An Algebraic Approach to Hardware Description and Verification

by
Luca Cardelli

Doctor of Philosophy University of Edinburgh 1982

Abstract

We apply algebraic techniques to various aspects of hardware description and verification, with particular emphasis on VLSI (Very Large Scale Integration) circuit design.

A simple and uniform notation for the description of networks of hardware components is introduced. It is shown how to impose planarity constraints, and how to treat regular and repetitive structures in convenient ways.

The notation is applied to several examples of hardware networks. A11 these examples constitnte different levels of description in the process of translating behavioural specifications into VLSI circuits. A formal semantics is given for the topmost level. Algorithms are given for the translation of parely topological planar stick expressions into metric structures from which layouts can be generated.

The implementation of an experimental VLSI design system is described which ases algebraic concepts to hide detailed geometrical information. Geometric layouts are introduced as an abstract data type in a general purpose functional programming langage and considerable advantages over traditional design systems are demonstrated with respect to the nser interface.

On the semantic side, two different formal frameworks are defined for the description of systems developing in continuons time. The emphasis is again algebraic, and techniques of both denotational and operational semantics are used. In the operational framework mondeterministic systems can be treated in a natural way, and it is possible to precisely formalate the behaviour of synchronous and asynchronous systems and to study their interactions.

I would like to thank first of all my supervisor, Gordon Plotkin, for his help, encouragement and precise hints in the development of this thesis.

Abstract

I regard this thesis as mach a prodact of the Edinburgh environment as my own and I find it difficult to sort out all the ideas great and small which have been transmitted to me during these years. I would like to thank Robin Milner and Mathew Hennessy for continual assistance; Mike Gordon, G1ynn Minskel, Kevin Mitchell, Igor Hansen and Marc Sair for helpfal talks; Jeff Tansley and Irene Buchanan for getting me involved in VLSI; and the "system people" for providing some concreteness and an enjoyable computational environment.

During my stay I have been supported by a scholarship of the Italian National Research Council and a scholarship of the University of Edinburgh.

Declaration

This thesis has been composed by myself and the work is my own, under the guidance of my supervisor Gordon Plotkin: Parts of Chapters 1 and 2, produced in different form in collaboration with Gordon Plotkin, appear in [Cardelli 81a]. Chapter 3 is [Cardelii 81b], Chapter 4 is [Cardelli 80] and Chapter 5 is an extended version of [Cardelii 82]. Sections 2.5-2.6 have been submitted for publication.

Contents

0. Introduction
0.1 The Past
0.1.1 Microelectronics
0.1.2 Design Tools
0.1.3 Semantics
0.2 This Thesis
1. Algebra of Networks
1.1 Introdaction
1.2 Many-sorted Algebras
1.3 Net Algebras
1.3.1 Sorts
1.3.2 Signatures
1.3.3 Net Expressions and Laws
1.3.4 More on Net Expressions
1.4 Net Morphisms
1.5 Net Algebras and Flow Algebras
1.6 The Initial Net Algebra
1.7 P1anar Networks
1.8 Bunched Networks
1.9 Planar Banched Networks
1.10 Molecules, Hypercubes, Mosaics and Klein Bottles
1.11 Main Example: The Foster \& Kung Pattern Matcher
1.12 Appendix: Some Proofs Needed for the Initiality Theorem
2. Hardware Networks for VLSI
```
2.1 Introduction
2.2 Layouts
2.3 Clocked Networks
2.3.1 Clocked Transition Algebra (CTA) Expressions
2.3.2 Main Example
2.3.3 Formal Semantics of CTA
2.3.4 Semantics of the Main Example
2.4 Connector-Switch-Attenaator (CSA) Networks
2.4.1 The Value Domain
2.4.2 Connectors, Switches and Attenuators
2.4.3 Basic CSA Circuits
2.4.4 Static Semantics of CSA
2.4.5 Main Example
2.4.6 From CTA to CSA
```

2.5 Stick Networks
2.5.1 Sticks
2.5.2 Stick Expressions
2.5.3 Examples
2.6.4 From CSA to Sticks
2.6 Grid Networks
2.6.1 Grids
2.6.2 Discrete Stretch Transformations
2.6.3 Normal Grid Composition
2.6.4 Grid Expressions
2.6.5 Grid Recomposition
2.6.6 From Sticks to Grids
2.6.7 From Grids to Layouts
3. Sticks \& Stones
3.1 Introduction
3.2 Pictures
3.2.1 Forms
3.2.2 Restriction
3.2.3 Renaming
3.2.4 Composition
3.3 Bunching
3.4 Iteration
3.5 Paths and Geometric Renaming
3.6 Figures
3.7 Commands
3.8 Modales and Externals
3.9 Efficiency
3.10 Conclusions
3.11 Syntax
4. Analog Processes
4.1 Introduction
4.2 Analog Processes
4.3 An Algebra of Analog Processes
4.3.1 Composition
4.3.2 Restriction
4.3.3 Renaming
4.4 A Denotational Model
4.5 Feasibility
4.6 Expressibility
4.7 Indeterminacy
4.8 Flip-Flops
4.9 Conclusions
5. Real Time Agents
5.1 Introdaction
5.1.1 Methodology
5.1.2 The Action Monoid
5.1.3 Time
5.2 Deterministic Agents
5.2.1 Signature
5.2.2 Operational Semantics
5.2.3 Observation
5.2.4 Equivalence
5.2.5 Algebraic Laws
5.2.6 Determinacy
5.3 Nondeterministic Agents
5.3.1 Signature
5.3.2 Operational Semantics
5.3.3 Algebraic Laws
5.3.4 Combined Calculus
5.4 Commanication
5.4.1 Restriction
5.4.2 Morphisms
5.4.3 Delays
5.5 Recarsion
5.6 Indefinite Actions and Delays
5.7 Synchronising on Non-Synchronons Inpot
5.8 An Asynchronous Rising Edge Counter
5.9 Descriptive Operators
6. Conclusions
6.1 Achievements and Future Work

6.2 The Fature

6.2.1 VLSI
6.2.2 Design Tools
6.2.3 Semantics

Appendix I. Syntax Description Notation

Appendix II. Table of Symbols

References

0. Introduction

0.1 The Past

He begin with a review of those recent developements in the fields of microelectronics, design tools and semantics which are relevant to this thesis.

0.1.1 Microelectronics

During the past few years, the steady progress in microelectronics has reached a point where completely untrained people can be tanght, in the span of few weeks, to conceive and design highly complex hardware systems.

This fact may come as a great surprise to two categories of people. On the one side professional hardware designers have sef the complexity of systems growing beyond any control, to the point where the technology is clearly more powerful than the ability to nse it. It seems then unlikely that antrained people might do better.

On the other side the average (computer) scientist who has been trained to think that "the hardware is made by the engineers", suddenly discovers that in a couple of months he can design and receive, his pet architecture; one the big manafacturers had thoughtfully refused to consider. However, it may sem unlikely that he can really do it if those expert mannfactorers moald not.

The fact is that, until recently, the problem of managing the complexity of VLSI (Very Large Scale Integration) systems was not adequately considered. Design methodologies were developed which encouraged circait efficiency at a very low level, often at the expense of global optimisations and disregarding elegance and
structore. The work done by Carver Mead, Lynn Conway and their collaborators [Mead 80] has completely changed this pictrre. Stroctored methodologies have proven to be more reliable, to extend smoothly to big systems and in many cases to provide more efficient and totally unexpected solations. The simplicity reintroduced by stractured methodologies allows people to learn quickly and to quickly produce non-optimal but working devices. In many cases the achievements of these newcomers [Conway 80] sonnd astonding with respect to average industrial products [Steele 80, Rivest 80, Masumoto 80]. Structured methodologies are now beginning to be systematically used by big mannfacturers, and the results are equally encouraging [Lattin 81, Madge 81].

0.1.2 Design Tools

Another key contribution has been the definition of a clean interface between design and fabrication [Mead 80]. While any such interface necessarily introduces some inefficiency, it allows the designer to ignore most of the inessential aspects of the fabrication process. Moreover it seems sensible to expect that in fnture fabrication processes will be designed to match this kind of interface, so that many of the inefficiencies will disappear [Mikkelson 81].

The coincidence of structured methodologies, clean interfaces and high level of integration, has inspired a sindden and rapidly spreading interest outside the microelectronic environment. It is most fortunate that this sudden "discovery" of VLSI, comes at a moment where the traditional architectures and design techniques used in microelectronics are showing their limits, and where there is a great need for complexity management techniquies.

In fact, the management of complexity has always been the main
problem in software engineering and programming langage design, and structured methodologies are now simply common sense in those areas. The hope is that as a result of the experience gained in software we shall not have to wait long before getting very effective high level tools for hardware design. A subordinate hope is that we shall be able to completely omit the "batch" and "FORTRAN" stages of design tools.

An interesting parallel can be made between the state of hardware design today and the state of software design in the fifties and early sizties. Layouts (the end-product of any VLSI design activity) have many of the characteristics of machine language programs. They are powerfal enough to fully exploit the technology and can lead to great efficiency when used at the lowest level. On the other hand they are inscratable, and difficult to modify, maintain and debug, and very prone to trivial and repetitive (yet fatal) errors. The information they convey is inflexible and absolnte, and in general they encourage programming styles which lack clarity and elegance.

Most of the VLSI design tools today are based on layouts. As a consequence of the low level notations used, many of these are concerned with recovering from errors which have already been made, or with recovering stractare which has been lost at some previous stage of design.

For example, design rule checkers are needed because people are allowed to dram wires of the wrong thickness, or to put transistors in the wrong places. Again, electrical rale checkers are needed because the low level of primitives allows designers to combine them in meaningless ways. And again, node extractors are needed becanse the initial description of the circuit is not semantically structured, or becanse the stractare has been flattened out by some
other tool.

Other tools are hampered by tasks which are not their own. Graphics editors are sometimes equipped for checking design rales, or even electrical parameters. Simnlators are used in the detection of errors which are clearly syntactical, such as wires which fall short of their intended contact points, switches connected in meaningless ways, transistors introduced by accident, power supply lines disconnected or wrongly connected, etc.

Recently, "assembly languages" have been devised ([Locanthi 78] and many others), where symbolic names and locations can be ised instead of bare numbers. High level control stractures can be used and syntactic correctness checks can be performed so that some of the syntactic properties of the output, like wire thickness, are guaranteed to be correct. The primary task of these tools is however to describe layouts, not computations, and they are strongly process (or processciass) dependent becanse they aim to give full access to the lowest level of description. For this reason they should still be considered to be low-level tools.

Continaing the analogy, why cannot we have compilers? The features of a general parpose silicon compiler are easily listed: it should be process-independent, it should be able to express any range of architectures at the behavioural level, and given a syntactically correct input it should always produce syntactically correct code. We should be able to formally describe the compiler (i.e. no "hacking") and maybe prove its correctness, or at least believe in itl

The production of a silicon compiler is a very complex problem. We know what the outpat should be, namely layouts, but we do not know how to produce it and we do not have any clear ideas about what
the input should look like. The choice of a convenient input notation might deeply influence (and maybe simplify) the translation process, and conversely translation techniques may impose restrictions on our notation. It is not clear whether we shoald first fiz the notation or study the translations, or proceed by attempts in both directions until some satisfactory meeting point is reached.

As to the linguistic problems, there is no doubt about the advantages of a high level notation, as far as programming is concerned. For example in many cases high-level language programs can be debngged by typechecking and proof-reading, while "tracing" (which corresponds to simalation) is essential for assembly langage programs. Moreover, if we consider the elegance of, for example, a one-pass Pascal compiler with respect to an n-pass macro-assembler, pe can also clearly see the implementational advantages of a well strnctared and powerfal notation.

The problem of compiling into two-dimensional strictures, even if frequently fond in design antomation problems, sems to be rather new in formal langage and compiler construction theory. There is a Iittle recent interesting work [Floyd 80, Forster 81] at the formal langage end. Pioneering work towards fall-scale silicon compilers is reported in [Johannsen 79] and [Rupp 81]. Unfortanately the vast literature in hardware routing and placement problems does not sem to apply very directly to VLSI; indeed for compilation it is not enough use techniques like general ronters which often only solve 95\% of each problem.

On the positive side, a series of remarkable design tools for VLSI has emerged in recent years. Many of these tools share many of the criticisms we have expressed, but they are indispatable
milestones in their area.

Some design tools computerise boring hand-drawing activities, by using interactive graphics displays. In this class we can mention, for layouts ICARDS [Fairbairn 78], for stick diagrams STICKS [Williams 78] calminating in REST [Mosteller 81], and for cell composition the Chip Assembler [Tarolli 80].

The prototypical text-oriented system is LAP [Locanthi 78], which embeds a very simple graphical notation [Spronll 80] in a general purpose high-level langage (this idea comes from standard graphics techniques (Newman 79]). The crudeness of the graphics primitives is compensated for by the ability to use the control constructs of the langage for parameterisation and abstraction, achieving an effectiveness far greater than graphics editors (but with very 1ittle nser-friendliness).

More ambitious systems try to integrate several tools [Buchanan 80], often into a workstation with special purpose programming langages or packages and sophisticated graphic interfaces. On the layout level we have the LISP-based DPL [Batali 81], and on the sticks level MULGA [Weste 81]. Both these systems are traly remarkable, even if the complexity of the former sems excessive. Many similar systems are now being developed; they mostly ase a personal computer together with a high resolntion colour display and a pointing device.

0.1.3 Semantics

A very sharp distinction shonld be made between the means and ends of formal description and formal verification. These two activities are often inversely proportional, in the sense that very powerful description systems can be so detailed and complicated as not to allow any general view of the problems (for example, consider
quantum mechanics as a way of describing an armchair: can we formally verify that the armchair is comfortable?). Conversely we might have verification systems which at a certain level of abstraction allow as to easily verify any property we want, bat which are unable to describe part of the realities we are interested in (suppose we have a nice theory of armchairs and soft materials; what happens if we ship the armchair to a black hole?). Unfortunately one can also come $u p$ with questions which require both powerfal descriptions and flexible theories (if we do send the armchair to the black hole, will it keep being comfortable?), and the problem is then to maximise the usefnlness of the whole system, and not just the descriptive or the proof-theoretical part.

In mathematics some sort of optimality has been reached, if we consider for example how analysis merges smoothly into topology. Not so in compater science; the considerable descriptive success of denotational and algebraic semantics has not yet ledf to satisfactory theories of programs (even if it has led to satisfactory theories of models). Properties which are considered obvions to programers escape, on large programs, any verification or even formalisation.

It is well known that concurrent systems are much more difficult to describe and verify than sequential ones. In this field, denotational and algebraic semantics found descriptive difficulties, While powerful descriptive systems like Petri nets do not seem to offer striking advantages for verification parposes.

From this point of view, hardware systems sem to sumarise many difficult problems in semantics; they are of extensively concurrent nature, and the behaviour of even the simplest components is difficult to describe and context-dependent.

Hardware is semantically unexplored at intermediate levels. For 10w level hardware, the main semantic description available is device physics, which is not very helpfal when the number of devices exceeds one. Very powerful techniques have been developed in electronics for the study of analog circuits, but are not of general application to digital circuits. For gate-level hardware, we have satisfactory theories like switching theory (for small combinational systems), and automata theory (for larger sequential systems) which howerer do not work very well for complex systems built ont of many parts, like microprocessors. Very little exists between device physics and switching theory, which is unfortunately exactly what we need for low-level VLSI. Moreover antomata theory is not very suitable for studying interconnected networks of processors, which is what we need for high-level VLSI.

Part of these problems, which are common to concorrency problems, have been attacked by the use of operational techniques [Plotkin 81], which can conveniently describe concurrency, joined to algebraic techniques [Milner 80], which lead to flexible proof systems. Recent work on synchronous concurrent systems [Milner 81] (which extends smoothly to asynchronous systems) seem to be particularly well suited both to hardmare description and verification, as most hardware systems today are internally synchronous.

0.2 This Thesis

The first chapter of this thesis is dedicated to the task of providing a simple and uniform notation for the description of networks of hardmare components. The approach is algebraic in nature and derives from work on the syntar of concrirent systems [Milner 79]. After a general introduction to many-sorted algebras (section
1.2). a "pure" formalism of net expressions is introduced in section 1.3, together with a set of equational laws expressing the equivalence of networks. Networks are regarded as graphs with an interface, and together with net expressions they form wiat we call a net algebra (net algebras are compared to Milner's flow algebras in section 1.5). In section 1.6 we characterise the initial net algebra in terms of particular kinds of graphs, and we prove soundness, completeness and definability theorems with respect to the net expressions and laws. Some additional stracture is then imposed on net algebras in view of the use we shall make of them in chapter 2. Section 1.7 treats planar networks, and sections 1.8 and 1.9 introduce the idea of a bunch (a way of structuring interfaces) which is essential when programming in net algebras. Some bizarre examples of net algebras are given in section 1.10 in order to explore the power of the formalism, while section 1.11 introduces a hardware network which will be used as an example throughout chapter 2.

The second chapter applies the notation developed in the first chapter to several examples of hardware networks. All these examples constitate different levels of description (i.e. different net algebras) in the process of translating behavioural specifications into VLSI circuits. Even if we occasionally attack the problem of algorithmic translations into two-dimensional stractures, we concentrate in general on formalisms which can be considered as prototype tertual langages for silicon assemblers and compilers, on much the same lines as [Rem 81]. This leaves uncovered a wide area of research, namely graphical langages and graphical interaction. Although it is rather natural to imagine graphical counterparts for some of the textual programming constructs we present, it is not clear how to define purely graphical systems of the same power as
text-oriented systems (see [Trimberger 79] for an effort towards integrated text-graphics systems). This is mostly due to the lack of a good graphical analog for parameterisation. Hence, even if we think that graphical interfaces are essential to easily usable systems, we generally concentrate on textual expressions denoting graphical entities.

The topmost level of description, called Clocked Transition Algebra (CTA, section 2.3), is concerned with the behavioural specification of synchronous systems. A formal semantics of CTA is given by a translation to Synchronous CCS [Milner 81]. Section 2.4 describes the CSA model of switch-level hardware [Hayes 81, Bryant 81] and gives a semantics to the stable CSA circaits. A translation mapping every CTA expression into a CSA circuit is then shown. In section 2.5 we work with (planar) stick diagrams, showing several examples of net algebra programming activity. A translation from CTA to sticks is briefly sketched. Section 2.6 treats grids, which are stick diagrams disposed on orthogonal lines. The algebra of grids is very important as an intermediate step in the translation of purely topological stick diagrams into geometrical layouts. An efficient stretching algorithm for grids is developed; then a translation from sticks to grids is described, which has the property of always succeeding in every admissible context (a context expresses constraints on the position of connection points on a rectangalar boundary). Finally we comment that translations from grids into layouts have already bean experimented with (e.g. [Mosteller 81]).

The third chapter describes the implementation of an experimental VLSI design system (constitoting what is generally called a silicon assembler) where most of the geometry-related characteristics of layouts are hidden by the use of algebraic operations. In section 3.2 we introduce the basic data type of pictures (layouts), which is
embedded in a general purpose programming language [Gordon 79 ${ }^{a}$] allowing parameterisation and conditional assemblies of pictures. Bunches, and their use in association with an iteration constract, are described in sections 3.3 and 3.4. Section 3.5 deals with an interpretation of a net algebra operator which embodies a form of geometrical river ronting. The remaining sections describe varions aspects of the implementation.

The parpose of the fourth and fifth chapters is to provide a framework where formal proofs concerning the low level behaviour of hardware systems can be carried out. The fourth chapter describes a formalism in which systems developing through continuous time can be expressed. The emphasis is again algebraic, and algebraic laws are formalated which express the behaviour of such systems (section 4.3). Techniques of denotational semantics are used to provide a deterministic model (section 4.4); the attempt to extend the treatment to nondeterministic systems encounters technical difficulties and another approach is used in chapter 5. A discussion aboat the expressive power of this formalism is contained in sections 4.5. 4.6 and 4.7. Section 4.8 is dedicated to an example (flip-flops) which exhibits metastable behaviour.

The semantic techniques used in chapter 5 are operational, with the advantage that a semantics can be given to nondeterministic systems in a natural way. This chapter follows [Milner 81] and can be regarded as an extension of that work where a discrete time domain is replaced by a continnous one. Section 5.1 introduces the main ideas and the operational semantics methodology. After a section studying deterministic systems (5.2), nondeterminism is introduced in two orthogonal ways in section 5.3 by a choice operator and an indefinite-doration operator. Commanication is treated in section 5.4 and recursion in section 5.5 , where some
difficulties due to the density of time have to be solved. The
following three sections (5.6, 5.7 and 5.8$)$ discuss the compler
interactions between synchronons and asynchronons systems, and
section 5.9 gives a may of characterising synchronous,
non-synchronous and asynchronous systems.

[^0]
1. Algebra of Networks

1.1 Introdnction

A network is to a first approximation a finite graph. Our main concern is with stractored network design, and we are interested in methods and notations for building and analysing networks in a hierarchical fashion. Hence the first problem we have to solve is how to express finite graphs, considered as unstructured sets of arcs, in some orderly and stractured way.

The simplest way of exhibiting a graph is of course by displaying it. This kind of presentation is expressive and immediately understandable by hamans, but unfortunately it also has several disadvantages.

Figure 1.1 A graph

First of all the stracture of the graph is not evident in its picture, i.e. we cannot tell how it was built; the mere picture of the graph hides the intended way of looking at a particular graph among the several mays in which the graph can be constructed. Hence some structore (graphical or otherwise) has to be superimposed on the graph in order to anderstand it in terms of its components.

Figure 1.2 Decompositions

Second, graphical notation is not saitable for direct mathematical manipulation. Mathematical coding has to be used in order to get the benefits of formal treatment, and an effort should be made to keep the coding not too different from the intended stractare of the coded object, otherwise an obscure theory will result.

Third, graphical notation does not make a good programming langage; not because it is difficult to "type it in" (this can be overcome by graphical editors) but because the usual programming langage control structures and parameterisation mechanisms are not easily definable on pictures.

Fourth, and finally, no matter how we express them, graphs may have to be represented in terms of data structures in a compoter, and operations have to be carried out upon them; then this is just another aspect of the problem of finding a non-graphical notation for manipalating graphs in usefal ways.

Our aim is then to develop a notation for stractured graphs which is formally tractable, expressive enough to be used as a programming langage, and easily convertible into useful data structures. The central idea is to have an abstract data type of networks over which certain operations can be performed (particularly composition of
sabnetworks) and which can be easily translated into different data types for different purposes. We formalise these ideas in an algebraic framework where abstract types are algebras and easy translations are different shades of algebra morphisms.

This chapter is mostly technical; the reader is advised to skim it in case of difficulties and to come back to it when needed while reading chapter 2 . Sections 1.10 and 1.11 contain examples which give some motivation for the notation introduced here.

1.2 Many-sorted Algebras

An Algebra is a set together with some operations on its elements. Intnitively the base set of an algebra is a data type, and the operations are the basic operations allowed on that data type; other operations can be defined from the basic ones [Gratzer 79].

A many-sorted algebra is an extension of this idea, where we have several sets instead of one (hence several data types) and typed operations which take arguments from and produce results in these sets [Gognen 78]. The extension from single-sorted to many-sorted algebras is conceptually very simple, brt makes the technical treatment considerably heavier. In fact operations have to be indexed by their type, and we have to distingnish operators having the same name but belonging to different algebras. All this typing and naming information is gathered into the notions of sort and signatare.

A sort is a data-type name; sorts will be denoted by the letter s, sets of sorts by S and lists of sorts by $w e S^{*}$ (with [] the empty list).

Definition 1.1 A signatnre Σ is a pair 〈S, $\Sigma\rangle$ where S is a set (of sorts) and Σ is a family of sets (of operator symbols) indered by $S^{*} X S$. An operator symbol $a_{w, s} \varepsilon^{*} \Sigma_{w, s}$ has rank (or functionality) w,s arity wand sorts \square

$$
\begin{aligned}
& \text { Example: Boolean } \\
& \Sigma=\langle S=\{\text { bool }\}, \\
& \Sigma=\left\{\Sigma_{[], b o o l}=\{\text { true,false }\},\right. \\
& \Sigma_{b o o l, b o o l}=\{\sim\}, \\
& \Sigma_{\text {bool bool, bool }}=\{V, \Lambda\}, \\
& \left.\left.\Sigma_{w, s}=0 \text { for any otherw,s }\right\}\right\rangle
\end{aligned}
$$

We denote by $X=\left\{X_{s} \mid s i S\right\}$ a set of sets of variables of sort s. Variables are all distinct, and they are distinct from operator symbols and panctnation.

Definition 1.2 A $\underset{\sim}{(X)}$-expression is a syntactic expression bailt from the operator symbols of $\Sigma=\langle S, \Sigma\rangle$, the variables of $X=\left\{X_{s} \mid s e S\right\}$ and the distingaished symbols "(", ")" and ","; more precisely, expressions are all and only the strings of symbols obtained by the following roles:

- If x is a variable of sort s, then x is an expression of sort s.
- If $e_{1} \ldots e_{n}$ are expressions of sort $s_{1} \ldots s_{n}(n \geq 0)$
and $a_{s_{1} \ldots s_{n}, s} \varepsilon \Sigma_{s_{1} \ldots s_{n}, s}$ then:
$a_{s_{1} \ldots s_{n}, s}\left(e_{1}, \ldots, e_{n}\right)$
is an expression of sort s
(where, for $n=0, a_{[], s}()$ has sort s)
[
When there is no ambignity subscripts are omitted, so that we simply write $a\left(e_{1}, \ldots, e_{n}\right)$.

Example: Boolean expressions

The following are $\Sigma(X)$-expressions, where Σ is the boolean signature and $X=\left\{X_{\text {bool }}=\{x, y\}\right\}$.

I
true ()
$\sim(\Lambda(x, V(f a l s e(), y)))$

We use the following notation for cartesian products of sets:

$$
\begin{aligned}
& A_{[]}=\{[]\} \\
& A_{w}=A_{s_{1}} \ldots s_{n}=A_{s_{1}} \times \ldots \times A_{s_{n}}
\end{aligned}
$$

Definition 1.3 A Σ-algebra $A($ with $\Sigma=\langle S, \Sigma\rangle)$ is a pair $\left\langle A^{\circ}, A \uparrow\right\rangle$ where $A^{\text {• }}$ is an S-indexed set of sets A_{s} and $A \uparrow$ is an $S^{*} X$ S-indexed set of maps $A_{w, s}: \Sigma_{w, s} \rightarrow\left(A_{w} \rightarrow A_{s}\right)$ associating a function $A_{W, s}\left(a_{W, s}\right): A_{W} \rightarrow A_{s}$ with each operation symbol $a_{w, s} \& \Sigma_{w, s} \square$

Each A_{s} is called the carrior of A of sort s; each $A_{w, s}\left(a_{w, s}\right)$ is called the operator of A named by $a_{w, s}$, and is also denoted by $\phi_{\alpha_{w, s}}^{A}$. When there is no ambiguity $\phi_{a_{w, s}}^{A}$ is also written $\phi_{a_{w, s}}, \phi_{a}^{A}$, ϕ_{a} or even a.

Example:

$$
\begin{aligned}
& A=\left\langle A^{\cdot}=\left\{A_{\text {bool }}=\{T, F\}\right\},\right. \\
& A^{\top}=\left\{A_{[], \text {bool }}=\{\langle t r u e, T\rangle,\langle f a l s e, F\rangle\},\right. \\
& A_{\text {bool, bool }}=\{\langle\sim, \operatorname{Not}=\{\langle T, F\rangle,\langle F, T\rangle\}\rangle\} \text {, } \\
& \text { Abool bool,bool }= \\
& \{\langle\Lambda, \text { And }=\{\langle\langle T, T\rangle, T\rangle,\langle\langle T, F\rangle, F\rangle, \\
& \langle\langle F, T\rangle, F\rangle,\langle\langle F, F\rangle, F\rangle\}, \\
& \text { V, } \mathrm{O}_{\mathrm{T}}=\{\langle\langle\mathrm{T}, \mathrm{~T}\rangle, \mathrm{T}\rangle,\langle\langle\mathrm{T}, \mathrm{~F}\rangle, \mathrm{T}\rangle \text {, } \\
& \langle\langle F, T\rangle, T\rangle,\langle\langle F, F\rangle, F\rangle\}\rangle\}, \\
& \left.A_{w, s}=0 \text { for any other } \pi, s\right\}>
\end{aligned}
$$

$$
\begin{aligned}
& \text { With } \phi_{\text {true }}^{\mathrm{A}} \mathrm{f} \text {, bool }=T \text {, } \\
& \phi_{f a 1 s_{[}}^{\mathrm{A}}{ }_{\text {, bool }}=\mathrm{F} \text {. } \\
& \phi_{\text {bool, bool }}^{A}=\text { Not, } \\
& \wedge_{\text {bool bool,bool }}^{A}=\text { And, } \\
& \phi \stackrel{A}{\text { bool bool,bool }}=0_{T}
\end{aligned}
$$

Expressions are a very important example of algebras:

Definition $1.4 \mathrm{~T}_{\Sigma}(\mathrm{X})$ (where $\Sigma=\langle\mathrm{S}, \Sigma\rangle$) is the Σ-algebra with:

- Carriers: the set of $\Sigma(X)$-expressions of sort seS.
- Operations: the mappings

$$
\phi_{a_{s_{1}} \ldots s_{n}, s}: e_{1} \ldots e_{n} \mapsto a_{s_{1} \ldots s_{n}, s}\left(e_{1}, \ldots, e_{n}\right)(n \geq 0)
$$

for each $\alpha_{s_{1} \ldots s_{n}, s}$ e $\Sigma_{a_{s_{1}} \ldots s_{n}, s}$
and expressions $e_{1} \ldots e_{n}$ of sort $s_{1} \ldots s_{n}$
(for $n=0$ we have $\phi_{[], s}:[] \mapsto a_{[], s}()$)
0
It is easily verified that $\mathrm{T}_{\Sigma}(X)$ is really a Σ-algebra.
We finally include the definition of homomorphism and of signatare morphism which are the formal basis for the translations which we shall discuss in Chapter 2 (even if those translations will only approximate the idea of homomorphism).

Definition 1.5 A §-homomorphism of $£$-algebras
$\mathrm{h}: \underset{\mathrm{A}}{\mathrm{A}} \boldsymbol{\mathrm { B }}$
is an S-indered set of maps $h_{s}: A_{s} \rightarrow B_{s}$ such that

$$
h_{s}\left(\phi_{a_{w, s}}^{A}\left(a_{1}, \ldots, a_{n}\right)\right)=\phi_{a_{w, s}}^{B}\left(h_{s_{1}}\left(a_{1}\right) \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

for all $\mathrm{s} \varepsilon \mathrm{S}, \mathrm{w}=\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}} \& \mathrm{~S}^{*}$ and $a_{1} \& A_{S_{1}}, \ldots, a_{n} \in A_{s_{n}} \square$

Definition 1.6 A signatare morphism ρ from 〈S，Σ 〉 to 〈S＇，$\left.\Sigma^{\prime}\right\rangle$ is a pair 〈f，g〉consisting of a map $f: S \rightarrow S^{\prime}$ and a family of maps

$$
g_{w, s}: \Sigma_{w, s} \rightarrow \Sigma_{f *(w), f(s)}^{\prime}
$$

A signature morphism is a（possibly many－to－one）renaming of sorts，together with a compatible（possibly many－to－one）renaming of operator symbols．
 $h_{s}: X_{s} \rightarrow A_{s}$ for $s e S$ ）there is a unique \quad－homomorphism $h^{*}: T_{\Sigma}(X) \rightarrow A$ such that

$$
h * \circ I_{X}=h
$$

where $I_{X}: X \rightarrow T_{\Sigma}(X): x \rightarrow x$ is the injection of generators ［

The above theorem states the existence of a qnique homomorphism h＊from $\sum_{(X)}(X)$ expressions（ $\Gamma_{\Sigma}(X)$ ）and environments for free variables $(h: X \rightarrow A)$ into any $\underline{\Sigma}$－algebra A．This homomorphism is often called evaluation or interpratation of an expression e in an algebra，and $h *(e)$ is called the（because of uniqueness）value of e in A（with respect to an environment）．

1．3 Net A1gebras

Refining our idea of network，we can say that a network is a finite graph with an interface．Interfaces are an abstraction mechanism；they contain all the information about the network which is needed and visible from＂outside＂，while hiding the internal structure．For example，syntactic checks can be performed on network operations on the basis of the information contained in the interfaces they operate onto；operations are guaranteed to be meaningful if they satisfy these syntactic checks．

Star =

Figure 1.3 A graph with an interface

The interface of a network consists of ports which have a name and a type. Names are used to denote edges of the network (i.e. connection points), and types garantee the consistency of certain operations. The most important use of interfaces is in joining networks together into larger networks; the join is done by naming the ports to be connected, provided that there are no name clashes and that the types of the connected ports match.

1.3.1 Sorts

Formally, an interface is a sort. Given a set Types of types and a set PortNames of (port) names (with a,b ranging over names and A,B,C ranging over finite sets of names), a sort is a map $s: A \rightarrow$ Types with $\lceil s\rceil \triangleq A$; hence $s(a)$ shows the type of the port narued a. We say that two sorts s, s^{\prime} are compatible if their common port names have the same type, i.e. if stB=s, st where $B=$「s $\ln \left\lceil s^{\prime} 7\right.$.

1.3.2 Signatures

Networks are built ont of a given set I of basic components called literals (nullary operators). Every literal 1 e II has a sort given by $\lambda(1)$.

The unary restriction operator, la, removes the name a from the sort of a network. For every and s we have an operator $\mid a: s \rightarrow s^{\prime}$
where 「 $\left.s^{\prime}\right\rceil=\lceil s\rceil \backslash(a\}$ and $s^{\prime}\left(a^{\prime}\right)=s\left(a^{\prime}\right)$ for a^{\prime} in 「 $\left.s^{\prime}\right\rceil$. Restriction is a postfix operator, and we abbreviate $x \backslash a_{1} \ldots a_{n}$ to $x \backslash a_{1} \ldots a_{n}$.

Figure 1.4 Restriction

The nary renaming operator, $\{r\}$, changes the names of a sort withont changing the port types. For every sort s and bijection r: $\lceil s\rceil \rightarrow A^{\prime}$ we have an operator $\{r\}: s \rightarrow s^{\prime}$ where $s^{\prime}=\operatorname{sor}^{-1}$. Restriction is postfir and we wite $\left\{a_{1} \backslash b_{1}, \ldots, a_{n} \backslash b_{n}\right\}$ for r when $\left\{a_{i}\right\} \in A, r\left(a_{i}\right)=b_{i}$ and $r(a)=a$ for a not in \{ $\left.a_{i}\right\}$ (hence $\}$ is the identity renaming).
$\operatorname{Star}\{a \backslash f, b \backslash g\}=$

Figure 1.5 Renaming

The binary composition operator, 1 , composes two networks together identifying and then forgetting their common port names. For every compatible pair of sorts s, s^{\prime} we have an operator $\|: s, s^{\prime} \rightarrow s^{\prime \prime}$ where $s^{\prime \prime}=s^{\prime \prime} s^{\prime} \quad A^{\prime} A^{\prime}(w e$ use \oplus for symmetric difference: $A \oplus A^{\prime}=\left(A \backslash A^{\prime}\right) u\left(A^{\prime} \backslash A\right)$, and $\left.s \theta s^{\prime}=s \neq\left(A \backslash A^{\prime}\right) u s^{\prime} \downarrow\left(A^{\prime} \backslash A\right)\right)$. Composition is an infir operator associating to the left.

A useful derived operation is explicit composition, [r], which composes two networks by linking the ports which are explicitly mentioned in a bijection r. The operator [r]: s,s' $\rightarrow s^{\prime \prime}$ with I: $A \rightarrow A^{\prime}, B=\lceil s\rceil \backslash A$ and $B^{\prime}=\left\lceil s^{\prime}\right\rceil A^{\prime}$, is well defined iff
(i) $A E\lceil s\rceil$ and $A^{\prime} E\left\lceil s^{\prime}\right\rceil$
(ii) $s(a)=s^{\prime}(r(a))$ for every a in A (type restriction)
(iii) $B A^{\prime}=\emptyset$ (no name clashes)

Then $\left\lceil s^{\prime \prime}\right\rceil=B u B^{\prime}$ and $s^{\prime \prime}(b)$ is $s(b)$ if $b \varepsilon B$ and $s^{\prime}(b)$ otherwise.

Under.these conditions we define

$$
e[r]^{\prime} \triangleq e\left\{r u i d_{B}\right\} \mid e^{\prime}=e l e^{\prime}\left\{x^{-1} v i d_{B},\right\}
$$

Explicit composition is infix and left associative; e[r]e' will be written as $e\left[a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right] e^{\prime}$ for $\left\langle a_{i}, b_{i}\right\rangle \varepsilon r$.

Figrie 1.6 Composition

1.3.3 Net Expressions and Laws

From the signatare of a net algebra, and for a given set of literals, we can constrnct a corresponding set of net expressions (ranged over by e):

- Literals are expressions
- if e, e' are expressions
then $(e \backslash a),(e\{r\})$ and $\left(e \mid e^{\prime}\right)$ are expressions.
Parentheses will often be omitted.

The operators we have so far defined mast obey a set of laws
called the net lavs, which complete our definition of net algebras. We write $\sigma(e)$ for the sort of e, and we require the following equations to hold whenever they are well-formed according to our previons remarks.
[1] e|e' = é|e
[l|] (e|é) | e" =e|(é|e")
if $\lceil\sigma(e)\rceil \boldsymbol{n}\left\lceil\sigma\left(e^{\prime}\right)\right\rceil n\left\lceil\sigma\left(e^{\prime \prime}\right)\right\rceil=0$
$[1]$ e $1 \mathrm{a}=\mathrm{e} \quad$ if $\mathrm{a} \neq\lceil\sigma(e)]$
[
] $(e \backslash a) \backslash b=(e \backslash b) \backslash a$

[\] $\left(e \mid e^{\prime}\right) \backslash a=(e \mid a) \mid\left(e^{\prime} \mid a\right)$ if $a \varepsilon\left\lceil\sigma\left(e \mid e^{\prime}\right)\right\rceil$

[\{]] $e\{i d\}=e$
[\{]\{\}] (e (r\}) \{r'\} $=e\{r \prime o r\}$
[0]\] (e \{r]) $\backslash(x a)=(e \backslash a)\left\{r^{\prime}\right\}$ where $r^{\prime}=r \neq(\lceil r\rceil \mid a)$

where $\lceil r\rceil=\lceil\sigma(e)\rceil\left\lceil\sigma\left(e^{\prime}\right)\right\rceil,\left\lceil r^{\prime}\right\rceil=\left\lceil\sigma\left(e^{\prime}\right)\right\rceil\lceil\sigma(e)\rceil$
and $\left\lceil r^{\prime \prime}\right\rceil=\lceil\sigma(e)\rceil n\left\lceil\sigma\left(e^{\prime}\right)\right\rceil$

Derived laws for explicit composition are as follows:
[[]] e[r]e $=e^{\prime}\left[r^{-1}\right] e$
[[][]] $\left(e\left[i d_{A_{1}}\right] e^{\prime}\right)\left[i d_{A_{2}} \cup A_{3}\right] e^{\prime \prime}=e\left[i d_{A_{3}} \cup A_{1}\right]\left(e^{\prime}\left[i d_{A_{2}}\right] e^{\prime \prime}\right)$ whenever all the compositions are well formed
[l][]] e[r'or]e' $=e\{r u i d]^{\prime}\left[r^{\prime}\right] e^{\prime}$
$[[] \backslash] \quad\left(e[r] e^{\prime}\right) \backslash a=(e \backslash a)[r]\left(e^{\prime} \backslash a\right)$ if $r: A_{1} \rightarrow A_{2}$ and $a \neq A_{1} u A_{2}$

1.3.4 More on Net Expressions

Net expressions can be used as the kernel of a programming langage for networks. We give some definitions which can gaide the
implementation of net expressions, particularly ragarding their syntactic correctness. A formal syntax for net expressions is introduced, and algorithms are given for checking whether a net expression is well formed and for extracting its sort.

The formal syntax of net expressions is defined here, using the metasyntactic notation of Appendix I:

```
literal ::= ... (depending on the particular algebra)
    exp ::= literal |
        exp '\' name |
        exp '{' {name '\' name / ','} '}' |
        exp '|' exp |
        exp '[' {name '--' name / '.'} ']' exp |
        '(' exp ')'
```

Restriction and renaming bind stronger than explicit composition, which binds stronger than implicit composition. Both kinds of composition are left associative.

A sorting $\underset{\sim}{e}$ of a net expression e is an assignment of a sort to every subexpression e^{\prime} of e; for example ($\left.c_{s}[a-b] c^{\prime}{ }_{s}{ }^{\prime}\right)_{s^{\prime \prime}}$ is a sorting of $c[a-b] c$.

A well-sorting of e is a sorting $\underset{\sim}{e}$ such that the predicate WellSorted(e) (defined below) is true. We then say that e is vell-sorted if it admits a well-sorting e.

```
WellSorted ( \(1_{s}\) ) =
    \(s=\lambda(1)\)
WellSorted \(\left(\left(e_{s} \backslash a\right)_{s}\right)=\)
    WellSorted(es) and \(s^{\prime}=s+\lceil s\rceil \backslash\{a\}\)
```

WellSorted $\left(\left(a_{s}\left(a_{i} \backslash b_{i}\right\}\right)_{s},\right)=$
WellSorted (e ${ }_{s}$) and NameBijection (\{ $\left.\left.\left\langle a_{i}, b_{i}\right\rangle\right\}\right)$
and $\left\{a_{i}\right\} \underline{S}\left\lceil\mathbf{T}\right.$ and $\left.(\Gamma s\rceil\left\{a_{i}\right\}\right) n\left\{b_{i}\right\}=\emptyset$
and $s^{\prime}=\left(s+\lceil s\rceil \backslash\left\{a_{i}\right\}\right)$ u $\left\{\left\langle b_{i}, s\left(a_{i}\right)\right\rangle\right\}$

WellSorted $\left(e_{s}\right)$ and WellSorted (e's,
and $\forall a \varepsilon\lceil s\rceil n\left\lceil s^{\prime}\right\rceil$. $s(a)=s^{\prime}(a)$
and $s^{\prime \prime}=s+\left(\lceil s\rceil a\left\lceil s^{\prime}\right\rceil\right) u s^{\prime}+\left(\lceil s\rceil n\left\lceil s^{\prime}\right\rceil\right)$
WellSorted $\left(\left(e_{s}\left[a_{i}-b_{i}\right] e^{\prime}{ }^{\prime}\right)_{s^{\prime \prime}}\right)=$
WellSorted (es ${ }_{s}$) and WellSorted (e's,
and NameBijection($\left.\left\langle\left\{a_{i}, b_{i}\right\rangle\right\}\right)$
and $a_{i} \varepsilon\lceil s\rceil$ and $b_{i} \&\left\lceil s^{\prime}\right\rceil$
and $s\left(a_{i}\right)=s^{\prime}\left(b_{i}\right)$ and $\left(\lceil s\rceil \backslash\left\{a_{i}\right\}\right) n\left(\left\lceil s^{\prime}\right\rceil \backslash\left\{b_{i}\right\}\right)=\emptyset$
and $\left.\left.s^{\prime \prime}=\operatorname{st}(\Gamma \mathrm{s}\rceil \backslash\left\{\mathrm{a}_{\mathrm{i}}\right\}\right) \quad u \mathrm{~s}^{\prime} \downarrow\left(\Gamma \mathrm{s}^{\prime}\right\rceil \backslash\left\{\mathrm{b}_{\mathrm{i}}\right\}\right)$
NameBijection $\left(\left\{\left\langle a_{k}, b_{k}\right\rangle\right\}\right)=$ $\mathrm{i} \neq \mathrm{j} \Rightarrow \mathrm{a}_{\mathbf{i}} \neq \mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathbf{i}} \neq \mathbf{b}_{\mathrm{j}}$

The following procedure, SortOf, computes the sort of a well-sorted net expression. It is easily verified that WellSorted (e) is true, where $\underset{\sim}{e}$ is the sorting generated by applying Sortof to all the subexpression of e.

Sortof(1) $=\lambda(1)$
SortOf(e\a) $=$ Sort0f(e) \downarrow 「SortOf(e) $\backslash \backslash a$
$\operatorname{SortOf}\left(e\left\{\mathbf{a}_{\mathbf{i}} \backslash \mathrm{b}_{\mathbf{i}}\right\}\right)=$
(SortOf(e) $\left.+\lceil\operatorname{SortOf}(e)\rceil \backslash\left\{\mathbf{a}_{\mathbf{i}}\right\}\right) \cup\left\{\left\langle\mathbf{b}_{\mathbf{i}}, \operatorname{SortOf}(e)\left(\mathbf{a}_{\mathbf{i}}\right)\right\rangle\right\}$
SortOf(ele') $=$
let $A=\lceil\operatorname{SortOf}(e)\rceil$ 「 $\left.\operatorname{SortOf}\left(e^{\prime}\right)\right\rceil$
in SortOf(e) $\downarrow \mathrm{A} u$ SortOf(é) dA
$\operatorname{SortOf}\left(e\left[\mathrm{a}_{\mathrm{i}} \backslash \mathrm{b}_{\mathbf{i}}\right]^{\prime}\right)=$
SortOf(e) $\downarrow\lceil$ SortOf(e) $\rceil \backslash\left\{a_{i}\right\} \quad u \operatorname{SortOf}\left(e^{\prime}\right) \downarrow\left\lceil\operatorname{SortOf}\left(e^{\prime}\right)\right\rceil \backslash\left\{b_{i}\right\}$

1.4 Net Morphisms

A net morphism is a homomorphism of net algebras. Given two net algebras $\underline{A}^{\text {and }} \underline{B}$ over the same signature (i.e. over the same set of literals \mathbb{L}), a morphism $h: \underline{A} \rightarrow \underline{B}$ is a set of maps

$$
\left\{h_{s}: A_{s} \rightarrow B_{s} \mid s \in \operatorname{NetSort}\right\}
$$

such that:

$$
\begin{aligned}
& h_{s}\left(1_{s}^{A}\right)=1_{s}^{B} \quad \forall 1 \varepsilon \mathbb{L} \\
& h_{s^{\prime}}\left(\left.e_{s}\right|_{s, s^{\prime}} ^{A} a\right)=\left(h_{s}\left(e_{s}\right) \sum_{s, s^{\prime}, a}^{B}\right. \\
& h_{s^{\prime}}\left(e_{s}\{r\}_{s, s^{\prime}}^{A}\right)=\left(h_{s}\left(e_{s}\right)\right)\{r\}_{s, s^{\prime}}^{B} \\
& h_{s^{\prime \prime}}\left(\left.e_{s}\right|_{s s^{\prime}, s^{\prime \prime}} ^{A} e_{s^{\prime}}^{\prime}\right)=\left.h_{s}\left(e_{s}\right)\right|_{s} ^{B} s^{\prime}, s^{\prime \prime} h_{s^{\prime}}\left(e^{\prime} s^{\prime}\right)
\end{aligned}
$$

1.5 Net Algebras and Flow Algebras

Net algebras are modelled on Milner's Flow Algebras [Milner 79]. The main difference is that in flow algebras many-tomany port connections are possible, while in net algebras we have one-to-one connections of ports and connected ports are forgotten in the sort of the result. One-to-one connections seem to reflect more accurately some of our intended applications, particalarly in the case of connecting geometric objects. In Chapter 3 for example we define composition so that the connection of two geometric ports does not leave "space" for any other connection, and the connected ports may as well disappear from the sort of the result.

