
An Algebraic Approach to Hardware

Description and Verification

by

Luca Cardelli

Doctor of Philosophy

University of Edinburgh

1982

CO

Abstract

We apply algebraic techniques to various aspects of hardware

description and verification, with particular emphasis on VLSI (Very

Large Scale Integration) circuit design.

A simple and uniform notation for the description of networks of

hardware components is introduced. It is shown how to impose

planarity constraints, and how to treat regular and repetitive

structures in convenient ways.

The notation is applied to several examples of hardware networks.

All these examples constitute different levels of description in the

process of translating behavioural specifications into VLSI

circuits. A formal semantics is given for the topmost level.

Algorithms are given for the translation of purely topological

planar stick expressions into metric structures from which layouts

can be generated.

The implementation of an experimental VLSI design system is

described which uses algebraic concepts to hide detailed geometrical

information. Geometric layouts are introduced as an abstract data

type in a general purpose functional programming language and

considerable advantages over traditional design systems are

demonstrated with respect to the user interface.

On the semantic side, two different formal frameworks are defined

for the description of systems developing in continuous time. The

emphasis is again algebraic, and techniques of both denotational and

operational semantics are used. In the operational framework

nondeterministic systems can be treated in a natural way, and it is

possible to precisely formulate the behaviour of synchronous and

asynchronous systems and to study their interactions.

Acknowledgements

I would like to thank first of all my supervisor, Gordon Plotkin,

for his help, encouragement and precise hints in the development of

this thesis.

I regard this thesis as much a product of the Edinburgh

environment as my own and I find it difficult to sort out all the

ideas great and small which have been transmitted to me during these

years. I would like to thank Robin Milner and Matthew Hennessy for

continual assistance; Mike Gordon, Glynn Winskel, Kevin Mitchell,

Igor Hansen and Marc Snir for helpful talks; Jeff Tansley and Irene

Buchanan for getting me involved in VLSI; and the "system people"

for providing some concreteness and an enjoyable computational

environment.

During my stay I have been supported by a scholarship of the

Italian National Research Council and a scholarship of the

University of Edinburgh.

Declaration

This thesis has been composed by myself and the work is my own,

under the guidance of my supervisor Gordon Plotkin. Parts of

Chapters 1 and 2, produced in different form in collaboration with

Gordon Plotkin, appear in [Cardelli 81a]. Chapter 3 is [Cardelli

81b], Chapter 4 is (Cardelli 801 and Chapter 5 is an extended

version of (Cardelli 821. Sections 2.5-2.6 have been submitted for

publication.

Contents

0. Introduction

0.1 The Past

0.1.1 Microelectronics

0.1.2 Design Tools

0.1.3 Semantics

0.2 This Thesis

1. Algebra of Networks

1.1 Introduction

1.2 Many—sorted Algebras

1.3 Net Algebras

1.3.1 Sorts

1.3.2 Signatures

1.3.3 Net Expressions and Laws

1.3.4 More on Net Expressions

1.4 Net Morphisms

1.5 Net Algebras and Flow Algebras

1.6 The Initial Net Algebra

1.7 Planar Networks

1.8 Bunched Networks

1.9 Planar Bunched Networks

1.10 Molecules, Rypercubes, Mosaics and Klein Bottles

1.11 Main Example: The Foster & Kung Pattern Matcher

1.12 Appendix: Some Proofs Needed for the Initiality Theorem

6

2. Hardware Networks for VLSI 	 -

2.1 Introduction

2.2 Layouts

2.3 Clocked Networks

2.3.1 Clocked Transition Algebra (CTA) Expressions

2.3.2 Main Example

2.3.3 Formal Semantics of CTA

2.3.4 Semantics of the Main Example

2.4 Connectc r—Switch—Attenuator (CSA) Networks

2.4.1 The Value Domain

2.4.2 Connectors, Switches and Attenuators

2.4.3 Basic CSA Circuits

2.4.4 Static Semantics of CSA

2.4.5 Main Example

2.4.6 From CA to CSA

2.5 Stick Networks

2.5.1 Sticks

2.5.2 Stick Expressions

2.5.3 Examples

2.6.4 From CSA to Sticks

2.6 Grid Networks

2.6.1 Grids

2.6.2 Discrete Stretch Transformations

2.6.3 Normal Grid Composition

2.6.4 Grid Expressions

2.6.5 Grid Recomposition

2.6.6 From Sticks to Grids

2.6.7 From Grids to Layouts

Sticks & Stones

3.1 Introduction

3.2 Pictures

3.2.1 Forms

3.2.2 Restriction

3.2.3 Renaming

3.2.4 Composition

3.3 Bunching

3.4 Iteration

3.5 Paths and Geometric Renaming

3.6 Figures

3.7 Commands

3.8 Modules and Externals

3.9 Efficiency

3.10 Conclusions

3.11 Syntax

Analog Processes

4.1 Introduction

4.2 Analog Processes

4.3 An Algebra of Analog Processes

4.3.1 Composition

4.3.2 Restriction

4.3.3 Renaming

4.4 A Denotational Model

4.5 Feasibility

4.6 Expressibility

4.7 Indeterminacy

4.8 Flip—Flops

4.9 Conclusions

5. Real Time Agents

5.1 Introduction

5.1.1 Methodology

5.1.2 The Action Monoid

5.1.3 Time

5.2 Deterministic Agents

5.2.1 Signature

5.2.2 Operational Semantics

5.2.3 Observation

5.2.4 Equivalence

5.2.5 Algebraic Laws

5.2.6 Determinacy

5.3 Nondete rministic Agents

5.3.1 Signature

5.3.2 Operational Semantics

5.3.3 Algebraic Laws

5.3.4 Combined Calculus

5.4 Communication

5.4.1 Restriction

5.4.2 Morphisms

5.4.3 Delays

5.5 Recursion

5.6 Indefinite Actions and Delays

5.7 Synchronising on Non—Synchronous Input

5.8 An Asynchronous Rising Edge Counter

5.9 Descriptive Operators

6. Conclusions

6.1 Achievements and Future Work

6.2 The Future

6.2.1 VLSI

6.2.2 Design Tools

6.2.3 Semantics

Appendix I. Syntax Description Notation

Appendix II. Table of Symbols

References

1

0. Introduction

0.1 The Past

We begin with a review of those recent developements in the

fields of microelectronics, design tools and semantics which are

relevant to this thesis.

0.1.1 Microelectronics

During 	the 	past 	few 	years, 	the 	steady 	progress 	in

microelectronics has reached a point where completely untrained

people can be taught, in the span of few weeks, to conceive and

design highly complex hardware systems.

This fact may come as a great surprise to two categories of

people. On the one side professional hardware designers have seen

the complexity of systems growing beyond any control, to the point

where the technology is clearly more powerful than the ability to

use it. It seems then unlikely that untrained people might do

better.

On the other side the average (computer) scientist who has been

trained to think that "the hardware is made by the engineers",

suddenly discovers that in a couple of months he can design and

receive., his pet architecture; one the big manufacturers had

thoughtfully refused to consider. However, it may seem unlikely that

he can really do it if those expert manufacturers would not.

The fact is that, until recently, the problem of managing the

complexity of VLSI (Very Large Scale Integration) systems was not

adequately considered. Design methodologies were developed which

encouraged circuit efficiency at a very low level, often at the

expense of global optimisations and disregarding elegance and

2

structure. The work done by Carver Mead, Lynn Conway and their

collaborators (Mead 801 has completely changed this picture.

Structured methodologies have proven to be more reliable, to extend

smoothly to big systems and in many cases to provide more efficient

and totally unexpected solutions. The simplicity reintroduced by

structured methodologies allows people to learn quickly and to

quickly produce non—optimal but working devices. In many cases the

achievements of these newcomers (Conway 801 sound astounding with

respect to average industrial products (Steele 80, Rivest 80,

Masumoto 801. Structured methodologies are now beginning to be

systematically used by big manufacturers, and the results are

equally encouraging (Lattin 81, Mudge 811.

0.1.2 Design Tools

Another key contribution has been the definition of a clean

interface between design and fabrication (Mead 801. While any such

interface necessarily introduces some inefficiency, it allows the

designer to ignore most of the inessential aspects of the

fabrication process. Moreover it seems sensible to expect that in

future fabrication processes will be designed to. match this kind of

interface, so that many of the inefficiencies will disappear

(Mikkelson 811.

