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Abstract

This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling
axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are
unknowns in an optimization-based framework. The total jerk of the tool’s motion is minimized, implying the tool is moving as
smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling
distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of
jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case
studies.
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1. Introduction

Multi-axis computer numerically controlled (CNC) machin-
ing is the leading subtractive manufacturing technology, espe-
cially for hard materials such as titanium or steel-nickle alloys.
The machining process has typically three stages: (i) roughing,
that quickly removes the waste material, e.g. using a large rip-
per cutter, and generates a rough shape, (ii) semi-finishing, that
is mostly realized by end milling with a smaller cutter than for
roughing, and (iii) finishing, that aims at finalizing the shape
of the object, reaching fine machining tolerances (e.g. for en-
gine/aeronautical components a few micrometers for objects of
the size of tens of centimeters). Our research focuses on this
final (finishing) stage of machining. In particular, we consider
5-axis flank milling where the milling cutter (aka tool) and the
to-be-manufactured object touch along a whole curve (i.e., graz-
ing curve) [1], in contrast to (i) and (ii) where the tool has (theo-
retically) a single-point contact with the material block.

There are many factors that influence quality of a machined
product: from geometric accuracy of the path-planning algo-
rithms, over analysis of cutting forces and calibration of the ac-
tual machine, up to the error associated to the tool wear. In this
work, we discuss the kinematic part of the path planning process
that deals with the physics (velocities, acceleration, and jerks)
of the tool [2]. Having a smooth and jerk-minimized profile in
multi-axis machining is fundamental as it affects tracking per-
formance and lowers deviation of the machined surface from its
(ideal) designed state. Moreover, high values of jerk (as the time
derivative of acceleration) are closely related to sudden changes
of drive torques which induce undesirable vibrations [3]. Last but
not least, small jerk reduces the dynamic cutting forces that, in
a consequence, leads to lower energy consumption of the whole
milling process.
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1.1. Previous Work

Most of research on jerk minimization relates to contour ma-
chining [4–7]. Zhang et al. [4] use a G4-continuous B-spline
curve for the toolpath and employ a jerk-smooth feedrate
scheduling process in order to obtain a smooth jerk profile along
the toolpath. By using an optimal control problem formulation,
Bosetti and Bertolazzi [5] present an algorithm for CNC kernels
that aims at solving the axes interpolation problem. They assume
a predefined path tracking tolerance and apply constraints on the
kinematic specifications of the machine axes to calculate the tra-
jectory that satisfies the given constraints.

Jahanpour and Alizadeh [6] present an adaptive acceleration–
jerk-limited NURBS interpolation method based on an optimized
S-shaped C2 quintic feedrate planning scheme. They modify the
feedrate profile for each sharp corner to minimize the total execu-
tion time. Using a piecewise constant approximation of the third
derivative of the path, Zhang et al. [7] perform a time-optimal
tool trajectory generation for CNC manufacturing systems. In
their approach, the axis jerk constraints are also introduced into
the problem where the desired smoothness of the path could be
accomplished by adjusting the values of constraints.

Beudaert et al. [8] use 5-axis toolpath smoothing techniques
in order to maximize the feedrate and to reduce the machining
time in both end and flank milling processes. Based on the ve-
locity, acceleration, and jerk limits of each drive, they compute
the maximum reachable feedrate which is then used to localize
the areas where the toolpath is smoothed. In a similar research,
Sencer et al. [2] present a feed optimization process to minimize
the machining time based on the drive constraints. They use a B-
spline model for the feedrate profile and find its unknown control
points as design variables of an optimization process.

An optimization method for obtaining a minimum time fee-
drate profile that takes into account the kinematic characteristics
of a particular machine is proposed by Beudaert et al. [9]. They
consider both tangential and axis jerk and, in an iterative algo-
rithm, compute the minimum time feedrate profile by simultane-



ously satisfying the drive constraints.
A feedrate scheduling method for the 5-axis machining with

geometry, process, and drive constraints is presented by Sun et
al. [10]. The initial feedrate profile is constructed using a chord
error, and then iteratively adjusted by a curve evolution strategy.

Hu and Tang [11] consider dynamic behavior of the milling
tool in the context of high-speed machining. A tool path is gen-
erated such that the maximal angular accelerations of the rotary
axes are reduced. By defining smoothing blocks on the toolpath
of CNC contour machining, Essid et al. [12] perform a local
toolpath smoothing. In their kinematic model, they took into ac-
count the drive parameter axes defined by the manufacturer of the
CNC machine, however, in contrast to our work, the milling path
is being modified. In a closely related research, Song and Ma
[13] perform an interval partition-based feedrate scheduling with
axial drive constraints for the 5-axis flank machining. Ma et al.
[14] use a dual NURBS interpolator to detect feedrate-sensitive
and nonsensitive regions and design constant and smooth transi-
tion speeds in these regions.

Huang et al. [15] present a real-time feedrate planning method
for 5-axis machining to synchronize the linear and angular trajec-
tories, in order to reach smooth linear and angular motions con-
sidering axial kinematic constraints. Recently, Weng and Kuo
[16] have proposed a jerk decision making process that synchro-
nize the path planning stage with the dynamic response for a 5-
axis machine tool. Such a synchronization results in better sur-
face finish and also shortens the machining time.

Another relevant family of research deals with optimization of
tool orientations. Farouki and Li [17] consider a tool-orientation
problem in the context of 5-axis ball-end milling and look for
rotation-minimizing tool motions that preserve the angle between
the tool axis and the surface normal. Sun et al. [18] also propose
a tool orientation adjustment method for 5-axis ball-end machin-
ing to obtain an optimized toolpath considering the kinematic
constraints. For the given toolpath and feed profile of the tool-
end (both expressed as B-splines), they find analytic relations
of angular feed, acceleration, and jerk with respect to the geo-
metric and tangential feed parameters of the tool-end trajectory.
Afterwards, conditional inequalities of the kinematic constraints
are applied to adjust the tool orientation. Given a contact point,
Sharma et al. [19] consider a multi-point tool positioning and
propose a method to adapt the tool to have a multiple contact
with the reference geometry.