The formal treatment of net algebras shows that the theory and the set of laws we obtain are about as nice as in the case of flow algebras. However, the relationships between the two theories need some further study. On the one hand, it is easy to mimic net algebras in the flow algebra framework; for example the explicit composition e[a-ble' (with the usual restrictions) is definable in
terms of flow algebra composition, restriction and renaming as (e\{c|a\}|e'\{c|b\})\c (with c new) and the net laws are then derivable from the flow laws. On the other hand, net expressions cannot easily define flow algebra expressions because the latter may connect each of their ports to an unlimited number of other ports. A solution could be to define flow algebra composition in the net algebra framework in the following way: any time that we have to connect a port, we first "fork" it into two ports (by composition with a three-port forking literal) and then we connect one of the new ports, leaving the other one free for subsequent connections. Another solution, which might also be useful for different purposes, could be the introduction of net expressions with infinitary sorts: each flow algebra port would be represented by an infinite number of indexed net algebra ports, and composition would take care of always using the "next" available port.

1.6 The Initial Net Algebra

There is a particularly important net algebra, called the initial net algebra, for which the laws [l]..[\{]\|] only hold and which is unique up to net isomorphism. The initial net algebra is the one that we implicitely have in mind when we talk about "nets", "graphs" or "pictures" and their abstract properties. It tarns out that the formalisation is not so intuitive, but it allows as to give a formal justification for our laws and to investigate their darkest details.

The initial net algebra can be built by standard algebraic techniques, quotienting the set of net expressions by the congruence relation generated by the net laws [Grater 81]. In this section we look for a more explicit characterisation of the initial net algebra in terms of a suitable kind of graph. The corresponding results for flow algebras can be found in [Miner 79].

We start with some preliminary definitions:

- PortNames, is the countable set of port names, with a, b ranging over port names and A, B ranging over finite sets of port names;
- Types, is the set of port types;
- L, is the set of literals (nullary operators):
- Sorts, is the set of functions s: PortNames \rightarrow Types associating a type to each port name (where $\lceil s\rceil \triangleq$ domain(s) is finite);
$-\lambda: \Pi \rightarrow$ Sorts, associates a sort to each literal.

Definition 1.7

A network is a quintuple $\langle V, \gamma, A, \pi, E\rangle$, where:

- V (the set of vertices), is a non-empty finite set, with $\nabla 8 V$;
- $\boldsymbol{\gamma}: V \rightarrow \mathbb{L}$ (the interpretation mapping), associates a literal to each node of the network;
- $A \leq$ PortNames (the set of port names), is a finite set;
$-P$ is the set of the ports $\{\langle\nabla, a\rangle \mid \nabla \varepsilon V$ and $a \varepsilon\lceil\lambda(\gamma(\nabla))\rceil\}$; where each port is a pair 〈v,a〉 (vertex-portname) such that a is a port name of the literal associated with v;
$-\pi: A \rightarrow P$ (the naming mapping), is 1-1;
- type: $P \rightarrow$ Types, defined as type $(v, a) \triangleq \lambda(\gamma(\nabla))(a)$
- $E \leq P X P$ (the edges), is a relation on ports satisfying:

1. E is symmetric and a partial function.
2. If $\langle v, a\rangle E\left\langle v^{\prime}, a^{\prime}\right\rangle$ then $v \neq v^{\prime}$ and type $(v, a)=t y p e\left(v^{\prime}, a^{\prime}\right)$.
3. No $\langle\nabla, a\rangle$ is both in the domain of E and equal to $\pi(b)$ for some b. [

Condition 1 . ensures that connection is symmetric and any port is connected to at most another one. Condition 2. excludes self-loops and ensures type-consistency. Condition 3. ensures that no port is both named (i.e.externally connectable) and connected.

Definition 1.8 A net isomorphism $\rho:\langle V, \gamma, A, \pi, E\rangle \simeq\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle$ is an isomorphism $\rho: V \simeq V^{\prime}$ such that:
$\boldsymbol{\gamma}=\gamma^{\prime} \circ \rho ;$
$A^{\prime}=A$;
$\pi^{\prime}=\left(\rho \# i d_{A}\right)_{0 \pi} ;$
$\langle\nabla, a\rangle E\langle w, b\rangle \Rightarrow\langle\rho(\nabla), a\rangle E^{\prime}\langle\rho(w), b\rangle$
I
where $(f \# g)\langle a, b\rangle \triangleq\langle f(a), g(b)\rangle$.

Remark: We do not distinguish between isomorphic networks.

Definition 1.9 The sort of a network $N=\langle V, \gamma, A, \pi, E\rangle$ is $s: A \rightarrow$ Types with $s(a) \triangleq \operatorname{type}(\pi(a))$ and $\lceil s\rceil \triangleq A \square$

Dofinition 1.10 The operations on networks are defined as follows:
$1 \triangleq\langle\{1\}, 10 \longrightarrow 1, A, a \varepsilon A \circ\langle 1, a\rangle, 0\rangle$ where $A=\lceil\lambda(1)\rceil$
$\langle V, \gamma, A, \pi, E\rangle \backslash a \triangleq\langle V, \gamma, A \backslash\{a\}, \pi \backslash a, E\rangle$
$\langle V, \gamma, A, \pi, E\rangle\{r\} \triangleq\left\langle V, \gamma, B, \pi_{0} r^{-1}, E\right\rangle$ where $r: A \rightarrow B$
$\langle V, \gamma, A, \pi, E\rangle \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle \triangleq\left\langle V \cup V^{\prime}, \gamma \cup \gamma^{\prime}, A \oplus A^{\prime}, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle$

```
        where C = AnA,
        and s}\downarrowC=\mp@subsup{s}{}{\prime}\not\downarrow
        and }\mp@subsup{\pi}{}{\prime\prime}=\pi\downarrow(A\C) \cup' 片夘(A'\\C
```

 and \(E^{\prime \prime}=E u E^{\prime} u\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a \varepsilon C\right\}\)
 Where we assume VnV' $=0$.
0

Theoren 1.2 The operations are well defined:
(1) $\forall 1 \varepsilon$ IL . $\langle\{1\}, 1 \sigma \longrightarrow 1, A, a \varepsilon A \sigma\langle 1, a\rangle$, \quad, where $A=\{\lambda(1)\}$, is a network;
(2) if N is a network, so is Nla:
(3) if N is a network and r a bijection on $[s$, then $N\{r\}$ is a network;
(4) if N, N^{\prime} are networks and s, s^{\prime} are compatible, then $N N^{\prime}$ is a network:
(5) the operations have the correct type.

Proof In Appendix to this chapter !

Every well sorted net expression can be made to denote a network (by interpreting the operations as network operations); the converse is also true:

Theoren 1.3 (Definability)
Every network can be denoted by a well sorted net expression (up to network isomorphism).

Proof In Appendix to this chapter 0

The net laws are verified:

Theorem 1.4 (Consistency)
Laws [|].. [\{\}|]are valid up to network isomorphism.
Proof In Appendix to this chapter \square

Definition 1.11 Let \equiv be the congruence generated by laws [\|].. [\{]\| over net expressions. Two net expressions e, e' are convertible iff eme'

Lemma 1.1 (Network Substitution Lemma)
Network isomorphism is a congruence with respect to restriction, renaming and composition \square

Theoren 1.5 (Soundness)
If $e \equiv e^{\prime}$, then e and e^{\prime} denote isomorphic networks.
Proof
By indnction on the proof of $e=e^{\prime}$, using the consistency theorem and the network substitation lemma.
[]

Definition 1.12 An atom (at) is an expression of the form

$$
\text { at }=1 \backslash A \backslash\{r\}
$$

where 1 is a iteral and $\backslash A$ is multiple restriction over all the a ε A. \mathbb{D}

Definition 1.13 A net expression is in normal form (nf) if it has the form

```
nf =ati_ | ...| atm
    with 1. \foralli,j. si compatible with s}\mp@subsup{\mathbf{j}}{\mathbf{j}}{
```



```
    where si
```

D

Theorem 1.6 (Normal Forms)
Every net expression is convertible to a normal form.
Proof In Appendix to this chapter $]$

Theoren 1.7 (Completeness)
If e and e^{\prime} denote isomorphic networks, then $e \equiv e^{\prime}$.
Proof
(1) If nf and nf' denote isomorphic networks, then nf三nf'.

Suppose $n f=a t_{1}|\ldots| a t_{n}$ and $n f^{\prime}=a t_{1}^{\prime}|\ldots| a t_{n}^{\prime}, B y[\mid],[| |]$ and condition 2. on normal forms, we can reorder nf and $n f$ so that there is a bijection between at ${ }_{i}, t_{i}^{\prime}$ and the nodes of the two networks (hence $n=n^{\prime}$). Let us assume that if and nf' are already
properly ordered; by the properties of the isomorphism for each pair of atoms at $i_{i}=1_{i} \backslash B_{i}\left\{r_{i}\right\}$ and at $t_{i}^{\prime}=1_{i}^{\prime} \backslash B_{i}^{\prime}\left\{r_{i}^{\prime}\right\}$ we have $1_{i}=1_{i}^{\prime}$, and B_{i} $=B_{i}^{\prime}$. The renamings r_{i} and r_{i}^{\prime} do not have to be exactly the same, becanse internal connection can be arbitrarily named. However they must agree on the visible ports, and the internal connections can be renamed as shown in the proof of the normal form theorem. Hence $\mathbf{n f} \boldsymbol{f} \boldsymbol{\equiv} \mathbf{f} \boldsymbol{f}^{\prime}$.
(2) Let e denote N and e^{\prime} denote N^{\prime} with $N \simeq N^{\prime}$. By the normal form theorem; e and e^{\prime} have respective normal forms nf $\equiv e$ and $n f{ }^{\prime} \equiv e^{\prime}$. By soundness nf denotes $\bar{N} \simeq N$ and nf' denotes $\bar{N}{ }^{\prime} \simeq N^{\prime}$. Since $\bar{N} \simeq N \simeq$ $N^{\prime} \simeq \bar{N}^{\prime}$, by (1) we have $n f=n f$. Hence $e n f=n f \prime=e^{\prime}$. I

Definition 1.14 The net algobra $\mathbb{N}_{\mathbb{L}}$, (with respect to a set of literals \mathbb{L}) has as carriers the networks of sort s for each s, and as operations the network operations.
0

Theorem 1.8 (Initiality)
For each net algebra A there is a unique net homomorphism

$$
\rho_{\mathrm{A}}: \underline{\mathrm{N}}_{\text {IL }} \rightarrow \mathrm{A}
$$

Proof

Let e_{B} be the interpretation of the net expression e in the net algebra B. There is at most one net homomorphism $\rho: \underline{N}_{\mathbb{L}} \rightarrow$ A which is determined, becanse of definability, by:
$-\rho(1)=1(\forall 1 \varepsilon \mathbb{L})$
$-\rho(N \backslash a)=\rho(N) \backslash a$
$-\rho(N[r])=\rho(N)\{r\}$
$-\rho\left(N \mid N^{\prime}\right)=\rho(N) \mid \rho(N)$
i.e. we have $\rho\left(\mathrm{e}_{\mathbf{N}_{\text {II }}}\right)={ }^{\mathrm{e}} \mathrm{A}$.

We have however to show that ρ is well defined: if e and e^{\prime} define N and N^{\prime} with $N=N^{\prime}$, then we must show that $\rho(N)=\rho\left(N^{\prime}\right)$, i.e. that

1aws, $e_{A}=0^{\prime} A^{\circ}$
0

1.7 Planar Networks

In the next chapter we shall often be concerned with planar networks, i.e. with networks whose graph is planar. In those situations it is useful to be able to check syntactically whether an expression denotes a planar network, so that we can define precisely the class of meaningful expressions.

It is possible to characterise planar networks by refining our notion of interface. While an interface is just a set of ports, a planar interface is going to be a cyclically ordered set of ports, hereafter called a cycio.

Figure 1.7 A planar interface

Suppose we have a set of planar primitives, with planar interfaces; we need a composition operation preserving planarity and cycles, i.e.
(i) Composition must take pairs of cycles into cycles.
(ii) Composition must take pairs of planar graphs into planar graphs.

A first restriction is imposed on composition in order to gaarantee condition (i); the presence of cycles then helps enforcing condition (ii). We require:
(i') The ports being connected must be contiguous in both cycles, so that it is possible to form a new cycle by joining the two cycles around the connection area after having dropped the connected ports.

Figure 1.8 Composing cycles
(ii') (Existence) The ports being connected mast be inversely ordered in their respective cycles; thus two planar graphs are connected by non-intersecting edges and the result is planar. (Uniqueness) The particular resulting planar graph is not get completely determined:

Figure 1.9 Ambiguity of $p\left[a_{1}-b_{1}, a_{2}-b_{2}\right] q$
We then impose that in a connection $\left[a_{1}-b_{1} ; \ldots ; a_{n}-b_{n}\right]$ the oriented arc $a_{i+1}-b_{i+1}$ be on the "left" of the oriented arc $a_{i}-b_{i}$ " with a_{i+1} adjacent to a_{i} and b_{i+1} adjacent to $b_{i}(i f(1 . . n-1\})$. Implicit composition is now " $\left.p\right|_{a} q^{\prime \prime}$ where a is the starting port of the planar composition, which then proceeds anticlockise on the sort of p.

The sort of a Planar Network is a pair
$\langle s: A \rightarrow$ Types, $0: A \rightarrow A\rangle$
where s: $A \rightarrow$ Types is like the sort of a non-planar network, i.e. it is a mapping from a finite set of port names A into port types. The second component of a sort is used to express planarity
constraints; a cyclic ordering is imposed on A by a bijection $0: A=A$ which is a cyclic permotation of A. We say that a 8 A proceeds $a^{\prime} 8 A$ if $o(a)=a^{\prime}$ and that a is adjacent to a' if a preceeds a^{\prime} or a^{\prime} preceeds a. The ordering induced by the "preceeds" relation is taken to represent the anticlockwise ordering of ports around a graph.

Two sorts are equal if they associate the same types to the same port names, and if the cyclic ordering of ports is the same.

1.8 Bunched Networks

The number of ports contained in a sort can quickly get out of hand when arrays of networks are built. In these cases it is too cumbersome to invent different names for all the ports in a sort, bat ambigaities would arise if we allowed repeated names. We therefore introduce bunches as a way of structoring port names.

Figare 1.10 Banches arising in composition

In a banched sort, the port names are partitioned into a collection of lists, called banches. Each banch a is a list containing several copies of the same name, a (each copy denoting a different port):

$$
\tilde{\mathbf{a}}=[a ; \ldots ; a]
$$

All the names in a banch mast have the same type. Empty bunches $\tilde{b}=[]$ are also admitted, meaning that there is no bort.

We can consider a bunched sort as an ordinary sort containing
indered names a_{i} (where a_{i} is the $i-t h$ item in the list $\tilde{a}=[a ; \ldots ; a]$), the advantage of the list notation is that we obtain an antomatic re-indexing on bunch operations. Lists are used instead of maltisets becanse ports mnst not lose their individaality.

A banch restriction pla cancels the banch $\tilde{\mathrm{a}}$ from the sort of p.

A banch renaming $p\{r\}$ (e.g. $p\{a \backslash b\}$) renames uniformly all the elements of the bunches specified by r (i.e. \tilde{a} becomes \tilde{b}). Note that r mast still be a bijection of port names.

A debriching operation gives access to the individual elements of a bunch: $p\{a[\tilde{i}] \backslash b\}$ renames part of the banch a to a new banch b, provided that b is not already in the sort of p. The list [ñ] is a list of indexes of \tilde{a}; it can be written as a list of nambers $[1 ; 2 ; 5]$ or a range [3..7] or a combination of them [12;5..7;2;1]. Note that debanching can be used to reorder a bunch: for example if p has a bunch of four ports \tilde{b}, than $p\{b[4 ; 3 ; 2 ; 1] \backslash b\}$ inverts the order of the ports in the bunch.

A cobnnching operation is used to merge bunches: $p\{a ; b \backslash c\} r e n a m e s$ the concatenation of the banches \tilde{a} and \tilde{b} (in that order) to a bunch c. provided that c is either a, or b, or is not already in the sort of p .

Debunching and cobunching can be generalised to more complex expressions like

$$
\begin{aligned}
& p\{a[3 \ldots 5] ; b ; c[1] \backslash b, d \backslash e\}= \\
& \quad p\left\{a[3 \ldots 5] \backslash b^{\prime}\right\}\left\{c[1] \backslash b^{\prime \prime}\right\}\left\{b^{\prime} ; b \backslash b\right\}\left\{b ; b^{\prime \prime} \backslash b\right\}\{d \backslash e\}
\end{aligned}
$$

provided that restrictions similar to the ones discossed above are observed.

The implicit bunch composition p q connects the bunches of p to the bunches of q having the same name, and the connected bunches
disappear from the sort of the result. The usual restrictions apply to bunch composition. Moreover the connection of two bunches is legal only if the bunches have the same namber of elements; then the first element of one bunch is connected to the last element of the other bunch, and similarly for all the other elements (this convention turns out to be natural on several occasions, e.g. to connect a banch on the "west" of a net to a bunch on the "east" of another net, and expecially in the case of planar banches).

A more general kind of composition is the partial implicit composition $p l_{A} q$, where A is a subset of the common banches of p and q. Only the bunches contained in A are connected as described above; the remaining banches common to p and q are cobanched in pairs of the same name (the ones of p to the left). For example if we imagine to have nets of rectangular shape, we can connect the east bunches of one net to the west bunches of another net, while the sonth and north bunches of both copies are bunched together.

Figure 1.11 Partial implicit composition

The explicit bunch composition $p[r] q$ connects the bunches of p to the bunches of q according to [r] as with partial implicit composition: we can define $[r]$ as

$$
\left.\left.p[r] q \triangleq p\right|_{\Gamma r}\right]^{\left(q\left\{r^{-1}\right\}\right)}
$$

Hence the connected bunches disappear from the sort of the resalt, and if $\cdot p$ has a bunch \tilde{a}_{p} and q has a bunch \tilde{a}_{q}, then the cobunching
$\tilde{a}_{p} ; \tilde{a}_{q}$ belongs to the result. This automatic cobanching tarns out to be very useful.

Formally, the set PortNames' of a banched sort is the set PortNames X N, where $n \in N$ is the length of each bunch. Let \#: $A \rightarrow N$ be the function returning the length of each bunch of a sort based on A, and returning 0 for each port name not contained in A. Moreover, let $\langle n\rangle \Delta\{1, \ldots, n\}$. Then bunch restriction is defined as:

$$
p \backslash b \triangleq p \backslash\left\{b_{i} \mid i \varepsilon\langle \# b\rangle\right\}
$$

and bunch renaming as:

$$
p\{x: A \sim B\} \quad \triangleq p\left\{u_{a \varepsilon A}\left\{a_{i} \backslash x(a)_{i} \mid i \varepsilon\langle \# a\rangle\right\}\right\}
$$

For debunching we need to introduce the operation $\partial(i, 1)$ which returns the position of the number i in the 1 ist of nambers 1.

$$
p\{a[1] \backslash b\} \triangleq p\left\{a_{i} \backslash b_{\partial(i, 1)} \mid i \varepsilon 1\right\} \cup\left\{a_{i} \backslash a_{\partial(i,\langle \# a\rangle \backslash 1)} \mid i \neq 1\right\}
$$

Cobanching is defined as:

$$
p\{a ; b \backslash c\} \triangleq p\left\{a_{i}\left|c_{i}\right| i \varepsilon\langle \# a\rangle\right\} u\left\{b_{i}\left|c_{\# a+i}\right| i \varepsilon\langle \# b\rangle\right\}
$$

Finally, partial implicit composition (from which the other compositions can be derived) is defined in terms of the previously described banch operators and of normal composition:

$$
\begin{aligned}
& \left.p\right|_{A} q \triangleq \\
& \quad\left(p\left\{b \backslash b^{\prime} \mid b \varepsilon B\right\} \cup\left\{a_{i_{a}} \backslash a_{\# a-i_{a}+1} \mid a \varepsilon A, i_{a} \varepsilon\langle \# a\rangle\right\} \mid\right. \\
& \left.\quad q\left\{b \backslash b^{\prime \prime} \mid b e B\right\}\right) \\
& \quad\left\{b^{\prime} ; b^{\prime \prime} \backslash b \mid b \varepsilon B\right\}
\end{aligned}
$$

Where $B=(\lceil\sigma(p)\rceil n\lceil\sigma(q)\rceil) \backslash A$ and $b ', b^{\prime \prime}$ do not occar in the sorts of p and q.

1.9 Planar Bunched Networks

A Planar bunched sort is a planar sort with planar bunches; a planar bunch is a bunch $\tilde{a}=\left[a_{1} ; \ldots ; a_{n}\right]$ where the a_{i} respect the cyclic order of their sort. Planar bunch operations are similar to their nonplanar versions, except that they mast make sense in a planar
framework.

Planar bunch restriction and renaming present no farther
problems.

Debanching is valid only if the extracted sub-bunch respects the cyciic ordering; note that we can rotate bunches this way, like in $b[2 ; 3 ; 4 ; 1] \backslash b$ for a 4-bunch \tilde{b}.

Cobunching needs some further explanation; the planar cobnnching of two planar bunches $\tilde{a} ; \tilde{b} \backslash \tilde{c}$ is the bunch \tilde{c} starting with the first port of \tilde{a}, containing \tilde{a} and \tilde{b}, and respecting the order of the planar sort. Note that if \tilde{a} and \tilde{b} are interleaved then \tilde{c} respects the interleaving, and \tilde{c} can be rotated in order to start with the desired port of \tilde{a} or \tilde{b}.

The various kinds of compositions work much as before. Again the connection of (interleaved) bunches mast respect the cyclic ordering and the first port of each brach connects to the last port of the respective matching bunch. Note that this first-to-last conventions allows as, in most cases, to connect planar banches without having to rearrange them in order to respect planarity constraints.
1.10 Molecules, Hypercubes, Mosaics and Klein Bottles

This section shows some examples of use of net algebras, especially concerning recursive definitions and banches. The examples suggest some interesting extensions of our notation which are left as open problems.

The first example is a attempt to describe molecules by their chemical bond structiore. Chemical elements of valeacy n are represented by literals with n ports, for example:

H: $\{\mathrm{h}\}$ (hydrogen)
$0:\left\{o_{1}, o_{2}\right\}$ (oxygen)
$C:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ (carbon)
We can easily compose simple molecules:

Methane Δ

$$
\begin{gathered}
C\left[c_{1}-h\right] H \\
{\left[c_{2}-h\right] H} \\
{\left[c_{3}-h\right] H} \\
{\left[c_{4}-h\right] H}
\end{gathered}
$$

CarbonDioxide \triangleq

$C\left[c_{1}-o_{1}, c_{2}-o_{2}\right] 0$
$\left[c_{3}-o_{1}, c_{4}-o_{2}\right] 0$

CH \triangleq

C $\left[\mathrm{c}_{4}-\mathrm{h}\right] \mathrm{H}$

$\mathrm{C}_{2} \mathrm{H}_{2} \stackrel{\Delta}{\equiv}$

$\mathrm{CH}\left[\mathrm{c}_{2}-\mathrm{c}_{1}, c_{3}-\mathrm{c}_{3}\right] \mathrm{CH}$

Benzene $\underline{\underline{\omega}}^{\text {a }}$

$\mathrm{C}_{2} \mathrm{H}_{2}\left[\mathrm{c}_{2}-\mathrm{c}_{1}\right] \mathrm{C}_{2} \mathrm{H}_{2}$
$\left[c_{2}-c_{1}, c_{1}-c_{2}\right] C_{2} H_{2}$

Figare 1.12 Methane, carbon dioxide and benzene
of each kind, but "behave" differently. Hence isomerism implies structural difference, which can be expressed in our notation as well as by chemical diagrams. For various reasons, it does not matter which valencies of an atom are connected to another atom, so that the simple interchanges of bonds of a single atom does not produce isomers.

In general we might want to talk about the spacial orientation of valencies, which is important in stereochemistry and cristallography. This suggests a generalisation of planar cycles and sorts to three dimensions, producing what we might call envelopes, i.e. arrangements of ports on the vertices of a polyedrum. Envelopes should characterise legal compositions of polyedra in 3-D space, forbidding copenetration in the same way as cycles forbid over-crossings. We conld then equally well describe crystaline structures, mechanical parts or the architecture of brildings in a safe and unambiguous way. This is left as an open problem which might have very interesting applications, but which has little relevance here.

As a second example, let us build an n-dimensional cube starting from a single literal ∇ (vertex) with ports $e^{1} \ldots e^{n}$. In order to avoid name clashes we index the port names e^{i} by iists of binary digits (e.g. $\left.e^{3}(0 ; 1 ; 1 ; 0]\right)$:

$$
\begin{aligned}
& c_{0} \triangleq \nabla\left\{e^{1} \backslash e_{[]}^{1}, \ldots, e^{n} \backslash e_{[]}^{n}\right] \\
& c_{i+1} \Delta \\
& c_{i}\left\{e_{[0 . .0]}^{i+1} \backslash e_{[0,0 \ldots 0]}^{i+1}, \cdots, e_{[1, .1]}^{i+1} \backslash e_{[0,1 \ldots 1]}^{i+1}, \ldots,\right. \\
& \left.e_{[0 . .0]}^{n} \backslash e_{[0,0 \ldots 0]}^{n}, \cdots, e_{[1, .1]}^{n} \backslash e_{[0,1 \ldots 1]}^{n}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& c_{i}\left\{e_{[0 . .0]}^{i+1} \backslash e_{[1,0 . .0]}^{i+1}, \cdots, e_{[1, .1]}^{i+1} \backslash e_{[1,1 \ldots 1]}^{i+1}, \cdots,\right. \\
& \left.e^{n}[0 \ldots 0] \backslash e_{[1,0 \ldots 0]}^{n}, \cdots, e_{[1 . .1]}^{n} \backslash e_{[1,1 \ldots 1]}^{n}\right]
\end{aligned}
$$

The first three steps in the construction of a three-dimensional cube are illustrated in the next figure:

Figure 1.13 Bailding a cube

This is a sitation where the advantages of bunches are particularly clear, inded by using bunched sorts and compositions we need only write:

$$
\begin{aligned}
& c_{0} \triangleq \Delta \\
& c_{i+1} \triangleq c_{i}\left[e^{i+1}-e^{i+1}\right] c_{i}
\end{aligned}
$$

Note that the result is really an hypercube, and not a "twisted" version of it (remember that two bunches $a_{1} \ldots a_{n}$ and $b_{1} \ldots b_{n}$ are connected as $\left.a_{1}-b_{n} \cdots a_{n}-b_{1}\right)$.

Suppose now that we only have a literal $\begin{aligned} & \text { with three ports } f, b, e\end{aligned}$ (forward, backward and external) and we still want to make a
hypercabe [Preparata 79]. All we have to do is to baild ap n-ary vertices from ternary ones (for $n>1$):

$$
\begin{aligned}
v_{n} \triangleq & \left(v\left\{e \backslash e^{1}\right][f-b] \ldots[f-b] v\left\{e \backslash e^{n-1}\right\}\right) \\
& {[f-b, b-f] \nabla\left\{e \backslash e^{n}\right\} }
\end{aligned}
$$

Figure 1.14 An n-ary vertex
and we can then apply our previous definitions.

The third example concerns mosaics on the plane: Suppose we have a literal t (equilateral triangle) with ports b,r,1 (base, right and left) organised in this order in a planar sort. The following definition builds a mosaic of triangles which at every steps retains the form of an equilateral triangle. Bunches are used.

$$
\begin{aligned}
& m_{0} \triangleq t \\
& m_{n+1} \triangleq \\
& \quad m_{n}\left\{b \backslash b^{\prime}, 1 \backslash 1^{\prime}, r \backslash r^{\prime}\right\} \\
& \quad\left[b^{\prime}--b\right] m_{n}\left[1^{\prime}--1\right] m_{n}\left[r^{\prime}--r\right] m_{n}
\end{aligned}
$$

The next figure shows the first three steps in the constraction of a mosaic:

Figure 1.15 Building a mosaic
Note that if we do not use planar sorts triangles are allowed to fiip around their connection points, and the result can be a rather complicated three-dimensional graph instead of a planar mosaic.

The fourth example concerns sorts with an infinite number of ports. We can consider a segment s_{1} of length 1 in 3-D space, as a literal with uncountably many ports p_{x} for $0 \leq x \leq 1$. We can obtain a -rshape by joining two segments at their end point:
$\nabla \triangleq s_{1}\left[p_{0}--p_{0}\right] s_{2}$

Figure 1.16 Joining two segments
We can then join two $\begin{aligned} \\ \text {-shapes } \\ \text { by connecting the middle points of the }\end{aligned}$ first ∇-shape to the 0.3 -points of the second v-shape. Note the effect of banches in this case.

W $\xlongequal[\underline{\Delta}]{ } \quad\left[p_{0.5}{ }^{--p_{0.3}}\right] \nabla$

Figure 1.17 Joining two v-shapes

We can produce more interesting examples with a literal r (representing a "flexible" rectangle in 3-D space) with ports $n_{x} s_{x}$ for $0 \leq x \leq 1$ ranging from left to right, and $e_{y},{ }_{y}$ for $0 \leq y \leq 1$ ranging from bottom to top:

Figure 1.18 A flexible rectangle
Here are some interesting objects which can be obtained:

$$
\begin{aligned}
& \text { punched-ring } \\
& \stackrel{\wedge}{\triangleq}
\end{aligned}
$$

Note that we do not capture the class of 3-D surfaces modulo continuous transformations; for example we have no way of distinguishing a straight ring from a double-twisted one.

An alternative flexible rectangle may be defined to have four ports n, s, e, W which are uncountable bunches disposed anticlockwise around the perimeter (when bunches are concatenated, they are renormalised to the interval 0..1). This case is particularly
similar to the treatment of ports in Chapter 3.

ring	
panched-ring	
moebius-strip	
sphere	
klein-bottle	
torus1	\triangleq ring [n--s, s--n] ring
torus2	\triangleq ming $[\mathrm{n}[0 . .1]-\mathrm{s}[1.0], \mathrm{s}[0 . .1]-\mathrm{n}[1-0] \mathrm{ring}$

Note that torasl is obtained by inserting one ring in parallel inside the other, and then joining the edges, while in torus2 the two rings are composed into a thicker ring which is then bent around to connect its two edges.

1.11 Main Example: The Foster \& Kang Pattern Matcher

The Foster 8 Kang pattern matching hardware algorithm [Foster 80] will be used as an example through chapters 1 and 2 . It has a very simple and regalar stracture, deriving from the systematic hierarchical decomposition of a pattern matching problem, while its behaviour involves flow of data in a double pipeline configaration and is far from obvious.

The problem is to find all the occurrences of a pattern p in a tert (string of characters) s, where p may contain the distingaished character '*'. A pattern p matches a subtext s^{\prime} of s if p and $s^{\prime}:$ (i) have the same length and, (ii) either the corresponding characters are equal or the pattern character is '*'.

The pattern matcher is implemented as separate processor, commanicating with some host compater; here is the general plan.

Figare 1.19 The pattern matcher as a processor
Instead of storing the pattern into PM and then supplying the string, it is simpler to implement a on-the-fly pattern matching where the pattern is repeatedly transmitted by the host H together with an indication of the end of the pattern which is encoded in the last character of the pattern.

Figrre 1.20 The pattern matcher protocol
The result of the matching is retrined as binary string containing a 1 for each successfal match; the position of each 1 corresponds to the position of the last character of matching subtext.

The key architectural idea is the use of a pipeline where text and (repeated) pattern meet head-on.
text
res

Figrre 1.21 Architecture
The pipeline should be at least as long as the pattern. This structure is very convenient becanse makes the matching process time-linear in the text length and space-linear in the pattern length. Moreover, if we want to match a very long pattern we can simply connect several PM processors in a row and all works well.

Fignre 1.22 Matching long patterns
Every stage of the pipeline matches a single character of text to a single character of pattern. The stage produces an outpot whenever it matches the last char of the pattern, otherwise it transmits forward the output coming from the previous stage.

Consider a single stage: it receives in turn the pattern from the left and the text from the right (retransmitting them onaltered) and it has to remember whether all the previous characters matched, so that at the end of the pattern it can tell whether the pattern as a whole matches the subtert.

Figure 1.23 A stage of the pattern matcher
If there are n_{p} characters in the pattern, a single stage will consider all the substrings of length n_{p} starting at maltiples of n_{p} in the tert, ignoring all the other substrings. The other substrings of length n_{p} will be considered by the adjacent stages, so that if we have n_{p} stages we consider all the substrings of length n_{p}. More than n_{p} stages will do no harm: the result will simply be overwitten one or more times, but it will still be correct.

We can farther decompose the structure of a single stage by distingnishing a comparator part and an accumalator part.

Figure 1.24 Innex structure of a stage
The comparator takes a string character and a pattern character, and compares them outpating the result to the accumalator. The accumalator accumalates the successive results of the comparator, and when the pattern is complete it produces the final result.

The pattern information is split between comparator and
accumulator. The comparator receives the proper pattern characters, and the accumulator receives: (i) the information that the current pattern character is actually the wild card character (so that it can ignore the result of the comparator) and: (ii) the information that the current character is the last of the pattern (so that it can output the result and reinitialise itself).

Each character is assumed to be a parallel vector of bits, let us say 4 bits. We can further decompose the comparator into a series of bit comparators, each of them matching a bit of pattern against a bit of string. Having done this, we might just take the boolean and of the results of all the bit comparator and feed it to the accumulator. However, there is a different solution which gives us the opportunity of studying a more interesting kind of architecture, as well as being more elegant for VLSr implementations. We can organise the bit comparators into a pipeline which runs orthogonally to the main string -pattern pipeline; this assumes that the bits constituting the characters are shifted at the input of the pattern matcher and realigned at the output. The net effect is that although a byte comparison takes 4 cycles, the accumulator receives a result at each cycle.

Figure 1.25 Bit comparators
The first bit comparator at the top is connected to "true", and each bit comparator outputs the boolean and of its comparation with the previous result coming from above.

There is a final optimisation to be made. It is convenient to implement each bit comparator by a single inverting stage; this implies that all the outpats will be inverted, and the next comparator (both below and to the left) must be ready to accept an inverted output. This leads to differentiating "positive" and "negative" comparators and accumalators, arranging them into a chess-board pattern. The behaviour of the pattern matcher will not be affected, provided that there are both an even namber of stages and an even number of bits in each character.

Figure 1.26 Positive and negative devices

We now show that the structure of the pattern matcher can be expressed as a network. We take the bit comparators and accumalators as black boxes (to be denoted by literals) and we compose them together into the complete system nsing our network operations. In the next chapter, more refined net algebras will be used to specify the contents of these black boxes according to the descriptive model or technology we want to implement them in. Here we use the following primitives (i.e. literals):

True: \{true: match
False: \{false: match\}

PosAccum: $\left\{\lambda_{i n}, \lambda_{\text {out }}:\right.$ endpattern, $x_{\text {in }}, x_{\text {out }}$: wildcard,

$$
r_{i n} \cdot r_{\text {out }}: \text { result, } d_{i n}: \text { match }
$$

NegAccum: $\left\{\lambda_{\text {in }}, \lambda_{\text {out }}\right.$: endpattern, $x_{\text {in }}, x_{\text {out }}$: wildcard,

$$
\left.r_{i n}, r_{\text {out }}: \text { result, } d_{i n}: \text { match }\right\}
$$

(The choice of types (pattern,string,match, etc.) is a pure matter of taste: we might have defined all the ports to have type bool, or we might have introduced enough type structure to syntactically forbid the direct composition of BitComp's of the same sign.)

In order to parameterise the pattern matcher with respect to its dimensions we introduce a simple iteration constract:
n times p with [r]
which uses $n-1$ times the connection [r] to connect n copies of p, for example:

```
    3 times p vith [r] = p[r]p[r]p
```

We can now program the pattern matcher, using banches, iteration and parameterisation.

```
PosByteComp n =
    n times PosBitComp [dont -d \(_{\text {in }}\) ] NegBitComp
    with [d ont - \(d_{\text {in }}\) ]
NegByteComp n =
    ntimes NegBitComp [d out \({ }^{-d_{i n}}\) ] PosBitComp
    with [d out - \(\mathrm{d}_{\mathrm{in}}\) ]
```

```
PosColumn \(n=\)
    True [true--din]
    PosByteComp in [d out -d \(_{\text {in }}\) ]
    PosAccum
```

```
NegColumn n =
```

NegColumn n =
False [false-din]
False [false-din]
NegByteComp in [d out ${ }^{--d_{i n}}$]

```
    NegByteComp in [d out \({ }^{--d_{i n}}\) ]
```

 NegAccum
 PatternMatchermn=
m times
PosColumn n

$\left.\lambda_{\text {out }}-\lambda_{\text {in }}, x_{\text {out }}-x_{\text {in }}, r_{\text {in }}{ }^{--r_{\text {out }}}\right]$
NegColumn n

$\left.\lambda_{\text {out }}-\lambda_{\text {in }}, x_{\text {out }}-x_{\text {in }}, r_{\text {in }}-I_{\text {out }}\right]$

What we are doing here from an algebraic point of view is to introduce a set of derived operators; for example for every n and r we have a unary operator n times p with [r]; again for every n we have a nullary derived operator PosByteComp n, etc. Similar kind of programming will be done in Chapter 2. All these ideas will finally be incorporated into a real programming langage in Chapter 3.

1.12 Appendix: Some Proofs Needed for the Initiality Theorem

Theoren The operations are well defined:
(1) $\forall 1 \varepsilon$ II. $\langle[1], 1 \sigma \longrightarrow 1, A, a \varepsilon A \sigma \longrightarrow 1, a\rangle$, $\emptyset\rangle$, where $A=\lceil\lambda(1)]$, is a network:
(2) if N is a network, so is N la;
(3) if N is a network and r a bijection on 「s], then $N\{r\}$ is a network;
(4) if N, N^{\prime} are networks and s, s^{\prime} are compatible, then $N N^{\prime}$ is a network:
(5) the operations have the correct type.

Proof

(1) $1=\langle\{1\}, 10 \longrightarrow 1, A, a \varepsilon A \rightarrow\langle 1, a\rangle, 0\rangle$ is clearly a network.
(2) $N=\langle V, \gamma, A, \pi, E\rangle$ and $N \backslash a=\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle$:
we have $V^{\prime}=V ; \gamma^{\prime}=\gamma ; A^{\prime}=A \backslash\{a\} ;$
$P^{\prime}=\left\{\left\langle\nabla^{\prime}, b\right\rangle \cdot \mid \nabla^{\prime} \varepsilon V^{\prime}\right.$ and $\left.b \varepsilon\left\lceil\lambda\left(\gamma^{\prime}(b)\right)\right\rceil\right\}=\{\langle\nabla, b\rangle \quad \mid \quad \nabla \varepsilon V$ and $\mathrm{be}[\lambda(\gamma(\mathrm{b}))\rceil]=\mathrm{P} ; \pi^{\prime}: \mathrm{A}^{\prime} \rightarrow \mathrm{P}^{\prime}=\pi \backslash \mathrm{a}$ is $1-1 ;$ type' $=$ type;
$E^{\prime}=E E P X P=P^{\prime} X^{\prime} P^{\prime} ; E^{\prime}$ satisfies 1. and 2. becanse E does, and it satisfies 3 . as $\pi^{\prime}\left(A^{\prime}\right) n\left\lceil E^{\prime}\right\rceil=\pi \backslash a(A \backslash a) n\lceil E\rceil=\pi(A) n\lceil E\rceil=0$.
(3) $N=\langle V, \gamma, A, \pi, E\rangle$ and $N\{I\}=\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle$:
we have $V^{\prime}=V ; \gamma^{\prime}=\gamma ; A^{\prime}=r(A) ;$ type $=$ type;
$P^{\prime}=\left\{\left\langle v^{\prime}, b\right\rangle \mid \nabla^{\prime} \varepsilon V^{\prime}\right.$ and $\left.b \varepsilon\left\lceil\lambda\left(\gamma^{\prime}(b)\right)\right\rceil\right\}$
$=\{\langle\nabla, b\rangle \mid \nabla \varepsilon V$ and $b e\lceil\lambda(\gamma(b))\rceil\}=P ;$
$\pi^{\prime}: A^{\prime} \rightarrow P^{\prime}=\pi o r^{-1}$ is $1-1$ as π is $1-1$ and I is a bijection;
$E^{\prime}=E \underline{E} \quad X^{\prime}=P^{\prime} X P^{\prime} ; E^{\prime}$ satisfies 1. and 2. becanse E does, and it satisfies 3. as $\pi^{\prime}\left(A^{\prime}\right) \cap\left\lceil E^{\prime}\right\rceil=\pi\left(r^{-1}(r(A))\right) n\lceil E\rceil=\pi(A) n\lceil E\rceil=0$ 。
(4) $N=\langle V, \gamma, A, \pi, E\rangle, N^{\prime}=\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle$
and $N \mid N^{\prime}=\left\langle V^{\prime \prime}, \gamma^{\prime \prime}, A^{\prime \prime}, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle:$
we have $V^{\prime \prime}=V U V^{\prime} ; \gamma^{\prime \prime}=\gamma \boldsymbol{\gamma} \gamma^{\prime} ; A^{\prime \prime}=A \theta A^{\prime} ;$
$P^{\prime \prime}=\left\{\left\langle\nabla^{\prime \prime}, b\right\rangle \mid v^{\prime \prime} \varepsilon V^{\prime \prime}\right.$ and $\left.b \varepsilon\left\lceil\lambda\left(\gamma^{\prime \prime}(b)\right)\right\rceil\right\}=P \cup P^{\prime} ;$

```
\(\pi^{\prime \prime}: A^{\prime \prime} \rightarrow P^{\prime \prime \prime}=\pi+(A \backslash C) \cup \pi^{\prime}+\left(A^{\prime} \backslash C\right)\) with \(C=A n A^{\prime} ;\)
type" \((\nabla, a)=\lambda\left(\gamma^{\prime \prime}(\nabla)\right)(a)=\) if. \((\nabla, a) \varepsilon P\) then type \((\nabla, a)\) else
type'( \(\mathrm{\nabla}, \mathrm{a}\) );
```

$E^{\prime \prime}=E \cup E^{\prime} u\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle\left\langle\pi^{\prime} a, \pi a\right\rangle \quad \mid a \varepsilon C\right\} \quad \underline{P^{\prime \prime} X P^{\prime \prime} ;} E^{\prime \prime}$ is symmetric
becanse so are E and $E^{\prime} ; E^{\prime \prime}$ is a partial function becanse E, E^{\prime} are
partial functions, π, π^{\prime} are $1-1$ and condition 3 . holds for N and N^{\prime}.
$E^{\prime \prime}$ satisfies 2. because E^{\prime} and $E^{\prime \prime}$ do, $V V^{\prime}=0$ and s, s^{\prime} are
compatible; $E^{\prime \prime}$ satisfies 3 . because:
$\pi^{\prime \prime}\left(A^{\prime \prime}\right) \cap\left\lceil E^{\prime \prime}\right\rceil=\left(\left(\pi \downarrow(A \backslash C) \cup \pi^{\prime} \downarrow\left(A^{\prime} \backslash C\right)\right)\left(A \oplus A^{\prime}\right) \cap\left\lceil E^{\prime \prime}\right\rceil\right.$
$=\left((\pi \downarrow(A \backslash C))(A \backslash C) \cup\left(\pi^{\prime} \downarrow\left(A^{\prime} \backslash C\right)\right)\left(A^{\prime} \backslash C\right)\right) \cap\left\lceil E^{\prime \prime}\right\rceil$
$=(\pi(A \backslash C) \pi\lceil E\rceil) v\left(\pi\left(A^{\prime} \backslash C\right) \pi\left\lceil E^{\prime}\right\rceil\right)=0$.
(5) The sort of 1 is $s=\lambda(1)$;
the sort of $N^{\prime}=N \backslash a$ is $s^{\prime}=$ type ${ }^{\prime} \circ \pi^{\prime}=$ typeorla $=$ s $\backslash a ;$
the sort of $N^{\prime}=N\{I\}$ is $s^{\prime}=\operatorname{type}^{\prime} \circ \pi^{\prime}=$ typeoror $^{-1}=$ sor $^{-1}$;
the sort of $N^{\prime \prime \prime}=N \mid N^{\prime}$ is:
$s^{\prime \prime}=$ type" $0 \pi^{\prime \prime}=(\text { typeutype })_{0}\left(\pi+(A \backslash C) \cup \pi^{\prime}+\left(A^{\prime} \backslash C\right)\right)$
$=(t y p e o \pi \downarrow(A \backslash C)) v\left(t y p e^{\prime} \circ \pi^{\prime}+\left(A^{\prime} \backslash C\right)\right)=s \neq\left(A \backslash A^{\prime}\right) y s^{\prime} \downarrow\left(A^{\prime} \backslash A\right)$.
0

Theoren (Definability)

Every network can be denoted by a well sorted net expression (op to network isomorphism).