The coincidence of structured methodologies, clean interfaces and

high level of integration, has inspired a 3udden and rapidly

spreading interest outside the microelectronic environment. It is

most fortunate that this sudden "discovery" of VLSI, comes at a

moment where the traditional architectures and design techniques

used in microelectronics are showing their limits, and where there

is a great need for complexity management techniques.

In fact, the management of complexity has always been the main

3

problem in software engineering and programming language design, and

structured methodologies are now simply common sense in those areas.

The hope is that as a result of the experience gained in software we

shall not have to wait long before getting very effective high level

tools for hardware design. A subordinate hope is that we shall be

able to completely omit the "batch" and "FORTRAN" stages of design

tools.

An interesting parallel can be made between the state of hardware

design today and the state of software design in the fifties and

early sixties. Layouts (the end—product of any VLSI design activity)

have many of the characteristics of machine language programs. They

are powerful enough to fully exploit the technology and can lead to

great efficiency when used at the lowest level. On the other hand

they are inscrutable, and difficult to modify, maintain and debug,

and very prone to trivial and repetitive (yet fatal) errors. The

information they convey is inflexible and absolute, and in general

they encourage programming styles which lack clarity and elegance.

Most of the VLSI design tools today are based on layouts. As a

consequence of the low level notations used, many of these are

concerned with recovering from errors which have already been made,

or with recovering structure which has been lost at some previous

stage of design.

For example, design rule checkers are needed because people are

allowed to draw wires of the wrong thickness, or to put transistors

in the wrong places. Again, electrical rule checkers are needed

because the low level of primitives allows designers to combine them

in meaningless ways. And again, node extractors are needed because

the initial description of the circuit is not semantically

structured, or because the structure has been flattened out by some

4

other tool.

Other tools are hampered by tasks which are not their own.

Graphics editors are sometimes equipped for checking design rules,

or even electrical parameters. Simulators are used in the detection

of errors which are clearly syntactical, such as wires which fall

short of their intended contact points, switches connected in

meaningless ways, transistors introduced by accident, power supply

lines disconnected or wrongly connected, etc.

Recently, "assembly languages" have been devised ((Locanthi 781

and many others), where symbolic names and locations can be used

instead of bare numbers. High level control structures can be used

and syntactic correctness checks can be performed so that some of

the syntactic properties of the output, like wire thickness, are

guaranteed to be correct. The primary task of these tools is however

to describe layouts, not computations, and they are strongly process

(or process—class) dependent because they aim to give full access to

the lowest level of description. For this reason they should still

be considered to be low—level tools.

Continuing the analogy, why cannot we have compilers? The

features of a general purpose silicon compiler are easily listed: it

should be process—independent, it should be able to express any

range of architectures at the behavioural level, and given a

syntactically correct input it should always produce syntactically

correct code. We should be able to formally describe the compiler

(i.e. no "hacking") and maybe prove its correctness, or at least

believe in it!

The production of a silicon compiler is a very complex problem.

We know what the output should be, namely layouts, but we do not

know how to produce it and we do not have any clear ideas about what

S

the input should look like. The choice of a convenient input

notation might deeply influence (and maybe simplify) the translation

process, and conversely translation techniques may impose

restrictions on our notation. It is not clear whether we should

first fix the notation or study the translations, or proceed by

attempts in both directions until some satisfactory meeting point is

reached.

As to the linguistic problems, there is no doubt about the

advantages of a high level notation, as far as programming is

concerned. For example in many cases high—level language programs

can be debugged by typechecking and proof—reading, while "tracing"

(which corresponds to simulation) is essential for assembly language

programs. Moreover, if we consider the elegance of, for example, a

one—pass Pascal compiler with respect to an n--pass macro—assembler,

we can also' clearly see the implementational advantages of a well

structured and powerful notation.

The problem of compiling into two—dimensional structures, even if

frequently found in design automation problems, seems to be rather

new in formal language and compiler construction theory. There is a

little recent interesting work (Floyd 80, Forster 811 at the formal

language end. Pioneering work towards full—scale silicon compilers

is reported in (Iohannsen 791 and [Rupp 811. Unfortunately the vast

literature in hardware routing and placement problems does not seem

to apply very directly to VLSI; indeed for compilation it is not

enough use techniques like general routers which often only solve

95% of each problem.

On 	the 	positive side, a 	series 	of remarkable 	design 	tools 	for

VLSI has emerged in recent years. Many of these tools share many of

the 	criticisms 	we have expressed, but 	they 	are 	indisputable

6

milestones in their area.

Some design tools computerise boring hand—drawing activities, by

using interactive graphics displays. In this class we can mention,

for layouts ICARUS [Fairbairu 781, for stick diagrams STICKS

(Williams 781 culminating in REST (Mosteller 811, and for cell

composition the Chip Assembler (Tarolli 801.

The prototypical text—oriented system is LAP (Locanthi 781, which

embeds a very simple graphical notation [Sproull 801 in a general

purpose high—level language (this idea comes from standard graphics

techniques (Newman 791). The crudeness of the graphics primitives is

compensated for by the ability to use the control constructs of the

language for parameterisation and abstraction, achieving an

effectiveness far greater than graphics editors (but with very

little user—friendliness).

More ambitious systems try to integrate several tools (Buchanan

801, often into a workstation with special purpose programming

languages or packages and sophisticated graphic interfaces. On the

layout level we have the LISP—based DPL [Batali 811, and on the

sticks level MULGA (Weste 811. Both these systems are truly

remarkable, even if the complexity of the former seems excessive.

Many similar systems are now being developed; they mostly use a

personal computer together with a high resolution colour display and

a pointing device.

0.1.3 Semantics

A very sharp distinction should be made between the means and

ends of formal description and formal verification. These two

activities are often inversely proportional, in the sense that very

powerful description systems can be so detailed and complicated as

not to allow any general view of the problems (for example, consider

7

quantum mechanics as a way of describing an armchair: can we

formally verify- that the armchair is comfortable?). Conversely we

might have verification systems which at a certain level of

abstraction allow us to easily verify any property we want, but

which are unable to describe part of the realities we are interested

in (suppose we have a nice theory of armchairs and soft materials;

what happens if we ship the armchair to a black hole?).

Unfortunately one can also come up with questions which require both

powerful descriptions and flexible theories (if we do send the

armchair to the black hole, will it keep being comfortable?), and

the problem is then to maximise the usefulness of the whole system,

and not just the descriptive or the proof—theoretical part.

In mathematics some sort of optimality has been reached, if we

consider for example how analysis merges smoothly into topology. Not

so in computer science; the considerable descriptive success of

denotational and algebraic semantics has not yet 1 e to

satisfactory theories of programs (even if it has leè' to

satisfactory theories of models). Properties which are considered

obvious to programmers escape, on large programs, any verification

or even formalisation.

It is well known that concurrent systems are much more difficult

to describe and verify than sequential ones. In this field,

denotational and algebraic semantics found descriptive difficulties,

while powerful descriptive systems like Petri nets do not seem to

offer striking advantages for verification purposes.

From this point of view, hardware systems seem to summarise many

difficult problems in semantics; they are of extensively concurrent

nature, and the behaviour of even the simplest components is

difficult to describe and context—dependent.

8

Hardware is semantically unexplored at intermediate levels. For

low level hardware, the main semantic description available is

device physics, which is not very helpful when the number of devices

exceeds one. Very powerful techniques have been developed in

electronics for the study of analog circuits, but are not of general

application to digital circuits. For gate—level hardware, we have

satisfactory theories like switching theory (for small combinational

systems), and automata theory (for larger sequential systems) which

however do not work very well for complex systems built out of many

parts, like microprocessors. Very little exists between device

physics and switching theory. which is unfortunately exactly what we

need for low—level VLSI. Moreover automata theory is not very

suitable for studying interconnected 'networks of processors, which

is what we need for high—level VLSI.

Part of these problems, which are common to concurrency problems,

have been attacked by the use of operational techniques (Plotkin

811, which can conveniently describe concurrency, joined to

algebraic techniques [Milner 801, which lead to flexible proof

systems. Recent work on synchronous concurrent systems [Milner 811

(which extends smoothly to asynchronous systems) seem to be

particularly well suited both to hardware description and

verification, as most hardware systems today are internally

synchronous.

