867 research outputs found

    Efficient Interconnection Schemes for VLSI and Parallel Computation

    Get PDF
    This thesis is primarily concerned with two problems of interconnecting components in VLSI technologies. In the first case, the goal is to construct efficient interconnection networks for general-purpose parallel computers. The second problem is a more specialized problem in the design of VLSI chips, namely multilayer channel routing. In addition, a final part of this thesis provides lower bounds on the area required for VLSI implementations of finite-state machines. This thesis shows that networks based on Leiserson\u27s fat-tree architecture are nearly as good as any network built in a comparable amount of physical space. It shows that these universal networks can efficiently simulate competing networks by means of an appropriate correspondence between network components and efficient algorithms for routing messages on the universal network. In particular, a universal network of area A can simulate competing networks with O(lg^3A) slowdown (in bit-times), using a very simple randomized routing algorithm and simple network components. Alternatively, a packet routing scheme of Leighton, Maggs, and Rao can be used in conjunction with more sophisticated switching components to achieve O(lg^2 A) slowdown. Several other important aspects of universality are also discussed. It is shown that universal networks can be constructed in area linear in the number of processors, so that there is no need to restrict the density of processors in competing networks. Also results are presented for comparisons between networks of different size or with processors of different sizes (as determined by the amount of attached memory). Of particular interest is the fact that a universal network built from sufficiently small processors can simulate (with the slowdown already quoted) any competing network of comparable size regardless of the size of processors in the competing network. In addition, many of the results given do not require the usual assumption of unit wire delay. Finally, though most of the discussion is in the two-dimensional world, the results are shown to apply in three dimensions by way of a simple demonstration of general results on graph layout in three dimensions. The second main problem considered in this thesis is channel routing when many layers of interconnect are available, a scenario that is becoming more and more meaningful as chip fabrication technologies advance. This thesis describes a system MulCh for multilayer channel routing which extends the Chameleon system developed at U. C. Berkeley. Like Chameleon, MulCh divides a multilayer problem into essentially independent subproblems of at most three layers, but unlike Chameleon, MulCh considers the possibility of using partitions comprised of a single layer instead of only partitions of two or three layers. Experimental results show that MulCh often performs better than Chameleon in terms of channel width, total net length, and number of vias. In addition to a description of MulCh as implemented, this thesis provides improved algorithms for subtasks performed by MulCh, thereby indicating potential improvements in the speed and performance of multilayer channel routing. In particular, a linear time algorithm is given for determining the minimum width required for a single-layer channel routing problem, and an algorithm is given for maintaining the density of a collection of nets in logarithmic time per net insertion. The last part of this thesis shows that straightforward techniques for implementing finite-state machines are optimal in the worst case. Specifically, for any s and k, there is a deterministic finite-state machine with s states and k symbols such that any layout algorithm requires (ks lg s) area to lay out its realization. For nondeterministic machines, there is an analogous lower bound of (ks^2) area

    Algebraic approach to hardware description and verification

    Get PDF

    3D IC optimal layout design. A parallel and distributed topological approach

    Full text link
    The task of 3D ICs layout design involves the assembly of millions of components taking into account many different requirements and constraints such as topological, wiring or manufacturability ones. It is a NP-hard problem that requires new non-deterministic and heuristic algorithms. Considering the time complexity, the commonly applied Fiduccia-Mattheyses partitioning algorithm is superior to any other local search method. Nevertheless, it can often miss to reach a quasi-optimal solution in 3D spaces. The presented approach uses an original 3D layout graph partitioning heuristics implemented with use of the extremal optimization method. The goal is to minimize the total wire-length in the chip. In order to improve the time complexity a parallel and distributed Java implementation is applied. Inside one Java Virtual Machine separate optimization algorithms are executed by independent threads. The work may also be shared among different machines by means of The Java Remote Method Invocation system.Comment: 26 pages, 9 figure

    VLSI design methodology

    Get PDF

    Enabling Design and Simulation of Massive Parallel Nanoarchitectures

    Get PDF
    A common element in emerging nanotechnologies is the increasing complex- ity of the problems to face when attempting the design phase, because issues related to technology, specific application and architecture must be evalu- ated simultaneously. In several cases faced problems are known, but require a fresh re-think on the basis of different constraints not enforced by standard design tools. Among the emerging nanotechnologies, the two-dimensional structures based on nanowire arrays is promising in particular for massively parallel architec- tures. Several studies have been proposed on the exploration of the space of architectural solutions, but only a few derived high-level information from the results of an extended and reliable characterization of low-level structures. The tool we present is of aid in the design of circuits based on nanotech- nologies, here discussed in the specific case of nanowire arrays, as best candi- date for massively parallel architectures. It enables the designer to start from a standard High-level Description Languages (HDL), inherits constraints at physical level and applies them when organizing the physical implementation of the circuit elements and of their connections. It provides a complete simu- lation environment with two levels of refinement. One for DC analysis using a fast engine based on a simple switch level model. The other for obtaining transient performance based on automatic extraction of circuit parasitics, on detailed device (nanowire-FET) information derived by experiments or by existing accurate models, and on spice-level modeling of the nanoarray. Re- sults about the method used for the design and simulation of circuits based on nanowire-FET and nanoarray will be presente

    The cavity approach for Steiner trees packing problems

    Full text link
    The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the max-sum algorithm. In particular, recent developments to solve the edge-disjoint paths problem and the prize-collecting Steiner tree problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the vertex-disjoint Steiner trees problem, where trees cannot share nodes, from the edge-disjoint Steiner trees problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the max-sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the max-sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %

    Effective network grid synthesis and optimization for high performance very large scale integration system design

    Get PDF
    制度:新 ; 文部省報告番号:甲2642号 ; 学位の種類:博士(工学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新480
    corecore