Proof The proof is by indnction on the size of V; since $V \neq 0$, we consider the cases where V is a singleton and where it has at least two elements.
(1) $V=\{\nabla\}, N=\langle V, \gamma, A, \pi, E\rangle:$
then $\gamma=\nabla \sigma 1 ; P=\{\langle\nabla, a\rangle \mid a \varepsilon[\lambda(1)\rceil\} ; E=0$ as there is only one vertex and self-loops are not allowed;
define $f: A \rightarrow B$ where $B=\lceil\lambda(1)\rceil$ as $f(b)=f=t_{2} 0 \pi$;
define $r: f(A) \rightarrow A$ as $r(a)=f^{-1}(a)$.
N is defined by $I \backslash(B \backslash f(A))\{r\}$, in fact:

```
1\(B\f(A)){r} = <{1}, 10->1, 「\lambda(1) \,a0->\langle{1,a\rangle, D>\(B\f(A)){r}
= \langle{1}, 1@\longrightarrow1, B, a\varepsilonB@\longrightarrow\langle1,a\rangle, \emptyset\rangle\(B\f(A)) {r}
=\langle{1}, 10->1,f(A), a\varepsilonBo\longrightarrow\langle1,a\rangle, D\rangle {r}
= \langle{1}, 1 ↔-1,f(A),a\varepsilonf(A) }->\langle\langle1,a\rangle, D\rangle{r
=\langle{1}, 1\sigma\longrightarrow1, r(f(A)),(a\varepsilonf(A) O->\langle1,a\rangle)\circ\mp@subsup{r}{}{-1},\emptyset\rangle
= \langle{1}, 10->1, A, \mp@subsup{\pi}{}{\prime}, D\rangle =N, where \pi'={\langlea,\langle1,b\rangle\rangle|{a,\langlev,b\rangle\ranglee\pi}
```

(2) $V=V^{\prime} u V^{\prime \prime}$ with $\# V^{\prime}, \# V^{\prime \prime} \geq 1$ and $V^{\prime} n V^{\prime \prime} \Rightarrow \# ; N=\langle V, \gamma, A, \pi, E\rangle:$
let $\gamma^{\prime}=\gamma^{\prime} \downarrow V^{\prime} ; P^{\prime}=\left\{\langle\nabla, a\rangle \mid \nabla \varepsilon V^{\prime}\right.$ and $\left.a \varepsilon\left\lceil\lambda\left(\gamma^{\prime}(\nabla)\right)\right\rceil\right\} ; E^{\prime}=E n P^{\prime} X P^{\prime} ;$ $A^{\prime}=\left\{a \varepsilon A \mid \pi(a) e P^{\prime}\right\} ; \pi_{0}^{\prime}=\pi \downarrow A^{\prime} ;$
 $A^{\prime \prime}=\left\{a e A \mid \pi(a) e P^{\prime \prime}\right\} ; \pi_{0}^{\prime \prime}=\pi+A^{\prime \prime} ;$
let $E^{\prime \prime \prime}=E \backslash\left(E^{\prime} \cup E^{\prime \prime}\right) \underline{C}\left(P^{\prime} X P^{\prime \prime}\right) \cup\left(P^{\prime \prime} X P^{\prime}\right)$;
let $a: C \rightarrow\left(E^{\prime \prime \prime} n\left(P^{\prime} X P^{\prime \prime}\right)\right)$ be a bijection such that $C n\left(A^{\prime} \cup A^{\prime \prime}\right)=0$ (a assigns a new name to each connection between V^{\prime} and $V^{\prime \prime}$ in N);
let $N^{\prime}=\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime} u C, \pi^{\prime}, E^{\prime}\right\rangle$ where $\pi^{\prime}=\pi_{0}^{\prime} u\left(t_{1} \rho a\right)$
and $N^{\prime \prime}=\left\langle V^{\prime \prime}, \gamma^{\prime \prime}, A^{\prime \prime} \cup C, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle$ where $\pi^{\prime \prime}=\pi_{0}^{\prime \prime} u\left(t_{2} \circ a\right)$
It is easily verified that N^{\prime} and $N^{\prime \prime}$ are networks, moreover:

E $\underline{I}^{\prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime \prime} ; \mathrm{E}^{\prime} \boldsymbol{n} \mathrm{E}^{\prime \prime}=0$.
By induction hypothesis there are net expressions e^{\prime} and $e^{\prime \prime}$ defining N^{\prime} and $N^{\prime \prime}$. We now show that e'le" defines N.

First, $N^{\prime} N^{\prime \prime}$ is well defined; in fact $\forall a z C . s^{\prime}(a)=$ type' $\left(\pi^{\prime}(a)\right)=$ type' $\left(t_{1} a(a)\right)$ and $s^{\prime \prime}(a)=\operatorname{type}\left(\pi^{\prime \prime}(a)\right)=$ type" $\left(t_{2} a(a)\right)$, which are the same because of condition 2 . on N.

We have to verify that $N^{\prime} \|^{\prime \prime}=\langle V, \gamma, A, \pi, E\rangle$, in fact:
$V^{\prime} u V^{\prime \prime}=V ; \gamma^{\prime} u \gamma^{\prime \prime}=\gamma$ 。
$\left(A^{\prime} \cup A^{\prime \prime} \cup C\right) \backslash\left(\left(A^{\prime} \cup C\right) \therefore\left(A^{\prime \prime} \cup C\right)\right)=\left(A^{\prime} \because A^{\prime \prime} \dot{\cup C}\right) \backslash C=A^{\prime} \cup A^{\prime \prime}=A ;$
$\pi^{\prime}+\left(A^{\prime} \cup C\right) \backslash C \cup \pi^{\prime \prime}+\left(A^{\prime \prime} \cup C\right) \backslash C=\pi^{\prime} \downarrow A^{\prime} \cup \pi^{\prime \prime} \downarrow A^{\prime \prime}$
$=\pi_{0}^{\prime} u\left(\downarrow_{1} \circ a\right) \downarrow A^{\prime} \cup \pi_{0}^{\prime \prime} u\left(t_{2} \circ a\right) \downarrow A^{\prime \prime}=\pi_{0}^{\prime} \dot{\cup} \pi_{0}^{\prime \prime}=\pi$;
$E^{\prime} \cup E^{\prime \prime} \cup\left\{\left\langle\pi^{\prime} a, \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime \prime} a, \pi^{\prime} a\right\rangle \mid a \varepsilon C\right\}$
$=E^{\prime} \cup E^{\prime \prime} \cup\left[\left\langle t_{1}(a), t_{2}(a)\right\rangle,\left\langle\downarrow_{2}(a), t_{1}(a)\right\rangle \mid a \varepsilon C\right\}$


```
= E'uE'uE'"'=E
```

]

Theorom (Consistency)

Laws [l] .. [\{]\|] are valid ap to network isomorphism.

Proof

$[\backslash]: e \backslash a=\langle V, \gamma, A, \pi, E\rangle \backslash a=\langle V, \gamma, A \backslash a, \pi \backslash a, E\rangle=\langle V, \gamma, A, \pi, E\rangle$
as a $\{\lceil\sigma(e)\rceil=A$.
$[\backslash \backslash]: e \backslash a \backslash b=\langle V, \gamma, A, \pi, E\rangle\langle a \backslash b$
$=\langle V, \gamma, A \backslash a \backslash b, \pi \backslash a \backslash b, E\rangle=\langle V, \gamma, A \backslash b \backslash a, \pi \backslash b \backslash a, E\rangle=e \backslash b \backslash a$
[\{]]: e\{id\} $=\langle V, \gamma, A, \pi, E\rangle\{i d\}$
$=\left\langle V, \gamma, i d(A), \pi \circ i d^{-1}, E\right\rangle=\langle V, \gamma, A, \pi, E\rangle=e$.
[\{]\{]]: $e\{x\}\left\{x^{\prime}\right\}=\langle V, \gamma, A, \pi, E\rangle\{x\}\left\{x^{\prime}\right\}$
$=\left\langle V, \gamma, I^{\prime}(r(A)), \pi o r^{-1} \rho I^{\prime-1}, E\right\rangle$
$\left.=\left\langle V, \gamma,\left(r^{\prime} \circ r\right)(A)\right), \pi \circ\left(r^{\prime} \circ r\right)^{-1}, E\right\rangle=e\left\{r^{\prime} \circ r\right\}$.
[\{]\]: $e\{x\} \backslash x(a)=\langle\nabla, \gamma, A, \pi, E\rangle\{r\} \backslash x(a)$

$=\left\langle V, \gamma, I(A) \backslash I(a),\left(\pi_{0} I^{-1}\right) \backslash r(a), E\right\rangle$
$=\left\langle V, \gamma, r(A) \backslash r(a),(\pi \backslash a) \rho\left(r^{-1}\right) \backslash r(a), E\right\rangle$
$=\left\langle V, \gamma,(r \backslash a)(A \backslash a),(r \backslash a)_{0}(r \backslash a)^{-1}, E\right\rangle e \backslash a\{r \backslash a\}$.
[|]: ele' = $\langle V, \gamma, A, \pi, E\rangle \mid\left\langle\nabla^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle$
$=\left\langle V \cup V^{\prime}, \gamma \cup \gamma^{\prime}, A \oplus A^{\prime}, \pi \nmid(A \backslash C) \cup \pi^{\prime} \downarrow\left(A^{\prime} \backslash C\right), E \cup E^{\prime} \cup E^{\prime \prime}\right\rangle$
$=\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\left|\langle V, \gamma, A, \pi, E\rangle=e^{\prime}\right| e$.
$[\backslash \|]:\left(e \mid e^{\prime}\right) \backslash a=\left(\langle V, \gamma, A, \pi, E\rangle \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\right) \backslash a$
$=\left\langle V u V^{\prime}, \gamma u \gamma^{\prime},\left(A \oplus A^{\prime}\right) \backslash a,\left(\pi+(A \backslash C) u \pi^{\prime}+\left(A^{\prime} \backslash C\right)\right) \backslash a, E u E^{\prime} u E^{\prime \prime}\right\rangle$
$=\left\langle V \cup V^{\prime}, \gamma \cup \gamma^{\prime},(A \backslash a) \theta\left(A^{\prime} \backslash a\right), \pi b(A \backslash a \backslash D) \cup \pi^{\prime} \downarrow\left(A^{\prime} \backslash a \backslash D\right), E \cup E^{\prime} u F^{\prime \prime}\right\rangle$
$=\langle V, \gamma, A \backslash a, \pi \backslash a, E\rangle \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime} \backslash a, \pi^{\prime} \backslash a, E^{\prime}\right\rangle$
$=(\langle V, \gamma, A, \pi, E\rangle) \backslash a\left|\left(\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\right) \backslash a=(e \backslash a)\right|(e \backslash a)$
Where $C=A n A^{\prime}$
and $D=A \backslash a n A^{\prime} \backslash a=\left(A n A^{\prime}\right) \backslash a=C \backslash a=C$ becanse $a e\left\lceil\sigma\left(e l e^{\prime}\right)\right]$.
$\left(A \oplus A^{\prime}\right) \backslash a=(A \backslash a) \theta\left(A^{\prime} \backslash a\right) ;$

```
\(\left(\pi+(A \backslash C) \cup \pi^{\prime}+\left(A^{\prime} \backslash C\right)\right) \ a=(\pi+(A \backslash C)) \backslash a \quad u\left(\pi^{\prime}+\left(A^{\prime} \backslash C\right)\right) \backslash a\)
\(=(\pi+(A \backslash C) \backslash a) \cup\left(\pi^{\prime}+\left(A^{\prime} \backslash C\right) \backslash a\right)=\pi \downarrow((A \backslash a) \backslash D) \cup \pi^{\prime} \downarrow\left(\left(A^{\prime} \backslash a\right) \backslash D\right) ;\)
\(E^{\prime \prime}=\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a e D\right\}\)
\(=\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a \varepsilon C\right\}=F^{\prime \prime}\).
[\{]|]: (ele')\{rur'\} = (〈V, \(\left.\gamma, A, \pi, E\rangle \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\right)\left\{r \cup r^{\prime}\right\}\)
\(=\left\langle V u \nabla^{\prime}, \gamma u \gamma^{\prime}, A_{0}, P_{0}, E_{0}\right\rangle\)
\(=\left\langle V u V^{\prime}, \gamma u \gamma^{\prime}, A_{1}, \pi_{1}, E_{1}\right\rangle\)
\(=\left\langle V, \gamma,\left(r \cup r^{\prime \prime}\right) A, \pi \rho\left(r \cup r^{\prime \prime}\right)^{-1}, E\right\rangle\left\langle V^{\prime}, \gamma^{\prime},\left(I^{\prime} \cup r^{\prime \prime}\right) A^{\prime}, \pi^{\prime} \circ\left(I^{\prime} \cup r^{\prime \prime}\right)^{-1}, E^{\prime}\right\rangle\)
\(=\langle V, \gamma, A, \pi, E\rangle\left\{r u r^{\prime \prime}\right\} \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\left\{r^{\prime} u r^{\prime \prime}\right\}\)
\(=e\{r\) Ur" \(\} \mid e \prime\left\{r^{\prime} \boldsymbol{u r \prime}\right\}\)
```


where:

$\mathbf{C}=\mathbf{A n A} A^{\prime} ;$
$D=\left(r u r^{\prime \prime}\right) A n\left(r^{\prime} u r^{\prime \prime}\right) A^{\prime}=r^{\prime \prime}\left(A \cap A^{\prime}\right) ;$
$A_{0}=\left(r \cup r^{\prime}\right)\left(A \theta A^{\prime}\right)=r(A) \theta r^{\prime}\left(A^{\prime}\right)=\left(r u r^{\prime \prime}\right) A \oplus\left(r^{\prime} \cup r^{\prime \prime}\right) A^{\prime}=A_{1} ;$
$P_{0}=\left(\pi+(A \backslash C) \cup \pi^{\prime}+\left(A^{\prime} \backslash C\right)\right)_{0}\left(r \cup r^{\prime}\right)^{-1}$
$=\left(\pi+\left(A \backslash A^{\prime}\right) \cup \pi^{\prime}+\left(A^{\prime} \backslash A\right)\right) \cdot\left(r u r^{\prime}\right)^{-1}$
$=\left(\pi+\left(A \backslash A^{\prime}\right) \circ r^{-1}\right) \cup\left(\pi^{\prime}+\left(A^{\prime} \backslash A\right) \circ I^{\prime-1}\right)$
$=\left(\pi 0 I^{-1}\right) \cup\left(\pi^{\prime} \circ r^{\prime-1}\right)$
$=\left(\left(\pi \circ\left(I \cup r^{\prime \prime}\right)^{-1}\right) \downarrow r(A) \cup\left(\pi^{\prime} \circ\left(I^{\prime} \cup r^{\prime \prime}\right)^{-1}\right) \downarrow r^{\prime}\left(A^{\prime}\right)\right.$
$=\left(\left(\pi_{0}\left(r u r^{\prime \prime}\right)^{-1}\right) \downarrow\left(\left(r \cup r^{\prime \prime}\right) A \backslash\left(r^{\prime} u r^{\prime \prime}\right) A^{\prime}\right)\right.$
$\cup\left(\pi^{\prime} \circ\left(r^{\prime} \cup r^{\prime \prime}\right)^{-1}\right)+\left(\left(r^{\prime} \cup r^{\prime \prime}\right) A^{\prime} \backslash\left(x \cup r^{\prime}\right) A\right)$
$=\left(\left(\pi 0(r u r ")^{-1}\right)+\left(\left(\left(r u r^{\prime \prime}\right) A\right) \backslash D\right)\right.$
$\cup\left(\pi^{\prime} \circ\left(r^{\prime} \cup r^{\prime \prime}\right)^{-1}\right)+\left(\left(\left(r^{\prime} \cup r^{\prime \prime}\right) A^{\prime}\right) \backslash D\right)$
$=P_{1}$;
$E_{0}=E u E^{\prime} u\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a \varepsilon A \pi A^{\prime}\right\}$
$=E \cup E^{\prime} \cup\left\{\left\langle\pi\left(r^{\prime \prime}-1 a\right), \pi^{\prime}\left(r^{\prime \prime \prime} a\right)\right\rangle,\left\langle\pi^{\prime}\left(r^{\prime \prime \prime}-1 a\right), \pi\left(r^{\prime \prime}-1 a\right)\right\rangle \mid a \varepsilon r^{\prime \prime}\left(A \cap A^{\prime}\right)\right\}$
$=E \cup E^{\prime} \cup\left\{\left\langle\pi\left(\left(r \cup r^{\prime \prime}\right)^{-1} a\right), \pi^{\prime}\left(\left(r^{\prime} \cup r^{\prime \prime}\right)^{-1} a\right)\right\rangle\right.$ 。 $\left.\left\langle\pi^{\prime}\left(\left(r^{\prime} \cup r^{\prime \prime}\right)^{-1} a\right), \pi\left(\left(r \cup r^{\prime \prime}\right)^{-1} a\right)\right\rangle \mid a \varepsilon r^{\prime \prime}\left(A \cap A^{\prime}\right)\right\}$
$=E_{1}$.
[l|]: (ele') $e^{\prime \prime}=\left(\langle V, \gamma, A, \pi, E\rangle \mid\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle\right) \mid\left\langle V^{\prime \prime}, \gamma^{\prime \prime}, A^{\prime \prime}, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle$
$=\left\langle V u V^{\prime}, \gamma u \gamma^{\prime}, A \theta A^{\prime}, \pi \pi^{\prime}, E E^{\prime}\right\rangle \mid\left\langle V^{\prime \prime}, \gamma^{\prime \prime}, A^{\prime \prime}, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle$
$=\left\langle\left(V \cup V^{\prime}\right) \cup V^{\prime \prime},\left(\gamma \cup \gamma^{\prime}\right) \cup \gamma^{\prime \prime},\left(A \oplus A^{\prime}\right) \theta A^{\prime \prime}, \pi \pi^{\prime}-\pi^{\prime \prime}, E E^{\prime}-E^{\prime \prime}\right\rangle$
$=\left\langle V_{u}\left(V^{\prime} \cup V^{\prime \prime}\right), \gamma \cup\left(\gamma^{\prime} \cup \gamma^{\prime \prime}\right), A \Theta\left(A^{\prime} \oplus A^{\prime \prime}\right), \pi-\pi^{\prime} \pi^{\prime \prime}, E-E^{\prime} E^{\prime \prime}\right\rangle$
$=\langle V, \gamma, A, \pi, E\rangle \mid\left\langle V^{\prime} \cup V^{\prime \prime}, \gamma^{\prime} \cup \gamma^{\prime \prime}, A^{\prime} \oplus A^{\prime \prime}, \pi^{\prime} \pi^{\prime \prime}, E^{\prime} E^{\prime \prime}\right\rangle$
$=\langle V, \gamma, A, \pi, E\rangle \mid\left(\left\langle V^{\prime}, \gamma^{\prime}, A^{\prime}, \pi^{\prime}, E^{\prime}\right\rangle \mid\left\langle V^{\prime \prime}, \gamma^{\prime \prime}, A^{\prime \prime}, \pi^{\prime \prime}, E^{\prime \prime}\right\rangle\right)$
$=e \mid\left(e^{\prime} \mid e^{\prime \prime}\right)$

where:

```
AA' = A\oplusA';
A}\mp@subsup{A}{}{\prime}\mp@subsup{A}{}{\prime\prime}=\mp@subsup{A}{}{\prime}\oplus\mp@subsup{A}{}{\prime\prime}
\pi}\mp@subsup{\pi}{}{\prime}=\pi\downarrow(A\\mp@subsup{A}{}{\prime}) v \mp@subsup{\pi}{}{\prime}\downarrow(\mp@subsup{A}{}{\prime}\A)
\mp@subsup{\pi}{}{\prime}}\mp@subsup{\pi}{}{\prime\prime}=\mp@subsup{\pi}{}{\prime}+(\mp@subsup{A}{}{\prime}\\mp@subsup{A}{}{\prime\prime})\cup\mp@subsup{\pi}{}{\prime\prime}\downarrow(\mp@subsup{A}{}{\prime\prime}\\mp@subsup{A}{}{\prime})
\pi}\mp@subsup{\pi}{}{\prime}-\mp@subsup{\pi}{}{\prime\prime}=\pi\mp@subsup{\pi}{}{\prime}\downarrow(A\mp@subsup{A}{}{\prime}\\mp@subsup{A}{}{\prime\prime}) \cup \mp@subsup{\pi}{}{\prime\prime}+(\mp@subsup{A}{}{\prime\prime}\A\mp@subsup{A}{}{\prime}
=(\pi\downarrow(A\\mp@subsup{A}{}{\prime})\cup\mp@subsup{\pi}{}{\prime}\downarrow(\mp@subsup{A}{}{\prime}\A))\downarrow(A\oplus\mp@subsup{A}{}{\prime}\\mp@subsup{A}{}{\prime\prime})}\cup\mp@subsup{\pi}{}{\prime\prime}\downarrow(\mp@subsup{A}{}{\prime\prime}\A\Theta\mp@subsup{A}{}{\prime}
=\pi\downarrow(A\A'\A'\prime) u \mp@subsup{\pi}{}{\prime}\downarrow(\mp@subsup{A}{}{\prime}\A\\mp@subsup{A}{}{\prime\prime})}\cup\mp@subsup{\pi}{}{\prime\prime}\downarrow(\mp@subsup{A}{}{\prime\prime}\A\oplus\mp@subsup{A}{}{\prime}
```



```
=\pi\downarrow(A\A'A}\mp@subsup{A}{}{\prime\prime})\cup\mp@subsup{\pi}{}{\prime}\mp@subsup{\pi}{}{\prime\prime}\downarrow(\mp@subsup{A}{}{\prime}\mp@subsup{A}{}{\prime\prime}\A
= \pi-\pi'\pi'\prime;
```

$E E^{\prime}=E u E^{\prime} \cup\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a \varepsilon A \pi A^{\prime}\right\} ;$
$E^{\prime} E^{\prime \prime}=E^{\prime} \cup E^{\prime \prime} \cup\left\{\left\langle\pi^{\prime} a, \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime \prime} a, \pi^{\prime} a\right\rangle \mid a \varepsilon A^{\prime} n^{\prime \prime}\right\} ;$
$E E^{\prime}-E^{\prime \prime}=E E^{\prime} \cup E^{\prime \prime} \cup\left\{\left\langle\pi \pi^{\prime} a, \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime \prime} a, \pi \pi^{\prime} a\right\rangle \mid a \varepsilon A A^{\prime} n A^{\prime \prime}\right\}$
$=E^{\prime} \cup E^{\prime} \cup E^{\prime \prime} \cup\left\{\left\langle\pi a, \pi^{\prime} a\right\rangle,\left\langle\pi^{\prime} a, \pi a\right\rangle \mid a \varepsilon A \cap A^{\prime}\right\}$
y $\left\{\left\langle\pi a, \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime \prime} a, \pi a\right\rangle \mid a \varepsilon A \cap A^{\prime \prime}\right\} \cup\left\{\left\langle\pi^{\prime} a, \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime \prime} a, \pi^{\prime} a\right\rangle \mid a \varepsilon A^{\prime} n A^{\prime \prime}\right\}$
as $A n A^{\prime} \boldsymbol{n A}^{\prime \prime}=0$
$=E u E^{\prime} E^{\prime \prime} u\left\{\left\langle\pi a, \pi \pi^{\prime \prime} a\right\rangle,\left\langle\pi^{\prime} \pi^{\prime \prime} a, \pi a\right\rangle \mid a \& A \cap A^{\prime} A^{\prime \prime}\right\}$
$=E-E^{\prime} E^{\prime \prime}$
[

2. Hardware Networks for VLSI

2.1 Introduction

This chapter presents case studies of several classes of networks and their relationships. Each class is meant to represent an aspect of VLSI (Very Large Scale Integration) circait design. In general we will follow a top-down approach, starting with very abstract networks (describing behaviours) and descending to very concrete ones (describing geometric patterns). However, just to keep our aim in mind, the first part of the chapter is dedicated to the lowest and most concrete level: VLSI layouts.

We shall not and cannot go so far as to show a complete set of algorithmic translations from behavioural descriptions to layouts; this is a very complex problem with a large number of posible options yet to explore. A translation process of this kind inevitably requires a considerable amount of heuristics which could only be tested by large-scale experiments. However we shall show how to break the problem down into finding a set of translations between intermediate levels of description. These levels are chosen to be self-justifying, in the sense that they all occur naturally in VLSI design and could be independently used as a basis for design tools; indeed some of them are already used in this way. Moreover we shall show the intermediate translations which are already known, sketch some which are conceivable and discuss some new ones. All the translations are modelled on the algebraic concept of homomorphism; they preserve the structure of descriptions and are meant to be mainly algorithmic, with few well localised heuristics.

Here is a picture of the general plan, which will become clearer while reading this chapter: blobs are levels of description and arrows are translations:

Figare 2.1 Description levels and translations
Briefly, CTA (Clocked Transition Algebra) is a behaviorral description level, CSA (Connector Switch Attenuator) are switch-level diagrams, then there are stick diagrams, grids (a metric version of stick diagrams) and finally layouts.

2.2 Layouts

VLSI technology implements a compatational model which radically diverges both from theoretical constracts such as sequential machines and their langages, and from practical realities like logic-gate hardware and its methodologies. It is probably no more attractive to know what kinds of transistors are available in some technology than it is to learn the instruction set of some particular machine, but the two kinds of primitives are fundamentaly different, and their difference is bound to be reflected in any high level tool or formalism devised to deal with them.

It is therefore necessary to investigate some aspects of VLSI technology, because they effectively create a new computational paradigm [Kung 80, Chazelle 81]. Fortanately, a rather clean interface can be drawn between the design and fabrication activities, thanks largely to the work of Carver Mead and Lynn Conway [Mead 80]. In the case of digital systems this interface can on the one hand permit the designer to ignore most of the fabrication parameters, and on the other hand permits the fabrication process to ignore the meaning of the systems being built. An effort is currently being made on both sides to adapt the design and fabrication activities to this end.

Hence we take the viev that the resalt of any VLSI design activity is a layout, which is our interface to the physical world of VLSI circuits. A layout is a set of geometric figares (generally rectangles) describing the geometrical structure of the devices to be fabricated. The rectangles are distribated over several planes, to indicate the different materials and phases of the fabrication processes. The position, size and overlapping of rectangles
determines the electrical characteristics of the devices being fabricated, which are generally digital switches, resistors and conductors. In the most desirable situation, the fabrication process should act as a black box receiving layouts (pare geometric information, free from fabrication details like electrical parameters) and producing working chips at the other end. Here "working" means coryesponding to the layout specification, which is parely syntactical and does not involve any knowledge of the intended behaviour of the devices.

Layouts specify the physical dimensions of wires, transistors, contacts etc. These specifications mast obey some rales, which fall into two general classes: minimal size of devices and minimal separation between devices. Sizes and distances are expressed in an abstract unit called λ, which can be scaled up or (preferably) down according to the particular fabrication process. Good values for λ in 1981 are around 2-3 microns; by $1990 \quad \lambda=0.25$ microns (corresponding to 10^{9} devices per silicon wafer) might be widespread. At that point nMOS technologies encounter foundamental physical 1imits.

Geometrical design rales generally say that wires and transistor mast be at least 2λ wide, and mast be separated by at least 2λ. Similar constraints are imposed on contacts etc. The most standard design rules in university enviroments are the ones described in [Mead 80]: a recent proposal for making them both more regular and technology independent is discassed in [Sequin 81]. Several example layouts are given in chapter 3.

2.3 Clocked Networks

A clocked system is one where events only happen at discrete time instants. The flow of time is governed by a global clock and events are only observed during clock activity. Clocked systems attempt to make the clock appear instantaneous, so that events are fully determined at the clock instant. In practice the clock is active for a finite and positive interval of time, and during this interval events can very well be unstable.

Constraints mast then be imposed on the clocking scheme and on the structure of the systems so that events are stable during the active-clock period. First of all, there should be no asynchronous loop; if this condition is met, then it is possible to slow down the clock rate until all the events have had time to stabilise. Secondly, the system should be in isolation: there is no way to gaarantee the correct operation of a rigidly clocked system in the presence of asynchronous input signals.

In spite of these problems, clocked systems are simple both to model and to reason about because of the discrete timing assumption. They are also simpler to implement, and most of the hardmare systems today are clocked (bat see [Seitz 80, Barton 81] for argaments in favour of self-timed systems). Our first example of a net algebra will allow us the expression of the structure and the behaviour of clocked systems; it is called Clocked Transition Algebra (CTA for short).

2.3.1 Clocked Transition Algebra (CTA) Expressions

A CTA Expression is a net expression over a particular set of literals. These are called clocked transition literals. As a simple example, the clocked transition:

$$
a_{\text {in }} \rightarrow b_{\text {out }}
$$

means that the input from port ${ }^{\text {in }}$ is transmitted to port bout after one clock period. The sort of this expression is:

$$
\left\{\mathbf{a}_{\mathrm{in}}: \mathrm{T}, \mathrm{~b}_{\text {out }}: \mathrm{T}\right\}
$$

for any type T. Here we take the brute force approach of considering transitions as literals. Alternatively we might define an algebra of transitions (expressions describing input values) and then combine this algebra with the surrounding net algebra to obtain a bigger derived algebra [Burstall 77].

Successive attempts'at an exact interpretation of " \rightarrow " will be discussed, culminating with a formal semantics. For a first attempt, every arrow " \rightarrow " is taken to indicate a restoring stage where the inpat from a is stored at time to make it available on b at time $t+1$. Every restoring stage is clocked. The situation can be displayed as follows:

Figare 2.2 A restoring stage
When the clock is active, the input from a is stored inside the box, and the stored value is immediately available on b. This implies that while the clock is active, a and bare physically connected. Now consider the following loop:

Figure 2.3 An asynchronons loop

Here we have a problem: when the clock is active, ~an is available on a out. If the signal can go around the loop before the clock is deactivated, an attempt will be made to store $\sim_{i}{ }_{i n}$ (instead of $\sim a_{i n}$) in the box. This situation is called an unstable asynchronous loop (stable asynchronous loops are also possible). The actual value stored in the restoring stage vill depend on the number of loops the signal manages to perform before the clock is shat down, or even worse in concrete situations the value stored will be somewhere between $a_{i n}$ and $\sim a_{i n}$.

To repair this problem we might try to make our active-clock interval very short, but then it is difficult to reliably store the Valne of "a in" in such a short time. The situation is so uncomfortable that we switch to a different clocking scheme: instead of a single-phase clock we adopt a two-phase non-overlapping clock, ϕ_{1} and ϕ_{2} :

Figure 2.4 Tro-phase non-overlapping clock scheme As shown in figare above, the first ϕ_{1} pulse is also carried by a special reset line which is used to obtain well defined starting conditions.

For a second attempt, our loop can be reinterpreted as:

Figure 2.5 A different loop
During phase $\phi_{1}{ }^{\sim}{ }_{\text {in }}$ is stored in the first box, and during ϕ_{2} the content of the first box is stored in the second one. Because the two phases are not overlapping, input and output are never in contact and the asynchronons loop is broken.

This scheme is not get entirely satisfactory. For efficiency we may want to insert some useful circuitry between the two above restoring stages. In fact all is well so long as we correctly alternate the two clock phases.

Fignre 2.6 Final restoring stage
Our final interpretation for transitions is then that $" \rightarrow{ }^{\prime \prime}$ is thonght of as a single restoring block clocked by a single phase. To avoid ambiguities, the arrows are sometimes subscripted by the particalar clock phase: man_{1} " for ϕ_{1} and $" \rightarrow_{2}$ " for ϕ_{2}. It is possible to check syntactically that an assignment of phases is correct; phases must alternate along every path in a net, and loops must have an even number of arrows.

Very frequently we need to share an input between several transitions and an implicit forking of the inpats is therefore required (conversely, we insist that any mergeing of the outputs is explicit). A special "," operator is used to indicate sharing, and we write:
$a_{\text {in }} \rightarrow_{1} b_{\text {out }}{ }^{a_{\text {in }}} \vec{m}_{1} c_{\text {out }}$
meaning that the inpot a in is shared by two transitions.

We can then consider clusters of transitions separated by "," as literals in our Clocked Transition Algebra, and use net operations to combine them. Furthermore we shall only allow transitions of the same clock phase to be clustered together. We have 1-ciosters which input daring phase 1 and ontput stably daring phase 2 , and 2-clusters which input during phase 2 and outpat stably during phase 1. For 2-clusters we also have to specify what their outpat will be during the first $\$_{1}$ clock palse (i.e. on power-ap or reset) because
they start producing an output before receiving any input.

Our final notation is as follows. Clusters of phase-1 transitions will be denoted by:
$\left\langle 1: t_{1} \rightarrow b_{1}, \ldots, t_{n} \rightarrow b_{n}\right\rangle$

Clusters of phase-2 transitions will be written:
$\left\langle 2: t_{1} \rightarrow b_{1} \nabla_{1}, \cdots, t_{n} \rightarrow b_{n} \nabla_{n}\right\rangle$
where $v_{1} \ldots v_{n}$ are non-empty sets of admissible power-ap values; in the boolean case they can each be \{tt\}, \{ff\} or \{tt,ff\}. The power-up values may be omitted, and they are then assumed to be "don't care", i.e. \{tt,ff\} (nondeterministically true or false).

In examples we shall only use boolean transitions. The left hand side of a boolean transition can consist of boolean constants (tt and $f f$), boolean operations ($\sim, ~ \Lambda, ~ V$) and boolean-valued conditionals ("a $a b ; c$ ", i.e. "if a then b else c ").

2.3.2 Main Example

We can now give a specification of the black boxes described in the previous chapter, i.e. the positive and negative bit comparators and accumalators. Positive boxes are clocked by ϕ_{1} and negative ones by $\$_{2}$:

True $=$
$\langle 2: t t \rightarrow t r u e\{t t\}$

False $=$
$\langle 1: f f \rightarrow f a 1 s e\rangle$

PosBitComp $=$

$$
\begin{aligned}
& \left\langle 1: \mathcal{P}_{\text {in }} \rightarrow p_{\text {out }},\right. \\
& \sim s_{\text {in }} \rightarrow s_{\text {out }}, \\
& \left.\sim\left(d_{i n} \wedge\left(p_{\text {in }}=s_{i n}\right)\right) \rightarrow d_{o r t}\right)
\end{aligned}
$$

NegBitComp $=$

$$
\begin{aligned}
\langle 2: & \sim_{p_{i n}} \rightarrow p_{\text {out }}, \\
& \sim s_{\text {in }} \rightarrow s_{\text {out }}, \\
& \left.\sim d_{i n} \wedge\left(p_{\text {in }}=s_{i n}\right) \rightarrow d_{\text {out }}\right\rangle
\end{aligned}
$$

PosAccum $=$

$$
\begin{aligned}
& \left\langle 1: \sim \lambda_{\text {in }} \rightarrow \lambda_{\text {out }},\right. \\
& \sim_{\text {in }} \rightarrow \mathrm{I}_{\text {out }}, \\
& \sim\left(\lambda_{i n} \Rightarrow t_{i n} ; r_{i n}\right) \rightarrow r_{\text {ort }} \text {. } \\
& \left.\sim\left(\lambda_{i n} \Rightarrow t t ;\left(t_{i n} \wedge\left(x_{i n} \vee d_{i n}\right)\right)\right) \rightarrow t_{\text {ont }}\right\rangle \\
& {\left[t_{\text {out }}-t_{\text {in }}, t_{\text {in }}{ }^{--t_{\text {out }}}\right. \text {] }} \\
& \left\langle 2: \sim t_{\text {in }} \rightarrow t_{\text {out }}\right\rangle
\end{aligned}
$$

NegAccum $=$

$$
\begin{aligned}
& \left\langle 2: \sim \lambda_{\text {in }} \rightarrow \lambda_{\text {out }},\right. \\
& \sim x_{\text {in }} \rightarrow x_{\text {out }} \text {, } \\
& \sim_{\lambda_{\text {in }}} \Rightarrow \sim t_{\text {in }} ; \sim r_{\text {in }} \rightarrow r_{\text {out }}, \\
& \left.\sim \lambda_{i n} \Rightarrow t t ;\left(t_{i n} \wedge\left(\sim x_{\text {in }} \vee \sim d_{i n}\right)\right) \rightarrow t_{\text {out }}\right\rangle \\
& {\left[t_{\text {out }}{ }^{-t_{\text {in }}}, t_{\text {in }}{ }^{--t_{\text {out }}}\right. \text {] }} \\
& \left\langle 1: \sim t_{\text {in }} \rightarrow t_{\text {out }}\right\rangle
\end{aligned}
$$

The same program that was shown in the previous chapter can be used to put these pieces together. Note that PosAccum and NegAccum are formed by the composition of two transition of opposite phase feeding each other. This configuration produces the bit of storage needed to remember the result of previous matchings.

2.3.3 Formal semantics of CTA

In this section we give a semantics to CTA expressions via a translation to the Synchronous Calculus of Commanicating Systems (SCCS) [Milner 81]. We do not offer an introdaction to SCCS but Chapter 5 can provide enough background, especially because, as noted in Section 5.8, SCCS can be considered as the class of 1-synchronous real time agents.

First we introduce some notation in SCCS which allows us to simalate value passing simply by indexing the port names; " $\sum_{x} p[x]$ ", for x \{ \{tt,ff\} is an abbreviation for "p[tt/x] + p[ff/x]"; "a?x:p" is an abbreviation for " $\Sigma_{x} a_{x}: p$ ", (representing the act of inpatting the boolean value x from port a); "blv:p" is an abbreviation for " $b_{\nabla}: p$ " (representing the act of outputting the boolean value v from port b). Several input and output ports can be mixed together in the same prefix, moreover the name of the indexes may be the same as the ports they index. For example:
$a 7 a, b 7 b, c!a \vee b: p=\Sigma_{a, b} a_{a} b_{b} c_{a \vee b}: p$
inpats two values on the ports a, b and ontpats their boolean or (without any delay) on port c.

In the definition of ciosters there is an implicit forking of input signals. This can be modelled by the following combinator:

$$
\text { fork }(a, n) \Leftarrow a ? x,(\bar{a} \mid x)^{n}: 1: \text { fork }(a, n)
$$

Where $a^{n} \triangleq a, \ldots, a(n$ times).

The semantics is given by a translation fanction [ID from CTA to SCCS. We indicate by II...I[$\left.a_{i}\right]$ a set of transitions "..." where the set $\left\{a_{i}\right\}$ contains all the inpot ports used in the transitions, and
 "...". We omit the obvious definition of the translation for boolean expressions.

$$
\begin{aligned}
& \mathbb{U}\left\langle 1: t_{1} \rightarrow b_{1}, \ldots, t_{n} \rightarrow b_{n}\right\rangle \mathbb{D}\left[a_{1} \ldots a_{m}\right]= \\
& \text { (fork }\left(a_{1}, n\right) X \ldots X \operatorname{fork}\left(a_{m}, n\right) X \\
& \left.\mu P . \llbracket t_{1} \rightarrow b_{1} \rrbracket\left[a_{i}^{\prime / a_{i}}\right] X \ldots X \mathbb{t} t_{n} \rightarrow b_{n} \rrbracket\left[a_{i} / a_{i}\right] X 1: 1: P\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } a_{1}^{\prime} \ldots a_{m}^{\prime} \text { are not in the sort of the transitions } \\
& \text { I }\left\langle 2: t_{1} \rightarrow b_{1} \nabla_{1}, \ldots, t_{n} \rightarrow b_{n} \nabla_{n}\right\rangle \mathbb{I}\left[a_{1} \ldots a_{m}\right]= \\
& \Sigma_{b_{1}} \ldots b_{n} e v_{1} X \ldots X v_{n} b_{1}!b_{1} \ldots, b_{n} \mid b_{n}: \\
& \text { I<1: } \left.t_{1} \rightarrow b_{1}, \ldots, t_{n} \rightarrow b_{n}\right\rangle \cap\left[a_{1} \ldots a_{m}\right] \\
& \| t \rightarrow b \mathbb{I}\left[a_{1} \ldots a_{n}\right]= \\
& a_{1} ? x_{1}, \ldots, a_{n} ? x_{n}: b!\mathbb{L} \mathbb{I}\left[x_{1} / a_{1}, \ldots, x_{n} / a_{n}\right]: 1 \\
& \mathbb{I}_{p} \backslash \mathbf{a} \boldsymbol{I}=\mathbb{I}_{p} \rrbracket \backslash \mathbf{a}
\end{aligned}
$$

$$
\mathbb{U p}_{\mathrm{p}}\{\mathrm{r}\} \mathbb{\rrbracket}=\mathbb{L} \mathbb{p}\{\mathbf{r}\}
$$

```
\(\llbracket p\left[a_{i}-b_{i}\right] q \rrbracket\)
```



```
    where \(c_{i}\) are not in the sort of \(p\) and \(q\)
```

as an example，let us compate the semantics of 〈1：amb〉，where we use＂$=$＂for SCCS＇s＂strong congruence＂（the same derivations are valid for the＂smooth congraence＂of Chapter 5）．
$\mathbb{K}\langle 1: a \sim b\rangle$ II［a］

$=\mu P \cdot a ? x: b l x: P$

Hence 〈1：amb〉 repeatedly accepts an input x during phase 1 and produces the same outpat x during phase 2．Note that according to this semantics no outpat is generated from b daring phase 1 and no input is accepted by a during phase 2．A more detailed semantics might allow b to output nondeterministically $t t$ or ffaring phase 1 and a to input an unused value daring phase 2；it seems sound to regard these two semantics as essentially equivalent．

2．3．4 Semantics of the main example
 We can now compate the semantics of the pattern matcher：

True $=$
μ P．true！tt：1：P

False =
μ P. 1: false!ff: P

PosBitComp $=$

$\mu P: p_{i n}{ }^{? P_{i n}}{ }^{\prime} s_{i n}{ }^{? s}{ }_{i n}, d_{i n}{ }^{? d_{i n}}$:

$$
p_{\text {out }}!\sim p_{\text {in }}, s_{\text {out }}!\sim s_{i n}, d_{\text {out }}!\sim\left(d_{i n} \wedge\left(p_{i n}=s_{i n}\right)\right): P
$$

NegBitComp' $=$

$$
\Sigma_{p_{\text {out }}, s_{\text {out }}, d_{\text {out }}} \text { NegBitComp }\left(p_{\text {out }}, s_{\text {out }}, d_{\text {out }}\right)
$$

NegBitComp $\left(p_{\text {out } 0,} s_{\text {out } 0}, d_{\text {out } 0}\right)=$

$$
\begin{aligned}
& =p_{\text {out }}!p_{\text {out } 0}, s_{\text {out }}!s_{\text {out } 0} d_{\text {out }}!d_{\text {out } 0} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{NegBitComp}\left(\sim p_{i n}, \sim s_{i n}, \sim d_{i n} \wedge\left(p_{i n}=s_{i n}\right)\right)
\end{aligned}
$$

PosAccum' =
$\Sigma_{t} \operatorname{PosAccum}(t)$

$$
\begin{aligned}
& \text { PosAccam }\left(t_{o \square t 0}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{\text {out }}!\sim \lambda_{\text {in }}, x_{\text {out }}!\sim x_{\text {in }}, r_{\text {ont }}!\sim\left(\lambda_{\text {in }} \Rightarrow t_{\text {in }} ; r_{i n}\right) \text {, } \\
& \left.t_{\text {ont }} I \sim\left(\lambda_{i n} \Rightarrow t t ;\left(t_{i n} \wedge\left(x_{i n} \vee d_{i n}\right)\right)\right): P\right) \\
& \left\{\bar{u} / t_{\text {out }}, \nabla / t_{i n}\right\} X \\
& \left(t_{\text {out }}\left(t_{\text {out } 0}\right): \mu Q . t_{i n}{ }^{?} t_{i n}: t_{\text {out }}!\sim t_{i n}: Q\right) \\
& \left.\left\{u / t_{i n}, \vec{v} / t_{\text {out }}\right\}\right) \backslash u \mid v
\end{aligned}
$$

NegAccum' $=$

$$
\left.\Sigma_{\lambda_{\text {out }}, x_{\text {out }}, r_{\text {out }}, t_{\text {out }}} \text { NegAccum(} \lambda_{\text {out }}, x_{\text {out }}, r_{\text {out }}, t_{\text {out }}\right)
$$

NegAccum $\left(\lambda_{\text {out } 0}, x_{\text {out } 0}, I_{\text {out } 0}, t_{\text {out } 0}\right)=$

$$
\left\{\bar{u} / t_{\text {out }} \cdot \nabla / t_{\text {in }}\right\} X
$$

(μ Q. $t_{\text {in }}$? $\left.t_{\text {in }}: t_{\text {ont }}!\sim t_{\text {in }}: Q\right)$

$$
\left.\left(u / t_{\text {in }}, \bar{v} / t_{\text {out }}\right\}\right) \backslash u \mid \bar{v}
$$

Simplifying the expressions for PosAccum and NegAccum according to the SCCS laws and recursion theorem we get:

$$
\begin{aligned}
& \text { PosAccum }(t)= \\
& \lambda_{i n} ? \lambda_{i n}, x_{i n} ? I_{i n}, r_{i n} ? r_{i n}, d_{i n} ? d_{i n}: \\
& \lambda_{\text {ont }}!\sim \lambda_{i n}, x_{o n t}!\sim_{i n}, r_{o n t}!\sim\left(\lambda_{i n} \Rightarrow t ; r_{i n}\right): \\
& \\
& P_{\text {osAccum }}\left(\lambda_{i n} \Rightarrow t t ;\left(t \wedge\left(x_{i n} \vee d_{i n}\right)\right)\right)
\end{aligned}
$$

NegAccum $\left(\lambda_{\text {out } 0}, x_{\text {out } 0}, r_{\text {out } 0}, t\right)=$

$$
\begin{aligned}
& \lambda_{\text {out }}!\lambda_{\text {out } 0}, x_{\text {out }}!x_{\text {ont } 0}, r_{\text {out }}!r_{\text {out } 0}: \\
& \lambda_{\text {in }} ? \lambda_{\text {in }}, x_{\text {in }} ? x_{\text {in }}, r_{i n} ? r_{\text {in }}, d_{\text {in }} ? d_{\text {in }}: \\
& \quad \text { NegAccum }\left(\sim \lambda_{i n}, \sim x_{i n}, \sim \lambda_{i n} \Rightarrow t ; \sim r_{i n}, \sim \lambda_{i n} \Rightarrow t t ; \sim t \wedge\left(\sim x_{i n} \vee \sim d_{i n}\right)\right.
\end{aligned}
$$