Finally, and probably in the closest research to ours, focusing
on freeform curves expressed by B-spline and/or NURBS rep-
resentation, Hashemian et al. [20] present a NURBS reparam-
eterization technique to minimize the jerk value in trajectories
of robot manipulators. They reparameterize a single contact path
(i.e., curve) and use a quintic B-spline function with uniform knot
vector for relating the path parameter to the execution time vari-
able.

1.2. Contributions

Our main contributions are as follows:

• We propose utilizing the reparameterization technique upon
which the relationship between the motion path parameter
of the flank machining toolpath and the system time vari-
able is expressed by means of an optimal transfer function
such that the total jerk of the tool’s motion is minimized. To
this end, we use a B-spline transfer function whose control
points and the knot vector are variables in an optimization-
based framework.

• We introduce a new initialization strategy using a proper
ruling distance metric (RDM) to adequately estimate dis-
tances between neighboring positions of the milling tool.
This initialization serves as a good guess for global opti-
mization in a discretization of the space of transfer functions
(reparameterizations).

• Given a milling toolpath for multi-axis flank milling, rep-
resented as a B-spline ruled surface, our proposed research
preserves the geometric accuracy and optimizes the motion
of the tool. Our results can therefore be easily combined
with any toolpath design strategies.

• We compare our results with state of the art path planning
techniques and show on several case studies that the repa-
rameterized paths reduce the total jerk considerably.

The remainder of this paper is organized as follows. Section 2
discusses ruled surfaces as toolpaths in flank machining and in-
troduces basic notions of the kinematics of the tool and reparam-
eterization. In Section 3, the toolpath jerk minimization problem
is formulated and a ruling distance metric is introduced, followed
by various case studies and numerical examples in Section 4. Fi-
nally, Section 5 draws the conclusions of this work.

2. Ruled surfaces as toolpaths in flank CNC milling

The tool motion in a flank CNC milling process can be rep-
resented by the position of the tool-end and the direction of the
tool. Therefore, the toolpath is defined as the locus of the milling
tool axis in the Euclidean 3-space, which is a ruled surface as
shown in Fig. 1.
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Figure 1: Toolpaths of 5-axis flank milling with conical tools,
represented by ruled surfaces (yellow). The envelopes of the
tool (transparent) accurately approximate a benchmark freeform
workpiece (the path-planning results are courtesy of Bo et al.
[21]). On the left path, observe distribution of the milling tools
that is uniform in time, yet quite non-uniform in space, and would
require higher acceleration and/or jerk at the upper end of the
toolpath.

2.1. Ruled surfaces as toolpaths of rigid axes

For the sake of completeness, we begin with the defini-
tion of a B-spline curve that can be thought of as the locus
of the tool-end positions in space. A B-spline space curve
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c (u) : u ∈ [0, 1]→ IR3 of degree n with N + 1 control points
p0,p1, ...,pN is defined as:

c (u) =

N∑
i=0

B n
i (u) pi , (1)

where the univariate parameter space u ∈ [0, 1] is characterized
by the knot vector u,

u = [0, 0, ..., 0︸    ︷︷    ︸
n+1

, un+1, un+2, ..., uN , 1, 1, ..., 1︸    ︷︷    ︸
n+1

] , (2)

and the B-spline basis functions B n
i (u) are expressed by the Cox–

deBoor recursion formula as follows [22]:

B 0
i (u) =

{
1 ui ≤ u < ui+1
0 otherwise

B n
i (u) =

u − ui

ui+n − ui
B n−1

i (u) +
ui+n+1 − u

ui+n+1 − ui+1
B n−1

i+1 (u) .
(3)

Consider two B-spline curves c1(u) and c2(u) (re-
ferred to as boundary curves) defined by Eq. (1), that is,
ck(u) =

∑N
i=0 B n

i (u) p k
i (k = 1, 2). We assume that c1(u) and

c2(u) are of the same degree n and spanned over the same knot
vector u. A ruled surface s (u, v) is then defined as

s (u, v) = (1 − v) c1(u) + v c2(u), [u, v] ∈ [0, 1] × [0, 1] , (4)

where u is the parameter controlling the tool motion (i.e., pseudo-
time parameter) and v controls the position of the point on the
axis. The boundary curves are linearly interpolated and, there-
fore, we have a straight line segment (referred to as a ruling)
in the v direction connecting the respective points on the curves
c1(u) and c2(u). If the boundary curves have different knot vec-
tors, the standard knot refinement algorithm is used to bring them
to a common u (see, e.g., [22]).

Remark 1. Alternatively, one can define a ruled surface by one
boundary curve and the motion of the ruling vector. This is a
more typical description of a ruled surface in scenarios such as
ball-end milling where the contact paths are given and the ori-
entations are used, e.g., for collision avoidance. However, these
two representations of ruled surfaces are equivalent and one can
easily convert one to another.

In our context, the ruled surface is considered as a toolpath of
the milling axis in flank machining, that is, the rulings represent-
ing the tool axis have to be of equal length (see Fig. 2). This
constraint is formulated as

‖ c1(u) − c2(u) ‖ = const. , for all u ∈ [0, 1] , (5)

and its differentiation with respect to u gives

〈
c ′1(u), c1(u) − c2(u)

〉
=

〈
c ′2(u), c1(u) − c2(u)

〉
, (6)

where 〈· , ·〉 is the Euclidean scalar product. Eq. (6) is the first-
order length-preserving constraint, also known as the projection
rule (see, e.g., [23, 24]).
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Figure 2: A ruled surface s (u, v) with boundary curves c1(u) and
c2(u) and straight lines (i.e., rulings) of equal length (herein and
in the following, u and v are referred to as motion and ruling
parameters, respectively).
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Figure 3: Simulation of flank milling in a table-tilting 5-axis
CNC machine. The motions spanned by the X and Y directions
are provided by translational movements of the base (i.e., the ta-
ble), while the Z motion is provided by vertical translation of the
spindle. The rotational movements B and C are controlled by
rotations of the table around Y and Z directions, respectively.