0.2 This Thesis

The first chapter of this thesis is dedicated to the task of

providing a simple and uniform notation for the description of

networks of hardware components. The approach is algebraic in nature

and derives from work on the syntax of concurrent systems (Milner

791. After a general introduction to many—sorted algebras (section

9

1.2), a "pure" formalism of net expressions is introduced in section

1.3, together with a set of equational laws expressing the

equivalence Of networks. Networks are regarded as graphs with an

interface, and together with net expressions they form wrist we call

a net algebra (net algebras are compared to Miler's flow algebras

in section 1.5). In section 1.6 we characterise the initial net

algebra in terms of particular kinds of graphs, and we prove

soundness, completeness and definability theorems with respect to

the net expressions and laws. Some additional structure is then

imposed on net algebras in view of the use we shall make of them in

chapter 2. Section 1.7 treats planar networks, and sections 1.8 and

1.9 introduce the idea of a bunch (a way of structuring interfaces)

which is essential when programming in net algebras. Some bizarre

examples of net algebras are given in section 1.10 in order to

explore the power of the formalism, while section 1.11 introduces a

hardware network which will be used as an example throughout chapter

2.

The second chapter applies the notation developed in the first

chapter to several examples of hardware networks. All these examples

constitute different levels of description (i.e. different net

algebras) in the process of translating behavioural specifications

into VLSI circuits. Even if we occasionally attack the problem of

algorithmic translations into two—dimensional structures, we

concentrate in general on formalisms which can be considered as

prototype textual languages for silicon assemblers and compilers, on

much the same lines as [Rem 811. This leaves uncovered a wide area

of research, namely graphical languages and graphical interaction.

Although it is rather natural to imagine graphical counterparts for

some of the textual programming constructs we present, it is not

clear how to define purely graphical systems of the same power as

10

text—oriented systems (see (Trimberger 791 for an effort towards

integrated text—graphics systems). This is mostly due to the lack of

a good graphical analog for parameterisation. Hence, even if we

think that graphical interfaces are essential to easily usable

systems, we generally concentrate on textual expressions denoting

graphical entities.

The topmost level of description, called Clocked Transition

Algebra (CTA, section 2.3), is concerned with the behavioural

specification of synchronous systems. A formal semantics of CA is

given by a translation to Synchronous CCS [Milner 811. Section 2.4

describes the CSA model of switch—level hardware (Hayes 81, Bryant

811 and gives a semantics to the stable CSA circuits. A translation

mapping every CIA expression into a CSA circuit is then shown. In

section 2.5 we work with (planar) stick diagrams, showing several

examples of net algebra programming activity. A translation from CTA

to sticks is briefly sketched. Section 2.6 treats grids, which are

stick diagrams disposed on orthogonal lines. The algebra of grids is

very important as an intermediate step in the translation of purely

topological stick diagrams into geometrical layouts. An efficient

stretching algorithm for grids is developed; then a translation from

sticks to grids is described, which has the property of always

succeeding in every admissible context (a context expresses

constraints on the position of connection points on a rectangular

boundary). Finally we comment that translations from grids into

layouts have already been experimented with (e.g. [Mosteller 81]).

The third chapter describes the implementation of an experimental

VLSI design system (constituting- what is generally, called a silicon

assembler) where most of the geometry—related characteristics of

layouts are hidden by the use of algebraic operations. In section

3.2 we introduce the basic data type of pictures (layouts), which is

11

embedded in a general purpose programming language (Gordon 731

allowing parameterisation and conditional assemblies of pictures.

Bunches, and their use in association with an iteration construct,

are described in sections 3.3 and 3.4. Section 3.5 deals with an

interpretation of a net algebra operator which embodies a form of

geometrical river routing. The remaining sections describe various

aspects of the implementation.

The purpose of the fourth and fifth chapters is to provide a

framework where formal proofs concerning the low level behaviour of

hardware systems can be carried out. The fourth chapter describes a

formalism in which systems developing through continuous time can be

expressed. The emphasis is again algebraic, and algebraic laws are

formulated which express the behaviour of such systems (section

4.3). Techniques of denotational semantics are used to provide a

deterministic model (section 4.4); the attempt to extend the

treatment to nondeterministic systems encounters technical

difficulties and another approach is used in chapter 5. A discussion

about the expressive power of this formalism is contained in

sections 4.5. 4.6 and 4.7. Section 4.8 is dedicated to an example

(flip—flops) - which exhibits metastable behaviour.

The semantic techniques used in chapter 5 are operational, with

the advantage that a semantics can be given to nonde termini stic

systems in a natural way. This chapter follows (Milner 811 and can

be regarded as an extension of that work where a discrete time

domain is replaced by a continuous one. Section 5.1 introduces the

main ideas and the operational semantics methodology. After a

section studying deterministic systems (5.2), nondeterminism is

introduced in two orthogonal ways in section 5.3 by a choice

operator and an indefinite—duration operator. Communication is

treated in section 5.4 and recursion in section 5.5, where some

12

difficulties due to the density of time have to be solved. The

following three sections (5.6, 5.7 and 5.8) discuss the complex

interactions between synchronous and asynchronous systems, and

section 5.9 gives a way of characterising synchronous,

non—synchronous and asynchronous systems.

Appendix I introduces the notation used for expressing the syntax

of languages, and appendix II contains a list of the symbols used

through this thesis.

13

1. Algebra of Networks

1.1 Introduction

A network is to a first approximation a finite graph. Our main

concern is with structured network design, and we are interested in

methods and notations for building and analysing networks in a

hierarchical fashion. Hence the first problem we have to solve is

how to express finite graphs, considered as unstructured sets of

arcs, in some orderly and structured way.

The simplest way of exhibiting a graph is of course by displaying

it. This kind of presentation is expressive and immediately

understandable by humans, but unfortunately it also has several

disadvantages.

Figure 1.1 A graph

First of all the structure of the graph is not evident in its

picture, i.e. we cannot tell how it was built; the mere picture of

the graph hides the intended way of looking at a particular graph

among the several ways in which the graph can be constructed. Hence

some structure (graphical or otherwise) has to be superimposed on

the graph in order to understand it in terms of its components.

Figure 1.2 Decompositions

Second, 	graphical 	notation is not suitable 	for 	direct

mathematical manipulation. Mathematical coding has to be used in

order to get the benefits of formal treatment, and an effort should

be made to keep the coding not too different from the intended

structure of the coded object, otherwise an obscure theory will

result.

Third, graphical notation does not make a good programming

language; not because it is difficult to "type it in" (this can be

overcome by graphical editors) but because the usual programming

language control structures and parameterisation mechanisms are not

easily definable on pictures.

Fourth, and finally, no matter how we express them, graphs may

have to be represented in terms of data structures in a computer,

and operations have to be carried out upon them; then this is just

another aspect of the problem of finding a non—graphical notation

for manipulating graphs in useful ways.

Our aim is then to develop a notation for structured graphs which

is formally tractable, expressive enough to be used as a programming

language, and easily convertible into useful data structures. The

14

central idea is to have an abstract data type of network* over which

certain operations can be performed (particularly composition of

15

subnetworks) and which can be easily translated into different data

types for different purposes. We formalise these ideas in an

algebraic framework where abstract types are algebras and easy

translations are different shades of algebra morphisms.

This chapter is mostly technical; the reader is advised to skim

it in case of difficulties and to come back to it when needed while

reading chapter 2. Sections 1.10 and 1.11 contain examples which

give some motivation for the notation introduced here.

1.2 Many—sorted Algebras

An Algebra is a set together with some operations on its

elements. Intuitively the base set of an algebra is a data type, and

the operations are the basic operations allowed on that data type;

other operations can be defined from the basic ones [Gratzer 791.

A many—sorted algebra is an extension of this idea, where we have

several sets instead of one (hence several data types) and typed

operations which take arguments from and produce results in these

sets IGoguen 781. The extension from single—sorted to many—sorted

algebras is conceptually very simple, but makes the technical

treatment considerably heavier. In fact operations have to be

indexed by their type, and we have to distinguish operators having

the same name but belonging to different algebras. All this typing

and naming information is gathered into the notions of sort and

signature'.

A sort is a data—type name; sorts will be denoted by the letter

a, sets of sorts by S and lists of sorts by w a S (with (1 the

empty list).

16

Definition 1.1 A signature . is a pair <S,Z> where S is a set (of

sorts) and I is a family of sets (of operator symbols) indexed by

S*XS. An operator symbol a 3 has rank (or functionality) w,s

arity w and sort s U

Example: Boolean

= (S = (bool),

Z = c Z(],bool = (true,fal se) ,

Zboolbool = -

bool bool,bool = C V.A L,

= 0 for any other w,s) >

We denote by X = (X 5 IssSl a set of sets' of variables of sort s.

Variables are all distinct, and they are distinct from operator

symbols and punctuation.

