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Abstract 

We apply algebraic techniques to various aspects of hardware 

description and verification, with particular emphasis on VLSI (Very 

Large Scale Integration) circuit design. 

A simple and uniform notation for the description of networks of 

hardware components is introduced. It is shown how to impose 

planarity constraints, and how to treat regular and repetitive 

structures in convenient ways. 

The notation is applied to several examples of hardware networks. 

All these examples constitute different levels of description in the 

process of translating behavioural specifications into VLSI 

circuits. A formal semantics is given for the topmost level. 

Algorithms are given for the translation of purely topological 

planar stick expressions into metric structures from which layouts 

can be generated. 

The implementation of an experimental VLSI design system is 

described which uses algebraic concepts to hide detailed geometrical 

information. Geometric layouts are introduced as an abstract data 

type in a general purpose functional programming language and 

considerable advantages over traditional design systems are 

demonstrated with respect to the user interface. 

On the semantic side, two different formal frameworks are defined 

for the description of systems developing in continuous time. The 

emphasis is again algebraic, and techniques of both denotational and 

operational semantics are used. In the operational framework 

nondeterministic systems can be treated in a natural way, and it is 

possible to precisely formulate the behaviour of synchronous and 

asynchronous systems and to study their interactions. 
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0. Introduction 

0.1 The Past 

We begin with a review of those recent developements in the 

fields of microelectronics, design tools and semantics which are 

relevant to this thesis. 

0.1.1 Microelectronics 

During 	the 	past 	few 	years, 	the 	steady 	progress 	in 

microelectronics has reached a point where completely untrained 

people can be taught, in the span of few weeks, to conceive and 

design highly complex hardware systems. 

This fact may come as a great surprise to two categories of 

people. On the one side professional hardware designers have seen 

the complexity of systems growing beyond any control, to the point 

where the technology is clearly more powerful than the ability to 

use it. It seems then unlikely that untrained people might do 

better. 

On the other side the average (computer) scientist who has been 

trained to think that "the hardware is made by the engineers", 

suddenly discovers that in a couple of months he can design and 

receive., his pet architecture; one the big manufacturers had 

thoughtfully refused to consider. However, it may seem unlikely that 

he can really do it if those expert manufacturers would not. 

The fact is that, until recently, the problem of managing the 

complexity of VLSI (Very Large Scale Integration) systems was not 

adequately considered. Design methodologies were developed which 

encouraged circuit efficiency at a very low level, often at the 

expense of global optimisations and disregarding elegance and 
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structure. The work done by Carver Mead, Lynn Conway and their 

collaborators (Mead 801 has completely changed this picture. 

Structured methodologies have proven to be more reliable, to extend 

smoothly to big systems and in many cases to provide more efficient 

and totally unexpected solutions. The simplicity reintroduced by 

structured methodologies allows people to learn quickly and to 

quickly produce non—optimal but working devices. In many cases the 

achievements of these newcomers (Conway 801 sound astounding with 

respect to average industrial products (Steele 80, Rivest 80, 

Masumoto 801. Structured methodologies are now beginning to be 

systematically used by big manufacturers, and the results are 

equally encouraging (Lattin 81, Mudge 811. 

0.1.2 Design Tools 

Another key contribution has been the definition of a clean 

interface between design and fabrication (Mead 801. While any such 

interface necessarily introduces some inefficiency, it allows the 

designer to ignore most of the inessential aspects of the 

fabrication process. Moreover it seems sensible to expect that in 

future fabrication processes will be designed to. match this kind of 

interface, so that many of the inefficiencies will disappear 

(Mikkelson 811. 

The coincidence of structured methodologies, clean interfaces and 

high level of integration, has inspired a 3udden and rapidly 

spreading interest outside the microelectronic environment. It is 

most fortunate that this sudden "discovery" of VLSI, comes at a 

moment where the traditional architectures and design techniques 

used in microelectronics are showing their limits, and where there 

is a great need for complexity management techniques. 

In fact, the management of complexity has always been the main 
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problem in software engineering and programming language design, and 

structured methodologies are now simply common sense in those areas. 

The hope is that as a result of the experience gained in software we 

shall not have to wait long before getting very effective high level 

tools for hardware design. A subordinate hope is that we shall be 

able to completely omit the "batch" and "FORTRAN" stages of design 

tools. 

An interesting parallel can be made between the state of hardware 

design today and the state of software design in the fifties and 

early sixties. Layouts (the end—product of any VLSI design activity) 

have many of the characteristics of machine language programs. They 

are powerful enough to fully exploit the technology and can lead to 

great efficiency when used at the lowest level. On the other hand 

they are inscrutable, and difficult to modify, maintain and debug, 

and very prone to trivial and repetitive (yet fatal) errors. The 

information they convey is inflexible and absolute, and in general 

they encourage programming styles which lack clarity and elegance. 

Most of the VLSI design tools today are based on layouts. As a 

consequence of the low level notations used, many of these are 

concerned with recovering from errors which have already been made, 

or with recovering structure which has been lost at some previous 

stage of design. 

For example, design rule checkers are needed because people are 

allowed to draw wires of the wrong thickness, or to put transistors 

in the wrong places. Again, electrical rule checkers are needed 

because the low level of primitives allows designers to combine them 

in meaningless ways. And again, node extractors are needed because 

the initial description of the circuit is not semantically 

structured, or because the structure has been flattened out by some 
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other tool. 

Other tools are hampered by tasks which are not their own. 

Graphics editors are sometimes equipped for checking design rules, 

or even electrical parameters. Simulators are used in the detection 

of errors which are clearly syntactical, such as wires which fall 

short of their intended contact points, switches connected in 

meaningless ways, transistors introduced by accident, power supply 

lines disconnected or wrongly connected, etc. 

Recently, "assembly languages" have been devised ((Locanthi 781 

and many others), where symbolic names and locations can be used 

instead of bare numbers. High level control structures can be used 

and syntactic correctness checks can be performed so that some of 

the syntactic properties of the output, like wire thickness, are 

guaranteed to be correct. The primary task of these tools is however 

to describe layouts, not computations, and they are strongly process 

(or process—class) dependent because they aim to give full access to 

the lowest level of description. For this reason they should still 

be considered to be low—level tools. 

Continuing the analogy, why cannot we have compilers? The 

features of a general purpose silicon compiler are easily listed: it 

should be process—independent, it should be able to express any 

range of architectures at the behavioural level, and given a 

syntactically correct input it should always produce syntactically 

correct code. We should be able to formally describe the compiler 

(i.e. no "hacking") and maybe prove its correctness, or at least 

believe in it! 

The production of a silicon compiler is a very complex problem. 

We know what the output should be, namely layouts, but we do not 

know how to produce it and we do not have any clear ideas about what 
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the input should look like. The choice of a convenient input 

notation might deeply influence (and maybe simplify) the translation 

process, and conversely translation techniques may impose 

restrictions on our notation. It is not clear whether we should 

first fix the notation or study the translations, or proceed by 

attempts in both directions until some satisfactory meeting point is 

reached. 

As to the linguistic problems, there is no doubt about the 

advantages of a high level notation, as far as programming is 

concerned. For example in many cases high—level language programs 

can be debugged by typechecking and proof—reading, while "tracing" 

(which corresponds to simulation) is essential for assembly language 

programs. Moreover, if we consider the elegance of, for example, a 

one—pass Pascal compiler with respect to an n--pass macro—assembler, 

we can also' clearly see the implementational advantages of a well 

structured and powerful notation. 

The problem of compiling into two—dimensional structures, even if 

frequently found in design automation problems, seems to be rather 

new in formal language and compiler construction theory. There is a 

little recent interesting work (Floyd 80, Forster 811 at the formal 

language end. Pioneering work towards full—scale silicon compilers 

is reported in (Iohannsen 791 and [Rupp 811. Unfortunately the vast 

literature in hardware routing and placement problems does not seem 

to apply very directly to VLSI; indeed for compilation it is not 

enough use techniques like general routers which often only solve 

95% of each problem. 

On 	the 	positive side, a 	series 	of remarkable 	design 	tools 	for 

VLSI has emerged in recent years. Many of these tools share many of 

the 	criticisms 	we have expressed, but 	they 	are 	indisputable 
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milestones in their area. 

Some design tools computerise boring hand—drawing activities, by 

using interactive graphics displays. In this class we can mention, 

for layouts ICARUS [Fairbairu 781, for stick diagrams STICKS 

(Williams 781 culminating in REST (Mosteller 811, and for cell 

composition the Chip Assembler (Tarolli 801. 

The prototypical text—oriented system is LAP (Locanthi 781, which 

embeds a very simple graphical notation [Sproull 801 in a general 

purpose high—level language (this idea comes from standard graphics 

techniques (Newman 791). The crudeness of the graphics primitives is 

compensated for by the ability to use the control constructs of the 

language for parameterisation and abstraction, achieving an 

effectiveness far greater than graphics editors (but with very 

little user—friendliness). 

More ambitious systems try to integrate several tools (Buchanan 

801, often into a workstation with special purpose programming 

languages or packages and sophisticated graphic interfaces. On the 

layout level we have the LISP—based DPL [Batali 811, and on the 

sticks level MULGA (Weste 811. Both these systems are truly 

remarkable, even if the complexity of the former seems excessive. 

Many similar systems are now being developed; they mostly use a 

personal computer together with a high resolution colour display and 

a pointing device. 

0.1.3 Semantics 

A very sharp distinction should be made between the means and 

ends of formal description and formal verification. These two 

activities are often inversely proportional, in the sense that very 

powerful description systems can be so detailed and complicated as 

not to allow any general view of the problems (for example, consider 
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quantum mechanics as a way of describing an armchair: can we 

formally verify- that the armchair is comfortable?). Conversely we 

might have verification systems which at a certain level of 

abstraction allow us to easily verify any property we want, but 

which are unable to describe part of the realities we are interested 

in (suppose we have a nice theory of armchairs and soft materials; 

what happens if we ship the armchair to a black hole?). 

Unfortunately one can also come up with questions which require both 

powerful descriptions and flexible theories (if we do send the 

armchair to the black hole, will it keep being comfortable?), and 

the problem is then to maximise the usefulness of the whole system, 

and not just the descriptive or the proof—theoretical part. 

In mathematics some sort of optimality has been reached, if we 

consider for example how analysis merges smoothly into topology. Not 

so in computer science; the considerable descriptive success of 

denotational and algebraic semantics has not yet 1 e to 

satisfactory theories of programs (even if it has leè' to 

satisfactory theories of models). Properties which are considered 

obvious to programmers escape, on large programs, any verification 

or even formalisation. 

It is well known that concurrent systems are much more difficult 

to describe and verify than sequential ones. In this field, 

denotational and algebraic semantics found descriptive difficulties, 

while powerful descriptive systems like Petri nets do not seem to 

offer striking advantages for verification purposes. 

From this point of view, hardware systems seem to summarise many 

difficult problems in semantics; they are of extensively concurrent 

nature, and the behaviour of even the simplest components is 

difficult to describe and context—dependent. 
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Hardware is semantically unexplored at intermediate levels. For 

low level hardware, the main semantic description available is 

device physics, which is not very helpful when the number of devices 

exceeds one. Very powerful techniques have been developed in 

electronics for the study of analog circuits, but are not of general 

application to digital circuits. For gate—level hardware, we have 

satisfactory theories like switching theory (for small combinational 

systems), and automata theory (for larger sequential systems) which 

however do not work very well for complex systems built out of many 

parts, like microprocessors. Very little exists between device 

physics and switching theory. which is unfortunately exactly what we 

need for low—level VLSI. Moreover automata theory is not very 

suitable for studying interconnected 'networks of processors, which 

is what we need for high—level VLSI. 

Part of these problems, which are common to concurrency problems, 

have been attacked by the use of operational techniques (Plotkin 

811, which can conveniently describe concurrency, joined to 

algebraic techniques [Milner 801, which lead to flexible proof 

systems. Recent work on synchronous concurrent systems [Milner 811 

(which extends smoothly to asynchronous systems) seem to be 

particularly well suited both to hardware description and 

verification, as most hardware systems today are internally 

synchronous. 

0.2 This Thesis 

The first chapter of this thesis is dedicated to the task of 

providing a simple and uniform notation for the description of 

networks of hardware components. The approach is algebraic in nature 

and derives from work on the syntax of concurrent systems (Milner 

791. After a general introduction to many—sorted algebras (section 
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1.2), a "pure" formalism of net expressions is introduced in section 

1.3, together with a set of equational laws expressing the 

equivalence Of networks. Networks are regarded as graphs with an 

interface, and together with net expressions they form wrist we call 

a net algebra (net algebras are compared to Miler's flow algebras 

in section 1.5). In section 1.6 we characterise the initial net 

algebra in terms of particular kinds of graphs, and we prove 

soundness, completeness and definability theorems with respect to 

the net expressions and laws. Some additional structure is then 

imposed on net algebras in view of the use we shall make of them in 

chapter 2. Section 1.7 treats planar networks, and sections 1.8 and 

1.9 introduce the idea of a bunch (a way of structuring interfaces) 

which is essential when programming in net algebras. Some bizarre 

examples of net algebras are given in section 1.10 in order to 

explore the power of the formalism, while section 1.11 introduces a 

hardware network which will be used as an example throughout chapter 

2. 

The second chapter applies the notation developed in the first 

chapter to several examples of hardware networks. All these examples 

constitute different levels of description (i.e. different net 

algebras) in the process of translating behavioural specifications 

into VLSI circuits. Even if we occasionally attack the problem of 

algorithmic translations into two—dimensional structures, we 

concentrate in general on formalisms which can be considered as 

prototype textual languages for silicon assemblers and compilers, on 

much the same lines as [Rem 811. This leaves uncovered a wide area 

of research, namely graphical languages and graphical interaction. 

Although it is rather natural to imagine graphical counterparts for 

some of the textual programming constructs we present, it is not 

clear how to define purely graphical systems of the same power as 
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text—oriented systems (see (Trimberger 791 for an effort towards 

integrated text—graphics systems). This is mostly due to the lack of 

a good graphical analog for parameterisation. Hence, even if we 

think that graphical interfaces are essential to easily usable 

systems, we generally concentrate on textual expressions denoting 

graphical entities. 

The topmost level of description, called Clocked Transition 

Algebra (CTA, section 2.3), is concerned with the behavioural 

specification of synchronous systems. A formal semantics of CA is 

given by a translation to Synchronous CCS [Milner 811. Section 2.4 

describes the CSA model of switch—level hardware (Hayes 81, Bryant 

811 and gives a semantics to the stable CSA circuits. A translation 

mapping every CIA expression into a CSA circuit is then shown. In 

section 2.5 we work with (planar) stick diagrams, showing several 

examples of net algebra programming activity. A translation from CTA 

to sticks is briefly sketched. Section 2.6 treats grids, which are 

stick diagrams disposed on orthogonal lines. The algebra of grids is 

very important as an intermediate step in the translation of purely 

topological stick diagrams into geometrical layouts. An efficient 

stretching algorithm for grids is developed; then a translation from 

sticks to grids is described, which has the property of always 

succeeding in every admissible context (a context expresses 

constraints on the position of connection points on a rectangular 

boundary). Finally we comment that translations from grids into 

layouts have already been experimented with (e.g. [Mosteller 81]). 

The third chapter describes the implementation of an experimental 

VLSI design system (constituting- what is generally,  called a silicon 

assembler) where most of the geometry—related characteristics of 

layouts are hidden by the use of algebraic operations. In section 

3.2 we introduce the basic data type of pictures (layouts), which is 
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embedded in a general purpose programming language (Gordon 731 

allowing parameterisation and conditional assemblies of pictures. 

Bunches, and their use in association with an iteration construct, 

are described in sections 3.3 and 3.4. Section 3.5 deals with an 

interpretation of a net algebra operator which embodies a form of 

geometrical river routing. The remaining sections describe various 

aspects of the implementation. 

The purpose of the fourth and fifth chapters is to provide a 

framework where formal proofs concerning the low level behaviour of 

hardware systems can be carried out. The fourth chapter describes a 

formalism in which systems developing through continuous time can be 

expressed. The emphasis is again algebraic, and algebraic laws are 

formulated which express the behaviour of such systems (section 

4.3). Techniques of denotational semantics are used to provide a 

deterministic model (section 4.4); the attempt to extend the 

treatment to nondeterministic systems encounters technical 

difficulties and another approach is used in chapter 5. A discussion 

about the expressive power of this formalism is contained in 

sections 4.5. 4.6 and 4.7. Section 4.8 is dedicated to an example 

(flip—flops) - which exhibits metastable behaviour. 

The semantic techniques used in chapter 5 are operational, with 

the advantage that a semantics can be given to nonde termini stic 

systems in a natural way. This chapter follows (Milner 811 and can 

be regarded as an extension of that work where a discrete time 

domain is replaced by a continuous one. Section 5.1 introduces the 

main ideas and the operational semantics methodology. After a 

section studying deterministic systems (5.2), nondeterminism is 

introduced in two orthogonal ways in section 5.3 by a choice 

operator and an indefinite—duration operator. Communication is 

treated in section 5.4 and recursion in section 5.5, where some 
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difficulties due to the density of time have to be solved. The 

following three sections (5.6, 5.7 and 5.8) discuss the complex 

interactions between synchronous and asynchronous systems, and 

section 5.9 gives a way of characterising synchronous, 

non—synchronous and asynchronous systems. 

Appendix I introduces the notation used for expressing the syntax 

of languages, and appendix II contains a list of the symbols used 

through this thesis. 
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1. Algebra of Networks 

1.1 Introduction 

A network is to a first approximation a finite graph. Our main 

concern is with structured network design, and we are interested in 

methods and notations for building and analysing networks in a 

hierarchical fashion. Hence the first problem we have to solve is 

how to express finite graphs, considered as unstructured sets of 

arcs, in some orderly and structured way. 

The simplest way of exhibiting a graph is of course by displaying 

it. This kind of presentation is expressive and immediately 

understandable by humans, but unfortunately it also has several 

disadvantages. 

Figure 1.1 A graph 

First of all the structure of the graph is not evident in its 

picture, i.e. we cannot tell how it was built; the mere picture of 

the graph hides the intended way of looking at a particular graph 

among the several ways in which the graph can be constructed. Hence 

some structure (graphical or otherwise) has to be superimposed on 

the graph in order to understand it in terms of its components. 



Figure 1.2 Decompositions 

Second, 	graphical 	notation is not suitable 	for 	direct 

mathematical manipulation. Mathematical coding has to be used in 

order to get the benefits of formal treatment, and an effort should 

be made to keep the coding not too different from the intended 

structure of the coded object, otherwise an obscure theory will 

result. 

Third, graphical notation does not make a good programming 

language; not because it is difficult to "type it in" (this can be 

overcome by graphical editors) but because the usual programming 

language control structures and parameterisation mechanisms are not 

easily definable on pictures. 

Fourth, and finally, no matter how we express them, graphs may 

have to be represented in terms of data structures in a computer, 

and operations have to be carried out upon them; then this is just 

another aspect of the problem of finding a non—graphical notation 

for manipulating graphs in useful ways. 

Our aim is then to develop a notation for structured graphs which 

is formally tractable, expressive enough to be used as a programming 

language, and easily convertible into useful data structures. The 

14 

central idea is to have an abstract data type of network* over which 

certain operations can be performed (particularly composition of 
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subnetworks) and which can be easily translated into different data 

types for different purposes. We formalise these ideas in an 

algebraic framework where abstract types are algebras and easy 

translations are different shades of algebra morphisms. 

This chapter is mostly technical; the reader is advised to skim 

it in case of difficulties and to come back to it when needed while 

reading chapter 2. Sections 1.10 and 1.11 contain examples which 

give some motivation for the notation introduced here. 

1.2 Many—sorted Algebras 

An Algebra is a set together with some operations on its 

elements. Intuitively the base set of an algebra is a data type, and 

the operations are the basic operations allowed on that data type; 

other operations can be defined from the basic ones [Gratzer 791. 

A many—sorted algebra is an extension of this idea, where we have 

several sets instead of one (hence several data types) and typed 

operations which take arguments from and produce results in these 

sets IGoguen 781. The extension from single—sorted to many—sorted 

algebras is conceptually very simple, but makes the technical 

treatment considerably heavier. In fact operations have to be 

indexed by their type, and we have to distinguish operators having 

the same name but belonging to different algebras. All this typing 

and naming information is gathered into the notions of sort and 

signature'. 

A sort is a data—type name; sorts will be denoted by the letter 

a, sets of sorts by S and lists of sorts by w a S (with (1 the 

empty list). 
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Definition 1.1 A signature . is a pair <S,Z> where S is a set (of 

sorts) and I is a family of sets (of operator symbols) indexed by 

S*XS. An operator symbol a 3  has rank (or functionality) w,s 

arity w and sort s U 

Example: Boolean 

= ( S = (bool), 

Z = c Z(],bool = (true,fal se) , 

Zboolbool = - 

bool bool,bool = C V.A L, 

= 0 for any other w,s ) > 

We denote by X = (X 5 IssSl a set of sets' of variables of sort s. 

Variables are all distinct, and they are distinct from operator 

symbols and punctuation. 

Definition 1.2 A (X)—expression is a syntactic expression built 

from the operator symbols of the variables of X=(X3 IsaS) 

and the distinguished symbols "(", ")" and ","; more precisely, 

expressions are all and only the strings of symbols obtained by the 

following rules: 

- If x is a variable of sort s, then x is an expression of sort s. 

- If e 1 ..e are expressions of sort s 1 ..s (n.>O) 

and a 	c Z 	then: s 1 ..sn ,s 	.. s1 sn,s 

a 	(e ,..,e ) 1 	n 

is an expression of sort s 

(where, for n--O, a Li1  () has sort s) 

a 

When there is no ambiguity subscripts are omitted, so that we simply 

write 

Example: Boolean expressions 
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The following are (X)-expressions, where Z is the boolean signature 

and X = (Xboo1{xly)). 

x 

true() 

-(A(x,V(false() ,y))) 

We use the following notation for cartesian products of sets: 

A 	CE]) 

A =A =A 	X...XA w 	s1  ... s 	S i 	 S 

Definition 1.3 A -algeb: ra A (with Z = < S,D) is a pair <A,A1> 

where A is an S-indexed set of sets A s and At is an SXS-indexed 

set of maps A 3 : 
	 -4 (A, -4 A) associating a function 

Aw,s(aw,$): A -4 As  with each operation symbol a,3 	w,s ' 

Each A is called the carrier of A of sort s; each Aw,s (aw,s ) is 

called the operator of A named byw,s'and  is also denoted by 

When there is no ambiguity 	is also written 
w,s 	 w,s 	 w,s 

or even a. 

Example: 

4 = < A = ( Ai,00i = CT,F)), 

At = C A1 bool = (<true,T>, <false,F>), 

Abool,bool = (<-. Not(<TF>,<F,T>)>), 

Abool bool,bool = 

(<A, And=t<<T,T>,T>,<<T,F>,F>, 

< <F,T> ,F>, < <F, F> , F>) 

V, 0r(<<T,T>,T>,<<T,F>,T>, 

<<F,T>,T>,<<F,F>,F>)>), 

= 0 for any other w,$) > 
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with + 	 = true(] bool  

A 
+false[],bOO l 

	

A 	 Not, 
bool ,bool 

	

A 	 =And, 
4Abool bool,bool 

	

A 	 =or 
bool,bool 

Expressions are a very important example of algebras: 

Definition 1.4 T;(X) (where Z = < S,>) is the —algebra with: 

- Carriers: the set of (X)—expressions of sort 5ES. 

- Operations: the mappings 

4a 
sl"sn*s 

:e1..eG- WO) 

for each a 	 e 
51* Sn' S 

and expressions e1. . e of sort s 1 . .s 

(for n0 we have +a:  [1 0-4 
' S 

U 

It is easily verified that T(X) is really a —algebra. 

We finally include the definition of homomorphism and of 

signature morphism which are the formal basis for the translations 

which we shall discuss in Chapter 2 (even if those translations will 

only approximate the idea of homomorphism). 

Definition 1.5 A Z—homomorphism of7--algebras 

h: A—B 

is an S—indexed set of maps h5: ASBS  such that 

	

h5 (4 	(a 1,... ,an)) = B 
w,s 

,a sA for all s e 5, ws 1 .. .s a S and a1 	$ 	... 	5 
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Definition 1.6 A signature morphism p from <S,X> to <S',Z'> is a 

pair <f,g> consisting of a map f: S-4S' and a family of maps 

93:
XWOS -4 Zf*( s ),f( s ) 0 

A signature morphism is a (possibly many-to-one) renaming of 

sorts, together with a compatible (possibly many-to-one) renaming of 

operator symbols. 

Theorem 1.1 For every_Z-algebra A and map h: X -- A (i.e. family 

h5 : X -4 A3  for seS) 	there 	is a unique 	i-homomorphism 

h: T 	-* A such that 

= h 

where I:  X -4 T 	x o-+ x is the injection of generators 

a 

The above theorem states the existence of-  a unique homomorphism 

h* from Z(X)-expressions (T W) and environments for free variables 

(h: X -4 A) into any -algebra A. This homomorphism is often called 

evaluation or interpretation of an expression e in an algebra, and 

h(e) is called the (because of uniqueness) value of e in A (with 

respect to an environment). 

1.3 Net Algebras 

Refining our idea of network, we can say that a network is a 

finite graph with an interface. Interfaces are an abstraction 

mechanism; they contain all the information about the network which 

is needed and visible from "outside", while hiding the internal 

structure. For example, syntactic checks can be performed on network 

operations on the basis of the information contained in the 

interfaces they operate onto; operations are guaranteed to be 

meaningful if they satisfy these syntactic checks. 
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interface 

Star = 

- - - 
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/ 

-- 

'S  
'S 

5- 	 - 

-- 

Figure 1.3 A graph with an interface 

The interface of a network consists of ports which have a name 

and a type. Names are used to denote edges of the network (i.e. 

connection points), and types guarantee the consistency of certain 

operations. The most important use of interfaces is in joining 

networks together into larger networks; the join is done by naming 

the ports to be connected, provided that there are no name clashes 

and that the types of the connected ports match. 

1.3.1 Sorts 

Formally, an interface is a sort. Given a set Types of types and 

a set PortNames of (port) names (with a,b ranging over names and 

A,B,C ranging over finite sets of names), a sort is a map 

s: A —3 Types with Isi A A; hence s(a) shows the type of the port 

named a. We say that two sorts s,s' are compatible if their common 

port names have the same type, i.e. if sIB = s'IB, where B = 

fs1s1s' 1. 

1.3.2 Signatures 

Networks are built out of a given set L of basic components 

called literals (nullary operators). Every literal 1 s ]L has a sort 

given by X(l). 

The unary restriction operator, \a, removes the name a from the 

sort of a network. For every a and s we have an operator \a: s - s' 



- 	 21 

where fs'l = Isl\Ca) and s'(a') = s(a') for a' in fs'l. Restriction 

is a postfix operator, and we abbreviate x\a 1 ...\a to 

star\a = 

e 

Figure 1.4 Restriction 

The unary renaming operator, Cr), changes the names of a sort 

without changing the port types. For every sort s and bijection r: 

Isi - A' we have an operator (r): $ —> s' where s' = sor'. 

Restriction is postfix and we write (a j \b 11 ... 1 a\b) for r when 

Ca 1 }SA ,  r(a)=b and r(a)=a for a not in (at)  (hence C) is the 

identity renaming). 

starCa\f, b\g} = 

e C 

f 	 g 

Figure 1.5 Renaming 

The binary composition operator, I, composes two networks 

together identifying and then forgetting their common port names. 

For every compatible pair of sorts s,s' we have an operator 

I: s,s' —4 s" where s" = sOs' : AOA' (we use 0 for symmetric 

difference: AOA' = (A\A')u(A'\A), and sOs' = s(A\A')us'(A'\A)). 

Composition is an infix operator associating to the left. 
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A useful derived operation is explicit composition, (r], which 

composes two networks by linking the ports which are explicitly 

mentioned in a bijection r. The operator [r]: s,s' - s" with 

A —4 A', B=Isl\A and B'=Is'l\A', is well defined iff 

ACFs1 and A'crs'l 

s(a) = s'(r(a)) for every a in A (type restriction) 

BnB' = 0 (no name clashes) 

Then fs"I = BiaB' and s"(b) is s(b) if b a B and s'(b) otherwise. 

Under these conditions we define 

e(rle' A 	eCruidB)Ie' = eIe'(ruidB , ) 

Explicit composition is infix and left associative; eErie' will be 

written as e(a 1--b1 ... 3 a--b]e' for <a 1 b> a r. 

(Star\d) [c--e, b--al e 
(Star\d) 	= 

Figure 1.6 Composition 

1.3.3 Net Expressions and Laws 

From the signature of a net algebra, and for a given set of 

literals, we can construct a corresponding set of net expressions 

(ranged over by e): 

- literals are expressions 

- if e,e' are expressions 

then (e\a), (efri) and (ale') are expressions. 

Parentheses will often be omitted. 

The operators we have so far defined must obey a set of laws 
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called the net laws, which complete our definition of net algebras. 

We write a(e) for the sort of e, and we require the following 

equations to hold whenever they are well—formed according to our 

previous remarks. 

 e I 	e' = 	e' I 	e 

 (e I 	e') I 	e" = 	e 	I 	(e' 	I 	e") 

if fa(e)1.n[o(e')1n1(e")1 = 0 

[\] e a = 	e if a 	f(e)1 

(\\] (e \ a) \ b 	= (e 	\ b) 	\ 	a 

(\I .] (e I 	e') \ a = 	(e 	\ 	a) 	I 	(e' 	\ a) 	if 	a 	a fa(ele')l 

(C)] e d) = 	e 

((JO] (e (r)) Cr') = 	e 	Cr'or) 

((]\] (e (r)) \ 	(ra) = 	(e 	\ 	a) 	Cr') where r' = r4(frl\a) 

[UI] (e I 	e') Crur') 	= 	(e 	Crur")) 	I (e 	(r'ur")) 

where fri = Ia(e)i\fa(e')i, 	fr'l = raw )l\fa(e)l 

and Ir"l = f(e)inf(e')i 

Derived laws for explicit composition are as follows: 

((]] 	e(r]e' = e'txT 1 ]e 

((1 (]] 	(e (id  A]e')  (id  UA]e" = e(idA U A](e'(id]e") 

whenever all the compositions are well formed 

[C}(]] 	e(r'or]e' = e(ruidB)(r']e' 

(e(r]e')\a = (e\a)(r](e'\a) if r: A 1 —)A2  and a A A1 uA2  

([IC)] 	Ce' (ne") Cr' ur") = (e' (r' Urj) ) (rororj ] (e"(r"ur) ) 

1.3.4 More on Net Expressions 

Net expressions can be used as the kernel of a programming 

language for networks. We give some definitions which can guide the 
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implementation of net expressions, particularly regarding their 

syntactic correctness. A formal syntax for net expressions is 

introduced, and algorithms are given for checking whether a net 

expression is well formed and for extracting its sort. 

The formal syntax of net expressions is defined here, using the 

metasyntactic notation of Appendix I: 

literal 	... 	(depending on the particular algebra) 

exp 	literal I 

exp '\' name I 

exp 'C' (name '\' name  

ex; 'I' exp I 

exp '(' (name '--' name I ',') '] ' exp I 

'(' exp ')' 

Restriction and renaming bind stronger than explicit composition, 

which binds stronger than implicit composition. Both kinds of 

composition are left associative. 

A sorting e of a net expression e is an assignment of a sort to 

every subexpression e' of e; for example (c5[a--b]c'5,),,  is a 

sorting of c(a--b]c'. 

A well—sorting of e is a sorting e such that the predicate 

WellSorted() (defined below) is true. We then say that e is 

well—sorted if it admits a well—sorting e. 

WeliSorted (l a ) = 

s=%(l) 

WellSorted ((e 5 \a) 5 ,) = 

WellSorted(e) and s's&fs]\CaJ 
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WeliSorted ((e(a\b1) ) 5 s )  = 

WellSorted(e 3 ) and NameBijection(C<ab 1 >)) 

and (a)rs1  and crs1\cann(b ± ) = 0 

and s' = (s4fsl\Ca 1 1) u (<b 1 s(a 1 ))) 

WeliSorted ((e5 let 3 1)
S
it) = 

WellSorted(e 5 ) and WellSorted(e',) 

and Va a fslnfs'l. s(a) = s(a) 

and s" = s(fs1nfs'1) U s''&(fs1fs'1) 

WeliSorted ((e5[a--b]e',),,) 

WellSorted(e 3 ) and WellSorted(e' 5 ,) 

and NameBijection(<(a 11 b>)) 

and a a Isi and b 1  a Is'l 

and s(a1) = s'(b) and (fs1\(a))r(fs'1\(b}) = 0 

and s" = s4(fs1\(a)) w s'4(fs'1\(b 1 )) 

NameBijection ((<ak , bk>)) = 

i#j =4 a i  Aa j  i b 1 b 

The following procedure, SortOf, computes the sort of a 

well—sorted net expression. It is easily verified that WellSorted(e) 

is true, where e is the sorting generated by applying SortOf to all 

the subexpression of e. 

SortOf(l) = X(1) 

SortOf(e\a) = Sort0f(e)1fSort0f(e)1\a 

Sort0f(e{a1\b)) = 

(Sort0f(e) 4 [Sort0f(e)1\(a)) w  C<b , SortOf(e)(a)>) 

SortOf(ele') = 

let A = fSort0f(e)1nfSort0f(e')1 

in SortOf(e)lA u Sort0f(e')4A 

Sort0f(e(a 1 \b 1 le') = 

Sort0f(e)4[Sort0f(e)1\(a.) U SortOf(e')lfSortOf(e')l\(b.) 
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1.4 Net Morphiama 

A net morphism is a homomorphism of net algebras. Given two net 

algebras A and B over the same signature (i.e. over the same set of 

literals IL), .a morphism h:—)g is a set of maps 

(h5 : A-4B5  I $ a NetSort) 

such that: 

h3(l) - B Via L 

h5 , (e s  \ 5 , a) = (h5  (e s  ))'t 	a 
' S 

h,(e(rY 	
B 

5 	5 	,3 1) = 

 
11 	 a' 5 ,) = h5(e 	1B 	h5,(e'51) h51(e 1A 

I $ 	ss,s 

1.5 Net Algebras and Flow Algebras 

Net algebras are modelled on Miler's Flow Algebras [Milner 791. 

The main difference is that in flow algebras many—to—many port 

connections are possible, while in net algebras we have one—to—one 

connections of ports and connected ports are forgotten in the sort 

of the result. One—to—one connections seem to reflect more 

accurately some of our intended applications, particularly in the 

case of connecting geometric objects. In Chapter 3 for example we 

define composition so that the connection of two geometric ports 

does not leave "space" for any other connection, and the connected 

ports may as well disappear from the sort of the result. 