At this point we might try to proceed to compose the various subcomponents in order to get the semantics of the whole circuit. This is in principle no different from the manipolations with have done so far, but the practical difficulties are overwhelming. A

$$
\begin{aligned}
& \mu \text { P. } \lambda_{i n}{ }^{? \lambda_{i n}}{ }^{x_{i n}}{ }^{? x_{i n}}, r_{i n} ? r_{i n}, d_{i n} ? d_{i n}, t_{i n} ? t_{i n}: \\
& \lambda_{\text {out }}\left|\sim \lambda_{\text {in }}, x_{\text {out }}\right| \sim x_{\text {in }}, r_{\text {ont }} \mid \sim \lambda_{\text {in }} \Rightarrow \sim t_{i n} ; \sim r_{\text {in }}, \\
& \left.t_{\text {out }} \mid \sim \lambda_{i n} \Rightarrow t t ; t_{i n} \wedge\left(\sim z_{i n} \vee \sim d_{i n}\right): P\right)
\end{aligned}
$$

$$
\text { ah'ah! }\}
$$

proof of correctness world require induction on the size $n X_{m}$ of the pattern matcher. This seems to be very lengthy to do by hand, and without machine assistance the confidence in the accuracy of the result would be very low. We try to show the practical difficulties which arise, by composing a little 2×2 pattern matcher. We start building up a positive colum:

```
let \(\left\{P_{\text {ren }}\right\}=\left\{p_{\text {in }}^{1} / p_{\text {in }}, p_{\text {out }}^{1} / p_{\text {out }}, s_{\text {in }}^{1} / s_{\text {in }}, s_{o u t}^{1} / s_{\text {out }}, \bar{d} / d_{\text {out }}\right\}\)
and \(\left\{N_{r e n}\right\}=\left\{p_{i n}^{2} / p_{i n}, p_{o u t}^{2} / p_{o u t}, s_{i n}^{2} / s_{i n}, s_{o u t}^{2} / s_{o u t}, d / d_{i n}\right\}\)
```

PN $=($ PosBitComp $\{$ Pren $\} \times$ NegBitComp' (Nren $\}) \backslash d$
$=\Sigma_{p_{\text {out }}, s_{\text {out }}^{2}, d_{\text {out }}}^{2} \operatorname{PN}\left(p_{\text {out }}^{2}, s_{\text {out }}^{2}, d_{\text {out }}\right)$
$\operatorname{PN}\left(p_{\text {out } 0}^{2}, s_{\text {out } 0}^{2}, d_{\text {out } 0}\right)=$

$=p_{i n}^{1} ? p_{\text {in }}^{1}, s_{i n}^{1} ? s_{i n}^{1}, d_{i n} ? d_{i n}, p_{o u t}^{2}!p_{o u t 0}^{2}, s_{o u t}^{2} l s_{o u t 0}^{2}, d_{o u t}!d_{o u t 0}:$ $p_{i n}^{2} ? p_{i n}^{2}, s_{i n}^{2} ? s_{i n}^{2}, p_{\text {out }}^{1} l \sim p_{i n}^{1}, s_{\text {out }}^{1} l \sim s_{i n}^{1}:$ $\operatorname{PN}\left(\sim p_{i n}^{2} \sim \sim s_{i n}^{2}, d_{i n} \wedge\left(p_{i n}^{1}=s_{i n}^{1}\right) \wedge\left(p_{i n}^{2}=s_{i n}^{2}\right)\right)$

PCo1 $=$
(True\{t/true\} X

$$
\begin{aligned}
& \operatorname{PN}\left\{t / d_{i n}, \bar{d} / d_{o u t}\right\} X \\
& \text { PosAccum } \left.\left(d / d_{i n}\right\}\right) \backslash t \backslash d \\
& =\Sigma_{p_{\text {out }}}^{2}, s_{\text {out }}^{2}, d_{\text {out }} \operatorname{PCol}\left(p_{\text {out }}^{2}, s_{\text {out }}^{2}, d_{\text {out }}\right) \\
& P \operatorname{Col}\left(p_{\text {out } 0}^{2}, s_{\text {out } 0}^{2}, d_{\text {out } 0}, t\right)= \\
& \text { (True\{可/trie\} } X \\
& \operatorname{PN}\left(p_{\text {out } 0}^{2}, s_{\text {out } 0}^{2}, d_{\text {out } 0}\right)\left\{t / d_{\text {in }}, \bar{d} / d_{\text {out }}\right\} X \\
& \text { PosAccum (} t \text {) (d/din }\}) \backslash t \backslash d
\end{aligned}
$$

$$
\begin{aligned}
& =p_{i n}^{1} ? p_{i n}^{1}, s_{i n}^{1} ? s_{i n}^{1}, p_{\text {out }}^{2}!p_{\text {ont } 0}^{2}, s_{\text {out }}^{2}!s_{\text {out } 0}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& p_{i n}^{2} ? p_{i n}^{2}, s_{i n}^{2} ? s_{i n}^{2}, p_{o u t}^{1}!\sim p_{i n}^{1}, s_{o n t}^{1}!\sim s_{i n}^{1}, \\
& \lambda_{\text {out }}!\sim \lambda_{\text {in }}, x_{\text {out }}!\sim_{i n}, r_{\text {out }}!\lambda_{\text {in }} \Rightarrow \sim t ; \sim r_{i n}: \\
& P \operatorname{Co1}\left(\sim_{i n}^{2}, \sim s_{i n}^{2},\left(p_{i n}^{1}=s_{i n}^{1}\right) \wedge\left(p_{i n}^{2}=s_{i n}^{2}\right)\right. \text {, } \\
& \left.\lambda_{i n} \Rightarrow t t ; t \wedge\left(x_{i n} V d_{\text {out } 0}\right)\right)
\end{aligned}
$$

We now build a negative colum:

$$
\begin{aligned}
& \text { let }\left\{N_{\text {ren }}\right\}=\left\{p_{\text {in }}^{1} / p_{\text {in }}, p_{\text {out }}^{1} / p_{\text {out }}, s_{\text {in }}^{1} / s_{\text {in }}, s_{\text {out }}^{1} / s_{o n t}, \bar{d} / d_{o u t}\right\} \\
& \text { and }\left\{P_{r e n}\right\}=\left\{p_{i n}^{2} / p_{i n}, p_{o u t}^{2} / p_{o n t}, s_{i n}^{2} / s_{i n}, s_{o n t}^{2} / s_{o n t}, d / d_{i n}\right\} \\
& \text { NP }=\text { (NegBitComp\{Nren }\} \times \text { PosBitComp }\{\text { Pren }\} \backslash d \\
& =\Sigma_{p_{\text {out }}}^{1}, s_{\text {out }}^{1}, d_{\text {out }} N P\left(p_{\text {out }}^{1}, s_{\text {out }}^{1}, d_{\text {out }}\right) \\
& \mathrm{NP}\left(\mathrm{p}_{\text {out } 0}^{1} \mathrm{~s}_{\text {out } 0, \mathrm{~d}_{\text {out } 0}}^{1}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =p_{i n}^{2} ? p_{i n}^{2}, s_{i n}^{2} ? s_{i n}^{2}, p_{o u t}^{1}!p_{o n t 0}^{1}, s_{o n t}^{1}!s_{\text {ont } 0}^{1}: \\
& p_{i n}^{1} ? p_{i n}^{1}, s_{i n}^{1} ? s_{i n}^{1}, d_{i n} ? d_{i n} \text {. } \\
& p_{\text {out }}^{2}!\sim p_{i n}^{2}, s_{\text {out }}^{2}!\sim s_{i n}^{2}, d_{o u t}!\sim\left(d_{o u t 0} \wedge\left(p_{i n}^{2}=s_{i n}^{2}\right)\right): \\
& N P\left(\sim_{i n}^{1}, \sim s_{i n}^{1}, \sim d_{i n} \wedge\left(p_{i n}^{1}=s_{i n}^{1}\right)\right)
\end{aligned}
$$

NCol $=$

(False\{ $\mathbf{f} / \mathrm{false}\} \times$

$N P\left\{f / d_{\text {in }}, \bar{d} / d_{\text {ont }}\right\} X$
NegAccam\{d/din\})\f(d

$$
\begin{aligned}
& =\Sigma_{p_{\text {out }}^{1}, s_{\text {out }}^{1}, d_{\text {out }}, \lambda_{\text {out }}, x_{\text {out }}, r_{\text {out }}, t_{\text {out }}} \\
& \quad N_{\text {Col }}\left(p_{\text {out }}^{1}, s_{\text {out }}^{1}, d_{\text {out }}, \lambda_{\text {out }}, x_{\text {out }}, r_{\text {out }}, t_{\text {out }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (False\{f/false\} X } \\
& N P\left(p_{\text {out } 0}^{1}, s_{\text {out } 0}^{1}, d_{\text {out } 0}\right)\left(f / d_{\text {in }}, \bar{d} / d_{\text {out }}\right\} X
\end{aligned}
$$

$$
\begin{aligned}
& =p_{\text {in }}^{2} ? p_{\text {in }}^{2}, s_{\text {in }}^{2} ? s_{\text {in }}^{2}, p_{\text {out }}^{1}!p_{\text {out } 0}^{1}, s_{\text {out }}^{1}!s_{\text {out } 0}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& p_{i n}^{1} ? p_{i n}^{1}, s_{i n}^{1} ? s_{i n}^{1}, p_{o n t}^{2} 1 \sim \mathcal{P}_{i n}^{2}, s_{o u t}^{2} l \sim s_{i n}^{2}, \\
& \lambda_{i n}{ }^{? \lambda_{i n}}, x_{i n} ? x_{i n}, r_{i n}{ }^{? r_{i n}} \text { : } \\
& \mathrm{NCol}\left(\sim_{\mathrm{p}_{\mathrm{in}},}^{1} \sim \mathrm{~s}_{\mathrm{in}}^{1},\left(\mathrm{p}_{\mathrm{in}}^{1}=\mathrm{s}_{\mathrm{in}}^{1}\right)\right. \text {, } \\
& \sim \lambda_{i n}, \sim x_{i n}, \sim \lambda_{i n} \Rightarrow t ; \sim r_{i n}, \\
& \left.\sim \lambda_{i n} \Rightarrow t t ; \sim t \Lambda\left(\sim_{i n} \vee\left(d_{\text {out } 0} \Lambda\left(p_{i n}^{2}=s_{i n}^{2}\right)\right)\right)\right)
\end{aligned}
$$

Finally, we compose the two colums into a pattern matcher:

$$
\begin{aligned}
& \mathrm{PM}\left(\mathrm{p}_{\text {out } 0}^{2}, \mathrm{~s}_{\text {out } 0}^{2} \mathrm{~d}_{\text {out } 0, t^{P}}^{\mathrm{P}}\right. \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& p_{i n}^{1} ? p_{i n}^{1}, s_{i n}^{2} ? s_{i n}^{2}, \lambda_{i n} ? \lambda_{i n}, x_{i n} ? x_{i n}, \\
& \mathrm{~s}_{\text {out }}^{2}!\mathrm{s}_{\text {out } 0}^{2}, \mathrm{P}_{\text {out }}^{1}!\mathrm{p}_{\text {out } 0}^{1}, \lambda_{\text {out }} \mid \lambda_{\text {out } 0, ~} x_{\text {out }}!x_{\text {out } 0}: \\
& p_{i n}^{2} ? p_{i n}^{2} s_{i n}^{1} ? s_{i n}^{2}, r_{i n}^{1} ? r_{i n}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& P M\left(\sim p_{i n}^{2}, \sim s_{i n}^{2},\left(p_{i n}^{1}=s_{\text {out } 0}^{1}\right) \wedge\left(p_{\text {in }}^{2}=\sim s_{i n}^{2}\right)\right. \text {, } \\
& \lambda_{\text {in }} \Rightarrow t t ; t^{P} \Lambda\left(x_{\text {in }} \vee \mathrm{d}_{\text {out } 0}\right), p_{\text {in }}^{1}, \sim s_{\text {in }}^{1}, \\
& \left(\sim_{p_{i n}}^{1}=s_{i n}^{1}\right), \lambda_{i n}, x_{i n}, \lambda_{i n} \Rightarrow t^{N} ; \sim r_{i n}, \\
& \lambda_{i n} \Rightarrow t t ;-t^{N} \wedge\left(x_{i n} \vee\left(d_{\text {out } 0}^{N} \wedge\left(p_{\text {out } 0}^{2}=s_{i n}^{2}\right)\right)\right)
\end{aligned}
$$

2.4 Connector-Switch-Attenuator (CSA) Networks

Classical switching theory turns out to be inadequate for describing MOS circuits because, as we shall see later, the anderlying boolean logic model fails to account for MOS behaviour at the transistor level. Hence we turn to a more sophisticated model, known as the CSA (Connector-Switch-Attenuator) model [Hayes 81]. CSA gives a static informal semantics to MOS networks, and can be the basis for more formal and dynamic characterisations of MOS behaviour.

The problem with the semantics of integrated circuits is that an exact semantics, modeling what physically happens, sems to be bound to be intractable for large circaits (not only for proofs bat even for descriptions); an extreme example of such a semantics is the physics of semiconductor devices. On the other hand a tractable semantics sems to be bound to be inexact, becanse of the highly complex phenomens occurring in semiconductors which are often exploited by electronic circaits.

Even if it is possible to make simplifying assumptions on the behaviour of devices (and maybe require that these assumptions be met by the fabrication processes) some very basic characteristics of semiconductor devices are intrinsically complex, and critically influence the behaviour of the simplest components.

The two troublesome features, which confer great expressive power to these devices, are the bidirectionality of wires and varions forms of capacitive effects. Because of bidirectionality it is difficult to model components by inpat-outpat fanctions of some sort (one possibility is to split every wire into two monodirectional wires and use, for example, the semantic model of Chapter 4, but this sems to lead to intractable formal systems). A more serious
difficulty is the modeliing of capacitive effects, which in MOS confer the ability to store information. Many circuits critically use the relative sizes of capacitances and their decay times, so that it is difficult to abstract from these electrical parameters and it is not possible to nse boolean algebra to model them.

An attempt to give static semantics to MOS circuits is reported in [Hayes 81], where an elegant set of primitives is identified. A very interesting dynamic semantics for MOS circuits is due to Bryant [Bryant 81], deriving from a switch level simplation algorithm. The value domain which we are going to investigate in this section diverges slightly from [Hayes 81] and is a special case of the one proposed in [Bryant 81]. The original points in this section concern the fact that we have a langage for expressing CSA networks, and that we regard CSA networks and expressions as an intermediate step in the translation from behaviours to stick diagrams. Moreover, a formal static semantics is defined for CSA circuits, and at the end of the section we give an example of a translation from CTA expressions into CSA.

2.4.1 The Value Domain

Electronic circuits are based on the movement of electrons in conducting materials. Electrons move becanse of the electrostatic force between them, i.e. becanse of the presence of an electric field. The electrostatic force is conservative, and it is therefore possible to mesure the work done in moving an electron from one point to another, regardless of the path between the two points. The amount of work needed to move a charge between two points, divided by the value of the charge, is called the potential difference between the points. Only the difference is significant, and the potential valne can be set to zero at an arbitrary point.

In digital circuits, at an appropriate level of abstraction, only two values of the potential are relevant: the "zero" level, and another level called "one". The potential difference between zero and one corresponds to the potential difference of the power supply relative to ground. Normally in a digital circuit no potential valae can exist below zero or above one, and the intermediate values only exist for comparatively short times, during transitions from zero to one and vice versa.

Boolean operations can be implemented in hardware on this simple two-level domain, and the behaviour of circaits can be anderstood using boolean algebras plus some notion of time. It all works very well and these principles (plus some "tricks" here and there) are used in all the digital systems built out of discrete hardware, e.g. using TTL or CMOS gate-level chips [Melen 80].

Onfortunately, to fully exploit the possibilities of mos devices, this simple model is not sufficient. Physicists and electronic engineers, who are familiar with charge distribations and differential equations, work their way through VLSI technologies on the ground of fairly detailed and precise models. Other kinds of people (potential VLSI users) can choose between that and some rough analogies, like for example the water-pipe model [Mead 80]. Here we use CSA models, which seem to capture most of the characteristics of MOS devices at the proper level of abstraction. These models try to reproduce a situation similar to the use of boolean algebras in modelling gate-level hardware. Because we need to operate below the gate level, the model is more refined and is based on a value domain containing seven logical values.

The major step consists in realising that two voltage levels and two current levels (at least) should be quantified in mos circaits.

The voltage levels are T (for true, or 1) and F (for false, or 0). The current levels are strong (connected to a strong source of charges, like the power supply) and weak (weakened by some obstacle, like a resistor, or coming from a weak soarce of charges, like a capacitor). Combining them we get four values which can be physically present on a line: strong one (1), strong zero (0), weak one ($\tilde{1}$) and veak zero ($\tilde{0}$). Moreover T is used to denote 1 or $\tilde{1}$ and F to denote 0 or $\tilde{0}$, when we do not care to distingnish between them.

The distinction between weak and strong values is important becanse a weak value can coexist with a strong value of the opposite sign on the same line; this sitaation is well defined and the strong value overrides the weak one. The situation is not well defined when two strong values of opposite sign coexist; to model this situation we invent a new state, 0 , called undefined. Similarly the coexistence of the two opposite weak values gives rise to a weakly undefined situation \tilde{U} which can be overridden by a strong value. The undefined states do not actually exist physically, and they only reflect our inability to describe what exactly happens (or our discomfort about the fact that something undesirable happens). The correct interpretation of J is "we do not know whether it is 1 or 0 " rather than "it is both 1 and 0 " or "it is 0.5 "; similarly for च.

Finally, another state is needed to model the case of a point p which is not connected to any source of charges. Sach a point cannot be said to have value T or F, because T and F are two definite values of potential, while the potential of p is simply arbitrary. Moreover, if we connect p to a source of charges, it will immediately assume the potential of that source (assuming that p is small enough) whatever that is. A point like p is said to be
floating, and the symbol for this state is Z

These seven logical values can be arranged into a lattice ∇, to show how they override each other when they coexist; the higher values override the lower ones.

Figure 2.7 The partial order of CSA values

A basic operation on this lattice is the connection $\nabla^{\prime} O \nabla^{\prime \prime}$ of two logical values $\nabla^{\prime}, \nabla^{\prime \prime} \varepsilon V$, defined as their least apper bound in V.

The following laws hold for 0 :

Associativity: $\nabla \diamond\left(\nabla^{\prime} \diamond \nabla^{\prime \prime}\right)=\left(\nabla \diamond \nabla^{\prime}\right) \diamond \nabla^{\prime \prime}$
Commetativity: $\quad \nabla \diamond \nabla^{\prime}=\nabla^{\prime} \diamond \nabla$
Absorption: $\quad v \diamond \nabla=\nabla$
Zero: $\quad v \diamond Z=v$
One: $\quad \forall \circ \mathrm{U}=\mathrm{U}$

Apart from this basic connection operation, different VLSI technologies can be characterised by different primitive fanctions over V, generally reflecting the different kinds of switches present in a particalar technology.

In [Hayes 81] the two undefined states \bar{U} and $\tilde{\boldsymbol{U}}$ are identified. This reduces the number of primitive values to sir, bat leads to
problems becanse the set of values is not a lattice and the analogne of δ is not associative. The latter fact sems particalarly counter-intaitive.

2.4.2 Connector3, Switches and Attenuators

A CSA algebra is a network algebra over a set of CSA literals. There are four classes of CSA primitives: Sourcos, Connectors, Switches and Attennators; we shall only consider a set of primitives tailored to nMOS circnits.

Sonrces: a source is a one-terminal device which is either a sonrce of 1 (also called power, or VDD) or a source of 0 (also called ground, or GND).

Connectors: a connector is a multi-way device which performs the connection operation of all its terminals and prodnces the result on all the terminals. A connector can have various shapes, but we assume that all these shapes can be collapsed to a single point; we do not consider delays or resistances inside connectors.

Figure 2.8 A connector

Abstract

Attenalors: an attenator is a device which transforms strong values into weak values. A 1 on one side of an attenator becomes a $\tilde{1}$ on the other side, and similarly for 0 . The attenator is symmetric, and it is perfectly possible to connect one of its terminals to 1 and the other one to 0 ; in this case the $\tilde{0}$ on one side will be overridden by 1 and the $\tilde{1}$ on the other side will be

overridden by 0 . This configuration is cracial for the implementation of logical gates.

Fignre 2.9 An attennator

The dual of the attenaator is the amplifier, a device which transforms weak values into strong ones; amplifiers can be built out of attenuators, amplifying switches (which we have in nMOS) and power supplies, and are not taken as primitives.

Switches: There can be a great variety of switches and new switches can be introduced as required by some particular technology; these devices have three terminals called gate, source and drain (sonrce and drain can be swapped without affecting the behaviour).

The only switch available in nMOS is the switching-on-T switch. More precisely, when the gate is T (i.e. 1 or $\tilde{1}$) the junction source-drain behaves like a connector; when the gate is F source and drain are not connected; when the gate is Z or \tilde{U} then if source=drain they remain unchanged, else source and drain are \mathbb{D}; When the gate is J then source and drain are J. The behaviour of the switch with gate $=Z$ is defined so that undefined states are generated only when strictly necessary. This helps avoiding situations in which undefined values propagate explosively all over the circuit.

Figure 2.10 A switch

Abstract

Switches have the important ability of working as dynamic storage devices. An \quad mOS switch is basically a capacitor which inflaences with its charge the flow of current in the gate-drain connection. Hence a charged switch with an isolated gate will remember its state until it discharges; if the switch is not refreshed it will gradually lose its charge (whence the name of dynamic storage device). The decay time is usually mach larger than the clock period, and static storage devices can be obtained by connecting pairs of switches in such a way that they periodically refresh each other.

2.4.3 Basic CSA Circuits

CSA circuits can be expressed in net algebra notation by taking sources, connectors, switches and attenuators as literals. However in this section we shall just describe basic CSA circuits by pictures; examples of expressions of the same order of complerity will be shown in section 2.5 for stick diagrams with planarity constraints.

The most important nMOS structure is the inverter. An nMOS inverter acts as a not-gate bat, what is more interesting, it can be ased as a dynamic storage device. An inverter can be bailt by a switch (called the palldown in this configuration) and an attenator (called the pallup) connected to power and ground.

Figure 2.11 A CSA inverter
The attenator constantly supplies a wak one to the output. When the value T is on the input, the switch connects a strong zero to the outpat which overrides the weat one, and the result is F. When F is on the input, the switch is open and only the weak one is connected to the outpat; hence the res, $1 t$ is T.

Inverters are often connected into shift register stractares:

Pigure 2.12 Two shift register cells
When a two-phase non-overlapping clock is used, a signal can ripple throagh a chain of shift register cells, getting inverted at each stage. The switches controlled by the clock signals are called in this configuration pass transistors. Note how each pass transistor isolates (when open) the gate of the following switch, so that the charge stored in the following stage is trapped into a dynamic storage configuration.

More complex logic cifcuits can be built in essentially two ways;
by making more complicated palldown structures, or by making more complicated pass transistor structures. Very common examples of the first class are the nand and nor configurations:

Figure 2.13 CSA Nand and Nor
while selectors and maltiplexors can be built very cheaply as pass transistor structures:

Figure 2.14 A selector

As a last example we show an amplifier (also called non-inverting superbuffer) which converts weak values to strong ones.

Figure 2.15 An amplifier
Note that this amplifier can only work becanse nMOS switches have the ability of switching on weak values, so that they are themselves proto-amplifiers.

2.4.4 Static Semantics of CSA

Becanse of the above mentioned difficolties in giving a formal dynamic semantics for CSA, we define here a simpler static semantic, which only works for circuits which can reach stability. We think that this kind of semantics helps one to understand the general behaviour of CSA circuits, and may be a good starting point for a dynamic semantics.

A CSA expression is a net expression with several kinds of literals. There are sources $1:\{t t\}$ and 0 : \{ff\}, connectors C_{n} : $\left\{c_{1}, \ldots, c_{n}\right\}$, a switch $S:\{g, s, d\}$, an attenuator $A:\{s, d\}$, and the usual operators e\a, e\{r\}, e[r]e'.

A static semantics can be given to CSA expressions by considering the set of all the stable configurations of a CSA circait. Intuitively, a stable configuration is an assignment of values to each point of a circuit which does not change when considering the propagation of values through the circait.

The valqes present on the terminals of a CSA component or circuit
depend in general on the context in which we put the circuit. For example the source $1:\{t\}$ has a stable configaration which assigns the value 1 to the port $t t$ (we write 〈ttoli> for this configuration), but in a context in which 1 is connected to 0 the port tt will (stably) present the value 0 . There is no other stable situation, so that the static semantics of 1 is $\{\langle t t a \rightarrow 0\rangle,\langle t t a \rightarrow 1\rangle\}$ which is the set of all the stable value assignments to the ports of 1 in every possible context.

Formally, given the CSA value domain ∇ and a finite set of port labels A, a configuration (value assignment) on A is an as sociation $c e V^{A}$ of values to port labels, written $\left\langle a_{1} \rho \rightarrow \nabla_{1}, \ldots, a_{n}{ }^{\circ} \rightarrow \nabla_{n}\right\rangle$ when $A=\left\{a_{1}, \ldots, a_{n}\right\}$. A configuration set on A is a set $C_{A} \underline{E} V^{A}$; sets C_{A} Will be used to give semantics to CSA circuits of sort A.

There is a natural partial ordering of configarations which is the one induced by the ordering on V, namely for $c, c^{\prime} \varepsilon V^{A}$:

$$
c \leq c^{\prime} \Leftrightarrow \forall a z A . c(a) \leq c^{\prime}(a)
$$

This partial order is not used in the formal development, but it is convenient when drawing configuration sets, to give them some structare.

Here are the configuration sets for sources:

Figure 2.16 Sources

The stable configurations of a connector C_{n} are those in which all the ports have the same value:

Figure 2.17 Connectors

For attenators, we can think of trying all the possible pairs of Values for source and drain, and see which can be maintained. This gives 17 stable configurations:

d

Figure 2.18 Attenuators

Switches have a large namber of stable configarations, mostly becanse source and drain are independent when the gate is F. The configuration set also depends very much on the technology and we just give one possible candidate:

$2 \mathrm{x}=$

$$
x^{2}=x \times x
$$

(g, s, d)

Figure 2.19 Switches

Three operations on configuration sets can be defined, corresponding to the net algebra operators. Restriction hides a port in each of the configurations of a set:

$$
C_{A} \backslash a: A \backslash a \triangleq\left\{c+(A \backslash a) \mid c \varepsilon C_{A}\right\}
$$

Renaming simply changes the port names of the configurations:

$$
C_{A}\{r: A \simeq A\}: r(A) \quad \triangleq \quad\left\{c \circ r^{-1} \mid c \varepsilon C_{A}\right\}
$$

Composition merges two configuration sets C_{A} and C_{A}^{\prime}.. Two configurations $c \& C_{A}$ and $c^{\prime} \varepsilon C_{A}^{\prime}$, are compatible if they give the same values to the ports which are being connected. The result of the composition is then the set of all the compatible pairs of configurations, which are merged pairwise while hiding, as usual,
the connected ports. In other words, the composition of two configurations is stable if the component configurations are stable and also the connection points are stable, ice. if the values of the connection points agree in the two configurations.

$$
\begin{aligned}
& C_{A} \mid C_{A^{\prime}}^{\prime}: A \oplus A^{\prime} \quad \Delta \\
& \quad\left\{c \oplus c^{\prime} \mid c \varepsilon C_{A} ; c^{\prime} \varepsilon C_{\dot{A}}^{\prime}, ; \forall a \varepsilon A \pi A^{\prime} \cdot c(a)=c^{\prime}(a)\right\}
\end{aligned}
$$

Let us see some examples; the first one is a "short circuit" configuration which has a unique (undefined) stable state:

0 U
(s)

Figure 2.20 Short circuit
An attenuator connected to 1 has instead five configurations, which are the configurations of the attenuator lattice having $s=0$ or $s=1$:

d

(sid)

Figure 2.21 Powered attenuator
Here is a switch with the gate connected to the source:

Figure 2.22 Gate-to-source switch
this large number of possibilities redaces to just two if we connect the gate to $1:$

Figure 2.23 Powered gate-to-source switch Finally, we can use a gate-to-source switch to build an oscillator:

U
(s)

Figure 2.24 Oscillator
initially there is a $\tilde{1}$ on the gate of the switch, which closes connecting the gate to 0 ; then the switch opens again, and so on forever. The static semantics of the oscillator contains a single andefined configuration; all the other ones are unstable (note that in the diagram for the gate-to-source switch there is no configuration with $g=\tilde{1}$ and $d=0$).

Given a circuit and its configuration set C_{A} we might ask whether the circait is "well-behaved". This can be done by assigning well-defined values (i.e. T or F) to some terminals designed as inputs, and check that all the other terminals (the outpats) stabilise in a unique and well-defined way. Formally this means that if we choose the well-defined values $\nabla_{1} \ldots \nabla_{n}$ for the ports $a_{1} \ldots a_{n} \& A$, then the set $\left\{\begin{array}{lll}c & C_{A} \mid c\left(a_{i}\right) & \left.=V_{i}\right\} \text { should contain } a, ~\end{array}\right.$ unique totally well-defined configaration.

Finally, note that the configuration set for switches is not a lattice. This is sensible becanse if it were a lattice, we would have lattices as semantics for all the literals. Then the semantics of every CSA circuit would be a lattice, becanse the operations preserve lattices, and we would be able to define a aniquely determined relaration operation mapping any arbitrary configuration into the least apper bound of all the stable configarations bigger than it. This would mean that every circuit could stabilise in a
unique "most defined" way, which is not what happens in reality when, for example, we power up a flip-flop.

2.4.5 Main Bxample

The CSA layout of a positive bit comparator is shown in the next figure.

Figrre 2.25 Positive bit comparator
The bit comparator can be split vertically into two clocked inverters which act as shift registers, surrounding a proper comparator implemented as a 5-switch palldown structure.

2.4.6 From CIA to CSA

The basic idea anderlying the translations among net algebras is that structure is preserved, i.e. net algebra literals and operators are, more or less directly, mapped into similar literals and operators of another net algebra. These translations are not, technically, algebra homomorphisms becanse literals may be mapped to
compler nets with different sorts and signatures, and a single composition can be mapped to a set of compositions. What is needed here is a more general kind of algebra morphism called a derivor [Goguen 78, Sanne1la 81].

The preservation of structure implies that our translations are essentially simple because they only act locally, and hopefully the redundancies possibly introdaced by the translation process can be removed by local optimisation.

Moreover, if structure is preserved, then the programmer has fine control on the structure of the end product. This characteristic makes our notations suitable for expressing special parpose hardware, where the emphasis is always on how a computation is carried out, rather then on the input-outpat behaviour. This is to be contrasted with the attitude one might take to translating arbitrary Algol-like programs in arbitrary (correct) ways into general parpose hardware components (e.g. microprocessors and read only memories). This approach can only produce standardised architectures, unless complex optimisation strategies are applied in order to rediscover the particalar architectare one had in mind.

We show here how to systematically translate CTA expressions into CSA. The major step consists in translating CTA literals into CSA networks; the translation of the operators is then indaced.

We assume that in a clocked transition $t \leadsto b$, t is built from input variables, boolean expressions and conditionals. Each value is translated into a VDD line, a GND line and a value line. For example an input variable of a phase-i cluster is translated as an appropriate forking, clocked by phase i:

Figare 2.26 Inpat variable
Boolean operations like not, and, or etc. can be implemented by standard gates:

Fignre 2.27 And
and conditionsls "a $\Rightarrow b$; c " become:

Figure 2.28 Conditional
Transitions $t \rightarrow b$ of phase i are translated by first translating t and then composing an outpat box to the output. Phase-1 output boxes are simply:

Figure 2.29 Phase-1 output box
while Phase-2 output boxes must consider the powerup values specified in the transitions; there are three cases:

Figure 2.30 Phase-2 output boxes

The CTA operators are translated into corresponding CSA operator, noting that the CSA expressions have $I^{\prime} s$ and $0^{\prime} s$ in their sort, and these ports have to be properly connected.

The translation proposed above is only a simple example, and it is very inefficient by VLSI standards. In fact, the signals are restored at each step of the translation and the large number of pullups introduced have large area and power requirements. A better result can be obtained by translating each value into a pair of lines (carrying the value and its complement), plas VDD and GND lines, and introducing a restoring stage into the output box. The translation for boolean operations and conditionals has to be modified accordingly, and local optimisation can group most of the logic into pulldown and pass transistor structures inside the outpat box. A translation of this kind, for CMOS circaits, is sketched in [Rem 81].

2.5 Stick Networks

2.5.1 Sticks

Stick diagrams were devised as an attempt to abstract away from detailed geometric layouts while still retaining their essential topological information content. Assming that the design rales are known and that electrical properties are ignored, a stick diagram is about the minimal information allowing a haman or a program to reconstruct the original layout, or one very close to it. Stick diagrams are meant to specify the choice of materials (i.e. colours) and to hint at the general position and orientation of lines and components, but to leave the exact geometry (and hence, the electrical properties) of the circuit unspecified. The geometric implementation of a stick diagram is usually one of the smallest obtainable according to the geometry rules, anless the context requires otherwise; in the latter case some stretching or routing is required.

Code:-----red; —_-_ green;blue; -......- yellow.
Figrre 2.31 A shift register stick diagram

There are two evident ways to analyse a stick diagram. The first is to identify coloured lines, black dots and yellow patches as basic constituents; a stick diagram is then an anstructared set of such components. While this can be convenient for some parposes
(interactive graphic stick editors often work this way) we prefer to look for a hierarchical decomposition, in order to turn stick diagrams into a network algebra. The second approach is then to identify the stick intersections (i.e. transistors, contacts and crossovers) as the primitive objects, and to express stick diagrams as hierarchies of connected intersections. Stick intersections also happen to correspond to functional units in VLSI circuits, so that the second approach is very helpful in relating semantic and syntactic properties of circuits.

A stick diagram is a planar network. As explained in Chapter 1 , the ports of a planar network are organised into a cycle which represents the anticlockise order in which the ports appear in a layout. This cyclic structure is preserved daring composition, so that starting from planar primitives we can only build planar graphs. Here is an example of a sort:

$$
\{r s, r e, r n, r w: ~ r e d\}
$$

Where rs,re,fnerw (i.e. red south, red east, etc.) are all red ports, and the cyclic order is rs<re<rn<rw<rs. Port names have no particular significance, types are the three colours \{green,red, blue\}

Two planar sorts are equal if they have the same set of ports, associate the same types to the same port names, and if the cyclic ordering of ports is the same. Swapping ports around the perimeter is forbidden by the cyclic ordering, so that no non-planar crossovers or unwanted transistors are generated. This constraint is actually stronger than needed because it also forbids red-blue and green-blue swappings and requires the introduction of red-blue and green-blue crossovers among the literals.

2.5.2 Stick Expressions

A stickexpression is a planar expression denoting a stick network. Stick expressions are built from a set of literals denoting the basic bailding blocks of stick diagrams. The set of literals is listed here, together with their interpretation.

RCon

GBCOn

GCon

RBCross

BCon

GBCross

GRCOn

ETrans

RBCOn

DTrans

Figure 2.32 Stick 1 iterals

There is a very simple correspondence between stick literals and CSA literals. ETrans is a switch with gate at "rn" and "rs", source at "ge" and drain at "gw". RCon, GCon, BCon, GRCon, RBCon and GBCon are 4-terminal connectors. BBCross, GBCross and DTrans are crossovers. An attenuator is a composite object, which in stick terminology is called a pullip:

Pu110p $=$

Dtrans\rs\{gelgn\} [ge--gw, gw- gn]
GConlge

Figure 2.33 A pullap

2.5.3 Examples

An inverter can be built by first defining VDD (power supply) GND (ground) and PullDown components:

```
VDD = GBCon\gn {bw\VDD in,be\VDDDoat }
GND = GBCon\gs {bw\VDD in,be\VDD oat }
PullDown = ETrans\rs{gn\ge,gs\gm}
```

an then composing them vertically with a Pallop:

```
Inverter =
    VDD [gs--gn]
    Pu110p [gs--gn]
    GCross\gw{out\ge} [gs--gn]
    PallDown{in\rn} [gs-mg]
    GND
```


Figure 2．34 An inverter

More complex examples involve parametric definitions，local definitions（let－in），conditionals and recrrsion or iteration（we have already seen some examples in Chapter 1）．

In VLSI most of the parametric structares are regalar arrays of cells，and in these cases iteration is the most obvious programing construct to use．We introduce iteration in the following specialised form which applies only to the iterated connection of sticks：
for 〈variable〉 in 〈list〉
iter 〈body＞
with 〈connection〉

〈list〉 is an expression denoting a list of integers，e．g．n．．m is the list of integers from n ap to（or down to）m；〈body〉 is an expression denoting a stick diagram i．e．a stick expression angmented by control structures like＂let－in＂，＂if－then－else＂and ＂for－iter＂；and 〈connection〉 is an explicit composition operator
[r]. The body of the iteration (possibly containing the iteration variable) is composed by the connection part to the accumalated resalt of the previous iterations, while the iteration variable ranges through the list. Bunched sorts are nsed extensively: iteration very often banches together many of the ports which are not connected. Note that the form of iteration we use can be easily translated into recursion, and of course no side effects are involved.

We now program the tally circait example of [Mead 80]. A tally circuit has n inpats and $n+1$ outputs, and the output k is high if and only if k of the inpots are high. We are not interested here in the behaviour of the tally circuit, but in its rather anusual triangriar topology. The reader is advised to draw the pictures corresponding to the expressions we present.

First let us define the basic tally cell:

TallyCel1 =
NegPart [res out ${ }^{--r e s}{ }_{i n}$] PosPart
NegPart $=$
NegCross [negin-neg out ${ }^{\text {D }}$ [NegGate
PosPart $=$
PosCross [pos in $^{-- \text {pos }_{\text {out }} \text {] }}$
PosGate [de--gs, res out ${ }^{--g w]}$
GCon\{gn\de, ge\res out $\}$
NegCross $=$

PosCross =

```
GBCross{gn\res in, bw\posin, gs\res out, be\de}
```


NegGate =

GBCross[gn\resin, be\neg out $]$ [gs--gw]
ETrans\ra\{ge\res out \} [bw--be,rs--rs]
$R B C o n \backslash r n\left\{b w \backslash n e g_{i n}\right\}$
PosGate =
GBCross\{gs\de, be\pos $\left.{ }_{\text {out }}\right\}$ [gn--ge]
$E T r a n s \backslash r n\{g w \backslash s\}[r s--r n, b w-b e]$
RBCon\rs\{bw\posin\}

Figrre 2.35 Basic tally cell
Then the central part of the circuit can be composed by a double iteration:

```
TallyBody \(n=\)
    for j in [1..n+1]
    iter (for i in (if \(j=n+1\) then 1..n olse 1..j)
        iter TallyCell
        with [dw-de, res in \(^{--r e s}{ }_{\text {ont }}\) ])
        [dw--gn, res \(\mathrm{in}^{--g e]}\)
        GCon\gs \(\{g w \backslash r e s i n\}\)
    with [neg in \(^{-n e g_{o u t}}\), ds--dn, pos in \(^{\left.- \text {pos }_{\text {out }}\right]}\)
```

Ta11yn. $=$
TallyBody n \de $\backslash d n$ lpos out Ineg out
$\left[r e s_{i n}[n+1]-g s\right]$
Pul1Up
note the debanching operation used to connect the pullap to the tally body. The inpats are collected in the n-bunch posin and negin are their negations; res out are the outpats; the pollup should be connected to VDD and all the remaining ports to GND.

Figure 2.36 Tally circuit

The nert example is a PLA generator (PLA structores can implement arbitrary finite state machines [Mead 80]). The generator accepts as
inpats two arrays of boolean values, (which can be antomatically generated from sets of boolean equations) coding the disposition of switches in the so-called and and or planes.

We first introduce the basic building blocks of the PLA as pictures:

LeftEmptyCell

RightEmptyCell

LeftFullCell

RightFullCell

Figure 2.37 Building blocks for programmed cells

9.5

PlaGround

PlaSpaceGround

Figure 2.38 Bailding blocks for ground lines

Figare 2.39 Peripheral building blocks

PlaclockedIn

PlaclockedOut

Figure 2.40 Inpat and outpat

The following program generates a single plane; the inputs are a pattern (i.e. an array of booleans arranged for convenience as a list of lists of quadruples of booleans) and the frequencies with which grond lines have to be interleaved with cells, in the horizontal and vertical directions. Note that we use here simultaneous iteration of two iteration variables throngh two lists.

```
let plane (pattern,Xspace,Yspace) =
    for strip in pattern and Y in 0..(length pattern)-1
    iter (PallupPair [b.e--b.w, g.e--g.w] row)
```

```
    Where row \(=\)
    (for highleft, highright, lowleft, lowright in strip
    and \(X\) in \(0 . .(\) length strip) -1
    iter (if Y mod \(\mathrm{Yspace}=0\)
            then if \(X\) mod Xspace \(=0\) And Not \(X=0\)
            then (PlaSpace [b.e--b.w. g.e--g.w] celi)
            [r.n--r.s, g.n-g.s, rs.n--rs.s]
                (PlaSpaceGround [bs.e--bs.w] P1aGround)
            else cell [r.n-r.s, g.n--g.s] P1aGround)
            elso if \(X\) mod \(X\) space \(=0\) And Not \(X=0\)
            then PlaSpace [b.e-b.w. g.e--g.w] cell
            else cell
        where cell = cell(highleft,highright, lowleft, lowright)
    with [b.e--b.w, g.e--g.w, bs.e-bs.w])
```



```
\r.n \g.n \(\operatorname{Irs.n} \backslash \mathrm{bs} . \boldsymbol{\pi}\)
where cell(highleft,highright, lowleft, lowright) \(=\)
    (if highleft then LeftFullCell else LeftEmptyCell
        [b.e-b.w, g.e--g.w]
    if highright then RightFallCell elso RightEmptyCel1)
    [r.s-r.n. g.s--g.n]
    (if lowleft then LeftFallCell else LeftEmptyCell
    [b.e-b.w, g.e--g.w]
    if lowright then RightFullCell else RightEmptyCell)
```

Note that the complication of the inner iteration loop is due only to the interleaving of ground lines.

The generator composes an and-plane and an or-plane via a connection strip. The and-plane is obtained by connecting the inputs to a plane, and the or-plane by connecting the outputs to another plane.

```
let.pla (andpattern,orpattern,space) =
    (andplane [gnd.e--gnd.w, vdd.e--vdd.w, b.e--b.w, bs.e--bs.w]
    conn [gnd.e--gnd.w, vdd.e--vdd.w, phi2.e--phi2.w.
        I.e--I.s, g.e--g.s, b.n--b.s]
    orplane) \phil.e \phi2.w
where andplane =
    plane (andpattern,length(hd andpattern),space) \ge
    [r.s-r.n, g.s--g.n,b.s--vdd.w]
    inputs
and orplane =
    plane (orpattern,space,space)
    [g.e--g.n, bs.e--b.n]
    outputs
```

where inputs $=$
length(hd andpattern) times PlaClockedIn
with [gnd.e--gnd. $w, ~ \nabla d d . e--\nabla d d . w, p h i 1 . e--p h i 2 . w]$
\gnd.T \{g.s\in.s\}

```
and outputs =
    for Y in 1..(length orpattern)
    iter (if (Y mod space)=0
            then P1aClockedOut
                    [gnd.e--gnd.w, vdd.e--vdd.w, phi2.e--phi2.w]
                OutputSpace
            else PlaClockedOut
    vith [gnd.e--gnd.w, vad.e--\nabladd.w, phi2.e--phi2.w]
    {x.s\out.s}
and conn =
    for Y in 0..(length pattern)-1
    iter (if (Y mod space)=0
        then P1aSpaceCannect [b.s--b.n] PlanesConnect
            else PlanesConnect
    vith [b.s--b.n] \b.n
    [b.s-b.n]
    OutputSpace
```

 A version of this program was written in the design system
 described in Chapter 3 (the only differences, due to the geometric
nature of that langaage, being the use of geometric iiterals, and
the use of some "geometric renaming" (see Chapter 3)) The result is
shown in the next figure.

Figure 2.41 PLA 1ayout

2.5.4 From CSA to Sticks

Three steps are needed to translate a CSA network into a stick network. Here we simply sketch them.

The first step consists in finding an almost-planar embedding for the graph of a CSA expression, imposing a planar sort on the CSA network and possibly preserving the structure of the expression. Note that a stick graph does not need to be completely planar becanse of the crossover literals RBCross, GBCross and DTrans.

Planar embeddings are always possible by inserting extra crossover components at critical points. The result should be reasonably good if the initial CSA network was thought of in planar terms (as should often be the case for VLSI networks), otherwise very complex algorithms and heuristics will probably be needed to get good results.

The second step is the "colouring" of the graph. Components like switches, attenuators, power, ground and clocks have precisely coloured terminals, and a simple colour propagation scheme (where terminals of connectors may receive arbitrary colours) should be sufficient to colour the whole graph.

The third step simply translates attenators into pallap structures, switches into transistors and connectors into wires and, when needed, contacts.

2.6 Grid Networks

We are now going to investigate a net algebra which is situated, so to speak, in between parely topological stick networks and parely geometrical layout networks. This algebra can be of practical significance because it seems to minimise the complexity of the translations from sticks to layouts; it can be regarded as a very abstract geometrical algebra or as a very concrete topological one.

2.6.1 Grids

A grid is an array of orthogonal segments such that all the vertical segments intersect all the horizontal ones, and vice versa. For convenience we shall lay the segments parallel to the axes of the cartesian plane with spacing two onits, end-points projecting of one unit outwards, and with the origin in the lower left corner.

Figure 2.42 A canonical grid
The end-points of segments in arid are called its ports; the boundary of a grid is the set of its ports and the perimeter is given by the cardinality of the boundary. The south,east,north and west boundaries are defined in the obvions way and are also called respectively the south, east, north and west of the grid; collectively these are the sides of the grid. The knots of a grid are the
intersections of its segments, and the area is the number of knots.

A grid can be regarded as a rectangular matrix of knots. An interpretation of a grid is a mapping from its knots into a set T tiles (which are little 2×2 squares). Here is the set of basic tiles needed for nMOS stick diagrams.

Figure 2.43 Basic tiles for nMOS stick diagrams

Non-basic tiles can be produced from the above tiles by rotation and by dropping one or two of the segments joining the centre of a tile to its boundary; the blank tile is needed to fill the empty spaces of a stick diagram. An interpretation of a grid according to this set of tiles is given in the nert figare, showing a shift register cell.