Definition 1.2 A (X)—expression is a syntactic expression built

from the operator symbols of the variables of X=(X3 IsaS)

and the distinguished symbols "(", ")" and ","; more precisely,

expressions are all and only the strings of symbols obtained by the

following rules:

- If x is a variable of sort s, then x is an expression of sort s.

- If e 1 ..e are expressions of sort s 1 ..s (n.>O)

and a 	c Z 	then: s 1 ..sn ,s 	.. s1 sn,s

a 	(e ,..,e) 1 	n

is an expression of sort s

(where, for n--O, a Li1 () has sort s)

a

When there is no ambiguity subscripts are omitted, so that we simply

write

Example: Boolean expressions

17

The following are (X)-expressions, where Z is the boolean signature

and X = (Xboo1{xly)).

x

true()

-(A(x,V(false() ,y)))

We use the following notation for cartesian products of sets:

A 	CE])

A =A =A 	X...XA w 	s1 ... s 	S i 	 S

Definition 1.3 A -algeb: ra A (with Z = < S,D) is a pair <A,A1>

where A is an S-indexed set of sets A s and At is an SXS-indexed

set of maps A 3 :
	 -4 (A, -4 A) associating a function

Aw,s(aw,$): A -4 As with each operation symbol a,3 	w,s '

Each A is called the carrier of A of sort s; each Aw,s (aw,s) is

called the operator of A named byw,s'and is also denoted by

When there is no ambiguity 	is also written
w,s 	 w,s 	 w,s

or even a.

Example:

4 = < A = (Ai,00i = CT,F)),

At = C A1 bool = (<true,T>, <false,F>),

Abool,bool = (<-. Not(<TF>,<F,T>)>),

Abool bool,bool =

(<A, And=t<<T,T>,T>,<<T,F>,F>,

< <F,T> ,F>, < <F, F> , F>)

V, 0r(<<T,T>,T>,<<T,F>,T>,

<<F,T>,T>,<<F,F>,F>)>),

= 0 for any other w,$) >

18

with + 	 = true(] bool

A
+false[],bOO l

	

A 	 Not,
bool ,bool

	

A 	 =And,
4Abool bool,bool

	

A 	 =or
bool,bool

Expressions are a very important example of algebras:

Definition 1.4 T;(X) (where Z = < S,>) is the —algebra with:

- Carriers: the set of (X)—expressions of sort 5ES.

- Operations: the mappings

4a
sl"sn*s

:e1..eG- WO)

for each a 	 e
51* Sn' S

and expressions e1. . e of sort s 1 . .s

(for n0 we have +a: [1 0-4
' S

U

It is easily verified that T(X) is really a —algebra.

We finally include the definition of homomorphism and of

signature morphism which are the formal basis for the translations

which we shall discuss in Chapter 2 (even if those translations will

only approximate the idea of homomorphism).

Definition 1.5 A Z—homomorphism of7--algebras

h: A—B

is an S—indexed set of maps h5: ASBS such that

	

h5 (4 	(a 1,... ,an)) = B
w,s

,a sA for all s e 5, ws 1 .. .s a S and a1 	$... 	5

19

Definition 1.6 A signature morphism p from <S,X> to <S',Z'> is a

pair <f,g> consisting of a map f: S-4S' and a family of maps

93:
XWOS -4 Zf*(s),f(s) 0

A signature morphism is a (possibly many-to-one) renaming of

sorts, together with a compatible (possibly many-to-one) renaming of

operator symbols.

Theorem 1.1 For every_Z-algebra A and map h: X -- A (i.e. family

h5 : X -4 A3 for seS) 	there 	is a unique 	i-homomorphism

h: T 	-* A such that

= h

where I: X -4 T 	x o-+ x is the injection of generators

a

The above theorem states the existence of- a unique homomorphism

h* from Z(X)-expressions (T W) and environments for free variables

(h: X -4 A) into any -algebra A. This homomorphism is often called

evaluation or interpretation of an expression e in an algebra, and

h(e) is called the (because of uniqueness) value of e in A (with

respect to an environment).

1.3 Net Algebras

Refining our idea of network, we can say that a network is a

finite graph with an interface. Interfaces are an abstraction

mechanism; they contain all the information about the network which

is needed and visible from "outside", while hiding the internal

structure. For example, syntactic checks can be performed on network

operations on the basis of the information contained in the

interfaces they operate onto; operations are guaranteed to be

meaningful if they satisfy these syntactic checks.

20
-

Ad

C '
interface

Star =

- - -
	

/

/

--

'S
'S

5- 	 -

--

Figure 1.3 A graph with an interface

The interface of a network consists of ports which have a name

and a type. Names are used to denote edges of the network (i.e.

connection points), and types guarantee the consistency of certain

operations. The most important use of interfaces is in joining

networks together into larger networks; the join is done by naming

the ports to be connected, provided that there are no name clashes

and that the types of the connected ports match.

1.3.1 Sorts

Formally, an interface is a sort. Given a set Types of types and

a set PortNames of (port) names (with a,b ranging over names and

A,B,C ranging over finite sets of names), a sort is a map

s: A —3 Types with Isi A A; hence s(a) shows the type of the port

named a. We say that two sorts s,s' are compatible if their common

port names have the same type, i.e. if sIB = s'IB, where B =

fs1s1s' 1.

1.3.2 Signatures

Networks are built out of a given set L of basic components

called literals (nullary operators). Every literal 1 s]L has a sort

given by X(l).

The unary restriction operator, \a, removes the name a from the

sort of a network. For every a and s we have an operator \a: s - s'

- 	 21

where fs'l = Isl\Ca) and s'(a') = s(a') for a' in fs'l. Restriction

is a postfix operator, and we abbreviate x\a 1 ...\a to

star\a =

e

Figure 1.4 Restriction

The unary renaming operator, Cr), changes the names of a sort

without changing the port types. For every sort s and bijection r:

Isi - A' we have an operator (r): $ —> s' where s' = sor'.

Restriction is postfix and we write (a j \b 11 ... 1 a\b) for r when

Ca 1 }SA , r(a)=b and r(a)=a for a not in (at) (hence C) is the

identity renaming).

starCa\f, b\g} =

e C

f 	 g

Figure 1.5 Renaming

The binary composition operator, I, composes two networks

together identifying and then forgetting their common port names.

For every compatible pair of sorts s,s' we have an operator

I: s,s' —4 s" where s" = sOs' : AOA' (we use 0 for symmetric

difference: AOA' = (A\A')u(A'\A), and sOs' = s(A\A')us'(A'\A)).

Composition is an infix operator associating to the left.

C

A useful derived operation is explicit composition, (r], which

composes two networks by linking the ports which are explicitly

mentioned in a bijection r. The operator [r]: s,s' - s" with

A —4 A', B=Isl\A and B'=Is'l\A', is well defined iff

ACFs1 and A'crs'l

s(a) = s'(r(a)) for every a in A (type restriction)

BnB' = 0 (no name clashes)

Then fs"I = BiaB' and s"(b) is s(b) if b a B and s'(b) otherwise.

Under these conditions we define

e(rle' A 	eCruidB)Ie' = eIe'(ruidB ,)

Explicit composition is infix and left associative; eErie' will be

written as e(a 1--b1 ... 3 a--b]e' for <a 1 b> a r.

(Star\d) [c--e, b--al e
(Star\d) 	=

Figure 1.6 Composition

1.3.3 Net Expressions and Laws

From the signature of a net algebra, and for a given set of

literals, we can construct a corresponding set of net expressions

(ranged over by e):

- literals are expressions

- if e,e' are expressions

then (e\a), (efri) and (ale') are expressions.

Parentheses will often be omitted.

The operators we have so far defined must obey a set of laws

23

called the net laws, which complete our definition of net algebras.