2.2. Kinematics of the tool motion

The tool motion in the multi-axis CNC machining centers is
represented in terms of G-codes and governed by the combina-
tion of movements provided by the drives of multiple axes (e.g.,
X, Y, Z, B, and C in the table-tilting 5-axis milling, see Fig. 3).
Considering that the toolpath is given by a B-spline ruled sur-
face, regardless of the machine type and how the motion law is
governed by the G-codes, the kinematic specification of the tool
motion can be represented by means of velocity (V), acceleration
(A), and jerk (J) profiles of boundary curves. These entities are
computed as time derivatives of ck(u) (k = 1, 2) using a chain
rule as follows

Vk(t) =
∂ck

∂t
=
∂ck

∂u
∂u
∂t
, (7)
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Ak(t) =
∂2ck

∂t2 =
∂2ck

∂u2

(
∂u
∂t

)2

+
∂ck

∂u
∂2u
∂t2 , (8)

Jk(t) =
∂3ck

∂t3 =
∂3ck

∂u3

(
∂u
∂t

)3

+ 3
∂2ck

∂u2

∂2u
∂t2

∂u
∂t

+
∂ck

∂u
∂3u
∂t3 , (9)

where t ∈ [0, τ] is the system time variable.
In the above equations, the r-th derivative of B-splines curves

are obtained as

∂rck

∂ur =

N∑
i=0

∂r

∂ur B n
i (u) p k

i , (10)

where

∂r

∂ur B n
i (u) =

n
ui+n − ui

∂r−1

∂ur−1 B n−1
i (u)

−
n

ui+n+1 − ui+1

∂r−1

∂ur−1 B n−1
i+1 (u) . (11)

The kinematic specifications of boundary curves provided by
Eqs. (7–9) will then be used to measure and optimize the smooth-
ness of the tool’s motion.

2.3. B-spline reparameterization of the toolpath
When the flank milling toolpath is parametrically given by a

B-spline ruled surface, the G-code command lines are typically
generated from a dense set of points sampled along the bound-
ary curves (or alternatively one boundary curve and the ruling
direction at each point). The procedure of developing command
lines in CNC programmers (e.g., Siemens NX) generally consid-
ers equal time steps for tool motion between sampled points. An
important point to mention is that these sampling points are also
obtained by uniform parameter increments in most occasions. As
a result, the execution system time domain t ∈ [0, τ] is linearly
transferred to the motion parameter space u ∈ [0, 1] by means
of a constant scaling coefficient (i.e., u = t/τ). In this way, all
time derivatives of the trajectory are scaled by the powers of 1/τ.
However, a constant scaling cannot always guarantee a kinemat-
ically smooth motion especially at the start and end of the path
(see, e.g., [25]). Therefore, finding an optimal transformation
between t and u, which results in a smooth motion, is essential.

In this research, we propose utilizing the reparameterization
technique upon which the motion path parameter u on both
boundary curves ck(u) is related to the time variable t by means
of a strictly increasing transfer function u = f (t) where f (0) = 0
and f (τ) = 1. Fig. 4 shows an original parameterization and its
reparameterized variant of a 3D curve. In the context of flank
CNC machining, one needs to consider two boundary curves
reparameterized by single transfer function (TF). It is interesting
to note that, in contrast to linear transformation between u and t
upon which equal time steps lead to equal steps on the parameter
space, applying this reparameterization means that the parameter
step-lengths (and their respective mappings on boundary curves)
are governed by the transfer function f (t). We also recall a well-
known fact that reparameterization does not change the shape of
boundary curves (and consequently the ruled surface), but affects
solely their derivatives. More precisely, for each boundary curve,
the original form ck(u) and reparameterized one c̃k(t) := ck( f (t))
are geometrically identical but parametrically different (see, e.g.,

[20, 22, 26]). A similar scenario can be expressed for the ruled
surface, i.e., s (u, v) ≡ s̃ (t, v). Consequently, by finding an appro-
priate expression for f (t), we are able to reach an optimal smooth
toolpath (noting that, herein and in the following, the optimality
criterion is to reach a jerk-minimized toolpath).

In the proposed method, along with the B-spline representa-
tion of the ruled surface, the reparameterization function u = f (t)
is also introduced as a B-spline curve in terms of time variable.
B-spline formulation offers sufficient flexibility (e.g., arbitrary
order of continuity in the function and its derivatives) for our jerk
minimization purpose. Hence, we recall Eq. (1) to define the TF
as an m-th degree B-spline function with M + 1 control points
(i.e., coefficients) q0, q1, ..., qM spanned over the knot vector t as
follows:

u = f (t) :=
M∑

i=0

B m
i (t) qi , (12)

t = [0, 0, ..., 0︸    ︷︷    ︸
m+1

, tm+1, tm+2, ..., tM , τ, τ, ..., τ︸   ︷︷   ︸
m+1

] . (13)

It should be noted that since the curve parameter u is supposed
to be in [0,1], the first and last control points of f (t) are q0 = 0
and qM = 1, respectively. All other qis must lie within the in-
terval [0,1] and be monotone (i.e., qi > qi−1). The control points
and knot sequence of TF play crucial roles in smoothing the kine-
matic specifications of the toolpath. In the next section, we will
present an optimization-based framework that looks for the con-
trol points qis and the knots t js of the TF to minimize the jerk of
the toolpath.