Fignre 2.44 A stick diagram interpretation of agrid

The sort of a grid associates a name and a type to each port. The ports are cyclically ordered anticlockise, and assigned to one of the four sides \{south, east, north, west\}. There is a special name called the NullName and a special type called the NullType; the NullName is always associated to the NullType and vice versa. A pair NullName-Nulltype is also called a nall port, written "()", which represents the lack of a proper port on the perimeter of the grid. For example, the sort of the shift register cell is written:
\{south: [(), (), ClockOat: red, ()],
east: [GndOnt: blue, Ont: red, (), (), VddOnt: blue],
north: [(), ClockIn: red, (), ()],
west: [VddIn: blue, (), (), In: red, GndIn: blue]\}

A grid network (sometimes ambigrously called a grid) is an interpreted grid together with a compatible grid sort. Grid networks can be built by repeated compositions, starting from a set B of basic grids (each be B being a rectangalar assembly of tiles $t=T$) of sort given by $\lambda(b)$. A composition $g^{\prime}[r] g$ of two grids $g^{\prime}, g^{\prime \prime}$ is obtained by embedding without overlapping g^{\prime} and $g^{\prime \prime}$ into a bigger
grid 8. This embedding mast satisfy [r] (in the evident sense) and mast also define the tiles of g which do not belong to $g^{\prime \prime}$ or $g^{\prime \prime}$. A particalar kind of grid composition will be analysed in a forthcoming section.

The two other net operations are defined on grids as follows (they just operate on the sorts leaving the underlying grids unchanged):

Restriction: gla transforms the name a in the sort $\sigma(g)$ into NullName, and the associated type into NallType (a should not be Nal1Name) .

Renaming: $g\{r\}$ applies the name-bijection r to the names in $\sigma(g)$, leaving the types nnchanged (x shonld not contain any NallName).

2.6.2 Discrete Stretch Transformations

In this section we develop some tools needed to define grid compositions. An n-dimensional discrete stretch transformation, or stretching for short, is an n-tople of boolean vectors $\bar{S}=S_{1} \ldots S_{n}$ (we are actually only interested in the cases $n=1$ and $n=2$). For every boolean vector S_{i} we define $\# S_{i}$ as the length of the vector and ρS_{i} as the number of "1"'s (i.e. "true"'s) in the vector. If $M_{m_{1} \ldots m_{n}}$ is an n-dimensional matrix of size $m_{1} X \ldots X_{n}$, then a n-dimensional stretching can be regarded as a mapping:

$$
S_{1} \ldots S_{n}: M_{\rho S_{1}} \ldots \rho S_{n} \leadsto M_{\# S_{1}} \ldots \# S_{n}
$$

The result matrix is obtained from the argament matrix by inserting an ($n-1$)-dimensional plane orthogonally to the i-th dimension in correspondence of every " 0 " in S_{i}. For example:

$$
\begin{aligned}
& 1 a b b \quad a * b * \\
& s_{1}=1010, s_{2}=0: \quad c d \quad a \quad * * * \\
& 1 \text { c*d* }
\end{aligned}
$$

Where is any fixed fill-in ∇ alue.

In the case of 1 -dimensional stretching we can apply a stretching to another stretching (using 0 as fill-in value). This allows us to define the composition of stretchings as follows:

```
    \(S_{1} \ldots S_{n} \bullet S_{1}^{\prime} \ldots S_{n}^{\prime} \quad \triangleq \quad S_{1}\left(S_{1}^{\prime}\right) \ldots S_{n}\left(S_{n}^{\prime}\right)\)
properties:
\[
\begin{aligned}
& \left(\bar{S} \circ \bar{S}^{\prime}\right)(M)=\bar{S}\left(\bar{S}^{\prime}(M)\right) \\
& \left(\bar{S} \circ \bar{S}^{\prime}\right) \circ \bar{S}^{\prime \prime}=\bar{S} \circ\left(\bar{S} \prime \circ \bar{S}^{\prime \prime}\right)
\end{aligned}
\]
```

That this is really composition can be seen from the following

In case of 1-dimensional stretching we get the curious-looking equation:

$$
\left(S \circ S^{\prime}\right)\left(S^{\prime \prime}\right)=\left(S\left(S^{\prime}\right)\right)\left(S^{\prime \prime}\right)=S\left(S^{\prime}\left(S^{\prime \prime}\right)\right)
$$

2.6.3 Normal Grid Composition

We are interested in a particular kind of grid-network composition called normal composition. This composition might appear to be exceedingly restrictive; actually there is no loss of generality and we shall see in the following sections that any stick expression can be mechanically translated into a series of normal grid compositions in a non-anique bat fairly controllable way.

Normal composition is determined (up to choice of stretch ines) by specifying the connection side s of one of the networks; the connection side of the other network is then taken to be the side opposite to s. For consistency with stick expressions we shall use the full notation $g^{\prime}[r] g^{\prime \prime}$ also in this case, where $[r]$ is of the form [a $a_{i}-b_{i}$] and a_{i} are all the non-nall ports on one side of g^{\prime} and b_{i} are all the non-nall ports on the opposite side of $g^{\prime \prime}$. We extend this notation to expressions like g'[south-north]g" in order to describe composition on sides with no non-nall ports.

Normal composition is legal if and only if the number of non-nall
ports on the two connection sides is the same and the names and types of these ports match pairwise (according to [r]) moving in parallel along the connection sides. The result grid is obtained by minimally stretching the two component grids uniformly in the connection-side direction n ntil the level of all the non-nall ports match pairwise and the two connection sides have the same length.

Figare 2.45 Stretching
The exact choice of stretch lines is not important, as far as stretching is minimal. The stretched grids are then embedded into a grid of area the sum of their areas, with the connection sides facing each other. The way in which the stretched areas are filled-in with tiles, depends in general on their neighbouring tiles, and should be specified together with the set of tiles T; in case of $n M O S$ stick diagrams we fill these spaces by the appropriate straight-line tiles, so that connected stick nodes remain connected under stretching. The result sort of normal composition is the sort of the result grid, obtained from the component sorts by dropping the ports on the respective connection sides and by possibly inserting some null ports where stretching has occurred.

In order to compate the normal composition of grids, we might represent grids as matrices and then define grid composition by brate-force stretching of matrices. Instead, we describe an efficient algorithm which simalates this stretching process by considering grid sorts together with stretch transformations.

Let us assume that the grid composition g'[r]g" is normal and legal in the sense previously defined. Starting from the sorts of g^{\prime} and $g^{\prime \prime}$ we produce the sort of the result, together with the bidimensional stretch transformations v^{\prime}, h^{\prime} and $\nabla^{\prime \prime}, h^{\prime \prime}$ (vertical and horizontal respectively) to be applied to g^{\prime} and $g^{\prime \prime}$ in order to embed them exactly in the result.

The first step consists in identifying the connection sides in g^{\prime} and $g^{\prime \prime}$, which are given by any pairs of connections as specified in [r]. For convenience we fake a standard orientation for composition, placing g^{\prime} on the left and $g^{\prime \prime}$ on the right; we define the psendo-enst side of g^{\prime} and the psendo-west side of $g^{\prime \prime}$ to be their respective connection sides, and accordingly we psendo-name all the other sides of g^{\prime} and $g^{\prime \prime}$.

Figure 2.46 Psendo orientation of composition

Next we compute a minimal pair of 1-dimensional stretch transformetions, psendo- ∇^{\prime} and pseqdo- $\nabla^{\prime \prime}$, which make the ports of g^{\prime} and g match along the connection sides. This can be done by walking in parallel on the pseudo-east and psendo-west sides of $\sigma\left(g^{\prime}\right)$ and $\sigma\left(g^{\prime \prime}\right)$, "skipping" all the nall ports in pairs and "pushing" any non-nall port along one side (while skipping any nall port on the other side) until there is a non-nall port on the other side, and
then skipping the pair. Here "skipping" means inserting a "1" in the resulting transformation, and "pushing" means inserting a "O".

Figure 2.47 A minimal stretching

Next we form the sort of the result in the following way:

- The resulting psendo-south is the concatenation of the two psendo-south:
- The resulting psendo-north is the concatenation of the two psendo-north;
- The resulting pseado-mest is the resalt of stretching the psendo-west of g^{\prime} according to ∇^{\prime}, filling in with nall ports;
- The resulting psendo-east is the result of stretching the pseudo-east of $g^{\prime \prime}$ according to $\nabla^{\prime \prime}$, filling in similarly.

Finally we produce the stretch transformations:

- pseudo- ∇^{\prime} and pserdo- $\nabla^{\prime \prime}$ have already been produced;
- psendo-h' is a vector of " 1 "'s as long as the pserdo-south of g';
- psendo-h" is a vector of " 1 "'s as long as the pseado-south of g ".

All the results have to be renormalised with respect to the psendo orientation. The sort of the result gives the total size of the composed objects and can be used in further compositions. The stretch transformations V^{\prime}, h^{\prime} and $V^{\prime \prime}, h^{\prime \prime}$ and the connection sides are enongh information for bailding a matrix of the result if we are
given matrices for g^{\prime} and $g^{\prime \prime}$. They can also be composed in interesting ways with the stretchings computed from suberpressions of g^{\prime} and $g^{\prime \prime}$, as we shall see shortly.

2.6.4 Grid Expressions

A grid exprosions is an expression with operators "\a", "\{r]" and "[r]" (normal composition), over a set of grid literals denoting basic grids. The grid denoted by a (legal) grid expression is obtained by actually performing the operations described in the expression. Grid expressions will be denoted by the letter "g".

If we have a grid expression in form of a tree, we can apply the grid composition algorithm described in the previons section from the bottom up, obtaining at the end a corresponding tree of stretch transformations plus the grid sort of the whole expression. The stretch tree and grid sort of a grid expression g are produced as follows:

- If g is a literal, the stretch tree is a leaf containing that literal and the grid sort is the grid sort of g.
 The result tree is t^{\prime} and the result sort is s'la (restriction as defined for grid networks).
- If g is $g^{\prime}\{r\}$, we recur on g^{\prime} obtaining its tree t^{\prime} and sort s^{\prime}. The result tree is t^{\prime} and the result sort is $s^{\prime}\{r\}$ (renaming as defined for grid networks).
- If g is $g^{\prime}[r] g^{\prime \prime}$, we recar on g^{\prime} and $g^{\prime \prime}$ obtaining t^{\prime}, s^{\prime} and $t^{\prime \prime}, s^{\prime \prime}$. We apply the grid composition algorithm to $s^{\prime \prime}, s^{\prime \prime}$ obtaining a sort s and two stretchings $\nabla^{\prime}, h^{\prime}, \nabla^{\prime \prime}, h^{\prime \prime}$. The resalt sort is s. The result tree contains $t^{\prime}, \nabla^{\prime}, h^{\prime}, t^{\prime \prime}, \nabla^{\prime \prime}, h^{\prime \prime}$ and the connection side of g^{\prime}.

Figure 2.48 Stretch trees

2.6.5 Gxid Recomposition

Given a grid expression we have seen how to produce a stretch tree and a grid sort for it. To produce a picture of a grid, we walk down the tree accumalating the stretch transformations as we proceed. When we get to a literal we know its position and the amount of stretching to be applied to it. Hence we dram the literal in the computed position with the appropriate stretching patterns to match its expected size.

The accumalation of stretch transformations is not done in the most obvious way, which would be by stretch composition: this method
produces, for every literal, a stretch transformation as big as the whole final layout which places exactly the literal in the layout, but gives no information about the amount of stretching to be applied to it. Lackly enough, the kind of accumulation we need uses less space, and produces for every literal a stretch transformation as big as the stretching to be applied to the literal; the position of the stretched literal in the global layout is derived by maintaining an origin point as we go along.

The algorithm takes a stretch tree and its grid sort, and "draws" the result; drawing is just an example of grid recomposition. We start with a stretch tree t, a vertical-horizontal stretching ∇, h all made of " 1 "'s as big as the size of the grid sort, and an origin $O_{r=0,0}$ (the lower left corner of the layont).

If the tree t is a leaf, it contains a grid literal. We then stretch the layout of this literal asing ∇, h and draw it starting from the origin Or.

If the tree t is a composition node, sappose it was generated by the composition $g^{\prime}[r] g{ }^{\prime \prime}$. Then t contains two subtrees $t^{\prime}, t^{\prime \prime}$ (corresponding to g^{\prime} and $g^{\prime \prime}$) two stretchings $\nabla^{\prime}, h^{\prime}$ and $\nabla^{\prime \prime}, h^{\prime \prime}$, and the connection side of g^{\prime}. Let ms make up a psendo orientation with the connection side of g^{\prime} on the east, modifying ∇, h etc. appropriately into pseqdo- \quad ppseudo-h, pseudo- $\boldsymbol{V}^{\prime}, p s e u d o-h^{\prime}$, pseudo- $\boldsymbol{v}^{\prime \prime}$,pseudo-h" and pseudo-Or.

Figure 2.49 Pseudo orientation for stretching

We need to compute the stretchings and origins to be passed down recursively to the subtrees; let's call them newv', newh', newv", newh", Or' and Or". They can be obtained by "unpsending" the following definitions:

```
pseudo-newv' = pseudo-v o pseudo-v'
pseudo-new\mp@subsup{v}{}{\prime\prime}=pseudo-v 0 pseudo-\mp@subsup{v}{}{\prime\prime}
    pseudo-newh',pseudo-newh" = split(pseudo-h,pseudo-h',pseado-h")
    pseado-0r' = pseado-0r
    pseudo-0r" = (pseudo-0r.x + length(pseudo-newh')),pseudo-0r.y
```

Where split(h,h',h") splits h into two parts newh', newh' such that
newh' concatenated to newh" is equal to h; $\rho h^{\prime \prime} h^{\prime}=\rho h^{\prime}$ and $\rho n e w h^{\prime \prime}=\rho h^{\prime \prime}$ (it does not matter where the split exactly occurs). Nothing is drawn for composition nodes, and we recur with $t^{\prime}, \nabla^{\prime}, h^{\prime}, O_{r}^{\prime}$ on one side and $t^{\prime \prime}, \nabla^{\prime \prime}, h^{\prime \prime}, O^{\prime \prime}$ on the other side.

Figure 2.50 Grid recomposition

2.6.6 From Sticks to Grids

It is conceivable to use stick expressions as a general parpose programming notation for stick diagrams and as a target language for silicon compilers. However, in order to nse them in this sense it is necessary to develop an algorithmic translation from any stick expression into layonts, and this will be done passing through grids.

The first step consists in arranging the planar graph described by a Stick expression on a rectangalar grid. The arrangement of a graph in some particular geometrical or topological space is called a realisation of the graph. The choice of a particular grid realisation for a particalar stick diagram is parely arbitrary, except that attempts will be made to keep the grid as small as possible.

To limit the number of possible grid realisations for a given
expression, we shall also provide a contert specifying constraints on the relative position of ports on a grid. We consider rectangalar conterts only, where the ports of a grid realisation lig on the perimeter of a rectangle. Moreover every port will be explicitly assigned to one of the four sides of the rectangle, named south, east, north and west (this assignment should agree with the cyclic ordering of ports).

Given a stick expression e, a contert for e is a maping of some of the ports of $\sigma(e)$ into a side (sonth, east, north or west) in such a way that all the east ports cyclically follow the south ports, and so on for the other three sides. A contert of this kind on $\sigma(e)$ is said to be compatible with e. A context is also said to be compatible with a grid network g when it lists some of the non-nall ports of $\sigma(g)$ assigning them to the correct side. A full contert specifies the sides of all the ports of $\sigma(e)$.

Sort

Compatible context

Figure 2.51 A context

The Sticks-to-Grids algorithm takes as input a sorted stick expression (i.e. a stick expression where all the subexpressions are indexed by their sort) and a compatible fall context, and prodaces a grid network which realises the stick expression. The resalt is supplied in the form of a grid expression where all the compositions are normal. Previons sections have shown how to generate grid layouts from grid expressions. (This form of the output is just for
explanatory parposes; we could combine this algorithm with the one in Section 2.6.4, translating directly into stretch trees and grid sorts.)

Basis of the recursion: we assume that for every stick literal and for every compatible context there is a standard interpreted grid network which is also compatible with the contert (this standard grid is chosen among all the grids satisfying the requirements). This set of basic grid networks is rather big (there are 140 full contexts for every stick literal) but can be cut down by taking into accoant similarity and symmetries, and by compromising on the grid area. We shall simply assume here that a grid literal matching a given context is always selected and returned as resalt for this base case. The next figure shows a set of 35 minimal patterns for a transistor (most of them made of several stick tiles); the missing patterns can be obtained by rotation and by dropping some of the non-nall ports (and consequently modifying the tiles).

Figure 2.52 Basic grids

The recursive step for a restriction $e \backslash a$ consists in recurring with e and the current context, obtaining a grid expression g.

Because a is not in the current contert, this is how partial contexts are generated, even starting from full contexts. At the base of the recursion, the ports not contained in the context are anused (i.e. not connected to anything) and may be optimised away in the grid layout (actually they mast, to avoid "accidental" connections). The resulting grid expression is then gla.

```
The recursive step for a renaming \(e\{r\}\) consists in applying \(r^{-1}\) to the context and recurring with \(e\) and the renamed context, obtaining a grid expression g. The result is g\{r\}.
```

The recursive step for composition is the interesting one. Given a context and a composite stick expression e'[r]e", the problem is to derive two subcontexts to be applied to the respective subexpressions. This should be done in such a way that the resulting composition is normal, so that we can apply the grid composition technique developed in the previous sections when we come to need a grid back as a result. Let us assume that [r] is $\left[a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right]$. We define a pseudo orientation for the context in the following way: a_{1} faces pseudo-east, b_{1} faces pseudo-west and the pseudo-south side of the context is parallel to their connection (this is always possible):

Context

Figure 2.53 Psendo orientation of a contert

We define the first cint as a point on the pseudo-sonth of the contert, which is after b_{1} and before any other port (before-after in the anticlockwise sense). The second cut is going to be placed after a_{n}, and this can fall on any side of the context. Given any placement of first and second cont, we mast be able to split the context into two parts and then insert $a_{1} \ldots a_{n}$ in one part and $b_{1} . b_{n}$ in the other.

The second cut can fall in five substantially different places, and each place corresponds to a different way of splitting the context:

Figare 2.54 The five basic context splits

For each different split, there is a way of arranging the sorts of e^{\prime} and $e^{\prime \prime}$ so that they will match the context. Here are five examples of sort fitting in the standard psendo orientation:

Figure 2.55 Fitting the sorts

Moreover all the sort fitting patterns can be decomposed (in several ways) into normal grid compositions:

Figure 2.56 Normal decomposition

In the case number 3, all we have to do is to break the context in correspondence of the first and second cat, add the ports $a_{1} \ldots a_{n}$
to the psendo-east of the left context and $b_{n} . b_{1}$ to the pseqdo-west of the right context, and apply recursively the algorithm on the subexpressions obtaining g^{\prime} and $g^{\prime \prime}$. The result is then $g^{\prime}[r] g{ }^{\prime \prime}$ which is a normal grid composition.

The process is similar in the other forr cases, even if more complicated. More than one grid composition may have to be generated, and dummy grids may have to be inserted. Grid decomposition is not a deterministic process, and hearistics are needed to get better and smaller layouts.

```
As an example, let ns try to fit the stick expression
    ETrans[ge--gw](GCon\gn\gs)
```

in an unfriendly contert where all the ports lay on a single side:

ETrans [ge--gw] (GCon gn gs)

Figrae 2.57 Context splits

From the composition [ge--gw] we see that the cut mast fall between Is and ge on one side, and between $g e^{\circ}$ and in on the other side. This corresponds to five possible cuts of the context; let us examine them in turn, starting with 3 which is the easiest one. On the left of the next figure are the normal decompositions, and on the right the corresponding (possibly empty) grids:
3.

4.

5.

2.

1.

Figaro 2.58 Decompositions
There are also tro alternative decompositions of 4 and 2 :

Fignre 2.59 Alternative decompositions We can see that after compositions of the grids on the right, we get two different solutions which correctly fit the context.

Note that not all of the five decompositions can be used in any case. A very simple minded heuristics for getting good results is to use decomposition 3 whenever possible, otherwise 1 or 5 (because they do not have alternative decompositions like 2 and 4), and then 2 or 2^{\prime} or else 4 or 4^{\prime}. The choice between 2 and 2^{\prime} or between 4 and. 4' can critically inflnence the size of the resalt, becarse these decompositions introduce empty areas.

Let us recall the phases of the Sticks-to-Grids algorithm:

1. From sorted stick expressions and contexts to grid oxpressions.
2. From grid expressions to stretch trees and grid sorts.
3. From stretch trees and grid sorts to grid layouts.
where phases 1 and 2 can be combined into a single phase.

In phase 1, every stick composition $e^{\prime}[r] e^{\prime \prime}$ is translated into the composition of two grid expression $g^{\prime}, g^{\prime \prime}$ (corresponding to e^{\prime} and $\left.e^{\prime \prime}\right)$ possibly angmented by a limited namber of padding iiterals, depending on the form and number of ports of the contert. In phase 2 information is accumalated in a stretch tree in order to perform the
stretching of grids. In phase 3 the various partial stretching are accumalated and the resulting stretched grid is produced.

The correctness of these translations can be expressed as the commatativity of the following diagram:

Figure 2.60 Correctness of translations
Grids realise planar stick diagrams (note that there are several grids for the same stick diagram). The translations are correct if the stick diagram denoted by a stick expression is realised by the grid produced by the Stick-to-Grid algorithm on that stick expression.

The grid composition algorithm could be improved to inclade a limited amonnt of roating, in order to avoid explosive stretching situations. Moreover, iteration is probably going to be a primitive control construct in stick expressions, and we can use this fact to improve the form of the layout and to avoid "diagonal fagnes" (i.e. situations in which the cells of an array get incrementally stretched).

The solation we have adopted for the base case (namely
considering all the possible grids for a given stick literal and contert) is not feasible for bigger literals which conld arise in practice, like standard cells and functional units. In those cases some routing must be used to connect the cells to their expected contert; an interesting question is whether the decomposition process can be driven so that the matching of standard cells and contexts is made easy.

The most important operation in phase 2 is grid composition, i.e. the computation of stretch vectors. In the worst case, the area of the resalt grid is twice the sum of the areas of the component grids, and the stretch vectors are as long as the sum of the sides.

Every composition node of ; a stretch tree contains two boolean vectors of the same length as the result of the composition (the other two vectors described in the algorithm are identically "I"'s and do not need to be represented explicitly). Let us assume that all the grid literals have size 4r4, (they are always smaller); if g^{\prime} and $g^{\prime \prime}$ have size $\langle z, z\rangle$, then in the worst case the stretch tree of $g^{\prime}[\mathrm{r}] \mathrm{g}$ " has size 4 z (the two stretch vectors) plus the size of the trees for g^{\prime} and $g^{\prime \prime}$. For a balanced tree giving rise to a square diagonal layout, this makes a total of $8(n * 10 g n)$ bits of stretch vectors and the resulting layout has area less than (4n) ${ }^{2}$. Even in this pessimistic situation, the stretch vectors for a grid expression with $1,000,000$ literals would occapy some 19 megabytes, still in the range of current virtual memories. The constraction of the grid sort takes another $O(n * 10 g n$) space, but all this storage (except for the final resalt) can be reclaimed during the process.

In practice the stretching algorithm is expected to behave in a slightly better way, especially in case of stractured design styles. In the best "square" case (a balanced square composition of 1×1
literals with no stretching) the size of the tree is $n+10 g n$ and the layout area is n. Hence, in the above example, the best square case needs 2.4 megabytes.

This complexity analysis can however be rather pessimistic in real situations, becanse of the hierarchical nature of our approach. Stick expressions are very likely to contain a considerable amount of sharing (e.g. register arrays and ALD's) and the shared parts are very likely to get identically stretched. If we preserve this sharing (for what is possible) daring the translation to grid expressions and the generation of stretch trees, a considerable amount of space can be saved; this can be done at the expense of checking for the occurrence of already processed suberpressions and contexts. Then, for example, the storage occrpation of stretch vectors for regular arrays of cells becomes constant.

Other common parametric structores which are not likely to contain sharing (e.g. PLA's and ROM's) have predetermined size and do not need to be stretch-analysed. They can be conveniently introduced as primitives at the stick expression level.

Phase 3 requires another $0(n * 10 g n)$ space to compate the stretch vectors of the grid literals, but the stretch tree can be demolished in the process so that little extra memory should be needed.

The time complexity can vary from linear in the number n of grid 1iterals (with n^{2} space occupation) to exponential (with optimal space occupation). A satisfactory compromise should be achieved by using heuristics, or (failing those) by direct user interaction.

```
2.6.7 From Grids to Layouts
    And here is the final step in our long road towards layouts.
Some forms of translation from grid structores into layouts are
```

already well known: in general the sticks are first inflated into lines and transistors of the appropriate size; then the result is compacted in order to achieve low area occapation.

Mosteller describes a compaction algorithm which is at the basis of an interactive editing system for sticks [Mosteller 81]. The great advantage of orthogonal grids is that the compaction can be carried out independently on the x and y axis, achieving good results.

Expansible grids also constitute the main data structure at the basis of the remarkable VLSI workstation by Meste and Ackland [Feste 81]. Their system retains geometrical information (like transistor sizes) and compaction is used to optimise screen-drawn layouts and after cell composition.

Both the approaches mentioned above allow the user to interactively modify the defanlt sizes of wires and transistors, providing the same freedom as in hand-drawn layouts. On the other hand these translations are not completely automatic, or at least do not always lead to perfect layouts if used in an antomatic way. This is not a criticism of the above systems, which address different issues, bot an indication that further work is needed, especially in the generation of electrical parameters from stick structures.

3. Sticks \& Stones

In this chapter we describe a design langage for VLSI, based on the ideas presented in the first two chapters. The language morks at the geometrical layout level, constituting what is generally called a "chip assembler", and produces output in a standard format suitable for nMOS processing.

The langnage has been implemented as an experimental interactive system which uses a colour graphics display for the preparation of VLSI layouts. The examples shown here have been produced by this system and drawn on a 4-colour flat-bed plotter (and then shaded).

This chapter can be read independently from chapters 1 and 2 , giving a self-contained description of the design system. As a consequence some information concerning net algebras is repeated, also to emphasise the occasional differences in style and semantics due to practical implementation issues.

3.1 Introduction

The most important attribute of a flexible design language for VLSI is perhaps its ability to parameterise any possible aspect of a picture, such as its size, the number and type of components and the distance between them. This suggests that the langnage should be primarily tert oriented but with graphic facilities; then parameterisation can be easily achieved by using the parameter passing mechanism of procedures. On the other hand, a display oriented langnage has severe problems with parameterisation: it is very easy to assemble figures on a screen with a pointing device, but it is difficult to express how these figures are actually meant to change as a function of some parameters.

Now porely textual languages for graphics suffer from severe
drawbacks as the identification of text and image can be very difficult. Any such langage should therefore be highly interactive With immediate visual feedback, and the syntax should recall as far as possible the structure of the picture, i.e. its topological properties. This is in sharp contrast for example with graphic packages, in their use as extensions to existing host langaages.

The kind of language we are interested in should be able to express VLSI circuits naturally in terms of their hierarchical structure and their topological properties [Buchanan 80, Rowson 80, Williams 78] and the structure of the circuits should appear through the text of the descriptions.

In Sticks\& type within a general parpose programming langrage, so that every picture is denoted by a program which bailds it. The operations over pictores are inspired by net algebras, whose expressiveness and algebraic properties have been studied in the first two chapters. These operations are topological in nature and give rise to programs which are suggestive of the pictores they represent. Pictares are embedded in an applicative higher-order languge, which is based on a subset of Edinborgh ML [Gordon 79a]. The control structures of the langage can be very easily used to define arbitrary parameterisations and conditional assemblies of pictores.

The langage is applicative in two of the senses commonly attributed to this word; it is expression oriented and free from side-effects. Expressions seem to be more sitited than statements to an interactive langage. They improve and enforce the structured description of complex pictures and help in keeping information local. Every pictare is taken to be an unmodifiable and anbreakable object, which can only be used to make larger pictures, and which
can only be manipulated through its set of named ports. Picture composition is then done by port names (and not by geometrical position or displacement) with automatic translations and rotations.

There are many advantages in manipulating pictures by their ports only. For example, the order in which the pictures have been put together becomes irrelevant (as there is no way to access the inside of the picture) and programs are garanteed not to rely on irrelevant structural details. Moreover, the orientation and scaling of pictures are unimportant, and the system can antomatically rotate pictures and adjust them to fit the screen.

Side effects might be needed to edit a picture, brt we regard this problem as completely distinct from that of picture construction. Editing a pictare is also very different from editing a text or a tree, as in the former case there may be very troublesome contert dependent effects, like those resulting from increasing the size of a subcomponent. In this context, editing by rebailding can be mach more convenient than editing by modifying, especially if an adequate structare of program modules is provided.

If side effects are forbidden, a "correctness by constraction" approach can be applied. We might be able to show that a picture enjoys some property P (e.g. absence of geometric rule violations) if its basic components have the property P and if the picture operations preserve the property P. Thus, the amount of checking to be done when composing two pictares can be drastically reduced. In the implementation of this system we decided to concentrate on different issues, and we did not incorporate hierarchical checks (such as hierarchical design rule checking [Withney 81]), which however sem to fit particularly well in this framework.

3.2 Pictures

We now describe how pictores can be generated. A picture is either an elementary picture (called a form) or the composition of smaller pictures. Pictures form an abstract data type and are first-class objects in the langage.

3.2.1 Forms

A form is made of a set of figares (boxes, polygons, etc.) with a sort. The sort of a picture is a list of ports, and ports are used to connect pictares together.

```
- let bluesquare =
    form(b.S : W port [0\uparrow0,0,1];
        b.E : W port [1^0,90,1];
        b.N : W port [1+1,180,1];
        b.W:W port [0^1, 270,1])
    with B box [0&0,1+1];
```

bluesquare $=\langle \rangle:(b . S: W ; b . E: W: b . N: W ; b . W: W):[1,1]$

A phrase like "let bluesquare $=\ldots ;$ is used to define the variable "blnesquare" at the top level (the string "- preceding it, is the SticksiStones prompt). The answer from the system is "bluesquare $=$-" where "——" is the result of the evaluation of "...". In this case the result is a "〈〉" (i.e. a picture whose structural details have been omitted) of sort "(...)" and of size 1,1 which is the size of the minimam enclosing rectangle.

Figure 3.1 A blue square

The figure bluesquare is a form (an elementary picture) made of a single B (blue) box with lower left corner at the point $0 \uparrow 0$, and upper right corner at the point $1+1$. It has four ports ' $\mathrm{b} . \mathrm{S}^{\prime \prime}$, ' $\mathrm{b} . \mathrm{E}^{\mathrm{E}}$, " $\mathrm{b} . \mathrm{N} "$ and " b .W".

A port name can be any list of identifiers and nambers (starting With an identifier) separated by dots, 1 ike "a" or "aaa.bbb.1.c'.3"; these identifiers and numbers are called atomic parts of a compound port name. Port names have no semantic significance, but they will often suggest the function of their associated port (e.g. "b.E" will stand for "blue East").

The port " b . $\mathrm{S}^{\prime \prime}$ is a \mathbb{W} (white) port; geometrically this is the vector with tail at $0 \uparrow 0$ oriented 0 degrees anticlockise from the x axis and of length 1 (hence its tip is at $1: 0$). The north of a vector is by convention in the tail-to-tip direction.

A more complete example is provided by an nMOS inverter:

```
- let inverter =
    form (b.E:B port [545,90,4];
            b.W:B port [149,270,4];
            g.S:G port [2^0,0,2];
            r.E:R port [6+1,90,2];
            g.E:G port [6+4,90,2];
            r'.E:R port [6*7,90,2];
            g.N:G port [4^15,180,2];
            r.W:R port [0+3,270,2])
with B box [1+4,5^10]
and G box [0\uparrow0,6\uparrow8; 2^8,4\uparrow15]
and R box [0\uparrow7,6+15; 0^1,6+3]
and I box [0.5+5.5,5.5^16.5]
and C box [2+5,4+9];
```

```
inverter = 〈〉 : (b.E:B; b.W:B; g.S:G; r.E:R; g.E:G;
    r'.E:R; g.N:G; r.W:R) : [6,16.5]
```


Figure 3.2 An nMOS inverter
corresponding colour. Ports of any other type are also admitted, and are drawn in the foreground colour (depending on the graphical device).

Boxes can have colours B (blue) G (green) $R(x e d) ~ I(y e l l o w) C$ (black) or W (white), and they may overlap; other colours are syntactically admitted bat are all drawn in the foreground colour. Note that a list of rectangles can be specified after the keyword "box".

Ports should always be oriented anticlockwise around a picture. This is not mandatory, but picture composition is made connecting ports on their east sides (tail to tip and tip to tail), and the anticlockwise convention ensures that pictures are joined on their outer sides. A picture may have no ports andor no figures. The empty picture is simply:

- form;
$\rangle:():[0,0]$

3.2.2 Restriction

Restriction is used to forget about some of the ports of a picture; the syntax is: expression, followed by "\", followed by a list of port names:

```
- inverter \ b.TM l.E g.?;
```

〈〉 : (I.W:R) : [6.16.5]

Figure 3.3 Restriction

Question marks and exclamation marks.are used to pattern match port names. Any variable beginning with an exclamation mark (like "!"; "!!", "labc" or "!3") matches with a single atomic part of a compond port name, while any variable beginning with a question mark matches with an arbitrary number (zero incladed) of atomic parts.

In the example above we withdraw the port b.T, all the $E(a s t)$ ports and all the $g(r e e n)$ ports from the inverter. The inverter itself is not affected by this operation and a traly new picture is generated.

3.2.3 Renaming

The renaming operation performs a simaltaneous substitution over the ports of a picture; the syntax is: expression, followed by "[", followed by a list of single renamings separated by ";", followed by "\}". A single renaming "a\b" means "a becomes b ".


```
<> : (b.E:B; inv.b.W:B; g.S:G; T.E:R; g.E:G; inv.r'.E:R;
    g.N:G; inv.r.W:R): [6,16.5]
```


Figure 3.4 Renaming

Match variables instantiated in the left part of a substitution can be used in the right part to get group renamings like
 r.W\inv.r.W". Note that "!.!" matches "a.a" brt does not match "a.b", which is matched by "!.l!", "l.?", "l.ll.?" or "?", but not by "!" or "!.!!.!!!". You can go as far as "!.l.!!.? ! !!.!.?.?.!!", which renames "a.a.b.3.5" into "b.a.3.5.3.5.b". A question mark in the left hand side can only appear as the last atomic part, otherwise the matching might be ambignous. A matching variable in the right hand side which does not appear in the left hand side is illegal.

3.2.4 Composition

Having two pictures, we can compose them by port names; the
syntax is: expression, "[:", list of single links separated by ";", ":]", expression. A single link has the form: portname, "-", portname.

- redsquare [: r.E - g. F^{F} :] greensquare;
\rangle : (r.S:W; g.S:T; g.E:T; g.N:W; r.N:W; r.W:W) : [2,1]

Figure 3.5 Composition
where redsquare and greensquare are defined similarly to bluesquare. This composition prodaces two adjacent squares, where the ports r.E of redsquare and g.T of greensquare have been connected and forgotten.

Several links can be specified inside the composition brackets, separating them by semicolons. All the ports involved in a connection are forgotten in the resilt, whose sort is otherwise the union of the sorts of the composing pictures. Pattern matching is not allowed in composition; programming experience has shown that its use leads to unclear programs.

Composition is a symmetric operation (in the sense: $P\left[: p_{i}-q_{i}:\right] Q$ $\left.=Q\left[: q_{i}-p_{i}:\right] P\right)$, and as an infix operator associates to the left. Every pair of ports which are being linked in a composition mast have the same type and the same size. Composition with the empty picture by any pair of ports leaves a picture unchanged.

Connection of two ports is made tail to tip and tip to tail with no distance between them. In case of connection of several pairs of ports, the main 1 ink is connected first, and all the other pairs of ports mast face each other, maybe with a gap in the middle. The main link is defined as the first link on the left, inside the composition brackets.

3.3 Banching

Every port is actually a bunch, or collection of collinear vectors. Up to now we only considered single-vector ports, but a port can also be a list of vectors:

R port $[0 \uparrow 0,0,1 ; 2 \uparrow 0,0,1 ; 5 \uparrow 0,0,1]$

Every vector in a bunch must have the same type, orientation and size and they must be collinear, but they can be differently spaced. Bunches may also be interleaved. When two ports are composed, every vector in one port mast match with a corresponding vector in the other port.

Bunches usually arise from composition: when two pictures are composed, the ports with equal names which are not being linked get bunched together:

- bluesquare[:b.E—b.W:]b1uesquare;
$\rangle:(b . S: B ; b . E: B ; b . N: B ; b . W: B):[2,1]$
here b.S and b.N are two bunches of two ports, which are drawn as a single arrow. Again bunching only succeds for collinear ports of the same size; otherwise an error is reported.

Figare 3.6 Banching

Bunches allow one to compose regalar arrays of pictures without having to explicitly index the ports of every pictare in the array by renaming them. They thereby keep the total number of ports in a picture low, making composition simpler and more efficient.

3.4 Iteration

Iteration is used to make regular arrays of cells, as in:

- 3 times bluesquare with [:b.E-b. W:]:

```
\langle\rangle : (b.S:W; b.E:W; b.N:W; b.W:W) : [3.1]
```


b. S

Figure 3.7 "times" iteration
Which is equivalent to:

- bluesquare [:b.E—b.W:]
bluesquare [:b.E-b.W:]
bluesquare;
$\rangle:(b . S: W ; b . E: W ; b . N: W ; b . W: W):[3,1]$

Iteration is equivalent to the obvions recursive program one might write in the language, but is more efficient and syntactically clearer. Iteration often produces bunches, as in the example above.

Iteration variables are admitted in the "for" form of iteration:

- let blue $=$ blaesquare\{b.? \backslash ? $\}$
and red $=$ redsquare\{r.? \backslash ? $\}$
and green $=$ greensquare\{g.? $\backslash ?\}$;
blue $=\langle \rangle:(S: W ; E: W ; N: W ; W: W):[1,1]$
red $=\langle \rangle:(S: W ; E: W ; N: W ; W: W):[1,1]$
green $=\langle \rangle:(S: \mathbb{W} ; E: W ; N: W ; W: W):[1,1]$
- for square in [blue; red; green]
iter square
with [: E-W:];
$\rangle:(S: W ; E: \mathbb{W} ; N: W ; W: \mathbb{W}):[3,1]$

S

Figure 3.8 "for" iteration
which produces the above picture. The iteration variable "square" takes in tarn the values blue, red, green in the list.

Doable iteration can be used to produce arrays of pictares:

```
- lot squares array =
    for row in array
    iter for item in row
            iter item
            with [:E-W:]
```

 with [:S-N:];
 squares $=" m$

S

Figrre 3.9 Double iteration
(where '"m' means that 'squares' is a function). This is the definition of a parametric picture, that is a function taking a list of lists (i.e. an array) of pictures and producing a picture. It can be used as follows:

- squares [[blue; green; red];
[green; red; blue];
[red; blue; green]];

〈〉 : (S:W: E:W; N:W; W:W) : [3,3]

Sometimes it is useful to iterate through several lists at once; this feature is used in the following definition of "squares" which substitutes a grean colum every three input colums:

```
- let squares' array =
    for row in array
    iter for item in row and i in 1::length row
        iter (i mod 3) =0 = green | item
        with [:E-T:]
        with [:S-N:];
```

 squares' = ""
 Where the operation " $n:: m$ " produces the list of all numbers from n
to m, and "a $\Rightarrow b \mid c$ " means "if a then b else c ".

A selector is a realistic example of a parametric picture with which can be built by double iteration. We first need to define three basic building blocks: "pos" (an enhancement transistor), "neg" (a depletion transistor) and "out" (a piece of the common outpat):

- let pos =
- let pos =
(form (r.S:R port [2†0,0,2];
(form (r.S:R port [2†0,0,2];
g.E:G pore [6+2,90,2];
g.E:G pore [6+2,90,2];
r.N:R port [4+6,180,2];
r.N:R port [4+6,180,2];
g.T:G port [0^4,270,2])
g.T:G port [0^4,270,2])
with R box [240,4t6]
with R box [240,4t6]
and G box [0+2,6+4])
and G box [0+2,6+4])
and neg $=$
(form (r.S:R port [2†0,0,2];
g.E:G port [6+2,90,2];
r.N:R port [446,180,2];
g.T:G port [0ヶ4,270,2])
with R box [$2 \uparrow 0,4 \uparrow 6]$
and G box $[0 \uparrow 2,6 \uparrow 4]$
and Y box [0.5†0.5,5.5ヶ5.5])
and out $=$
(form (g.S:G port [2 $10,0,2$];
g.N:G port [4†6,180,2];
g.W:G port [0ヶ4,270,2])
with G box [2†0,4†6; 0ヶ2.2ヶ4]);

Me now need to pat these pieces together：the following program takes a number n and produces a selector with n control inpats（the n－banch＂r．N＂），n complemented control inputs（the interleaved n－banch＂r＇．N＂）， 2^{n} input 1 ines（the $2^{\text {n }}$－bunch ＂$g . W$＂），one outpat line（the 1－banch＂g．N＂）and the appropriate pattern of enhancement and depletion transistors（produced by the auxiliary function ＂bit＂）．

```
- let sel n =
    for i in 1::exp (2,n)
    iter (for j in n::1.
            iter bit (i-1,j-1)=0 #
                    pos [:g.E--g.W:] (neg{r.?\r'.?}) |
                    neg[:g.E-g.W:] (pos{r.?\I'.?})
                    *ith [:g.E-G.W:])
                [:g.E-g.W:] out
        *ith [:r.S-r.N: r'.S-r'.N; g.S-G.N:]
whererec bit(i,j) =
    j=0 # i mod 2 | bit(i//2,j-1);
```

here "exp" is exponentiation and "//" is integer division.

The circuit shown in the next figure is the result of the evaluation of sel 2 (selector with two control inputs). The selector is obtained by two nested iterations, first building the rows and then joining them up into an array. At the core of the double loop we have to choose between a pair of pos-neg' and a pair of neg-pos' (where pos' and neg' are pos and neg with their r ports renamed to r'); this is done asing a function "bit". The inner loop connects all these pairs into a row, with the variable j ranging from n to 1. At the end of the inner loop, an out element is added to the right of the row. In the orter loop the variable i ranges from 1 to 2^{n} while all the rows are connected from south to north by bunch connections.

Figure 3.10 A selector

It should be emphasised that the selector program contains no explicit geometric information, and this is to be expected for many common VLSI subsystems. The double loop (array) pattern is also very common in structured design, and many other interesting examples can be produced by the use of parameterisation and recursion.

3.5 Paths and Geometric Renaming

A path can be generated by taking a port and moving it around: the wake of the port forms the resulting path. The outcome of this operation is a list of polygons (one or more for every step the port has made) and a new port (i.e. the old port in the new position). Hence a path is the following data type:

```
path = (polygon list) x port
```

Given a path the following operations extend it from the port, thereby generating a new path:

```
stay: path -> path
move: num -> path -> path
step: num -> path \(\rightarrow\) path
rot1: num -> path -> path
rotr: num \(->\) path \(\rightarrow\) path
```

```
move': num -> path -> path
step': num -> path -> path
rot1': nam -> path ->> path
rotr': num -> path -> path
```

The operation stay leaves a path unchanged;

The operation move takes a positive number n, a path p and moves the port of the path n anits. The direction of movement is towards the east of the port (i.e. generally outwards with respect to the picture if anticlockwise ports are used). The new path generated is made of the new port and the old polygon list with a new rectangular polygon having the old and new ports as edges.

The operation step is like move, but "step n" means "move n times the size of the port" for simple ports, and "move n times the size of the vectors in the port" for bunches.

The operation rotl (rotate left) takes a number n (in degrees), a path p and rotates the port of the path n degrees anticlockise describing a circular arc with centre in the tip of the port. If the port is a bunch, the distances between the vectors are respected and the result is a set of concentric paths. The new path generated is made of the new port (or bunch) with the old polygon list plus the new polygon(s) generated by the rotation.

The operation rotr (rotate right) is the same as rotl, but the rotation is clockwise and its centre is in the tail of the port.

The operations move', step', rot1" and rotr' are similar to their unprimed versions, but they move a port without producing any path between the old and new position. The operations move' and step' also accept negative argaments.

Functions from paths to paths are called path functions; the following are path functions:
stay
move 2
step 5
rot1 90
rotr 270

Function composition is used to compose path fonctions; in particular it is convenient to use the inverse fanction composition operator "8":
$(f \& g) x=g(f x)$

Here is an example of a composite path function:
move $2 \&$ roti $90 \&$ step $4 \&$ rotr $90 \&$ move 2
note that " 8 " behaves like an append on paths, as function composition is associative.

How do we use path fanctions? Ports are not available to the user as data objects separated from pictures, so that path objects can never be built, and there is nothing to apply path fanctions to. The
only place where is possible to nse path functions is in the geometric renaming featore of the renaming operation:

- bluesquare $\{? \backslash$? move 2\};
$\rangle:(b . S: W ; b . E: W ; b . N: W ; b . W: W):[5,5]$

b. S

Figure 3.11 A blue cross

The meaning of this is to rename every port in bluesquare by its own name, moving it 2 units outwards. The resilt is a blne cross of size [5,5]. The path function "move 2" is applied in tarn to the paths obtained pairing the ports of bluesquare with the empty list of polygons.

Here is a very flexible blue square which can be stretched symmetrically in four directions by applying a path to it:

- let bluewheel path = bluesquare \{? \backslash ? path\};
b1 newheel = m
- bluewheel (move $2 \&$ rotl $45 \&$ move $15 \&$ rotr $135 \&$ move $30 \&$ rotr 45 \& move $20 \&$ rotr 270);
$\rangle:(b . S: W ; b . E: W ; b . N: T: b . W: W):[68.9 .68 .9]$

Figure 3.12 Geometric renaming

A limited form of routing (called river-routing) can be obtained by using geometric renaming on bunches:
-sel $2\left\{g . W \backslash \mathrm{~g} . \mathrm{T}_{\mathrm{W}}\right.$ rotr $60 \&$ rot1 $60 \&$ move 6\} \backslash ?;

〈〉: () : [51.32,32]

Figure 3.13 Geometric bunch renaming

3.6 Figures

There is a variety of elementary figures. Actrally many of them have no application in VLSI and are intended mainly for graphics. All of the following options can appear syntactically after the keyword "with" inside forms (in the place of boxes in the examples of the previons section).
dot [p1; ... :pk] draws dots at the specified points p1 ... pk.