We write a(e) for the sort of e, and we require the following

equations to hold whenever they are well—formed according to our

previous remarks.

 e I 	e' = 	e' I 	e

 (e I 	e') I 	e" = 	e 	I 	(e' 	I 	e")

if fa(e)1.n[o(e')1n1(e")1 = 0

[\] e a = 	e if a 	f(e)1

(\\] (e \ a) \ b 	= (e 	\ b) 	\ 	a

(\I .] (e I 	e') \ a = 	(e 	\ 	a) 	I 	(e' 	\ a) 	if 	a 	a fa(ele')l

(C)] e d) = 	e

((JO] (e (r)) Cr') = 	e 	Cr'or)

((]\] (e (r)) \ 	(ra) = 	(e 	\ 	a) 	Cr') where r' = r4(frl\a)

[UI] (e I 	e') Crur') 	= 	(e 	Crur")) 	I (e 	(r'ur"))

where fri = Ia(e)i\fa(e')i, 	fr'l = raw)l\fa(e)l

and Ir"l = f(e)inf(e')i

Derived laws for explicit composition are as follows:

((]] 	e(r]e' = e'txT 1]e

((1 (]] 	(e (id A]e') (id UA]e" = e(idA U A](e'(id]e")

whenever all the compositions are well formed

[C}(]] 	e(r'or]e' = e(ruidB)(r']e'

(e(r]e')\a = (e\a)(r](e'\a) if r: A 1 —)A2 and a A A1 uA2

([IC)] 	Ce' (ne") Cr' ur") = (e' (r' Urj)) (rororj] (e"(r"ur))

1.3.4 More on Net Expressions

Net expressions can be used as the kernel of a programming

language for networks. We give some definitions which can guide the

24

implementation of net expressions, particularly regarding their

syntactic correctness. A formal syntax for net expressions is

introduced, and algorithms are given for checking whether a net

expression is well formed and for extracting its sort.

The formal syntax of net expressions is defined here, using the

metasyntactic notation of Appendix I:

literal 	... 	(depending on the particular algebra)

exp 	literal I

exp '\' name I

exp 'C' (name '\' name

ex; 'I' exp I

exp '(' (name '--' name I ',') '] ' exp I

'(' exp ')'

Restriction and renaming bind stronger than explicit composition,

which binds stronger than implicit composition. Both kinds of

composition are left associative.

A sorting e of a net expression e is an assignment of a sort to

every subexpression e' of e; for example (c5[a--b]c'5,),, is a

sorting of c(a--b]c'.

A well—sorting of e is a sorting e such that the predicate

WellSorted() (defined below) is true. We then say that e is

well—sorted if it admits a well—sorting e.

WeliSorted (l a) =

s=%(l)

WellSorted ((e 5 \a) 5 ,) =

WellSorted(e) and s's&fs]\CaJ

25

WeliSorted ((e(a\b1)) 5 s) =

WellSorted(e 3) and NameBijection(C<ab 1 >))

and (a)rs1 and crs1\cann(b ±) = 0

and s' = (s4fsl\Ca 1 1) u (<b 1 s(a 1)))

WeliSorted ((e5 let 3 1)
S
it) =

WellSorted(e 5) and WellSorted(e',)

and Va a fslnfs'l. s(a) = s(a)

and s" = s(fs1nfs'1) U s''&(fs1fs'1)

WeliSorted ((e5[a--b]e',),,)

WellSorted(e 3) and WellSorted(e' 5 ,)

and NameBijection(<(a 11 b>))

and a a Isi and b 1 a Is'l

and s(a1) = s'(b) and (fs1\(a))r(fs'1\(b}) = 0

and s" = s4(fs1\(a)) w s'4(fs'1\(b 1))

NameBijection ((<ak , bk>)) =

i#j =4 a i Aa j i b 1 b

The following procedure, SortOf, computes the sort of a

well—sorted net expression. It is easily verified that WellSorted(e)

is true, where e is the sorting generated by applying SortOf to all

the subexpression of e.

SortOf(l) = X(1)

SortOf(e\a) = Sort0f(e)1fSort0f(e)1\a

Sort0f(e{a1\b)) =

(Sort0f(e) 4 [Sort0f(e)1\(a)) w C<b , SortOf(e)(a)>)

SortOf(ele') =

let A = fSort0f(e)1nfSort0f(e')1

in SortOf(e)lA u Sort0f(e')4A

Sort0f(e(a 1 \b 1 le') =

Sort0f(e)4[Sort0f(e)1\(a.) U SortOf(e')lfSortOf(e')l\(b.)

26

1.4 Net Morphiama

A net morphism is a homomorphism of net algebras. Given two net

algebras A and B over the same signature (i.e. over the same set of

literals IL), .a morphism h:—)g is a set of maps

(h5 : A-4B5 I $ a NetSort)

such that:

h3(l) - B Via L

h5 , (e s \ 5 , a) = (h5 (e s))'t 	a
' S

h,(e(rY 	
B

5 	5 	,3 1) =

11 	 a' 5 ,) = h5(e 	1B 	h5,(e'51) h51(e 1A

I $ 	ss,s

1.5 Net Algebras and Flow Algebras

Net algebras are modelled on Miler's Flow Algebras [Milner 791.

The main difference is that in flow algebras many—to—many port

connections are possible, while in net algebras we have one—to—one

connections of ports and connected ports are forgotten in the sort

of the result. One—to—one connections seem to reflect more

accurately some of our intended applications, particularly in the

case of connecting geometric objects. In Chapter 3 for example we

define composition so that the connection of two geometric ports

does not leave "space" for any other connection, and the connected

ports may as well disappear from the sort of the result.

The formal treatment of net algebras shows that the theory and

the set of laws we obtain are about as nice as in the case of flow

algebras. However, the relationships between the two theories need

some further study. On the one hand, it is easy to mimic net

algebras in the flow algebra framework; for example the explicit

composition e(a—ble' (with the usual restrictions) is definable in

27

terms of flow algebra composition, restriction and renaming as

(e(c\a)Ie'(c\b})\c (with C new) and the net laws are then derivable

from the flow laws. On the other hand, net expressions cannot easily

define flow algebra expressions because the latter may connect each

of their ports to an unlimited number of other ports. A solution

could be to define flow algebra composition in the net algebra

framework in the following way: any time that we have to connecta

port, we first "fork" it into two ports (by composition with a

three—port forking literal) and then we connect one of the new

ports, leaving the other one free for subsequent connections.

Another solution, which might also be useful for different purposes,

could be the introductioü of net expressions with infinitary sorts:

each flow algebra port would be represented by an infinite number of

indexed net algebra ports, and composition would take care of always

using the "next" available port.

1.6 The Initial Net Algebra

There is a particularly important net algebra, called the

initial net algebra, for which the laws [I]..[flI] only hold and

which is unique up to net isomorphism. The initial net algebra is

the one that we implicitoly have in mind when we talk about "nets",

"graphs" or "pictures" and their abstract properties. It turns out

that the formalisation is not so intuitive, but it allows us to give

a formal justification for our laws and to investigate their darkest

details.

The initial net algebra can be built by standard algebraic

techniques, quotienting the set of net expressions by the congruence

relation generated by the net laws [Gratzer 811. In this section we

look for a more explicit characterisation of the initial net algebra

in terms of a suitable kind of graph. TL e cotrecpoJ7 1fc

f o 	L7 LV cJyd,rcic cot 1A 6 Q 	 .Cfl

28

We start with some preliminary definitions:

- PortNames, is the countable set of port names, with a,b ranging

over port names and A,B ranging over finite sets of port names;

- Types, is the set of port types;

- L, is the set of literals 1 (nullary operators);

- Sorts, is the set of functions s: PortNames —+ Types associating a

type to each port name (where rsl 	domain(s) is finite);

- .: 1. -4 Sorts, associates a sort to each literal.

Definition 1.7

A network i.s a quintuple <V,y,A,it,E>, where:

- V (the set of vertices), is a non-empty finite set, with veV;

- y: V -4]L (the interpretation mapping), associates a literal to

each node of the network;

- A C PortNames (the set of port names), is a finite set;

- P is the set of the ports (<v,a) I veV and aaf).(y(v))1); where

each port is a pair <v,a> (vertex-portname) such that a is a port

name of the literal associated with v;

- it: A -4 P (the naming mapping), is 1-1;

- type: P -4 Types, defined as type(v,a)

- E C P X P (the edges), is a relation on ports satisfying:

E is symmetric and a partial function.

If <v,a>E<v',a'> then v#v' and type(v,a)=type(v',a').

No <v,a> is both in the domain of E and equal to n(b) for some b.

0

Condition 1. ensures that connection is symmetric and any port is

connected to at most another one. Condition 2. excludes self-loops

and ensures type-consistency. Condition 3. ensures that no port is

both named (i.e. externally connectable) and connected.

29

Definition 1.8 A net isomorphism p: <V,7,A,,E>

is an isomorphism p: V = V' such that:

=

A' = A;

ff'= (p#idA)on;

<v,a>E<w,b> =4 <p(v),a>E'<p(w),b>

[1

where (f#g)<a,b> 	<f(a),g(b)>.

Remark: We do not distinguish between isomorphic networks.