The formal treatment of net algebras shows that the theory and 

the set of laws we obtain are about as nice as in the case of flow 

algebras. However, the relationships between the two theories need 

some further study. On the one hand, it is easy to mimic net 

algebras in the flow algebra framework; for example the explicit 

composition e(a—ble' (with the usual restrictions) is definable in 
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terms of flow algebra composition, restriction and renaming as 

(e(c\a)Ie'(c\b})\c (with C new) and the net laws are then derivable 

from the flow laws. On the other hand, net expressions cannot easily 

define flow algebra expressions because the latter may connect each 

of their ports to an unlimited number of other ports. A solution 

could be to define flow algebra composition in the net algebra 

framework in the following way: any time that we have to connecta 

port, we first "fork" it into two ports (by composition with a 

three—port forking literal) and then we connect one of the new 

ports, leaving the other one free for subsequent connections. 

Another solution, which might also be useful for different purposes, 

could be the introductioü of net expressions with infinitary sorts: 

each flow algebra port would be represented by an infinite number of 

indexed net algebra ports, and composition would take care of always 

using the "next" available port. 

1.6 The Initial Net Algebra 

There is a particularly important net algebra, called the 

initial net algebra, for which the laws [I]..[flI] only hold and 

which is unique up to net isomorphism. The initial net algebra is 

the one that we implicitoly have in mind when we talk about "nets", 

"graphs" or "pictures" and their abstract properties. It turns out 

that the formalisation is not so intuitive, but it allows us to give 

a formal justification for our laws and to investigate their darkest 

details. 

The initial net algebra can be built by standard algebraic 

techniques, quotienting the set of net expressions by the congruence 

relation generated by the net laws [Gratzer 811. In this section we 

look for a more explicit characterisation of the initial net algebra 

in terms of a suitable kind of graph. TL e cotrecpoJ7 1fc 

f o 	L7 LV cJyd,rcic cot 1A 6 Q 	 .Cfl 
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We start with some preliminary definitions: 

- PortNames, is the countable set of port names, with a,b ranging 

over port names and A,B ranging over finite sets of port names; 

- Types, is the set of port types; 

- L, is the set of literals 1 (nullary operators); 

- Sorts, is the set of functions s: PortNames —+ Types associating a 

type to each port name (where rsl 	domain(s) is finite); 

- .: 1. -4 Sorts, associates a sort to each literal. 

Definition 1.7 

A network i.s a quintuple <V,y,A,it,E>, where: 

- V (the set of vertices), is a non-empty finite set, with veV; 

- y: V -4 ]L (the interpretation mapping), associates a literal to 

each node of the network; 

- A C PortNames (the set of port names), is a finite set; 

- P is the set of the ports (<v,a) I veV and aaf).(y(v))1);  where 

each port is a pair <v,a> (vertex-portname) such that a is a port 

name of the literal associated with v; 

- it: A -4 P (the naming mapping), is 1-1; 

- type: P -4 Types, defined as type(v,a) 

- E C P X P (the edges), is a relation on ports satisfying: 

E is symmetric and a partial function. 

If <v,a>E<v',a'> then v#v' and type(v,a)=type(v',a'). 

No <v,a> is both in the domain of E and equal to n(b) for some b. 

0 

Condition 1. ensures that connection is symmetric and any port is 

connected to at most another one. Condition 2. excludes self-loops 

and ensures type-consistency. Condition 3. ensures that no port is 

both named (i.e. externally connectable) and connected. 
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Definition 1.8 A net isomorphism p: <V,7,A,,E> 

is an isomorphism p: V = V' such that: 

= 

A' = A; 

ff'= ( p#idA)on; 

<v,a>E<w,b> =4 <p(v),a>E'<p(w),b> 

[1 

where (f#g)<a,b> 	<f(a),g(b)>. 

Remark: We do not distinguish between isomorphic networks. 

Definition 1.9 The sort of a network N=<V,y,A,t,E> is s: A - Types 

with s(a) 	type(ff(a)) and Isi A A U 

Definition 1.10 The operations on networks are defined as follows: 

1 	<(1), 10-41, A, aeAo-4<1,a>, O> where A = fX(1)1 

<V,y,A\{a},\a,E) 

<V,y,A,ir,E>(r) 	<V,y,B,t o r ,E> where r:A-4B 

I <V','',A',n',E'> 

where C = AnA' 

and sIC = s'lC 

and n" = irL(A\C) U,T'I(A'\C) 

and E" = EuE'u(<na,T'a>,<n'a-,fla) I acCi 

where we assume VnV' = 0. 

a 
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Theorem 1.2 The operations are well defined: 

V1aIL. <Cl), lo-3l, A, aeAo-3<l,a), 0>, where A=f(l)1, is a 

network; 

if N is a network, so is N\a; 

if N is a network and r a bijection on Isi, then N(r) is a 

network; 

if N I N' are networks and s,s' are compatible, then NIN' is a 

network; 

the operations have the correct type. 

Proof In Appendix to this chapter U 

Every well sorted net expression can be made to denote a network 

(by interpreting the operations as network operations); the converse 

is also true: 

Theorem 1.3 (Definability) 

Every network can be denoted by a well sorted net expression (up to 

network isomorphism). 

Proof In Appendix to this chapter U 

The net laws are verified: 

Theorem 1.4 (Consistency) 

Laws (I] .. (1)1] are valid up to network isomorphism. 

Proof In Appendix to this chapter U 

Definition 1.11 Let 	be the congruence generated by laws (I] 
[(31] over net expressions. Two net expressions e,e' are convertible 

if  ewe' U 

Lemma 1.1 (Network Substitution Lemma) 

Network isomorphism is a congruence with respect to restriction, 

renaming and composition a 
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Theorem 1.5 (Soundness) 

If ee', then e and e' denote isomorphic networks. 

Proof 

By induction on the proof of e=—e', using the consistency theorem and 

the network substitution lemma. 

U 

Definition 1.12 An atom (at) is an expression of the form 

at = l\A\Cr) 

where 1 is a literal and \A is multiple restriction over all the a a 

A. U 

Definition 1.13 A net expression is in normal form (nf) if it has 

the form 

nf = at  I ... I at 

with 1. Vi,j. s compatible with 

and 2. Vi,j,k all different. FS j iflfS j ifliSk i = 

where s i = cr(at) 

Theorem 1.6 (Normal Forms) 

Every net expression is convertible to a normal form. 

Proof In Appendix to this chapter U 

Theorem 1.7 (Completeness) 

If e and e' denote isomorphic networks, then eEe'. 

Proof 

(1) If nf and nf' denote isomorphic networks, then nfEnf'. 

Suppose nf = at 1 ! ... fat 	and nf' = atI ... Iat 1 ,. By [I], (III 

and condition 2. on normal forms, we can reorder af and nf' so that 

there is a bijection between at, at and the nodes of the two 

networks (hence nn'). Let us assume that ni and af' are already 
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properly ordered; by the properties of the isomorphism for each pair 

of atoms atj = l\B1(r) and at = l\B(r) we have l = l, and B. 

= B. The renamings r and rj do not have to be exactly the same, 

because internal connection can be arbitrarily named. However they 

must agree on the visible ports, and the internal connections can be 

renamed as shown in the proof of the normal form theorem. Hence 

nfmnf'. 

(2) Let e denote N and e' denote N' with N = N'. By the normal form 

theorem, e and e' have respective normal forms nf E e and nf E e'. 

By soundness nf denotes N N and nf' denotes N' = N'. Since N = N 

N' 	N', by (1) we have nf m  nf'. Hence e 	nf 	nf' me'. 

U 

Definition 1.14 The net algebra NIV  (with respect to a set of 

literals IL) has as carriers the networks of sort s for each s, and 

as operations the network operations. 

El 

Theorem 1.8 (Initiality) 

For each net algebra A there is a unique net homomorphism 

PA: NIL —4  A 

Proof 

Let e   be the interpretation of the net expression e in the net 

algebra B. There is at most one net homomorphism p: N L  —4 A which 

is determined, because of definability, by: 

- p(l) = 1 (V 1 a IL) 

- p(N\a) = p(N)\a 

- p(N(r)) = p(N)Er) 

- p(NIN') = p(N)lp(N) 

i.e. we have p(eN L ) = e 
— 

We have however to show that p is well defined: if e and e' define N 

and N' with N = N', then we must show that p(N) = p(N'), i.e. that 
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eA  = e'A. By completeness e w e' and so, as A satisfies the net 

I 	 - 
L&WS, e - of  

a 
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1.7 Planar Networks 

In the next chapter we shall often be concerned with 

planar networks, i.e. with networks whose graph is planar. In those 

situations it is useful to be able to check syntactically whether an 

expression denotes a planar network, so that we can define precisely 

the class of meaningful expressions. 

It is possible to characterise planar networks by refining our 

notion of interface. While an interface is just a set of ports, a 

planar interface is going to be a cyclically ordered set of ports, 

hereafter called a cycle. 

Figure 1.7 A planar interface 

Suppose we have a set of planar primitives, with planar 

interfaces; we need a composition operation preserving planarity and 

cycles, i.e. 

Composition must take pairs of cycles into cycles. 

Composition must take pairs of planar graphs into planar 

graphs. 

A first restriction is imposed on composition in order to 

guarantee condition (1); the presence of cycles then helps enforcing 

condition (ii). We require: 

(i') The ports being connected must be contiguous in both cycles, so 

that it is possible to form a new cycle by joining the two cycles 

around the connection area after having dropped the connected ports. 
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Figure 1.8 Composing cycles 

(ii') (Existence) The ports being connected must be inversely 

ordered in their respective cycles; thus two planar graphs are 

connected by non-intersecting edges and the result is planar. 

(Uniqueness) The particular resulting planar graph is not yet 

completely determined: 

Figure 1.9 Ambiguity of p(a 1--b1 ,a2--b2 ]q 

We then impose that in a connection (a 1--b 1 ;. ..;a--b1 the oriented 

arc ai+1 t  —b. 	
1 	1 

+1 be on the "left" of the oriented arc a.--b., with 

a +1  adjacent to a i and b 11  adjacent to b i  ( i C (1..n-lfl. Implicit 

composition is now "PI" where a is the starting port of the planar 

composition, which then proceeds anticlockwise on the sort of p. 

The sort of a Planar Network is a pair 

<s: A -4 Types, a: A -4 A> 

where s: A - Types is like the sort of a non-planar network, i.e. 

it is a mapping from a finite set of port names A into port types. 

The second component of a sort is used to express planarity 
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constraints; a cyclic ordering is imposed on A by a bijection 

0: A = A which is a cyclic permutation of A.. We say that a 8 A 

proceeds a' a A if o(a)=a' and that a is adjacent to a' if a 

preceeds a' or a' proceeds a. The ordering induced by the "preceeds" 

relation is taken to represent the anticlockwise ordering of ports 

around a graph. 

Two sorts are equal if they associate the same types to the same 

port names, and if the cyclic ordering of ports is the same. 

1.8 Bunched Networks 

The number of ports contained in a sort can quickly get out of 

hand when arrays of networks are built. In these cases it is too 

cumbersome to invent different names for all the ports in a sort, 

but ambiguities would arise if we allowed repeated names. We 

therefore introduce bunches as a way of structuring port names. 

AJ 
C 

C 	 C 	 C 	 C 	C 	C 

d+ 	
4b 	

d+ 	
$Ib 	

d+ 	
4b EZ 	{d+ 	

' 	' 
[b--dl 	[b--dl 	 a= (a; a; a] 

Figure 1.10 Bunches arising in composition 

In a bunched sort, the port names are partitioned into a 

collection of lists, called bunches. Each bunch is a list 

containing several copies of the same name, a (each copy denoting a 

different port): 

= (a;. .;a] 

All the names in a bunch must have the same type. Empty bunches b=(] 

are also admitted, meaning that there is no b port. 

We can consider a bunched sort as an ordinary sort containing 
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indexed names a 1  (where a i is the i—th item in the list  

the advantage of the list notation is that we obtain an automatic 

re—indexing on bunch operations. Lists are used instead of multisets 

because ports must not lose their individuality. 

A bunch restriction p\a cancels the bunch A from the sort of p. 

A bunch renaming pfr) (e.g. pta\b}) renames uniformly all the 

elements of the bunches specified by r (i.e. becomes b). Note that 

r must still be a bijection of port names. 

A debumching operation gives access to the individual elements of 

a bunch: pfa(i]\b} renames part of the bunch a to a new bunch b, 

provided that b is not already in the sort of p. The list (] is a 

list of indexes of ; it can be written as a list of numbers (1;2;5] 

or a range (3..7] or a combination of them (12;5..7;2;1). Note that 

debunching can be used to reorder a bunch: for example if p has a 

bunch of four ports b, than pCb(4;3;2;11\b) inverts the order of the 

ports in the bunch. 

A cobunching operation is used to merge bunches: p(a;b\c} renames 

the concatenation of the bunches 1 and b (in that order) to a bunch 

, provided that c is either a, or b, or is not already in the sort 

of P. 

Debunching and cobunching can be generalised to more complex 

expressions like 

p(a(3..51;b;c(11\b, d\e) = 

provided that restrictions similar to the ones discussed above are 

observed. 

The implicit bunch composition plq connects the bunches of p to 

the bunches of q having the same name, and the connected bunches 
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disappear from the sort of the result. The usual restrictions apply 

to bunch composition. Moreover the connection of two bunches is 

legal only if the bunches have the same number of elements; then the 

first element of one bunch is connected to the last element of the 

other bunch, and similarly for all the other elements (this 

convention turns out to be natural on several occasions, e.g. to 

connect a bunch on the "west" of a net to a bunch on the "east" of 

another net, and expecially in the case of planar bunches). 

A more general kind of composition is the partial implicit 

composition PI A  q, where A is a subset of the common bunches of p and 

q. Only the bunches contained in A are connected as described above; 

the remaining bunches common to p and q are cobunched in pairs of 

the same name (the ones of p to the left). For example if we imagine 

to have nets of rectangular shape, we can connect the east bunches 

of one net to the west bunches of another net, while the south and 

north bunches of both copies are bunched together. 

b b 	 b 	b 	 b 	b b 	b 

a} : 

Figure 1.11 Partial implicit composition 

The explicit bunch composition p(r]q connects the bunches of p to 

the bunches of q according to (r] as with partial implicit 

composition: we can define '[r] as 

p(rlq 1  p!(q(r')) 

Hence the connected bunches disappear from the sort of the result, 

and if.p has a bunch a and q has a bunch q'  then the cobunching 
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ap ; •q  belongs to the result. This automatic cobunching turns out to 

be very useful. 

Formally, the set PortNames' of a bunched sort is the set 

PortNames X 14, where n a 14 is the length of each bunch. Let 

#: A —3 11 be the function returning the length of each bunch of a 

sort based on A, and returning 0 for each port name not contained in 

A. Moreover, let <n> (l,..,n). Then bunch restriction is defined 

as: 

p\b 1 p\(b 1 lie<#b>1 

and bunch renaming as: 

p(r:ABJ A 9 acAi ) iI<h )  

For debunching we need to introduce the operation a(i,l) which 

returns the position of the number i in the list of numbers 1. 

pta(1]\b} A p ( a i \ba( i,l )Iicl) a {a j\aa ( j,(#a> \ l ) Iiftl} 

Cobunching is defined as: 

p{a;b\c} A p (a\cIia<#a>)  v  (bj\c#a+jIie<#b> )  

Finally, partial implicit composition (from which the other 

compositions can be derived) is defined in terms of the previously 

described bunch. operators and of normal composition: 

PI 	
A. 

(p(b\b'IbeB}a(a j \a#a_j+iIaeA.i a e<#a)} I 

qfb\b"tbeB)) 

(b' ;b"\b IbaBi 

where B = (ra(p)lnIu(cj)1)\A and b',b" do not occur in the sorts of p 

and. 

1.9 Planar Bunched Networks 

A Planar bunched sort is a planar sort with planar bunches; a 

planar bunch is a bunch a1;. . ;a] where the a i respect the cyclic 

order of their sort. Planar bunch operations are similar to their 

nonpianar versions, except that they must make sense in a planar 
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framework. 

Planar bunch restriction and renaming present no further 

problems. 

Debunching is valid only if the extracted sub—bunch respects the 

cyclic ordering; note that we can rotate bunches this way, like in 

b[2;3;4;11\b for a 4—bunch b. 

Cobunching needs some further explanation; the planar cobunching 

of two planar bunches ;b\ is the bunch c starting with the first 

port of . containing Z and b, and respecting the order of the 

planar sort. Note that if and b are interleaved then respects 

the interleaving, and Z can be rotated in order to start with the 

desired port of Z or b. 

The various kinds of compositions work much as before. Again the 

connection of (interleaved) bunches must respect the cyclic ordering 

and the first port of each bunch connects to the last port of the 

respective matching bunch. Note that this first—to—last conventions 

allows us, in most cases, to connect planar bunches without having 

to rearrange them in order to respect planarity constraints. 

1.10 Molecules, Hypercubes, Mosaics and Klein Bottles 

This section shows some examples of use of net algebras, 

especially concerning recursive definitions and bunches. The 

examples suggest some interesting extensions of our notation which 

are left as open problems. 

The first example is a attempt to describe molecules by their 

chemical bond structure. Chemical elements of valency n are 

represented by literals with n ports, for example: 

H:(h) (hydrogen) 

0:(olIo2) (oxygen) 



C:(c 1 ,c 2 9c 3 10 4) (carbon) 

We can easily compose simple molecules: 

Methane 

C (c a—h] H 

[c2—h] H 

[c3—h] H 

[c4—h] H 

CarbonDioxide 

C (c 1—o1 , c 2
-0

2] 0 

(c 3—o1 , c 4—o2] 0 

CB 

C (c 4—h] K 

C2H2 A = 

CH (c 2—c 1 , c 3—c3 ) CU 

Benzene 

C 2  H  2  (c 2—c1 ] C 2  H  2 

(c 2—c1 , c 1—c2 ] C 2  H  2 

	

Of 	CH 
H—C—H 	000 	 II 	I 

	

CH 	CH 

Figure 1.12 Methane, carbon dioxide and benzene 

41 

Two molecules are isomers if they have the same number of atoms 
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of each kind, but "behave" differently. Hence isomerism implies 

structural difference, which can be expressed in our notation as 

well as by chemical diagrams. For various reasons, it does not 

matter which valencies of an atom are connected to another atom, so 

that the simple interchanges of bonds of a single atom does not 

produce isomers. 

In general we might want to talk about the spacial orientation of 

valencies, which is important in stereochemistry and 

cristallography. This suggests a generalisation of planar cycles and 

sorts to three dimensions, producing what we might call envelopes, 

i.e. arrangements of ports on the vertices of a polyedrum. Envelopes 

should characterise legal compositions of polyedra in 3—D space, 

forbidding copenetration in the same way as cycles forbid 

over—crossings. We could then equally well describe crystalline 

structures, mechanical parts or the architecture of buildings in a 

safe and unambiguous way. This is left as an open problem which 

might have very interesting applications, but which has little 

relevance here. 

As a second example, let us build an n—dimensional cube starting 

from a single literal v (vertex) with ports e'..e n . In order to 

avoid name clashes we index the port names e 1  by lists of binary 

digits (e.g. e0;1;101): 



CO 	— 	v(e ' \e 1(1 .. 	,e\e1) 

A c i+l 	= 

i+1 
cfe(00]\e[00O], 

i+1 .. i+1 	i+1 e [1 	1]\e[01 	], 
n e [0••0 ]\e (090••0] . n ... U 	 fl 

I e(11]e(011 ] 

i+1 i+1 1+1 i+1 

i+1 c 	e( 0•0 ] e[110 i+1 
0]' 	•• 

1+1 	i+1 1e [11] 	e 1,1••1 1 9 	.. 

U e (0••0 ]\e [100]l  U 
.. 

U 	 U Ie(11] e (111]  

The first three steps in the construction of a three—dimensional 

cube are illustrated in the next figure: 

3 2 3 2 	 3 

1. 	
e 0  
 e

[0]  (00) e101 

e 
( e 1 ) 

(e101) 
3 

C 0= 	e []Oe(] 	C1= C2= 
2 e[01]) 

3 
e) 

2 3 e[1] e(1] e [01]  
(e.. - 

Figure 1.13 Building a cube 

This is a situation where the advantages of bunches are 

particularly clear, indeed by using bunched sorts and compositions 

we need only write: 

CO 	 V 

ci+l 

Note that the result is really an hypercube, and not a "twisted" 

version of it (remember that two bunches a1. .an  and b1 . .b are 

connected as 

Suppose now that we only have a literal v with three ports f,b,e 

(forward, backward and external) and we still want to make a 
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hypercube (Preparata 791. All we have to do is to build up n-ary 

vertices from ternary ones (for n>1): 

V 	 (v(e\e 1)(fb]...[f—b]v{e\e')) 

(f—b,b—f] v(e\e") 

Figure 1.14 An n-ary vertex 

and we can then apply our previous definitions. 

The third example concerns mosaics on the plane.* Suppose we have 

a literal t (equilateral triangle) with ports b,r,l (base, right and 

left) organised in this order in a planar sort. The following 

definition builds a mosaic of triangles which at every steps retains 

the form of an equilateral triangle. Bunches are used. 

m0 	t 

m  
U 

(b'--b] m (l'-'-l] m (r'--r] m  

The next figure shows the first three steps in the construction of a 

mosaic: 



b b 
= lr 	m1 

b 	 rVi 

Figure 1.15 Building a mosaic 

Note that if we do not use planar sorts triangles are allowed to 

flip around their connection points, and the result can be a rather 

complicated three—dimensional graph instead of a planar mosaic. 

The fourth example concerns sorts with an infinite number of 

ports. We can consider a segment s1  of length 1 in 3—D space, as a 

literal with uncountably many ports px  for O<xIl.  We can obtain a 

v—shape by joining two segments at their end point: 

v 	s1 (p0--p0 ]s 2  

V 
Figure 1.16 Joining two segments 

We can then join two v—shapes by connecting the middle points of the 

first v—shape to the 0.3—points of the second v—shape. Note the 

effect of bunches in this case. 

45 

M 
2 

w a  v(p05--p03]v 
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Figure 1.17 Joining two v—shapes 

We can produce more interesting examples with a literal r 

(representing a "flexible" rectangle in 3—D space) with ports n,s 

for O<x<1 ranging from left to right, and e 1 w7  for O<y<l ranging 

from bottom to top: 

n 

W 

$ 

Figure 1.18 A flexible rectangle 

Here are some interesting objects which can be obtained: 

ring 	 4  r [e1—w,w1--e1  Vx] r 

punched—ring 4  r (e--w1,w--.ex  Vxg(O..O.l1u(0.9..l]] r 

Note that we do not capture the class of 3—D surfaces modulo 

continuous transformations; for example we have no way of 

distinguishing a straight ring from a double—twisted one. 

An alternative flexible rectangle may be defined to have four 

ports n,s,e,w which are uncountable bunches disposed anticlockwise 

around the perimeter (when bunches are concatenated, they are 

renormalised to the interval 0..1). This case is particularly 
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similar to the treatment of ports in Chapter 3. 

ring 	 = r (e--w,w---e] r 

punched—ring 	r [e—w,w(O. .O.l;O.9. .1]—e[O..0.1;O.9. .1]] r 

moebins—strip 	r (e--w,w(O..11—e(1..01] r 

sphere 	 r (e--w,w--e,n--n,s--s] r 

klein—bottle 4  r (e--w,w--e,n--s.s--n] r 

torusi 	 ring (n--s,s--n] ring 

torus2 	 ring (n(O..l]—s[1..O],s(O..11—n(1--0] ring 

Note that torusi is obtained by inserting one ring in parallel 

inside the other, and then joining the edges, while in torus2 the 

two rings are composed into a thicker ring which is then bent around 

to connect its two edges. 

1.11 Main Example: The Foster & lung Pattern Matcher 

The Foster & lung pattern matching hardware algorithm [Foster 

801 will be used as an example through chapters 1 and 2. It has a 

very simple and regular structure, deriving from the systematic 

hierarchical decomposition of a pattern matching problem, while its 

behaviour involves flow of data in a double pipeline configuration 

and is far from obvious. 

The problem is to find all the occurrences of a pattern p in a 

text (string of characters) s, where p may contain the distinguished 

character 's'. A pattern p matches a subtext s' of s if p and s': 

(i) have the same length and, (ii) either the corresponding 

characters are equal or the pattern character is ''. 

The pattern matcher is implemented as a separate processor, 

communicating with some host computer; here is the general plan. 



pattern 

string 
PM 

result 

Figure 1.19 The pattern matcher as a processor 

Instead of storing the pattern into PM and then supplying the 

string, it is simpler to implement a on—the—fly pattern matching 

where the pattern is repeatedly transmitted by the host H together 

with an indication of the end of the pattern which is encoded in the 

last character of the pattern. 

PM 

- 	 A*C/A*C/A*C/... 

Host 
ABC AAC BBB 

001100100 

Figure 1.20 The pattern matcher protocol 

The result of the matching is returned as a binary string containing 

a 1 for each successful match; the position of each 1 corresponds to 

the position of the last character of a matching subtext. 

The key architectural idea is the use of a pipeline where text 

and (repeated) pattern meet head—on. 

48 

Host 



text 

res 

patt 
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Figure 1.21 Architecture 

The pipeline should be at least as long as the pattern. This 

structure is very convenient because makes the matching process 

time—linear in the text length and space—linear in the pattern 

length. Moreover, if we want to match a very long pattern we can 

simply connect several PM processors in a row and all works well. 

Figure 1.22 Matching long patterns 

Every stage of the pipeline matches a single character of text to a 

single character of pattern. The stage produces an output whenever 

it matches the last char of the pattern, otherwise it transmits 

forward the output coming from the previous stage. 

Consider a single stage: it receives in turn the pattern from the 

left and the text from the right (retransmitting them unaltered) and 

it has to remember whether all the previous characters matched, so 

that at the end of the pattern it can tell whether the pattern as a 

whole matches the subtext. 
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Figure 1.23 A stage of the pattern matcher 

If there are n characters in the pattern, a single stage will 

consider all the substrings of length-n2  starting at multiples of 

in the text, ignoring all the other substrings. The other substrings 

of length n2  will be considered by the adjacent stages, so that if 

we have n stages we consider all the substrings of length 	More 

than n 	stages will do no harm: the result will simply be 

overwritten one or more times, but it will still be correct. 

We can further decompose the structure of a single stage by 

distinguishing a comparator part and an accumulator part. 

text 

res 

patt 

* 

/ 

Figure 1.24 Inner structure of a stage 

The comparator takes a string character and a pattern character, and 

compares them outputting the result to the accumulator. The 

accumulator accumulates the successive results of the comparator, 

and when the pattern is complete it produces the final result. 

The pattern information is split between comparator and 
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accumulator. The comparator receives the proper pattern characters, 

and the accumulator receives: (1) the information that the current 

pattern character is actually the wild card character (so that it 

can ignore the result of the comparator) and: (ii) the information 

that the current character is the last of the pattern (so that it 

can output the result and reinitialise itself) 

Each character is assumed to be a parallel vector of bits, let us 

say 4 bits. We can further decompose the comparator into a series of 

bit comparators, each of them matching a bit of pattern against a 

bit of string. Having done this, we might just take the boolean and 

of the results of all the bit comparator and feed it to the 

accumulator. However, there is a different solution which gives us 

the opportunity of studying a more interesting kind of architecture, 

as well as being more elegant for VLSI implementations. We can 

organise the bit comparators into a pipeline which runs orthogonally 

to the main string—pattern pipeline; this assumes that the bits 

constituting the characters are shifted at the input of the pattern 

matcher and realigned at the output. The net effect is that although 

a byte comparison takes 4 cycles, the accumulator receives a result 

at each cycle. 

Pin 
Pout 

Pin 
S 
out 
P in 

S out 

Pin 
S 
out 

Pout 
S. in 

Pout 
S. in 
Pout 
S. 
in 

Pout 
S. in 

Figure 1.25 Bit comparators 

The first bit comparator at the top is connected to "true", and each 

bit comparator outputs the boolean and of its comparation with the 

previous result coming from above. 

Cb 0  



52 

There is a final optimisation to be made. It is convenient to 

implement each bit comparator by a single inverting stage; this 

implies that all the outputs will be inverted, and the next 

comparator (both below and to the left) must be ready to accept an 

inverted output. This leads to differentiating "positive" and 

"negative" comparators and accumulators, arranging them into a 

chess—board pattern. The behaviour of the pattern matcher will not 

be affected, provided that there are both an even number of stages 

and an even number of bits in each character. 

Pin 
S 
out 

in 
x. 
in 

r 
out 

Pout 
S. 
in 

xout  
X out 
r. 
in 

Figure 1.26 Positive and negative devices 

We now show that the structure of the pattern matcher can be 

expressed as a network. We take the bit comparators and accumulators 

as black boxes (to be denoted by literals) and we compose them 

together into the complete system using our network operations. In 

the next chapter, more refined net algebras will be used to specify 

the contents of these black boxes according to the descriptive model 

or technology we want to implement them in. Here we use the 

following primitives (i.e. literals): 
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True: (true: match) 

False: (false: match) 

PosBitComp: (pin ,pout 	 in'  
: pattern, s 	 i out 	 n 

	

S 	: string, d , Out d 	: match) 

	

pattern, s. ,s 	: string, d. ,d 	: match) NegBitComp: (1'in ' 1'out 	 in out 	 in out 

PosAccum: CX in'  X  out : endpattern, x in ,xout : 'wildcard, 

out result, d in : match) 

NegAccum: CX in' 	 i 

	

out 	 n X 	: endpattern, x ,xout : wildcard, 

	

r in'  r  out 	 in : result, d : match) 

(The choice of types (pattern, string, match, etc.) is a pure matter 

of taste: we might have defined all the ports to have type bool, or 

we might have introduced enough type structure to syntactically 

forbid the direct composition of BitComp's of the same sign.) 

In order to parameterise the pattern matcher with respect to its 

dimensions we introduce a simple iteration construct: 

n times p with Er] 

which uses n—i times the connection [r] to connect n copies of p, 

for example: 

3 times p with Er] = p[r]p(r]p 

We can now program the pattern matcher, using bunches, iteration and 

parame terisation. 

PosByteComp n = 

n times PosBitComp (d0—d1] NegBitComp 

with (dt—din] 

NegByteComp n = 

n times NegBitComp Ed 
out 	in --d ) PosBitComp 

with Ed tinj 



PosColtzmn n = 

True [true--d in] 

PosByteComp n Ed —d ] out 	in 

PosAccum 

NegColumn n = 

False [false—d in  ] 

NegByteComp a Ed —d ] out 	in 

NegAccum 

PatternMatcher m n = 

m times 

PosColumn n 

[pout --Pin' SjnSoutD 

out—).  in 	 r--r0] 

NegColtunn n 

with out--Pin' 3inout' 

outin' oüt  1 in' rin rout ]  

What we are doing here from an algebraic point of view is to 

introduce a set of derived operators; for example for every n and r 

we have a unary operator a times p with [r]; again for every n we 

have a nullary derived operator PosByteComp n, etc. Similar kind of 

programming will be done in Chapter 2. All these ideas will finally 

be incorporated into a real programming language in Chapter 3. 

54 
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1.12 Appendix: Some Proofs Needed for the Initiality Theorem 

Theorem The operations are well defined: 

ViaL. 	<Ci), 	lo--+l, 	A. 	aeAo-4<i,a>, 	0, 	where 	A=1..(1)1, 	is a 

network; 

if N is a network, 	so is N\a; 

if 	N 	is 	a 	network 	and 	r 	a 	bijection 	on 	fsl, 	then NCr) 	is a 

network; 

if 	N,N' 	are 	networks 	and 	s,s' 	are 	compatible, 	then NIN' 	is a 

network; 

the operations have the correct type. 

Proof 

1 = <(i}, la-41, A. 	aeAa-4<1,a>, 0> is clearly a network. 

N = <V,y,A,ir,E> and N\a = <V',y',A',',E'>: 

we have V = V; y' = y; A' = 

P' 	= 	(<v',b> 	I 	v'aV' 	and 	beIX(y'(b))l) 	= 	(<v,b> 	I 	veY 	and 

bef.(y(b))1) = P; 	ir':A'-4P' 	= Tt\a is 1-1; 	type' = type; 

El = E C  PXP 	P'XP'; E' 	satisfies 1. 	and 2. because E does, and it 

satisfies 3. as n'(A')AIE'l = n'a(A\a)i[E1 = it(A)rfE1 = 

N = <V,y,A,,t,E> and NCr) = 

we have V = V; 	y' = y; A' = r(A); type' = type; 

P' 	= 	C<v',b> 	I 	v'eV' 	and baIX(y'(b))l} 

= (<v,b> 	I veV and bef.(y(b))1) 	= P; 

= nor 	is 1-1 as ir is 1-1 and r is a bijection; 

El 	= E C  PXP = P'XP'; E' 	satisfies 1. 	and 2. because E does, 	and it 

satisfies 3. 	as n'(A')nfE'l = n(r 1 (r(A)))nfEl = ir(A)ei[E1 = 

N = <V,y,A,n,E>, N' 	= <V',y',A',n',E'> 

and NIN' = <V",y",A",ir",E">: 

we have V" = VuV'; y" = yuy'; A" = 

P" = (<v",b> 	I v"aV" and bef.(y"(b))1) = PuP'; 
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= itl(A\C) g IT'l(A'\C) with C=AnA'; 

type "(v.a) 	= 	(y"(v))(a) 	= if (v,a)eP then type (v,a) 	else 

type' (v,a); 

Ell = EuE'u(<7Ta,n'a><i'a,7ta> I aeC) C  P"XP"; E" is symmetric. 

because so are E and E'; E" is a partial function because E,E' are 

partial functions, T,n' are 1-1 and condition 3. holds for N and N'. 

E" satisfies 2. because E' and E" do, VriV'=ø and s, s' are 

compatible; E" satisfies 3. because: 

ir"(A") nfE"l = ((n&(A\C) u n'4(A'\C))(AA') nIE"l 

= ((iI(A\C))(A\C) u (7t'4(A'\C))(A'\C)) A 

= (ir(A\C)AIE1) u (n(A'\C)nfE'l) = 

(5) The sort of 1 is s = 

the sort of N' = N\a is s' = type'o' = typeon\a = s\a; 

the sort of N' = N(r) is s' = type' off' = typeonor 	sor; 

the sort of N" = NIN' is: 

= type"o" = (type utype')o(i$'(A\C)uir'4'(A'\C)) 

= (typeoit4(A\C)) U (type'oi'(A'\C)) = s4(A\A') j s'(A'\A). 

a 

Theore (Definability) 

Every network can be denoted by a well sorted net expression (up to 

network isomorphism). 

Proof The proof is by induction on the size of V; since V#Ø, we 

consider the cases where V is a singleton and where it has at least 

two elements. 

(1) V = {v}, N = 

then y = vo—+l; P = (<v,a> I aefX(l)1); E = O as there is only one 

vertex and self—loops are not allowed; 

define f:A—+B where B=fX(l)1 as f(b) = f= 2 0  ff ; 

define r:f(A)-4A as r(a) = f_ 1  (a). 

