitting a free-form motion to a 

number of pre-defined precision poses; and secondly 

to apply the approach to a case study from the 

literature, comparing the results obtained in terms of 

the motions of the tool axes with those previously 

obtained [36]. The comparison is in terms of the jerk 

in the motions of the individual axes. What is found 

is that it is indeed possible to deal with the required 

motion in a single form, and the motion obtained for 

the case study has jerk values of the same order of 

magnitude as (and for some axes better than) those 

achieved when the translations and rotations are 

considered separately. The novelty of the work is that 

the usual approach to generating tool paths is to 

consider the two aspects separately with the 

consequent need to combine them later in the 

process. The significance is that the new approach is 

more holistic in that both aspects are dealt with 

concurrently. This removes the potential need for any 

modification in forming the subsequent combination 

thus making the computation more efficient and less 

prone to numerical errors. 

Section 2 discusses the existing literature, and section 

3 gives an overview of the general fitting problem. In 

particular it considers how B-spline functions can be 

used to deal with the translational and rotational 

aspects of a motion separately. Section 4 gives an 

overview of the use of geometric algebra and shows 

how the B-spline fitting technique for curves extends 

to motions where the rotations and translations are 

treated together. This requires a measure of the 

“distance” between consecutive precision poses. 

When the components are considered separately, 

measures based upon changes in distance and angle 

can be adopted, but it is not natural to combine these. 

Instead a new distance measure is proposed in 

section 5. This is based on the spiral motion 

generated by a pair of precision poses when 

considered in isolation to the others. Some examples 

are given and discussed in section 6. Included is a 

comparison with the results of generating a motion 

by treating its components separately. Finally 

conclusions are drawn. 

2. LITERATURE SURVEY 

Compared to 3-axis machining, 5-axis machining has 

a number of advantages including: improved 

smoothness of the finished surface, the ability to deal 

with intricate parts, and the greater opportunity to 

avoid problems such as gouging [16, 34]. However, a 

5-axis NC program is more difficult to create since 

not only has the translation of the tool to be 

considered but also its orientation [26]. 

Suitable methods for dealing with free-form motions 

are required. Such methods need to be flexible so that 

the challenges of 5-axis machining can be handled. 

These include: the ability to solve the inverse 

kinematics problem [9, 30]; the need to be able to 

detect and avoid motions close to singularities [1]; 

and the need to be able to control the machine tool to 

follow a specified motion [9]. 

With 3-axis machining, there is a need to deal with 

translational motions along free-form curves. This 

has led to the wide-spread use of B-spline curves [13, 

15, 20] and, more recently, NURBS curves [25, 31, 

33]. 

Additionally 5-axis machining requires rotations of 

the tool to be handled. Rotations and translations can 

be considered as rigid-body transforms [32]. Such 

transforms can be represented in a number of ways 

[27]. One approach has been the use of 4×4 matrices 

together with homogeneous coordinates [30, 37]. 

Motions are then treated as free-form functions of 

these matrices [6, 23]. By analogy with the case of 

curves, smooth motions can be obtained by 

minimizing suitable functionals of the acceleration or 

jerk [2]. However, this requires derivatives to be 

formed in the space of the matrices and it is not clear 

how the properties they induce relate to the tool 

motion itself. 

Following Shoemake's seminal work [29] on the use 

of Bézier combinations of quaternions for rotations 

about the origin, extensions have been introduced 

including the ideas of double and dual quaternions so 

that translations can be handled alongside rotations 
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[11, 35]. More recently there has been renewed 

interest in the use of geometric (Clifford) algebra 

[12] which provides a unified environment 

incorporating the various form of quaternions. Initial 

work approximated translations as rotations about 

distant axes so that transforms can be modelled as 

4×4 orthogonal matrices [8]. Such approximation can 

be avoided in a number of ways: by introducing an 

additional basis vector in the conformal geometric 

algebra (CGA) approach [3, 7, 24]; by handling 

infinity symbolically (G4) [21, 22]; and by inverting 

the geometric representation so that vectors in the 

algebra correspond to planes rather then points [28]. 