3. Toolpath jerk minimization

3.1. Optimization problem

As stated in the Introduction, the jerk minimization is taken
into consideration in this research as a significant optimality cri-
terion in smoothing toolpaths of multi-axis flank CNC machin-
ing. Hence, in order to find the jerk-minimized toolpath, we need
to determine the optimal reparameterized form of the respective
ruled surface, i.e., s̃ (t, v). Since the optimized boundary curves
c̃k(t) need to share the same parameterization to preserve the pro-
jection rule of Eq. (6), we seek a transfer function u = f (t) to
be applied to both curves. For this purpose, we perform an op-
timization process in the context of functional analysis, i.e., we
minimize the jerk magnitudes on both boundary curves consider-
ing the reparameterization function f (t), represented by control
points qis and knot values t js in Eqs. (12) and (13), as the un-
knowns. The objective function is defined as a weighted sum of
L2-norms of jerks of the respective boundary curves as

F := w1

∫ τ

0
‖J1(t)‖2 dt + w2

∫ τ

0
‖J2(t)‖2 dt , (14)

where ‖Jk(t)‖2 = 〈 Jk(t), Jk(t)〉 is the square of Euclidean norm
of the jerk. The weights w1 and w2 in the above integral might
be set based on different considerations, e.g., due to conditions
imposed on the boundary curves or due to special type of the tool
or milling machine. The optimization problem can be further
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Figure 4: Reparameterization. Left: A boundary curve in the typical and (arbitrarily) reparameterized forms. Red circles show the
typical linear transformation between u and t upon which equal time steps leads to equal steps on the parameter space, while green
squares illustrate the parameters created by reparameterization upon which the parameter step-lengths are governed by the transfer
function u = f (t). Right: The respective linear (red) and general (green) transfer functions.

written as:

Find
{

qi i = 1, 2, ...,M − 1
t j j = m + 1,m + 2, ...,M

}
which minimize F

subject to


qi − qi−1 ≥

1
α(M − m + 1)

t j − t j−1 ≥
τ

β(M − m + 1)

(15)

where α, β ≥ 1/(M − m + 1) are parameters to control the prox-
imity of adjacent control points and knots, respectively. Large
values of α and β push the consecutive knots and control points
to be closer, and to eventually lower the continuity in the limit
(β→ ∞). On the other hand, smaller values result in wider
gaps between the knots and/or the control points (for instance,
for knots, this constraint pushes the knot vector toward the uni-
form case). If not stated differently, we set the default values to
α = β = 10 in our implementation.

The optimization constraints express our wish of increasing
sequence of knots and control points such that f (t) is well-
defined and increasing. Finally, we also require the boundary
constraints as q0 = 0, qM = 1, tm = 0, and tM+1 = τ assuming the
total execution time is τ. However, these boundary knots and val-
ues are set directly and therefore are not included as variables in
Eq. (15).

Remark 2. Since obtaining the jerk profiles entails computing
the third derivative of ck(u), employing quartic boundary curves
for the toolpath would guarantee only a C0-continuous jerk. In
order to have a smooth jerk profile (at least C1-continuous), ck(u)
is required to be of degree n = 5 or higher. In addition, referring
to Eq. (9), and for the same reason, the transfer function needs
be at least of degree m = 5 to reach a smooth jerk–time represen-
tation.

3.2. Evaluation of the objective function
In order to perform the jerk minimization, we need to calcu-

late the objective function F defined by Eq. (14). Depending on
the degrees of ck(u) and u = f (t), and based on the chain deriva-
tive rule of Eq. (9), the degree of the objective function can grow
drastically. For instance, if the TF and boundary curves are all
expressed in terms of quintic B-spline bases (i.e., n = m = 5),
the degree of F would be 44. Since the analytical integration

of functions of such high degrees is computationally expensive,
and needs to be computed repeatedly in an iterative optimization
procedure, we prefer Gaussian quadrature rules as numerical in-
tegration schemes, because they are known to be computation-
ally cheap (see, e.g., [27]). To test the numerical exactness of
the integration, we experimented with various Gaussian rules as
follows.

Consider an example boundary curve that is a quintic B-spline
with N + 1 = 11 control points spanned over a uniformly-spaced
knot vector (see Fig. 5). It is assumed that this path, which is
a reproduction of a 3D example in [20], is to be traversed in
τ = 1 min.

x (m)

y (m)
0

1

0

0.2

0

0.3

c (u)

�
�

Control polyline

z
(m

)

Figure 5: A 3D curve example reproduced from [20] for accuracy
assessment of the function evaluation procedure of the proposed
toolpath jerk minimization method.

For the first part of the test, Table 1 shows the absolute and rel-
ative errors of global Gaussian integration of the objective func-
tion F for the 3D curve shown in Fig. 5 (herein, the term global
denotes the integration over the entire time domain [0, τ]). The
error values are obtained by comparing the numerical integral
with the exact analytical one. We consider a random TF (i.e.,
non-optimized) as its shape is not relevant to this exactness test.
The degree and number of control points of the TF are m = 5 and
M + 1 = 15, respectively. For performing the integration, vari-
ous numbers of Gauss points (GPs) are employed to evaluate the
objective function.

In the second part of the test, Table 2 shows the absolute
and relative errors of local (or so-called element-wise) Gaus-
sian integration of the objective function F for the same curve
where the integration is performed locally over the knot spans
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Table 1: Accuracy assessment of global numerical integration
of the objective function for the 3D curve shown in Fig. 5 with
an arbitrary (non-optimal) quintic TF with 15 control points (10
knot spans). Absolute and relative errors are obtained by various
numbers of Gauss points (# GPs) and the path is assumed to be
traversed in τ = 1 min.