N is defined by l\(B\f(A))Cr), in fact: 



57 

l\(B\f(A))(r) = < Cl), lo-41, 1X(l)1, ao-9<l,a>,  0> \(B\f(A)) (r) 

= <(1), lo-41, B. aeBo-4<1,a>, 0> \(B\f(A)) [r] 

= <(1), 10-1, f(A), aeBo-+<1,0, 0> (r) 

= <(1), lo-41, f(A), aef(A)o-+<l,a>, 0> Cr) 

= <(1), lo-91, r(f(A)), (aef(A)o-4<l,a))or " , 0 

= <(1), lo-+l, A, it', 0> - N, where t'-(<a,<l,b>>I<a,<v,b>>en) 

(2) V = V'uV" with #V',#V">l and V'riV"=O; N = 

let r' = r'V'; P' = C<v,a> I veV' and a1).(y'(v))1);  E' = EnP'XP'; 

A' = (acA I n(a)eP'); 7T3 = nlA'; 

let y" = ylY"; P" = (<v,a> I veV" and aef.(y"(v))1);  E" = EnP"XP"; 

All = CasA I n(a) eP"); n 	ir4A"; 

let E'" = E\(E'uE") S (P'XP")u(P"XP'); 

let a:C—*(E"st(P'XP")) be a bijection such that Cn(A'uA")=O (a 

assigns a new name to each connection between V' and V" in N); 

let N' = <V',y',A'uC,n',E') where ir' = 

and N" = <V",y",A"UC,,T",E"> where n" = nj u(l 2 oa) 

It is easily verified that N' and N" are networks, moreover: 

T = y'uy"; P = P'P"; P'rP" = 0; A = A'uA"; A'nA" = 0; ir = 7T U 7T 

B 3 E'uE"; E'nE" = 0. 

By induction hypothesis there are net expressions e' and e" defining 

N' and N". We now show that e'Ie" defines N. 

First, N'IN" is well defined; in fact VaeC. s'(a) = type'(ir'(a)) = 

type'(1. 1a(a)) and s"(a) = type"(n"(a)) = type"(1 2a(a)), which are 

the same because of condition 2. on N. 

We have to verify that N'IN" = <V,y,A,ir,E>, in fact: 

V'uV" = V; y'uy" = 

(A'uA"uC)\((A'jC)1(A 1'C)) = (A'jA"jC)\C = A'uA" = A; 

u n"4(A"uC)\C = n'A' u n"A" 

= n6u0ioa)4A' u irU( 2 oa)4A" = 	U ff 0 = it; 

E'uE"u(<n'a,n"a>,<n"a,n'a) I aeC) 

E'E"uC<4 1 (a),4 2 (a)),( 2 (a),4 1 (a)> I aeC) 



= E'uE"((v',v">,<v",v'> I aeC and <v',v">=a(a)) 

= v E" u 	= 

El 

Thoorea (Consistency) 

Laws [I] .. t011 are valid up to network isomorphism. 

Proof 

[\]: e\a = <V,y,A,ir,E>\a = <V,y,A\a,n\a,E> = <V,y,A,ITE> 

as a ft fa(e)1A. 

[\\]: e\a\b = (V,79A,,E>\a\b 

= <V,y,A\a\b,it\a\b,E> = <V,y,A\b\a,i\b\a,E> = e\b\a 

[U]: efid) = <V,y,A,it,E>(id) 

= <V,y,id(A),oid 1 1 E> = <V,7,A,lrE> = e. 

(001: e(r)(r') = <V,y,A,n,E>(r)(r') 

= 

= <V,y,(r'or)(A)),no(r'or) 1 ,E> = e(r'or}. 

((}\]: e(r)\r(a) = <V,y,A,,t,E>(r)\r(a) 

= <V, Y, r(A)\r(a), (nor)\r(a), E> 

= <V, y , r(A)\r(a), (t\a)o(r)\r(a), E> 

= <V 1  y, (r\a)(A\a), (iT\a)o(r\a), E> e\a(r\a). 

(I]: dc' = <V,y,A,n,E>l<V',y',A',it',E'> 

= <VuV', 7U7', AGA', yr&(A\C) u ir'l(A'\C), EuE'uE"> 

= <V',1',A',n',E'>l<V,y,A,,E> = e'Ie. 

[\I]: (ele')\a = (<V,y,A.7t,E>I<V',y',A',n',E'>)\a 

= <VuV', yuy', (AOA')\a, (irl(A\C) u n'l(A'\C))\a, EiE'E") 

= <VuV', 7U7', (A\a)G(A'\a), t4(A\a\D) u i'A'\a\D), EuE'F"> 

= <V,y,A\a,n\a,E>I(V',y' ,A'\a,n'\a,E'> 

= (<V,y,A,n,E>)\aI(<V',7',A',n',E'>)\a = (e\a)l(e\a) 

where C = AAA' 

and D = A\aiA'\a = (AnA')\a = C\a = C because afa(eIe')1. 

(AA')\a = (A\a)G(A'\a); 
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(t.I(A\C) u n'l'(A'\C))\a = (ITI(A\C))\a ii 0t'4(A'\C))\a 

= (yrl(A\C)\a) U 0r'4(A'\C)\a) = itl'((A\a)\D) u 

= (<7Ta,1r'a>,<n'a,1a> I aeD) 

= (<1a,n'a),<n'a,1ta> I aeC) = F". 

U) I]: (ele')(rur') 

= <VuV',rijy',A0 9P0 ,E0 > 

= <VUV',7U1',A1 ,ff 1 ,E1 > 

= 

= 

= efrur")le'(r'ur") 

where: 

C=AnA'; 

D = (rur")A n (r'r")A' = r"(AnA'); 

A0  = (rvr')(AA') = r(A)Gr'(A') = (rir")A G (r'r")A' = A l ; 

P0  = (nl(A\C) u n'4(A'\C))o(rur') 1  

= (ir4(A\A') u 

= (n&(A\A')or) U (ir'1(A'\A)or' 1 ) 

= (lror 1 ) u (ir'or') 

= ((no(rur")')r(A) Ii (n'o(r'r") 1 )&r'(A') 

= ((ito(rur") 1 )((rur")A\(r' vr")A') 

U 

= ((io(rur") 1 )4(((rvr")A)\D) 

u (n'o(r'vr"))&(((r'r")A')\D) 

= P1 ; 

E0  = EuE'u(<ta,n'a),<,'a,na) I aeAnA'} 

= EuE' u (<n(r" 1a),n'(r"'a)),<n'(r" 1a) ,(r"a)> I aer"(AnA')) 

= 

I aer"(AnA')) 

= E1 . 

= <VuV', yur', AeA', nit', EE'>  
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= <(VuV')uV", 	I 	t 
, (AeA')GA", 7r7r '-", EE'—E"> 

= <V.i(v'jv"), yu(y'uy"), Ae(A'OA"), --- S_SS 
, 

= 
	 to 	f 

= <V,y,A,ir,E> I (<V 5  y' ,A' ,i' ,E' >1 <V",y' 5 ,A",ir",E">) 

= el (e' le") 

where: 

AU' = AOA'; 

= 

im l  = t1(A\A') j 

= 7T 1 4(A'\A") U W1 4 (All\Al) 

= ,nt'(AA'\A") u r"A"\AA') 

= (t(A\A') a ,T'(A'\A))1(AOA'\A") u r"4(A"\AOA') 

= n4(A\A'\A") u ir'&(A'\A\A") u 

= 74'(A\A'OA") W y!'l(A'\A\A") j i"1(A"\A\A') as AnA'zA" = 

= it(A\A'A") 

= 

EE' = EuE'uC<xra,'a>,<n'a,na> I acAnA'); 

E'E" = E'uE"u{<,x'a.n"a>,<,t"a,n'a> I aeA'flA"); 

EE'—E" = EE'uE"u(<int'a,rr"a>,<n"a,irir'a) I aeAA'rA"} 

= E'uE'uE" v (<ta,n'a>,<ir'ana> I aeAnA') 

U C<na,,t"a>,<n"a,ira) IaeAflA") U (<j'a,ira>,<,t"a,ir'a) I aeA'A") 

as AnA'nA" = 0 

= EUE'E"Uf<rta,,T',T"a>,<n',T"a,Tra> I aeAjA'A") 

= E—E'E" 

a 
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2. Hardware Networks for VLSI 

2.1 Introduction 

This chapter presents case studies of several classes of 

networks and their relationships -. Each class is meant to represent 

an aspect of VLSI (Very Large Scale Integration) circuit design. In 

general we will follow a top—down approach, starting with very 

abstract networks (describing behaviours) and descending to very 

concrete ones (describing geometric patterns). However, just to keep 

our aim in mind, the first part of the chapter is dedicated to the 

lowest and most concrete level: VLSI layouts. 

We shall not and cannot go so far as to show a complete set of 

algorithmic translations from behavioural descriptions to layouts; 

this is a very complex problem with a large number of possible 

options yet to explore. A translation process of this kind 

inevitably requires a considerable amount of heuristics which could 

only be tested by large—scale experiments. However we shall show how 

to break the problem down into finding a set of translations between 

intermediate levels of description. These levels are chosen to be 

self—justifying, in the sense that they all occur naturally in VLSI 

design and could be independently used as a basis for design tools; 

indeed some of them are already used in this way. Moreover we shall 

show the intermediate translations which are already known, sketch 

some which are conceivable and discuss some new ones. All the 

translations are modelled on the algebraic concept of homomorphism; 

they preserve the structure of descriptions and are meant to be 

mainly algorithmic, with few well localised heuristics. 

Here is a picture of the general plan, which will become clearer 

while reading this chapter; blobs are levels of description and 

arrows are translations: 



CTA 

Translation of literals and operators 

CSA 

Translation of literals and operators 
Flattening 
Colouring 

Planar 
Sticks 

Context splitting 
Stretching 

Grids 9 
Inflation 
Compaction 

Layouts 

Figure 2.1 Description levels and translations 

Briefly, CA (Clocked Transition Algebra) is a behavioural 

description level, CSA (Connector Switch Attenuator) are 

switch—level diagrams, then there are stick diagrams, grids (a 

metric version of stick diagrams) and finally layouts. 
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2.2 Layouts 

VLSI technology implements a computational model which radically 

diverges both from theoretical constructs such as sequential 

machines and their languages, and from practical realities like 

logic—gate hardware and its methodologies. It is probably no more 

attractive to know what kinds of transistors are available in some 

technology than it is to learn the instruction set of some 

particular machine, but the two kinds of primitives are 

fundamentally different, and their difference is bound to be 

reflected in any high level tool or formalism devised to deal with 

them. 

It is therefore necessary to investigate some aspects of VLSI 

technology, because they effectively create a new computational 

paradigm (Kung 80, Chazelle 81). Fortunately, a rather clean 

interface can be drawn between the design and fabrication 

activities, thanks largely to the work of Carver Mead and Lynn 

Conway [Mead 801. In the case of digital systems this interface can 

on the one hand permit the designer to ignore most of the 

fabrication parameters, and on the other hand permits the 

fabrication process to ignore the meaning of the systems being 

built. An effort is currently being made on both sides to adapt the 

design and fabrication activities to this end. 

Hence we take the view that the result of any VLSI design 

activity is a layout, which is our interface to the physical world 

of VLSI circuits. A layout is a set of geometric figures (generally 

rectangles) describing the geometrical structure of the devices to 

be fabricated. The rectangles are distributed over several planes, 

to indicate the different materials and phases of the fabrication 

processes. The position, size and overlapping of rectangles 
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determines the electrical characteristics of the devices being 

fabricated, which are generally digital switches, resistors and 

conductors. In the most desirable situation, the fabrication process 

should act as a black box receiving layouts (pure geometric 

information, free from fabrication details like electrical 

parameters) and producing working chips at the other end. Here 

"working" means corresponding to the layout specification, which is 

purely syntactical and does not involve any knowledge of the 

intended behaviour of the devices. 

Layouts specify the physical dimensions of wires, transistors, 

contacts etc. These specifications must obey some rules, which fall 

into two general classes: minimal size of devices and minimal 

separation between devices. Sizes and distances are expressed in an 

abstract unit called X, which can be scaled up or (preferably) down 

according to the particular fabrication process. Good values for X 

in 1981 are around 2-3 microns; by 1990 	0.25 microns 

(corresponding to 10 	 devices per silicon wafer) might be 

widespread. At that point nMOS technologies encounter ,  foandamental 

physical limits. 

Geometrical design rules generally say that wires and transistor 

must be at least 2% wide, and must be separated by at least 2X. 

Similar constraints are imposed on contacts etc. The most standard 

design rules in university environments are the ones described in 

[Mead 801; a recent proposal for making them both more regular and 

technology independent is discussed in (Sequin 811. Several example 

layouts are given in chapter 3. 
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2.3 Clocked Networks 

A clocked system is one where events only happen at discrete 

time instants. The flow of time is governed by a global clock and 

events are only observed during clock activity. Clocked systems 

attempt to make the clock appear instantaneous, so that events are 

fully determined at the clock instant. In practice the clock is 

active for a finite and positive interval of time, and during this 

interval events can very well be unstable. 

Constraints must then be imposed on the clocking scheme and on 

the structure of the systems so that events are stable during the 

active—clock period. First of all, there should be no asynchronous 

loop; if this condition is met, then it is possible to slow down the 

clock rate until all the events have had time to stabilise. 

Secondly, the system should be in isolation: there is no way to 

guarantee the correct operation of a rigidly clocked system in the 

presence of asynchronous input signals. 

In spite of these problems, clocked systems are simple both to 

model and to reason about because of the discrete timing assumption. 

They are also simpler to implement, and most of the hardware systems 

today are clocked (but see (Seitz 80, Barton 811 for arguments in 

favour of self—timed systems). Our first example of a net algebra 

will allow us the expression of the structure and the behaviour of 

clocked systems; it is called Clocked Transition Algebra (CTA for 

short). 

2.3.1 Clocked Transition Algebra (CTA) Expressions 

A CTA Expression is a net expression over a particular set of 

literals. These are called clocked transition literals. As a simple 

example, the clocked transition: 

a in 	b out 
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means that the input from port a 	 is transmitted to port bout  afterin  

one clock period. The sort of this expression is: 

T, out  T) 

for any type T. Here we take the brute force approach of considering 

transitions as literals. Alternatively we might define an algebra of 

transitions (expressions describing input values) and then combine 

this algebra with the surrounding net algebra to obtain a bigger 

derived algebra (Burstall 771. 

Successive attempts 'at an exact interpretation of "4" will be 

discussed, culminating with a formal semantics. For a first attempt, 

every arrow "9" is taken to indicate a restoring stage where the 

input from a is stored at time t to make it available on b at time 

t+1. Every restoring stage is clocked. The situation can be 

displayed as follows: 

clock 

a____ Restoring I 	b 
Stage 	I-  ) out 

Figure 2.2 A restoring stage 

When the clock is active, the input from a is stored inside the box, 

and the stored value is immediately available on b. This implies 

that while the clock is active, a and b are physically connected. 

Now consider the following loop: 



I clock 

a. 
in 

a 
out 

Figure 2.3 An asynchronous loop 

Here we have a problem: when the clock is active, 	is 

available on 	If the signal can go around the loop before theout 

clock is deactivated, an attempt will be made to store 

(instead of a 1 ) in the box. This situation is called an unstable 

asynchronous loop (stable asynchronous loops are also possible). The 

actual value stored in the restoring stage will depend on the number 

of loops the signal manages to perform before the clock is shut 

down, or even worse inconcreta situations the value stored will be 

somewhere between a 1  and 

To repair this problem we might try to make our active-clock 

interval very short, but then it is difficult to reliably store the 

value of "a 1 " in such a short time. The situation is so 

uncomfortable that we switch to a different clocking scheme: instead 

of a single-phase clock we adopt a two-phase non-overlapping clock, 

41  and 42: 

67 



reset 

Figure 2.4 Two—phase non—overlapping clock scheme 

As shown in figure above, the first +1  pulse is also carried by a 

special reset line which is used to obtain well defined starting 

conditions. 

For a second attempt, our loop can be reinterpreted as: 

) 

I2 

	

i 	a 
o in 	 i  ut 

	

>1RS21 	>___•%, 

Figure 2.5 A different loop 

During phase cp —a. is stored in the first box, and during +2  the 

content of the first box is stored in the second one. Because the 

two phases are not overlapping, input and output are never in 

contact and the asynchronous loop is broken. 

This scheme is not yet entirely satisfactory. For efficiency we 

may want to insert some useful circuitry between the two above 
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restoring stages. In fact all is well so long as we correctly 

alternate the two clock phases. 



a. in 
b 
out 

Figure 2.6 Final restoring stage 

Our final interpretation for transitions is then that "" is 

thought of as a single restoring block clocked by a single phase. To 

avoid ambiguities, the arrows are sometimes subscripted by the 

particular clock phase: "-4 1" for 4, and for 42•  It is 

possible to check syntactically that an assignment of phases is 

correct; phases must alternate along every path in a net, and loops 

must have an even number of arrows. 

Very frequently we need to share an input between several 

transitions and an implicit forking of the inputs is therefore 

required (conversely, we insist that any mergeing of the outputs is 

explicit). A special "," operator is used to indicate sharing, and 

we write: 

a 9ib 0 t. ajn 1cout 

meaning that the input ainis  shared by two transitions. 

We can then consider clusters of transitions separated by "," as 

literals in our Clocked Transition Algebra, and use net operations 

to combine them. Furthermore we shall only allow transitions of the 

same clock phase to be clustered together. We have 1—clusters which 

input during phase 1 and output stably during phase 2, and 

2—clusters which input during phase 2 and output stably during phase 

1. For 2—clusters we also have to specify what their output will be 

during the first clock pulse (i.e. on power—up or reset) because 
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they start producing an output before receiving any input. 

Our final notation is as follows. Clusters of phase-1 transitions 

will be denoted by: 

Clusters of phase-2 transitions will be written: 

<2:t 1—)'b 1v1, ... ,t ii  '4b v > 

where v1 .. .v are non—empty sets of admissible power—up values; in 

the boolean case they can each be (tt), (ff) or (tt,ff). The 

power—up values may be omitted, and they are then assumed to be 

"don't care", i.e. (tt,ff) (nondeterministically true or false). 

In examples we shall only use boolean transitions. The left hand 

side of a boolean transition can consist of boolean constants (tt 

and ff), boolean operations (-, A, V) and boolean—valued 

conditionals ("a4b;c", i.e. "if a then b else c"). 

2.3.2 Main Example 

We can now give a specification of the black boxes described in 

the previous chapter, i.e. the positive and negative bit comparators 

and accumulators. Positive boxes are clocked by + 1  and negative ones 

by 42: 



True = 

<2: tt -9 true(tt}> 

False = 

<1: ff -4 false> 

PosBitComp = 

<1:-p. -4 

	

-s in 	s 

	

n 	out' 

(d 1 A(p i  =s i )) -4 d 	> n n 	out 

NegBitComp = 

<2:-p. -) pout, 

g out' 

d.A(p.s.) 9 

PosAccum = 

<1:-).. x out' 
x i n 9x out' 

in tin in ) -9r out 

~Cx iU=4tt;(t iUA(x inVd inM 9 tout> 

[tout t in, tin tout] 

<2:-t. -4t 	> 

	

in 	out 
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NegAccum = 

<2:—X. 

	

in 	out 

	

_x 	I 

	

in 	out 

	

-. i 	i =—t 	i ;—r - r 

	

n 	n 	n 	out'  

	

—X in 	inin =+tt;(t A(-x 	in ))  V—d )) —+ t 	> 

[t —t , t --t 	] 

	

out 	in in out 

<1:—t. - t 	> 

	

in 	out 

The same program that was shown in the previous chapter can be used 

to put these pieces together. Note that PosAccum and NegAccum are 

formed by the composition of two transition of opposite phase 

feeding each other. This configuration produces the bit of storage 

needed to remember the result of previous matchings. 

2.3.3 Formal semantics of CIA 

In this section we give a semantics to CIA expressions via a 

translation to the Synchronous Calculus of Communicating Systems 

(SCCS) [Milner 811. We do not offer an introduction to SCCS but 

Chapter 5 can provide enough background, especially because, as 

noted in Section 5.8, SCCS can be considered as the class of 

1—synchronous real time agents. 

First we introduce some notation in SCCS which allows us to 

simulate value passing simply by indexing the port names; 

for x a (tt,ff} is an abbreviation for "p(tt/x] + p(fu/x]"; "a?x:p" 

is an abbreviation for "x  a:p", (representing the act of inputting 

the boolean value x from port a); "b!v:p" is an abbreviation for 

"bv:p" (representing the act of outputting the boolean value v from 

port b). Several input and output ports can be mixed together in the 

same prefix, moreover the name of the indexes may be the same as the 

ports they index. For example: 
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a?a, b?b, claVb: p = 	a,b S a  bb C aVb p 

inputs two values on the ports a,b and outputs their boolean or 

(without any delay) on port c. 

In the definition of clusters there is an implicit forking of 

input signals. This can be modelled by the following combinator: 

fork(a,n) 4 a?x,('1x): 1: fork(a,n) 

Where an 	a,..,a (a times). 

The semantics is given by a translation function Ifl from CIA to 

sccs. We indicate by EI ... ][a 1 ] a set of transitions "..." where the 

set Ca 1 ) contains all the input ports used in the transitions, and 

by ff  ... ]J[b/aj]  the substitution of the input ports b. for a 1  in 

"...". We omit the obvious definition of the translation for boolean 

expressions. 

11<1:t 1—b1 1..10 t-4b>11 [a 1 ..a] 

(fork(a 1 ,n) X ... X fork(a ,n) X 

iP.It 1 4b1]J(a/a.] X ... X [It —biJ(a/a.] X l:l:P) 

\aj ... 

where a1'...a'm  are not in the sort of the transitions 

ff<2:t1—b1v1,. .t n •bnv >II[a 1 ..aJ = 

Zbb ev XX 	b1 !b 11 ..,b!b: 

—4b >11 (a ..a I a a 	1 m 

at -9 b]J(a 1 ..a ] = 

a n ?x : b!fftJJ[x 1 /a 11 ..,x Ia 1: 1 

= apIJ\a 
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Etp(r)]J = EIpfl(r) 

ffp(a 1 --b 1 ]qiI 

(ffpfl(c 1 /a 1 ) X 

where c are not in the sort of p and q 

as an example, let us compute the semantics of <1:a'9b>, where we 

use "" for SCCS's "strong congruence" (the same derivations are 

valid for the "smooth congruence" of Chapter 5). 

ff<1:a—*b>fl [a] 

= (fork(a,1) X (siP. aa9b])(a'/a] X 1:1:P))\a' 

= (fork(a,1) X (a'?y: b!y: 1) X 1:1:jP. ... )\a' 

= (a?x,I'!x: 1: fork(a,1) X (a'?y: bly: iP. ... )\a' 

= a?x: b!x: (fork(a,1) X iP. ... )\a' 

= pP. a?x: biz: P 

Hence <l:a'b> repeatedly accepts an input x during phase 1 and 

produces the same output x during phase 2. Note that according to 

this semantics no output is generated from b during phase 1 and no 

input is accepted by a during phase 2. A more detailed semantics 

might allow b to output nondeterministically tt or ff during phase 1 

and a to input an unused value during phase 2; it seems sound to 

regard these two semantics as essentially equivalent. 

2.3.4 Semantics of the main example 

We can now compute the semantics of the pattern matcher: 

True = 

itP. true!tt: 1: P 



False = 

;LP. 1: falselff: P 

PosBitComp = 

P. p.?p i  ,s ?s i  ,d ?d. n in n in in 

Pout 	,s 	I—s i  ,d 	1-(d A(p 	)): P 

	

out 	n out 	n out 	in 	in s in 

NegBitComp' = 

Zps d 

= 

Pout Ip t oss out is onto ,dout !d 0 ø: 

;LP- p in?p iUs s in?s in ,d in?d in : 

Pout !1in 1 5out 5 jn1dout hjuMPjnjn  P 

	

=p 	ip 	,s 	is 	5 d 	Id out onto ,  out outO out onto 

p i  ?p ,s ?s ,d ?d. n in in in in in 

NegBitComp(—p.,--s.,-.d.A inSin 

PosAccum' = 

PosAccum(t) 

PosAccun(t onto  ) = 	 - 

((pp. x. ? X. ,x. ?x. ,r. ?r. ,d. ?d. ,t. ?t. 
in in in in in in in in in in 

	

out 	 !xin & rout ! - ( 4. 1 =t. ;r.), 

t out  N ( Xi=tt;(tiA(x.Vdi))): P) 

{ Itt , vItin ) X 

	

(t 	(t 	): Q. t ?t i : t 	!—t i : Q) out outO 	in n out 	n 

(u/t1sV/t 0 }) 
\u\v 
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NegAccum' = 

00t'x0tar0tst0t NegAccum(;L out' 
 xout,rout,t  out) 

NegAccum(X onto,  x  onto,  onto ,  oat 0 o) = 

(X 	U. 	0,x 	Ix 	,r 	ir 

	

out out 	out onto ,  out out 

	

pP. X. ?X. 	i. ?x. ,r. ?r. ,d. ?d. ,t. ?t. in in in in in in in in in in 

out Xin9boutin, rout 	in tin in D 

	

t out 	in I—k 4 	 i in 	n tt;t A(-x 	in V—d ): P) 

( /t out'  v/tin ) x 
(itQ. t i ?t  i : t 	Nt i : Q) 

	

n n out 	n 

Cu/t in'  v/t out  ) 

Simplifying the expressions for PosAccum and NegAccum according to 

the SCCS laws and recursion theorem we get: 

PosAccum(t) = 

X. ?X , in i ?x , in i ?r ,d; ?d. i in n n n n n in in 

. 	I—X i  ,x 	I—x i  ,r 	!—(X i 	t;r  i  ): out 	n out 	n out 	n 	n 

PosAccum(. 1 =tt; (tA (xVd))) 

NegAccum(X00 x00 9r 09 t) = 

x out  RtosxIx out out 

Xi n in 3Xin in'  Xin  in'  din  in 

NegAccum(-4. in 	i ,x n 	i ,A n 	in,-  t;r 	. in 	 in =tt;—tA(—x V-d. ) in 

At this point we might try to proceed to compose the various 

subcomponents in order to get the semantics of the whole circuit. 

This is in principle no different from the manipulations with have 

done so far, but the practical difficulties are overwhelming. A 
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proof of correctness would require induction on the size nXm of the 

pattern matcher. This seems to be very lengthy to do by hand, and 

without machine assistance the confidence in the accuracy of the 

result would be very low. We try to show the practical difficulties 

which arise, by composing a little 2X2 pattern matcher. We start 

building up a positive column: 

let (Pren) = 

and (Nren) = 

PN = (PosBitcoinp(Pren) X NegBitComp'fNrenfl\d 

=12 	2 
1out9Soutubout PN(p2  out' 32tout' d) 

PN(p2to,s2to.d onto ) = 

(PosBitComp{Preu) X 
_1 	1 	1 	1 	 2,2 	2,2 
- Pjn ?P in s  jnjnId .,indjnspoutpoutOsSoutiS onto sdotlt0. 

P2  ?P4  2 ?

3

2  1 	1 	1 
In. In in In ,  Out —pin out 	in• 

in in in 	I 	in 	in in 

PCol = 

(Trne(E/true) x 

PN(t/d in' a/d} X 

PosAccum(d/d in ))\t\d 

=12 	2 
Pots0t.d0t PC01(P2  Out' S2t,dt) 

PCo1( 2 	2 = 

(True (i/true) X 
2 	2 

4(Pouto 5outo1douto )( t/din , a/dot ) X 
PosAccum(t)(cj/d.})\t\d 
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= P n ?P n 	n P out out Om ut! ut O 

.. ?). i  ,x  i  ?x  i  ,r  i  ?r  i in n n n n n 
2 	2 	2 	2 	1 	1 	1 	1 

	

P2 ?p 	Sin?SinsPout 1in'  Sout 

out !iflI  'out  ! -x. ,r 

in 	in 	I 	In 	I 	in 

X•=tt;tMxiVd to)) 

We now build a negative column: 

11 let (Nren) = tP n1 Pin Pout 1P ont ssin1sin ,s ut /sout ,a1dout ) 

and (Pren) = 	in in Pout out s 3 in in 1 3outout sdl'din ) 

NP = (NegBitComp(Nren) X PosBitCouip(Prenfl\d 

=11 	1 
p0 t's 0 t.d0 t 	Out' Out out 

= 

( NegBitComp ( p' 0 , s ' 0ad0)(Nren) X PosBitCompfPren))\d 

2 	1 
= n?nn?3  in' out 	utOmut!utO 

d in in In  in in in' 

Pout 	n'ut !S,dt!(dtOA(Ps)):in in 

in in ' -d  in 	in in 

NCo1 = 

(False(?/false) X 

NPCf/di , /dt) X 

NegAcctun(d/d.D\f\d 

=Z1 	1 
rout' Sout d out Xout '1out ' 

NCo1 	Sut d0t "out'  xotrout  out 



= 

(False(?/false) X 

X 

in ))\f\d 

2 	2 	2 	2 	1 	1 	1 	1 
= Pjn?Pin iSin 'SiniP out outOs Sout !3 onto ,  

out Ix  onto,  x out !x00sr  out  !r00: 

1 	1 	1.,1 	2 I—P2 	2 	2 S, in in in in Out 	in Out 	in 

in? ) jn ixjn?xini r?r1. 

	

in' in 	n=4n' 

;—r 1  

—. 1 tt;tA (xV(d0toA (p=s))))in 

Finally, we compose the two columns into a pattern matcher: 

PM(P2p 	
2 	 P 

outo , souto , uouto ,  

= 

n'1n' s2?s. 

	

nt !to ,Pt !ptoX0 t Ix 	Ixonto: 

	

2,2 	1,2 	1,2 
PinPin1Sin' si n Irin rin ' 

Pout 	outo' s out 	utoaroutIXint;r  onto : 

	

in 	 in onto'n'n' 

(ps) 9in1xinXint,rin9 

Xjn=tt ;_tNA  (x 1 V (dtoA 
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2.4 Connector—Switch—Attenuator (CSA) Networks 

Classical switching theory turns out to be inadequate for 

describing MOS circuits because, as we shall see later, the 

underlying boolean logic model fails to account for MOS behaviour at 

the transistor level. Hence we turn to a more sophisticated model, 

known as the CSA (Connect or—Switch—Attenuator) model [Hayes 811. CSA 

gives a static informal semantics to MOS networks, and can be the 

basis for more formal and dynamic characterisations of MOS 

behaviour. 

The problem with the semantics of integrated circuits is that an 

exact semantics, modelling what physically happens, seems to be 

bound to be intractable for large circuits (not only for proofs but 

even for descriptions); an extreme example of such a semantics is 

the physics of semiconductor devices. On the other hand a tractable 

semantics seems to be bound to be inexact, because of the highly 

complex phenomena occurring in semiconductors which are often 

exploited by electronic circuits. 

Even if it is possible to make simplifying assumptions on the 

behaviour of devices (and maybe require that these assumptions be 

met by the fabrication processes) some very basis characteristics of 

semiconductor devices are intrinsically complex, and critically 

influence the behaviour of the simplest components. 

The two troublesome features, which confer great expressive power 

to these devices, are the bidirectional ity of wires and various 

forms of capacitive effects. Because of bidirectionality it is 

difficult to model components by input—output functions of some sort 

(one possibility is to split every wire into two monodirectional 

wires and use, for example, the semantic model of Chapter 4, but 

this seems to lead to intractable formal systems). A more serious 
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difficulty is the modelling of capacitive effects, which in MOS 

confer the ability to store information. Many circuits critically 

use the relative sizes of capacitances and their decay times, so 

that it is difficult to abstract from these electrical parameters 

and it is not possible to use boolean algebra to model them. 

An attempt to give static semantics to MOS circuits is reported 

in (Hayes 811, where an elegant set of primitives is identified. A 

very interesting dynamic semantics for MOS circuits is due to Bryant 

(Bryant 811, deriving from a switch level simulation algorithm. The 

value domain which we are going to investigate in this section 

diverges slightly from (Hayes 811 and is a special case of the one 

proposed in (Bryant 811. The original points in this section concern 

the fact that we have a language for expressing CSA networks, and 

that we regard CSA networks and expressions as an intermediate step 

in the translation from behaviours to stick diagrams. Moreover, a 

formal static semantics is defined for CSA circuits, and at the end 

of the section we give an example of a translation from CTA 

expressions into CSA. 

2.4.1 The Value Domain 

Electronic circuits are based on the movement of electrons in 

conducting materials. Electrons move because of the electrostatic 

force between them, i.e. because of the presence of an electric 

field. The electrostatic force is conservative, and it is therefore 

possible to mesure the work done in moving an electron from one 

point to another, regardless of the path between the two points. The 

amount of work needed to move a charge between two points, divided 

by the value of the charge, is called the potential difference 

between the points. Only the difference is significant, and the 

potential value can be set to zero at an arbitrary point. 
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In digital circuits, at an appropriate level of abstraction, only 

two values of the potential are relevant: the "zero" level, and 

another level called "one". The potential difference between zero 

and one corresponds to the potential difference of the power supply 

relative to ground. Normally in a digital circuit no potential value 

can exist below zero or above one, and the intermediate values only 

exist for comparatively short times, during transitions from zero to 

one and vice versa. 

Boolean operations can be implemented in hardware on this simple 

two--level domain, and the behaviour of circuits can be understood 

using boolean algebras plus some notion of time. It all works very 

well and these principles (plus some "tricks" here and there) are 

used in all the digital systems built out of discrete hardware, e.g. 

using Tl'L or CMOS gate—level chips [Melen 801. 

Unfortunately, to fully exploit the possibilities of MOS devices, 

this simple model is not sufficient. Physicists and electronic 

engineers, who are familiar with charge distributions and 

differential equations, work their way through VLSI technologies on 

the ground of fairly detailed and precise models. Other kinds of 

people (potential VLSI users) can choose between that and some rough 

analogies, like for example the water—pipe model (Mead 801. Here we 

use CSA models, which seem to capture most of the characteristics of 

MOS devices at the proper level of abstraction. These models try to 

reproduce a situation similar to the use of boolean algebras in 

modelling gate—level hardware. Because we need to operate below the 

gate level, the model is more refined and is based on a value domain 

containing seven logical values. 

The major step consists in realising that two voltage levels and 

two current levels (at least) should be quantified in MOS circuits. 
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The voltage levels are T (for true, or 1) and F (for false, or 0). 

The current levels are strong (connected to a strong source of 

charges, like the power supply) and weak (weakened by some obstacle, 

like a resistor, or coming from a weak source of charges, like a 

capacitor). Combining them we get four values which can be 

physically present on a line: strong one (1), strong zero (0), 

weak one (1) and weak zero (0). Moreover T is used to denote 1 or 1 

and F to denote 0 or 0, when we do not care to distinguish between 

them. 

The distinction between weak and strong values is important 

because a weak value can coexist with a strong value of the opposite 

sign on the same line; this situation is well defined and the strong 

value overrides the weak one. The situation is not well defined when 

two strong values of opposite sign coexist; to model this situation 

we invent a new state, U, called undefined. Similarly the 

coexistence of the two opposite weak values gives rise to a 

weakly undefined situation U which can be overridden by a strong 

value. The undefined states do not actually exist physically, and 

they only reflect our inability to describe what exactly happens (or 

our discomfort about the fact that something undesirable happens). 