Definition 1.9 The sort of a network N=<V,y,A,t,E> is s: A - Types

with s(a) 	type(ff(a)) and Isi A A U

Definition 1.10 The operations on networks are defined as follows:

1 	<(1), 10-41, A, aeAo-4<1,a>, O> where A = fX(1)1

<V,y,A\{a},\a,E)

<V,y,A,ir,E>(r) 	<V,y,B,t o r ,E> where r:A-4B

I <V','',A',n',E'>

where C = AnA'

and sIC = s'lC

and n" = irL(A\C) U,T'I(A'\C)

and E" = EuE'u(<na,T'a>,<n'a-,fla) I acCi

where we assume VnV' = 0.

a

30

Theorem 1.2 The operations are well defined:

V1aIL. <Cl), lo-3l, A, aeAo-3<l,a), 0>, where A=f(l)1, is a

network;

if N is a network, so is N\a;

if N is a network and r a bijection on Isi, then N(r) is a

network;

if N I N' are networks and s,s' are compatible, then NIN' is a

network;

the operations have the correct type.

Proof In Appendix to this chapter U

Every well sorted net expression can be made to denote a network

(by interpreting the operations as network operations); the converse

is also true:

Theorem 1.3 (Definability)

Every network can be denoted by a well sorted net expression (up to

network isomorphism).

Proof In Appendix to this chapter U

The net laws are verified:

Theorem 1.4 (Consistency)

Laws (I] .. (1)1] are valid up to network isomorphism.

Proof In Appendix to this chapter U

Definition 1.11 Let 	be the congruence generated by laws (I]
[(31] over net expressions. Two net expressions e,e' are convertible

if ewe' U

Lemma 1.1 (Network Substitution Lemma)

Network isomorphism is a congruence with respect to restriction,

renaming and composition a

31

Theorem 1.5 (Soundness)

If ee', then e and e' denote isomorphic networks.

Proof

By induction on the proof of e=—e', using the consistency theorem and

the network substitution lemma.

U

Definition 1.12 An atom (at) is an expression of the form

at = l\A\Cr)

where 1 is a literal and \A is multiple restriction over all the a a

A. U

Definition 1.13 A net expression is in normal form (nf) if it has

the form

nf = at I ... I at

with 1. Vi,j. s compatible with

and 2. Vi,j,k all different. FS j iflfS j ifliSk i =

where s i = cr(at)

Theorem 1.6 (Normal Forms)

Every net expression is convertible to a normal form.

Proof In Appendix to this chapter U

Theorem 1.7 (Completeness)

If e and e' denote isomorphic networks, then eEe'.

Proof

(1) If nf and nf' denote isomorphic networks, then nfEnf'.

Suppose nf = at 1 ! ... fat 	and nf' = atI ... Iat 1 ,. By [I], (III

and condition 2. on normal forms, we can reorder af and nf' so that

there is a bijection between at, at and the nodes of the two

networks (hence nn'). Let us assume that ni and af' are already

32

properly ordered; by the properties of the isomorphism for each pair

of atoms atj = l\B1(r) and at = l\B(r) we have l = l, and B.

= B. The renamings r and rj do not have to be exactly the same,

because internal connection can be arbitrarily named. However they

must agree on the visible ports, and the internal connections can be

renamed as shown in the proof of the normal form theorem. Hence

nfmnf'.

(2) Let e denote N and e' denote N' with N = N'. By the normal form

theorem, e and e' have respective normal forms nf E e and nf E e'.

By soundness nf denotes N N and nf' denotes N' = N'. Since N = N

N' 	N', by (1) we have nf m nf'. Hence e 	nf 	nf' me'.

U

Definition 1.14 The net algebra NIV (with respect to a set of

literals IL) has as carriers the networks of sort s for each s, and

as operations the network operations.

El

Theorem 1.8 (Initiality)

For each net algebra A there is a unique net homomorphism

PA: NIL —4 A

Proof

Let e be the interpretation of the net expression e in the net

algebra B. There is at most one net homomorphism p: N L —4 A which

is determined, because of definability, by:

- p(l) = 1 (V 1 a IL)

- p(N\a) = p(N)\a

- p(N(r)) = p(N)Er)

- p(NIN') = p(N)lp(N)

i.e. we have p(eN L) = e
—

We have however to show that p is well defined: if e and e' define N

and N' with N = N', then we must show that p(N) = p(N'), i.e. that

33

eA = e'A. By completeness e w e' and so, as A satisfies the net

I 	 -
L&WS, e - of

a

34

1.7 Planar Networks

In the next chapter we shall often be concerned with

planar networks, i.e. with networks whose graph is planar. In those

situations it is useful to be able to check syntactically whether an

expression denotes a planar network, so that we can define precisely

the class of meaningful expressions.

It is possible to characterise planar networks by refining our

notion of interface. While an interface is just a set of ports, a

planar interface is going to be a cyclically ordered set of ports,

hereafter called a cycle.

Figure 1.7 A planar interface

Suppose we have a set of planar primitives, with planar

interfaces; we need a composition operation preserving planarity and

cycles, i.e.

Composition must take pairs of cycles into cycles.

Composition must take pairs of planar graphs into planar

graphs.

A first restriction is imposed on composition in order to

guarantee condition (1); the presence of cycles then helps enforcing

condition (ii). We require:

(i') The ports being connected must be contiguous in both cycles, so

that it is possible to form a new cycle by joining the two cycles

around the connection area after having dropped the connected ports.

35

Figure 1.8 Composing cycles

(ii') (Existence) The ports being connected must be inversely

ordered in their respective cycles; thus two planar graphs are

connected by non-intersecting edges and the result is planar.

(Uniqueness) The particular resulting planar graph is not yet

completely determined:

Figure 1.9 Ambiguity of p(a 1--b1 ,a2--b2]q

We then impose that in a connection (a 1--b 1 ;. ..;a--b1 the oriented

arc ai+1 t —b. 	
1 	1

+1 be on the "left" of the oriented arc a.--b., with

a +1 adjacent to a i and b 11 adjacent to b i (i C (1..n-lfl. Implicit

composition is now "PI" where a is the starting port of the planar

composition, which then proceeds anticlockwise on the sort of p.

The sort of a Planar Network is a pair

<s: A -4 Types, a: A -4 A>

where s: A - Types is like the sort of a non-planar network, i.e.

it is a mapping from a finite set of port names A into port types.

The second component of a sort is used to express planarity

36

constraints; a cyclic ordering is imposed on A by a bijection

0: A = A which is a cyclic permutation of A.. We say that a 8 A

proceeds a' a A if o(a)=a' and that a is adjacent to a' if a

preceeds a' or a' proceeds a. The ordering induced by the "preceeds"

relation is taken to represent the anticlockwise ordering of ports

around a graph.

Two sorts are equal if they associate the same types to the same

port names, and if the cyclic ordering of ports is the same.

1.8 Bunched Networks

The number of ports contained in a sort can quickly get out of

hand when arrays of networks are built. In these cases it is too

cumbersome to invent different names for all the ports in a sort,

but ambiguities would arise if we allowed repeated names. We

therefore introduce bunches as a way of structuring port names.

AJ
C

C 	 C 	 C 	 C 	C 	C

d+ 	
4b 	

d+ 	
$Ib 	

d+ 	
4b EZ 	{d+ 	

' 	'
[b--dl 	[b--dl 	 a= (a; a; a]

Figure 1.10 Bunches arising in composition

In a bunched sort, the port names are partitioned into a

collection of lists, called bunches. Each bunch is a list

containing several copies of the same name, a (each copy denoting a

different port):

= (a;. .;a]

All the names in a bunch must have the same type. Empty bunches b=(]

are also admitted, meaning that there is no b port.

We can consider a bunched sort as an ordinary sort containing

37

indexed names a 1 (where a i is the i—th item in the list

the advantage of the list notation is that we obtain an automatic

re—indexing on bunch operations. Lists are used instead of multisets

because ports must not lose their individuality.

A bunch restriction p\a cancels the bunch A from the sort of p.

A bunch renaming pfr) (e.g. pta\b}) renames uniformly all the

elements of the bunches specified by r (i.e. becomes b). Note that

r must still be a bijection of port names.

A debumching operation gives access to the individual elements of

a bunch: pfa(i]\b} renames part of the bunch a to a new bunch b,

provided that b is not already in the sort of p. The list (] is a

list of indexes of ; it can be written as a list of numbers (1;2;5]

or a range (3..7] or a combination of them (12;5..7;2;1). Note that

debunching can be used to reorder a bunch: for example if p has a

bunch of four ports b, than pCb(4;3;2;11\b) inverts the order of the

ports in the bunch.