1ine [11; ... ; 1k] draws a set of lines 11 ... $1 k$; every line is a list of points $1 i=[p 1 ; \ldots ; p k i]$ which are joined by straight segments.
path [11: ... ;1k] draws a set of paths 11 ... $1 k$; every path is a list of pairs of numbers and points $1 i=[n 1, p 1 ; \ldots ; n k i, p k i]$. Adjacent points $p(j), p(j+1)$ in a path are joined by a circalar arc of aperture $n(j+1)$ degrees (if $n(j+1)$ is 0 or any maltiple of 360 , a straight segment is used). If $n(j+1)$ is positive, the arc is conver on the east of the ∇ ector $p(j) \rightarrow p(j+1)$; if negative it is conver on the west. The first aperture nl is not used.
spline [11; ... ;1k] draws a set of non periodic cubic B-splines 11 ... 1k; every spline is bailt from a list of control points
$1 i=[p 1 ; \ldots ; p k i]$. The spline does not pass throngh the control points (except the first and the last), bat is tangent to every segment joining two adjacent control points.
loop [11: ... ;1k] draws a set of periodic cubic B-splines $11 \ldots$ $1 k$; every spline is bailt from a list of control points $1 i=[p 1$; ... ;pki]. The spline is tangent to every segment joining two adjacent control points (the last point is adjacent to the first) and describes a closed curve.
box [p1,q1; ... ;pk,qk] draws a set of boxes with lower left corner at the point pi and $u p p e r$ right corner at the point $q i$.
poly [11: ... :1k] draws a set of polygons 11 ... 1k; every polygon has a line $1 i=[p 1 ;$... ;pki] as perimeter. The 1 ast point pki is joined back to the first.
area [11: ... ; 1k] draws a set of areas $11 \ldots 1 k$ every area has a path $1 i=[n 1, p 1 ;$... ;nki,pki] as perimeter, where the first apertare $n 1$ is used to join the last point back to the first.
blob [11; :1k] draws a set of blobs 11 ... 1k; every blob has a loop $1 i=[p 1 ; \ldots ; p k i]$ as perimeter.
text [p1,s1; ... :pk,sk] draws a set of character strings s1 ... sk starting respectively at the points pl ... pk. Every string may contain control information (following the escape character "\%") according to this code: "布r" change colour to red; "\%g" change colonr to green; "\%b" change colour to blue; "\$y" change colour to yellow; "\%B" change colour to background (black for Charles, white for HP plotter etc.); "\%F" change colour to foreground (white for Charles, black for $H P$ plotter etc.): "" 0 " ... ""gy" change text size ($0=m i n, 9=m a x$) ; " $\% S^{\prime \prime}$ halt plotting and wait for a carriage return to continue (e.g. to change page on the HP plotter); "\%x" for any other
character "x" to actually display "x" (e.g. ""א"). Note that the escape character "\%" is only interpreted by the plotting routines while the normal escape character "/" should be used for any other purpose (e.g. to insert a """).

3.7 Commands

The following commands are accepted at the top level.
mode: this command investigates the state of the environment, showing what options are active and what are not. Options are:
print: when active, the result of every top-level evaluation is printed at the terminal.
charles: when active, the result of every top-level evaluation is drawn on a Charles colour graphic terminal.
teltronix: when active, the result of every top-level evaluation is shown on a Tektronix terminal.
hpplot: when active, the result of every top-level evaluation is plotted on a HP -7221A plotter.
dravnames: when a plotting device is active, draws the names of the ports at their location.
drawports: when a plotting device is active, draws the ports at their location as little arrows.
signature: when a plotting device is active, puts a signature "Sticks\&Stones" in the lower right corner.
page: when a plotting device is active, plots in "page" mode. Every picture shown will fit incrementally the available space from top to bottom (it will try to make pictores horizontally as large as possible). On the $H P$ plotter, pictures will fit an A4 sheet of paper.
logfile: produces a log file "STICES.LOG" containing a transcript of the terminal inpat. Type "addmode logfile" to open a nem logfile (destroying the old one) and start writing on it, and "submode
logfile" to save it and stop writing on it.
addmode m. ..., mi adds the modes $m i$ to the current mode.
submode m1, ... , min: subtracts the modes mi from the current mode.
print $\nabla:$ prints the object ∇; all the plotting actions are suppressed for the duration of this command.
drav $v:$ draws the object ∇ on the currently active device(s). Print is suppressed for the duration of this command. If V is a picture, it is plotted. If ∇ is a list of n items, the screen is horizontally divided into n viewports, and every item in the list is drawn in a viewport; if an item in v is again a list, its viewport is divided vertically, and so on horizontally and vertically to any depth. If ∇ is not a picture, nothing is shown (this should be intended recursively.).
contents: shows the names of the variables defined at the top 1evel.
ando: the result of the last expression evaluated is always kept in the top level variable "it". The command "undo" can be used to reset "it" to its previous value (only once).
nse: loads a modale (described in section Modules and externals").
import: imports an external pictore (described in section 'Modules and externals").
export: creates an external pictare and generates a CIF file (described in section "Modales and externals").

```
3.8 Modules and Externals
Some modules (called library modules) are predefined in the system, as for example "constants" (basic cells) and "pla" (pla generator). Modales can contain data (1ike "constants") or programs (like "pla"), and can be used by the command:
- use constants,pla;
Which loads the definitions contained in constants and pla.
New modules can be generated by editing files with extension ".STX", containing Sticks \& Stones expressions and definitions. Every module can "nse" other modules.
Externals arise when, at the end of a session, we want to save the pictures produced so far. If a very big and very time-consuming AlU (Arithmetic-Logic Unit) has been prodaced, it can be saved as follows:
```

- export ALD:

ALD exported

This command generates: (i) a CIF file of the ALJ, called "ALD.CIF", and (ii) a file containing boundary information about the ALD, called "ALD.STX". The ALD can be recalled by:

- import ALD;

ALD = 〈〉: ...

The advantage of externals is that it is possible to use the ALD in another session without having to build it again. To import something takes almost no time, as only bonndary information (i.e. ports) is used (an imported picture is drawn as a white frame with ports). Moreover the ALU can be ased as a component of a CPU, and when the CPU is exported, the system merges the already existing ALD.CIF file with the rest of the picture. CIF files generated by "export" can be used for plotting or for mask fabrication.

The import command is also used to interface already existing CIF files to Sticks \& Stones. Given a CIF file REG.CIF, we only have to write a file REG.STX and then "import REG;". The STX file should contain a form describing the ports of the REG, and should deciare it to have a figure (e.g. a box) of the right size:

```
1et REG =
    form (VddIn:B port ...; VddOnt:B port ...;
            GndIn:B port ...; GndOut:B port ...;
            BusIn:B port ...; BusOut:B port ...;
            ReadIn:R port ...; ReadOat:R port ...;
            WriteIn:R port ...; WriteOtt:R port ...;
            ClockIn:R port ...; ClockOut:R port ...)
    withW line [[0\uparrow0;36;0;36\uparrow36;0\uparrow36;0\uparrow0]];
```

"export" uses a "line" to generate a white frame, like in this example.

CIF files generated by Sticks \& Stones are compact, as common subpictures are factorised into CIF symbols, and calls to these symbols are generated where necessary. Moreover they are commented: every CIF symbol is associated to the name(s) used in Sticks 8 Stones to denote it.

3.9 Efficiency

The composition algorithm is linear in the namber of (bunch) connections and independent of the number of ports of the sorts involved.

If possible, iteration should be used instead of recursion and the "times" form of iteration should be preferred. In the latter case the iteration body needs to be evaluated just once (because the language is applicative) instead of n times. But what is more important, the system can use a logarithmic algorithm instead of a linear one, producing at any step 1,2,4,8,16 etc. instantiations of the iteration body and then composing them up to get the desired number. The gain in efficiency is considerable: to produce a 16×16 array of four-port cells the "times" iteration takes 8 connections against the 255 of the "for" iteration.

Because of the absence of side-effects, it is possible to share in memory everything that is sharable; hence "let" should be used to factorise common subexpressions. An array of 16×16 cells can be produced by allocating just one cell plus 8 connection records. If instead we pat an expanded cell definition inside a double iteration with iteration variables we can cause the allocation of 256 identical cells plus 255 connection records.

3.10 Conclusions

The implementation of SticksdStones allowed us to gain some experience in the area of VLSI design tools, and to test and demonstrate the practical utility of the notation we are proposing. For example, the ideas of bunches and planar sorts can be considered a direct consequence of the implementation effort and of the fact that we had to cope with real-life circuits.

The subsequent investigation of more theoretical issues (described in chapters 1 and 2), together with the experience already gained, brought ap new problems and ideas, so that Sticksistones would probably be rather different, if we had to implement it today. We would expecially like to make it safer to use (by more rigorons syntactic checks) and more interactive (by the use of pointing devices).

However we are now of the opinion that an experiment at the layout level of description should not be repeated, and in the field of silicon assemblers we should strive directly for stick-oriented systems, as suggested in sections. 2.5 and 2.6. Sticksistones, in the present form, still retains mach interest for compater graphics, for its ability to manipalate graphical and geometrical entities, and as alternative to turtle graphics.

3.11 Syntax

3.11.1 Syntax Definition

The notation used here is explained in Appendix I.

```
toptemm ::= (command | toplet | topletrec | term) ';'
```

```
command ::= mode | addmode | submode | print |
    draw | undo | use | begin | end |
    contents | import | export
```

```
mode ::= 'mode'
addmode ::= 'addmode' {ide / ','}1
submode ::= 'submode' {ide / ','}1
print ::= 'print' term
draw ::= 'draw' term
undo ::= 'undo'
use ::= 'nse' {ide / ','}1
begin ::= 'begin' port
end ::= 'end' port
contents ::= 'contents'
import ::= 'import' ide
export ::= 'export' ide
toplet ::= '1et' declaration
topletrec ::= '1etrec' declaration
term ::= variable | bool | string | namber | point | pair |
    list | form | composition | restriction | rename |
    conditional | abstraction | application | iteration |
    let | 1etrec | where | whererec | parterm |
    and | or | not | minus | cons | append | sum| diff |
    times | divide | equal | great | less | greateq|
    lesseq | range | mod | directcomp | reverscomp
```

```
variable ::= ide
bool ::= 'true' | 'false'
string : := ": characters " ',
number ::= unsignedreal
point ::= term 't' term
pair ::= term ',' term
list ::= '[' {term / ';'} ']'
form ::= 'form' [sort] ['with' {fignre / 'and'}1]
sort ::= '(' {port ':' ide ['port' term] / ';'}1 ')'
figure ::= ide shape term
shape ::= 'dot' | '1ine' | 'path' | 'sp1ine' | '1oop' |
    'box' | 'poly' | 'area' | 'blob' | 'text'
composition ::= term connection term
connection : := '[:' {port '—_' port / ';'}1 ':]'
restriction : := term '\' {match}1
rename ::= term '{' {substitution / ';'} '}'
substitation ::= match '\' match [term] |
    match term
iteration : := term 'times' term 'with' connection |
    'for' {struct 'in' term / 'and'}1
                                    'iter' term 'vith' connection
conditional ::= term '}=>\mathrm{ ' term '|' term
abstraction ::= 'm' {struct}1 ** term
application ::= term term
let ::= 'let' declaration "in' term
letrec ::= '1etrec' declaration 'in' term
where ::= term 'where' declaration
whererec ::= term 'whererec' declaration
declaration : := {funstract '=' term / 'and'}1
```

```
funstruct ::= struct | ide {struct}1
struct ::= '(' ')' | ide | struct '甲' struct |
    stract ',' struct | '[' {struct / ';'} ']' |
    struct '_' struct | '(' struct ')'
```

parterm : : = (' term ')'
and : : = term 'And' term
or : : = term 'Or' term
not : : = term 'Not' term
minus ::= '-' term
cons : := term ' -' term
append ::= term 'ว' term
sum : : = term '+' term
diff ::= term '-' term
times : : = term '*' term
divide ::= term '/' term
equal : : = term '=' term
greater : : = term '>' term
less : := term 'く' term
greateq : := term '>=' term
lesseq ::= term ' $\langle=$ ' term
range : := term '::' term
mod ::= term 'mod' term
directcomp : := term 'o' term
reverscomp ::= term '\&' term

```
letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z' | ".''
digit : := '0' | ... | '9'
ide ::= letter | ide letter | ide digit
matchide ::= '!' | '?' | ide '!' | ide '?' |
    matchide '!' | matchide '?' |
    matchide letter | matchide digit
integer ::= digit | integer digit
unsignedreal : := integer ['.' integer]
port ::= ide | port '." ide | port '.' integer
match ::= matchide | port '.' matchide |
    match'.' matchide | match '.' ide |
    match '.' integer
```


3.11.2 Precedence of Operators

"m $n^{\prime \prime}$ means that the infix operator "*" has left precedence m and right precedence n. An expression " $x \neq \mathcal{H}^{\prime \prime} z^{\prime \prime}$ associates like
 means that "*" is left associative and m>n that it is right associative.

100 Or 100
200 And 200
301 . 300
401 - 400
500 ว 500
$600=600$
$700>700$

700	$<$	700
700	$\rangle=$	700
700	$<=$	700
800	mod	800
900	\uparrow	900
1000	$:$	1000
1100	+	1100
1100	-	1100
1200	$*$	1200
1200	$/$	1200
1200	$/ /$	1200
1300	\circ	1300
1300	$\&$	1300
1400		1400

3.11.3 Predefined Functions

And (infix) boolean and.
Or (infix) boolean or.
Not (infix) boolean not.
$=$ (infir) equality over booleans, nambers, points, pairs and lists only.
> (infir) greater than.
く (infir) less than.
$>=$ (infix) greater then or equal to.
< (infix) less than or equal to.

- (prefir) number complement.
+ (infix) number sum.
- (infir) namber difference.
- (infix) number product.
/ (infix) namber division.
// (infix) integer division.
mod (infix) number modalo: "a mod b " is the remainder of "a//b".
lft point left: lft (atb) =a.
rht point right: rht (afb) $=\mathrm{b}$.
fst pair first: fst (a,b) =a.
sind pair second: snd $(a, b)=b$.
hd 1ist head: hd [a1; \ldots; an] $=a 1$ ($n>0$).
t1 list tail: t1 [a1; ... ;an] = [a2; ... ;an] (n>0).
nall list nall: nall [] = true;
nul1 [a1, ... , an] = false (n>0).
_ (infix) list cons: a_[a1; ... ;an]
$=[a ; a 1 ; \ldots ; a n](n>=0)$.
ว (infix) list append: [a1; ... ;an] ∂ [b1; ... ;bm]
$=[a 1 ; \ldots ; a n ; b 1 ; \ldots ; b m](n, m\rangle=0)$.
$:$: (infix) range: $n:: m=[n ; n+1 ; \ldots ; m-1 ; m](n<=m) ;$
$\left.n: \mathrm{n}_{\mathrm{m}}=[\mathrm{n} ; \mathrm{n}-1 ; \ldots ; \mathrm{m}+1 ; \mathrm{m}](\mathrm{n}\rangle=\mathrm{m}\right)$.
length list length: length [a1; ... ;an] $=n(n)=0)$.
- (infix) function composition: (fog) $a=f(g a)$.
\& (infix) reverse function composition: (f \& g) $a=g(f a)$.

4. Analog Processes

In this chapter and in the next one we try to set up formal frameworks in which the semantics of low-level hardware can be defined and studied. In the process we revert from net algebras to Milner's flow algebras [Milner 79] for consistency with existing literature and because flow algebras are more convenient from a formal point of view.

4.1 Introduction

In this chapter we develop a formal framework for describing continuons interaction, like for example the gravitational interaction of planets around a star. These interactions are not "commanications" in the sense of discrete packets of information being exchanged, but rather varions forms of "being in contact" on an instant by instant basis.

Although most of the phenomena in concurrent systems can be stadied in a discrete framework, some of them seem to imply some notion of continnity or, at least. of arbitrarily small discreteness. A very well known example is the arbitration problem, which disappears as soon as a discrete time scale is introduced; other examples include measurement problems, and the stady of asynchronous interaction of internally synchronons systems. Most of these problems are $u n+1$ come, both from the theoretical and practical point of view, and their stady can help in understanding When they can be safely ignored or controlled.

Asynchronous electronic circnits will be used as a source of interesting examples, and we shall be able to model and analyse asynchronous feedbacks, metastable states, arbitration and indeterminacy. We shall also discover some basic (and plausible) limitations on the kinds of systems we can express, which sem to
indicate some correspondence between our model and what we may consider to be "physically feasible" processes.

Finally, it is interesting to notice that all these phenomena arise from the mere consideration of concorrency in real time, and do not necessarily depend on other characteristics of the physical universe, like quantum mechanic or relativistic effects.

4.2 Analog Processes

A signal is a value varying through (continuous) time, which is carried by a line (we use α, β etc. for lines). An analog process is a collection of transformations of such signals (called transitions), for example:

Signal S_{a}

Analog Process P

Signal S_{B}

Figrre 4.1 A process
The signals above can be expressed as functions of time:

$$
S_{\alpha}(t)=\sin t \quad S_{\beta}(t)=1
$$

and the process P transforming S_{α} into S_{β} can be described by a transition $T_{a \beta}$ which in this case might be:

$$
T_{\alpha \beta}(s)(t)=s(t)-\sin t+1
$$

For then, applying $T_{\alpha \beta}$ to S_{α} we get S_{β} as we have:

$$
\begin{aligned}
T_{\alpha \beta} & =\lambda t \cdot S_{\alpha}(t)-\sin t+1 \\
& =\lambda t \cdot \sin t-\sin t+1 \\
& =\lambda t \cdot 1 \\
& =S_{\beta}
\end{aligned}
$$

In general a process will consist of several transitions, and
systems will comprise several connected processes.

4.3 An Algebra of Analog Processes

A process is described by a collection of transitions $M \rightarrow \beta$, Where the term M denotes the signal produced by the transition, and β is an identifier denoting the ontput port of the transition. The signal M is an expression of the input ports of the process. Here is an example of the syntax we shall use to talk about transitions:

$$
(\alpha \rightarrow \beta) X((\alpha \nexists \gamma) \rightarrow \delta)
$$

For clarity we shall sometimes prefix processes with input ports, although this is not strictly necessary as the inpat ports of a process will always coincide with the free variables of the signal part of the transitions:
$a \gamma: \alpha \rightarrow \beta X a \quad \gamma \quad \gamma \rightarrow \delta$
This is a process with input ports α, γ and output ports β, δ (parentheses have been omitted).

The intended behaviour of processes will be explained by algebraic laws. We shall only be concerned with some of the laws and we shall not try to present a complete set of equations. The following three laws express the fact that processes are unordered collections of transitions:
$[X X] \quad\left(T \times T^{\prime}\right) \times T^{\prime \prime}=T X\left(T^{\prime \prime} X T^{\prime \prime}\right)$
[X] $T X T^{\prime}=T^{\prime} X T$
[NIL] $T \times N I L=T$
where NIL is the empty transition and T, T and $T^{\prime \prime}$ range over transitions.

The intended meaning of the expression (*) above is a process which at any instant of time produces on the outpat port β the
current value of the input port a ，and on the output port δ the current value of the join（ \forall ）of a with γ ．The join operator represents the simaltaneous presence of two signals on the same ＂line＂，and its exact meaning is left onspecified，except that the join operation mast exist for every pair of signals（of the same type）and it must satisfy：
［四］（ M 甘 M^{\prime} ）$E M^{\prime \prime}=M 甘\left(M^{\prime} \forall M^{\prime \prime}\right)$

For example，for boolean－valued signals $s^{\prime}, s^{\prime \prime}$ we might define s＇Es＂ to be at any instant of time a boolean or，i．e．：

$$
\left(s^{\prime} \forall s^{\prime \prime}\right)(t)=s^{\prime}(t) \vee s^{\prime \prime}(t)
$$

The existence of a constant－（nosignal）is also assumed；it relates to join as follows：
［－］ME $\quad=M$

In the previous boolean example we can define nosignal as the signal constantly false，i．e．：$\dot{-}(\mathrm{t})=$ false．The $j o i n$ operation is also used in the following 1 aw ，which accounts for the presence of repeated output ports：
$[B X] \quad M \rightarrow \beta X N \rightarrow \beta=M B N \rightarrow \beta$

Now we define some basic operators on processes，together with their algebraic laws．

4．3．1 Composition

The composition of two processes P and Q is written PlQ．The oatpat ports of P are 1 inked to those inpat ports of Q with the same
name, and the outpat ports of Q are linked to the input ports of P with the same name; the idea being that signals flow through these connections from one process to the other. We have the following laws for composition:
$[\|](P \mid Q)|R=P|(Q \mid R)$
[1] $P|Q=\mathbf{Q}| \mathbf{P}$
$[\mid X] \quad\left(\Pi_{i \varepsilon I} T_{i}\right) \mid\left(\Pi_{j \varepsilon J} T_{j}\right)=\Pi_{\mathbf{k g I} I} J_{k}$
where I and J are disjoint sets of indexes
(Here $\|_{i \varepsilon I_{i}} \mathbf{T}_{i}$ abbreviates $T_{1} X \ldots X T_{n}$ with $I=\{1, \ldots, n\}$)

An example of $1 \mathrm{aw}[\mid X]$ is:

$$
(\alpha: \alpha \rightarrow \beta) \mid(\beta: \beta \rightarrow \gamma)=\alpha \beta: \alpha \rightarrow \beta \times \beta \rightarrow \gamma
$$

Figure 4.2 Composition
Note that composition may introduce loops (β being both an input and an outpat port) and indeed such loops may be present in the first place. We shall come later to the exact semantics of such situations; for the moment just think of a looping signal as oveririting itself by a join operation.

4.3.2 Restriction

The restriction $P \backslash a$ of P cancels α from the input and output ports of P, making commanication via a impossible. We have:
[1] $\quad P \backslash \alpha=P \quad$ if a ports (P)
$[\backslash \backslash] P \backslash \alpha \backslash \beta=P \backslash \beta \backslash \alpha$
$[\backslash] \quad(P \mid Q) \backslash a=P \backslash a \mid Q \backslash a$
if not ($(\alpha$, in-ports (P) and $a \varepsilon$ out-ports (Q)) or (a ε out-ports(Q) and a e in-ports(P)))

Now we need laws to distribute \backslash. over X, and at first sight these might be:

```
    \(\left(\Pi_{i \varepsilon I} T_{i}\right) \backslash a=\Pi_{i \varepsilon I}\left(T_{i} \backslash a\right)\)
    \((M \rightarrow a) \backslash a=\) NIL
    (... \(\alpha \ldots \rightarrow \beta) \backslash \alpha=\ldots \dot{\rightarrow} \rightarrow \beta\)
```

Onfortanately this does not work well in the case:
$(\alpha: M \rightarrow \alpha X \alpha \rightarrow \beta) \backslash \alpha=\dot{\perp} \rightarrow \beta$
In fact we wish to interpret la as a hiding operator, which should not change the inner behaviour of the process. The result we want to get is, at least:
$(\alpha: M \rightarrow \alpha X a \rightarrow \beta) \backslash \alpha=M \rightarrow \beta$
But even this is not enongh in the case where M is an expression M[a] of α itself, e.g. when we have a loop over the restriction variable whose result is exported through another output port (in this case β). To solve these problems we need to introduce recursively defined signals (μ a. M):
$[\mu] \quad \mu a . M=\mu \beta .(M[\beta / a])$
$[\mu \mu] \quad \mu \alpha . M=M[\mu a . M / \alpha]$

Then the law for restriction is:
$[\backslash X] \quad\left(\prod_{i \varepsilon I} I_{i} \rightarrow a_{i}\right) \backslash a=\Pi_{j \varepsilon J} T_{j}{ }_{j}$
where $J=\left\{i \varepsilon I: a_{i} \neq a\right\}$
and $T^{\prime}{ }_{j}=\left(M_{i} \rightarrow a_{i}\right)\left[\left(\mu a . \forall_{a_{i}=a_{i}} M^{\prime} / a\right]\right.$

Here $\forall_{i s I} M_{i}$ is the join of all the M_{i}, and it is - if I is empty.

Examples:
$(\alpha: \alpha \rightarrow \beta)(\alpha=(\mu a . \dot{ }) \rightarrow \beta=\sim \rightarrow \beta$
$(\alpha \beta: \alpha \rightarrow \beta \times \beta \rightarrow \gamma) \backslash \beta=\alpha: \alpha \rightarrow \gamma$
$(\alpha \beta: \alpha \rightarrow \beta \times \beta \rightarrow \alpha) \backslash \beta=\alpha: \alpha \rightarrow \alpha$
$(a: a \rightarrow a) \backslash a=$ NIL
$(\alpha: \alpha \rightarrow \alpha \times a \rightarrow \beta) \backslash \alpha=(\mu \alpha, \alpha) \rightarrow \beta$

The important point in law [XX] is that looping situations are somehow hidden of preserved, but never "unfolded" by la.

4.3.3 Renaming

The renaming $P\left\{\alpha_{1} / \beta_{1}, \ldots, \alpha_{n} / \beta_{n}\right\}$ is the process obtained from P by simaltaneously substituting $a_{1} \ldots a_{n}$ for the (inpat and/or output) ports $\beta_{1} \ldots \beta_{n}$: A renaming $\{R\}=\left\{\alpha_{i} / \beta_{i}\right\}$ is a bijection $R: L \rightarrow$ over the ports L of P, i.e. the β_{i} the ports of P, and the α_{i} are distinct. Dammy substitutions will be omitted, so that $\left\}=\left\{a_{i} / a_{i}\right\}\right.$.
[\{] $\quad \mathbf{P}]=\mathbf{P}$
[1$\}$ \{] $] \quad P\{R\}\{S\}=P\{S \circ R\}$
$[\} \backslash] \quad(P \backslash a)\{R\}=(P\{R, \beta / \alpha\}) \backslash \beta$

$$
\text { if } \alpha \varepsilon \text { ports }(P) \text { and } \beta \neq \text { range }(R)
$$

$\left[\} \mid](P \mid Q)\{R\}=\left(P\left\{R^{\prime}\right\}\right) \mid\left(Q\left\{R^{\prime \prime}\right\}\right)\right.$

```
    Where R' = R restricted to ports(P)
    and }\mp@subsup{R}{}{\prime\prime}=R\mathrm{ restricted to ports(Q)
```

To distribute $\{R\}$ over X we actually perform a syntactic substitution:
[[]X]

$$
\left(\Pi_{i \varepsilon I} T_{i}\right)\left\{\alpha_{j} / \beta_{j}\right\}=\prod_{i \varepsilon I}\left(T_{i}\left[\alpha_{j} / \beta_{j}\right]\right)
$$

Example:

$$
(\alpha \beta: \alpha \rightarrow \beta \times \beta \rightarrow \alpha)\{\alpha / \beta, \beta / \alpha\}=\beta \alpha: \beta \rightarrow \alpha X \alpha \rightarrow \beta
$$

The algebraic laws we have presented so far form what we shall call an analog algobra. These laws can be gronped into two categories: external laws (relating l, |a and \{R\}: [||], [|], [\], [\]. [\|]. [\{]], [\{\}\{\}], [\{\}\] and [\{]\|) concerning the synthesis of processes from simpler processes, and internal laws (all the others) concerning the inner structure of processes. The erternal laws are just those of Milner's flow algebras [Milner 79]. Flow algebras are extended in [Milner 78] by a set of internal laws for commanicating processes, and are then called behaviour algebras. Onr internal laws are quite different from Milner's ones, but they sem to fit very well in the general framework of flow algebras, even if the meaning of I, \a and $\{R\}$ is radically different.

4.4 A Denotational Model

In the rest of this chapter we shall study a particalar analog algebra, built within the framework of denotational semantics. This will allow ns to stady the exact meaning of processes just by computing their semantics and observing their input-ontpat behaviour. The denotational semantics will also prove usefal in discussing some delicate situations arising from feedback loops and recursively defined signals.

[^1]associations of transitions with L inpats to the ontput ports L^{\prime} :
$$
P_{L, L^{\prime}}=L^{\prime} \rightarrow T_{L}
$$

Here L, L^{\prime} range over finite subsets of PLab, the set of port labels, and T_{L} is the domain of transitions with L inputs (and one output). The domain P of processes is given by:

P $\triangleq \Sigma_{L, L}, P_{L, L}$,
A transition with L inputs is a function taking |l| input signals and producing an outpat signal, hence:

$$
\mathrm{T}_{\mathrm{L}} \triangleq \mathrm{~s}^{\mathrm{L}} \rightarrow \mathrm{~S}
$$

where S is a domain of signals.

Signals are functions from time to a domain of values. We can have several types of signals, like boolean signals, real signals, etc.

$$
\mathrm{S} \triangleq \mathrm{~K} \rightarrow \mathrm{~V}
$$

where K is the flat domain of positive real numbers, and V is a given data domain which is an abelian monoid 〈 $V, \phi, V\rangle$ with V strict (i.e. $1 \vee \mathrm{I}=1$). We define:
$-(t) \triangleq 1$
$\left(s^{\prime} \forall s^{\prime \prime}\right)(t) \triangleq s^{\prime}(t) \vee s^{\prime \prime}(t)$
 [-] hold when we give the semantics.

We need some notation for elements in these domains; λ-notation will be used for signals $s e s=K \rightarrow V$. Elements of S^{L} will be denoted by expressions like:

$$
\left[a_{1}: s_{1}, \ldots, a_{n}: s_{n}\right] \text { for } a_{1} \ldots a_{n} \in L, s_{1} \ldots s_{1} \& S
$$

Which are meant to be unordered tuples of labelled signals $a_{i}: s_{i}$ with the additional property:

$$
[\text {.. a:s', a:s" ..] = [.. a:s'\#s"' ..] }
$$

and operations:
$\backslash a: s^{L} \rightarrow s^{L \backslash\{a\}}$
. $\alpha: S^{L} \rightarrow \mathrm{~S}$
$\#: s^{L} \times s^{L^{\prime}} \rightarrow s^{L u L^{\prime}}$
defined as:

```
\(\left[\alpha_{i}: s_{i}\right] \backslash \alpha=\left[\alpha_{j}: s_{j}\right]\) with \(i \varepsilon I, j \varepsilon\left\{i \varepsilon I \mid \alpha_{i} \neq \alpha\right\}\)
\(\left[\alpha_{i}: s_{i}\right] . \alpha=\forall\left\{s_{k} \mid a_{k}=\alpha\right]\) where \(\forall\}=-\)
\(\left[\alpha_{i}: s_{i}\right] \forall\left[a_{j}^{\prime}: s_{i}^{\prime}\right]=\left[a_{i}: s_{i}, a_{j}^{\prime}: s_{i}^{\prime}\right]\)
Elements of \(T_{L}=S^{L} \rightarrow S\) of the form:
```

$\lambda x . \ldots x . a_{1} \ldots x . a_{n} \ldots$
will be abbreviated (with a change of font) as:
$\lambda\left[a_{1} \ldots a_{n}\right] . . . a_{1} \ldots a_{n} \ldots$
Where $\left[a_{1} \ldots a_{n}\right]$ is an unordered tuple of variables. Notice that this notation allows for anordered application by label names (i.e. call-by-keyword), as in:

$$
\left(\lambda\left[a_{1} a_{2}\right] \cdot a_{1} * a_{2}\right)\left[a_{2}: 3, a_{1}: 5\right]=5 * 3
$$

Finally, processes $p \in P_{L, L}{ }^{\prime}=L^{\prime} \rightarrow T_{L}$ of the form:
入x. $\left(x=\alpha_{1}\right) \Rightarrow t_{1} ; \ldots ;\left(x=a_{n}\right) \Rightarrow t_{n} ;(\lambda[] .-)$
(where " $a \Rightarrow b ; c$ " means "if a then b else c ") will be abbreviated as:
$\left\{t_{1} \rightarrow a_{1} ; \ldots ; t_{n} \rightarrow a_{n}\right\}$

There are three semantic evaluation functions:
$T:$ terms X ports X vars $\rightarrow T \quad$ for term expressions
$S:$ signals X ports $\rightarrow S \quad$ for signal expressions
\mathbb{P} : processes X ports $\rightarrow P \quad$ for process expressions
with two kinds of environments:

$$
\begin{aligned}
& \text { vars }=\text { Ide } \rightarrow V \\
& \text { ports }=L \rightarrow s
\end{aligned}
$$

We shall first discuss the semantics of process expressions, then the semantics of signal expressions, giving the syntar at the same time. We shall not treat the semantics of terms, as term expressions
will always have an evident meaning.

The following is the semantics of a very simple process, consisting of a single transition:
$\mathbb{P I a _ { i }}: S \rightarrow \beta$ Do $=$
I λ P. $\left.\left\{\lambda\left[a_{i}\right] . S \mathbb{S} \| \sigma\left[a_{i} \forall P\left(a_{i}\right)\left[a_{j}: a_{j}\right]\right) / a_{i}\right] \rightarrow \beta\right\}$
(note that $P\left(\alpha_{i}\right)\left[\alpha_{j}: a_{j}\right]=-$ if $\left.\alpha_{i} \neq \beta\right)$.

The fixpoint and the join operation are needed just in case β is equal to one of the a_{i}, i.e. When there is a feedback. Otherwise the previons expression redaces simply to:

$$
\left\{\lambda\left[a_{i}\right] \cdot s \llbracket S \rrbracket \sigma\left[a_{i} / \alpha_{i}\right] \rightarrow \beta\right\}
$$

In case of feedback, say $\alpha_{3}=\beta$, the inpat to α_{3} is a (the inpat to process P) joined to what comes out of β, which is $P\left(a_{3}\right)\left[a_{i}: a_{i}\right]$. In fact $P\left(\alpha_{3}\right)$ is the transition associated with $\alpha_{3}=\beta$, which receives as input the same input of the process: $\left[a_{j}: a_{j}\right]$.

The same idea is used in giving the semantics of composition, in which the component processes may feed each other in complex ways. The composition operation on processes is defined as:

$$
\begin{aligned}
& p \mid q=1 e t p=\left\{s_{i} \rightarrow \gamma_{i}\right\} \text { where } s_{i}=\lambda\left[a_{h}\right] . M_{i} \\
& \text { and } q=\left\{r_{j} \rightarrow \delta_{j}\right\} \text { where } r_{j}=\lambda\left[b_{k}\right] \cdot N_{j} \text { in } \\
& Y \lambda R .\left\{\lambda\left[a_{h} b_{k}\right], s_{i}\left[a_{h}:\left(a_{h} \forall R\left(a_{h}\right)\left[a_{h}: a_{h}, \beta_{k}: b_{k}\right]\right)\right] \rightarrow \gamma_{i}\right\} \\
& B\left[\lambda\left[a_{h} b_{k}\right], r_{j}\left[\beta_{k}:\left(b_{k} \forall R\left(\beta_{k}\right)\left[\alpha_{h}: a_{h}, \beta_{k}: b_{k}\right]\right)\right] \rightarrow \delta_{j}\right\}
\end{aligned}
$$

and we have the evident semantics:

This composition is commatative ([l] holds); to prove associativity ([\|]) ve had to assume absorption of \mathbb{E}, i.e. s $\mathbb{E}=$ s (which also implies $P \mid P=P$; we do not know whether this is a necessary condition). The other laws of analog algebras are easily
verified, if we complete the definition of \mathbb{P} by the following equations:


```
\(\mathbb{P} \llbracket P \backslash a \rrbracket \sigma=\)
```



```
\(\mathbb{P} \llbracket \mathbb{P}\left\{\boldsymbol{\beta}_{\mathbf{i}} / \boldsymbol{\alpha}_{\mathbf{i}}\right\} \rrbracket \boldsymbol{\sigma}=\)
    let \(p=\mathbb{P} \llbracket P \mathbb{I}_{\sigma}\)
    in \(\lambda \gamma, \lambda\left[b_{i}\right], \gamma=\beta_{1} \Rightarrow p\left(a_{1}\right)\left[\alpha_{i}: b_{i}\right] ; \ldots ;\)
    \(\gamma=\beta_{n} \Rightarrow p\left(\alpha_{n}\right)\left[\alpha_{i}: b_{i}\right] ;\)
```

We now consider signals; a simple way to specify them is to describe their value at any instant of time, using a sort of λ-notation, where "дt" is read "at time t " and t is the only variable (if any) free in V :
$s \llbracket \partial t \cdot V \rrbracket_{\sigma}=\lambda x \cdot \mathbb{T} \llbracket V \eta_{\Lambda}^{\varepsilon}[x / t] \quad$ (ε is the empty environment)
for example $\partial \mathrm{t}$. $\mathbf{3 * s i n}^{*} \mathrm{t}$. We have the equivalences $==\partial \mathrm{t}$. ϕ and $a \in b=\partial t, a(t) V b(t)$. The notation $\mid V$ will be used as an
 $\uparrow 3=\partial t .3$.

Signals can also be defined by recursion:

1ike in
нa. $\partial t . t<1 \Rightarrow \phi ; a(t-1) \equiv$ -
Two other useful abbreviations are conditional signals and delays:
$S \Rightarrow S^{\prime} ; S^{\prime \prime}=\partial t . S(t) \Rightarrow S^{\prime}(t) ; S^{\prime \prime}(t)$
$S^{\prime} \Delta S^{\prime \prime}=\partial t . t\left\langle S^{\prime \prime}(t) \Rightarrow \phi ; S^{\prime}\left(t-S^{\prime \prime}(t)\right)\right.$
A simple example of delay is $S \Delta \mathbf{S}^{\mathbf{3}}$ which is the signal S constantly delayed by 3 units of time, gielding ϕ daring the first three units of time. This notation also allows as to express variable delays.

Notice that the ∂-notation has too great an expressive power, being able for example to define a signal in terms of the "future" of another signal (or even of itself; e.g. μa. $\partial t, a(t+1)$), but we might impose syntactic restrictions to avoid that, leaving Δ as a primitive.

Summarising the syntax, we have terms V, signals M and processes P. Terms are boolean expressions and conditionals with at most one free variable t ranging over reals.

$$
\begin{aligned}
& \text { V : : = 'true' | ' } \phi^{\prime} \text { | BooleanExpression | }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M ' } \quad \text { ' M | ' } \mu \text { ' Port '.' M | } \\
& \text { M ' } \Rightarrow \text { ' M ';' M | M ' } \Delta^{\prime} \text { M | }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P : : = \{Port\}1 ':' \{M ' } \rightarrow \text { ' Port / 'X'\}1 | } \\
& \text { NIL | P '|' P | P '\' Port | } \\
& \text { P'\{' \{Port '/' Port / ','\}'\}' }
\end{aligned}
$$

4.5 Feasibility

Great care has been pat into the definition of the algebraic laws and of the denotational semantics, in order to be able to treat circularities. The simplest example of feedback can be found in the following fast loop process:
$a: a \rightarrow a$

Figure 4.3 Fast loop
This process has an input port a, whose input is mixed to the outpat coming from the output port a. This process has no internal delay, and the output at any instant t depends on the input at the same instant t, which depends again on the outpat at time t. Computing the semantics:
$p \triangleq \mathbb{P} \mathbb{I} a: a \rightarrow \alpha \| \sigma$
$=Y \lambda P \cdot\{\lambda[a] . S[a] \sigma[a \forall P(a)[a: a] / a] \rightarrow a\}$
$=Y \lambda P \cdot\{\lambda[a] . a \forall P(a)[a: a] \rightarrow a\}$
It is not immediately clear what p does, but me can try to anderstand its behaviour by applying some input. We first extract the transition we are interested in (there is only one in this case) applying it to the output port a :

$$
p(a)=\lambda[a] . a \quad \theta(a)[a: a]
$$

Then we apply an input signal to see what is the response of the transition:

$$
p(a)[a: a]=a \forall p(a)[a: a]=1
$$

the result is 1 , because of strictness of $\#$.

Here we have a first example of a clearly "infeasible" process, which denotes 1, the undefined element. We can also see that a slow loop is not mapped to 1 and is well-defined everywhere. Set

$$
\begin{aligned}
& p \triangleq \mathbb{A}[a: a \Delta \uparrow 1 \rightarrow a \mathbb{}(1) \\
&=Y \lambda P \cdot\{\lambda[a] \cdot \lambda t \cdot t<1 \Rightarrow \phi ;(a \forall P(a)[a: a])(t-1) \rightarrow a\} \\
& p(a)[a: a]=\lambda t . t<1 \Rightarrow \phi ;(a \forall p(a)[a: a])(t-1)
\end{aligned}
$$

There are also processes whose output signals are only partially undefined; an example is the Zeno loop:
$a: a \Delta(\partial t, t<1 \Rightarrow 1-t ; 0) \rightarrow a$
This is a feedback loop which increases its speed, and at a finite point in time reaches an infinite sped (i.e. a zero delay). The output of the Zeno loop for a nosignal input is $\lambda t . t<1 \Rightarrow \phi ; 1$.

As a general principle, the output of a feedback loop is defined as long as the delay in the loop is greater than zero. This may look trivial, but feedback loops appear in almost any interesting process, and this simple fact has several intrigning consequences. We are going now to look at some of these.

4.6 Expressibility

We have seen that we can express several physically infeasible processes. This suggests that our formalism has too great an expressive power, and we might try to impose some constraints in order to exclude namanted processes. However it would be wrong to think that we can express anything we like. In particalar there are several processes which, we conjecture, cannot be exactly expressed, and get admit approximations up to an arbitrary degree of accuracy. Fe shall call such inexpressible processes perfect, and shall call their expressible approximations imperfect.

```
Consider for example the following (naivo) memory cell:
    a \beta: \alpha|\beta \Delta \uparrow1 ~ \beta
```

To work properly as a (write once) memory cell, this process mast receive a set impulse of length 1 on a. Then this impulse enters the loop and is "remembered". This memory cell presents two main defects: it will not work properly (i) if the set impulse is longer than 1 as it will overwrite itself, or (ii) if the set impulse is shorter than 1 , as it will not fill the loop period. We can solve the first problem by the following (improved) memory cell:

$$
\alpha \beta:(\alpha=\dot{\circ} \Rightarrow \alpha ; \beta) \Delta \uparrow 1 \rightarrow \beta
$$

This process $\begin{aligned} & \text { will } \\ & \text { cut } \\ & \text { of }\end{aligned}$ its a line after having received a signal different from - for one anit of time. But the second problem still remains; if the a signal differs from - for less than one unit of time, the outpat β is not constant. The same problem occurs when the sat impulse changes its value during the setting time; then a varying signal is recorded into the feedback loop and the output of the memory cell oscillates: we get a (quench free) metastable state.

In effect what we really want is a perfect memory cell which stores constantly the value of an instantaneous setting spike, so that there can be no indeterminacy due to flactaations of the inpat signal. Notice that starting from our improved memory cell we can get better and better approximations to a perfect cell, simply by reducing the delay in the feedback loop. Unfortunately if we reduce the delay to zero, we do not get a perfect storage device, but only an undefined output. Hence there seems to be no expression denoting a perfect memory cell (which yet exists inside our semantics domains) becanse there sems to be no way of defining a storing device without the use of feedbacks.

Therefore, expressible memory cells are imperfect. It is important to notice that many useful processes have memory cells (or their equivalent) as basic bailding blocks, and such processes must take into account this imperfection and are likely to be themselves imperfect. In general an imperfect process vorks "correctly" under some classes of inpat signals, bat in certain critical circumstances there is no way to garantee its intended operation.

4.7 Indeterminacy

Consider the problem of designing a process which determines the time of occurrence of an event, or which measures the value of a signal when some event (e.g. "measure it now") occurs. First we must
agree on a definition of determining or measuring, and a sensible one seems to be storing constantly for an unlimited amonnt of time. We shall not go into the details of such design because it is very similar to the problem of producing a perfect memory cell. In fact it is not difficult to see that perfect determination is impossible, just becanse perfect storage devices are infeasible.

A well known case of indeterminacy is arbitration; where a device attempts to determine which of two events arrives first. A simple way of implementing an arbiter is to ase a decider and a memory cell. The decider tells at any instant whether the first, the second or both signals are arriving, and the memory cell tries to remember the first decision of the decider. But memory cells are imperfect and so are arbiters based on memory cells. If the two signals arrive too close, the decider changes its decision while the memory cell is storing it, and the outpat of the cell is unstable.

If we had a perfect memory cell we could build a perfect arbiter this way:

Figure 4.4 An arbiter
where the decider D is

D $\triangle \quad \alpha \beta$:

$$
\begin{aligned}
(\alpha=-) \Rightarrow(\beta=-) \Rightarrow & \dot{;} ; \text { " } \beta \text { first"; } \\
(\beta=-) \Rightarrow & " \alpha \text { first"; } \\
& \text { " } \alpha \text { and } \beta \text { together" }
\end{aligned}
$$

$\rightarrow \boldsymbol{r}$
Which at any instant outputs one of four different messages: \therefore, a first", " β first" or " α and β together". The perfect cell then remembers the first (arbitrarily short) decision different from - .

An alternative way of building an arbiter is by using two detectors to determine the time of occarrence of two events, and then compare these times. But detectors are imperfect because time is a continuously changing quantity which cannot be stored instantaneously, hence arbiters built in this way are imperfect.

In general the order or coincidence in time of two events cannot be determined. The order cannot be determined when the signals are too close, and the coincidence cannot be determined when the simaltaneous signals are too short.

4.8 F1ip-F1ops

In this last section we analyse a particular analog process, showing in detail how its behaviour can be derived from its semantics. Here $V=\{t r u e, f a l s e, 1\}, \phi=f a 1 s e$ and $V=0 r$.

Figure 4.5 F1ip-Fiop

This is an SR flip-flop. In one of its steady state conditions we have the following values on the ports:

$$
R=S=s=\text { false; } \quad r=\text { true }
$$

Starting from this condition and applying a set pulse to the port S we get $s=$ true and $r=f a l s e$. Another set pulse has no effect. Then applying a reset pulse to the port R we change the output back to s $=$ false and $r=t r u e$. Another reset palse has no effect. Applying both a set and a reset signal, the outpat signals oscillate between true and false, and this is called a metastable state. The actual behaviour of a real flip-flop in a metastable state can be rather different from the one described above [Chaney 73]. We believe it can be modelled by introducing some "quench", but we shall not undertake this analysis here.