The correct interpretation of U is "we do not know whether it is 1 

or 0" rather than "it is both 1 and 0" or "it is 0.5"; similarly for 

U. 

Finally, another state is needed to model the case of a point p 

which is not connected to any source of charges. Such a point cannot 

be said to have value T or F, because T and F are two definite 

values of potential, while the potential of p is simply arbitrary. 

Moreover, if we connect p to a source of charges, it will 

immediately assume the potential of that source (assuming that p is 

small enough) whatever that is. A point like p is said to be 
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floating, and the symbol for this state is Z. 

These seven logical values can be arranged into a lattice V, to 

show how they override each other when they coexist; the higher 

values override the lower ones. 

:$: 

Figure 2.7 The partial order of CSA values 

A basic operation on this lattice is the connection v'Ov" of two 

logical values v'v" e V, defined as their least upper bound in V. 

The following laws hold for 0: 

Associativity: v 0 (v' 0 v") = (v 0 v') 0 v" 

Commutativity: v 0 v' = v' 0 v 

Absorption: 	v 0 v = v 

Zero: 	 vOZ = v 

One: 	 yOU = U 

Apart from this basic connection operation, different VLSI 

technologies can be characterised by different primitive functions 

over V, generally reflecting the different kinds of switches present 

in a particular technology. 

In (Hayes 811 the two undefined states U and U are identified. 

This reduces the number of primitive values to six, but leads to 
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problems because the set of values is not a lattice and the analogue 

of 0 is not associative. The latter fact seems particularly 

counter—intuitive. 

2.4.2 Connectors, Switches and Attenuators 

A CSA algebra is a network algebra over a set of CSA literals. 

There are four classes of CSA primitives: Sources, Connectors, 

Switches and Attenuators; we shall only consider a set of primitives 

tailored to aMOS circuits. 

Sources: a source is a one—terminal device which is either a 

source of 1 (also called power, or VDD) or a source of 0 (also 

called ground, or GND). 

Connectors: a connector is a multi—way device which performs the 

connection operation of all its terminals and produces the result on 

all the terminals. A connector can have various shapes, but we 

assume that all these shapes can be collapsed to a single point; we 

do not consider delays or resistances inside connectors. 

a3  
0. 

a4  

Figure 2.8 A connector 

Attenuators: an attenuator is a device which transforms strong 

values into weak values. A 1 on one side of an attenuator becomes a 

1 on the other side, and similarly for 0. The attenuator is 

symmetric, and it is perfectly possible to connect one of its 

terminals to 1 and the other one to 0; in this case the 0 on one 

side will be overridden by 1 and the 1 on the other side will be 
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overridden by 0. This 	configuration is 	crucial 	for the 

implementation of logical gates. 

j 
ru 

Figure 2.9 An attenuator 

The dual of the attenuator is the amplifier, a device which 

transforms.weak values into strong ones; amplifiers can be built out 

of attenuators, amplifying switches (which we have in nMOS) and 

power supplies, and are not taken as primitives. 

Switches: There can be a great variety of switches and new 

switches can be introduced as required by some particular 

technology; these devices have three terminals called gate, source 

and drain (source and drain can be swapped without affecting the 

behaviour). 

The only switch available in nMOS is the switching—on—T switch. 

More precisely, when the gate is T (i.e. 1 or 1) the junction 

source—drain behaves like a connector; when the gate is F source and 

drain are not connected; when the gate is Z or U then if 

source=drain they remain unchanged, else source and drain are U; 

when the gate is U then source and drain are U. The behaviour of the 

switch with gate = Z is defined so that undefined states are 

generated only when strictly necessary. This helps avoiding 

situations in which undefined values propagate explosively all over 

the circuit. 
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source 

gate 

drain 

Figure 2.10 A switch 

Switches have the important ability of working as dynamic storage 

devices. An nMOS switch is basically a capacitor which influences 

with its charge the flow of current in the gate—drain connection. 

Hence a charged switch with an isolated gate will remember its state 

until it discharges; if the switch is not refreshed it will 

gradually lose its charge (whence the name of dynamic storage 

device). The decay time is usually much larger than the clock 

period, and static storage devices can be obtained by connecting 

pairs of switches in such a way that they periodically refresh each 

other. 

2.4.3 Basic CSA Circuits 

CSA circuits can be expressed 

sources, connectors, switches and 

in this section we shall just 

pictures; examples of expressions 

will be shown in section 2.5 f 

constraints.  

in net algebra notation by taking 

attenuators as literals. However 

describe basic CSA circuits by 

of the same order of complexity 

r stick diagrams with planarity 

The most important nMOS structure is the inverter. An nMOS 

inverter acts as a not—gate but, what is more interesting, it can be 

used as a dynamic storage device. An inverter can be built by a 

switch (called the puildown in this configuration) and an attenuator 

(called the pullup) connected to power and ground. 
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111.1 

i-I 

 

Figure 2.11 A CSA inverter 

The attenuator constantly supplies a weak one to the output. When 

the value T is on the input, the switch connects a strong zero to 

the output which overrides the weal one, and the result is F. When F 

is on the input, the switch is open and only the weak one is 

connected to the output; hence the result is T. 

Inverters are often connected into shift register structures: 

1 

in 

Es 

out 

Figure 2.12 Two shift register cells 

When a two—phase non—overlapping clock is used, a signal can ripple 

through a chain of shift register cells, getting inverted at each 

stage. The switches controlled by the clock signals are called in 

this configuration pass transistors. Note how each pass transistor 

isolates (when open) the gate of the following switch, so that the 

charge stored in the following stage is trapped into a dynamic 

storage configuration. 

More complex logic circuits can be built in essentially two ways; 

0 
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by making more complicated puildown structures, or by making more 

complicated pass transistor structures. Very common examples of the 

first class are the nand and nor configurations: 

1 

 

1 

 

in '  

in 2 

:s] 

out 

 

out 

 

in  

[I] 

in  

Figure 2.13 CSA Nand and Nor 

while selectors and multiplexors can be built very cheaply as pass 

transistor structures: 

C 
	'1jC 1 	 C, 

in '  

in  

in3  

in  

out 

Figure 2.14 A selector 

As a last example we show an amplifier (also called non—inverting 

superbuffer) which converts weak values to strong ones. 



1. 

 
90 

in 

at 

 

Figure 2.15 An amplifier 

Note that this amplifier can only work because n.MOS switches have 

the ability of switching on weak values, so that they are themselves 

proto—amplifiers. 

2.4.4 Static Semantics of CSA 

Because of the above mentioned difficulties in giving a formal 

dynamic semantics for CSA, we define here a simpler static semantic, 

which only works for circuits which can reach stability. We think 

that this kind of semantics helps one to understand the general 

behaviour of CSA circuits, and may be a good starting point for a 

dynamic semantics. 

A CSA expression is a net expression with several kinds of 

literals. There are sources 1: (tt) and 0: (ff3, connectors C: 

(c 1 9. ..,c}, a switch S: (g,s,d), an attenuator A: (s,d), and the 

usual operators e\a, e(r), e[r]e'. 

A static semantics can be given to CSA expressions by considering 

the set of all the stable configurations of a CSA circuit. 

Intuitively, a stable configuration is an assignment of values to 

each point of a circuit which does not change when considering the 

propagation of values through the circuit. 

The values present on the. terminals of a CSA component or circuit 
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depend in general on the context in which we put the circuit. For 

example the source 1:(tt) has a stable configuration which assigns 

the value 1 to the port t  (we write <tto—+1) for this 

configuration), but in a context in which 1 is connected to 0 the 

port tt will (stably) present the value U. There is no other stable 

situation, so that the static semantics of 1 is C<tto—U>, <tto—+1>1 

which is the set of all the stable value assignments to the ports of 

1 in every possible context. 

Formally, given the CSA value domain V and a finite set of port 

labels A, a configuration (value assignment) on A is an association 

c a VA  of values to port labels, written <a 10-9v1, ... ,ao-4v) when 

A = an  I . A configuration set on A is a set CA VA ;  sets C  
will be used to give semantics to CSA circuits of sort A. 

There is a natural partial ordering of configurations which is 

the one induced by the ordering on V. namely for c,c' 8 VA: 

c < c' 0 VaeA. c(a) < c' (a) 

This partial order is not used in the formal development, but it is 

convenient when drawing configuration sets, to give them some 

structure. 

Here are the configuration sets for sources: 

U  
tt 	I 

1 
(tt) 

0 	 U 

f 	I 
0 

(f f) 

Figure 2.16 Sources 

The stable configurations of a connector C are those in which 

all the ports have the same value: 
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U... 

< U. 	U \ 

(C 1 .. .C) 

Figure 2.17 Connectors 

For attenuators, we can think of trying all the possible pairs of 

values for source and drain, and see which can be maintained. This 

gives 17 stable configurations: 

UU 

11 	10 	01 	00 

1U 	U1 	 UO 	OU 

P1 
LTJ 	 11 	11 	UU 	00 	00 
I. 	 I 

'•'% 'Vj 

 

Al 
d 	 11 	 00 

V 
zz 

(s,d) 

Figure 2.18 Attenuators 

Switches have a large number of stable configurations, mostly 

because source and drain are independent when the gate is F. The 

configuration set also depends very much on the technology and we 

just give one possible candidate: 
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• 	 1 	0 11 	00 

2X 	= X= 	/U\  tJu 

1 	0 
\/ 

r #%J 
11 	00 
\/ z zz 

X2 	= 	Xxx 
UUU 

' 	2 I 	1 (2X) 0(x 

ill 
g U(2X) _ ' 	._.__ 1(2X___- III ) 0(X2 ) 

Z(2X) 

(g,s ,d) 

Figure 2.19 Switches 

Three operations on configuration sets can be defined, 

corresponding to the net algebra operators. Restriction hides a port 

in each of the configurations of a set: 

CA\a : A\a 	A 	(cl(A\a) I c z CA) 

Renaming simply changes the port names of the configurations: 

CAfr:AA) : r(A) 	A 	Cc o 	I C e CA) 

Composition merges two configuration sets CA and CA , . Two 

configurations c a CA  and c' a C. are compatible if they give the 

same values to the ports which are being connected. The result of 

the composition is then the set of all the compatible pairs of 

configurations, which are merged pairwise while hiding, as usual, 
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the connected ports. In other words, the composition of two 

configurations is stable if the component configurations are stable 

and also the connection points are stable, i.e. if the values of the 

connection points agree in the two configurations. 

CAICA, :AOA' 

fcOc' I ceC 	c'CCA,;  VaeAiA'. c(a) = c'(a)) 

where cOc' A  (<ao --- v> I a a AGA'). 

Let us see some examples; the first one is a "short circuit" 

configuration which has a unique (undefined) stable state: 

U 

(s) 

Figure 2.20 Short circuit 

An attenuator connected to 1 has instead five configurations, which 

are the configurations of the attenuator lattice having sU or s1: 

uu  

.s 	

/\ 
11 	10 

'U 

d 	 11 
(s,d) 

Figure 2.21 Powered attenuator 

Here is a switch with the gate connected to the source: 



Ui 

/UU, 

01 	00 
\/ 
0U 

11 
AV 

01 

g 

 

— 

 

	

\ \/ 

00 

0z 

UU 

•'1 

01 	00 / IVU 
0U n 

\ 	01 00/ 

zz 

(g,d) 

Figure 2.22 Gate—to—source switch 

this large number of possibilities reduces to just two if we connect 

the gate to 1: 

U I 	

1 	

(d) 

Figure 2.23 Powered gate—to—source switch 

Finally, we can use a gate—to--source switch to build an oscillator: 
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(s) 

0 

Figure 2.24 Oscillator 

initially there is a 1 on the gate of the switch, which closes 

connecting the gate to 0; then the switch opens again, and so on 

forever. The static semantics of the oscillator contains a single 

undefined configuration; all the other ones are unstable (note that 

in the diagram for the gate—to—source switch there is no 

configuration with g=l and d=O). 

Given a circuit and its configuration set CA  we might ask whether 

the circuit is "well—behaved". This can be done by assigning 

well—defined values (i.e. T or F) to some terminals designed as 

inputs, and check that all the other terminals (the outputs) 

stabilise in a unique and well—defined way. Formally this means that 

if we choose the well—defined values v1 ...v, for the ports 

a A, then the set Cc a CA I c(a) = v 1 ) should contain a 

unique totally well—defined configuration. 

Finally, note that the configuration set for switches is not a 

lattice. This is sensible because if it were a lattice, we would 

have lattices as semantics for all the literals. Then the semantics 

of every CSA circuit would be a lattice, because the operations 

preserve lattices, and we would be able to define a uniquely 

determined relaxation operation mapping any arbitrary configuration 

into the least upper bound of all the stable configurations bigger 

than it. This would mean that every circuit could stabilise in a 
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unique "most defined" way, which is not what happens in reality 

when, for example, we power up a flip—flop. 

2.4.5 Main Example 

The CSA layout of a positive bit comparator is shown in the next 

figure. 

1 

P t  

S ou 

Pout 

S. 
in 

L)LLL 

Figure 2.25 Positive bit comparator 

The bit comparator can be split vertically into two clocked 

inverters which act as shift registers, surrounding a proper 

comparator implemented as a 5—switch pulidown structure. 

2.4.6 From CTA to CSA 	 - 

The basic idea underlying the translations among net algebras is 

that structure is preserved, i.e. net algebra literals and operators 

are, more or less directly, mapped into similar literals and 

operators of another net algebra. These translations are not, 

technically, algebra homomorphisms because literals may be mapped to 



98 

complex nets with different sorts and signatures, and a single 

composition can be mapped to a set of compositions. What is needed 

here is a more general kind of algebra morphism called a derivor 

[Goguen 78, Sannella 811. 

The preservation of structure implies that our translations are 

essentially simple because they only act locally, and hopefully the 

redundancies possibly introduced by the translation process can be 

removed by local optimisation. 

Moreover, if structure is preserved, then the programmer has fine 

control on the structure of the end product. This characteristic 

makes our notations suitable for expressing special purpose 

hardware, where the emphasis is always on how a computation is 

carried out, rather then on the input—output behaviour. This is to 

be contrasted with the attitude one might take to translating 

arbitrary Algol—like programs in arbitrary (correct) ways into 

general purpose hardware components (e.g. microprocessors and read 

only memories). This approach can only produce standardised 

architectures, unless complex optimisation strategies are applied in 

order to rediscover the particular architecture one had in mind. 

We show here how to systematically translate CTA expressions into 

CSA. The major step consists in translating CIA literals into CSA 

networks; the translation of the operators is then induced. 

We assume that in a clocked transition tb, t is built from 

input variables. boolean expressions and conditionals. Each value is 

translated into a VDD line, a GND line and a value line. For example 

an input variable of a phase—i cluster is translated as an 

appropriate forking, clocked by phase i: 



PE 

1 3. 
 

a 	
a 
0 

0 	 1 0 

a 

Figure 2.26 Input variable 

Boolean operations liKe not, and, or etc. can be implemented by 

standard gates: 

1 

a 

0 

1 

b 

0 

Figure 2.27 And 

and conditionals "a 4 b ; c" become: 

1 

aAb 

[.] 
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a=b;c 

1 - 
0 

0 

Figure 2.28 Conditional 

Transitions t--+b of phase i are translated by first translating t 

and then composing an output box to the output. Phase-1 output boxes 

are simply: 

1 	 1 

a 	 a 

0 	 0 

Figure 2.29 Phase-1 output box 

while Phase-2 output boxes must consider the power—up values 

specified in the transitions; there are three cases: 

reset 	reset 	Ivreset 	reset 	".'reseti 	I reset 

1 	 1 	1 	 1 	1 	 1 

a 	 a a—? I 	a a 	 a 

0 	 0 	0 	 0 	0 	 0 

(tt} 	 (ff} 	 Ctt,ff} 

Figure 2.30 Phase-2 output boxes 
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The CIA operators are translated into corresponding CSA operator, 

noting that the CSA expressions have l's and 0's in their sort, and 

these ports have to be properly connected. 

The translation proposed above is only a simple example, and it 

is very inefficient by VLSI standards. In fact, the signals are 

restored at each step of the translation and the large number of 

pullups introduced have large area and power requirements. A better 

result can be obtained by translating each value into a pair of 

lines (carrying the value and its complement), plus VDD and GND 

lines, and introducing a restoring stage into the output box. The 

translation for boolean operations and conditionals has to be 

modified accordingly, and local optimisation can group most of the 

logic into pulidown and pass transistor structures inside the output 

box. A translation of this kind, for CMOS circuits, is sketched in 

(Rem 81]. 
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2.5 Stick Networks 

2.5.1 Sticks 

Stick diagrams were devised as an attempt to abstract away from 

detailed geometric layouts while still retaining their essential 

topological information content. Assuming that the design rules are 

known and that electrical properties are ignored, a stick diagram is 

about the minimal information allowing a human or a program to 

reconstruct the original layout, or one very close to it. Stick 

diagrams are meant to specify the choice of materials (i.e. colours) 

and to hint at the general position and orientation of lines and 

components, but to leave the exact geometry (and hence, the 

electrical properties) of the circuit unspecified. The geometric 

implementation of a stick diagram is usually one of the smallest 

obtainable according to the geometry rules, unless the context 

requires otherwise; in the latter case some stretching or routing is 

required. 

I 	 I .... 

I. 	 I 	 Is 	I 	 I 
.5 	 I 	 I' • 	 I 

I 	 I 	 I 	 I 

I-........ 
Code: 	 green,. ........... blue; —•——— yellow. 

Figure 2.31 A shift register stick diagram 

There are two evident ways to analyse a stick diagram. The first 

is to identify coloured lines, black dots and yellow patches as 

basic constituents; a stick diagram is then an unstructured set of 

such components. While this can be convenient for some purposes 
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(interactive graphic stick editors often work this way) we prefer to 

look for a hierarchical decomposition, in order to turn stick 

diagrams into a network algebra. The second approach is then to 

identify the stick intersections (i.e. transistors, contacts and 

crossovers) as the primitive objects, and to express stick diagrams 

as hierarchies of connected intersections. Stick intersections also 

happen to correspond to functional units in VLSI circuits, so that 

the second approach is very helpful in relating semantic and 

syntactic properties of circuits. 

A stick diagram is a planar network. As explained in Chapter 1, 

the ports of a planar network are organised into a cycle which 

represents the anticlockwise order in which the ports appear in a 

layout. This cyclic structure is preserved during composition, so 

that starting from planar primitives we can only build planar 

graphs. Here is an example of a sort: 

(rs,re,rn,rw: red) 

where rs,re,rn,rw (i.e. red south, red east, etc.) are all red 

ports, and the cyclic order is rs<re<rn<rw<rs. Port names have no 

particular significance, types are the three colours [green,red, 

blue) 

Two planar sorts are equal if they have the same set of ports, 

associate the same types to the same port names, and if the cyclic 

ordering of ports is the same. Swapping ports around the perimeter 

is forbidden by the cyclic ordering, so that no non—planar 

crossovers or unwanted transistors are generated. This constraint is 

actually stronger than needed because it also forbids red—blue and 

green—blue swappings and requires the introduction of red—blue and 

green—blue crossovers among the literals. 

0 
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2.5.2 Stick Expressions 

A stick expression is a planar expression denoting a stick 

network. Stick expressions are built from a set of literals denoting 

the basic building blocks of stick diagrams. The set of literals is 

listed here, together with their interpretation. 

rn 

rwE__. re 

rs 
RCon 

gn 

bw . be 

gs 
GBC0n 

gn 

CJW() 

ge 

gs 
GCon 

bn 

bw  0 be 
bs 
BCon 

bwQbe bw 

RECross 	GBCross 

gw 	ge bw 	be 

	

GRC0n 	RBC0n 

rn 	 rn 

g 	g  g 	g  

	

E'Ians 	DTrans 

Figure 2.32 Stick literals 

There is a very simple correspondence between stick literals and 

CSA literals. ETrans is a switch with gate at "rn' 9  and "rs", source 

at "go" and drain at "gw". KCon.GCon.BCon,GRCon,RBCon and GBCon are 

4—terminal connectors. RBCross,GBCross and DTrans are crossovers. An 

attenuator is a composite object, which in stick terminology is 

called a pullup: 

PullUp = 

GRCon\rs\gw Ern—rn] 

Dtrans\rs(ge\gn) [go--gw.gw--gn] 

GCon\ge 
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gs 

Figure 2.33 A pullup 

2.5.3 Examples 

An inverter can be built by first defining VDD (power supply) 

GND (ground) and PuilDown components: 

VDD = GBCon\gn (bw\VDD,be\VDD0t) 

GND = GBCon\gs Cbw\VDD1,be\VDD0t) 

PullDown = ETrans\rs(gn\ge,gs\gw) 

an then composing them vertically with a PullUp: 

Inverter = 

VDD [gs--gn] 

PullUp [gs—gn] 

GCross\gwfout\ge) [gs--gn] 

PullDown{in\rn) [gs—gn] 

GND 



VDD. VDD 
in 	 out 

out 

in 

GND. 
i-n 

GND 
out 

Figure 2.34 An inverter 

More complex examples involve parametric definitions, local 

definitions (let—in), conditionals and recursion or iteration (we 

have already seen some examples in Chapter 1). 

In VLSI most of the parametric structures are regular arrays of 

cells, and in these cases iteration is the most obvious programming 

construct to use. We introduce iteration in the following 

specialised form which applies only to the iterated connection of 

sticks: 

for <variable> in <list> 

iter <body> 

with <connection> 

<list> is an expression denoting a list of integers, e.g. n..m is 

the list of integers from n up to (or down to) m; <body> is an 

expression denoting a stick diagram i.e. a stick expression 

augmented by control structures like "let—in", "if—then—else" and 

"for—iter"; and <connection> is an explicit composition operator 

106 
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[r]. The body of the iteration (possibly containing the iteration 

variable) is composed by the connection part to the accumulated 

result of the previous iterations, while the iteration variable 

ranges through the list. Bunched sorts are used extensively: 

iteration very often bunches together many of the ports which are 

not connected. Note that the form of iteration we use can be easily 

translated into recursion, and of course no side effects are 

involved. 

We now program the tally circuit example of (Mead 801. A tally 

circuit has n inputs and n+1 outputs, and the output k is high if 

and only if k of the inputs are high. We are not interested here in 

the behaviour of the tally circuit, but in its rather unusual 

triangular topology. The reader is advised to draw the pictures 

corresponding to the expressions we present. 

First let us define the basic tally cell: 

TallyCell = 

NegPart (res 0 ---res1l PosPart 

NegPart = 

NegCross [neg —neg 0 ] NegGate 

PosPart = 

PosCross [pOSi--pOsout] 

PosGate [de—gs, res0--gw] 

GCon(gn\de, ge\res) 

NegCross = 

GBCross(gn\dw, bw\neg. , gs\dn, be\neg) 

PosCross = 

GBCross(gn\res., bw\pos1. gs\res 0 t. be\de) 



NegGate = 

GBCross(gn\res 1 , be\neg0t)  Cgs--gw] 

ETrans\rnfge\res out  ) (bw--be,rs--rs] 

RBCon\rntbw\neg 1 } 

PosGate = 

GBCross(gs\de, be\pos0t)  (ga--gel 

ETrans\rntgw\ds) [rs--rn,bw--be] 

RBCon\rs (bw\pos 1 ) 
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a w 

res 
in 

d 
e 

res 
out 

neg. 	d 	pos. in S 	 in 

Figure 2.35 Basic tally cell 

Then the central part of the circuit can be composed by a double 

iteration: 



TallyBody n = 

for j in (1..n+1] 

iter (for i in (if j=u+1 then 1..n also 1..j) 

iter TallyCell 

with [dw—de, res--res0t]) 

[dw—gn, res--ge] 

GCon\gs (gw\res) 

with out ,ds—dn  pos --pos] 

Tally n = 

TallyBody n \de \dn \pos0 	out  

(res(n+l]—gs] 

PullUp 

note the debunching operation used to connect the pullup to the 

tally body. The inputs are collected in the n—bunch pos j  and neg 

are their negations; res out  are the outputs; the pullup should be 

connected to VDD and all the remaining ports to GND. 
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res. 
in 

res. 
in 

res. 
in 

gn 

res 
out 

res 
out 

res 
out 

res 
out 

u 
in 	 neg. pos. nein n d 
	

g.pOS. 
in 

S 	 S 	 S 

Figure 2.36 Tally circuit 

The next example is a PIA generator (PLA structures can implement 

arbitrary finite state machines (Mead 80]). The generator accepts as 
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inputs two arrays of boolean values, (which can be automatically 

generated from sets of boolean equations) coding the disposition of 

switches in the so—called and and or planes. 

We first introduce the basic building blocks of the PLA as 

pictures: 

b..w Efl b.e 
g.w 

r.s g.s 
LeftEmptyCell 

b. w 	
... 

b. e 

g. w 	 g.e 

r.s 
RightEmptyCell 

r.n g.n 

b.w. b.e 

g .wL 	J g .e 
r.s g.s 

LeftFuiiCell 

b.wffIj b.e 

g.w 	 g.e 

r.s 
RightFul iCe 11 

Figure 2.37 Building blocks for programmed cells 

rs.n g.n 

b.wl  
g. W- 

I 	\ 
.... .....lb.e 

I 
g.e 

r.n 	r.n 
I 	I 	I 

rs.n 

bs.w 	bs.e bs.w(- .....)bs.e 

b.w b.e . 
r.s 	r.s rs.s g.w g.e 

g.s 

rs.s 
PlaSpace PlaGround PlaSpaceGround 

Figure 2.38 Building blocks for ground lines 

b.n 	 b.n 	 b.n 	 b.n 

phi2.e 	 I') g.e b.w( '-  r.e bs.w --- 	 ") 

gnd.w .Igt.e 1 	' 	I 	I 	S— g.e 
b.wf.....----.---Ir.e 

b.s 
vdd.w 	.......... vdd.e 	* 1 Lj.e 

b.s 	 b.s 
OutputSpace 	PullupPair 	PlanesConnect 	PlaSpaceConnect 

Figure 2.39 Peripheral building blocks 
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g.n g.n 

gnd.e 	phi2.w('J--------- jPhi2.e 

gnd.wT  ........ .T..f gnd.e 

vdd.e 

I 	'•-_ I 

phil.e 	vdd.w. Jvdd.e 

PlaClockedOut 

L.LL 	 i_.1 

gnd.w 

vdd. w 

phi 1. w 

g.s 
PlaClockedln 

Figure 2.40 Input and output 

The following program generates a single plane; the inputs are a 

pattern (i.e. an array of booleans arranged for convenience as a 

list of lists of quadruples of booleans) and the frequencies with 

which ground lines have to be interleaved with cells, in the 

horizontal and vertical directions. Note that we use here 

simultaneous iteration of two iteration variables through two lists. 

let plane (pattern,Xspace,Yspace) = 

for strip in pattern and Y in 0..(length pattern)-1 

iter (PullupPair [b.e--b.w, g.e--g.w] row) 



F' 

where row 

(for highleft,highrightjowleft,lowright in strip 

and X in O..(length strip)-1 

iter (if Y mod Yspace = 0 

then if X mod Xspace = 0 And Not X = 0 

then (PlaSpace (b.e--b.w, g.e--g.w] cell) 

(r.n--r.s, g.n'—g.s, rs.n--rs.s] 

(PlaSpaceGronnd Ebs e--bs .w] PlaGround) 

else cell (r.n—r.s, g.n--g.s] PlaGround) 

else if X mod Xspace = 0 And Not X = 0 

then PlaSpace [b.e—b.w, g.e--g.w] cell 

else cell 

where cell = cell(higbleft,highright,lowleft,]owright) 

with (b.e--b.w, g.e--g.w, bs.e—bs.w]) 

with [b.s--b.n, r.s—r.n, g.s—g.n, rs.s--rs.n] 

\r.n \g.n \rs.n \bs.w 

where cell(highleft,highright,lowleft,lowrjght) = 

(if highieft then LeftFullCell also LeftEmptyCell 

(b.e—b.w, g.e--g.wl 

if highright then RightFullCell also KightEmptyCell) 

(r.s—r.n, g.s--g.n] 

(if lowleft then LeftFullCell also LeftEmptyCell 

[b.e—b.w, g.e--g.w] 

if lowright then RightFullCell else RightEmptyCell) 
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Note that the complication of the inner iteration loop is due only 

to the interleaving of ground lines. 
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The generator composes an and—plane and an or—plane via a 

connection strip. The and—plane is obtained by connecting the inputs 

to a plane, and the or—plane by connecting the outputs to another 

plane. 

let.pla (andpattern,orpattern,space) = 

(andplane (gnd.e--gnd.w, vdd.e--vdd.w, b.e--b.w, bs.e--bs.w] 

conn 	tgnd.e--gnd.w, vdd.e--vdd.w, phi2.e--phi2.w, 

r.e--r.s, g.e--g.s, b.n--b.s] 

orplane) \phil.e \phi2.w 

where andplane = 

plane (andpattern,length(hd andpatteru),space) \ge 

[r.s—r.n, g.s—g.n, b.s—vdd.w] 

inputs 

and orplane = 

plane (orpattern,space,space) 

(ge--g.n, bs.e--b.n] 

Outputs 

where inputs = 

length(hd andpattern) times PlaClockedln 

with (gnd.e--gnd.w, vdd.e--vdd.w, phil.e--phi2.w] 

\gnd.w (g.s\in.$) 
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and outputs = 

for Y in 1.. (length orpattern) 

iter (if (Y mod space)0 

then PlaClockedOut 

(gnd.e--gnd.w, vdd.e--vdd.'w, phi2.e--phi2.w] 

Output Space 

also PlaClockedOut 

with (gnd.e--gnd.w, vdd.e—vdd.w, phi2.e--phi2.w] 

(r.s\out . 

and conu = 

for Y in O..(length pattern)-1 

iter (if (Y mod space)=O 

then PlaSpaceConnect (b.s--b.n] PlanesConnect 

also PlanesConnect 

with [b.s--b.n] \b.n 

[b.s—b.n] 

Output Space 

A version of this program was written in the design system 

described in Chapter 3 (the only differences, due to the geometric 

nature of that language, being the use of geometric literals, and 

the use of some "geometric renaming" (see Chapter 3)). The result is 

shown in the next figure. 

- 
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2.5.4 From CSA to Sticks 

Three steps are needed to translate a CSA network into a stick 

network. Here we simply sketch them. 

The first step consists in finding an almost—planar embedding for 

the graph of a CSA expression, imposing a planar sort on the CSA 

network and possibly preserving the structure of the expression. 

Note that a stick graph does not need to be completely planar 

because of the crossover literals RBCross,GBCross and DTrans. 

Planar embeddings are always possible by inserting extra 

crossover components at critical points. The result should be 

reasonably good if the initial CSA network was thought of in planar 

terms (as should often be the case for VLSI networks), otherwise 

very complex algorithms and heuristics will probably be needed to 

get good results. 

The second step is the "colouring" of the graph. Components like 

switches, attenuators, power, ground and clocks have precisely 

coloured terminals, and a simple colour propagation scheme (where 

terminals of connectors may receive arbitrary colours) should be 

sufficient to colour the whole graph. 

The third step simply translates attenuators into pullup 

structures, switches into transistors and connectors into wires and, 

when needed, contacts. 
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2.6 Grid Networks 

We are now going to investigate a net algebra which is situated, 

so to speak, in between purely topological stick networks and purely 

geometrical layout networks. This algebra can be of practical 

significance because it seems to minimise the complexity of the 

translations from sticks to layouts; it can be regarded as a very 

abstract geometrical algebra or as a very concrete topological one. 

2.6.1 Grids 

A grid is an array of orthogonal segments such that all the 

vertical segments intersect all the horizontal ones, and vice versa. 

For convenience we shall lay the segments parallel to the axes of 

the cartesian plane with spacing two units, end—points projecting of 

one unit outwards, and with the origin in the lower left corner. 

Figure 2.42 A canonical grid 

The end—points of segments in a grid are called its ports; the 

boundary of a grid is the set of its ports and the perimeter is 

given by the cardinality of the boundary. The south, east, north and 

west boundaries are defined in the obvious way and are also called 

respectively the southeast,north and west of the grid; collectively 

these are the sides of the grid. The knots of a grid are the 
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intersections of its segments, and the area is the number of knots. 

A grid can be regarded as a rectangular matrix of knots. An 

interpretation of a grid is a mapping from its knots into a set T of 

tiles (which are little 2x2 squares). Here is the set of basic tiles 

needed for n.MOS stick diagrams. 

Figure 2.43 Basic tiles for nMOS stick diagrams 

Non—basic tiles can be produced from the above tiles by rotation 

and by dropping one or two of the segments joining the centre of a 

tile to its boundary; the blank tile is needed to fill the empty 

spaces of a stick diagram. An interpretation of a grid according to 

this set of tiles is given in the next figure, showing a shift 

register cell. 
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Figure 2.44 A stick diagram interpretation of a grid 

The sort of a grid associates a name and a type to each port. The 

ports are cyclically ordered anticlockwise, and assigned to one of 

the four sides (south, east, north, west). There is a special name 

called the NuilName and a special type called the NullType; the 

NullName is always associated to the NuliType and vice versa. A pair 

NullName—Nulltype is also called a null port, written "0", which 

represents the lack of a proper port on the perimeter of the grid. 

For example, the sort of the shift register cell is written: 

(south: (0, 0, ClockOut: red, 0], 

east: [GndOut: blue, Out: red, 0, 0, VddOut: blue], 

north: U), Clockln: red, 0, 0], 

west: (Vddln: blue, 0, 0, In: red, Gndln: blue]) 

A grid network (sometimes ambiguously called a grid) is an 

interpreted grid together with a compatible grid sort. Grid networks 

can be built by repeated compositions, starting from a set B of 

basic grids (each b a B being a rectangular assembly of tiles t a T) 

of sort given by X(b). A composition g'(r]g" of two grids g',g" is 

obtained by embedding without overlapping g' and g" into a bigger 
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grid g. This embedding must satisfy [r] (in the evident sense) and 

must also define the tiles of g which do not belong to g' or g". A 

particular kind of grid composition will be analysed in a 

forthcoming section. 

The two other net operations are defined on grids as follows 

(they just operate on the sorts leaving the underlying grids 

unchanged): 

Restriction: g\a transforms the name a in the sort 	(g) into 

NuilName, and the associated type into NullType (a should not be 

NuilName). 

Renaming: gCr} applies the name—bijection r to the names in ar(g), 

leaving the types unchanged (r should not contain any NullName). 