Given these representations, various techniques for 

generating smooth motions have been proposed. 

These include: search method based on quaternions 

and related representations [14, 37, 38]; and 

algorithms concerning the control of the tool motion 

[18, 19]. 

Most of this work applied to tool motion has been 

with the use of matrices and quaternions. As it has 

been shown that geometric algebra is capable of 

generating typical motions for manufacture [5], part 

of the interest of this paper is in how further use 

might be made of this approach to take advantage of 

the benefits it offers in considering translational and 

rotational motion together. 

Comparison is made with a case study in a recent 

paper [36] where the translations and rotations of the 

tool are considered as separate B-spline functions 

and demonstrated using a specific tool motion [10]. 

This method is shown to produce acceptable results 

and, in particular, the jerk in each of the axes of the 

machine tool is kept under control. However, there is 

a need eventually to combine the two motions and 

this needs careful reparameterization of one or both 

motions and this requires additional processing and 

may introduce numerical uncertainties. 

This paper considers the question of whether it is 

possible to deal with the translations and rotations 

concurrently without compromising the quality of the 

tool motion that is generated. 

3. MOTION FITTING 

The interest is in representing a smooth free-form 

motion of a machine tool which passes through a 

number of prescribed poses. A pose is the result of 

applying a transform to the tool (defined in some 

reference coordinate system) to reach a particular 

position and orientation (rotation) in three-

dimensional space. The means whereby poses can be 

defined and manipulated is discussed later (section 

4). At this stage, it is assumed that poses can be 

combined to generate other poses. 

The basic fitting problem is as follows, and is an 

extension of the similar problem for fitting a curve 

through a number of prescribed points, called 

precision points [13]. A number of precision poses 

are given: it is through these that the motion must 

pass. Suppose there are N+1 precision poses denoted 

by Pi for 0 ≤ i ≤ N. Following [36, 37] a B-spline is 

used to define the motion. This is a parametric 

representation and a parameter value ti needs to be 

associated with each precision pose Pi. There are 

several ways proposed for doing this [10], but most 

take the following form. Starting with t0=0, define 

ti = ti-1 + Δ( Pi-1, Pi )  for 1 ≤ i ≤  N   (1) 

where Δ(A, B) is a measure of the “distance” between 

poses A and B. Means for defining this function are 

discussed later (section 5). 

For curves, a B-spline curve is a parametric function 

which is a piecewise linear combination of a number 

of control points. The values of the parameter where 

the function moves from one piece to the next are the  

knots. The control points define the shape of the 

curve. In curve fitting, the precision points help to 

determine the control points, but they are not the 

same as these points. Similarly, a B-spline motion is 

a piecewise linear combination of a number of 

control poses: these are different from the precision 

poses.  

The interpolated B-spline has degree d, uses N+1 

control poses, and has m+1 knots ki where m = 

N+d+1 and 

ki = 0    for 0 ≤ i ≤ d 

ki = [ ti-d + + ti+d-1 + ... + ti-1 ]/d for d+1 ≤ i ≤ N 

ki = tN     for N+1 ≤ i ≤ m . 

The control poses Qi, 0 ≤ i ≤ N, for the motion are 

obtained by solving the N+1 linear equations 

Pi = ∑j  Nj,d(ti) Qj      (2) 

where the Ni,d(t) are the B-spline basis functions [25]. 

The varying pose which describes the resultant 

motion is 

S(t) = ∑i  Ni,d(t) Qi  for 0 ≤ t ≤ tN  .  (3) 

The representation of a precision pose used in [36] is 

as a pair of vectors Pi = (pi, ui) which are 
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respectively, the position vector of the tool tip, and a 

unit vector in the direction of the tool axis. This 

means that two B-splines are used to form the 

motion: one for the position of the tool tip, the other 

for the tool orientation.  