Analytical
integration

Global Gaussian
quadrature Error

F (m2/min6) # GPs F (m2/min6) Absolute Relative

35470

5 18239 17230 48.58%
10 39298 3828.4 10.79%
20 36528 643.0 2.99%
30 34987 482.5 1.36%
40 35616 146.11 0.41%
50 35495 25.0 0.07%

[t j, t j+1] of the transfer function. Again, we assume the degree
of the TF is m = 5, but the number of control points varies as
M + 1 = 7, 11, and 15, so that we can observe the accuracy of
the element-wise numerical integration for different numbers of
knot spans. For lower number of knot spans (i.e., lower M), we
need more GPs to reach an accurate integration since, in this case,
the knot spans are wider and the integrand may oscillate more.
On the other hand, by increasing the number of knot spans of
the TF, lower number of GPs is required for the element-wise in-
tegration, guaranteeing fast and accurate evaluation of the objec-
tive function for the iterative optimization process. The results of
these tables indicate that local integration with 7–8 GPs can pro-
vide sufficient accuracy if a suitable number of knot spans is con-
sidered for the TF. Another option to reduce the computational
cost of integration with such integrand of the polynomial spline
type is to apply the spline Gaussian rules (see, e.g., [28, 29]) that
require even fewer quadrature points, yet guaranteeing the exact-
ness of the integration.

3.3. Ruling distance metric

In this research, we perform a gradient-based optimization by
employing the sequential quadratic programming (SQP) as an it-
erative method for constrained nonlinear optimizations, widely
used on spline-based problems with a twice continuously differ-
entiable objective function (see, e.g., [30, 31]). The SQP method
solves a sequence of subproblems, each of which optimizes a
quadratic model of the objective function, guaranteeing a su-
perlinear convergence by using a quasi-Newton updating pro-
cedure (for more details regarding the mathematical aspects of
this method, the readers are referred to, e.g., [32, 33]). As the
objective function in Eq. (14) is highly nonlinear, one needs to
have a good initial guess of the unknown design variables (i.e.,
qis and t js) to avoid the optimization process to be terminated at
an undesirable local minimum. Even by performing thousands
of optimization runs with different random initial guesses for un-
known variables, there may be still the risk that the best optimal
TF cannot be captured. Furthermore, considering the computa-
tional cost of the iterative optimization process, this cluster of
runs is completely far from the desired fast toolpath smoothing
strategy that is the main goal of this research.

In order to overcome the above-mentioned obstacles, an in-
novative initialization technique for the jerk minimization pro-
cess is presented by means of an adequate ruling distance metric
(RDM). This metric is defined on a space of finite lines (i.e.,

rulings) in 3D-space and reliably captures distance between the
positions of the milling tool. Using this metric, we show that
almost-optimal jerk minimized path can be found with a single
round of the optimization process.

Defining line `i := (ai,bi) as a ruling that connects points
ai := c1(ûi) and bi := c2(ûi) on the boundary curves (where û is
an arbitrary parameter in [0,1]), for any set of two consecutive
rulings `i and `i+1 obtained by uniformly-spaced parameters ûi
and ûi+1, and their uniformly-spaced time domain counterparts t̂i
and t̂i+1, we construct a bilinear patch on the ruled surface s (u, v)
as shown in Fig. 6. We follow the idea of the metric of finite
rulings [34] and define the RDM metric d(`i, `i+1) as a measure
for the distance traversed by the milling tool between rulings
`i and `i+1 in the time step [t̂i, t̂i+1]. This metric is introduced
as the L2-norm of the Euclidean distance function of rulings as
follows (multiplied by 3 for convenience):

d(`i, `i+1) := 3
∫ 1

0
‖(1 − v) (ai − ai+1) + v (bi − bi+1)‖2 dv

= ‖ai − ai+1‖
2 + ‖bi − bi+1‖

2

+ 〈(ai − ai+1) , (bi − bi+1)〉 . (16)

`i `i+1

ai

bi

ai+1

bi+1
��

��
Bilinear patch

s (u, v)

c1(u)

c2(u)

Figure 6: A bilinear patch (black) that approximates the ruled
surface patch (blue) of s (u, v) between rulings `i and `i+1.

From the kinematic point of view, the RDM metric d is a
measure that indicates how fast the tool is traveling between rul-
ings in uniform time steps. Equally importantly, and unlike the
Plücker’s metric of infinite lines (see, e.g., [35]), this metric cap-
tures sudden changes of one endpoint of the ruling, while the
other end stays (almost) fixed, see Fig. 7.

It is obvious that for larger RDM values, under uniform time
steps, the tool should move faster to reach the next ruling (i.e.,
the next parameter û) that will result in higher acceleration and
jerk values. Taking into account that most of CNC programmers
consider linear transformation between u and t, the generated
toolpath may reveal undesirable kinematic specifications if the
respective ruled surface is inappropriately parameterized. The
main advantage of defining this metric is that we can reorient the
time domain based on the RDM magnitude to have larger time
steps for larger ruling deviations, leading to a good initialization
for jerk minimization. Since the ruling distances are governed by
the original parameterization of boundary curves, this reparame-
terization implies that the tool goes on a shorter time step when
the rulings are close and on a larger one when the rulings are fur-
ther one from another. We herein refer to time reorientation as
an alternative definition of reparameterization in which we keep
the parameters equally-spaced while the time steps are different
(see Fig. 8). This definition will help to create the initial TF for

6



Table 2: Accuracy assessment of local numerical integration of the objective function for the 3D curve example of Fig. 5 with arbitrary
(non-optimal) quintic TFs with 7, 11, and 15 control points (i.e., 2, 6, and 10 knot spans). Absolute and relative errors obtained by
different numbers of Gauss points (# GPs) and the path is assumed to be traversed in τ = 1 min.