2.6.2 Discrete Stretch Transformations 

In this section we develop some tools needed to define grid 

compositions. An n—dimensional discrete stretch transformation, or 

stretching for short, is an n—tuple of boolean vectors S = Sill s  n  

(we are actually only interested in the cases n=l and n=2). For 

every boolean vector S 1  we define #S as the length of the vector 

and PS. as the number of "l 1"s (i.e. "true"s) in the vector. If 

M is an n--dimensional matrix of size m 
1  X. Am no then a 

n—dimensional stretching can be regarded as a mapping: 

S1 . .S : Ms .p5 09 M 	
n 

The result matrix is obtained from the argument matrix by inserting 

an (n—l)—dimensional plane orthogonally to the i—th dimension in 

correspondence of every "0" in S 1 . For example: 

1 	a 	ab 5  

5 1 1010, s2 0 : 	c 	o— 	Sees 

1 	 c 5 d 5  

where * is any fixed fill—in value. 
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In the case of 1—dimensional stretching we can apply a stretching 

to another stretching (using 0 as fill—in value). This allows us to 

define the composition of stretchings as follows: 

S 	S 	S' 	S' 	S CS' ) 	S (5' ) l" n °  1 " n 	1 1 " n n 

That this is really composition can be seen from the following 

properties: 

• 	(S 	S')(M) 	= S(S'(M)) 

o 5") 

In case of 1—dimensional stretching we get the curious—looking 

equation: 

(S 0 S')(S") = (S(S'))(S") = S(S'(S")) 

2.6.3 Normal Grid Composition 

We are interested in a particular kind of grid—network 

composition called normal composition. This composition might appear 

to be exceedingly restrictive; actually there is no loss of 

generality and we shall see in the following sections that any stick 

expression can be mechanically translated into a series of normal 

grid compositions in a non—unique but fairly controllable way. 

Normal composition is determined (up to choice of stretch lines) 

by specifying the connection side s of one of the networks; the 

connection side of the other network is then taken to be the side 

opposite to s. For consistency with stick expressions we shall use 

the full notation g'(r]g" also in this case, where [r] is of the 

form (a 1--b 1 ] and a 1  are all the non—null ports on one side of g' 

and b 1  are all the non—null ports on the opposite side of g". We 

extend this notation to expressions like g'(south—north]g" in order 

to describe composition on sides with no non—null ports. 

Normal composition is legal if and only if the number of non—null 
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ports on the two connection sides is the same and the names and 

types of these ports match pairwise (according to [r]) moving in 

parallel along the connection sides. The result grid is obtained by 

minimally stretching the two component grids uniformly in the 

connection—side direction until the level of all the non—null ports 

match pairwise and the two connection sides have the same length. 

Figure 2.45 Stretching 

The exact choice of stretch lines is not important, as far as 

stretching is minimal. The stretched grids are than embedded into a 

grid of area the sum of their areas, with the connection sides 

facing each other. The way in which the stretched areas are 

filled—in with tiles, depends in general on their neighbouring 

tiles, and should be specified together with the set of tiles T; in 

case of nMOS stick diagrams we fill these spaces by the appropriate 

straight—line tiles, so that connected stick nodes remain connected 

under stretching. The result sort of normal composition is the sort 

of the result grid, obtained from the component sorts by dropping 

the ports on the respective connection sides and by possibly 

inserting some null ports where stretching has occurred. 

In order to compute the normal composition of grids, we might 

represent grids as matrices and then define grid composition by 

brute—force stretching of matrices. Instead, we describe an 

efficient algorithm which simulates this stretching process by 

considering grid sorts together with stretch transformations. 



123 

Let us assume that the grid composition g'(r]g" is normal and 

legal in the sense previously defined. Starting from the sorts of g' 

and g" we produce the sort of the result, together with the 

bidimensional stretch transformations v',h' and v",h" (vertical and 

horizontal respectively) to be applied to g and g" in order to 

embed them exactly in the result. 

The first step consists in identifying the connection sides in g' 

and g", which are given by any pairs of connections as specified in 

[r]. For convenience we fake a standard orientation for composition, 

placing g' on the left and g" on the right; we define the 

pseudo-east side of g' and the pseudo-west side of g" to be their 

respective connection sides, and accordingly we pseudo-name all the 

other sides of g' and g". 

pseudo-north 

pseudo- pseudo-"left to 
	 "right" west 	 east 

pseudo-south 

Figure 2.46 Pseudo orientation of composition 

Next we compute a minimal pair of 1-dimensional stretch 

transformations, pseudo-v 9  and pseudo-v", which make the ports of g' 

and g" match along the connection sides. This can be done by walking 

in parallel on the pseudo-east and pseudo-west sides of a(g') and 

a(g"), "skipping" all the null ports in pairs and "pushing" any 

non-null port along one side (while skipping any null port on the 

other side) until there is a non-null port on the other side, and 
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then skipping the pair. Here "skipping" means inserting a "1" in the 

resulting transformation, and "pushing" means inserting a 09000. 

1. 0 
1 1 
0 1 
1 1. 
1. 0 
1 0 
1 1 
1 .1. 

pseudo-v 1  pseudo-v" 

Figure 2.47 A minimal stretching 

Next we form the sort of the result in the following way: 

- The resulting pseudo-south is the concatenation of the two 

pseudo-south; 

- The resulting pseudo-north is the concatenation of the two 

pseudo-north; 

- The resulting pseudo-west is the result of stretching the 

pseudo-west of g' according to v', filling in with null ports; 

- The resulting pseudo-east is the result of stretching the 

pseudo-east of g" according to v"1 filling in similarly. 

Finally we produce the stretch transformations: 

- pseudo-v' and pseudo-v' 1  have already been produced; 

- pseudo-h' is a vector of "l"s as long as the pseudo-south of g'; 

- pseudo-h" is a vector of "l"s as long as the pseudo-south of g". 

All the results have to be renormalised with respect to the 

pseudo orientation. The sort of the result gives the total size of 

the composed objects and can be used in further compositions. The 

stretch transformations v',h' and v",h" and the connection sides are 

enough information for building a matrix of the result if we are 



125 

given matrices for g' and g". They can also be composed in 

interesting ways with the stretchings computed from subexpressions 

of g' and g", as we shall see shortly. 

2.6.4 Grid Expressions 

A grid expressions is an expression with operators "\a", "(r)" 

and "[r]" (normal composition), over a set of grid literals denoting 

basic grids. The grid denoted by a (legal) grid expression is 

obtained by actually performing the operations described in the 

expression. Grid expressions will be denoted by the letter 'g". 

If we have a grid expression in form of a tree, we can apply the 

grid composition algorithm described in the previous section from 

the bottom up, obtaining at the end a corresponding tree of stretch 

transformations plus the grid sort of the whole expression. The 

stretch tree and grid sort of a grid expression g are produced as 

follows: 

- If g is a literal, the stretch tree is a leaf containing that 

literal and the grid sort is the grid sort of g. 

- If g is g'\a, we recur on g' obtainingits tree t' and sort s'. 

The result tree is t' and the result sort is s'\a (restriction as 

defined for grid networks). 

- If g is g'Cr), we recur on g' obtaining its tree t' and sort s'. 

The result tree is t' and the result sort is s'(r) (renaming as 

defined for grid networks). 

- If g is g'(r]g", we recur on g' and g" obtaining t',s' and t"s". 

We apply the grid composition algorithm to s',s" obtaining a sort $ 

and two stretchings v',h', v",h". The result sort is s. The result 

tree contains t',v',h', t",v"h" and the connection side of g'. 
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Figure 2.48 Stretch trees 

2.6.5 Grid Recomposition 

Given a grid expression we have seen how to produce a stretch 

tree and a grid sort for it. To produce a picture of a grid, we walk 

down the tree accumulating the stretch transformations as we 

proceed. When we get to a literal we know its position and the 

amount of stretching to be applied to it. Hence we draw the literal 

in the computed position with the appropriate stretching patterns to 

match its expected size. 

The accumulation of stretch transformations is not done in the 
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C 

most obvious way, which would be by stretch composition: this method 
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produces, for every literal, a stretch transformation as big as the 

whole final layout which places exactly the literal in the layout, 

but gives no information about the amount of stretching to be 

applied to it. Luckly enough, the kind of accumulation we need uses 

less space, and produces for every literal a stretch transformation 

as big as the stretching to be applied to the literal; the position 

of the stretched literal in the global layout is derived by 

maintaining an origin point as we go along. 

The algorithm takes a stretch tree and its grid sort, and "draws' 

the result; drawing is just an example of grid recomposition. We 

start with a stretch tree t, a vertical—horizontal stretching v,h 

all made of "l"s as big as the size of the grid sort, and an origin 

0r0,O (the lower left corner of the layout). 

If the tree t is a leaf, it contains a grid literal. We then 

stretch the layout of this literal using v,h and draw it starting 

from the origin Or. 

If the tree t is a composition node, suppose it was generated by 

the composition g'(r]g". Then t contains two subtrees t',t" 

(corresponding to g' and g") two stretchings v',h' and v"h", and 

the connection side of g'. Let us make up a pseudo orientation with 

the connection side of g'  on the east, modifying v,h etc. 

appropriately into pseudo—v,pseudo—h, pseudo—v',pseudo—h', 

pseudo—v't ,ps eudo—h" and pseudo—Or. 
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pseudo-v 	pseudo-v' 

pseudo-v 

pseudo-h .II  

pseudo-Origin 	- 	 pseudo-h 

Figure 2.49 Pseudo Orientation for stretching 

We need to compute the stretchings and origins to be passed down 

recursively to the subtrees; let's call them newv',newh', 

newv",newh", Or' and Or". They can be obtained by "nupseuding" the 

following definitions: 

pseudo-newv' = pseudo-v o pseudo-v' 

pseudo-newv" = pseudo-v a pseudo-v" 

pseudo-newh' ,pseudo-newh" = split (pseudo-h,pseudo-h',pseudo-h") 

pseudo-Or' = pseudo-Or 

pseudo-Or" = (pseudo-Or.x + length(pseudo-newh')) ,pseudo-Or.y 

where split(h,h',h") splits h into two parts newh',newh" such that 

newh' concatenated to newh" is equal to h; pnewh'ph' and pnewh"=ph" 

(it does not matter where the split exactly occurs). Nothing is 

drawn for composition nodes, and we recur with t',v',h',Or' on one 

side and t",v",h",Or" on the other side. 
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Figure 2.50 Grid recomposition 

2.6.6 From Sticks to Grids 

It is conceivable to use stick expressions as a general purpose 

Programming notation for stick diagrams and as a target language for 

silicon compilers. However, in order to use them in this sense it is 

necessary to develop an algorithmic translation from any stick 

expression into layouts, and this will be done passing through 

grids. 

The first step consists in arranging the planar graph described 

by a Stick expression on a rectangular grid. The arrangement of a 

graph in some particular geometrical or topological space is called 

a realisation of the graph. The choice of a particular grid 

realisation for a particular stick diagram is purely arbitrary, 

except that attempts will be made to keep the grid as small as 

possible. 

To limit the number of possible grid realisations for a given 
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expression, we shall also provide a context specifying constraints 

on the relative position of ports on a grid. We consider rectangular 

contexts only, where -  the ports of a grid realisation liE on the 

perimeter of a rectangle. Moreover every port will be explicitly 

assigned to one of the four sides of the rectangle, named south, 

east, north and west (this assignment should agree with the cyclic 

ordering of ports). 

Given a stick expression e, a context for e is a mapping of some 

of the ports of a(e) into a side (south, east, north or west) in such 

a way that all the east ports cyclically follow the south ports, and 

so on for the other three sides. A context of this kind on (e) is 

said to be compatible with e. A context is also said to be 

compatible with a grid network g when it lists some of the non—null 

ports of a(g) assigning them to the correct side. A full context 

specifies the sides of all the ports of a(e). 

a 
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Sort 	 Compatible context 

Figure 2.51 A context 

The Sticks—to—Grids algorithm takes as input a sorted stick 

expression (i.e. a stick expression where all the subexpressions are 

indexed by their sort) and a compatible full context, and produces a 

grid network which realises the stick expression. The result is 

supplied in the form of a grid expression where all the compositions 

are normal. Previous sections have shown how to generate grid 

layouts from grid expressions. (This form of the output is just for 
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explanatory purposes; we could combine this algorithm with the one 

in Section 2.6.4, translating directly into stretch trees and grid 

sorts.) 

Basis of the recursion: we assume that for every stick literal 

and for every compatible context there is a standard interpreted 

grid network which is also compatible with the context (this 

standard grid is chosen among all the grids satisfying the 

requirements). This set of basic grid networks is rather big (there 

are 140 full contexts for every stick literal) but can be cut down 

by taking into account similarity and symmetries, and by 

compromising on the grid area. We shall simply assume here that a 

grid literal matching a given context is always selected and 

returned as result for this base case. The next figure shows a set 

of 35 minimal patterns for a transistor (most of them made of 

several stick tiles); the missing patterns can be obtained by 

rotation and by dropping some of the non—null ports (and 

consequently modifying the tiles). 
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Figure 2.52 Basic grids 

The recursive step for a restriction e\a consists in recurring 

with e and the current context, obtaining a grid expression g. 
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Because a is not in the current context, this is how partial 

contexts are generated, even starting from full contexts. At the 

base of the recursion, the ports not contained in the context are 

unused (i.e. not connected to anything) and may be optimised away in 

the grid layout (actually they must, to avoid "accidental" 

connections). The resulting grid expression is then g\a. 

The recursive step for a renaming e{r} consists in applying 

to the context and recurring with e and the renamed context, 

obtaining a grid expression g. The result is g(r). 

The recursive step for composition is the interesting one. Given 

a context and a composite stick expression e'(r]e", the problem is 

to derive two subcontexts to be applied to the respective 

subexpressions. This should be done in such a way that the resulting 

composition is normal, so that we can apply the grid composition 

technique developed in the previous sections when we come to need a 

grid back as a result. Let us assume that (r] is 

We define a pseudo orientation for the context 

in the following way: a 1  faces pseudo—east, b 1  faces pseudo—west and 

the pseudo—south side of the context is parallel to their connection 

(this is always possible): 
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Context 

Figure 2.53 Pseudo orientation of a context 

We define the first cut as a point on the pseudo—south of the 

context, which is after b 1  and before any other port (before—after 

in the anticlockwise sense). The second cut is going to be placed 

after and this can fall on any side of the context. Given any 

placement of first and second cut, we must be able to split the 

context into two parts and then insert a 1 ..a in one part and b1 . .b 

in the other. 

The second cut can fall in five substantially different places, 

and each place corresponds to a different way of splitting the 

context: 

3 

4 

5 	 1 

Figure 2.54 The five basic context splits 
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For each different split, there is a way of arranging the sorts 

of e' and e" so that they will match the context. Here are five 

examples of sort fitting in the standard pseudo orientation: 

1 L 	 2 	
L 

.1 
R II 

• 	1 
R 

5 

L 

Figure 2.55 Fitting the sorts 

Moreover all the sort fitting patterns can be decomposed (in 

several ways) into normal grid compositions: 
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Figure 2.56 Normal decomposition 

In the case number 3, all we have to do is to break the context 

in correspondence of the first and second cut, add the ports a 1 . .a 
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to the pseudo—east of the left context and b..b 1  to the pseudo—west 

of the right context, and apply recursively the algorithm on the 

subexpressions obtaining g' and g". The result is then g'(r]g" which 

is a normal grid composition. 

The process is similar in the other four cases, even if more 

complicated. More than one grid composition may have to be 

generated, and dummy grids may have to be inserted. Grid 

decomposition is not a deterministic process, and heuristics are 

needed to get better and smaller layouts. 

As an example, let us try to fit the stick expression 

ETrans[ge--gw](GCon\gn\gs) 

in an unfriendly context where all the ports lay on a single side: 

3 

Vz ge 
4 

5 	cut 1 

ETrans [ge--gw] (GCon gn gs) 

Figure 2.57 Context splits 

2 

From the composition [ge--gw] we see that the cut must fall between 

rs and ge on one side, and between ge and rn on the other side. This 

corresponds to five possible cuts of the context; let us examine 

them in turn, starting with 3 which is the easiest one. On the left 

of the next figure are the normal decompositions, and on the right 

the corresponding (possibly empty) grids: 



L V S S• 	 _____ 
rngwrs 	ge 

4.  

rn gw rs 	ge 

	

•BJ 	 __ 

L_J 	A•  • . I I •_i 	 U J--j- •i 
rn gw rs 	ge 

2.A 	 U 

.G J 
rngwrs 	ge 

• • S 	 _______ 

I
S S 

S  H 

	

	BIJ1fl 	
L 

• • • i I. 	 _____ 
-S S 5- -.•.- U rngwrs 	ge 

Figure 2.58 Decompositions 

There are also two alternative decompositions of 4 and 2: 

137 



138 

2'.I 	 I 

B' 
I_•_•_•  W___  

rngwrs 	ge 

41 I_I 

flgs  

rngwrs 	ge 

Figure 2.59 Alternative decompositions 

We can see that after compositions of. the grids on the right, we get 

two different solutions which correctly fit the context. 

Note that not all of the five decompositions can be used in any 

case. A very simple minded heuristics for getting good results is to 

use decomposition 3 whenever possible, otherwise 1 or 5 (because 

they do not have alternative decompositions like 2 and 4), and then 

2 or 2' or else 4 or 4. The choice between 2 and 2' or between 4 

and 4' can critically influence the size of the result, because 

these decompositions introduce empty areas. 

Let us recall the phases of the Sticks—to—Grids algorithm: 

From sorted stick expressions and contexts to grid expressions. 

From grid expressions to stretch trees and grid sorts. 

From stretch trees and grid Sorts to grid layouts. 

where phases 1 and 2 can be combined into a single phase. 

In phase 1, every stick composition e'(r]e" is translated into 

the composition of two grid expression g',g" (corresponding to e' 

and e") possibly augmented by a limited number of padding literals, 

depending on the form and number of ports of the context. In phase 2 

information is accumulated in a stretch tree in order to perform the 
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stretching of grids. In phase 3 the various partial stretching are 

accumulated and the resulting stretched grid is produced. 

The correctness of these translations can be expressed as the 

coinmutativity of the following diagram: 

Figure 2.60 Correctness of translations 

Grids realise planar stick diagrams (note that there are several 

grids for the same stick diagram). The translations are correct if 

the stick diagram denoted by a stick expression is realised by the 

grid produced by the Stick—to—Grid algorithm on that stick 

expression. 

The grid composition algorithm could be improved to include a 

limited amount of routing, in order to avoid explosive stretching 

situations. Moreover, iteration is probably going to be a primitive 

control construct in stick expressions, and we can use this fact to 

improve the form of the layout and to avoid "diagonal fugues" (i.e. 

situations in which the cells of an array get incrementally 

stretched). 

The solution we have adopted for the base case (namely 
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considering all the possible grids for a given stick literal and 

context) is not feasible for bigger literals which could arise in 

practice, like standard cells and functional units. In those cases 

some routing must be used to connect the cells to their expected 

context; an interesting question is whether the decomposition 

process can be driven so that the matching of standard cells and 

contexts is made easy. 

The most important operation in phase 2 is grid composition, i.e. 

the computation of stretch vectors. In the worst case, the area of 

the result grid is twice the sum of the areas of the component 

grids, and the stretch vectors are as long as the sum of the sides. 

Every composition node of - ; a stretch tree. contains two boolean 

vectors of the same length as the result of the composition (the 

other two vectors described in the algorithm are identically "1"'s 

and do not need to be represented explicitly). Let us assume that 

all the grid literals have size 4x4, (they are always smaller); if 

g' and g" have size <z,z>, then in the worst case the stretch tree 

of g'(rlg" has size 4z (the two stretch vectors) plus the size of 

the trees for g' and g". For a balanced tree giving rise to a square 

diagonal layout, this makes a total of 8(nlog a) bits of stretch 

vectors and the resulting layout has area less than (4n) 2 . Even in 

this pessimistic situation, the stretch vectors for a grid 

expression with 1,000,000 literals would. occupy some 19 megabytes, 

still in the range of current virtual memories. The construction of 

the grid sort takes another 0(nlog n) space, but all this storage 

(except for the final result) can be reclaimed during the process. 

In practice the stretching algorithm is expected to behave in a 

slightly better way, especially in case of structured design styles. 

In the best "square" case (a balanced square composition of lxi 



141 

literals with no stretching) the size of the tree is nlog n and the 

layout area is n. Hence, in the above example, the best square case 

needs 2.4 megabytes. 

This complexity analysis can however be rather pessimistic in 

real situations, because of the hierarchical nature of our approach. 

Stick expressions are very likely to contain a considerable amount 

of sharing (e.g. register arrays and ALU's) and the shared parts are 

very likely to get identically stretched. If we preserve this 

sharing (for what is possible) during the translation to grid 

expressions and the generation of stretch trees, a considerable 

amount of space can be saved; this can be done at the expense of 

checking for the occurrence of already processed subexpressions and 

contexts. Then, for example, the storage occupation of stretch 

vectors for regular arrays of cells becomes constant. 

Other common parametric structures which are not likely to 

contain sharing (e.g. PLA's and ROM's) have predetermined size and 

do not need to be stretch—analysed. They can be conveniently 

introduced as primitives at the stick expression level. 

Phase 3 requires another O(nlog a) space to compute the stretch 

vectors of the grid literals, but the stretch tree can be demolished 

in the process so that little extra memory should be needed. 

The time complexity can vary from linear in the number n of grid 

literals (with a2  space occupation) to exponential (with optimal 

space occupation). A satisfactory compromise should be achieved by 

using heuristics, or (failing those) by direct user interaction. 

2.6.7 From Grids to Layouts 

And here is the final step in our long road towards layouts. 

Some forms of translation from grid structures into layouts are 
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already well known: in general the sticks are first inflated into 

lines and transistors of the appropriate size; then the result is 

compacted in order to achieve low area occupation. 

Mosteller describes a compaction algorithm which is at the basis 

of an interactive editing system for sticks (Mosteller 811. The 

great advantage of orthogonal grids is that the compaction can be 

carried out independently on the x and y axis, achieving good 

results. 

Expansible grids also constitute the main data structure at the 

basis of the remarkable VLSI workstation by Weste and Ackland (Weste 

811. Their system retains geometrical information (like transistor 

sizes) and compaction is used to optimise screen—drawn layouts and 

after cell composition. 

Both the approaches mentioned above allow the user to 

interactively modify the default sizes of wires and transistors, 

providing the same freedom as in hand—drawn layouts. On the other 

hand these translations are not completely automatic, or at least do 

not always lead to perfect layouts if used in an automatic way. This 

is not a criticism of the above systems, which address different 

issues, but an indication that further work is needed, especially in 

the generation of electrical parameters from stick structures. 
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3. Sticks & Stones 

In this chapter we describe a design language for VLSI, based on 

the ideas presented in the first two chapters. The language works at 

the geometrical layout level, constituting what is generally called 

a "chip assembler", and produces output in a standard format 

suitable for nMOS processing. 

The language has been implemented as an experimental interactive 

system which uses a colour graphics display for the preparation of 

VLSI layouts. The examples shown here have been produced by this 

system and drawn on a 4—colour flat—bed plotter (and then shaded). 

This chapter can be read independently from chapters 1 and 2, 

giving a self—contained description of the design system. As a 

consequence some information concerning net algebras is repeated, 

also to emphasise the occasional differences in style and semantics 

due to practical implementation issues. 

3.1 Introduction 

The most important attribute of a flexible design language for 

VLSI is perhaps its ability to parameterise any possible aspect of a 

picture, such as its size, the number and type of components and the 

distance between them. This suggests that the language should be 

primarily text oriented but with graphic facilities; then 

parameterisation can be easily achieved by using the parameter 

passing mechanism of procedures. On the other hand, a display 

oriented language has severe problems with parameterisation: it is 

very easy to assemble figures on a screen with a pointing device, 

but it is difficult to express how these figures are actually meant 

to change as a function of some parameters. 

Now purely textual languages for graphics suffer from severe 
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drawbacks as the identification of text and image can be very 

difficult. Any such language should therefore be highly interactive 

with immediate visual feedback, and the syntax should recall as far 

as possible the structure of the picture, i.e. its topological 

properties. This is in sharp contrast for example with graphic 

packages, in their use as extensions to existing host languages. 

The kind of language we are interested in should be able to 

express VLSI circuits naturally in terms of their hierarchical 

structure and their topological properties (Buchanan 80, Rowsou 80, 

Williams 781 and the structure of the circuits should appear through 

the text of the descriptions. 

In Sticks&Stones, pictures are handled just like an abstract data 

type within a general purpose programming language, so that every 

picture is denoted by a program which builds it. The operations over 

pictures are inspired by net algebras, whose expressiveness and 

algebraic properties have been studied in the first two chapters. 

These operations are topological in nature and give rise to programs 

which are suggestive of the pictures they represent. Pictures are 

embedded in an applicative higher—order language, which is based on 

a subset of Edinburgh MI. [Gordon 79a]. The control structures of the 

language can be very easily used to define arbitrary 

parameterisations and conditional assemblies of pictures. 

The language is applicative in two of the senses commonly 

attributed to this word; it is expression oriented and free from 

side—effects. Expressions seem to bemore suited than statements to 

an interactive language. They improve and enforce the structured 

description of àomplex pictures and help in keeping information 

local. Every picture is taken to be an unmodifiable and unbreakable 

object, which can only be used to make larger pictures, and which 
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can only be manipulated through its set of named ports. Picture 

composition is then done by port names (and not by geometrical 

position or displacement) with automatic translations and rotations. 

There are many advantages in manipulating pictures by their ports 

only. For example, the order in which the pictures have been put 

together becomes irrelevant (as there is no way to access the inside 

of the picture) and programs are guaranteed not to rely on 

irrelevant structural details. Moreover, the orientation and scaling 

of pictures are unimportant, and the system can automatically rotate 

pictures and adjust them to fit the screen. 

Side effects might be needed to edit a picture, but we regard 

this problem as completely distinct from that of picture 

construction. Editing a picture is also very different from editing 

a text or a tree, as in the former case there may be very 

troublesome context dependent effects, like those resulting from 

increasing the size of a subcomponent. In this context, editing by 

rebuilding can be much more convenient than editing by modifying, 

especially if an adequate structure of program modules is provided. 

If side effects are forbidden, a "correctness by construction" 

approach can be applied. We might be able to show that a picture 

enjoys some property P (e.g. absence of geometric rule violations) 

if its basic components have the property P and if the picture 

operations preserve the property P. Thus, the amount of checking to 

be done when composing two pictures can be drastically reduced. In 

the implementation of this system we decided to concentrate on 

different issues, and we did not incorporate hierarchical checks 

(such as hierarchical design rule checking [With.ney 81]), which 

however seem to fit particularly well in this framework. 
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3.2 Pictures 

We now describe how pictures can be generated. A picture is 

either an elementary picture (called a form) or the composition of 

smaller pictures. Pictures form an abstract data type and are 

first—class objects in the language. 

3.2.1 Forms 

A form is made of a set of figures (boxes, polygons, etc.) with 

a sort. The sort of a picture is a list of ports, and ports are used 

to connect pictures together. 

let bluesquare = 

form(b.S W port [010,0,1]; 

b.E : W port (110,9011]; 

b.N : W port [111,180,1]; 

b.W : W port [011,270,11) 

with B box (010,1 Ii]; 

bluesquare = <> 	(b.S:W; b.E:W; b.N:W; b.W:W) : (1,1] 

A phrase like "let bluesquare = ... ;" is used to define the 

variable "bluesquare" at the top level (the string "- " preceding 

it, is the Sticks&Stones prompt). The answer from the system is 

"bluesquare = -", where "-" is the result of the evaluation of 

"...". In this case the result is a "<>" (i.e. a picture whose 

structural details have been omitted) of sort "( ... )" and of size 

1,1 which is the size of the minimum enclosing rectangle. 
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Figure 3.1 A blue square 

The figure bluesquare is a form (an elementary picture) made of a 

single B (blue) box with lower left corner at the point 010, and 

upper right corner at the point 111. It has four ports "b.S", "b.E", 

N" and '%.W". 

A port name can be any list of identifiers and numbers (starting 

with an identifier) separated by dots, like "a" or "aaa.bbb.1c'.3"; 

these identifiers and numbers are called atomic parts of a 

compound port name. Port names have no semantic significance, but 

they will often suggest the function of their associated port (e.g. 

"b.E" will stand for "blue East"). 

The port "b.S" is a W (white) port; geometrically this is the 

vector with tail at 010 oriented 0 degrees anticlockwise from the x 

axis and of length 1 (hence its tip is at ito). The north of a 

vector is by convention in the tail—to—tip direction. 

A more complete example is provided by an nMOS inverter: 
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9..s 

- let inverter = 

form (b.E:B port (515,90,4]; 

b.W.B port (119,270,4], 

g.S:G port [2t0,0,2]; 

r.E:R port (6t1,9021; 

g.E:G port (614,90,2]; 

r'.E:R port (617,90,2]; 

g.N:G port (4t15,180,2]; 

r.W:R port (0t3,270,21) 

with B box (114,5110] 

and G box (010,618; 218,4115] 

and R box (017,6115; Otl,6t3] 

and Y box (0.515.5,5.5P16.5] 

and C box (215,419] ;  

inverter = <> : (b.E:B; b.W:B; g.S:G; r.E:R; g.E:G; 

r'.E:K; g.N:G; r.W:R) : (6,16.5] 

Figure 3.2 An nMOS inverter 
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Ports of type B (blue) G (green) and R (red) are drawn in the 
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corresponding colour. Ports of any other type are also admitted, and 

are drawn in the foreground colour (depending on the graphical 

device). 

Boxes can have colours B (blue) G (green) R (red) Y (yellow) C 

(black) or W (white), and they may overlap; other colours are 

syntactically admitted but are all drawn in the foreground colour. 

Note that a list of rectangles can be specified after the keyword 

"box". 

Ports should always be oriented anticlockwise around a picture. 

This is not mandatory, but picture composition is made connecting 

ports on their east sides (tail to tip and tip to tail), and the 

anticlockwise convention ensures that pictures are joined on their 

outer sides. A picture may have no ports and/or no figures. The 

empty picture is simply: 

- form; 

() : (0,0] 

3.2.2 Restriction 

Restriction is used to forget about some of the ports of a 

picture; the syntax is: expression, followed by "\", followed by a 

list of port names: 

- inverter \ b.W I.E g.?; 

(r.W:R) : (6,16.5] 
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Figure 3.3 Restriction 

Question marks and exclamation marks are used to pattern match 

port names. Any variable beginning with an exclamation mark (like 

,'!", "II", "!abc" or '93") matches with a single atomic part of a 

compound port name, while any variable beginning with a question 

mark matches with an arbitrary number (zero included) of atomic 

parts. 

In the example above we withdraw the port b.W, all the E(ast) 

ports and all the g(reen) ports from the inverter. The inverter 

itself is not affected by this operation and a truly new picture is 

generated. 

3.2.3 Renaming 

The renaming operation performs a simultaneous substitution over 

the ports of a picture; the syntax is: -expression, followed by "C", 

followed by a list of single renamings separated by ";", followed by 

"1". A single renaming "a\b" means "a becomes b". 
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inverter (r'.E\inv.r'.E; !.W\inv.LW); 

<> : (b.E:B; inv.b.W:B; g.S:G; r.E:R; g.E:G; inv.r'.E:R; 

g.N:G; inv.r.W:R.) : [6,16.5] 

foo. b 

foo. r. W 

coo 

r.E 

s.s 

Figure 3.4 Renaming 

Match variables instantiated in the left part of a substitution 

can be used in ,  the right part to get group renamings like 

"LW\jnv.!.W" which is an abbreviation for "b.W\inv.b.W; 

r.W\inv.r.W". Note that "1.1" matches "a.a" but does not match 

"a.b", which is matched by "I .1!", '- I.? - , "1.11 .?" or "7", but not 

by "I ,' or "!.U.IU". You can go as far as "1.!.!!.? \ 

which renames "a.a.b.3.5" into "b.a.3.5.3.5.b". A question mark in 

the left hand side can only appear as the last atomic part, 

otherwise the matching might be ambiguous. A matching variable in 

the right hand side which does not appear in the left hand side is 

illegal. 

3.2.4 Composition 

Having two pictures, we can compose them by port names; the 
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syntax is: expression, "(:", list of single links separated by ";", 

":1", expression. A single link has the form: portname 	"—" I 

portname. 

— redsquare (: r.E — g.W :1 greensquare; 

(r.S:W; g.S:W; g.E:W; g.N:W; r.N:W; r.W:W) : (2,1] 

r.W 

r-- N 

II\\\\\\\\\s\ 

\\\\\\\\\\\\ 

IMI 

g.E 
f-_s 	 s_s 

Figure 3.5 Composition 

where redsquare and greensquare are defined similarly to bluesquare. 

This composition produces two adjacent squares, where the ports r.E 

of redsquare and g.W of greensquare have been connected and 

forgotten. 

Several links can be specified inside the composition brackets, 

separating them by semicolons. All the ports involved in a 

connection are forgotten in the result, whose sort is otherwise the 

union of the sorts of the composing pictures. Pattern matching is 

not allowed in composition; programming experience has shown that 

its use leads to unclear programs. 

Composition is a symmetric operation (in the sense: P(:p 1--q:]Q 

= Q(:q1—p 1 :]P), and as an infix operator associates to the left. 

Every pair of ports which are being linked in a composition must 

have the same type and the same size. Composition with the empty 

picture by any pair of ports leaves a picture unchanged. 
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Connection of two ports is made tail to tip and tip to tail with 

no distance between them. In case of connection of several pairs of 

ports, the main link is connected first, and all the other pairs of 

ports must face each other, maybe with a gap in the middle. The main 

link is defined as the first link on the left, inside the 

composition brackets. 

3.3 Bunching 

Every port is actually a bunch, or collection of collinear 

vectors. Up to now we only considered single—vector ports, but a 

port can also be a list of vectors: 

R port (010,0,1; 210,0,1; 510 1 0 1 11 

Every vector in a bunch must have the same type, orientation and 

size and they must be collinear, but they can be differently spaced. 

Bunches may also be interleaved. When two ports are composed, every 

vector in one port must match with a corresponding vector in the 

other port. 

Bunches usually arise from composition: when two pictures are 

composed, the ports with equal names which are not being linked get 

bunched together: 

- bluesquare(:b.E—b.W:]bluesquare; 

: (b.S:B; b.E:B; b.N:B; b.W:B) : (2,1] 

here b.S and b.N are two bunches of two ports, which are drawn as a 

single arrow. Again bunching only succeeds for collinear ports of 

the same size; otherwise an error is reported. 
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b.N 

b.E 

Figure 3.6 Bunching 

Bunches allow one to compose regular arrays of pictures without 

having to explicitly index the ports of every,  picture in the array 

by renaming them. They thereby keep the total number of ports in a 

picture low, making composition simpler and more efficient. 

3.4 Iteration 

Iteration is used to make regular arrays of cells, as in: 

- 3 times bluesquare with (:b.E—b.W:1; 

(b.S:W; b.E:W; b.N:W; b.W:W) : [3,1] 

Figure 3.7 "times" iteration 

which is equivalent to: 

b..W 

b.S 
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- bluesquare (:b.E—b.W:] 

bluesquare (:b.E—b.W:] 

blue square ; 

<> : (b.S:W; b.E:W; b.N:W; b.W:W): (3,1] 

Iteration is equivalent to the obvious recursive program one 

might write in the language, but is more efficient and syntactically 

clearer. Iteration often produces bunches, as in the example above. 