The SR can be synthesized from smaller components:

```
OR = in1 in2: (in1 or in2) \Delta td' }->\mathrm{ out
NOT = in: (not in) \Delta id" }->\mathrm{ out
OR1 = OR {R/in1, r/in2, w1/ont}
OR2 = OR {S/in1, s/in2, w2/out}
NOT1 = NOT {w1/in, s/out}
NOT2 = NOT {w2/in, r/out}
```

$S R=($ OR1 | NOT1 | OR2 | NOT2) \mid |w 1 |w 2

It is an easy exercise to show that this is equivalent to:

```
SR = S R s r:
    not(R or r) \Delta td m s X
    not(S or s) A td m r
```

Where $d=d^{\prime}+d^{\prime \prime}$. Unfortunately if wo try to switch on the flip-flop without supplying any signal (i.e. supplying false on all the inputs) we immediately get a metastable state. This happens becanse starting with false on all the inputs, we are not in the steady state condition. To enforce a well defined start, we supply trie to r for the first d seconds. At that time the signal from S reaches x and the system is ready to work. Hence we redefine:

```
SR=SRST:
    not(R or r) A td -> s X
    (not(S or s) \Delta td) # (\partialt. t<d) -> r
```

Computing the semantics:

$$
\begin{aligned}
S R & =\mathbb{P} \mathbb{S R} \mathbb{D} \sigma \\
& =\mathbb{\lambda} \mathbf{S R} .
\end{aligned}
$$

```
\{ \(\lambda\) [S R s r]. \(\lambda t\).
            \(\mathrm{t}<\mathrm{d} \Rightarrow \mathrm{false}\);
            not (R(t-d) or r(t-d) or SR(r)[S:S,R:R,s:s,r:r](t-d))
            \(\rightarrow s ;\)
                \(\lambda\left[\begin{array}{ll}\mathrm{R} & \mathrm{s} \\ \mathrm{r}\end{array} \mathrm{l} . \lambda \mathrm{t}\right.\).
            t \(<\) d \(\Rightarrow\) true;
            not(S(t-d) or s(t-d) or SR(s)[S:S,R:R,s:s,r:r](t-d))
                \(\rightarrow\) m
```

and extracting the output transitions:

```
SR(s)= = \T. {\lambda[S R s r]. \lambdat. t<d # false;
    not(R(t-d) or r(t-d) or
        (t<2d => true;
        not(S(t-2d) or s(t-2d) or
        T[S:S,R:R,S:s,r:r](t-2d)))
```

$\operatorname{SR}(r)=\ldots$

We look at the output signals in absence of input:

$$
\begin{aligned}
& =\mathrm{I} \lambda . \lambda t . t<2 d \Rightarrow f a 1 s e ; S(t-2 d) \\
& =\lambda t \text {. false }
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda t \text {. true }
\end{aligned}
$$

 are in the steady state condition. Now we supply a palse (λt. $t<\pi$) of an unspecified length π :

```
SR(s)[S:(\lambdat. t<\pi), R:=, s:-̇, r:=]
    = Y \lambdaS. \lambdat. t<2d # false; t<2d+\pi = true; S(t-2d)
```

There are two cases: (i) the length of the set pulse is $\pi \geq 2 d$ then the flip-flop is properly set (the expression above reduces to $\lambda t . t<2 d \Rightarrow$ false; true)

Figure 4.6 Stable state
or (ii) the length of the set pulse is $\pi<2 \mathrm{~d}$; then the flip-flop is in a metastable state and the output signal oscillates between true and false.

Figure 4.7 Metastable state

4.9 Conclusions

We have shown how analog processes can be studied from a semantic point of view. The proof techniques for equivalence (a process is a simplified form of another one) and correctiness (a process implements a given transition) of analog processes are reduced to the standard proof techniques used in denotational semantics.

Direct "execution" of the semantic equations of a process provides a simulation technique. If we wish to know the output of a port at time t, we apply t to the output signal of the corresponding transition; the valne is computed recursively backmards in time
until (hopefully) a base value is found near time 0. In this sense it wonld be possible to devise an implementation for the languge we have described.

Several semantic problems need further investigation, expecially regarding the relations between the formal semantics and our intaitions about analog processes.

5. Real Time Agents

Without trying to make any final assessment of the structure of the physical world, one might take the view that at an appropriate level of abstraction there are entities which act and influence each other's behaviour throngh a continuous interaction. These entities are called here agents and their interactions are assumed to happen in real time. The picture becomes particularly interesting when we allow our agents to behave nondeterministically both in the actions they can perform and in the time they take to do it. The ability to express nondeterministic systems is the major difference between this chapter and the previous one, deeply influencing the semantic techniques we use.

5.1 Introduction

This chapter is inspired by Milner's approach to synchronons processes, as reported in [Milner 81]. The main differences are the use of continuous time domain and a continuous-nondeterminism operator. Milner has shown that many of the characteristics of concarrent processes can be modelled and, more importantly, manipulated in an algebraic framework tailored to synchronous discrete interaction. Although much can be done in a discrete-time model by reducing the grain of discreteness to the desired level, we think it is interesting to see what can be gained in a continuous-time framework and what additional difficulties arise.

5.1.1 Methodology

We begin with a general presentation of the operational approach to the semantics of concurrent systems [P1otkin 81].

There is a set of agents p \& P wich may perform actions a ε A. The semantics of agents is given by a set of binary relations \xrightarrow{a} over P (for all a εA). When $p \xrightarrow{a} p^{\prime}$ we say that the agent p
performs the action a and becomes the agent p^{\prime}.

The set P is defined as the free algebra over a signature Σ, i.e. P is the set of syntactic expressions for agents which are built from a set of operators in Σ. Some stractare is usually imposed on the set $A, \quad e . g$. an abelian monoid or groap.

An operational semantics is defined which specifies the relations \xrightarrow{a}. These relations are expressed in a syntax-directed way: for every op $8 \sum$ we say how to derive the reductions "op (p_{1}, \ldots, p_{n}) $\xrightarrow{a} q^{\prime \prime}$ of p from the reductions of p_{1}, \ldots, p_{n}.

A congrnence relation "~" is defined over P together with some useful proof method for proving properties like p~q. This congruence relation defines a Σ-algebra P / \sim which is the semantics of agents.

A set of algebraic laws holding in P / \sim is derived. This set of 1aws is particularly interesting when it is complete for finite expressions in P, i.e. when the congrance \sim is the same as the congruence generated by the laws. This means that two finite agents $p, q \varepsilon P$ are equivalent if and only if they can be proved equivalent using the laws. Gordon Plotkin remarked that this property does not hold in general for infinite agents (e.g. recursive agents) bat it can lead to a powerful proof system when conpled with an induction theorem.

5.1.2 The Action Monoid

Agents progress by performing actions. Actions are denoted by the letters a, b, c and d, and the set of all the actions is A. Actions can be performed concrrantly, so we denote by $a \cdot b$ (or simply ab) the simaltaneous occurrence of actions a and b. We also admit a neutral action 1 , so that $\langle A, \cdot, 1\rangle$ is an abelian monoid, i.e.:

Onit:	$a 1=a$
Commativity:	$a b=b a$
Associativity:	$a(b c)=(a b) c$

Communication between agents can be modelled by requiring A to be a commatative group $\left\langle\mathrm{A}, \cdot, 1,{ }^{-}\right\rangle$, where

```
Inverse: }\quad\mathbf{a}\overline{\textrm{a}}=
```

We may require A to be a free group over a set N of atomic actions (generators) denoted by greek letters $\alpha, \beta, \gamma, \delta$.

A successful commanication between two agents is represented by the matching of two actions a and \bar{a}. The fact that $a \bar{a}=1$ means that commanication involves exactly two agents, that the respective commanication capabilities are consamed during the process and that an external observer is unable to tell which commanication took place (he can only observe 1). Note that commanication here means simple synchronisation, and does not involve the passage of values.

5.1.3 Time

The central idea in real time agents is the explicit use of time information when expressing the behaviour of agents. Time is assumed to be dense, i.e. for every two instants t_{0}, t_{1} it is always possible to find an instant t such that $t_{0}\left\langle t^{\prime} t_{1}\right.$. The real nambers are the obvious choice for a dense domain of time, but rational numbers will also do.

We shall formalise the idea of observing a real time system during intervals of time, (i.e. not observing at time instants) and we want to rule out the possibility of observing zero-length
actions. Hence the variables denoting time will range over a dense domain $\mathbb{I K}$ (for Kronos) $=\mathbb{R}^{+}$, that is the set of strictly positive real numbers. The letters t, n, V, w, x, y, z will range over \mathbb{K}.

5.2 Deterministic Agents

We first examine agents which are deterministic, in the informal sense that every agent has a unique possible development in time. A formal property corresponding to the idea of determinism will be examined later.

5.2.1 Signature

We start with a very simple set of operators to form our expressions. This set will be gradually expanded making clear what results extend from the smaller signatures to the larger ones.

Our initial signature Σ^{D} (where D stands for deterministic) consists of: a constant 1 representing the neutral agent always performing the neutral action 1; a unary prefix operator a[t]: which represents the act of performing the action a for an interval of time t; and the binary infix operator X representing the synchronons composition (coexistence) of two agents.
$1 \quad \& \Sigma_{0}^{D}$
$a[t]: \quad \varepsilon \Sigma_{1}^{D}$ for all aeA and $t \varepsilon \mathbb{K}$
$x \quad \varepsilon \Sigma_{2}^{D}$

Finally an agent (denoted by p, q, r, s) is an expression bailt over the signature $\Sigma^{D} \triangleq\left\{\Sigma_{0}^{D}, \Sigma_{1}^{D}, \Sigma_{2}^{D}\right\}$. The set of agents P^{D} is the free algebra over Σ^{D}.

5.2.2 Operational Semantics

Now we shall specify how our agents behave, by defining a set of binary relations $\underset{t}{\mathrm{a}}$ (for a\&A and $t \in \mathbb{K}$) over P^{D}. We read $p \xrightarrow{\text { a }} q$ as
" p moves to q performing a for an interval t ", or " p takes to move under a to $q^{\prime \prime}$.

The reduction rales for deterministic agents are as follows:
$[1 \rightarrow] \quad 1 \xrightarrow[t]{1} 1$
$[a[] \rightarrow] \quad a[t]: p \xrightarrow[t]{a} p$
$[a[] a[] \rightarrow] \quad a[t+a]: p \xrightarrow{a} a[n]: p$
$[X \rightarrow] \quad \frac{p \xrightarrow[t]{a} p^{\prime} \quad q \xrightarrow[t]{b} q^{\prime}}{p X q \xrightarrow[t]{a b} p^{\prime} X q^{\prime}}$

Rule [1 \rightarrow] asserts that 1 moves under 1 for an arbitrary interval to produce 1 again.

Rule $[a[] \rightarrow$] says that $a[t]: p$ takes t move under a to p, with t>0.

Rale [a[]a[] \rightarrow] has to do with the density of time; it says that after an interval $t, a[t+a]: p$ has only reached $a[a]: p$. Note that it is possible to split actions at arbitrary points, but this is done consistently so that the final outcome remains the same.

Rule $[X \rightarrow]$ gives meaning to the coexistence of two agents: if p takes t to move under a to p^{\prime} and q takes t to move under b to q ', then $p X q$ takes t (the same t) to move ander $a \cdot b$ to $p^{\prime} X_{q}^{\prime}$. Note that if q is of the form $b[t+a]: q^{\prime \prime}$, we can use [a[]a[] \rightarrow] to get a t-derivation of q, so that we can use $[X \rightarrow]$.

This set of operational rules enjoys two fundamental properties:

Lemma 5.1 (Density Lemma) $p \underset{t+u}{a} r \Rightarrow$ 3q. $p \xrightarrow[t]{a} q, q \xrightarrow[a]{a} r$ Proof Induction on the structure of the derivation of $p \underset{t+u}{ }{ }^{a}$ \square

Lemma 5.2 (Persistency Lemma) $\forall p, t . J_{p_{1}} \ldots p_{n}, a_{1} \ldots a_{n}, t_{1}, t_{n}$.

$$
\Sigma_{i} t_{i}=t \text { and } p \xrightarrow[t_{1}]{t_{1}} p_{1} \ldots \xrightarrow[t_{n}]{a_{n}} p_{n}
$$

Proof Induction on the structure of p. The case $p=p$ ' $X_{p \prime \prime}$ needs the Density Lemma 】

He shall abandon the persistency lemma later, but density is fundamental for all the systems we study. When adding a new operator to our signature, most of the results for the old signature extend to the new one, provided that density is preserved.

5.2.3 Observation

Agents will be observed by considering the sequences of actions they can perform. If the agents p and q are in the relation $p \xrightarrow[t]{a} q$, and q and r are in the relation $q \xrightarrow{b} r$, then we can consider the composition of the relations $\xrightarrow[t]{a}$ and $\xrightarrow[a]{b}$ (denoted $\xrightarrow[t]{a} 0 \xrightarrow{b}$) so that p and I are in the relation $p(\underset{t}{a} 0 \xrightarrow{b}) r$.

Definition 5.1

We Write $\xrightarrow[\left(t_{1} \ldots t_{n}\right)]{\left(a_{1} \ldots a_{n}\right)}$ for $\xrightarrow[t_{1}]{t_{1}} \ldots \ldots \xrightarrow[t_{n}]{t_{n}}(n>0)$. Moreover a sequence of actions is denoted by
$\tilde{a} \Delta\left(a_{1}, \ldots, a_{n}\right)$ with $\# \tilde{a} \Delta n$
and a sequence of time intervals by
$\tilde{t} \triangleq\left(t_{1}, \ldots, t_{n}\right)$ with $\# \tilde{t} \triangleq n$ and $\Sigma \tilde{t} \Delta \Sigma_{1 \leq i \leq n} t_{i}$.
We want to observe actions in such a way that, for example, the sequences

$$
\xrightarrow[(1,1)]{(a, a)} \quad \text { and } \quad \xrightarrow[(2)]{(a)}
$$

are indistinguishable. This can be done by considering similar sequences in the following informal sense:

$$
\begin{aligned}
& \frac{(a, b, b, b)}{(2,2,2,2)} \text { is similar to } \frac{(a, a, b, b)}{(1,1,3,3)} \\
& \underset{(a, b)}{(1,2)} \text { is not similar to } \frac{(a, b)}{(2,1)}
\end{aligned}
$$

Definition 5.2 Similarity is the least equivalence relation, \simeq between relations, $\xrightarrow[\widetilde{t}]{\widetilde{t}}$, such that:
(i) If $a_{1}=\ldots=a_{n}=b_{1}=\ldots=b_{m}$ and $\Sigma \tilde{t}=\Sigma \tilde{u}$
then $\xrightarrow[\tilde{t}]{\tilde{a}}=\frac{\widetilde{b}}{\widetilde{u}}$
(ii) If $\xrightarrow[\tilde{\mathrm{t}}^{\prime}]{\tilde{\mathrm{a}}^{\prime}}=\frac{\tilde{\mathrm{b}}^{\prime}}{\tilde{\mathrm{u}}^{\prime}}$ and $\xrightarrow[\tilde{\mathrm{t}}^{\prime \prime}]{\tilde{\mathrm{a}}^{\prime \prime}} \simeq \frac{\tilde{b}^{\prime \prime}}{\tilde{\mathrm{u}}^{\prime \prime}}$
then $\xrightarrow[\tilde{\mathrm{a}}^{\prime}]{\underline{\tilde{t}^{\prime}}} \circ \frac{\tilde{a}^{\prime \prime}}{\tilde{\mathrm{t}}^{\prime \prime}}=\frac{\tilde{b}^{\prime}}{\tilde{\mathrm{u}}^{\prime}} 0 \frac{\tilde{b}^{\prime \prime}}{\tilde{\mathrm{u}}^{\prime \prime}}$
\square
Note that if $\underset{\tilde{t}}{\tilde{a}} \simeq \frac{\tilde{b}}{\tilde{u}}$ then $\Sigma \tilde{t}=\Sigma \tilde{u}$.
The following abbreviation will be used:

We can also talk about finer and coarser sequences and the met of two similar sequences:
 is the least relation satisfying:
(i) $\xrightarrow[\left(t_{1} \ldots t_{n}\right)]{(a \ldots a)} \xrightarrow[\Sigma_{i} t_{i}]{a}$
(ii) If $\xrightarrow[\tilde{\mathrm{t}}^{\prime}]{\tilde{\tilde{a}^{\prime}}} \leq \frac{\tilde{b}{ }^{\prime}}{\widetilde{\mathrm{a}}^{\prime}}$ and $\xrightarrow[\tilde{\mathrm{t}}^{\prime \prime}]{\tilde{\tilde{\mathrm{a}}^{\prime \prime}}} \leq \frac{\tilde{b}^{\prime \prime}}{\tilde{\mathrm{a}}^{\prime \prime}}$
then $\xrightarrow[\tilde{\mathrm{a}}^{\prime}]{\tilde{\mathrm{a}}^{\prime}} 0 \xrightarrow[\tilde{\mathrm{t}}^{\prime \prime}]{\tilde{\tilde{a}^{\prime \prime}}} \leq \xrightarrow[\tilde{\mathrm{u}}^{\prime}]{\frac{\mathfrak{b}^{\prime}}{}} 0 \frac{\tilde{b}^{\prime \prime}}{\tilde{\mathrm{a}}^{\prime \prime}}$
[
Definition $5.5 \xrightarrow[\sim]{\tilde{t}} \underset{\tilde{t}}{\tilde{a}}$ is coarser than $\underset{\tilde{u}}{\tilde{\tilde{b}}}$ (Written $\xrightarrow[\tilde{t}]{\tilde{a}} 2 \xrightarrow[\tilde{u}]{\tilde{u}}$) if $\underset{\tilde{b}}{\tilde{\mathbf{a}}} \leq \underset{\tilde{t}}{\widetilde{a}} \mathbb{D}$

Theoren 5.1

The relation S defines a partial order over the set of transition relations $\xrightarrow[\tilde{t}]{\tilde{a}}$. Moreover:
(i) If $\xrightarrow[\tilde{t}]{\tilde{a}} \leq \frac{\tilde{b}}{\tilde{u}}$ then $\xrightarrow[\tilde{t}]{\tilde{a}} \simeq \underset{\tilde{a}}{\tilde{b}}$
(ii) If $\xrightarrow[\tilde{t}]{\tilde{a}} \simeq \frac{(b)}{(\mathrm{a})}$ then $\xrightarrow[\tilde{t}]{\tilde{a}} \leq \frac{(\mathrm{b})}{(\mathrm{a})}$
(iii) The meet (greatest lower bound) of two similar sequences $\xrightarrow[\tilde{t}]{\tilde{a}} \simeq \underset{\tilde{u}}{\tilde{b}}$ (written $\underset{\tilde{t}}{\tilde{a}} \wedge \underset{\tilde{u}}{\tilde{b}}$) exists and is unique.
Proof Directly from the definitions $]$

Finally the Density Lemma implies the following:

Lemma 5.3 (Refinement Lemma)

$$
\text { If } p \xrightarrow[\tilde{t}]{\tilde{a}} q \text { and } \xrightarrow[\tilde{b}]{\tilde{b}} \leq \underset{\tilde{t}}{\tilde{a}} \text { then } p \xrightarrow[\tilde{b}]{\tilde{u}} q \text { } 0
$$

Remark: the Refinement Lemma can also be expressed as:

$$
\underset{\tilde{u}}{\tilde{b}} \leq \underset{\tilde{t}}{\tilde{a}} \text { implies } \xrightarrow[\tilde{t}]{\tilde{a}} \leq \xrightarrow[\tilde{u}]{\tilde{b}}
$$

Lemma 5.4 (Similarity Lemma)
(1) If

(2) If $\underset{\underset{\tilde{t}}{\underset{a}{t}}}{\underset{t}{t}}$ then $a[t]: p \xrightarrow[\tilde{t}]{\tilde{t}} p$
(4)

4) If

Proof Trivial, except that (4) uses the Refinement Lemma $]$

5.2.4 Equivalence

Informally, the behaviour of agents is given by their reduction chains, and we want to regard as equivalent agents which have the "same" reduction chains (i.e. which perform the "same" actions) even if they are syntactically different as members of P^{D}. After having
defined a congruence relation \sim over P^{D} so that $p \sim q$ iff they perform the same actions, we can then take the equivalence class of p in P^{D} / \sim as the semantics of p.

We are going to define the following equivalence:
p is equivalent to q iff every time that p can reduce under a sequence of actions $\underset{\underset{t}{\sim}}{\underset{a}{\longrightarrow}}$ to p^{\prime}, then q can reduce by a similar sequence $\underset{\tilde{t}}{\tilde{a}}{ }^{s}$ to some q^{\prime} equivalent to p^{\prime} (and vice versa). This equivalence is called smooth equivalence becanse it ignores the "density" of individual actions and only considers their coarse result.

We first define a formala $\mathbb{D}(\underset{\sim}{\sim})$ parametrically in an arbitrary relation \approx over P^{D} :

Definition 5.6
D(\sim) \triangleq

$$
\begin{aligned}
& p \approx q \text { iff } \forall \text { a } \varepsilon A, t \varepsilon \mathbb{R} . \\
& \text { both } p \xrightarrow[t]{a} p^{\prime} \Rightarrow\left(3 q^{\prime} \cdot q \xrightarrow[t]{a} q^{\prime} \text { and } p^{\prime} \approx q^{\prime}\right) \\
& \text { and } q \xrightarrow[t]{a} q^{\prime} \Rightarrow\left(3 p^{\prime} \cdot p \xrightarrow[t]{a} p^{\prime} \text { and } p^{\prime} \approx q^{\prime}\right)
\end{aligned}
$$

[

Definition 5.7 Smooth equivalence (~) is the maximal fixpoint of the equation $\approx=\mathbb{D}(\approx)$ in the lattice of binary relations over $P^{D} \quad \square$

Theorem 5.2 (Park's Indnction Principle [Park 81])

$$
p \sim q \quad \text { iff } \quad \exists R E p^{D_{X P}}{ }^{D}
$$

(i) $\langle p, q\rangle e R$
(ii) $R E B(R)$

0

Condition (ii) can be written more explicitly as:

$$
\begin{aligned}
& \langle p, q\rangle \& R \Rightarrow \\
& \quad \text { (ii') } \forall p \xrightarrow[t]{a} p^{\prime} \cdot \exists\left\langle p^{\prime}, q^{\prime}\right\rangle \& R . q \xrightarrow[t]{a} q^{\prime} q^{\prime} \\
& \quad\left(i i^{\prime \prime}\right) \forall q \xrightarrow[t]{a} q^{\prime} \cdot \exists\left\langle p^{\prime}, q^{\prime}\right\rangle \& R . p \xrightarrow[t]{a} p^{\prime}
\end{aligned}
$$

Theorem 5.3
（i）～is an equivalence relation．
（ii）～is a congruence with respect to $\mathcal{\Sigma}^{D}=\{1, a[t]: X\}$ ．
（iii） $\mathrm{P}^{\mathrm{D}} / \sim$ is a Σ^{D}－algebra．
Proof
（i）Easily verified．
（ii）We have to show that for every Σ^{D}－context $C[x]$ ：

$$
p \sim q \Rightarrow C[p] \sim C[q]
$$

It is enough to show（by Park＇s induction）that：
（1）$p \sim q \Rightarrow a[t]: p \sim a[t]: q$ ．
（2）$p \sim q \Rightarrow p X_{r} \sim q X_{r}$ and $r X_{p} \sim r X_{q}$ ．
For（1）take $R \triangleq\{\langle a[t]: p, a[t]: q\rangle|p \sim q\rangle\} u \sim$ ．
（1．base）〈a［t］：p，a［t］：q〉eR by definition；
（1．step）if reR because re～then $r \varepsilon \mathbb{D}(R)$ by definition of～；
if 〈a［t］：p，a［t］：q〉eR where $p \sim q$ ，suppose $a[t]: p \xrightarrow{b} P$ ：
it may only have been derived from［a［］\rightarrow ］or［a［］a［］\rightarrow ］．
（1．step．［a［］\rightarrow ）$a[t]: p \xrightarrow[t]{\mathrm{a}} \mathrm{p}$ with $b=a, \quad \mathrm{a}=\mathrm{t}, \mathrm{P}=\mathrm{p}$ ．
By $[a[] \rightarrow]: a[t]: q \xrightarrow[t]{a} q$ with $\langle p, q\rangle \varepsilon R$ by hypothesis．
（1．step．［a［］a［］$\rightarrow]$ ）$a[t]: p \xrightarrow[a]{a} a[t-u]: p$ with $b=a, u<t, P=a[t-a]: p$ ．
By $[a[] a[] \rightarrow]: a[t]: q \xrightarrow[a]{a} a[t-a]: q$ with $\langle a[t-a]: p, b[t-u]: q\rangle \varepsilon R$ ．
The rest is symmetric，for $a[t]: q \xrightarrow{b} Q$
For（2）the proof follows the same theme，with $R \triangleq\left\{\left\langle p X_{r, q} q X_{r}\right\rangle \mid p \sim\right.$
q $)^{\prime} u \sim$（and symmetrically in the second case），using the similarity
lemma，and hence depending on the density lemma．
（iii）This is a standard algebraic result，based on（ii）．

5.2.5 Algebraic Laws

The following holds:

$[X 1]$	$p X 1 \sim p$
$[X]$	$p X q \sim q X p$
$[X X]$	$p X(q X r) \sim(p X q) X f$
$[1[] 1]$	$1[t]: 1 \sim 1$
$[a[] a[]]$	$a[t]: a[q]: p \sim a[t+q]: p$
$[a[] X]$	$a[t]: p X b[t]: q \sim a b[t]:(p X q)$

All the laws can be proved smoothly by Park's induction. Both the congruence property for X and the factorisation $1 a w[a[] X]$ depend only on the density lemma; whenever we modify our signature we need only to make sure that the density lemma still holds.

The following results tell us that our set of laws is rich and consistent:

Dofinition 5.8 Let us denote by \equiv the congraence defined by the set of laws [X1]... [a[]X]. We say that p is convertible to q iff $p \equiv q \quad 0$

Theoren 5.4 (Soundness)

$$
p \equiv q \Rightarrow p \sim q
$$

Proof
Induction on the derivation of $p \equiv q$, using the fact that \sim is a congruence and the laws are valid $[$

Definition $5.9 \quad S_{i \leq n} a_{i}\left[t_{i}\right]: p \triangleq a_{1}\left[t_{1}\right]: \ldots a_{n}\left[t_{n}\right]: p(n \geq 0) \quad \square$
Definition 5.10 An agent is in sequence form if it is of the form $S_{i \leq n}{ }^{a}{ }_{i}\left[t_{i}\right]: 1 \quad 0$

Definition 5.11 An agent is in normal form if it is in sequence form $S_{i \leq n} a_{i}\left[t_{i}\right]: 1$ with $\left(n>0 \Rightarrow a_{n} \neq 1\right)$ and $\left.\left(n \geq 2 \Rightarrow \forall i<n \cdot a_{i} \neq a_{i+1}\right) \quad\right]$

Theorem 5.5 (Normal Forms)
(i) Every agent is convertible to a sequence form.
(ii) Every sequence form is convertible to a normal form.
(iii) Every agent has a unique normal form.

Proof Simple inductions on the stracture of terms $[$

Theoren 5.6 (Completeness)

$$
\mathbf{p} \sim \mathbf{q} \Rightarrow \mathbf{p} \equiv \mathbf{q}
$$

Proof
First prove that for p^{\prime}, q^{\prime} in normal form, $p^{\prime} \sim q^{\prime} \Rightarrow p^{\prime} \equiv q^{\prime}$ by induction on the stracture of p^{\prime} and q^{\prime} (this is easy becanse of the simple structure of normal forms: we even have $p^{\prime} \sim q^{\prime} \Rightarrow p^{\prime}=q^{\prime}$). In general, by the normal form theorem, p and q have respective normal forms p^{\prime} and q^{\prime} (so that $p \equiv p^{\prime}$ and $q=q^{\prime}$). By soundness $p^{\prime} p^{\sim} q^{\sim} q^{\prime}$. So by the first part of the proof $p^{\prime} \equiv q^{\prime}$. Hence $p \equiv p^{\prime} \equiv q^{\prime} \equiv q$ $]$

5.2.6 Determinacy

We said that our agents are deterministic; in fact there are very strong properties that agents must obey in reductions. The most important ones are collected in the following action lemas:

Lemma 5.5 (Action Lemmas)

$$
\text { If } 1 \underset{(\mathrm{l})}{(\mathrm{a})} \mathrm{p} \text { then } a=1, p=1
$$

If $a[t]: p \xrightarrow[b]{b} q$ then $u \leq t$
If $a[t]: p \underset{(a)}{(b)} q$ then $b=a$
If $a[t]: p \underset{(a)}{(a)} q$ and $a>t$ then $p \underset{(b-t)}{s} q$
If $a[t]: p \frac{(a)}{(t)}{ }^{s} q$ then $p=q$
If $a[t]: p \underset{(b)}{(b)} q$ and $u<t$ then $q=a[t-a]: p$
If $p^{\prime} X p^{\prime \prime} \xrightarrow[t]{a} q$ then $3 a^{\prime}, a^{\prime \prime}, q^{\prime}, q^{\prime \prime}$.
$p^{\prime} \xrightarrow[t]{a^{\prime}} q^{\prime}, p^{\prime \prime} \xrightarrow[t]{a^{\prime \prime}} q^{\prime \prime}, a=a^{\prime} a^{\prime \prime}, q=q^{\prime} \times q^{\prime \prime}$
[

These action lemmas imply, by simple structural induction, the following important properties:

Theorer 5.7 (Vertical Determinacy)
$p \xrightarrow[t]{a} q$ and $p \xrightarrow{b} r \Rightarrow a=b \quad \square$

Theoren 5.8 (Horizontal Determinacy)
(i) If $p \xrightarrow[\tilde{t}]{\tilde{a}} q, p \xrightarrow[\sim]{\tilde{u}}$ and $\underset{\sim}{\tilde{t}} \simeq \frac{\tilde{a}}{\tilde{u}}$ then $q=r$
(ii) If $p \sim q, p \underset{\tilde{t}}{\stackrel{\tilde{a}}{u}} p^{\prime}, q \underset{\tilde{u}}{\stackrel{\tilde{b}}{t}} q^{\prime}$ and $\underset{\tilde{t}}{\tilde{a}} \simeq \underset{\tilde{u}}{\sim}$ then $p^{\prime} \sim q^{\prime}$ [

In this formal sense, our agents are completely deterministic, and we can also see that it is possible to introduce two orthogonal kinds of nondeterminism. This will be done in the next section.

5.3 Nondeterministic Agents

5.3.1 Signature

Let us now consider the signature

0	$\varepsilon \sum_{0}^{N D}$
$a(t): \quad \varepsilon \sum_{1}^{N D} \quad$ for all aeA and $t \varepsilon \mathbb{K}$	
$+\quad \varepsilon \sum_{2}^{N D}$	

The agent 0 has no actions, not even nertral actions. When a system reaches the state 0 , a catastrophe ocurs and time ceases to flow; hence 0 is called a disaster.

The prefix operator $a(t):$ represents the act of performing the action a for a positive interval of length at most t; we shall say that this operator introdaces horizontal continuous nondeterminism in the sense that arrows can be stretched horizontally according to the dination of $a(t):$.

The binary operator + represents the choice of two possible behaviours, and it introduces vertical discrete nondeterminism; the sense of these adjectives may be made clear by the following diagram, where the action monoid is on the vertical axis and time is on the horizontal axis. The behaviour of an agent is then a (possibly discontinuous) trajectory in this space.

Figure 5.1

5.3.2 Operational Semantics

There are no axioms for 0.

The agent $a(t): p$ takes time $v \leq t$ to move under a to p, and $a(t+u): p$ takes time $\nabla \leq t$ to move under a to $p+a(a): p$. Hence $a(t): p$ can choose at any move to shorten its life span by some amount:
moreover at any point in time it can stop its a-action and start execating p.

If p takes t to move under a to p^{\prime}, then $p+q$ may move under a to p^{\prime} taking time t, or else if q takes ito move under b to q^{\prime}, then $p+q$ may move under b to q^{\prime} taking time n.

$$
\begin{aligned}
& {[a() \rightarrow] \quad a(t): p \xrightarrow{a} p \quad \nabla \leq t} \\
& {[a()() \rightarrow] \quad a(t+u): p \xrightarrow[\nabla]{\square} p+a(u): p \quad \nabla \leq t} \\
& {[+\rightarrow]} \\
& \frac{p \xrightarrow[t]{\stackrel{a}{t} p^{\prime}}}{\underset{p+q}{t} p^{\prime}} \\
& \xrightarrow[{p+q \xrightarrow{\text { a }} \xrightarrow{\frac{b}{b}} q^{\prime}}]{ }{ }^{\prime}
\end{aligned}
$$

5.3.3 A1gobraic Lavs

Applying the same definition of smooth equivalence to the new signature and operational semantics, we obtain the following holding in P^{ND} :
[+0]

$$
p+0 \sim p
$$

[+p]

$$
p+p \sim p
$$

[+]

$$
p+q \sim q+p
$$

[++]

$$
p+(q+r) \sim(p+q)+r
$$

$[a()+] \quad a(t+u): p \sim a(t+u): p+a(t): p$
[a()a()] $a(t+u): p \sim a(t):(p+a(u): p)$

5.3.4 Combined Ca1calus

We now merge the two signatures into $\Sigma^{0} \triangle \Sigma^{D} \quad \sum^{N D}$ with P^{0} being the free Σ^{0}-algebra. We have to abandon the persistency lemma, because of the presence of 0 . The density lemma, however, still hods:
 Extending the usual definition of equivalence to Σ^{0} :

Theoren 5.9

(i) ~ is an equivalence relation.
(ii) ~is a congruence with respect to Σ^{0}
(iii) P^{0} / \sim is a Σ^{0}-algebra \square

We obtain a new set of laws describing the interactions between the two smaller signatures:
[X0] $p \times 0 \sim 0$
$[X+] \quad p \times(q+r) \sim(p \times q)+(p \times r)$
[1()1] $1(t): 1 \sim 1$

This does not give us a complete set of laws; we lack the distributivity of $a(t)$: over X and some law relating $a(t)$: to $a[t]:$.

Laws relating $a(t):$ and X are called factorisation theorems. (The operator \downarrow B used below is explained in the next section; the laws [FT2] and [FT4] hold also with all the $+B$ elided.)
[FT1] $(a(t): p X b(t): q) \downarrow B \sim 0$ if $a b ; B$
[FT2] $(a(t): p \times b(t): q) \downarrow B \sim(a b(t):(p \times q)) \downarrow B$
if either $\forall q<t .(p X(q+b(q): q))+B \sim(p X q)+B$
or $\forall \mathrm{a}<\mathrm{t} . \mathrm{Jv} \leq \mathrm{a}$. $(\mathrm{p} X(\mathrm{q}+\mathrm{b}(\mathrm{u}): q)) \downarrow B \sim(p \times q+a(\mathrm{v}): p \times b(\mathrm{v}): q) \downarrow B$
and either $\forall \mathrm{a}<\mathrm{t}$. $((\mathrm{p}+\mathrm{a}(\mathrm{a}): p) \times q) \downarrow B \sim(p \times q) \downarrow B$
or $\forall u<t . \exists \nabla \leq u .((p+a(n): p) \times q) \downarrow B \sim(p \times q+a(\nabla): p \times b(v): q) \downarrow B$
and either $\forall q<t .((p+a(q): p) X(q+b(q): q)) \downarrow B \sim\left(p q_{q}\right) \downarrow B$

and either $\forall q<t .(p \times q+a(n): p \times b(q): q)+B \sim(p X q)+B$
or $\forall u<t . J \gamma \leq a .(p \times q+a(a): p \times b(q): q) \downarrow B \sim((p+a(\nabla): p) \times(q+b(v): q)) \downarrow B$
[FT3]

$$
(a(t): p \times b[t]: q) \downarrow B \sim 0 \text { if } a b \neq B
$$

[FT4] $(a(t): p \times b[t]: q) \downarrow B \sim(a b[t]:(p X q)) \downarrow B$
if $\forall a<t$. $(a(a): p \times b[a]: q) \downarrow B \sim(p \times b[a] q) \downarrow B$
and $\forall u<t . \exists \nabla \leq a .(a(r): p \times b[a]: q) \downarrow B \sim((p+a(v): p) X b[u]: q) \downarrow B$

These laws constitate a major departare from the equational style we have observed up to now, and may be an indication that we have not chosen the best possible set of primitive operators. On the other hand they seem to reflect rather faithfully the complex relationships between a synchronous deterministic world (Σ^{D}) and an asynchronons nondeterministic one ($\Sigma^{N D}$), and we could not devise a simpler formalation. The factorisation theorems can usually be much
 and they turn out to be very useful in proving equational laws of interesting derived operators, as we shall see later.

5.4 Comanication

In order to model communication, our action monoid A will be assumed to be an abelian group 〈A, $\left., 1,{ }^{-}\right\rangle$freely generated by a set of names N. For $B E A$ we define $\bar{B} \triangleq\{\bar{a} \mid a \varepsilon B\}$; then \bar{N} is the set of conames and $L \triangleq N u \bar{N}$ is the set of labels or atomic actions.

Commanication occurs when two complementary actions occur together, like in

$$
a[t]: p \times \bar{a}[t]: q \sim a \bar{a}[t]:(p X q) \sim 1[t]:(p X q)
$$

In a composition $p X q$ we implicitly establish commanication channels between all the complementary actions of p and q. Since this connections are implicit in the naming conventions of actions, we need some operator to control this naming activity, so that we can prepare agents for purposefal compositions.

5.4.1 Restriction

The restriction operator $\downarrow \mathrm{B}$, for $B \leq A$ and $18 B$ is used to extract a subset of the possible actions of an agent, inhibiting the rest of the actions.
$[\downarrow \rightarrow] \quad \frac{p \stackrel{a}{t} q}{p \nmid B \xrightarrow[t]{a} q \nmid B}$ if a $\& B$

Thus $p \nmid B$ can only perform actions which are in B. The action 1 is never inhibited by definition; it represents the possible anonymons occurrence of a communication event inside p.

It should be stressed that restriction is not a hiding of some internal actions, bat it represents their inhibition, the impossibility of their occurrence in isolation (they may ocar if complemented). Restriction can be used to drive and determine the internal behaviour of an agent, as in the following example:

$$
\begin{aligned}
& p \Delta a[t]: \mathbf{1}+b[t]: \mathbf{1} \\
& p \downarrow\{1, a\} \sim a[t]: \mathbf{1} \\
& p \downarrow\{1, b\} \sim b[t]: 1
\end{aligned}
$$

where in each case one of the two sides of + is forced. This idea can be used to channel commanication, as in:

$$
\begin{aligned}
& p \triangleq(a[t]: \mathbf{1}+b[t]: \mathbf{1}) \times \bar{a} \bar{b}[t]: \mathbf{1} \\
& p \nmid\{1, \bar{a}\} \sim \bar{a}[t]: \mathbf{1} \\
& p \nmid\{1, \bar{b}\} \sim \bar{b}[t]: \mathbf{1}
\end{aligned}
$$

where in the first case a b-commanication, and in the second case an a-communication, are forced.

Restriction can induce disaster:
$(a[t]: p)+[1] \sim 0$
but can also avert disaster:

$$
(a[t]: 0+b[a]: \mathbf{1})+\{1, b\} \sim b[a]: \mathbf{1}
$$

Here are the laws of restriction:
[$\downarrow \mathrm{l} \quad \mathrm{p} \downarrow \mathrm{B} \sim \mathrm{p} \quad$ if $p \in \mathrm{P}_{\mathrm{B}}$
$[\downarrow a[]:] \quad(a[t]: p) \downarrow B \sim\left\{\begin{array}{l}a[t]:(p \nmid B) \text { if } a \varepsilon B \\ 0 \text { otherwise }\end{array}\right.$
$[\downarrow a():] \quad(a(t): p) \downarrow B \sim\left\{\begin{array}{l}a(t):(p \downarrow B) \text { if a } \& B \\ 0 \text { otherwise }\end{array}\right.$
$[\downarrow+] \quad(p+q) \downarrow B \sim p \downarrow B+q \downarrow B$

These laws are also valid if we only assume A to be monoid, but note the absence of a 1 for X. This is better studied in the case of the next operator we examine.

The delabelling operator pla is a particular case of restriction. It is used to restrict over a set B in which some atomic action a and its complement $\bar{\alpha}$ never appear as factors; then płB means

Definition 5.12 p has sort B (or p has B) if whenever $p \xrightarrow[t_{0}]{{ }^{a} 0} \ldots \frac{a_{n}}{t_{n}} p^{\prime}(n \geq 0)$ and $p^{\prime} \xrightarrow[t]{a} p^{\prime \prime}$ then aeB \square

Definition 5.13 If $B E$ Lhen B^{*} is the submonoid of A generated by B [

We can now define delabelling as:

$$
p \backslash a \triangleq p t(L-\{a, \bar{a}\})^{*}
$$

with laws:

$$
\begin{aligned}
& \text { [
$$ } p \nmid \sim \sim p if p has B and a, \vec{a} \notin B

\& {[a[]: \backslash] \quad(a[t]: p) \backslash a \sim\left\{$$
\begin{array}{l}
0 \text { if a or } \vec{a} \text { is a factor of a } \\
a[t]:(p \backslash a) \text { otherwise }
\end{array}
$$\right.}

\& {[a(): \backslash](a(t): p) \backslash a \sim\left\{$$
\begin{array}{l}
0 \text { if } a \text { or } \bar{a} \text { is a factor of a } \\
a(t):(p \backslash a) \text { otherwise }
\end{array}
$$\right.}

\& {[X \backslash] \quad(p \times q) \backslash a \sim p \backslash a \times q \backslash \alpha}

\& if p has B, q has C and a, \bar{a} \notin B \bar{C}

\& {[+\backslash] \quad(p+q) \backslash \alpha \sim p \backslash a+q \backslash a}

\& [

] p \backslash \alpha \backslash \beta \sim p \backslash \beta \backslash \alpha
\end{aligned}
\]

5.4.2 Morphisms

We need a way of renaming actions, so that we can easily set up commanication channels. The most general form of renaming is called a morphism $p\{\phi\}$ where $\phi: A \rightarrow A$ is a monoid homomorphism:
$[\{\phi\} \rightarrow] \underset{p\{\phi\} \xrightarrow[t]{\phi(a)} p^{\prime}\{\phi\}}{\text { p } \frac{a}{t} p^{\prime}}$

We shall write $p\left\{\alpha_{i} / \beta_{i}\right\}$ for the unique monoid morphism renaming the
generators β_{i} to α_{i} in p and leaving the other generators unchanged. Here are the laws for morphisms:
[1]] $p[\} \sim p$
$[(\phi]] \quad p\{\phi\} \sim p\left\{\phi^{\prime}\right\} \quad$ if $p e P_{C}$ and $\phi(a)=\phi^{\prime}(a)$ for all azC
$\left[\{\phi\}\left\{\phi^{\prime}\right]\right] \quad p\{\phi\}\left\{\phi^{\prime}\right\} \sim p\left\{\phi^{\prime} \circ \phi\right\}$
$[a[]:\{\phi]](a[t]: p)\{\phi\} \sim \phi(a)[t]:(p\{\phi\})$
$[a():\{\phi\}](a(t): p)\{\phi] \sim \phi(a)(t):(p[\phi\})$
$[X\{\phi\}] \quad(p \times q)(\phi\} \sim p\{\phi\} \times q\{\phi\}$
$[+\{\phi\}] \quad(p+q)\{\phi\} \sim p\{\phi\}+q\{\phi\}$
$[\downarrow\{\phi\}] \quad p \downarrow B\{\phi\} \sim p(\phi]+\phi(B)$

5.4.3 Delays

We want to be able to model agents in which the actions of an (outpat) port are the delayed copy of the actions of another (input) port. It is not enongh to have a delay operator which delays a whole agent, because this means delaying all the (input and output) ports by the same amount.

Hence we define the operator $\Delta_{t} M \varepsilon \Sigma_{1}$ for any $M E N$ containing 1 :

if factors $(a) \subseteq M u \bar{M}$ and factors $(b) \cap(M \cup \bar{M})=\varnothing$
where factors (a) is the set of prime factors (generators) of a, i.e. not including 1.

Here are the laws for delays:

[$\Delta_{t} \mathrm{M}$]	$p \Delta_{t} \mathrm{M} \sim \mathrm{p} \quad$ if p has M
[$\Delta_{\text {t }} \mathrm{Ma}$ a a$\left.]:\right]$	$(a b[t]: p) \Delta_{u} M \sim a[t]:\left(p \Delta_{u} M\right) \times 1[\mathrm{~d}]: b[t]: 1$
	if factors $(a) \subseteq M u \bar{M}$ and factors (b) $\cap\left(M_{U} \bar{M}\right)=\varnothing$
[$\Delta_{\mathbf{u}} \mathrm{MX]}$	$(p \times q) \Delta_{t} M \sim p \Delta_{t}{ }^{M} \times q \Delta_{t}{ }^{M}$
[$\Delta_{4}{ }^{M+]}$	$(p+q) \Delta_{t} M \sim p \Delta_{t} M+q \Delta_{t}{ }^{M}$
[$\Delta_{t}{ }^{M} \Delta_{u}{ }^{M}$]	$p \Delta_{t} M \Delta_{\mathrm{a}} \mathrm{M} \sim \mathrm{p} \Delta_{t+\mathrm{a}^{M}}$
[$\Delta_{t} M^{M}{ }_{0} M^{\prime \prime}$]	$p \Delta_{t}{ }^{M} \Delta_{n} M^{\prime \prime} \sim p \Delta_{u} M^{\prime} \Delta_{t}{ }^{M}$

We shall show some example involving delays after having defined recursive agents.

5.5 Recursion

A recursive definition facility will now be introduced in our langage. Its general form for a single recursive definition is:
$\mathbf{x} \Leftarrow \mathbf{r}$
where x is a variable and I is a context, i.e. a term possibly containing variables. We have the operational rale:

The effect of \Leftarrow is equivalent to the introduction of a new constant $x \& \Sigma_{0}^{D}$, like in

$$
x \Leftarrow 1+a[t]: x
$$

To satisfy this definition, it is sufficient to find a puch that

$$
p \sim 1+a[t]: p
$$

becanse all our laws are valid ap to equivalence. In fact it is easy to show that $[\Leftarrow]$ implies $x \sim p$.

But we still need to specify which particalar x we want, when several of them are available, like in the definition $x \notin$. To avoid this problem we restrict orr admissible definitions to those
having a anique solution up to equivalence; thas there is no doubt about which x we mean. We shall do so by imposing syntactic restrictions on the form of onr definitions, or more precisely on the form of our sets of definitions (to take into account matual recursion).