#GPs
2 knot spans 6 knot spans 10 knot spans

F (m2/min6) Error F (m2/min6) Error F (m2/min6) Error
Analytical Numerical Abs. Rel. Analytical Numerical Abs. Rel. Analytical Numerical Abs. Rel.

5

57472

141830 84358 147%

36287

37839 1552 4.28%

35470

35797 327.72 0.92%
6 119950 62482 109% 35257 1030 2.84% 35321 148.91 0.42%
7 87841 30370 52.8% 36618 331.7 0.91% 35507 37.35 0.11%
8 51604 5868 10.2% 36587 300.1 0.83% 35477 6.99 0.02%

Figure 7: RDM metric. Two milling paths with a conical tool
(transparent) are shown. While the Plücker’s metric gives almost
the same value for the neighboring positions of the milling axis
(yellow), RDM assigns larger values to the motion with the more
intensive deviation of the axis (below). Consequently, low values
of RDM capture better motions preferable for milling.

the optimization process based on the RDM metric in an effec-
tive manner. Consider now Nd + 1 uniformly-spaced parameters
û0, û1, ..., ûNd ∈ [0, 1] in Fig. 8, then in this discrete setup, the re-
oriented time values t̃i corresponding to each ûi are defined as
follows:

t̃i :=

∑i
j=0 d j∑Nd
j=0 d j

τ , i = 1, 2, ...,Nd , (17)

where t̃0 := 0, d0 := 0, and d j := d(` j−1, ` j). To get a smooth ini-
tial TF : u = f (t) =

∑M
i=0 B m

i (t) qi for the jerk-optimization pro-
cess, we apply B-spline fitting on the (̃ti, ûi) values. In particular,
we follow the scheme proposed in [22] and initialize the (non-
uniform) knot vector t by applying the De Boor’s algorithm and
initialize the control points qi by minimizing the fitting error in
the least–squares sense.

Reoriented Time : t̃
t̃0 = 0 t̃Nd = τ

û0 = 0

û0 = 1

E
qu

al
ly

-s
pa

ce
d

Pa
ra

m
et

er
:û

Figure 8: An example of the initial transfer function
u = f (t) =

∑M
i=0 B m

i (t) qi for jerk-optimization process obtained
by ruling distance metric. The function is fitted to equally-spaced
parameters ûi corresponding to reoriented time values t̃i.

4. Case studies

In this section, the applicability of the proposed method of
this paper is demonstrated on several benchmark examples. We
again emphasize that the objective of this work is to kinemati-
cally smooth a toolpath obtained a priori by some toolpath de-
sign strategies. We also assume that the given toolpath already
meets the axes constraints of a particular milling machine. It is
important for the smoothing procedure not to violate these con-
straints. It will be shown in numerical examples that the kine-
matic specification (i.e., velocity, acceleration, and jerk) gener-
ally become lower than the original ones after reparameteriza-
tion.

4.1. The applicability of the ruling distance metric
The main goal of the first case study is to validate the correct-

ness of our proposed ruling distance metric (RDM) described in
Section 3.3 for the jerk minimization problem. For this purpose,
we explore the space of admissible transfer functions that should
be monotone and meet the conditions of u(0) = 0 and u(τ) = 1.
We then sample a set of 5000 random initializations of u = f (t)
for the optimization process and compare the results with that
obtained by the RDM metric. Fig. 9 demonstrates a toolpath of a
flank milling process on the turbine blisk benchmark workpiece.
The ruled surface has quasi-parallel rulings (i.e., with slight rul-
ing rotations) and is constructed by two quintic boundary curves
with N + 1 = 15 control points spanned over a uniformly-spaced
knot vector. The toolpath of this example, which is assumed to
be traversed in τ = 5 sec, is taken from [23].

Starting with the case of 5000 random initializations, Fig. 10
depicts the optimized TFs obtained by the optimization process,
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c1(u) c2(u)

Figure 9: Left: An original path of a cylindrical milling tool (red)
uniformly sampled in time (we used 10 equal time steps for vi-
sualization of the tool). No reparameterization is applied, i.e.,
u = t, on the boundary curves c1(u) and c2(u). Right: The tool-
path after the jerk-minimized reparameterization is applied, c.f.
Figs. 10–13. The time-space t is sampled uniformly, while the
parameter space is obtained via u = f (t). Observe a more uni-
form distribution of the green cylinders after reparameterization
(with the same 10 equal time steps). The toolpaths correspond to
5-axis flank milling of a blade of the blisk model (framed) [23].

where equal weights are considered for the objective function
F (i.e., the total L2-norms of jerks on both endpoints of the
tool’s axis). In this figure, the color coding reflects the quality
with respect to the quality measure, i.e., the value of the objec-
tive function Eq. (14). The red color indicates large values of F
while dark blue signals vanishing F. Observe that not all initial
guesses converge to the true minimizers and get stuck at some
local minimum, including the linear transformation depicted as
a dashed black line. Most of the initial guesses converge to a
roughly similar TFs highlighted as a blue cluster at the middle of
the graph. In this example, we considered a quintic TF : u = f (t)
(see Remark 2) with M + 1 = 15 control coefficients qi where the
integrations are performed by element-wise Gaussian quadrature
with 7 GPs.