Iteration variables are admitted in the "for" form of iteration: 

- 1t blue = bluesquarefb.?\?} 

and red 	= redsquare(r.?\?) 

and green = greensquarefg.?\?}; 

blue = <> : (S:W; E:W; N:W; W:W) : [1,1] 

red = <> : (S:W; E:W; N:W; W:W) : (1,1] 

green = 0 : (S:W; E:W; N:W; W:W) : (1,1] 

- for square in [blue; red; green] 

iter square 

with (:E—W:]; 

<> : (S:W; E:W; N:W; W:W) : (3,1] 
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N 

w 

S 

Figure 3.8 "for" iteration 

which produces the above picture. The iteration variable "square" 

takes in turn the values blue, red, green in the list. 

Double iteration can be used to produce arrays of pictures: 

- let squares array = 

for row in array 

iter for item in row 

iter item 

with (:E—W:] 

with (:S—N:]; 

squares = 

frA L1. 

I ,  

w 
N 

IN 

Figure 3.9 Double iteration 
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(where "i' means that 'squares' is a function). This is the 

definition of a parametric picture, that is a function taking a list 

of lists (i.e. an array) of pictures and producing a picture. It can 

be used as follows: 

- squares [(blue; green; red 1; 

(green; red; 	blue 1; 

(red; 	blue; green]]; 

(S:W; E:W; N:W; W:W) : [3,3] 

Sometimes it is useful to iterate through several lists at once; 

this feature is used in the following definition of "squares'" which 

substitutes a green column every three input columns: 

- let squares' array = 

for row in array 

iter for item in row and i in 1: :length row 

iter (i mod 3)=O 	green I item 

with (:E—W:] 

with (:S—N:]; 

squares' = 

where the operation "n::in" produces the list of all numbers from n 

to m, and "a 4 b I c" means "if a then b else c". 

A selector is a realistic example of a parametric picture with 

which can be built by double iteration. We first need to define 

three basic building blocks: "pos" (an enhancement transistor), 

"neg" (a depletion transistor) and "out" (a piece of the common 

output): 
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 —letpos= 	- 

(form (r.S:R port (210,0,2]; 

g.E:G port (6t2,90,2]; 	
' N 

r.N:R port (416,180,2]; 	w 	. E 
g.W:G port (0t4270,21) 

with R box (2104t6] 	 r. S 

and G box (012,614]) 

and neg = 

(form (r.S:R port (210,0,2]; 

g.E:G port (612,90,2]; 

r.N:R port (416,180,2];  

g.W:G port (014,270,21) 	g. W 	g. E 
with R box (210,416] 

and G box [012,6t4] 	
' S 

and Y box (0.510.5,5.515.51) 

	

and out = 	
g.N 

(form (g.S:G port [210,0,2]; 

g.N:G port (416,180,2]; 	9.w ft 

g.W:G port [014,270,21) 	
9. 

with G box 1210,4t6; 012,214]); 

We now need to put these pieces together: the following program 

takes a number n and produces a selector with n control inputs (the 

n—bunch "r.N"), n complemented control inputs (the interleaved 

n—bunch "r'.N"), 2n  input lines (the 2—bunch "g.W"), one output 

line (the 1—bunch "g.N") and the appropriate pattern of enhancement 

and depletion transistors (produced by the auxiliary function 

"bit") 
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- let sel n = 

for i in 1::exp(2,n) 

iter (for j in n::I. 

iter bit(i-1,j-1)=O 4 

pos [:g.E—g.W:] (neg(r.?\r'.?)) 

neg (:g.E—g.W:] (postr.?\r'.?l) 

with [:g.E—g.W:]) 

E:g.E—g.W:] out 

with (:r.S—r.N; r'.S—r'.N; g.S—g.N:] 

whererec bit(i,j) = 

j=O =4 i mod 2 I bit(i//2,j-1); 

here "exp" is exponentiation and "II" is integer division. 

The circuit shown in the next figure is the result of the 

evaluation of sel2 (selector with two control inputs). The selector 

is obtained by two nested iterations, first building the rows and 

then joining them up into an array. At the core of the double loop 

we have to choose between a pair of pos—neg' and a pair of neg—pos' 

(where pos' and neg' are pos and neg with their r ports renamed to 

r'); this is done using a function "bit". The inner loop connects 

all these pairs into a row, with the variable j ranging from n to 1. 

At the end of the inner loop, an out element is added to the right 

of the row. In the outer loop the variable i ranges from 1 to 

while all the rows are connected from south to north by bunch 

connections. 
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9.w 

r.Sr'.S 	 g.S 

Figure 3.10 A selector 

It should be emphasised that the selector program contains no 

explicit geometric information, and this is to be expected for many 

common VLSI subsystems. The double loop (array) pattern is also very 

common in structured design, and many other interesting examples can 

be produced by the use of parameterisation and recursion. 

3.5 Paths and Geometric Renaming 

A path can be generated by taking a port and moving it around: 

the wake of the port forms the resulting path. The outcome of, this 

operation is a list of polygons (one or more for every step the port 

has made) and a new port (i.e. the old port in the new position). 

Hence a path is the following data type: 

path = (polygon list) x port 

Given a path the following operations extend it from the port, 

thereby generating a new path: 
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stay: path -> path 

move: num -> path -> path 

step: nun -) path -> path 

rotl: nun -> path -> path 

rotr: nun -> path -> path 

move': nun -> path -> path 

step': nun -> path -> path 

rotl': nun -> path -> path 

rotr': nun -> path -) path 

The operation stay leaves a path unchanged; 

The operation move takes a positive number n, a path p and moves 

the port of the path n units. The direction of movement is towards 

the east of the port (i.e. generally outwards with respect to the 

picture if anticlockwise ports are used). The new path generated is 

made of the new port and the old polygon list with a new rectangular 

polygon having the old and new ports as edges. 

The operation step is like move, but "step n" means "move n times 

the size of the port" for simple ports, and "move n times the size 

of the vectors in the port" for bunches. 

The operation roti (rotate left) takes a number n (in degrees), a 

path p and rotates the port of the path n degrees anticlockwise 

describing a circular are with centre in the tip of the port. If the 

port is a bunch, the distances between the vectors are respected and 

the result is a set of concentric paths. The new path generated is 

made of the new port (or bunch) with the old polygon list plus the 

new polygon(s) generated by the rotation. 
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The operation rotr (rotate right) is the same as rotl, but the 

rotation is clockwise and its centre is in the tail of the port. 

The operations move', step', roti' and rotr' are similar to their 

unprimed versions, but they move a port without producing any path 

between the old and new position. The operations move' and step' 

also accept negative arguments. 

Functions from paths to paths are called path functions; the 

following are path functions: 

stay 

move 2 

step 5 

rotl 90 

rotr 270 

Function composition is used to compose path functions; in 

particular it is convenient to use the inverse function composition 

operator "&" 

(f & g) x = g(f x) 

Here is an example of a composite path function: 

move 2 & roti 90 & step 4 & rotr 90 &inove 2 

note that "&" behaves like an append on paths, as function 

composition is associative. 

How do we use path functions? Ports are not available to the user 

as data objects separated from pictures, so that path objects can 

never be built, and there is nothing to apply path functions to. The 
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only place where is possible to use path functions is in the 

geometric renaming feature of the renaming operation: 

- bluesquare C?\? move 2); 

(b.S:W; b.E:W; b.N:W; b.W:W) : (5,5] 

b.N 

b.W 
b.E 

b.S 

Figure 3.11 A blue cross 

The meaning of this is to rename every port in bluesquare by its 

own name, moving it 2 units outwards. The result is a blue cross of 

size (5,51. The path function "move 2" is applied in turn to the 

paths obtained pairing the ports of bluesquare with the empty list 

of polygons. 

Here is a very flexible blue square which can be stretched 

symmetrically in four directions by applying a path to it: 

- let bluewheel path = bluesquare C?\? path); 

bluewheel = 



- bluewheel (move 2 & rotl 45 & move 15 & rotr 135 & 

move 30 & rotr 45 & move 20 & rotr 270); 

<> : (b.S:W; b.E:W; b.N:W; b.W:W) 	[68.9,68.9] 
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b.E 
b.N 

b..E 

Figure 3.12 Geometric renaming 

A limited form of routing (called river—routing) can be obtained 

by using geometric renaming on bunches: 

- sel 2 fg.W \ g.W rotr 60 & rotl 60 & move 6) \ 7; 

: () : (51.32.32] 



Figure 3.13 Geometric bunch renaming 

3.6 Figures 

There i's a variety of elementary figures. Actually many of them 

have no application in VLSI and are intended mainly for graphics. 

All of the following options can appear syntactically after the 

keyword "with" inside forms (in the place of boxes in the examples 

of the previous section). 

dot [pi; ... ;pk] draws dots at the specified points p1 ... pk. 

line 111; ... ;lk] draws a set of lines 11 ... 1k; every line is 

a list of points li(pl; ... ;pki] which are joined by straight 

segments. 

path [11; ... ;lk] draws a set of paths 11 ... 1k; every path is 

a list of pairs of numbers and points 1i(nl,p1; ... ;nki,pki]. 

Adjacent points p(j),p(j+1) in a path are joined by a circular arc 

of aperture n(j+1) degrees (if n(j+1) is 0 or any multiple of 360, a 

straight segment is used). If n(j+1) is positive. the arc is convex 

on the east of the vector p(j)-4p(j+1); if negative it is convex on 

the west. The first aperture ni is not used. 

spline (11; ... ;lkl draws a set of non periodic cubic B—splines 
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11 ... 1k; every spline is built from a list of control points 
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li=(pl; ... ;pkil. The spline does not pass through the control 

points (except the first and the last), but is tangent to every 

segment joining two adjacent control points. 

loop [11; ... ;lk] draws a set of periodic cubic B—splines 11 

1k; every spline is built from a list of control points 1i(pl; 

;pki]. The spline is tangent to every segment joining two adjacent 

control points (the last point is adjacent to the first) and 

describes a closed curve. 

box (pl,ql; ... ;pk,qk] draws a set of boxes with lower left 

corner at the point pi and upper right corner at the point qi. 

poly [11; ... ;lk] draws a set of polygons 11 ... 1k; every 

polygon has a line 1i[pl; ... ;pki] as perimeter. The last point 

pki is joined back to the first. 

area [11; ... ;lk] draws a set of areas 11 ... 1k; every area has 

a path li[nl,pl; ... ;nki,pkil as perimeter, where the first 

aperture ni is used to join the last point back to the first. 

blob (11; ... ;lk] draws a set of blobs 11 ... 1k; every blob has 

a loop 1i(pl; ... ;pki] as perimeter. 

text (pl,sl; ... ;pk,sk] draws a set of character strings si 

sk starting respectively at the points p1 ... pk. Every string may 

contain control information (following the escape character "%") 

according to this code: '%r" change colour to red; "%g" change 

colour to green; "%b" change colour to blue; "%y" change colour to 

yellow; "%B" change colour to background (black for Charles, white 

for HP plotter etc.); "%F" change colour to foreground (white for 

Charles, black for HP plotter etc.); "%O" ... '%9" change text size 

(O=min, 9max); "%S" halt plotting and wait for a carriage return to 

continue (e.g. to change page on the HP plotter); "%x" for any other 
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character "x" to actually display "x" (e.g. "%%"). Note that the 

escape character '%" is only interpreted by the plotting routines 

while the normal escape character "I" should be used for any other 

purpose (e.g. to insert a 

3.7 Commands 

The following commands are accepted at the top level. 

mode: this command investigates the state of the environment, 

showing what options are active and what are not. Options are: 

print: when active, the result of every top—level evaluation is 

printed at the terminal. 

Charles: when active, the result of every top—level evaluation is 

drawn on a Charles colour graphic terminal. 

tektronix: when active, the result of every top—level evaluation is 

shown on a Tektronix terminal. 

hpplot: when active, the result of every top—level, evaluation is 

plotted on a HP-7221A plotter. 

drawnames: when a plotting device is active, draws the names of the 

ports at their location. 

drawports: when a plotting device is active, draws the ports at 

their location as little arrows. 

signature: when a plotting device is active, puts a signature 

"Sticks&Stones" in the lower right corner. 

page: when a plotting device is active, plots in "page" mode. Every 

picture shown will fit incrementally the available space from top to 

bottom (it will try to make pictures horizontally as large as 

possible). On the HP plotter, pictures will fit an A4 sheet of 

paper. 

logfile: produces a log file "STICXS.LOG" containing a transcript of 

the terminal input. Type "addmode logfi]e" to open a new logfile 

(destroying the old one) and start writing on it, and "submode 



168 

logfile" to save it and stop writing on it. 

addmode ml, ... ,mn: adds the modes mi to the current mode. 

submod. ml , ... ,mn: subtracts the modes mi from the current 

mode. 

print v: prints the object v; all the plotting actions are 

suppressed for the duration of this command. 

draw v: draws the object v on the currently active device(s). 

Print is suppressed for the duration of this command. If v is a 

picture, it is plotted. If v is a list of a items, the screen is 

horizontally divided into a viewports, and every item in the list is 

drawn in a viewport; if an item in v is again a list, its viewport 

is divided vertically, and so on horizontally and vertically to any 

depth. If v is not a picture, nothing is shown (this should be 

intended recursively.). 

contents: shows the names of the variables defined at the top 

level. 

undo: the result of the last expression evaluated is always kept 

in the top level variable "it". The command "undo" can be used to 

reset "it" to its previous value (only once). 

use: loads a module (described in section "Modules and 

externals"). 

import: imports an external picture (described in section 

"Modules and externals"). 

export: creates an external picture and generates a CIF file 

(described in section "Modules and externals"). 
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3.8 Modules and Externals 

Some modules (called library modules) are predefined in the 

system, as for example "constants" (basic cells) and "pla" (pla 

generator). Modules can contain data (like "constants") or programs 

(like "pla"), and can be used by the command: 

- use constants,pla; 

which loads the definitions contained in constants and pla. 

New modules can be generated by editing files with extension 

".STI", containing Sticks & Stones expressions and definitions. 

Every module can "use" other modules. 

Externals arise when, at the end of a session, we want to save 

the pictures produced so far. If a very big and very time—consuming 

ALU (Arithmetic—Logic Unit) has been produced, it can be saved as 

follows: 

- export ALU; 

ALU exported 

This command generates: (i) a CIF file of the ALU, called "ALU.CIF", 

and (ii) a file containing boundary information about the ALU, 

called "ALU.STX". The ALU can be recalled by: 

- import ALU; 

ALU = 0 : 
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The advantage of externals is that it is possible to use the ALU in 

another session without having to build it again. To import 

something takes almost no time, as only boundary information (i.e. 

ports) is used (an imported picture is drawn as a white frame with 

ports). Moreover the ALU can be used as a component of a CPU, and 

when the CPU is exported, the system merges the already existing 

ALU.CIF file with the rest of the picture. CIF files generated by 

"export" can be used for plotting or for mask fabrication. 

The import command is also used to interface already existing CIF 

files to Sticks & Stones. Given a CIF file REG.CIF, we only have to 

write a file REG.STX and then "import REG;". The STI file should 

contain a form describing the ports of the KEG, and should declare 

it to have a figure (e.g. a box) of the right size: 

let KEG = 

form (Vddln:B port ...; VddOut:B port ...; 

Gndln:B port ...; GndOut:B port ...; 

Busln:B port ...; BusOut:B port ...; 

Keadln:R port ...; ReadOut:K port ...; 

Writeln:R port ...; WriteOut:K port ...; 

Clockln:K port ...; ClockOut:K port ...) 

with W line ([0t0;3610;36t36;0t36;OiO]]; 

"export" uses a "line" to generate a white frame, like in this 

example. 

CIF files generated by Sticks & Stones are compact, as common 

subpictures are factorised into CIF symbols, and calls to these 

symbols are generated where necessary. Moreover they are commented: 

every CIF symbol is associated to the name(s) used in 

Sticks & Stones to denote it. 
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3.9 Efficiency 

The composition algorithm is linear in the number of (bunch) 

connections and independent of the number of ports of the sorts 

involved. 

If possible, iteration should be used instead of recursion and 

the "times" form of iteration should be preferred. In the latter 

case the iteration body needs to be evaluated just once (because the 

language is applicative) instead of n times. But what is more 

important, the system can use a logarithmic algorithm instead of a 

linear one, producing at any step 1,2,4,8,16 etc. instantiations of 

the iteration body and then composing them up to get the desired 

number. The gain in efficiency is considerable: to produce a 16x16 

array of four—port cells the "times" iteration takes 8 connections 

against the 255 of the "for" iteration. 

Because of the absence of side—effects, it is possible to share 

in memory everything that is sharable; hence "let" should be used to 

factorise common subexpressions. An array of 16x16 cells can be 

produced by allocating just one cell plus 8 connection records. If 

instead we put an expanded cell definition inside a double iteration 

with iteration variables we can cause the allocation of 256 

identical cells plus 255 connection records. 

3.10 Conclusions 

The implementation of Sticks&Stones allowed us to gain some 

experience in the area of VLSI design tools, and to test and 

demonstrate the practical utility of the notation we are proposing. 

For example, the ideas of bunches and planar sorts can be considered 

a direct consequence of the implementation effort and of the fact 

that we had to cope with real—life circuits. 
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The 	subsequent 	investigation of more theoretical 	issues 

(described in chapters 1 and 2), together with the experience 

already gained, brought up new problems and ideas, so that 

Sticks&Stones would probably be rather different, if we had to 

implement it today. We would expecially like to make it safer to use 

(by more rigorous syntactic checks) and more interactive (by the use 

of pointing devices). 

However we are now of the opinion that an experiment at the 

layout level of description should not be repeated, and in the field 

of silicon assemblers we should strive directly for stick—oriented 

systems, as suggested in sections. 2.5 and 2.6. Sticks&Stones, in the 

present form, still retains much interest for computer graphics, for 

its ability to manipulate graphical and geometrical entities, and as 

alternative to turtle graphics. 

3.11 Syntax 

3.11.1 Syntax Definition 

The notation used here is explained in Appendix I. 

topterm ::= (command I toplet I topletrec I term) S 

command ::= mode I addmode I submode I print 

draw I undo I use I begin I end 

contents I import I export 



mode ::= 'mode' 

addmode :: 	'addmode' tide / ',')l 

submode :: 'submode' tide I 

print :: 'print' term 

draw :: 'draw' term 

undo ::= 'undo' 

use :: 	'use' tide / ','}l 

begin :: 'begin' port 

end :: 'end' port 

contents 	'contents' 

import ::= 'import' ide 

export 	'export' ide 

toplet 	'let' declaration 

topletrec :: 'letrec' declaration 

term ::= variable I bool I string I number I point I pair I 

list I form I composition I restriction I rename I 

conditional I abstraction I application I iteration I 

let I letrec I where I whererec I parterm I 

and I or I not I minus I cons I append I sum I diff I 

times I divide I equal I great I less I greateq I 

lesseq I range I mod I directcomp I reverscomp 
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variable ::= ide 

bool 	'true' I 'false' 

string ::= "I  characters 

number 	unsignedreal 

point 	term 't' term 

pair 	term ',' term 

list ::= '[' (term / ';') ' 1' 

form 	'form' [sort] ['with' (figure / 'and')l] 

sort :: 	'(' (port ':' ide ['port' term] / ';')l 'P 

figure ::=ide shape term 

shape ::= 'dot' I 'line' I 'path' I 'spline' I 'loop' 

'box' I 'poly' I 'area' I 'blob' I 'text' 

composition ::= term connection term 

connection ::= '[:' (port '-' port  

restriction :: term '\' (match}1 

rename 	term 'C' (substitution  

substitution ::= match '\' match [term] I 

match term 

iteration 	term 'times' term 'with' connection 

'for' (struct 'in' term / 'and')l 

'iter' term 'with' connection 

conditional ::= term '' term 'I' term 

abstraction 	'" (struct)1 '' term 

application 	term term 

let ::= 'let' declaration 'in' term 

letrec 	'letrec' declaration 'in' term 

where ::= term 'where' declaration 

whererec 	term 'whererec' declaration 

declaration 	(funstruct '' term / 'and'}l 
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funstruct ::= struct I ide (strnct)1 

struct 	'(' ')' I ide I struct 't' struct I 
struct ',' struct I '(' (struct I ';'} '1' 

struct '' struct I '(' struct ')' 

parterm ::= '(' term 9 1  

and 	term 'And' term 

or ::= term 'Or' term 

not ::= term 'Not' term 

minus ::= '-' term 

cons 	term '' term 

append ::= term 'a' term 

sum :: term '+' term 

diff 	term '-' term 

times :: term '' term 

divide ::= term 'I' term 

equal 	term '' term 

greater ::= term '>' term 

less ::= term '<' term 

greateq 	term '>' term 

lesseq 	term ,<=' term 

range ::= term '::' term 

mod ::= term 'mod' term 

directcomp ::= term 'o' term 

reverscomp ::= term '&' term 
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letter ::= 'a' I ... I 'z' I 'A' I ... I 

digit :: 	'0' I ... I 0 9' 

ide ::= letter 	ide letter 
	

ide digit 

matchide ::= 'I '  I '?' I ide '1' I ide 'V I 

matchide 'I' I natchide '?' 

matchide letter I matchide digit 

integer ::= digit I integer digit 

unsignedreal ::= integer ['.' integer] 

port :: ide I port '.' ide I port '.' integer 

match ::=matchide I port '.' matchide I 

match '.' matchide I match 	ide I 

match '.' integer 

3.11.2 Precedence of Operators 

* ri" means that the infix open itor "" has left precedence m 

and right precedence n. An expression Fix * y ' z"  associates like 

"(x * y) •' z "  if n>n '  and like "x (y ' z) "  if n<m'. Hence m<=n 

means that "" is left associative and m>n that it is right 

associative. 

100 Or 100 

200 And 200 

301 , 300 

401 - 400 

500 a soo 

600 = 600 

700 > 700 



700 < 700 

700 >= 700 

700 <= 700 

800 mod 800 

900 1 900 

1000 :: 	1000 

1100 + 	1100 

1100 - 1100 

1200 * 1200 

1200 / 1200 

1200 II 1200 

1300 o 1300 

1300 & 1300 

1400 1400 	(application) 

3.11.3 Predefined Functions 

And (infix) boolcan and. 

Or (infix) boolean or. 

Not (infix) boolean not. 

= (infix) equality over booleans, numbers, points, 

pairs and lists only. 

> (infix) greater than. 

< (infix) less than. 

> (infix) greater then or equal to. 

< (infix) less than or equal to. 

- (prefix) number complement. 

+ (infix) number sum. 

- (infix) number difference. 

0  (infix) number product. 
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/ (infix) number division. 

II (infix) integer division. 

mod (infix) number modulo: "a mod b" is the 

remainder of "a//b". 

lit point left: lit (atb) = a. 

rht point right: rht (atb) = b. 

fst pair first: fst (a,b) = a. 

snd pair second: sud (a,b) = b. 

hd list head: hd [al; ... ;an] = ai. (n>O). 

ti list tail: tl (al; ... ;an] = (a2; ... ;an] (n>O). 

null list null: null [1 = true; 

null (al, ... ,an] = false (n>O). 

- (infix) list cons: a_[al; ... ;an] 

= (a;al; ... ;an] (n>=O). 

a (infix) list append: [al; ... ;an] a [bi; ... ;bm] 

= (al; ... ;an;bl; ... ;bm] (n,m>0). 

(infix) range: n::m = [n;n+1; ... ;m-1;m] (n<in); 

= [n;u-1; ... ;m+1;m] (n)=m). 

length list length: length [al; ... ;an] = a W=O). 

o (infix) function composition: (f o g) a = f (g a). 

& (infix) reverse function composition: (f & g) a = g (f a). 
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4. Analog Processes 

In this chapter and in the next one we try to set up formal 

frameworks in which the semantics of low—level hardware can be 

defined and studied. In the process we revert from net algebras to 

Miler's flow algebras [Milner 791 for consistency with existing 

literature and because flow algebras are more convenient from a 

formal point of view. 

4.1 Introduction 

In this chapter we develop a formal framework for describing 

continuous interaction, like for example the gravitational 

interaction of planets around a star. These interactions are not 

"communications" in the sense of discrete packets of information 

being exchanged, but rather various forms of "being in contact" on 

an instant by instant basis. 

Although most of the phenomena in concurrent systems can be 

studied in a discrete framework, some of them seem to imply some 

notion of continuity or, at least, of arbitrarily small 

discreteness. A very well known example is the arbitration problem, 

which disappears as soon as a discrete time scale is introduced; 

other examples include measurement problems, and the study of 

asynchronous interaction of internally synchronous systems. Most of 

these problems are unwelcome, both from the theoretical and 

practical point of view, and their study can help in understanding 

when they can be safely ignored or controlled. 

Asynchronous electronic circuits will be used as a source of 

interesting examples, and we shall be able to model and analyse 

asynchronous feedbacks, metastable states, arbitration and 

indeterminacy. We shall also discover some basic (and plausible) 

limitations on the kinds of systems we can express, which seem to 
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indicate some correspondence between our model and what we may 

consider to be "physically feasible" processes. 

Finally, it is interesting to notice that all these phenomena 

arise from the mere consideration of concurrency in real time, and 

do not necessarily depend on other characteristics of the physical 

universe, like quantum mechanic or relativistic effects. 

4.2 Analog Processes 

A signal is a value varying through (continuous) time, which is 

carried by a line (we use a, A etc. for lines). An analog process is 

a collection of transformations of such signals (called 

transitions), for example: 

73Q8S4 11 	
te 

 

V C 	
- 

Signal S 	 Analog 	 Signal S 

Figure 4.1 A process 

The signals above can be expressed as functions of time: 

S(t) = sin t 	S(t) = 1 

and the process P transforming S. into S can be described by a 

transition Tap which in this case might be: 

Ta(s)(t) = 3(t) - sin t + 1 

For then, applying Tapto Sa we get S as we have: 

Tap 	t. Sa(t) - SIfl t + 1 

= Xt. sin t - sin t + 1 

= At. 1 

= s 

In general a process will consist of several transitions, and 
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systems will comprise several connected processes. 

4.3 An Algebra of Analog Processes 

A process is described by a collection of transitions U 

where the term U denotes the signal produced by the transition, and 

is an identifier denoting the output port of the transition. The 

signal U is an expression of the input ports of the process. Here is 

an example of the syntax we shall use to talk about transitions: 

(a 	) X ((a U y) —4 6) 

For clarity we shall sometimes prefix processes with input ports, 

although this is not strictly necessary as the input ports of a 

process will always coincide with the free variables of the signal / 

part of the transitions: 

CL y: a9XaUy96 	(0) 

This is a process with input ports a,g and output ports P,S 

(parentheses have been omitted). 

The intended behaviour of processes will be explained by 

algebraic laws. We shall only be concerned with some of the laws and 

we shall not try to present a complete set of equations. The 

following three laws express the fact that processes are unordered 

collections of transitions: 

(XX] 	(T X T') X T" = T X (T' X T") 

(X] 	TXT 	= T' XT 

[NIL] T X NIL = T 

where NIL is the empty transition and T,T' and T" range over 

transitions. 

The intended meaning of the expression (0) above is a process 

which at any instant of time produces on the output port A the 
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current value of the input port a, and on the output port 6 the 

current value of the join (U) of a with y. The join operator 

represents the simultaneous presence of two signals on the same 

"line", and its exact meaning is left unspecified, except that the 

join operation must exist for every pair of signals (of the same 

type) and it must satisfy: 

(UU] 	(M U M') U M" = MU (M' U M") 

[U] 	MUM' = M'UM 

For example, for boolean—valued signals s',s" we might define s'Us" 

to be at any instant of time a boolean or, i.e.: 

(s'Us")(t) = s'(t) V s"(t) 

The existence of a constant -. (nosignal) is also assumed; it 

relates to join as follows: 

= M 

In the previous boolean example we can define nosignal as the signal 

constantly false, i.e.: ..(t) = false. The join operation is also 

used in the following law, which accounts for the presence of 

repeated output ports: 

(UX] MXN — ft = MUN — p 

Now we define some basic operators on processes, together with 

their algebraic laws. 

4.3.1 Composition 

The composition of two processes P and Q is written PIQ. The 

output ports of P are linked to those input ports of Q with the same 



183 

name, and the output ports of Q are linked to the input ports of P 

with the same name; the idea being that signals flow through these 

connections from one process to the other. We have the following 

laws for composition: 

(II] 	(P I Q) I K = P I (Q I K) 

(I] 	P IQ = Q I P 

(IX] 	(ll iTi ) I 	= uIk eI u JTk 

where I and I are disjoint sets of indexes 

(Here ff i ,,Ti  abbreviates T1  X ... X T with I=(1,...,n)) 

An example of law [IX] is: 

(a: a .4 ) I (: 0 -4 y) = a : a '-4 	X 

~y 

Figure 4.2 Composition 

Note that composition may introduce loops (P being both an input and 

an output port) and indeed such loops may be present in the first 

place. We shall come later to the exact semantics of such 

situations; for the moment just think of a looping signal as 

overwriting itself by a join operation. 

4.3.2 Restriction 	 - 

The restriction P\a of P cancels a from the input and output 

ports of P, making communication via a impossible. We have: 
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(\] 	P\a = P 	if a f ports(P) 

(\\] 	P\a\ 	= P\\a 

(\I] 	(P I Q)\a = P \ a I Q\a 

if not ((a a in—ports(P) and a a out—ports(Q)) or 

(a a out—ports(Q) and a a in—ports(P))) 

Now we need laws to distribute \. over X, and at first sight these 

might be: 

(1T.iT)\a = 11. 1(T\a) 

(M — a)\a = NIL 

L... a ... -9 )\a  

Unfortunately this does not work well in the case: 

(a: M —9 a X a 9 0 )\a = - 4 

In fact we wish to interpret \a as a hiding operator, which should 

not change the inner behaviour of the process. The result we want to 

get is, at least: 

(a: M 4 a X a 9 )\a = M 9 

But even this is not enough in the case where M is an expression 

M[a] of a itself, e.g. when we have a loop over the restriction 

variable whose result is exported through another output port (in 

this case ). To solve these problems we need to introduce 

recursively defined signals (Pa. M): 

(i1 	ha. M = 

(Lpl 	Pa. M = M(ia. M)'a] 

Then the law for restriction is: 
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(\X] 	(11i 8iMj-.9aj ) \a= Uj ejT'j 

where 1 = ( id: a1  #a) 

and T' =(M.—a.)($ia. U cti=QMj)/a ]  

Here U8iMi is the join of all the Mi,  and it is .. if I is empty. 

Examples: 

(a: a '.4 0 )\a = (ia. .:.) 9 A = 	-4 

(a : a —A X —4 TMA = a: a -4 

(a D: a -4 A X A -4 a) \A = a: a -9 a 

(a: a 9 a) \n' = NIL 

(a: a -4 a X a 4 AMCL = (;La. CO -4 

The important point in law (\X] is that looping situations are 

somehow hidden of preserved, but never "unfolded" by \a. 

4.3.3 Renaming 

The renaming 	 is the process obtained from P 

by simultaneously substituting a1 ... a for the (input and/or output) 
RC L) 

ports 	 A renaming (RI = (a 1 / 1 ) is a bijection R:L-4 over 

the ports L of P, i.e. the Pi  the ports of P. and the a 1  are 

distinct. Dummy substitutions will be omitted, so that (I = (a 1 /a 1 ). 

WI 	PC) = P 

[0O] P(RUS) = PCS o RI 

Em] 	(P\a)(R) = (P(R pIa))\ 

if a a ports(P) and 	range(R) 

MI] 	(PIQ)(R) = (P(R'))I(Q(R")) 

where K' = K restricted to ports(P) 

and 
	

K',  = K restricted to ports(Q) 
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To distribute (R) over X we actually perform a syntactic 

substitution: 

[(IX] 	( lli 8iTi )( aj/ )  = 11• 

Example: 

(a : a 	X - a) WA, /aJ = A a: 0 	X a - 

The algebraic laws we have presented so far form what we shall 

call an analog algebra. These laws can be grouped into two 

categories: external laws (relating I, \a and (RI: (II], [I], (\], 

[\\]. (\I],. [0]. ((H)], ([I\] and U)]) concerning the synthesis 

of processes from simpler processes, and internal laws (all the 

others) concerning the inner structure of processes. The external 

laws are just those of Miler's flow algebras [Milner 791. Flow 

algebras are extended in [Milner 781 by a set of internal laws for 

communicating processes, and are then called behaviour algebras. Our 

internal laws are quite different from Milner's ones, but they seem 

to fit very well in the general framework of flow algebras, even if 

the meaning of I, \a and (R) is radically different. 

4.4 A Denotational Model 

In the rest of this chapter we shall study a particular analog 

algebra, built within the framework of denotational semantics. This 

will allow us to study the exact meaning of processes just by 

computing their semantics and observing their input—output 

behaviour. The denotational semantics will also prove useful in 

discussing some delicate situations arising from feedback loops and 

recursively defined signals. 

Processes are collections of transitions; in particular PL, L' is 

the domain of processes with L inputs and L' outputs, namely 
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associations of transitions with L inputs to the output ports L': 

PLL , =L' — TL 

Here L,L' range over finite subsets of PLab, the set of port labels, 

and TL  is the domain of transitions with L inputs (and one output). 

The domain P of processes is given by: 

A 
= 	L,L' LL,LD 

A transition with L inputs is a function taking ILl input signals 

and producing an output signal, hence: 

TL 

where S is a domain of signals. 

Signals are functions from time to a domain of values. We can 

have several types of signals, like boolean signals, real signals, 

etc. 

S 	K - V 

where K is the flat domain of positive real numbers, and V is a 

given data domain which is an abelian monoid <V,+,V> with V strict 

(i.e. iVx = 1). We define: 

+ 
(s' U S 19(t) A s' (t) V S 11 (t) 

for all t c K and s',s" 8 S. This definition will make (1, [] and 

(.L] hold when we give the semantics. 

We need some notation for elements in these domains; .—notation 

will be used for signals $ e S = K—*V. Elements of S  will be 

denoted by expressions like: 

(a1 :s 1 , ... , a:s] for a1 ** a e L, s.  .s 1  e S 

which are meant to be unordered tuples of labelled signals a 1 :s 1  

with the additional property: 

( .. a:s', a:s" .. I = ( .. CL: s'Us" .. I 

and operations: 
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\a : 5" 	L\ (a) 

SL + S 

X SL # 

defined as: 

(a 1 :s 1 ]\a = (cz:s] with id, je(i 8IIaa )  

[a1 :s 1 ].a = 5kkk 	where U0 =  

[a :s 	[a,:s] = (a1:sa aj:s] 

Elements of TL = SL  —4 S of the form: 

... x.a1  ... x.a 	... 

will be abbreviated (with a change of font) as: 

... a1  ... 

where Cal .. a. I is an unordered tuple of variables. Notice that 

this notation allows for unordered application by label names (i.e. 

call—by—keyword), as in: 

(X(a1  a2]. a1  • a2 )(a2 :3, a1 :51 = 5*3 

Finally, processes p a 'L.L' = L —4 TL  of the form: 

x. (x=a1 ) =4 t; ... ; (x=a) 	t; (XC]..) 