Definition 5.14 A definition set is a set of pairs $\left\{\left\langle x_{i}, r_{i}\right\rangle\right\}$, written $\left\{x_{i} \Leftarrow r_{i}\right\}$ or $\tilde{x} \Leftarrow \tilde{I_{2}}$, where the x_{i} are variables and the r_{i} are contexts \square

Definition $5.15 \mathrm{f}\{\tilde{p} / \tilde{x}\}$ is the result of simaltaneously replacing each x_{j} by p_{j} in I

Definition 5.16 A 1-step expansion of a definition set $\tilde{x} \Leftarrow \tilde{r}$ is obtained by replacing $x_{i} \Leftarrow r_{i}$ by $x_{i} \Leftarrow r_{i}\left\{r_{j} / x_{j}\right\}$ (for some i and j) in $\tilde{x} \Leftarrow \tilde{\mathbf{r}}$. A finite expansion $\tilde{x} \Leftarrow \tilde{\mathbf{r}}^{\prime}$ of $\tilde{x} \Leftarrow \tilde{\mathbf{r}}$ is an expansion obtained by a finite number of 1-step expansions. \square

Lemma 5.7 If $\tilde{x} \Leftarrow \tilde{x}^{\prime}$ is a finite expansion of $\tilde{x} \Leftarrow \tilde{r}$, then for all \tilde{p},

$$
\tilde{p} \sim \tilde{r}\{\tilde{p} / \tilde{x}\} \Leftrightarrow \tilde{p} \sim \tilde{\mathbf{r}}^{\prime}\{\tilde{p} / \tilde{x}\}
$$

Dofinition 5.17 A variable x is gnarded in a context r if all the occurrences of x are in subterms of r of the form $a[t]: r^{\prime}$ or $a(t): r^{\prime}$. A context I is garaded if all its variables are guarded $]$

In order to have unique solutions for our definition sets, we need to exclude definition sets which expand indefinitely but only approach a finite limit (i.e. sach that the sum of the durations of an infinite chain of actions is finite). Definition sets in which every infinite redaction chain has an infinite daration are called persistent.

Definition 5.18 A definition set $\left\{x_{i} \Leftarrow r_{i}\right\}$ is garaded if there is a finite expansion $\left\{x_{i} \Leftarrow r_{i}^{\prime}\right\}$ such that each r_{i}^{\prime} is gaarded \square

Definition 5.19A definition set $\left\{x_{i} \Leftarrow r_{i}\right\}$ is persistent if Whenever $\tilde{p} \sim \tilde{r}\{\tilde{p} / \tilde{x}\}$ then for all $j, p_{j} \xrightarrow[t]{ } \underset{t}{ }$ implies that there exists a finite expansion r_{j}^{*} of r_{j} such that $r_{j}^{*} \xrightarrow[t]{a}{ }^{s} r_{j}^{\prime}$ with $r_{j}^{\prime}(\tilde{p} / \tilde{x}] \sim P \quad$ D

Leman 5.8 Every persistent definition set is guarded 0

Lemma 5.9 Every finite garded definition set is persistent \square

Remark I: the previous lemma becomes false if we introduce "time-shrinking" operators in our signature, like:

In fact, take $r=\Delta a[t]: x$ and $p=\Delta a[t]: 1$, with $a \neq 1$; we can show:

$$
\Delta \mathrm{a}[\mathrm{t}]: 1 \sim \Delta \mathrm{a}[\mathrm{t}]: \Delta \mathrm{a}[\mathrm{t}]: 1
$$

by Park's induction. Hence $p \sim r\{p / x\}$ is a solution for $\{x \Leftarrow r\}$ and $p \xrightarrow[t]{\mathrm{a}} 1$, but for any expansion r^{*} of r we can only have reductions of the form

$$
r^{*} \xrightarrow[t]{a^{\prime}} S^{\prime}=\Delta a[t]: \ldots \Delta a[t]: x \text { with } I^{\prime}\{p / x\} \notin 1
$$

Remark II: the following infinite definition set is guarded bat not persistent:

$$
\left\{Z_{n} \Leftarrow 1[n]: Z_{n / 2} \mid n \varepsilon \mathbb{K}\right\}
$$

In fact $\forall n . P_{n}=1$ is a solution (suggested by Matthew Hennessy) and $p_{1}=1 \xrightarrow[2]{l} 1$ but there is no finite expansion Z_{1}^{*} of Z_{1} such that $Z_{1}^{*} \xrightarrow[2]{1}^{s} 1_{;}$in fact all the expansions of Z_{1} have the form $z_{1}^{*}=$ 1[1]:1[1/2]:1[1/4]:1[1/8]:... where the sum of the durations of the actions is always less than 2.

Theorem 5.10 (Recarsion Theorem)
Every persistent definition set $\tilde{\mathrm{x}} \underset{\mathrm{r}}{\mathrm{f}}$ has a unique solation up to \sim, i.e.: $p_{i} \sim r_{i}\{\tilde{p} / \tilde{x}\}$ and $q_{i} \sim r_{i}\{\tilde{q} / \tilde{x}\} \Rightarrow p_{i} \sim q_{i}$
Proof Let $\approx \triangleq\{\langle C\{\tilde{p} / \tilde{x}\}, C\{\tilde{q} / \tilde{x}\}\rangle \mid \dot{C}$ is a context $\}$
$-p_{i} \approx q_{i}\left(\right.$ take $\left.C=x_{i}\right)$.

- $C\{\tilde{p} / \tilde{x}\} \xrightarrow[t]{\mathbf{a}} P$ may hold because:
either $C \xrightarrow[t]{\text { a }} C^{\prime}$ with $P=C^{\prime}\{\tilde{p} / \tilde{x}\}$;
then also $C\{\tilde{q} / \tilde{x}\} \xrightarrow[t]{a} Q=C^{\prime}\{\tilde{q} / \tilde{x}\}$, and $Q \approx P$
or x_{j} is not guarded in C and $p_{j} \xrightarrow[t]{a} P$;
then because \tilde{r} is persistent there is a finite expansion
r_{j}^{*} with $r_{j}^{*} \xrightarrow[t]{a} \mathbf{s}_{r_{j}^{\prime}}$ and $r_{j}^{\prime}\{\tilde{p} / \tilde{x}\} \sim P$.
Then also $r_{j}^{*}\{\tilde{q} / \tilde{x}\} \xrightarrow[t]{\mathbf{a}}{ }^{\mathbf{s}} r_{j}^{\prime}\{\tilde{q} / \tilde{x}\}$, and since
$q_{j} \sim_{j}\{\tilde{q} / \tilde{x}\} \sim r_{j}^{*}(\tilde{q} / \tilde{x}\}$, we have $q_{j} \xrightarrow[t]{ }{ }^{s} Q \sim r_{j}^{\prime}\{\tilde{q} / \tilde{x}\}$.
Hence $C\{\tilde{q} / \tilde{x}\} \xrightarrow[t]{\mathrm{a}}{ }^{\mathrm{S}} \mathrm{Q}$ with $Q \approx P$
[

Let us try a simple example of recursive definition:

$$
\mathbb{K}_{a} \Leftarrow a[1]: \mathbb{K}_{a}
$$

The agent \mathbb{I}_{a} produces a-actions indefinitely. Using the recursion theorem it is possible to show that the " 1 " in the definition of \mathbb{K}_{a} is non critical:

$$
\begin{aligned}
a[t] & : \mathbb{K}_{a} \\
& \sim a[t]: a[1]: \mathbb{K}_{a} \\
& \sim a[t+1]: \mathbb{K}_{a} \\
& \sim a[1]: a[t]: \mathbb{K}_{a}
\end{aligned}
$$

Hence the equation

$$
x \sim a[1]: x
$$

is satisfied both by \mathbb{K}_{a} (by definition) and by $a[t]: \mathbb{K}_{a}$, and by the recursion theorem we can conclude that:
$\mathbb{K}_{a} \sim a[t]: \mathbb{K}_{a}$ for any t
and also that, for $a=1$:

$$
\mathbb{K}_{1} \sim 1
$$

Similarly from the equation:

$$
\begin{aligned}
\mathbb{K}_{a} & \times \mathbb{K}_{b} \\
& \sim a[1]: \mathbb{K}_{a} \times b[1]: \mathbb{K}_{b} \\
& \sim a b[1]:\left(\mathbb{K}_{a} \times \mathbb{K}_{b}\right)
\end{aligned}
$$

we can deduce:
$\mathrm{IK}_{a} \times \mathrm{IK}_{b} \sim \mathrm{~K}_{\mathrm{ab}}$

Going back to the delay operator, we can define a not gate with delay z in the following way:

Not $_{z} \Leftarrow a_{0} \bar{\beta}_{1}[z]:$ Not $_{z}+\alpha_{1} \bar{\beta}_{0}[z]:$ Not' $_{z}$
$\operatorname{Not}_{z} \Leftarrow\left(\operatorname{Not}^{\prime}{ }_{z} \Delta_{z} \bar{\beta}_{i}\right) \times \bar{\beta}_{0}[z]: 1$
This not gate is not completely satisfactory, because it assume that its input signal changes at multiples of z (otherwise a disaster occurs). We shall see in a later section how to solve this problem of ansynchronised input by $u s i n g$ nondeterministic gards.

5.6 Indefinite Actions and Delays

We shall see that one frequently uses nondeterministic guards $a(t): o n l y$ to prove that the particular t we use in not really important. This situation can be made systematic by defining an operator a.p (indefinite action) performing an action a for an arbitrary amount of time:

$$
a \cdot p \Leftarrow a(1):(p+a \cdot p)
$$

This particalar choice of anit delay in the above definition makes no difference, as we have:

$$
\begin{aligned}
a(t) & :(p+a \cdot p) \sim a(t):(p+a \cdot p+a \cdot p) \\
& \sim a(t):(p+a \cdot p+a(1):(p+a \cdot p)) \\
& \sim a(t+1):(p+a \cdot p) \\
& \sim a(1):(p+a \cdot p+a(t):(p+a \cdot p)) \text { by }[a()+] \\
a \cdot p & \sim a(1):(p+a \cdot p) \\
& \sim a(1):(p+a \cdot p+a \cdot p) \\
\text { Hence } a \cdot p & \sim a(t):(p+a \cdot p)
\end{aligned}
$$

by recursion theorem.

Moreover a.p enjoys the laws:
[1.0] $1.0 \sim 1$
[1.1] $1.1 \sim 1$
[a.] a.p~a. $(p+a . p)$
[a.Xb.] a.pXbb.q~ab. $(p X q+a \cdot p X q+p X b . q)$

Note the importance of the $1 a w$ [a. $X b$.$] ; it allows us to equationally$ factorise actions in horizontally nondeterministic agents, which we conld not do for the 'a(t):' operator. The law is proved by the factorisation theorems, thereby demonstrating some of their power. The above laws can be proved as follows:

```
1.0~1(1):(0+1.0)~ ~ 1(1):(1.0)
1~1(1):1
Hence 1.0 ~ 1
1.1 ~ 1(1):(1 + 1.1)
1~1(1):1~1(1):(1+1)
Hence 1.1 ~ 1
    a.(p+a.p)~a(1):(p+a.p+a.(p+a.p))
    a.p~a(1):(p+a.p)~a(1):(p+a.p+a.p)
```

 Hence a.p \(\sim a .(p+a \cdot p)\)
 \(a \cdot p \times b . q \sim a(1):(p+a . p) \times b(1):(q+b . q)\)
 \(\sim a b(1):((p+a \cdot p) \times(q+b \cdot q)) \quad(*)\)
 \(\sim a b(1):(p X q+a \cdot p X q+p X b \cdot q+a \cdot p X b \cdot q)\)
 \(a b \cdot(p X q+a \cdot p X q+p X b \cdot q)\)
 \(\sim a b(1):(p X q+a \cdot p X q+p X b \cdot q+a b \cdot(p X q+a \cdot p X q+p X b \cdot q))\)
 Hence a.pXb.q~ab. \((p X q+a \cdot p X q+p X b . q)\)
 The step leading to (*) uses a factorisation theorem ([FT2]); the four hypotheses of the theorem can be verified as follows (using the fact that $a . p \sim a(t):(p+a . p)$ and $b . q \sim b(t):(q+b . q)):$

1) $(p+a . p) \times(q+b . q+b(t):(q+b . q)) \sim(p+a . p) X(q+b . q)$
2) ($\mathrm{p}+\mathrm{a} . \mathrm{p}+\mathrm{a}(\mathrm{t}):(\mathrm{p}+\mathrm{a} . \mathrm{p})) \mathrm{X}(\mathrm{q}+\mathrm{b} . \mathrm{q}) \sim(\mathrm{p}+\mathrm{a} . \mathrm{p}) X(\mathrm{q}+\mathrm{b} . \mathrm{q})$
3) $(p+a . p+a(t):(p+a . p)) X(q+b . q+b(t):(q+b . q)) \sim(p+a . p) X(q+b . q)$
4) $(p+a . p) \times(q+b . q)+a(t):(p+a . p) \times b(t):(q+b . q) \sim(p+a . p) X(q+b . q)$

A closely related operator to a.p is indefinite delay:

$$
\delta_{\mathrm{a}} \mathrm{p} \Leftarrow \mathrm{p}+\mathrm{a} \cdot \mathrm{p}
$$

Where the agent p may be activated immediately, or delayed indefinitely by an action a. The following laws can all be easily proved from the properties of a.p:

$$
\begin{aligned}
& \delta_{a} 0 \sim \mathbb{K}_{a} \\
& \delta_{a} \mathbb{K}_{a} \sim \mathbb{K}_{a} \\
& \delta_{a}\left(\delta_{a} p\right) \sim \delta_{a} p \\
& \delta_{a} p \times \delta_{b} q \sim \delta_{a b}\left(\delta_{a} p X \delta_{b} q\right) \\
& \delta_{a} p \times \delta_{b} q \sim \delta_{a b}\left(\delta_{a} p \times q+p \times \delta_{b} q\right)
\end{aligned}
$$

5.7 Synchronising on Non-Synchronous Inpat

Suppose we want to express an agent I which takes an input on port a and produces the same value as output on port \bar{b} withoat any delay. The simplest form of I, witten $I_{\text {nall }}$ with nall=\{nil\}, accepts a single value nil and can be written:

$$
I_{n u 11} \Leftarrow a_{n i 1} \bar{b}_{n i 1}[1]: I_{n n 11}
$$

i.e. $I_{n u 11} \sim \mathbb{E}_{a_{n i 1}} \bar{b}_{n i 1}$.

The next simplest form of I is $I_{\text {bool }}$ with bool=\{1,h\} (10w and high) and, surprisingly, this cannot be written with deterministic guards. In fact the definition:

$$
I_{\text {bool }} \Leftarrow a_{1} \bar{b}_{1}[1]: I_{b o o l}+a_{h} \bar{b}_{h}[1]: I_{\text {bool }}
$$

will not work because the input $I_{\text {bool }}$ may change at any time, while for example the gard $a_{1} \bar{b}_{1}[1]$: once selected mast be taken to completion. The " 1 " in the definition of $I_{\text {bool }}$ is critical, and cannot be replace by a different namber without changing the behaviour of the agent. Compating the behaviour in case of unsynchronised inpat we obtain, for example:

$$
\left(I_{\text {boo1 }} \times \bar{a}_{h}[0.5]: \mathbb{E}_{a_{1}}\right) \backslash a_{1} \backslash a_{h} \sim \bar{b}_{h}[0.5]: 0
$$

while we might expect the result to be $\bar{b}_{h}[0.5]: \mathbb{K}_{\bar{b}_{1}}$. The example above behaves correctly if we replace " 1 " by " 0.5 " in the definition of $I_{b o o l}$ but of course we can always pick ap an inpat waveform so that the outpat degenerates to 0 .

Let us now redefine $I_{\text {bool }}$ by using nondeterministic guards:

$$
I_{\text {bool }} \Leftarrow a_{1} \vec{b}_{1}(1): I_{b o o l}+a_{h} \vec{b}_{h}(1): I_{b o o l}
$$

we can now prove that the choice of " 1 " in the definition is not critical:

$$
\begin{aligned}
& I_{b o o l} \sim a_{1} \bar{b}_{1}(t): I_{b o o l}+a_{h} \bar{b}_{h}(1): I_{b o o l} \\
& I_{\text {bool }} \sim a_{1} \bar{b}_{1}(1): I_{b o 01}+a_{h} \bar{b}_{h}(t): I_{b o o l}
\end{aligned}
$$

Then we can prove the desired properties of $I_{b o o l}$, using the factorisation theorems [FT3] and [FT4] to relate the asynchronons
behaviour of $I_{\text {bool }}$ to a synchronous input:

$$
\begin{aligned}
& \left(I_{\text {bool }} \times \bar{a}_{h}[t]: p\right) \backslash a_{h} \sim \bar{b}_{h}[t]:\left(I_{\text {bool }} X_{p}\right) \backslash a_{h} \\
& \left(I_{\text {bool }} \times \bar{a}_{1}[t]: p\right) \backslash a_{1} \sim \bar{b}_{1}[t]:\left(I_{\text {bool }} X_{p}\right) \backslash a_{1}
\end{aligned}
$$

The other factorisation theorems ([FT1] and [FT2]) are needed to prove the interactions of two asynchronous agents; for example in the proof of:

$$
\left(I_{b o o 1}\left\{c_{i} / b_{i}\right\} \times I_{b o o 1}\left[\bar{c}_{i} / a_{i}\right\}\right) \backslash c_{i} \sim I_{b o o l}(i \varepsilon[1, h])
$$

5.8 An Asynchronous Rising Edge Counter

We now discuss an example of the application of nondeterministic guards. Suppose we have a boolean signal:

Figure 5.2
Where the length of the segments t_{i} is completely arbitrary. The problem consists in counting the number of rising edges (i.e. transitions from $10 w$ to high) which have occurred in the signal at any given time. It is pretty well evident that there can be no solution using deterministic guards as any proposal would be bound to fail for some inpat waveform.

The connter has two states: Lown $_{n}$ and $H_{i g h}^{n}$, and n is increased at any passage from Low to High (for simplicity, the count n is not supplied as an explicit outpot)

$$
\operatorname{Low}_{n} \Leftarrow 1(1): \operatorname{Low}_{n}+h(1): \text { High }_{n+1}
$$

$$
\operatorname{High}_{n} \Leftarrow 1(1): \text { Low }_{n}+h(1): \operatorname{High}_{n}
$$

Note how the guards " 1 " and " h " are programmed to last as long as their corresponding asynchronous inpats. As usual, we first have to prove some invariance lemmas:

$$
\operatorname{Low}_{n} \sim 1(t): \operatorname{Low}_{n}+h(1): \operatorname{High}_{n+1}
$$

High $_{n} \sim 1(1):$ Low $_{n}+h(t):$ High $_{n}$
Low $_{n} \sim 1(1):$ Low $_{n}+h(t):$ High $_{n+1}$
$\mathrm{High}_{n} \sim 1(t):$ Low $_{n}+h(1):$ High $_{n}$

The following equivalences state the correctness of the counter; the inpat signal is assumed to be a sequence of deterministic guards, and the equivalences can be proved by asing [FT3] and [FT4].
$\left(\operatorname{Low}_{n} \times \bar{I}[t]: p\right) \backslash 1 \sim 1[t]:\left(\operatorname{Low}_{n} \times p\right) \backslash 1$
$\left(\right.$ High $\left._{n} \times \bar{h}[t]: p\right) \backslash h \sim 1[t]:\left(H_{i g h_{n}} \times p\right) \backslash h$
$\left(\operatorname{Low}_{\mathrm{n}} \mathrm{X} \overline{\mathrm{h}}[\mathrm{t}]: \mathrm{p}\right) \backslash \mathrm{h} \sim 1[\mathrm{t}]:\left(\mathrm{High}_{\mathrm{n}+1} \mathrm{X} \mathrm{p}\right) \backslash \mathrm{h}$
($\left._{\text {High }}^{n} \times \overline{1}[t]: p\right) \backslash 1 \sim 1[t]:\left(\operatorname{Low}_{n} X p\right) \backslash 1$

5.9 Descriptive Operators

Some operators can be introduced in order to describe properties of agents, without adding any expressive power themselves.

Here is a very simple descriptive operator:
$[\Pi \rightarrow] \quad \frac{p \stackrel{a}{t} q}{\Pi p \xrightarrow[t]{l} \Pi q}$

Definition 5.20 An agent p is persistent if $\Pi p \sim 1 \square$

The persistency operator allows as to distinguish agents which may end up in disaster from agents which carry on forever. This operator can help us if we want to exclude nonpersistent agents of any kind from the class of "physically existent" or "implementable" agents.

In order to talk about synchrony, we can introduce a synchronisation operator Γ, designed to "impose" a clock on an otherwise unsynchronised agent. We actually introdace an indered family Γ_{t} of such operators, meaning that $\Gamma_{t} p$ synchronises p to a clock of period $t \varepsilon \mathbb{I K}$.

$$
\begin{aligned}
& {\left[\Gamma_{t} \rightarrow\right] \quad \frac{p \stackrel{a}{t} q}{\Gamma_{t} p \stackrel{a}{t} \Gamma_{t} q}} \\
& {\left[\Gamma_{t+u} \rightarrow\right] \quad \frac{\Gamma_{t} p \frac{a}{\square+\nabla} q}{\Gamma_{t} p \frac{a}{a} a[v]: q}} \\
& \quad \text { Rale }\left[\Gamma_{t} \rightarrow\right] \text { says that } \Gamma_{t} p \text { can perform "t-ticks" only if } p \text { cant, } \\
& \text { i.e. p must be synchronisable to a clock of period } t \text {, otherwise } \Gamma_{t} p \\
& \text { will stop. }
\end{aligned}
$$

Rule [$\Gamma_{t+\square} \rightarrow$ is introduced in order to preserve the density 1 emma.

Definition 5.21 An agent p is t-synchronous if $p \sim \Gamma_{t} p$
The definition of t-synchrony intends to capture the idea that all the "significant changes" (i.e. transitions from an a-action to a different b-action) in a t-synchronous agent occar at instants which are divisors of t. For example:

$$
p \Leftarrow a[2]: b[2]: p
$$

p is 2-synchronous, 1-syachronous, etc., but it is not 3-synchronous, 4-synchronous, etc. becanse p cannot produce any action longer than 2. Note that 1 is t-synchronous for all t.

Definition 5.22 An agent p is non-synchronous if it is not t-synchronous for any t $\mathbb{0}$

An example of non-synchronous process is provided by a "bouncing ball" agent which is persistent and changes its output at a faster and faster rate:

$$
p_{n} \Leftarrow a[1 / n]: b[1 / n]: p_{n+1}
$$

If wo eliminate the nondeterministic guard "a(t):" from our signature, and we replace "a[t]:" by "a[1]:" (abbreviated "a:"),
than all the agents which can be expressed are 1-synchronous. The set of 1-synchronous agents corresponds exactly to the synchronous-CCS calculns [Milner 81], in the sense that the same set of laws holds.

Finally we can try to characterise some form of asynchronous behaviour by the following operator:

which stretches by arbitrary amonnts all the actions of an agent.

Dofinition 5.23 An agent p is asynchronous iff $p \sim \Delta p \square$

Note that this definition allows us to make a subtle distinction between non-synchronous or non t-synchronous agents (which are deterministic) and asynchronous ones (which are completely nondeterministic) and that many other behaviours lay in between.

6. Conclusions

Abstract

6.1 Achievements and Future Work

This thesis has demonstrated how algebraic techniques can be naturally applied to several aspects of hardware description and verification, with particular emphasis on the syntar and semantics of VLSI circuits and design systems. Indeed, we might say that our effort was not to apply preconceived techniques to new problems, but rather that the problems themselves semed to fit naturally in a environment which had developed for different (bat after all, related) purposes.

In Chapter 1 we have introduced a notation for the structaral description of networks, giving laws for net expressions which characterise a suitable kind of graphs. This work might be extended in several directions. Infinitary sorts might be useful in some applications; for example the sorts ased in Chapter 3 are finite but, as explained in Section 1.10, they might be naturally regarded as ancountably infinite. An attempt corld be made to axiomatise planar networks, and to prove completeness and initiality theorems with respect to that axiomatisation; we have taken the simpler approach of defining planar networks as a particular case of networks, without trying to characterise them (Section 1.7). Plansr sorts and cycles might be extended to three-dimensional objects in order to express the incompenetrability of solids; this is briefly discussed in Section 1.10. Finally, the problem of deciding the equivalence of two net expressions (or equivalently the isomorphism of two net graphs) appears to be polynomial, but we need to study tight upper bounds and to provide good equivalence algorithms.

In Chapter 2 we have shown how a wide variety of levels of description of hardmare circiits can be cast in similar formal
frameworks, so that the passage between levels is facilitated. A formal semantics has been given for the topmost behavioural level which concerns synchronons systems; formal proofs concerning these systems seem to be well suited to mechanis ${ }_{\wedge}^{\text {a }}$ ion, but they also bady require mechanical aids. A more complex problem is the definition of viable semantics for non-synchronors systems; Chapters 4 and 5 attack this problem, but further work is needed.

A major problem left unsolved in this thesis is the definition of a satisfactory dynamic semantics of low-level hardware (i.e. below the gate level). Rather accurate informal models are discussed in Section 2.4 but difficulties arise in formalisation; certain semantic techniques (like those discussed in chapter 4) could be applied in principle, but they seem to give rise to intractable formal systems. The static CSA semantics me present sems instead rather satisfactory becanse it can model the context-dependent relaxation processes which are characteristic of low-level hardmare, and can help in understanding the dynamic behaviour of circuits.

In the study of the translations between levels, two novel algorithms have been presented. One is an efficient stretching algorithm for grid structures, which simulates the two-dimensional stretching of matrices by the composition of stretching transformations. The second is an algorithm for the context-driven translation of purely topological planar stick diagrams (represented by textual expressions) into grid stractures, and hence into layouts. Bath algorithms need to be tested, expecially becarse the latter algorithm uses limited herristics.

In Chapter 3 we have described an experimental system for the design of VLSI layouts, which uses algebraic concepts to abstract away from geometric details. The system is bailt around a fanctional
higher-order langnage. which provides the necessary control and parameterisation stractures. Interactive graphical feedback is used in the development of programs in order to better relate the textual representations to geometrical layouts. The system might be improved in several directions; in particnlar, planarity checks and design rale checks were not included in the implementation to allow for a deeper investigation of other innovative featares.

Finally we have presented two different attempts towards the formalisation of real-time systems using, respectively, denotational and operational semantics techniques. The theories developed seem to give rise to satisfactory semantic models, but mach theoretical and practical work has to be carried out in order to test these ideas on large scale applications. It is hoped that formal systems of this kind can be used to formalate and prove properties of loy-level hardware; encouraging steps in this direction are described in [Gordon 81a, Gordon 81b]. Several intaitive properties of the analog processes formal system have beer left as conjectures which we believe could be formally stated and proved in our framework.

6.2 The Future

6.2.1 VLSI

VLSI is going to become the single most important technology of the next 20 years, and probably longer. It is already the most sophisticated technology ever devised, and its potentialities are today too remote to be fally appreciated. Even its limitations are too remote, and it seems that for some time the main difficulties mill consist in effectively exploiting the remarkable features which are presently available.

The shape of things to come in VLSI is usarlly expressed by Moore's Laws (so-called). The First Law is very optimistic (siightly
more optimistic than reality) stating that the namber of devices per silicon chip doubles every $2-3$ years. This "law of nature" was discovered in the mid-sirties and the exponential rate of growth it forecasts has been essentially respected up to now, and it will also be roughly respected in the next 5-10 years. After that, some very basic physical limits of the present integration technology will be reached, although progress may continue in other directions.

Hence in about 10 years we shall be able to put something like 100 million transistors on a silicon wafer. We have to think abont how to use them in interesting ways. Exciting possibilities have already been found which critically use the features of VLSI technology [Kang 80], and many more remain to be discovered.

Abstract

Almost every aspect of computer science will have to cope with this new technology. Even the less technology-related disciplines, like complexity theory, semantics, formal langages, algorithms and software engineering are going to be deeply influenced by this new way of looking at compatation. This is just the beginning, and we should carefully try to avoid repeating oldmistakes.

6.2.2 Design Tools

Moore's Second Law is, instead, very pessimistic. It says that the design time of VLSI chips grows exponentially with the namber of devices per chip (and that we are already close to the almost-vertical zone).

The biggest task for the design tool designers in the next fev gears will be to falsify this law. This cannot be done by linearly improving existing design systems and methodologies; totally nem lines of attack are required. It is far too early now to guess what kind of design systems will prevail. It sems certain that
translation techniques and effective graphic interaction will be useful, but it is not at all clear how.

One noticeable trend is towards very complex systems with data-bases maintaining maltiple levels of descriptions of circits, Where the user can jump from level to level editing text and graphics and optimising subcircuits, and where the system preserves the overall integrity of the design by making expert autonomons decisions based on complex heuristics.

This is not our aim; we have tried to demonstrate that the problems involved can best be cast in a simple framework involving a few primitive concepts, and many interesting translations are almost completely algorithmic, using only limited hearistics or a few user interactions at critical points. As many examples in computer science have shown, sometimes only simple solutions are able to solve complex problems.

6.2.3 Semantics

Given the complexity of future hardware systems, and their widespread use in all aspects of human life, important security problems arise. How can we know that chips controlling critical systems, like power plants, airplanes, cars etc. will not contain fatal "bugs", or that they will be immane to catastrophic hardware failures? In the case of microcoded systems, or hardmare-software combinations, we cope with the still noticeably unsolved problem of medium-large scale software verification. One (not get well founded) hope here is that abundance of hardware will let us write software suitable for formal verification.

Further work is needed in the semantics and verification of hardware systems; at the most abstract level this reduces to the
problem of giving tractable semantics to extensively concurrent systems. For the purposes of verification, one should be aware of formal systems which are completely satisfactory from the point of view of expressiveness and generality, but which do not allow us to carry out complex proofs because of technical clamsiness. In this respect equational approaches like [Milnex 80] are promising, because they seem to be very suitable for mechanisation.

At lower levels (like the CSA level and below) not even semantics is well established. This is to be attributed to the fact that in electronic circuits the semantics of the whole is not a simple function of the semantics of the parts, and complex relaxation processes are involved. The main semantic techniques seem to come from the field of circuit simalation, and simalation is not satisfactory from a semantic point of view. Even simulators are often criticised on the ground of not being realistic, but this uncealism may be becanse they have to compromise between accuracy and efficiency; disregarding efficiency there may be a satisfactory semantic model.

In conclusion the current lack of flexible verification systems may be because verification is at the same time a very difficult problem in each of several distinct areas: mathematical foundations, artificial intelligence, semantics and software engineering. There is some indication that these areas are slowly converging towards viable solutions, and together with the steady increase in compatational power we retain some hope for future success.

```
Appendix I. Syntax Description Notation
    The following conventions are used to present grammars:
- strings between single quotes \({ }^{\prime \prime \prime}\) are terminal symbols;
- "orn is the nnll string;
- identifiers are non-terminals;
- juxtaposition is concatenation;
- "|" is disjunction;
- "[ ... ]" means zero or one times "...";
- "\{ ... \}n" means \(n\) or more times "..." (defanlt n=0);
- "\{ ... / -- \}n" means \(n\) or more times "..." separated by "-.."
(defanlt \(n=0\) ) ;
- parenthesis "( ... )" are used for precedence;
- "::=" is used for matually recursive definitions.
As an example, the metanotation is described in terms of itself:
Grammar : := \{Identifier ': :=' Term
Term : : =
    "..' [ Characters ] \({ }^{\prime \prime} \cdot \mid\)
    Identifier 1
    Term Term |
    Term 'l' Term |
    '[' Term ']' |
    '[' Term [ \(/{ }^{\prime}\) ' Term ] ']' [Integer] |
    '(' Term ')'
```


Appendix II. Table of Symbols

g	empty set
\{ .. \}	sets
[.. \| .. \}	set descriptions
a ε A	set membership
$A \cup B$	set mion
An B	set intersection
$A \backslash B$	set difference
AөB	symmetric difference ($A \backslash B \cup B \backslash A$)
AEB	A is a subset of B
A ® $^{\text {B }}$	A is a superset of B
$\|s\|$	cardinality of a set S
$A \rightarrow B$	function space
$\mathrm{B}^{\text {A }}$	fanction space $A \rightarrow B$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$	f is a function from A to B
$f: \mathrm{a} \rightarrow$ ¢ ${ }^{\text {b }}$	f maps a into b
「f7	domain of a function
$f+A$	function restricted to the domain A
$\mathrm{id}_{\mathbf{A}}$	identity fanction on A
fog	function composition (fog) (a) $=\mathrm{f}(\mathrm{g}(\mathrm{a})$))
f\#g	function pairing ($(\mathrm{f} \# \mathrm{~g})\langle\mathrm{a}, \mathrm{b}\rangle=\langle\mathrm{f}(\mathrm{a}), \mathrm{g}(\mathrm{b})\rangle$)
f^{-1}	inverse function
f(a)	function application
AXB	cartesian product
$\langle a, b\rangle$	pair
${ }^{+}{ }_{1}$	left projection ($\left.\langle a, b\rangle \downarrow_{1}=a\right)$
${ }^{+}$	right projection ($\langle a, b\rangle{ }_{2}=\mathrm{b}$)
A*	set of finite lists over A
$\left[e_{1} ; \ldots ; e_{n}\right]$	list ($\mathrm{n} \geq 0$)

e	net expression
$e:\left\{a_{i}: T_{i}\right\}$	syntax for sorts
1 ع IL	1iteral
$\lambda(1)$	sort of a literal
$e \backslash a$	restriction
e \{r ${ }^{\text {f }}$	renaming $e\left(a_{i} \backslash b_{i}\right\} \quad\left(a_{i}\right.$ becomes $\left.b_{i}\right)$
1	implicit composition
$e[r] e^{\prime}$	explicit composition e[a $\left.\mathrm{i}^{--b_{i}}\right]^{\text {e }}$,
$\sigma(e)$	sort of an expressions
三	convertibility
$t \rightarrow b$	clocked transitions
ϕ_{1}, ϕ_{2}	clock phases
$\left\langle 1: t_{i} \rightarrow b_{i}\right\rangle$	phase-1 clusters
$\left\langle 2: t_{i} \rightarrow b_{i} \nabla_{i}\right\rangle$	phase-2 clusters
$t \mathrm{t}, \mathrm{ff}$	boolean true and false
0	CSA strong zero
1	CSA strong one
0	CSA weak zero
$\underline{1}$	CSA weak one
0	CSA strong undefined
$\widetilde{\mathrm{J}}$	CSA weak undefined
Z	CSA floating
F	either 0 or $\tilde{0}$
T	either 1 or $\tilde{1}$
\bigcirc	CSA connection operation
GND	ground
VDD	power supply
$\lambda \mathrm{I} . \mathrm{M}$	lambda notation for functions

$\xrightarrow{M} \rightarrow$	analog process transition
X	product of transitions
\#	join of signals
NIL	empty transition
2	nosignal
$\Pi_{i \varepsilon I}{ }^{T}$	indexed product of transitions
1	composition of analog processes
$1 a$	restriction
$\partial t . V$	pointwise definition of signals
$\mu \boldsymbol{\mu} . \mathrm{M}$	recursively defined signal
M[N/a]	syntactic substitation (${ }^{\text {a }}$ replaces α)
$\left\{\alpha_{i} / \beta_{i}\right\}$	renaming (β_{i} replaces α_{i})
L	finite set of labels
$P_{L, L^{\prime}}=L^{\prime} \rightarrow T_{L}$	a domain of processes
$P=\Sigma_{L, L}, P_{L, L}{ }^{\prime}$	domain of all processes
$\mathrm{T}_{\mathrm{L}}=S^{L} \rightarrow \mathrm{~S}$	a domain of transitions
$\mathrm{S}=\mathbf{T} \rightarrow \mathrm{V}$	a domain of signals
K	time (positive reals)
V	a domain of signal values
$\langle V, \phi, V\rangle$	signal monoid
$\left[\alpha_{i}: s_{i}\right]$	labelled tuples of signals
$\left[\alpha_{i}: s_{i}\right] \cdot \alpha_{j}=s_{j}$	fieldextraction
$\lambda\left[\mathrm{a}_{\mathrm{i}}\right] . \mathrm{M}\left[\mathrm{a}_{\mathrm{i}}\right]$	abbreviates $\lambda \mathrm{x} . \mathrm{M}\left[\mathrm{x} \cdot \mathrm{a}_{\mathrm{i}} / \mathrm{a}_{\mathrm{i}}\right]$
$\left\{t_{i} \rightarrow a_{i}\right\}$	syntax for processes
I	least fixpoint operator
II	semantics of terms
S	semantics of signals
IP	semantics of processes
†V	$\partial t . V$ when t does not occur in V
$S \Delta S^{\prime}$	delay operator on signals
1	semantic bottom

References

[Barton 81] E.E.Barton: A Non-Metric Design Methodology for VLSI. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Batali 81] J.Batali, N.Mayle, H.Shrobe, G.Sus sman, D. Weise: The DPL/Daedalus Design Environment. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Bryant 81] R.E.Bryant: A Switch Level Model of MOS Logic Circuits. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Buchanan 80] Y.Buchanan: Modelling and Verification in Structured Integrated Circuit Design. Ph.D. Thesis, Dept. of Compater Science, University of Edinbargh, 1980.
[Barge 75] W. H. Barge: Recursive Programming Techniques. Addison Hesley, 1975.
[Burstall 77] R.M.Burstall, J.A.Goguen: Patting Theories Together to Make Specifications. Proc. of the 5 th International Joint Conference on Artificial Intelligence, Cambridge, Mass. 1977.
[Cardelli 80] L. Cardelli: Analog Processes. Proc. 9th Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science n.88, Springer-Verlag 1980.
[Cardelli 81a] L.Cardelli, G.Plotkin: An Algebraic Approach to VLSI Design. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Cardelli 81b] L.Carde11i: Sticks \& Stones: An Applicative VLSI Design Language. Internal Report CSR-85-81, Dept of Compater Science, University of Edinburgh.
[Cardelli 82] L. Carde11i: Real Time Agents. Proc of the 9 th International Colloquiam on Antomata, Langages and Programming, Aarhns 1982 (to appear).
[Chaney 73] T.J.Chaney, C.H.Mo1nar: Anomalous Behaviour of Synchronizers and Arbiter Circuits. IEEE Transaction on Compaters, April 1973.
[Chazelle 81] B.Chazelle, L.Monier: Optimality in VLSI. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Clark 80] M.A.Clark: From Electron Mobility to Logical Stractare: A View of Integrated Circuits. Computing Surveys $12(3) 1980$.
[Conway 80] L.A.Conway, A.Be11, M.E.Newel1: MPC 79: The Large-Scale Demonstration of a New Way to Create Systems in Silicon. Lambda 1, 2, 1980.
[Fairbairn 78] D.G.Fairbairn, J.A.Rowson: ICARUS: An Interactive Integrated Circuit Layout Program. Proc. 15 th Design Antomation Conference, 1978.
[Floyd 80] R.T.Floyd, J.D. Ollman: The Compilation of Regriar Expressions into Integrated Circuits. In: Proc. 21st Annual Symposiom on Foundations of Computer Science. IEEE Compater Society.
[Foster 80] M.J.Foster, H.T.Kung: The Design of Special-Purpose VLSI Chips: Examp1e and Opinions. Compater $13(1)$.
[Foster 81] M.J.Foster, H.T.Kang: Recognize Regular Langages with Programmable Building-B1ocks. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Goguen 78] J.A.Gognen, J.W.Thatcher, E.G.Wagner: An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. In: R.T.Yeh(ed.): Current Trends in Programming Methodology. Yol IV, Prentice-Hal1, 1978.
[Gordon 79a] M.J.Gordon, R.Milner, C.P. Wadsworth: Edinburgh LCF. Lecture Notes in Compater Science, n.78. Springer-Verlag 1979.
[Gordon 79b] M.J.Gordon: Denotational Description of Programming Languages. Springer-Verlag, 1979.
[Gordon 81a] M.J.Gordon: A Very Simple Model of Sequential Behaviour of nMOS. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Gordon 81b] M.J.Gordon: Register Transfer Systems and Their Behaviour. Proc. of the 5th International Conference on Hardmare Description Languages, 1981.
[Gratzer 79] G.Gratzer: Universal Algebra. Springer-Verlag, 1979.
[Hayes 81] J.P.Hayes: A Logic Design Theory for VLSI. Proc. 2nd Caltech Conference on VLSI. Caltech, Jannary 1981.
[Hennessy 80] M. Hennessy, R.Milner: On Observing Nondeterminism and Concurrency. Proc. ICALP 80. Lecture notes in Computer Science n.85. Springer-Verlag 1980.
[Johanasen 79] D.Johannsen: Bristle Blocks: A Silicon Compiler. Proc. 16 th Design Antomation Conference. June 1979.
[Kang 80] H.T.Kang, C.E.Leiserson: Algorithms for VLSI Processor Arrays. In: C.A.Mead, L.A.Conway: Introduction to VLSI Systems. Addison Wesley, 1980.
[Lattin 81] W.W.Lattin, J.A.Bayliss, D.L.Budde, J.R.Rattner, W.S.Richardson: A Methodology for VLSI Chip Design. Lambda 2(2), 1981.
[Locanthi 78] B.Locanthi: LAP: A SIMOLA Package for IC Layout. Caltech Display File \#1862, 1978.
[MacQueen 79] D.MacQueen: Models for Distributed Computing. Report n. 351, IRIA-Laboria, 1979.
[Masumoto 80] R.T.Masumoto: The design of a 16×16 Multiplier. Lambda 1(1), 1980.
[Mead 80] C.A.Mead, L.A.Conway: Introduction to VLSI Systems. Addison Wesley, 1980.
[Melen 80] R.Melen, H.Garland: Understanding CMOS Integrated Circuits. H. W. Sams\&Co. 1980 .
[Mikkelson 81] J.M.Mikkelson, L.A.Hall, A.K.Malhotra, S.D.Seccombe, M.S.Wilson: An NMOS VLSI Process for Fabrication of a 32b CPU Chip. IEEE International Solid State Circuits Conference, 1981.
[Milner 78] R. Milner: Synthesis of Communicating Behaviour. Proc. 7th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Compater Science, n. 64. Springer-Verlag 1978.
[Milner 79] R.Milner: Flowgraphs And Flow Algebras. Journal of the ACM, 26(4), 1979.
[Milner 80] R. Milner: A Calculus of Communicating Systems. Lecture Notes in Computer Science, n.92. Springer-Verlag 1980.
[Milner 81] R.Milner: On Relating Synchrony and Asynchrony. Internal Report CSR-75-80. Dept. of Computer Science, University of Edinburgh.
[Mosteller 81] R.C.Mosteller: REST - A Leaf Cell Design System. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Madge 81] J.C.Madge: VLSI Chips at the Crossroads.
In: J.P.Gray(ed.): VLSI 81: Academic Press, 1981.
[Newman 79] W. M.Newman, R.F.Sproul1: Principles of Interactive Computer Graphics. McGraw-Hill 1979.
[Park 81] D.M.R.Park: Concurrency and Automata on Infinite Sequences. Proc. GI Conference, 1981.
[Patil 74] S.S.Patil: Bounded and Unbounded Delay Synchronizers and Arbiters. Compatation Structures Group Memo 103, M.I.T. June 1974.
[Piloty 81] R.Piloty: A Langage System for Hardware Description. Proc. of the Sth International Conference on Hardware Description Languages, 1981.
[P1otkin 81] G.D.Plotkin: A Structural Approach to Operational Semantics. Report DAIMI FN-19, Dept. of Computer Science, University of Aarhas, 1981.
[Preparata 79] F.P.Preparata, J.Vaillemin: The Cube-ConnectedCycles: A Versatile Network for Parallel Computation. Proc. 20th Annual Symposiam on Foundations of Compater Science, October 1979.
[Rem 81] M.Rem, C.Mead: A Notation for Designing Restoring Logic Circuitry in cmoS. Proc. 2nd Caltech Conference on VLSI. Caltech, Janaary 1981.
[Rivest 80] R.R.Rivest: A description of a Single Chip Implementation of the RSA Cipher. Lambda 1(3) 1980.
[Rowson 801 J.A.Rowson: Onderstanding Hierarchical Design. Ph.D. Thesis, California Instituite of Technology, 1980.

```
[Rupp 81] C.R.Rupp: Components of a Silicon Compiler System.
    In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[S.A. 77] Scientific American, September 1977.
    (Special issue on microelectronics)
[Sanne1la 81] D.Sannella: A New Semantics for Clear. Internal
    Report CSR-79-81, Dept. of Computer Science, University
    of Edinbargh, 1981.
[Scott 76] D.S.Scott: Data Types as Lattices. SIAM Journal of Compating, 4, 1976.
[Seitz 80] C.L.Seitz: System Timing. In: C.A.Mead, L.A.Conway: Introduction to VLSI Systems. Addison Wesley, 1980.
[Sequin 81] C. \(\mathrm{H} . \mathrm{Seq}_{\mathrm{q}} \mathrm{in}:\) Generalized IC Layout Rales and Layout Representations. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Smith 80] L.D.Smith: The Elementary Stractural Description Langage. CSR-53-80, Dept. of Computer Science, University of Edinburgh, 1980.
```

[Sproull 80] R.F.Sproull, R.F.Lyon: The Caltech Intermediate Form for LSI Layout Description. In: C.A.Mead, L.A.Conway: Introduction to VLSI Systems. Addison Wesley, 1980.

[Steele 80] G.L.Steele Jr., G.J.Sussman: Desing of a LISP-Based Microprocessor. Communications of the ACM 23, 11, 1980.
[Stoy 77] J.E.Stoy: Denotational Semantics: the Scott-Strachey Approach to Programming Language Theory. M.I.T. Press, 1977.
[Tarolii 80] G.Tarolli: Chip Assembler. Proc. Computer Architecture Conference, 1980 .
[Trimberger 79] S.Trimberger: A CAD System Combining Interactive Graphics and a Layont Langaage. Caltech SSP File \#2499, 1979.
[Weste 81] N. Weste, B.Ackland: A Pragmatic Approach to Topological Symbolic.IC Design. In: J.P.Gray(ed.): VLSI 81. Academic Press, 1981.
[Whitney 81] T.E. Whitney: A Hierarchical Design-Rnle Checking Algorithm. Lambda 2, 1, 1981.
[Tilliams 78] J.D. Williams: Sticks - A Graphical Compiler for High Level LSI Design. Proc. NCC, May 1978

[^0]: Appendix I introdaces the notation ised for expressing the syntar of languages, and appendix II contains a list of the symbols used through this thesis.

[^1]: Processes are collections of transitions; in particular $P_{L, L}$, is the domain of processes with L inputs and L outpats, namely