A cobunching operation is used to merge bunches: p(a;b\c} renames

the concatenation of the bunches 1 and b (in that order) to a bunch

, provided that c is either a, or b, or is not already in the sort

of P.

Debunching and cobunching can be generalised to more complex

expressions like

p(a(3..51;b;c(11\b, d\e) =

provided that restrictions similar to the ones discussed above are

observed.

The implicit bunch composition plq connects the bunches of p to

the bunches of q having the same name, and the connected bunches

38

disappear from the sort of the result. The usual restrictions apply

to bunch composition. Moreover the connection of two bunches is

legal only if the bunches have the same number of elements; then the

first element of one bunch is connected to the last element of the

other bunch, and similarly for all the other elements (this

convention turns out to be natural on several occasions, e.g. to

connect a bunch on the "west" of a net to a bunch on the "east" of

another net, and expecially in the case of planar bunches).

A more general kind of composition is the partial implicit

composition PI A q, where A is a subset of the common bunches of p and

q. Only the bunches contained in A are connected as described above;

the remaining bunches common to p and q are cobunched in pairs of

the same name (the ones of p to the left). For example if we imagine

to have nets of rectangular shape, we can connect the east bunches

of one net to the west bunches of another net, while the south and

north bunches of both copies are bunched together.

b b 	 b 	b 	 b 	b b 	b

a} :

Figure 1.11 Partial implicit composition

The explicit bunch composition p(r]q connects the bunches of p to

the bunches of q according to (r] as with partial implicit

composition: we can define '[r] as

p(rlq 1 p!(q(r'))

Hence the connected bunches disappear from the sort of the result,

and if.p has a bunch a and q has a bunch q' then the cobunching

39

ap ; •q belongs to the result. This automatic cobunching turns out to

be very useful.

Formally, the set PortNames' of a bunched sort is the set

PortNames X 14, where n a 14 is the length of each bunch. Let

#: A —3 11 be the function returning the length of each bunch of a

sort based on A, and returning 0 for each port name not contained in

A. Moreover, let <n> (l,..,n). Then bunch restriction is defined

as:

p\b 1 p\(b 1 lie<#b>1

and bunch renaming as:

p(r:ABJ A 9 acAi) iI<h)

For debunching we need to introduce the operation a(i,l) which

returns the position of the number i in the list of numbers 1.

pta(1]\b} A p (a i \ba(i,l)Iicl) a {a j\aa (j,(#a> \ l) Iiftl}

Cobunching is defined as:

p{a;b\c} A p (a\cIia<#a>) v (bj\c#a+jIie<#b>)

Finally, partial implicit composition (from which the other

compositions can be derived) is defined in terms of the previously

described bunch. operators and of normal composition:

PI 	
A.

(p(b\b'IbeB}a(a j \a#a_j+iIaeA.i a e<#a)} I

qfb\b"tbeB))

(b' ;b"\b IbaBi

where B = (ra(p)lnIu(cj)1)\A and b',b" do not occur in the sorts of p

and.

1.9 Planar Bunched Networks

A Planar bunched sort is a planar sort with planar bunches; a

planar bunch is a bunch a1;. . ;a] where the a i respect the cyclic

order of their sort. Planar bunch operations are similar to their

nonpianar versions, except that they must make sense in a planar

40

framework.

Planar bunch restriction and renaming present no further

problems.

Debunching is valid only if the extracted sub—bunch respects the

cyclic ordering; note that we can rotate bunches this way, like in

b[2;3;4;11\b for a 4—bunch b.

Cobunching needs some further explanation; the planar cobunching

of two planar bunches ;b\ is the bunch c starting with the first

port of . containing Z and b, and respecting the order of the

planar sort. Note that if and b are interleaved then respects

the interleaving, and Z can be rotated in order to start with the

desired port of Z or b.

The various kinds of compositions work much as before. Again the

connection of (interleaved) bunches must respect the cyclic ordering

and the first port of each bunch connects to the last port of the

respective matching bunch. Note that this first—to—last conventions

allows us, in most cases, to connect planar bunches without having

to rearrange them in order to respect planarity constraints.

1.10 Molecules, Hypercubes, Mosaics and Klein Bottles

This section shows some examples of use of net algebras,

especially concerning recursive definitions and bunches. The

examples suggest some interesting extensions of our notation which

are left as open problems.

The first example is a attempt to describe molecules by their

chemical bond structure. Chemical elements of valency n are

represented by literals with n ports, for example:

H:(h) (hydrogen)

0:(olIo2) (oxygen)

C:(c 1 ,c 2 9c 3 10 4) (carbon)

We can easily compose simple molecules:

Methane

C (c a—h] H

[c2—h] H

[c3—h] H

[c4—h] H

CarbonDioxide

C (c 1—o1 , c 2
-0

2] 0

(c 3—o1 , c 4—o2] 0

CB

C (c 4—h] K

C2H2 A =

CH (c 2—c 1 , c 3—c3) CU

Benzene

C 2 H 2 (c 2—c1] C 2 H 2

(c 2—c1 , c 1—c2] C 2 H 2

	

Of 	CH
H—C—H 	000 	 II 	I

	

CH 	CH

Figure 1.12 Methane, carbon dioxide and benzene

41

Two molecules are isomers if they have the same number of atoms

42

of each kind, but "behave" differently. Hence isomerism implies

structural difference, which can be expressed in our notation as

well as by chemical diagrams. For various reasons, it does not

matter which valencies of an atom are connected to another atom, so

that the simple interchanges of bonds of a single atom does not

produce isomers.

In general we might want to talk about the spacial orientation of

valencies, which is important in stereochemistry and

cristallography. This suggests a generalisation of planar cycles and

sorts to three dimensions, producing what we might call envelopes,

i.e. arrangements of ports on the vertices of a polyedrum. Envelopes

should characterise legal compositions of polyedra in 3—D space,

forbidding copenetration in the same way as cycles forbid

over—crossings. We could then equally well describe crystalline

structures, mechanical parts or the architecture of buildings in a

safe and unambiguous way. This is left as an open problem which

might have very interesting applications, but which has little

relevance here.

As a second example, let us build an n—dimensional cube starting

from a single literal v (vertex) with ports e'..e n . In order to

avoid name clashes we index the port names e 1 by lists of binary

digits (e.g. e0;1;101):

CO 	— 	v(e ' \e 1(1 .. 	,e\e1)

A c i+l 	=

i+1
cfe(00]\e[00O],

i+1 .. i+1 	i+1 e [1 	1]\e[01],
n e [0••0]\e (090••0] . n ... U 	 fl

I e(11]e(011]

i+1 i+1 1+1 i+1

i+1 c 	e(0•0] e[110 i+1
0]' 	••

1+1 	i+1 1e [11] 	e 1,1••1 1 9 	..

U e (0••0]\e [100]l U
..

U 	 U Ie(11] e (111]

The first three steps in the construction of a three—dimensional

cube are illustrated in the next figure:

3 2 3 2 	 3

1. 	
e 0
 e

[0] (00) e101

e
(e 1)

(e101)
3

C 0= 	e []Oe(] 	C1= C2=
2 e[01])

3
e)

2 3 e[1] e(1] e [01]
(e.. -

Figure 1.13 Building a cube

This is a situation where the advantages of bunches are

particularly clear, indeed by using bunched sorts and compositions

we need only write:

CO 	 V

ci+l

Note that the result is really an hypercube, and not a "twisted"

version of it (remember that two bunches a1. .an and b1 . .b are

connected as

Suppose now that we only have a literal v with three ports f,b,e

(forward, backward and external) and we still want to make a

44

hypercube (Preparata 791. All we have to do is to build up n-ary

vertices from ternary ones (for n>1):

V 	 (v(e\e 1)(fb]...[f—b]v{e\e'))

(f—b,b—f] v(e\e")

Figure 1.14 An n-ary vertex

and we can then apply our previous definitions.

The third example concerns mosaics on the plane.* Suppose we have

a literal t (equilateral triangle) with ports b,r,l (base, right and

left) organised in this order in a planar sort. The following

definition builds a mosaic of triangles which at every steps retains

the form of an equilateral triangle. Bunches are used.

m0 	t

m
U

(b'--b] m (l'-'-l] m (r'--r] m

The next figure shows the first three steps in the construction of a

mosaic:

b b
= lr 	m1

b 	 rVi

Figure 1.15 Building a mosaic

Note that if we do not use planar sorts triangles are allowed to

flip around their connection points, and the result can be a rather

complicated three—dimensional graph instead of a planar mosaic.