(where "a=b;c" means "if a then b else c") will be abbreviated as: 

(t 1 4 a1 ; ... ; t n  —9 a n  ) 

There are three semantic evaluation functions: 

I': terms X ports X vars —3 T 

S: signals X ports —4 S 

IP: processes X ports —4 P 

for term expressions 

for signal expressions 

for process expressions 

with two kinds of environments: 

vars = Ida —4 V 

ports = L —4 S 

We shall first discuss the semantics of process expressions, then 

the semantics of signal expressions, giving the syntax at the same 

time. We shall not treat the semantics of terms, as term expressions 
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will always have an evident meaning. 

The following is the semantics of a very simple process, 

consisting of a single transition: 

fl'ffa 1 : S —9 A ]Ji 

	

T XP. ().(a 1 ]. SffSBa1 	P(a 1)(cz:a]/a j ] —9 ) 

	

(note that P(a 1)(a:a] = 	if a1  

The fixpoint and the join operation are needed just in case 0 is 

equal to one of the a1 , i.e. when there is a feedback. Otherwise the 

previous expression reduces simply to: 

[Ma 1 ]. saS]J(a 1/a1 -4 ) 

In case of feedback, say a3 . the input to a3  is a3  (the input to 

process P) joined to what comes out of 0 , which is P(a3 )(a 1 :a.]. In 

fact P((L3 ) is the transition associated with a 3=, which receives as 

input the same input of the process: (a:a]. 

The same idea is used in giving the semantics of composition, in 

which the component processes may feed each other in complex ways. 

The composition operation on processes is defined as: 

plq = let p = (s 	lj) where s1 = .( ah]. M. 1. 

	

and q = Ur
i 
 4 

J  
&. 	

J 

	

} where r 	X[bt].  N in 

7 XR. (X(ahbk] . 5i((ah U  R ( ah ) (ah:ahs Pk:bk])] —4 

U (X [ahbk] . r[k:(bk U  R(k)(a.h:ah ,  Pk.bk])l 9 J 

and we have the evident semantics: 

]PffPIQThi = ]PffP]Ja I ]PffQlJa 

This 	composition is 	commutative 	((I] 	holds); 	to 	prove 

associativity ([II]) we had to assume absorption of U. i.e. s U s 

s (which also implies PIP = P; we do not know whether this is a 

necessary condition). The other laws of analog algebras are easily 
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verified, if we complete the definition of IP by the following 

equations: 

]PffNILfli = ).x. ()(]. ..) 

]PE[T1  X ... X TJIi = ]P [IT 1 ]a I ... I WffTlJa 

WffP\aThi = 

XeL'. XxeSLJ . (]PffPP,llo)()(x\a U [x:.&]) 

PffPCp/a1)]Ja = 

let p = ]P11P11 

in Xy. X Eb i 1. y=1  =0  p(ai)(a:b];  ... ; 

p(a)(a:b]; .. 

We now consider signals; a simple way to specify them is to 

describe their value at any instant of time, using a sort of 

).—notation, where "at" is read "at time t" and t is the only 

variable (if any) free in V: 
€ 

saat.vBor = Ix. lraV]nx/t] 	(€is the empty environment) 

for example at. 3sin t. We have the equivalences - = at. 4 and 

a U b = at. a(t) V b(t). The notation IV will be used as an 

abbreviation for at. V, when t is not a free variable in V, like in 

t3 = at. 3. 

Signals can also be defined by recursion: 

Sffta. SBcr = Y Xa. SEISBa(a/a] 

like in 

a. at. t<i. = f; aft-1) 

Two other useful abbreviations are conditional signals and delays:. 

S =4 S' ; 5" = at. S(t) = s'(t) ; S 11 (t) 

S ,  A s" = at. t<S"(t) :4 + ; S'(t—S"(t)) 

A simple example of delay is S A 13 which is the signal S constantly 

delayed by 3 units of time, yielding 4 during the first three units 

.of time. This notation also allows us to express variable delays. 
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Notice that the a—notation has too great an expressive power, 

being able for example to define a signal in terms of the "future" 

of another signal (or even of itself; e.g. pa. at. a(t+1)), but we 

might impose syntactic restrictions to avoid that, leaving A as a 

primitive. 

Summarising the syntax, we have terms V. signals M and processes 

P. Terms are boolean expressions and conditionals with at most one 

free variable t ranging over reals. 

V :: 'true' 	'4' I BooleanExpression I 

V '' V ';' V I Port '(' t 

M ::= 'at.' V 	'1'' V I '.' I Port I 

M 'U' M I 'ji' Port '.' M I 

M '=' 14 	14 I M 'A' M I , 

14 ('+' I '-' I '*' I 'I' I '=' ) M 

P 	(PortIl ':' CM '-9' Port / ' X')l I 

NIL I P 'I' P I P '\' Port I 

P 'C' (Port 'I' Port / ',') 9' 

4.5 Feasibility 

Great care has been put into the definition of the algebraic 

laws and of the denotational semantics, in order to be able to treat 

circularities. The simplest example of feedback can be found in the 

following fast loop process: 

a: a —9 a 



CL 

Figure 4.3 Fast loop 

This process has an input port a, whose input is mixed to the output 

coming from the output port a. This process has no internal delay, 

and the output at any instant t depends on the input at the same 

instant t, which depends again on the output at time t. Computing 

the semantics: 

p 	]Pffa: a - aflci 

= Y XP. (X[a]. Sffa]Ju(a U P(a)Ea:a]/a] - a) 

= 7 ).P. [[a]. a U P(a)(a:a] + aJ 

It is not immediately clear what p does, but we can try to 

understand its behaviour by applying some input. We first extract 

thetransition we are interested in (there is only one in this case) 

applying it to the output port a: 

p(a) = .[a]. a U p(a)(a:a] 

Then we apply an input signal to see what is the response of the 

transition: 

p(a)Ea:a] = a U p(a)(a:al = 1. 

the result is 1, because of strictness of U. 

Here we have a first example of a clearly "infeasible" process, 

which denotes 1,  the undefined element. We can also see that a slow 

loop is not mapped to I and is well—defined everywhere. Set 

p 	IPifa: a A ti — a]Jsi 

= 7 XP. (X[a]. Xt. t<1 =4  4; (a U P(a)(a:a])(t-1) — a) 

p(a)(a:a] = ).t. t<1 	4; (a U p(a)(a:a])(t—l) 

There are also processes whose output signals are only partially 

undefined; an example is the Zeno loop: 

192 
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a: a A (at. t<1 =4 l—t; 0) '9 a 

This is a feedback loop which increases its speed, and at a finite 

point in time reaches an infinite speed (i.e. a zero delay). The 

output of the Zeno loop for a nosignal input is ).t. t<l 4 4; L. 

As a general principle, the output of a feedback loop is defined 

as long as the delay in the loop is greater than zero. This may look 

trivial, but feedback loops appear in almost any interesting 

process, and this simple fact has several intriguing consequences. 

We are going now to look at some of these. 

4.6 Expressibility 

We have seen that we can express several physically infeasible 

processes. This suggests that our formalism has too great an 

expressive power, and we might try to impose some constraints in 

order to exclude unwanted processes. However it would be wrong to 

think that we can express anything we like. In particular there are 

several processes which, we conjecture, cannot be exactly expressed, 

and yet admit approximations up to an arbitrary degree of accuracy. 

We shall call such inexpressible processes perfect, and shall call 

their expressible approximations imperfect. 

Consider for example the following (naive) memory cell: 

CL : auft A 11 

To work properly as a (write once) memory cell, this process must 

receive a set impulse of length 1 on a. Then this impulse enters the 

loop and is "remembered". This memory cell presents two main 

defects: it will not work properly (i) if the set impulse is longer 

than 1 as it will overwrite itself, or (ii) if the set impulse is 

shorter than 1, as it will not fill the loop period. We can solve 

the first problem by the following (improved) memory cell: 

CL : (a=. = a ; ) A ti 9 
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This process will cut off its a line after having received a signal 

different from .. for one unit of time. But the second problem still 

remains; if the a signal differs from •. for less than one unit of 

time, the output A is not constant. The same problem occurs when the 

set impulse changes its value during the setting time; then a 

varying signal is recorded into the feedback loop and the output of 

the memory cell oscillates: we get a (quench free) metastable state. 

In effect what we really want is a perfect memory cell which 

stores constantly the value of an instantaneous setting spike, so 

that there can be no indeterminacy due to fluctuations of the input 

signal. Notice that starting from our improved memory cell we can 

get better and better approximations to a perfect cell, simply by 

reducing the delay in the feedback loop. Unfortunately if we reduce 

the delay to zero, we do not get a perfect storage device, but only 

an undefined output. Hence there seems to be no expression denoting 

a perfect memory cell (which yet exists inside our semantics 

domains) because there seems to be no way of defining a storing 

device without the use of feedbacks. 

Therefore, expressible memory cells are imperfect. It is 

important to notice that many useful processes have memory cells (or 

their equivalent) as basic building blocks, and such processes must 

take into account this imperfection and are likely to be themselves 

imperfect. In general an imperfect process works "correctly" under 

some classes of input signals, but in certain critical circumstances 

there is no way to guarantee its intended operation. 

4.7 Indeterminacy 

Consider the problem of designing a process which determines the 

time of occurrence of an event, or which measures the value of a 

signal when some event (e.g. "measure it now") occurs. First we must 
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agree on a definition of determining or measuring, and a sensible 

one seems to be storing constantly for an unlimited amount of time. 

We shall not go into the details of such design because it is very 

similar to the problem of producing a perfect memory cell. In fact 

it is not difficult to see that perfect determination is impossible, 

just because perfect storage devices are infeasible. 

A well known case of indeterminacy is arbitration, where a device 

attempts to determine which of two events arrives first. A simple 

way of implementing an arbiter is to use a decider and a memory 

cell. The decider tells at - any instant whether the first, the second 

or both signals are arriving, and the memory cell tries to remember 

the first decision of the decider. But memory cells are imperfect 

and so are arbiters based on memory cells. If the two signals arrive 

too close, the decider changes its decision while the memory cell is 

storing it, and the output of the cell is unstable. 

If we had a perfect memory cell we could build a perfect arbiter 

this way: 

I 

Figure 4.4 An arbiter 

where the decider D is 



196 

D a  a : 

(a) 	(=.) = ..; " first"; 

(=..)4 "a first"; 

"a and P together" 

-4 1 

which at any instant outputs one of four different messages: .., "a 

first", " first" or "a and P together". The perfect cell then 

remembers the first (arbitrarily short) decision different from 

An alternative way of building an arbiter is by using two 

detectors to determine the time of occurrence of two events, and 

then compare these times. But detectors are imperfect because time 

is a continuously changing quantity which cannot be stored 

instantaneously, hence arbiters built in this way are imperfect. 

In general the order or coincidence in time of two events cannot 

be determined. The order cannot be determined when the signals are 

too close, and the coincidence cannot be determined when the 

simultaneous signals are too short. 

4.8 Flip—Flops 

In this last section we analyse a particular analog process, 

showing in detail how its behaviour can be derived from its 

semantics. Here V=(true,false,}, +=false and Vor. 

R 

$ 

8 

r 

Figure 4.5 Flip—Flop 
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This is an SR flip—flop. In one of its steady state conditions we 

have the following values on the ports: 

R=S=sfalse; 	rtrue 

Starting from this condition and applying a set pulse to the port S 

we get s = true and r = false. Another set pulse has no effect. Then 

applying a reset pulse to the port ft we change the output back to s 

= false and r = true. Another reset pulse has no effect. Applying 

both a set and a reset signal, the output signals oscillate between 

true and false, and this is called a metastable state. The actual 

behaviour of a real flip—flop in a metastable state can be rather 

different from the one described above [Chaney 731. We believe it 

can be modelled by introducing some "quench", but we shall not 

undertake this analysis here. 

The SR can be synthesized from smaller components: 

OR = jul in2: (jul or in2) A id' --> out 

NOT = in: (not in) A id" -4 out 

OR1 = OR (K/mi, r/in2, wi/out) 

0R2 = OR (S/ml, s/in2, w2/out) 

NOT1 = NOT [wi/in, s/out) 

NOT2 = NOT (w2/in, r/out) 

SR = (OR1 I NOT1 I 0R2 I NOT2)\wi\w2 

It is an easy exercise to show that this is equivalent to: 

SR = S K s r: 

uot(K or r) A id 4 s X 

not(S or s) A id -, r 
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where d = d'+d". Unfortunately if we try to switch on the flip—flop 

without supplying any signal (i.e. supplying false on all the 

inputs) we immediately get a metastable state. This happens because 

starting with false on all the inputs, we are not in the steady 

state condition. To enforce a well defined start, we supply true to 

r for the first d seconds. At that time the signal from S reaches r 

and the system is ready to work. Hence we redefine: 

SR = S R s r: 

not(R. or r) 11 id '9 s X 

(not(S or s) A id) U (at. t<d) - r 

Computing the semantics: 

SR = IPffSRIJa 

=Y).SR. 

(X[S R s r]. ).t. 

t<d 	false; 

not(R(t—d) or r(t—d) or SR(r)(S:S,R:R,s:s,r:r](t—d)) 

--4s ;  

).[S R s r]. .t. 

t<d 	true; 

not(S(t—d) or s(t—d) or SR(s)(S:S,R:R,s:s,r:r](t—d)) 

) 

and extracting the output transitions: 
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SR(s) = 7 ).T. [X(S R s r]. Xt. t<d =4 false; 

not(R(t—d) or r(t—d) or 

(t<2d 4 true; 

not(S(t-2d) or s(t-2d) or 

T(S:S,R:R,s:s,r:r](t-2d))) 

SR(r) = 

We look at the output signals in absence of input: 

SR(s)(S:.L, R:., s:.., 

= 7 XS. Xt. t<2d =0 false; S(t-2d) 

= 	t. false 

SR(r)(S:'., K:.', s:.', 

= ).t. true 

This means that for S = 1false we obtain s = Ifalse, r = ttrue; we 

are in the steady state condition. Now we supply a pulse t. t<i) 

of an unspecified length it: 

SR(s)(S:(Xt. t<ir), R:.., s:-., r:..] 

= 7 ).S. Xt. t<2d 4 false; t<2d+it 4 true; S(t-2d) 

There are two' cases: (i) the length of the set pulse is it>2d; then 

the flip—flop is properly set (the expression above reduces to 

.t. t<2d false; true) 
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S 

IT 

S 	 I 	I 
d 2d 

Figure 4.6 Stable state 

or (ii) the length of the set pulse is n<2d; then the flip—flop is 

in a metastable state and the output signal oscillates between true 

and false. 

TI 

S 	
i 	I 	I 	L_.. 	 I '—H 
d 2d 

Figure 4.7 Metastable state 

4.9 Conclusions 

We have shown how analog processes can be studied from a 

semantic point of view. The proof techniques for equivalence (a 

process is a simplified form of another one) and correctness (a 

process implements a given transition) of analog processes are 

reduced to the standard proof techniques used in denotational 

semantics. 

Direct "execution" of the semantic equations of a process 

provides a simulation technique. If we wish to know the output of a 

port at time t, we apply t to the output signal of the corresponding 

transition; the value is computed recursively backwards in time 



201 

until (hopefully) a base value is found near time 0. In this sense 

it would be possible to devise an implementation for the language we 

have described. 

Several semantic problems need further investigation, expecially 

regarding the relations between the formal semantics and our 

intuitions about analog processes. 



202 

S. Real Time Agents 

Without trying to make any final assessment of the structure of 

the physical world, one might tale the view that at an appropriate 

level of abstraction there are entities which act and influence each 

other's behaviour through a continuous interaction. These entities 

are called here agents and their interactions are assumed to happen 

in real time. The picture becomes particularly interesting when we 

allow our agents to behave nonda termini stically both in the actions 

they can perform and in the time they take to do it. The ability to 

express nonde termini stic systems is the major difference between 

this chapter and the previous one, deeply influencing the semantic 

techniques we use. 

5.1 Introduction 

This chapter is inspired by Miler's approach to synchronous 

processes, as reported in (Milner 811. The main differences are the 

use of a continuous time domain and a continuous—nonde termini sm 

operator. Milner has shown that many of the characteristics of 

concurrent processes can be modelled and, more importantly, 

manipulated in an algebraic framework tailored to synchronous 

discrete interaction. Although much can be done in a discrete—time 

model by reducing the grain of discreteness to the desired level, we 

think it is interesting to see what can be gained in a 

continuous—time framework and what additional difficulties arise. 

5.1.1 Methodology 

We begin with a general presentation of the operational approach 

to the semantics of concurrent systems (Plotkin 811. 

There is a set of agents p a P which may perform actions a a A. 

The semantics of agents is given by a set of binary relations a 

over P (for all a a A). When 	a 	p' we say that the agent p 
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performs the action a and becomes the agent p'. 

The set P is defined as the free algebra over a signature Z, i.e. 

P is the set of syntactic expressions for agents which are built 

from a set of operators in Z. Some structure is usually imposed on 

the set A, e.g. an abelian monoid or group. 

An operational semantics is defined which specifies the relations 

--1-4. These relations are expressed in a syntax—directed way: for 

every op a Z we say how to derive the reductions 

a 	q" of p from the reductions of p 1 , ... 

A congruence relation "" is defined over P together with some 

useful proof method for proving properties like p—q. This congruence 

relation defines a Y.—algebra P/— which is the semantics of agents. 

A set of algebraic laws holding in P/- is derived. This set of 

laws is particularly interesting when it is complete for finite 

expressions in P, i.e. when the congruence is the same as the 

congruence generated by the laws. This means that two finite agents 

p,q a P are equivalent if and only if they can be proved equivalent 

using the laws. Gordon Plotkin remarked that this property does not 

hold in general for infinite agents (e.g. recursive agents) but it 

can lead to a powerful proof system when coupled with an induction 

theorem. 

5.1.2 The Action Monoid 

Agents progress by performing actions. Actions are denoted by 

the letters a,b,c and d, and the set of all the actions is A. 

Actions can be performed concurrently, so we denote by ab (or 

simply ab) the simultaneous occurrence of actions a and b. We also 

admit a neutral action 1, so that <A,,l) is an abelian monoid, 

i.e.: 
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Unit: 	 a 1 =a 

Commutativity: 	a b = b a 

Associativity: 	a (b c) = (a b) c 

Communication between agents can be modelled by requiring A to be a 

commutative group <A,,1,>, where 

Inverse: 	a i = 1 

We may require A to be a free group over a set N of atomic actions 

(generators) denoted by greek letters a,,y,&. 

A successful communication between two agents is represented by 

the matching of two actions a and 1. The fact that ai = 1 means that 

communication involves exactly two agents, that the respective 

communication capabilities are consumed during the process and that 

an external observer is unable to tell which communication took 

place (he can only observe 1). Note that communication here means 

simple synchronisation, and does not involve the passage of values. 

5.1.3 Time 

The central idea in real time agents is the explicit use of time 

information when expressing the behaviour of agents. Time is assumed 

to be dense, i.e. for every two instants t 0 ,t 1  it is always possible 

to find an instant t such that t 0 <t<t 1 . The real numbers are the 

obvious choice for a dense domain of time, but rational numbers will 

also do. 

We shall formalise the idea of observing a real time system 

during intervals of time, (i.e. not observing at time instants) and 

we want to rule out the possibility of observing zero—length 
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actions. Hence the variables denoting time will range over a dense 

domain 1K (for ronos) = that is the set of strictly positive 

real numbers. The letters t,u,v,w,x,yz will range over 1K. 

5.2 Deterministic Agents 

We first examine agents which are deterministic, in the informal 

sense that every agent has a unique possible development in time. A 

formal property corresponding to the idea of determinism will be 

examined later. 

5.2.1 Signature 

We start with a very simple set of operators to form our 

expressions. This set will be gradually expanded making clear what 

results extend from the smaller signatures to the larger ones. 

Our initial signature Z.D  (where D stands for deterministic) 

consists of: a constant 1 representing the neutral agent always 

performing the neutral action 1; a unary prefix operator a[t]: which 

represents the act of performing the action a for an interval of 

time t; and the binary infix operator X representing the synchronous 

composition (coexistence) of two agents. 

8 0 

a[t]: 	C 	 for all acA and talK 

X 

Finally an agent (denoted by p,q,r,$) is an expression built over 

the signature The set of agents PD is the free 

algebra over 

5.2.2 Operational Semantics 

Now we shall specify how our agents behave, by defining a set of 

binary relations 	) (for acA and talK) over PD.  We read p 	q as 
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"p moves to q performing a for an interval t", or "p takes t to move 

under a to q". 

The reduction rules for deterministic agents are as follows: 

[1-4] 	 1 

(a[]-4] 	 a[t]:p) p 

a[t+u]:p 	) a[u]:p 
ab 

p t )p' 	q 

p q 	> p'xq' 

Rule [1-31 asserts that 1 moves under 1 for an arbitrary 

interval t to produce 1 again. 

Rule [a[]-4] says that a(tl:p takes t to move under a to p, with 

t>O. 

Rule (a(la[]-31 has to do with the density of time; it says that 

after an interval t, a(t+u]:p has only reached a[u]:p. Note that it 

is possible to split actions at arbitrary points, but this is done 

consistently so that the final outcome remains the same. 

Rule (X-3] gives meaning to the coexistence of two agents: if p 

takes t to move under a to p' and q takes t to move under b to q', 

then pXq takes t (the same t) to move under ab to p'Xq'. Note that 

if q is of the form b(t+u]:q", we can use (a(]a[] -3] to get a 

t-derivation of q, so that we can use 

This set of operational rules enjoys two fundamental properties: 

a a 	 a Lemma 5.1 (Density Lemma) ' t;-,,,-> r ) q. '> q, q u > r 

Proof Induction on the structure of the derivation of pt -)r U 

Lemma 5.2 (Persistency Lemma) Vp,t. Jpl. pnIal  .a 9 t1. .t. 

and p 	p1 •.. 
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Proof Induction on the structure of p. The case pp'Xp" needs the 

Density Lemma 0 

We shall abandon the persistency lemma later, but density is 

fundamental for all the systems we study. When adding a new operator 

to our signature, most of the results for the old signature extend 

to the new one, provided that density is preserved. 

5.2.3 Observation 

Agents will be observed by considering the sequences of actions 

they can perform. If the agents p and q are in the relation 

p ) q, and q and r are in the relation q ) r, then we can 

consider the composition of the relations 	) and 	) (denoted 

)o 	>) so that p and r are in the relation p ( 	)o 	)) r. 

Definition 5.1 

>o 	> 	(<p,r> I 	q. <p,q>e 	> and <q,r>e 	>3 U 
(a1 ...a ) 	a1 	a 

We write 	 for 	 > (n>O). Moreover a sequence (t 	.tn Ti 	 n 

of actions is denoted by 

	

—A 	 —A 

	

a = 	 with #a — n 

and a sequence of time intervals by 

t A (t i p ••itn) 	with 	#t 	n 	and 	1t 

We want to observe actions in such a way that, for example, the 

sequences 
(a, a) 	 (a) 
(1,1)> 	and 	(2)4 

are indistinguishable. This can be done by considering similar 

sequences in the following informal sense: 

(a,b,b,b) 	 ( a,a,b,b) ) 	,_ _ 

	

is similar to 	) (2,2,2,2) 	 1,1,3,3,.,   
(a,b) 	

is 	 (a,b) 
(1,2)> 	similar to (2,1) 
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Definition 5.2 Similarity is the least equivalence relation, 	, 

between relations, 	>, such that: 
t 

If a = ... 	 an  = b 1  = ... = bm  and It = 

then 
t _u 	— 

bp 	 of 	
boo If 	 and to 	U' 	 t" 	U" 

—, 	_,, 	i, 	 1.i• 

	

then)o 	 Z)o 	) 
t 

S 	
SI 	 US 

a 
Note that if 	 > then Xt = 

	

t 	U 

The following abbreviation will be used: 

Definition 5.3 p 	q 0 3 	) 	) such that p 	q U 
t 	 to 	t 	 t' 

We can also talk about finer and coarser sequences and the meet 

of two similar sequences: 

Definition 5.4 ) 	is finer than 	> when 	> < 44, where ~ 
t u 	t 	u 

is the least relation satisfying: 

(a 	...a 	) 
 
(t1...t)> ~ 

If 	> •~ and ) boo  
t ' u' 

then 	.) 
—a, 

o 	—

a.1 
- 	

, b') 
tS tS a" 

0 

Definition 5.5 -L! 4 is coarser than 	) (written 	) ~ 	3) 
— 	 t 	 u 	 t 	u 

if 	 >11 
U 
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Theorem 5.1 

The relation ( defines a partial order over the set of transition 

relations 	). Moreover: 
t 

(i)If 	) 	~ )then 	 ) 
t 	U 	 t_ 	U 

U 	 a (b) then 	> 	(b) 
t 	() 	t 	(u) 

The meet (greatest lower bound) of two similar sequences 

> (written 	> A -4--4) exists and is unique. 
t 

Proof Directly from the definitions U 

Finally the Density Lemma implies the following: 

Lemma 5.3 (Refinement Lemma) 

If 	)qand 	)< 	) then p 	)qU 
t 	 u 	t 	 u 

Remark: the Refinement Lemma can also be expressed as: 

	

>< -:&4 implies 	) 
U 	 t 	 t 	U 

Lemma 5.4 (Similarity Lemma) 

If 	> = 	> then 1 4 > 1 

	

t 	— 
If 	> 	> then a(t]:p 	> p 

If 	) 	) then a(t+u]:p 	) a(u]:p 
t 	 — 	t 

(4)If )and 	) 	>then 	 ab 
t 	 _t 	 t 

p 	)p' 	q 
t 	 t 

pXq 	) p'Xq' 
t 

Proof Trivial, except that (4) uses the Refinement Lemma U 

5.2.4 Equivalence 

Informally, the behaviour of agents is given by their reduction 

chains, and we want to regard as equivalent agents which have the 

"same" reduction chains (i.e. which perform the "same" actions) even 

if they are syntactically different as members of PD. After having 
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defined a congruence relation - over PD so that p—q iff they perform 

the same actions, we can then take the equivalence class of p in 

as the semantics of p. 

We are going to define the following equivalence: 

p is equivalent to q iff every time that p can reduce under a 

sequence of actions 	> to p', then q can reduce by a similar 
t 

sequence --!--4 s  to some q' equivalent to p' (and vice versa). This 
t 

equivalence is called smooth equivalence because it ignores the 

"density" of individual actions and only considers their coarse 

result. 

We first define a formula ]D() parametrically in an arbitrary 

relation z over PD: 

Definition 5.6 

n) 

pq 	iff V a eA, t elK. 

both p 	) p' =('. q 	
)5 q' and 	' z q') 

and q 	) q' 	(p'• 	
a )S p' and 	' z q') 

U 

Definition 5.7 Smooth equivalence (-) is the maximal fixpoint of 

the equation Z = ID(Z) in the lattice of binary relations over PD ii 

Theorem 5.2 (Park's Induction Principle [Park 81]) 

p — q if  3RçPDXPD . 

<p,q> a K 

R 

a 

Condition (ii) can be written more explicitly as: 
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<p, q> a R = 

(ii') VP 	> p'. 3<p',q'> 8 K. q 	)S q' 

(ii") V 	) q'. 3<p',q'> a K. p 	)S t 

Theorem 5.3 

- is an equivalence relation. 

- is a congruence with respect to ID = (1, a[t]:, XL 

J)_  is a ID-algebra. 

Proof 

Ci) Easily verified. 

(ii) We have to show that for every 	context C(x]: 

p - q 4 C[p] - C[q] 

It is enough to show (by Park's induction) that: 

p - q 4 a(t]:p 	a(t]:q. 

p - q=pXrqXrandrXp - rXq. 

For (1) take K A (<a(tl:p,a[t]:q> I p - q>) v -. 

(1.base) <a[t]:p,a(t]:q> a K by definition; 

(1.step) if reR because re- then rc]D(K) by definition of -; 

if <a[t]:p,a(t]:q>eR where pq, suppose a(t]:p 

it may only have been derived from Ea[]-41 or (a(]a(1-1. 

(1.step.(a[]—)]) a[t]:p 	)p with ba, ut, Pp. 

By Ea[]-91: a(t]:q 	)q with <p,q> a K by hypothesis. 

(l.step.(a[la(]-41) a(tl:p 	>a(t-u]:p with ba, u<t, Patt-u]:p. 

By (a(]a[]—]: a(t]:.q 	)a(t-u]:q with (a[t-u]:p,b(t-u]:q> a K. 

The rest is symmetric, for a[t]:q 

For (2) the proof follows the same theme, with R 	(<pXr,qXr> I p - 

q>) u - (and symmetrically in the second case), using the similarity 

lemma, and hence depending on the density lemma. 

(iii) This is a standard algebraic result, based on (ii). 

U 
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5.2.5 Algebraic Laws 

The following holds: 

(Xl] 	pXl - p 

(X] 	p X q 	q X p 

(XX] 	pX(qXr) - (pXq)Xr 

(1(1 1] 	1(t]:1 - 1 

(a(]a(]] 	a[t]:a(u]:p - a(t+u]:p 

(a[]X] 	a(t]:p X b(t]:q 	- ab[t]:(pXq) 

All the laws can be proved smoothly by Park's induction. Both the 

congruence property for X and the factorisation law [a[]X] depend 

only on the density lemma; whenever we modify our signature we need 

only to make sure that the density lemma still holds. 

The following results tell us that our set of laws is rich and 

consistent: 

Definition 5.8 Let us denote by E  the congruence defined by the 

set of laws (Xl] ... [a[]X]. We say that p is convertible to q iff 

pm q  U 

Theorem 5.4 (Soundness) 

p 0 q =4 p - 

Proof 

Induction on the derivation of p E q, using the fact that 	is a 

congruence and the laws are valid U 

Definition 5.9 S isn  a[t1]:p 
A  a1 (t 1 ]:.. .a(t1:p (n>O) Ii 

Definition 5.10 An agent is in sequence form if it is of the form 

S 	a.(t.]:1 U 



213 

Definition 5.11 An agent is in normal form if it is in sequence 

form Sj<  a 1 (t 1 ]:1 with (n>O 4 a#l) and (n>2 4 Vi<n. aa.+i) I] 

Theorem 5.5 (Normal Forms) 

Every agent is convertible to a sequence form. 

Every sequence form is convertible to a normal form. 

Every agent has a unique normal form. 

Proof Simple inductions on the structure of terms 0 

Theorem 5.6 (Completeness) 

p - q =+ p 9 q 

Práof 

First prove that for p',q' in normal form, p'—q' 4 p'=—q' by 

induction on the structure of p'  and q' (this is easy because of the 

simple structure of normal forms: we even have p'—q' 4,  p'-- q'). In 

general, by the normal form theorem, p and q have respective normal 

forms p' and q' (so that pmp'  and  qmq').  By soundness p'—p—q—q'. So 

by the first part of the proof p'=—q'. Hence p5p'9q'mq fl 

5.2.6 Determinacy 

We said that our agents are deterministic; in fact there are 

very strong properties that agents must obey in reductions. The most 

important ones are collected in the following action lemmas: 
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Lemma 5.5 (Action Lemmas) 

If 1 	p then a = 1, p = 1 

If a(t]:p 	) q then u 	t 

If att]:p (b)>s q then b = a 
(u) 

If a[t]:p 	q and u > t then p (b) q s 
(u) 	 (u—t)  

If a(t]:p (a)>s  q then p = q 
 

If att] :p (b) >S q and u < t then q = a(t—u] :p 
 

If p'Xp" 	> q then 3a',a",q',q". 

a ' 	 ____ ) q', p" 	) q", a = a'a", q = q'Xq" 

U 

These action lemmas imply, by simple structural induction, the 

following important properties: 

Theorem 5.7 (Vertical Determinacy) 

p 	)ci and p 	>ra=b El 

Theorem 5.8 (Horizontal Determinacy) 

If p 	> q, p 	) r and 	 ?. ) then q = r 
t 	 u. 	 t 	U 	- 	- 

If p - q, p 	) p', q 	> q' and 	) = 4-4 then p' - 
t 	 U. 	 t 	U 

U 

In this formal sense, our agents are completely deterministic, 

and we can also see that it is possible to introduce two orthogonal 

kinds of nondeterminism. This will be done in the next section. 

5.3 Nondeterministic Agents 

5.3.1 Signature 

Let us now consider the signature 
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o 	a IND () 

a(t): 	e 11 for all asA and tail 

+ 	e Z ND 

The agent 0 has no actions, not even neutral actions. When a 

system reaches the state 0, a catastrophe occurs and time ceases to 

flow; hence 0 is called a disaster. 

The prefix operator a(t): represents the act of performing the 

action a for a positive interval of length at most t; we shall say 

that this operator introduces horizontal continuous nondeterminism 

in the sense that arrows can be stretched horizontally according to 

the duration of a(t):. 

The binary operator + represents the choice of two possible 

behaviours, and it introduces vertical discrete nondetexminism; the 

sense of these adjectives may be made clear by the following 

diagram, where the action monoid is on the vertical axis and time is 

on the horizontal axis. The behaviour of an agent is then a 

(possibly discontinuous) trajectory in this space. 

A 

t 

Figure 5.1 

5.3.2 Operational Semantics 

There are no axioms for 0. 

The agent a(t):p takes time vt to move under a to p,  and 

a(t+u):p takes time v(t to move under a to p + a(u):p. Hence a(t):p 

can choose at any move to shorten its life span by some amount; 
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moreover at any point in time it can stop its a—action and start 

executing P. 

If p takes t to move under a to p', then p+q may move under a to 

P' taking time t, or else if q takes u to move under b to q', then 

p+q may move under b to q' taking time u. 

(aO—+] 	 a(t):p 	) p 	 v_~ t 

(aOO—*] 	a(t+u):p v"  p + a(u):p vst 
a b P 	)p' 	q 
____ 	 __ p+q 	P' 	p + q 

 _ —_4  q' 

5.3.3 Algebraic Laws 

Applying the same definition of smooth equivalence to the new 

signature and operational semantics, we obtain the following holding 

in 

[+0] 	p+O - p 

[+p] 	 p + p - p 

[+] 	 p +  q  - q  + p 

[++] 	 p + (ci + r) - (p + q) + r 

[aO+] 	a(t+u):p - a(t+u):p + a(t):p 

(aOaO] 	a(t+u):p - a(t):(p+a(u):p) 

5.3.4 Combined Calculus 

D 

	

We now merge the two signatures into 0 A - 	 ND with P 0  

being the free I 0—algebra. We have to abandon the persistency lemma, 

because of the presence of 0. The density lemma, however, still 

hods: 

,. 	 __ Lemma 5.6 (Density Lemma) p a t+u' r 	q. p 	
_ > q, q 	) r U 

Extending the usual definition of equivalence to 
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Theorem 5.9 

- is an equivalence relation. 

- is a congruence with respect to 10 

P0/— is a 1°—algebra U 

We obtain a new set of laws describing the interactions between 

the two smaller signatures: 

(XO] 	pXO 	0 

(X+] 	p X (q + r) - ( p X q) + ( p X r) 

(101] 	1(t):1 - 

This does not give us a complete set of laws; we lack the 

distributivity of a(t): over X and some law relating a(t): to a[t]:. 