As a comparison with the random sampling of the initial tran-
sition function, we employ the RDM metric to construct a single
initialization based on the geometry of the ruled surface. Con-
sidering Nd = 200 in Eq. (17), the initial and optimal TFs with
different numbers of control points are obtained by the proposed
metric and visualized in Fig. 11. These TFs are also compared
with the best case of the 5000 random initializations. The fig-
ure indicates that optimal TFs computed by both RDM metric
and random sampling are (almost) identical. More interestingly,
the RDM-based TF with 15 control points is almost the same
as the one obtained by random sampling with the same number
of control points (see the cyan curve in Fig. 11). The respec-
tive objective function values and maximum jerk magnitudes on
boundary curves are reported in Table 3. Again, it can be seen
that both random and RDM-based initializations lead to almost
similar optimal values, considering that using the RDM metric,
the results are computed by a single optimization process and

Time : t (sec)
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1

12.16
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33.72

44.50

55.28

Pa
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m
et

er
:u

=
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F
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m
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Figure 10: Optimal transfer functions u = f (t) for the first case
study obtained by 5000 samples. The colormap shows how good
the optimal TFs are with respect to the objective function value
F (i.e., the total L2-norms of jerks). The black dashed diagonal
line represents the linear parameter–time transformation (i.e., no
reparameterization).
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Figure 11: Optimal transfer functions obtained by the proposed
RDM metric with different numbers of control points (# CPs)
compared with that obtained by the random initializations. The
respective values of the objective function (F) and maximum jerk
magnitudes are reported in Table 3.

therefore with a significantly lower computational time. Partic-
ularly in this comparison, the computational time is governed
by the number of iterations, which depends on how far the ini-
tial guesses are from the optimized values. Using the proposed
RDM metric, we find an initialization for the TF that is closer to
the final optimal one and, consequently, the computational time
is decreased. Regarding the number of control coefficients, it
should be also noted that by increasing the number of qis, the TF
is more flexible and a (slightly) better jerk profile may be found.
On the other hand, it leads to more variables and therefore a more
expensive optimization. As a result, a compromise between com-
putational cost and required accuracy should be considered.
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Table 3: Maximum jerk magnitudes on boundary curves and the objective function value (F) for the first case study. Optimal TFs
are obtained by the random initializations and the proposed RDM metric, respectively. The effect of employing different numbers of
control points (# CPs) for the transfer function is shown and the advantage of implementing the RDM metric (in terms of computational
cost) is highlighted.

Linear TF Optimal TF by 5K random initializations Optimal TF by proposed RDM metric
(non-optimal) (# CPs = 15) # CPs = 10 # CPs = 15 # CPs = 20

max(||J1(t)||) (mm/sec3) 31.2402 2.4308 2.5456 2.4303 2.4207
max(||J2(t)||) (mm/sec3) 78.0993 2.6108 2.3940 2.6133 2.6037

Objective function value F (mm2/sec6) 853.7908 12.1626 12.6436 12.1628 12.1195
Computational time (sec) – 61.7 * (average time per case) 14.8 ** 45.5 111.4

# Iterations – 73 (average # iterations per case) 31 39 44
* The reported time for the case of 5000 random initializations, is the average of parallel runs on 50 CPUs (100 cases per run). The total time is 6171 sec.

** The reported time for the proposed method is obtained by a single run on one CPU.

The velocity, acceleration, and jerk plots of the original tool-
path with linear parameter–time relationship (i.e., without repa-
rameterization) and the optimized toolpath obtained by employ-
ing an optimal TF with 15 control points are shown in Fig. 12.
It can be seen that the jerk profile is substantially optimized and
smoothed compared to the original input toolpath (see Table 3).
We again emphasize that the geometric shape of the toolpath
remains unchanged through the jerk minimization procedure so
that any consideration in the path planning stage is kept.
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Figure 12: Velocity (top), acceleration (middle) and jerk (bot-
tom) profiles for boundary curves c1 and c2 of the example
shown in Fig. 9. The values are computed by RDM-based op-
timal TF : u = f (t) and compared to the linear TF : u = t/τ. The
zoomed-in boxes show in detail the comparison of the four TFs.
When applying the reparameterization, observe a minor worsen-
ing in the middle of the domain in contrast to a major improve-
ment close to the boundaries.

In order to have a better interpretation of the reparameteriza-
tion technique and see how it may change the kinematic speci-
fications along the toolpath, Fig. 13 depicts the velocity, accel-
eration, and jerk vectors obtained by linear and optimal trans-
formations at some sampled points on the toolpath. Under ei-
ther of parameterizations we set (linear or optimal), the milling
tool reaches the shown locations at the same parameter u, but
at different times t. The reason is that, for the same parame-

ter values, reparameterization reorients the time domain and the
velocity magnitude is changed accordingly. However, referring
to Eqs. (7–9), the velocity direction remains unchanged and tan-
gent to the path (for the acceleration and jerk, both direction and
magnitude are changed). Observe that the acceleration and jerk
values, which are excessive at both ends of the original path (see
Fig. 12) are well decreased by the presented reparameterization
algorithm.

(a) Velocity (b) Acceleration (c) Jerk
1

12

23

34

4
5

5
6

6
7

7

Time (sec) at points 1 to 8:

By linear TF
t = {0, 0.5, 1.25, 2, 3, 4, 5}

By optimal TF
t = {0, 0.73, 1.58, 2.12, 3.09, 4.15, 5}

c1(u)

c2(u)

Figure 13: (a) Velocity, (b) acceleration, and (c) jerk vectors at
some sampled points on the ruled surface of the example shown
in Fig. 9 (the view is changed to better visualize the vectors). Red
vectors correspond to (original) linear transformation between u
and t, while the green ones correspond to the TF obtained by the
RDM metric. The time values of reaching each point in different
configurations are also reported. The acceleration and jerk vec-
tors of the original toolpath are scaled at both ends to be fitted in
the figure.
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Figure 14: Two milling paths, (a,b) and (c,d), respectively, on a blade (gray) of an impeller (e). It is a simulation of 5-axis flank
milling, data courtesy of [1], using two distinct conical milling tools. The red positions of the tool are related the original (linear)
parameterization, while the green positions show the motion after jerk-minimized reparameterization. All positions are uniformly
sampled in the time space. Similarly to Fig. 9, the reparameterized motion better captures distances between particular positions of
the tools, resulting in smoother motion (in terms of jerk).