Given this split, a suitable distance function for the 

positional B-spline is 

Δp( Pi-1, Pi ) = || pi-1 - pi ||α    (4) 

which is based on the cartesian distance between 

consecutive precision poses. The exponent α is taken 

to be 0.5 in [36] which is the centripetal method [13] 

commonly used for curves to avoid “bulging”. 

A corresponding distance function for the orientation 

B-spline is 

Δu( Pi-1, Pi ) =  [ cos-1 (ui-1 · ui ) ]α   (5) 

based upon the angles between consecutive precision 

poses. Again the centripetal form is used in [36] 

where α is taken to be 0.5. 

The disadvantage of treating the positions and 

orientations separately is that it leads to two B-

splines with different parameters. To reconcile these, 

the approach in [36] is firstly to reparameterize the 

positional B-spline in terms of the arc length s of the 

path of the tool tip. The orientational B-spline is then 

reparameterized to achieve the coincident parameter 

values at the precision poses. Between each pair, the 

parameter is adjusted so that a Bézier form of ninth 

degree is followed which attempts to minimize the 

jerk in the orientation motion. 

4. GEOMETRIC ALGEBRA 

The aim here is to obtain an approach which treats 

the positional and orientational motions together. 

This means that a single representation of the 

complete motion can be obtained directly, as opposed 

to creating two splines and then having to combine 

them. 

Use is made of geometric algebra which allows 

translations and rotations to the defined and 

manipulated within a single environment. There are a 

number of formulations of geometric algebra, 

including: conformal geometric algebra (CGA) [3], 

homogeneous geometric algebra [28], and G4 [4,21]. 

What is presented  in this paper works equally well in 

any of these versions: it is G4  that is used here. 

The algebra has four basis vectors e0, e1, e2, e3. The 

general vector, We0 +Xe1 + Ye2 + Ze3, is a linear 

combination of these and represents projectively the 

three-dimensional point with cartesian coordinates 

(X/W, Y/W, Z/W). 

A multiplication is defined by extending the basis to 

elements of the form eσ where σ is any subset of the 

set of subscripts {0,1,2,3}. Then, for example, the 

product e1e2 is defined to be the basis element e12. 

The multiplication is anticommutative so that, for 

example, e2e1 = -e1e2 = -e12. The reverse of a basis 

element is obtained by reversing the order of its 

subscripts. It is denoted by an asterisk, so that, for 

example, e12
* = e21 = -e12. Further details of how the 

multiplication is set up are given in [4, 21]. 

The grade of a basis element is the number of its 

subscripts. This idea passes to a combination of basis 

elements if they all have the same grade. Thus 

vectors have grade 1. Linear combinations of basis 

elements of even grade are important: they form a 

sub-algebra. If S is such an even-grade element and p 

is a vector, then S*pS can be shown also to be a 

vector [22]. 

The map sending p to S*pS is a map of projective 

space to itself. It preserves lengths and angles and 

hence is a rigid-body transform [22]. Further any 

rigid-body transform can be generated in this way. 

For example, the even-grade element 

R = cos(θ/2) + sin(θ/2)e12 

generates a rotation through angle θ about the z-axis. 

The significant point here is that the transform 

generated by an even-grade element can be a rotation 

or a translation (or a combination) and the algebra 

provides an environment in which such transforms 

can be handled in the same way. 

This means that a representation of the precision 

poses can be created. Suppose a precision pose, 

(p,u), is given comprising a position vector p = (p1, 

p2, p3) and a unit vector u = (u1, u2, u3). The latter 

represents a rotation of the tool from its vertical 

reference position, along the unit vector (0,0,1), to u. 

This can be regarded as being formed from two 

rotations: the first about the y-axis through angle φ = 

cos-1(u3); the second about the z-axis through angle θ 

= tan-1(u2,u1), where the arctangent function with two 

arguments finds tan-1(u2/u1) taking appropriate 

account of the quadrant (as with the function atan2 

in programming languages). The even-grade 

elements generating these rotations are 

Ry = cos(φ/2) + sin(φ/2)e31 

Rz = cos(θ/2) + sin (θ/2)e12 . 
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An even-grade element is required also for the 

translation part of the precision pose. Using the 

quantity ε introduced in [4,9], this element has the 

form 

T = 1 + ε e0 (p1e1 + p2e2 + p3e3 )/2 . 