Laws relating a(t): and X are called factorisation theorems. (The 

operator lB used below is explained in the next section; the laws 

(FT2] and [Fr4] hold also with all the 4B elided.) 

EFT11 	(a(t):p X b(t):q)&B - 0 if ab p B 

[Ff2] 	(a(t):p X b(t):q)4B - (ab(t):(pXq))B 

if either Vu<t. (pX(q+b(u):q))4B - (pXq)48  

or Vu<t.v<u. (pX(q+b(u):q))4B - (pXq+a(v):pXb(v):q)B 

and either Vu<t. ((p+a(u):p)Xq)4B - (pXq)lB 

or Vu<t.v<u. ((p+a(u):p)Xq)B 	(pXq+a(v):pXb(v):q)B 

and either Vu<t. ((p+a(u):p)X(q+b(u):q))1B - (pXq)B 

or Vu<t.jv<u. ((p+a(u):p)X(q+b(u):q))&B - (pXq+a(v):pXb(v):q)B 

and either Vu<t. (pXq+a(u):pXb(u):q)4B - (pXq)B 

or Vu<t.jv<u. (pXq+a(u):pXb(u):q)4B - ((p+a(v):p)X(q+b(v):q))4B 

(Fr3] 	(a(t):p X b[t]:q)B - 0 if ab A B 
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(FT4] 	(a(t):p X b(t]:q)4B 	(ab(t]:(pXq))IB 

if Vu<t. (a(u):pXb(u]:q)B - (pXb(u]q)4B 

and Vu<t.v<u. (a(u):pXb[u]:q)B - ((p+a(v):p)Xb[u.]:q)lB 

These laws constitute a major departure from the equational style 

we have observed up to now, and may be an indication that we have 

not chosen the best possible set of primitive operators. On the 

other hand they seem to reflect rather faithfully the complex 

relationships between a synchronous deterministic world and an 

asynchronous nondeterministic one (Z), and we could not devise a 

simpler formulation. The factorisation theorems can usually be much 

simplified in practical situations (e.g. replacing "Vu(t" by "Vu"), 

and they turn out to be very useful in proving equational laws of 

interesting derived operators, as we shall see later. 
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5.4 Communication 

In order to model communication, our action monoid A will be 

assumed to be an abelian group <A,,1,> freely generated by a set 

of names N. For B C  A we define B (I I a a B); then N is the set 

of conames and L A NuN is the set of labels or atomic actions. 

Communication occurs when two complementary actions occur 

together, like in 

a(t]:p X i(t]:q - ai[t]:(pXq) - 1[tl:(pXq) 

In a composition pXq we implicitly establish communication channels 

between all the complementary actions of p and q. Since this 

connections are implicit in the naming conventions of actions, we 

need some operator to control this naming activity, so that we can 

prepare agents for purposeful compositions. 

5.4.1 Restriction 

The restriction operator IB, for B C  A and 1 a B is used to 

extract a subset of the possible actions of an agent, inhibiting the 

rest of the actions. 

a 
p 	)q 

p4B_ )qlB if a a B 

Thus p4B can only perform actions which are in B. The action 1 is 

never inhibited by definition; it represents the possible anonymous 

occurrence of a communication event inside p. 

It should be stressed that restriction is not a hiding of some 

internal actions, but it represents their inhibition, the 

impossibility of their occurrence in isolation (they may occur if 

complemented). Restriction can be used to drive and determine the 

internal behaviour of an agent, as in the following example: 
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p 1  a(t]:1 + b(t]:1 

pl,a) - a(t]:]L 

p4f1,b) - b(t]:]L 

where in each case one of the two sides of + is forced. This idea 

can be used to channel communication, as in: 

	

P 	(&(t]:1 + b(t1:1) X 

p4(1,1) - i(tl:1 

where in the first case a b—communication, and in the second case an 

a—communication, are forced. 

Restriction can induce disaster: 

(a(t]:p)4(1) - 0 

but can also avert disaster: 

(a[t]:0 + b(u1:1)4(1,b) - b(u]:1 

Here are the laws of restriction: 

(4] 	p&B - p 	ifP 8 PB 

(4a[]:] 	(a[t]:p)4B - 	
a(t]:(p4B) if a a B 

0 otherwise 

	

(

[4a0:] 	(a(t):p)4B - S 
at:p&B if a a B 

0 otherwise. 

(4+] 	(p + q)4B - p4B + q4B 

These laws are also valid if we only assume A to be a monoid, but 

note the absence of a law for X. This is better studied in the case 

of the next operator we examine. 

The delabel]ing operator p\c is a particular case of restriction. 

It is used to restrict over a set B in which some atomic action a 

and its complement E never appear as factors; then p4B means 
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hereditarily removing all the c-communications capabilities of p. 

Definition 5.12 p  has 	sort B (or p has B) 	if whenever 
a0 	a 	

(n>0) and 	-A--4 p" then aeB U t o  

Definition 5.13 If B C L then B is the submonoid of A generated by 

BU 

We can now define delabelling as: 

p\a A 	
* 

with laws: 

(\] p.a 	- 	p if p has B and a,E A B 

o if a or E is a factor of a 
[a 	:\] (a(tl:p)\a -  S 

\a[t]:(p\a) otherwise 

0 if a or U is a factor of a 
[aO:\] (a(t):p)\a - 	S 

a(t): (p\a) otherwise 

(X\] (p X q)\a - 	p\a X q\a 

if p has B, q has C and a,t BnC 

[+\] (p + q)\a - 	p\a + q\a 

(\\] p\a\ 	- 

5.4.2 Morphisms 

We need a way of renaming actions, so that we can easily set up 

communication channels. The most general form of renaming is called 

a morphism p(4) where +: A-4A is a monoid homomorphism: 

a. 
P 	'p 

P (4) 

We shall write p(a./.) for the unique monoid morphism renaming the 
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generators P i  to a in p and leaving the other generators unchanged. 

Here are the laws for morphisms: 

(LI] 	p0 - p 

((411 	P(4) - p(4'l 	if pePC  and 4(a)=4'(a) for all aeC 

((4fl4')] p14)(49 - p{$' o 4} 

[a(]:(4)] 	(a(t]:p)(4) 	- 4(a)(t]:(p(4)) 

(aO:(4)] 	(a(t):p)(4) 	4(a)(t):(p141) 

(XC4)1 	(p X q)(4) - p(41 X q(4) 

(+(4)] 	(p + q)(41 - p(4) + q{4} 

(4(4)] 	p4B(4) 	p(4114(B) 

5.4.3 Delays 

We want to be able to model agents in which the actions of an 

(output) port are the delayed copy of the actions of another (input) 

port. It is not enough to have a delay operator which delays a whole 

agent, because this means delaying all the (input and output) ports 

by the same amount. 

Hence we define the operator AtM 	for any M C N containing 

1: 

ab 

[A M-41
Pt+M 	) (qAM)X(1[u]:b[t]:1) 

if factors(a) S MuM and 	cs)p (tivñ) = $ 

where factors(a) is the set of prime factors (generators) of a, i.e. 

not including 1. 

Here are the laws for delays: 
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tM] 	pAtM - p 	if p has M 

(AIM a[u]:] 	(ab(t]:p)AM - a(t]:(pAM) X l[u]:b[t]:1 

if factors (a) 5 MuM and 4efovs (6) A 0 

(AMX] 	(p X q)AM 	pAtM X 

(AM+] 	(p + q)AtM - pAtM + qM 

(A t  MA U  M] 	PA t MA U  M - pAt+u M 

[A t 
U 

MA M'] 	pAMAM' - pAM'AtM 

We shall show some example involving delays after having defined 

recursive agents. 

5.5 Recursion 

A recursive definition facility will now be introduced in our 

language. Its general form for a single recursive definition is: 

xr 

where x is a variable and r is a context, i.e. a term possibly 

containing variables. We have the operational rule: 

a r 	>p 
(4=] 	

x 

The effect of 4= is equivalent to the introduction of a new 

constant x a Z, like in 

x 4= 1 + a(t]:x 

To satisfy this definition, it is sufficient to find a p such that 

p1+a(t]:p 

because all our laws are valid up to equivalence. In fact it is easy 

to show that [4=] implies x - p. 

But we still need to specify which particular x we want, when 

several of them are available, like in the definition x 4= x. To 

avoid this problem we restrict our admissible definitions to those 
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having a unique solution up to equivalence; thus there is no doubt 

about which x we mean. We shall do so by imposing syntactic 

restrictions on the form of our definitions, or more precisely on 

the form of our sets of definitions (to take into account mutual 

recursion). 

Definition 5.14 A definition set is a set of pairs (<x 1 ,r.>), 

written fx 1 	r) or 	4 	, where the x 1  are variables and the 

are contexts El 

Definition 5.15 r4;/x) is the result of simultaneously replacing 

each x by Pj  in r II 

Definition 5.16 A 1—step expansion of a definition set 	4= is 

obtained by replacing x1r i by x1r[r/x) (for some i and j) in 

4=. A finite expansion +' of 2+ is an expansion obtained by a 

finite number of 1—step expansions. U 

Lemma 5.7 If 	is a finite expansion of 	then for all , 

- 	- 	a 

Definition 5.17 A variable x is guarded in a context r if all the 

occurrences of x are in subterms of r of the form a[t]:r' or 

a(t):r'. A context r is guarded if all its variables are guarded El 

In order to have unique solutions for our definition sets, we 

need to exclude definition sets which expand indefinitely but only 

approach a finite limit (i.e. such that the sum of the durations of 

an infinite chain of actions is finite). Definition sets in which 

every infinite reduction chain has an infinite duration are called 

persistent. 

Definition 5.18 A definition set (1 1 	r1) is guarded if there is a 

finite expansion (x 1  4 r1 such that each rj is guarded U 
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Definition 5.19 A definition set (x 1 4= r) is persistent if 

whenever -(/) then for all J ,  p, >P implies that there exists 

a finite expansion r' of r such that r 	>Srj with r(p/x)—P U 

Lemma 5.8 Every persistent definition set is guarded 0 

Lemma 5.9 Every finite guarded definition set is persistent U 

Remark I: the previous lemma becomes false if we introduce 

"time—shrinking" operators in our signature, like: 
a 

p 	)q 

Ap 

In fact, take rAa[t]:x and p=Aa(tl:1, with ai41; we can show: 

Aa(t]:1 - Aa[t]:Aa[t]:1 

by Park's induction. Hence p-r(p/x) is a solution for (xr} and 

p-4-41, but for any expansion r of r we can only have reductions 

of the form 

-4-4 s  r' = Aa(t]:...Aa(t]:x with r'tp/x) 1 1 

Remark II: the following infinite definition set is guarded but 

not persistent: 

(Z U  4= 1 [n]:Zn,2 I nelK) 

In fact Vn. pl is a solution (suggested by Matthew Hennessy) and 

p=1  ) 1 but there is no finite expansion 4 of Z1  such that 

4 ) 1; in fact all the expansions of Z 1  have the form 4 = 
l(1]:l(l/2]:l[1/4]:l(l/8]:..,. where the sum of the durations of the 

actions is always less than 2. 

Theorem 5.10 (Recursion Theorem) 

Every persistent definition set 	has a unique solution up to 

-, i.e.: p - r 1 (p/) and q 1  - r 1 (q/) =0 p 1  - qi  

Proof Let Z 	(<C(/),C(/)> I C is a context) 

- pi 	q (take C = x1). 
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- C('/) 	> P may hold because: 

either C 	) C' with P=C'(/); 

then also CCq/) 	) Q=C'tq/), and Q=P 

or x is not guarded in C and p j a 	P; 

then because 	is persistent there is a finite expansion 

with r a >SrD and 

Then also r(/) 	)Sr(/}, and since 

we have q ) 5Q.-r(/}. 

Hence C(q/) 	)S Q with Q z p 

U 

Let us try a simple example of recursive definition: 

Xa = 

The agent ]Ea  produces a—actions indefinitely. Using the recursion 

theorem it is possible to show that the "1" in the definition of 

is non critical: 

a[t]:lKa  

- a(t]:a[l]:lKa  

- a[t+1 ]: ]Ka  

- a( 1 ]:a[t]: a  

Hence the equation 

x 	a(1]:x 

is satisfied both by 1K5  (by definition) and by a[t]:iKalp  and by the 

recursion theorem we can conclude that: 

- a[t]: 5  for any t 

and also that, for a1: 

- 1 

Similarly from the equation: 

X Xb 

- a(l]:]K5  X 

- ab(l]:(]K5 



227 

we can deduce: 

a 	b - 	ab 

Going back to the delay operator, we can define a not gate with 

delay z in the following way: 

Not' z 4 a0i(z):Not' z + a10 (z]:Not' 

Not z 4= (Not'Lp1)  X p0 [z]:1 

This not gate is not completely satisfactory, because it assume that 

its input signal changes at multiples of z (otherwise a disaster 

occurs). We shall see in a later section how to solve this problem 

of unsynchronised input by using nondeterministic guards. 

5.6 Indefinite Actions and Delays 

We shall see that one frequently uses nonde termini st ic guards 

a(t): only to prove that the particular t we use in not really 

important. This situation can be made systematic by defining an 

operator a.p (indefinite action) performing an action a for an 

arbitrary amount of time: 

a.p 4= a(1):(p + a.p) 
This particular choice of unit delay in the above definition makes 

no difference, as we have: 

a(t):(p + a.p) 

- a(t):(p + 

a(t+1):(p 

a(1):(p + 

a.p - a(1):(p 

a(1):(p + 

Hence a.p - aft 

a(t):(p + a.p + a.p) 

a.p+ a(1):(p + a.p)) 

+ a.p) 	 by (aO+] 

a.p + a(t):(p + a.p)) 	by [aO+] 

+ a.p) 

a.p + a.p) 

+ a.p) 

by recursion theorem. 

Moreover a.p enjoys the laws: 
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[1.0] 	1.0 - 1 

[a.] 	a.p - a.(p + a.p) 

(a.Xb.] 	a.p X b.q - ab.(pXq + a.pXq + pXb.q) 

Note the importance of the law (a.Xb.]; it allows us to equationally 

factorise actions in horizontally nonde termini stjc agents, which we 

could not do for the 'a(t):' operator. The law is proved by the 

factorisation theorems, thereby demonstrating some of their power. 

The above laws can be proved as follows: 

1.0 - 1(1):(0 + 1.0) - 1(1):(1.0) 

Hence 1.0 - 1 

1.1 - 1(1):(1 + 1.1) 

1 - 1(1):1 - 1(1):(1 + 1) 

Hence 1.1 	1 

a. (p + a. p) - a(1):(p + a.p + a. (p + a.p)) 

a.p 	a(1) (p + a. p) - a(1) : (p + a.p + a. p) 

Hence a.p - a.(p + a.p) 

a.p X b.cj - a(1):(p+a.p) X b(1):(q+b.q) 

- ab(1):((p+a.p) X (q+b.q)) 	(*) 

ab(1):(pXq + a.pXq + pXb.q + a.pXb.q) 

ab.(pXq + a.pXq + pXb.q) 

- ab(1):(pXq + a.pXq + pXb.q + ab.(pXq + a.pXq + pXb.q)) 

Hence a.p X b.q - ab.(pXq + a.pXq. + pXb.q) 
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The step leading to () uses a factorisation theorem ([FT2]); the 

four hypotheses of the theorem can be verified as follows (using the 

fact that a.p—a(t):(p+a.p) and b.q—b(t):(q+b.q)): 

(p+a.p) X (q+b.q+b(t):(q+b.q)) - (p+a.p) X (q+b.q) 

(p+a.p+a(t):(p+a.p)) X (q+b.q) - (p+a.p) X (q+b.q) 

(p+a.p+a(t):(p+a.p)) X (q+b.q+b(t):(q+b.q)) - (p+a.p) X (q+b.q) 

(p+a.p)X(q+b.q) + a(t):(p+a.p)Xb(t):(q+b.q) - (p+a.p) X (q+b.q) 

A closely related operator to a.p is indefinite delay: 

p+a.p 

where the agent p may be activated immediately, or delayed 

indefinitely by an action a. The following laws can all be easily 

proved from the properties of a.p: 

- 

- a a 	a 

- ap 

b ap X 8bq -  8ab8a X &q) 

6a1' X 6b q -  &(ôpXq + pXôq) 

5.7 Synchronising on Non—Synchronous Input 

Suppose we want to express an agent I which takes an input on 

port a and produces the same value as output on port 	without any 

delay. The simplest form of I, written 'null with null=(nil), 

accepts a single value nil and can be written: 
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'null 	aniibnii(ll:Inu1j 

i.e.I 	—iK 	- 

	

null 	aflilbnjl 

The next simplest form of I is 'bool  with bool=(l,h) (low and 

high) and, surprisingly, this cannot be written with deterministic 

guards. In fact the definition: 

	

'bool 	albl[l]:IbOOl + ahbh(l]:Ib OO l 

will not work because the input 
'bool  may change at any time, while 

for example the guard a11 (1]: once selected must be taken to 

completion. The "1" in the definition of 
'bool  is critical, and 

cannot be replace by a different number without changing the 

behaviour of the agent. Computing the behaviour in case of 

unsynchronised input we obtain, for example: 

	

bool 	ah(O.S]: ]Ki)\al\ah 	bh[O. 5 ]. 0  

while we might expect the result to be bh(O.S1: 1K 
1
. The example 

above behaves correctly if we replace "1" by "0.5" in the definition 

of I 
bool'  but of course we can always pick up an input waveform so 

that the output degenerates to 0. 

Let us now redefine I bool by using nondeterministic guards: 

	

bool 	albl ( l ) :IbOO l + ahbh(l):Ib o l 

we can now prove that the choice of "1" in the definition is not 

critical: 

bool - alEl(t):IbOOl + ahbh ( l ) :Ibl 

bool - alj ( l):IbOOl + ahbh ( t ) :Ibl 

Then we can prove the desired properties of 'bool' using the 

factorisation theorems [FT3] and [FT4] to relate the asynchronous 



231 

behaviour of 'bool  to a synchronous input: 

bool X ahtt].p)\ah 	httL( 1bOOlXP)\ah 

bool X 11[t]:p)\a1 - Sl[t]:(IbOQlXp)\al 

The other factorisation theorems ((FT11 and (Ff21) are needed to 

prove the interactions of two asynchronous agents; for example in 

the proof of: 

(IboolEci/bi) X Ibool(Ci/ai))\ci - bool (is(l,h)) 

5.8 An Asynchronous Rising Edge Counter 

We now discuss an example of the application of nonde termini stic 

guards. Suppose we have a boolean signal: 

t i.  t2 	t3 	t4  t5 	t6 	t7 	t8 	t 
	tjQ 

Figure 5.2 

where the length of the segments t is completely arbitrary. The 

problem consists in counting the number of rising edges (i.e. 

transitions from low to high) which have occurred in the signal at 

any given time. It is pretty well evident that there can be no 

solution using deterministic guards as any proposal would be bound 

to fail for some input waveform. 

The counter has two states: Low s  and Highs, and n is increased at 

any passage from Low to High (for simplicity, the count n is not 

supplied as an explicit output) 

LOWn 	l(l):Lown + h(1):High 1  

High4= l(1):Low, + h(1):High 

Note how the guards "1" and "h" are programmed to last as long as 

their corresponding asynchronous inputs. As usual, we first have to 

prove some invariance lemmas: 

Lows 	l(t):Low + h(1):High 1  

/ 
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High 	l(l):Low + h(t):High 

Lowe 	1(1) :Low + h(t) :High 1  

Highs  - l(t):Low + h(1):High 

The following equivalences state the correctness of the counter; 

the input signal is assumed to be a sequence of deterministic 

guards, and the equival nces can be proved by using (Fr3] and (Fr4]. 

(Lowe  X I(t]:p)\l - l[t]:(Low X p)\l 

(Highs  X (t]:p)\h - l[t]:(fiigh X p)\h 

(Lows  X (t]:p)\h - 1(t1:(lligh 1  X p)\h 

(:aigh X I(t]:p)\l 
	

l[t]:(Low X p)\l 

5.9 Descriptive Operators 

Some operators can be introduced in order to describe properties 

of agents, without adding any expressive power themselves. 

Here is a very simple descriptive operator: 

	

p 	>q 

	

 

ffp 	1Tq  

Definition 5.20 An agent p is persistent if Up - 1 El 

The persistency operator allows us to distinguish agents which 

may end up in disaster from agents which carry on forever. This 

operator can help us if we want to exclude nonpersistent agents of 

any kind from the class of "physically existent" or "implementable" 

agents. 

In order to talk about synchrony, we can introduce a 

synchronisation operator r'1 designed to "impose" a clock on an 

otherwise unsynchronised agent. We actually introduce an indexed 

family r t  of such operators, meaning that rtp synchronises p to a 
clock of period t a X. 



a 
p 	>q 

> r t q  

ir+ -41J'tp 	 ) a(v]:q 

Rule [V-] says that 	can perform "t—ticks" only if p can, 

i.e. p must be synchronisable to a clock of period t, otherwise rtp 

will stop. 

Rule 	 is introduced in order to preserve the density 

lemma. 

Definition 5.21 An agent p is t—synchronous if p - 	U 

The definition of t—synchrony intends to capture the idea that 

all the "significant changes" (i.e. transitions from an a—action to 

a different b—action) in a t—synchronous agent occur at instants 

which are divisors of t. For example: 

p 4 a[2]:b[2]:p 

p 	is 2—synchronous, 	1—s7nchronous, 	etc., 	but 	it 	is not 

3—synchronous, 4—synchronous, etc. because p cannot produce any 

action longer than 2. Note that 1 is t—synchronous for all t. 

Definition 5.22 An agent p is non—synchronous if it is not 

t—synchronous for any t U 

An example of non—synchronous process is provided by a "bouncing 

ball" agent which is persistent and changes its output at a faster 

and faster rate: 

Pn  4= a[l/n]:b(l/n1:p 1  

If we eliminate the nonde termini stic guard 1'8(t):" from our 

signature, and we replace "a[t]:" by "a(l]:" (abbreviated "a:"), 
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than all the agents which can be expressed are 1-synchronous. The 

set of 1-synchronous agents corresponds exactly to the 

synchronous-CCS calculus [Milner 811, in the sense that the same set 

of laws holds. 

Finally we can try to characterise some form of asynchronous 

behaviour by the following operator: 

a 
P 	)q 

(A-4] Ap 
t+u  Aq 

which stretches by arbitrary amounts all the actions of an agent. 

Definition 5.23 An agent p is asynchronous if f p Ap El 

Note that this definition allows us to make a subtle distinction 

between non-synchronous or non t-synchronous agents (which are 

deterministic) and asynchronous ones (which are completely 

nonde termini stic) and that many other behaviours lay in between. 
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6. Conclusions 

6.1 Achievements and Future Work 

This thesis has demonstrated how algebraic techniques can be 

naturally applied to several aspects of hardware description and 

verification, with particular emphasis on the syntax and semantics 

of VLSI circuits and design systems. Indeed, we might say that our 

effort was not to apply preconceived techniques to new problems, but 

rather that the problems themselves seemed to fit naturally in a 

environment which had developed for different (but after all, 

related) purposes. 

In Chapter 1 we have introduced a notation for the structural 

description of networks, giving laws for net expressions which 

characterise a suitable kind of graphs. This work might be extended 

in several directions. Infinitary sorts might be useful in some 

applications; for example the sorts used in Chapter 3 are finite 

but, as explained in Section 1.10, they might be naturally regarded 

as uncountably infinite. An attempt could be made to axiomatise 

planar networks, and to prove completeness and initiality theorems 

with respect to that axiomatisatjou; we have taken the simpler 

approach of defining planar networks as a particular case of 

networks, without trying to characterise them (Section 1.7). Planar 

sorts and cycles might be extended to three—dimensional objects in 

order to express the incompenetrability of solids; this is briefly 

discussed in Section 1.10. Finally, the problem of deciding the 

equivalence of two net expressions (or equivalently the isomorphism 

of two net graphs) appears to be polynomial, but we need to study 

tight upper bounds and to provide good equivalence algorithms. 

In Chapter 2 we have shown how a wide variety of levels of 

description of hardware circuits can be cast in similar formal 
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frameworks, so that the passage between levels is facilitated. A 

formal semantics has been given for the topmost behavioural level 

which concerns synchronous systems; formal proofs concerning these 

systems seem to be well suited to mechanistion, but they also badly 

require mechanical aids. A more complex problem is the definition of 

viable semantics for non—synchronous systems; Chapters 4 and 5 

attack this problem, but further work is needed. 

A major problem left unsolved in this thesis is the definition of 

a satisfactory dynamic semantics of low—level hardware (i.e. below 

the gate level). Rather accurate informal models are discussed in 

Section 2.4 but difficulties arise in, formalisation; certain 

semantic techniques (like those discussed in chapter 4) could be 

applied in principle, but they seem to give rise to intractable 

formal systems. The static CSA semantics we present seems instead 

rather satisfactory because it can model the context—dependent 

relaxation processes which are characteristic of low—level hardware, 

and can help in understanding the dynamic behaviour of circuits. 

In the study of the translations between levels, two novel 

algorithms have been presented. One is an efficient stretching 

algorithm for grid structures, which simulates the two—dimensional 

stretching of matrices by the composition of stretching 

transformations. The second is an algorithm for the context—driven 

translation of purely topological planar stick diagrams (represented 

by textual expressions) into grid structures, and hence into 

layouts. Both algorithms need to be tested, expecially because the 

latter algorithm uses limited heuristics. 

In Chapter 3 we have described an experimental system for the 

design of VLSI layouts, which uses algebraic concepts to abstract 

away from geometric details. The system is built around a functional 
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higher—order language, which provides the necessary control and 

parameterisation structures. Interactive graphical feedback is used 

in the development of programs in order to better relate the textual 

representations to geometrical layouts. The system might be improved 

in several directions; in particular, planarity checks and design 

rule checks were not included in the implementation to allow for a 

deeper investigation of other innovative features. 

Finally we have presented two different attempts towards the 

formalisation of real—time systems using, respectively, denotational 

and operational semantics techniques. The theories developed seem to 

give rise to satisfactory semantic models, but much theoretical and 

practical work has to be carried out in order to test these ideas on 

large scale applications. It is hoped that formal systems of this 

kind can be used to formulate and prove properties of low—level 

hardware; encouraging steps in this direction are described in 

[Gordon 81a, Gordon 81b]. Several intuitive properties of the analog 

processes formal system have been left as conjectures which we 

believe could be formally stated and proved in our framework. 

6.2 The Future 

6.2.1 VLSI 

VLSI is going to become the single most important technology of 

the next 20 years, and probably longer. It is already the most 

sophisticated technology ever devised, and its potentialities are 

today too remote to be fully appreciated. Even its limitations are 

too remote, and it seems that for some time the main difficulties 

will consist in effectively exploiting the remarkable features which 

are presently available. 

The shape of things to come in VLSI is usually expressed by 

Moore's Laws (so—called). The First Law is very optimistic (slightly 
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more optimistic than reality) stating that the number of devices per 

silicon chip doubles every 2-3 years. This "law of nature" was 

discovered in the mid—sixties and the exponential rate of growth it 

forecasts has been essentially respected up to now, and it will also 

be roughly respected in the next 5-10 years. After that, some very 

basic physical limits of the present integration technology will be 

reached, although progress may continue in other directions. 

Hence in about 10 years we shall be able to put something like 

100 million transistors on a silicon wafer. We have to think about 

how to use them in interesting ways. Exciting possibilities have 

already been found which critically use the features of VLSI 

technology [Kung 801, and many more remain to be discovered. 

Almost every aspect of computer science will have to cope with 

this new technology. Even the less technology—related disciplines, 

like complexity theory, semantics, formal languages, algorithms and 

software engineering are going to be deeply influenced by this new 

way of looking at computation. This is just the beginning, and we 

should carefully try to avoid repeating old mistakes. 

6.2.2 Design Tools 

Moore's Second Law is, instead, very pessimistic. It says that 

the design time of VLSI chips grows exponentially with the number of 

devices per chip (and that we are already close to the 

almost—vertical zone). 

The biggest task for the design tool designers in the next few 

years will be to falsify this law. This cannot be done by linearly 

improving existing design systems and methodologies; totally new 

lines of attack are required. It is far too early now to guess what 

kind of design systems will prevail. It seems certain that 
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translation techniques and effective graphic interaction will be 

useful, but it is not at all clear how. 

One noticeable trend is towards very complex systems with 

data—bases maintaining multiple levels of descriptions of circuits, 

where the user can jump from level to level editing text and 

graphics and optimising subcircuits, a ad where the system preserves 

the overall integrity of the design by making expert autonomous 

decisions based on complex heuristics. 

This is not our aim; we have tried to demonstrate that the 

problems involved can best be cast in a simple framework involving a 

few primitive concepts, and many interesting translations are almost 

completely algorithmic, using only limited heuristics or a few user 

interactions at critical points. As many examples in computer 

science have shown, sometimes only simple solutions are able to 

solve complex problems. 

6.2.3 Semantics 

Given the complexity of future hardware systems, and their 

widespread use in all aspects of human life, important security 

problems arise. How can we know that chips controlling critical 

systems, like power plants, airplanes, cars etc. will not contain 

fatal "bugs", or that they will be immune to catastrophic hardware 

failures? In the case of microcoded systems, or hardware—software 

combinations, we cope with the still noticeably unsolved problem of 

medium—large scale software verification. One (not yet well founded) 

hope here is that abundance of hardware will let us write software 

suitable for formal verification. 

Further work is needed in the semantics and verification of 

hardware systems; at the most abstract level this reduces to the 
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problem of giving tractable semantics to extensively concurrent 

systems. For the purposes of verification, one should be aware of 

formal systems which are completely satisfactory from the point of 

view of expressiveness and generality, but which do not allow us to 

carry out complex proofs because of technical clumsiness. In this 

respect equational approaches like [Milner 801 are promising, 

because they seem to be very suitable for mechanisation. 

At lower levels (like the CSA level and below) not even semantics 

is well established. This is to be attributed to the fact that in 

electronic circuits the semantics of the whole is not a simple 

function of the semantics of the parts, and complex relaxation 

processes are involved. The main semantic techniques seem to come 

from the field of circuit simulation, and simulation is not 

satisfactory from a semantic point of view. Even simulators are 

often criticised on the ground of not being realistic, but this 

unrealism may be because they. have to compromise between accuracy 

and efficiency; disregarding efficiency there may be a satisfactory 

semantic model. 

In conclusion the current lack of flexible verification systems 

may be because verification is at the same time a very difficult 

problem in each of several distinct areas: mathematical foundations, 

artificial intelligence, semantics and software engineering. There 

is some indication that these areas are slowly converging towards 

viable solutions, and together with the steady increase in 

computational power we retain some hope for future success. 
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Appendix I. Syntax Description Notation 

The following conventions are used to present grammars: 

- strings between single quotes "" are terminal symbols; 

- "'" is the null string; 

- identifiers are non—terminals; 

- juxtaposition is concatenation; 

is disjunction; 

- 	... 1" means zero or one times "..."; 

)n" means n or more times "..." (default n0); 

)n" means n or more times "..." separated by "--" 

(default n0); 

- parenthesis "( ... )" are used for precedence; 

- "::=" is used for mutually recursive definitions. 

As an example, the metanotation is described in terms of itself: 

Grammar :: (Identifier '::' Term) 

Term ::= 

[ Characters  

Identifier] 

Term Term I 

Term 'I' Term I 

Term 

Term ( 'I' Term ] ')' [Integer] 

'(' Term ')' 



Appendix II. Table of Symbols 

0 empty set 

sets 

set descriptions 

a a A set membership 

AuB set union 

AnB set intersection 

A\B set difference 

AB symmetric difference (A\BvB\A) 

ACB A is a subset of B 

A3B A is a superset of B 

Isi cardinality of a set S 

A--)B function space 

BA function space A—)B 

f: A—B f is a function from A to B 

f: ao-4b f maps a into b 

rfl domain of a function 

fA function restricted to the domain A 

idA identity function on A 

fog function composition ((fog)(a) 	= f(g(a))) 

f#g function pairing 	((f#g)<a,b> = <f(a),g(b)>) 

f inverse function 

f(a) function application 

AXB cartesian product 

pair 

left projection (<a,b>4 1=a) 

right projection (<ab>1 2 b) 

As set of finite lists over A 

[e 1 ;..;e] list 	(nO) 

242 
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- 	 boolean not 

A 	 boolean and 

V 	 boolean or 

implies 

implied 

if and only if 

V 	 forall 

exists 

ab;c 	 if a then b else c 

let a 1=N1  and .. and an=Nn  in M 

binds N i to a 1  in the scope M 

M where a1=N1  and .. and 

binds N 1  to a 1  in the scope M 

9 	 equivalence 

= 	 equality 

isomorphism 

equal by definition 

S 	 Sort 

S 	 set of sorts 

W e S 	 list of sorts 

= <S, Z> 	signature 

e w,s 	operator syiol of rank w,s, arity w, sort s 

A = <A,A1> 	algebra with carriers A and operations At 

 of A named by a, 5  

Types 

Por tNanie $ 

a,b 

A B, C 

s: A —> Types 

net algebra types 

net algebra port names 

port names 

finite sets of port names 

net algebra sort 

A 	 operator 
'W '  S 



e net expression 

e 	(a1 : 	T1 ) syntax for sorts 

1 e IL literal 

sort of a literal 

e\a restriction 

e(r) renaming e(a 1 \b 1 ) 	(a 1  becomes b) 

I implicit composition 

e[r]e' explicit composition e(a --bile' 

sort of an expressions 

convertibility 

t —4 b 	 clocked transitions 

41142 	 clock phases 

—4 b 1 > 	phase-1 clusters 

—4 b 1v> 	phase-2 clusters 

tt,ff 	 boolean true and false 

o CSA strong zero 

1 CSA strong one 

o CSA weak zero 

1 CSA weak one 

U CSA strong undefined 

U CSA weak undefined 

Z CSA floating 

F either 0 or 0 

T either 1 or 1 

0 CSA connection operation 

GND ground 

VDD power supply 

lambda notation for functions 
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M--9, a 	 analog process transition 

X 	 product of transitions 

U 	 join of signals 

NIL 	 empty transition 

nosignal 

U ie,Ti  indexed product of transitions 

I composition of analog processes 

\a restriction 

at.V pointwise definition of signals 

recursively defined signal 

MEN/a] syntactic substitution (N replaces a) 

(aI} renaming (A i  replaces a) 

L finite set of labels 

PL,LIL')TL a domain of processes 

P=ZL L'L L' domain of all processes 

TL=SL  - S a domain of transitions 

S=K ---)V a domain of signals 

time 	(positive reals) 

V a domain of signal values 

<V,4,V> 	 signal monoid 

[a:s] 	 labelled tuples of signals 

(a 1 :s 1].as 	fieldextraction 

abbreviates Xx.M(x.a 1 /a 1 ] 

syntax for processes 

Y 	 least fixpoint operator 

semantics of terms 

S 	 semantics of signals 

IP 	 semantics of processes 

tV 	 8t.V when t does not occur in V 

SAS' 	 delay operator on signals 

I 	 semantic bottom 
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