4.2. The impeller benchmark workpiece
In order to show the applicability of the presented methodol-

ogy, in this section, we study two toolpaths from the impeller
benchmark workpiece where a higher variation of ruling di-
rections occurs. Fig. 14 shows two toolpaths on the impeller
workpiece obtained by a toolpath generation algorithm (see [1]).
Both corresponding ruled surfaces have quintic boundary curves,
where the first toolpath (Figs. 14a and 14b) has uniform knots
and 15 control points, while the second one (Figs. 14c and 14d)
is spanned over a non-uniform knot sequence with 17 control
points.

The optimal (quintic) transfer function for each toolpath is
computed by the presented reparameterization technique where
the initialization for the optimization process is obtained by the
proposed RDM metric. The respective optimal TFs and the plots
of velocity, acceleration and jerk are depicted in Figs. 15 and 16,
respectively. We assume that both paths are to be traversed in
τ = 10 sec and the kinematic specifications do not violate the
machine constraints. Both results consider equally important jerk
minimization on either ends, i.e., w1 = w2 in Eq. (14).

4.3. Discussions and limitations
Various optimization weights. In all our case studies we con-

sidered equal weights in Eq. (14) because our research is moti-
vated by 5-axis flank milling and the jerk of the tool needs to be

minimized throughout the whole grazing curve. Since the jerk
of the intermediate axis points is just a linear combination of the
jerks on the axis’ ends, we require the jerk to be minimized on
both ends equally. One can, however, consider jerk minimiza-
tion in the context of ball-end milling and there it makes sense to
minimize the jerk of the whole tool by prioritizing the weight on
the side closer to the contact point. This can be easily controlled
by changing the weights in Eq. (14).

Considerations on the transfer functions. We initialize
the transfer function using a quintic B-spline to meet the min-
imum requirement of having a C1-continuous jerk–time pro-
file (see Remark 2). One can eventually experiment with
higher degrees in situations where the initial data of the trans-
fer function (obtained by the RDM metric) would indicate more
degrees of freedom. We experimented with a higher number
of control coefficients of the transfer function to increase the
number of degrees of freedom which increased the computa-
tional cost and improved the jerk only negligibly (as reported in
Sections 3.2 and 4.1). After these experiments, we set the degree
to 5 and the number of the control points to 15 in our implemen-
tation.

G-code input. In the case when the toolpaths are given in
terms of discrete data points or in terms of a G-code, our algo-
rithm can be applied as well. We just need to know the directions
and length of the rulings that can be easily extracted from motion
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Figure 15: Jerk minimization of the 1st toolpath of the impeller workpiece (Figs. 14a and 14b). (a) Optimal vs. linear TFs compared
to the RDM-based initial TF. (b) Velocity, acceleration, and jerk profiles over time obtained by linear and optimal TFs on boundary
curves c1 and c2. (c), (d), and (e) Contours of velocity, acceleration, and jerk on the ruled surface obtained by linear and optimal TFs
where the values of ‖Vm(t)‖, ‖Am(t)‖, and ‖Jm(t)‖ are the means of respective values on boundary curves in (b). Note we changed our
view to be in accordance with global xyz coordinate system.

path goto files or from G-codes. Our experiments were applied to
a smooth (B-spline) input, see e.g. Fig. 9, however, our follow-
up project that deals with physical validations will deal directly
with G-codes.

Kinematic limits and smooth motions on machine drives.
In this work, we focus on the jerk values of the tool motion that
are derived from the geometry of the toolpath. Hence, the opti-
mization objective is evaluated with reference to the workpiece
coordinate system (WCS). From the practical point of view, it is
more relevant to optimize the jerk values on machine drives, i.e.,
X, Y, Z, B and C in 5-axis machining, which are referred to as
the machine coordinate system (MCS). Note that the currently
smoothed toolpath in WCS may result in a non-smooth motion
in MCS. Such an approach, requires to consider a particular ma-
chine (and the limits on its drives) as a part of the optimization
algorithm. However, optimization in MCS would require a dif-

ferent metric since the current RDM measures distances between
the rulings and does not correspond to an equal distribution of
the motion in MCS, considering each drive may have different
kinematic limits. Then, with such a metric at hand, fixing the
workpiece setup and going through the inverse kinematic trans-
formation (IKT) to convert the optimization objective from WCS
to its counterpart in MCS is an interesting topic for a follow-up
project.

5. Conclusions

We have introduced a new jerk-minimizing algorithm for
multi-axis machining. The algorithm looks for a reparameteri-
zation of the milling motion such that the jerk is globally min-
imized. In our initialization–optimization based framework, we
use the ruling distance metric that measures the distance between
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Figure 16: Jerk minimization of the 2nd toolpath of the impeller workpiece (Figs. 14c and 14d). (a) Optimal vs. linear TFs compared
to the RDM-based initial TF. (b) Velocity, acceleration, and jerk profiles over time obtained by linear and optimal TFs on boundary
curves c1 and c2. (c), (d), and (e) Contours of velocity, acceleration, and jerk on the ruled surface obtained by linear and optimal TFs
where the values of ‖Vm(t)‖, ‖Am(t)‖, and ‖Jm(t)‖ are the means of respective values on boundary curves in (b). Note we changed our
view to be in accordance with global xyz coordinate system.

two finite lines in 3D-space. We have shown that this metric can
be used for the initialization of the motion reparameterization as
it reliably captures changes of the milling tool’s axis. We have
validated our algorithm on several case studies and have shown
that the proposed method quickly decreases the jerk, resulting in
smooth milling motions. Our follow-up research aims at phys-
ical validations of the proposed methodology, and incorporat-
ing other physical entities such as kinematic limits on machine
drives, tool vibration and/or cutting forces into the optimization
loop.
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