Hence the precision pose is represented by the 

product of these even-grade elements which is 

P = Ry Rz T . 

In this way an even-grade element Pi, for 0 ≤ i ≤ N, 

can be set up for each given precision pose. Then 

equation (2) is a set of linear simulation equations 

whose solution gives even-grade elements Qi for 0 

≤ i ≤ N. These can be combined, as in equation (3), 

to form the even-grade element S(t). This generates 

a rigid-body transform and hence, as t varies, a 

smooth motion (of the tool).  

Setting up the equations for the Qi requires the 

distance function Δ to be specified. This is 

discussed in the next section. 

5. DISTANCE FUNCTION 

As noted in section 3, a great deal of attention has 

been paid in relation to curve fitting to how to 

select the function Δ to measure the distance 

between precision points. As a result, Δp, given by 

equation (4), with α=0.5, is commonly used and 

creates curves which are generally regarded as 

acceptable. This is the centripetal method. 

Similarly, a measure for distance between 

orientations is Δu, given by equation (5). 

However, when dealing with translations and 

rotations together, the choice of function is much 

less clear. Simply using one of Δp or Δu can lead to 

difficulties. For example, Δp seems a poor choice if 

Figure 1 Precision poses for example 1 
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the tool motion has the tool tip becoming (roughly) 

stationary while the orientation changes 

significantly. 

One compromise is a combination of the two 

previous functions 

Δ(Pi-1, Pi) =  wpΔp(Pi-1, Pi) + wuΔu(Pi-1, Pi) 

where wp and wu are suitably chosen real numbers. 

However, this involves a combination of quantities 

with different units (length and angle). The results 

it gives are unlikely to behave predictably if, say, 

the object to which the precision poses relate is 

doubled in size. 

 

 

 

 

To overcome these problems, a new distance 

measure is proposed as follows. Suppose that A 

and B are two even-grade elements. These 

represent poses in three-dimensional space. 

Motions between these poses can be defined in two 

ways [4]. The first is a Bézier linear combination 

S(t) = (1-t)A + tB     for   0 ≤ t ≤ 1 . 

 

 

 

The second is a slerp (spherical linear 

interpolation), involving non-integer exponents 

[3,8] given by 

S(t) = A (A* B)t      for   0 ≤ t ≤ 1 . 

Figure 2 Motion using centripetal chord lengths 

Figure 3 Motion using spiral distances 
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In both cases, any point in the tool being moved 

follows a spiral path that lies on a circular cylinder. 

In the first case, the path is on a planar slice; in the 

second case it is a true helix. As a result, there is, 

in fact, not much difference between these paths 

[4]. 

The proposed distance measure Δ(Pi-1, Pi) is the 

length of the spiral path traced out by a typical 

point in the cutting tool when simply moving from 

one pose to the other. (Note this is not the same 

motion as when the B-spline motion is eventually 

fitted.)  

The most natural point to choose is the tool tip. 

However, this suffers from one of the difficulties 

identified above if the tip becomes stationary while 

the orientation changes. So instead, take Δ to be 

the sum of the lengths of the paths of the tip and 

the top of the tool. This has the advantage of being 

a value with a single unit (length) and has a 

physical meaning. It also gives invariant results 

under scaling, provided the tool itself undergoes 

the same scaling. In the examples that follow, it is 

the Bézier spiral motion that is used: this is the 

more straightforward to implement as it does not 

require the evaluation of expressions with non-

integer exponents. The lengths of the spiral paths 

are found by evaluating the positions of the points 

for equally spaced values of the parameter t and 

summing the incremental distances moved. 

6. EXAMPLES 

Two examples are presented. The first is artificial 

and is constructed simply to illustrate the 

advantage of using the spiral distance measure. 

The second is based on the example used in [36] 

which in turn in based on precision poses given in 

[10]. The tool path has a region of high curvature 

but since the precision poses are roughly regularly 

spaced in terms of distance and orientation some of 

the inherent problems are ameliorated. Following 

[36], the jerk in the motions of the axes of a five-

axis machine tool are considered. 

6.1. Example 1 

This example uses 18 precision poses which are 

shown in figure 1. Half of these trace out a straight 

line with the tool leaning over at 45 degrees. The 

other half traverse a second straight line 

perpendicular to the first with the tool oriented at 

the same angle but in a different direction. Clearly 

these poses suggest an extreme discontinuity in the 

implied motion and for this reason such an 

example should not occur in practice. It is used 

here simply to illustrate what happens. 

When the distance measure Δp is used 

centripetally, the result is that shown in figure 2: 

the tool is now represented by a line along its axis. 

The upper part of the figure shows an oblique view 

of the motion, and the lower part a plan view. 

It is clear that the tool tip “wiggles” significantly 

during its motion. The orientations need to move 

the tool away from the corner as it is approached 

and then suddenly rotate around it. 

Figure 3 shows the result of using the spiral 

distance measure. The “wiggles” in the motion of 

the tool tip are still present but are considerably 

reduced. While the “overshoot” of the orientations 

is still present, it too is reduced. 

As noted, this is an extreme example. However it 

does suggest that in more realistic cases, the spiral 

distance measure is likely to provide better 

motions. It also illustrates that given such a large 

discontinuity, methods based on fitting any sort of 

B-spline motion through it are likely to behave 

poorly. The “wiggling” of the motion of the tool 

tip is unavoidable. An approach based on splitting 

the motion (at the discontinuity) and dealing with 

separate parts is always going to be more effective. 

6.2. Example 2 

This is the main example and, as the methodology 

given in section 1 notes, it is the one used to assess 

the apporach proposed in this paper. The required 

tool motion is that discussed in [36] which itself 

uses the precision poses specified in [10]. Note that 

the linear dimensions are halved in [36] and it is 

these revised values that are used here. The 

precision poses are shown in figure 4. The new 

method is applied to these precision poses to obtain 

a smooth tool motion which incorporates both the 

translational and rotational aspects. From this, the 

motions of the individual axes of the 5-axis 

machine tool are derived so that these can be 

compared with the result given in [36]. The 

comparison is in terms of the jerk in the motion of 

the individual axes. 
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The approach used in [36] is reviewed in section 3. 

It is an intricate four-stage process, using two 

fitting processes and two reparameterizations. 

During the latter, an attempt is made to reduce, via 

a minimization process, the jerk in the orientation 

motion. However, it is not clear that there are 

sufficient degrees of freedom for this to have a 

significant effect. 

Figure 4 Precision poses for example 2 based on example from [10] 

Figure 5 Motion obtained for example 2 
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The approach used here is simply to fit a quintic B-

spline through the precision poses. These are 

represented as even-grade elements from the 

geometric algebra so that the translational and 

rotational motion are handled concurrently. The 

spiral distance measure is used (centripetally) to 

establish the values of the parameter at each of the 

precision poses. Figure 5 shows the motion 

obtained with the tool represented by a line along 

its axis. 

If the typical pose during the motion is represented 

by the position vector p = (p1, p2, p3) and the unit 

vector u = (u1, u2, u3) along the tools axis, then the 

positions of the axes of a five-axis machine tool 

can be determined. The relations used in [36] are 

as follows 

 

A = cos-1 (u3) 

C = tan-1 ( u1, u2 ) 

X = - cos(C)p1 - sin(C)p2 

Y = cos(A)sin(C)p1 - cos(A)cos(C)p2 

  - sin(A)p3 - sin(A)a 

Z = sin(A)sin(C)p1 - sin(A)cos(C)p2 + cos(A)p3 

  + cos(A)a + b 

where the machine dependent offsets are a = 

70mm, and b = 150mm. 

Use of these relations means that, at any point on 

the motion generated here, the values of the five 

machine parameters can be obtained. Figure 6 

shows graphs of these and they compare well with 

those presented in [36]. These graphs show 

individually the motions of the five axes of the 

machine tool when creating the tool motion shown 

in figure 5. 

The graphs of the motions of the axes are plotted 

against time and this is achieved as follows. The 

tool pose is found at a number of equally spaced 

values of the parameter (201 values are used for 

the graphs here). The position of the tool tip is 

found for each pose and the arc length s at each 

pose is determined (estimated) by adding chord 

lengths along the path. The tool tip is assumed to 

move at a constant speed of u = 50mm/s, and hence 

a time value at each pose is determined. This 

allows the graphs to be plotted and also acts as a 

simple means for reparameterizing the motion in 

terms of arc length. 

Knowledge of the arc length allows the third 

derivatives, with respect to s, of the five machine 

parameters to be found numerically. These are then 

multiplied by u3 to give the jerk with respect to 

time. 

 

 

The numerical differentiation scheme combines 

five values: those at the current pose and those at 

the two on either side. (Of course, this is adjusted 

at the start and end of the motion.) 

Figure 7 shows the graphs of jerk obtained here. 

Table 1 compares the minimum and maximum 

values of these with those in [36] (estimated from 

the graph in that paper). 

The extrema for the jerk in X and C obtained here 

are clearly poorer (numerically larger) than those 

of [36]. But they are still of the same order of 

Figure 6 Five axes parameters for example 2 



 

10  Mat Hunt, Glen Mullineux, Robert J. Cripps, Ben Cross 

 

magnitude and indeed do not exceed twice the 

other values. Given the problems inherent in 

numerical differentiation, this seems to be entirely 

acceptable. What is surprising is that the extrema 

for the values of Y, Z, A are an improvement on 

those in [36]. This seems all the more surprising 

since no attempt is made here to minimize the jerk 

in the motion (beyond whatever is inherent in the 

use of the quintic B-spline). 

 

 

 

It may be worth raising a further question. This is 

whether consideration of the jerk in the machine 

parameters represents a good way for assessing the 

quality of the motion of the cutting tool. Certainly 

a smooth motion of the machine tool is desirable 

but it is not clear that this necessarily reflects a 

good interaction between the tool and the work-

piece. Conversely, if a smooth motion of the 

machine tool is what is required, then it would 

seem better to optimize the motion in the space of 

its five parameters, rather than in the space of the 

work-piece in the hope that this has the desired 

effect. 

 

 

Table 1 Comparison of maximum and minimum jerk 

values 

 

7. CONCLUSIONS 

The need to fit a free-form motion through a 

number of precision poses is one that arises in 

several application areas. These include the 

generation of smooth cutting tool movements in 

multi-axis machining. Here the fitting may be 

required to be undertaken off-line by the CAM 

software, or during machining itself by the 

machine tool controller. 

The equivalent problem for free-form curves has 

been widely investigated and a number of standard 

techniques established. One approach to dealing 

with motions is to treat separately the translations 

and orientations and use curve-based techniques 

with each. This however requires the two separate 

components to be brought together into a single 

form. 

This paper has investigated the use of geometric 

algebra as a means of representing translations and 

rotations in a single form. It has been seen that this 

allows a free-form motion (in B-spline form) to be 

obtained which passes through a number of 

prescribed precision poses. The technique has been 

applied to a case study example and the motion 

achieved for the individual axes exhibits jerk 

values comparable with those that appear in the 

literature. 

Key to this approach is the ability to provide a 

“distance” function to allow parameter values to be 

assigned to the precision poses. There are inherent 

difficulties if linear and angular measures are 

simply combined. A new measure has been 

proposed and illustrated which considers the 

Figure 7 Jerk of parameters for example 2 
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lengths of spiral paths traced out by points on a 

notional paths between consecutive pairs of poses. 

This provides a measure which is of a single form 

(length). When dealing with machining, natural 

points to choose are the ends of the tool axis.  
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