The fourth example concerns sorts with an infinite number of

ports. We can consider a segment s1 of length 1 in 3—D space, as a

literal with uncountably many ports px for O<xIl. We can obtain a

v—shape by joining two segments at their end point:

v 	s1 (p0--p0]s 2

V
Figure 1.16 Joining two segments

We can then join two v—shapes by connecting the middle points of the

first v—shape to the 0.3—points of the second v—shape. Note the

effect of bunches in this case.

45

M
2

w a v(p05--p03]v

46

Figure 1.17 Joining two v—shapes

We can produce more interesting examples with a literal r

(representing a "flexible" rectangle in 3—D space) with ports n,s

for O<x<1 ranging from left to right, and e 1 w7 for O<y<l ranging

from bottom to top:

n

W

$

Figure 1.18 A flexible rectangle

Here are some interesting objects which can be obtained:

ring 	 4 r [e1—w,w1--e1 Vx] r

punched—ring 4 r (e--w1,w--.ex Vxg(O..O.l1u(0.9..l]] r

Note that we do not capture the class of 3—D surfaces modulo

continuous transformations; for example we have no way of

distinguishing a straight ring from a double—twisted one.

An alternative flexible rectangle may be defined to have four

ports n,s,e,w which are uncountable bunches disposed anticlockwise

around the perimeter (when bunches are concatenated, they are

renormalised to the interval 0..1). This case is particularly

47

similar to the treatment of ports in Chapter 3.

ring 	 = r (e--w,w---e] r

punched—ring 	r [e—w,w(O. .O.l;O.9. .1]—e[O..0.1;O.9. .1]] r

moebins—strip 	r (e--w,w(O..11—e(1..01] r

sphere 	 r (e--w,w--e,n--n,s--s] r

klein—bottle 4 r (e--w,w--e,n--s.s--n] r

torusi 	 ring (n--s,s--n] ring

torus2 	 ring (n(O..l]—s[1..O],s(O..11—n(1--0] ring

Note that torusi is obtained by inserting one ring in parallel

inside the other, and then joining the edges, while in torus2 the

two rings are composed into a thicker ring which is then bent around

to connect its two edges.

1.11 Main Example: The Foster & lung Pattern Matcher

The Foster & lung pattern matching hardware algorithm [Foster

801 will be used as an example through chapters 1 and 2. It has a

very simple and regular structure, deriving from the systematic

hierarchical decomposition of a pattern matching problem, while its

behaviour involves flow of data in a double pipeline configuration

and is far from obvious.

The problem is to find all the occurrences of a pattern p in a

text (string of characters) s, where p may contain the distinguished

character 's'. A pattern p matches a subtext s' of s if p and s':

(i) have the same length and, (ii) either the corresponding

characters are equal or the pattern character is ''.

The pattern matcher is implemented as a separate processor,

communicating with some host computer; here is the general plan.

pattern

string
PM

result

Figure 1.19 The pattern matcher as a processor

Instead of storing the pattern into PM and then supplying the

string, it is simpler to implement a on—the—fly pattern matching

where the pattern is repeatedly transmitted by the host H together

with an indication of the end of the pattern which is encoded in the

last character of the pattern.

PM

- 	 A*C/A*C/A*C/...

Host
ABC AAC BBB

001100100

Figure 1.20 The pattern matcher protocol

The result of the matching is returned as a binary string containing

a 1 for each successful match; the position of each 1 corresponds to

the position of the last character of a matching subtext.

The key architectural idea is the use of a pipeline where text

and (repeated) pattern meet head—on.

48

Host

text

res

patt

49

Figure 1.21 Architecture

The pipeline should be at least as long as the pattern. This

structure is very convenient because makes the matching process

time—linear in the text length and space—linear in the pattern

length. Moreover, if we want to match a very long pattern we can

simply connect several PM processors in a row and all works well.

Figure 1.22 Matching long patterns

Every stage of the pipeline matches a single character of text to a

single character of pattern. The stage produces an output whenever

it matches the last char of the pattern, otherwise it transmits

forward the output coming from the previous stage.

Consider a single stage: it receives in turn the pattern from the

left and the text from the right (retransmitting them unaltered) and

it has to remember whether all the previous characters matched, so

that at the end of the pattern it can tell whether the pattern as a

whole matches the subtext.

50

Figure 1.23 A stage of the pattern matcher

If there are n characters in the pattern, a single stage will

consider all the substrings of length-n2 starting at multiples of

in the text, ignoring all the other substrings. The other substrings

of length n2 will be considered by the adjacent stages, so that if

we have n stages we consider all the substrings of length 	More

than n 	stages will do no harm: the result will simply be

overwritten one or more times, but it will still be correct.

We can further decompose the structure of a single stage by

distinguishing a comparator part and an accumulator part.

text

res

patt

*

/

Figure 1.24 Inner structure of a stage

The comparator takes a string character and a pattern character, and

compares them outputting the result to the accumulator. The

accumulator accumulates the successive results of the comparator,

and when the pattern is complete it produces the final result.

The pattern information is split between comparator and

44

accumulator. The comparator receives the proper pattern characters,

and the accumulator receives: (1) the information that the current

pattern character is actually the wild card character (so that it

can ignore the result of the comparator) and: (ii) the information

that the current character is the last of the pattern (so that it

can output the result and reinitialise itself)

Each character is assumed to be a parallel vector of bits, let us

say 4 bits. We can further decompose the comparator into a series of

bit comparators, each of them matching a bit of pattern against a

bit of string. Having done this, we might just take the boolean and

of the results of all the bit comparator and feed it to the

accumulator. However, there is a different solution which gives us

the opportunity of studying a more interesting kind of architecture,

as well as being more elegant for VLSI implementations. We can

organise the bit comparators into a pipeline which runs orthogonally

to the main string—pattern pipeline; this assumes that the bits

constituting the characters are shifted at the input of the pattern

matcher and realigned at the output. The net effect is that although

a byte comparison takes 4 cycles, the accumulator receives a result

at each cycle.

Pin
Pout

Pin
S
out
P in

S out

Pin
S
out

Pout
S. in

Pout
S. in
Pout
S.
in

Pout
S. in

Figure 1.25 Bit comparators

The first bit comparator at the top is connected to "true", and each

bit comparator outputs the boolean and of its comparation with the

previous result coming from above.

Cb 0

52

There is a final optimisation to be made. It is convenient to

implement each bit comparator by a single inverting stage; this

implies that all the outputs will be inverted, and the next

comparator (both below and to the left) must be ready to accept an

inverted output. This leads to differentiating "positive" and

"negative" comparators and accumulators, arranging them into a

chess—board pattern. The behaviour of the pattern matcher will not

be affected, provided that there are both an even number of stages

and an even number of bits in each character.

Pin
S
out

in
x.
in

r
out

Pout
S.
in

xout
X out
r.
in

Figure 1.26 Positive and negative devices

We now show that the structure of the pattern matcher can be

expressed as a network. We take the bit comparators and accumulators

as black boxes (to be denoted by literals) and we compose them

together into the complete system using our network operations. In

the next chapter, more refined net algebras will be used to specify

the contents of these black boxes according to the descriptive model

or technology we want to implement them in. Here we use the

following primitives (i.e. literals):

53

True: (true: match)

False: (false: match)

PosBitComp: (pin ,pout 	 in'
: pattern, s 	 i out 	 n

	

S 	: string, d , Out d 	: match)

	

pattern, s. ,s 	: string, d. ,d 	: match) NegBitComp: (1'in ' 1'out 	 in out 	 in out

PosAccum: CX in' X out : endpattern, x in ,xout : 'wildcard,

out result, d in : match)

NegAccum: CX in' 	 i

	

out 	 n X 	: endpattern, x ,xout : wildcard,

	

r in' r out 	 in : result, d : match)

(The choice of types (pattern, string, match, etc.) is a pure matter

of taste: we might have defined all the ports to have type bool, or

we might have introduced enough type structure to syntactically

forbid the direct composition of BitComp's of the same sign.)

In order to parameterise the pattern matcher with respect to its

dimensions we introduce a simple iteration construct:

n times p with Er]

which uses n—i times the connection [r] to connect n copies of p,

for example:

3 times p with Er] = p[r]p(r]p

We can now program the pattern matcher, using bunches, iteration and

parame terisation.

PosByteComp n =

n times PosBitComp (d0—d1] NegBitComp

with (dt—din]

NegByteComp n =

n times NegBitComp Ed
out 	in --d) PosBitComp

with Ed tinj

PosColtzmn n =

True [true--d in]

PosByteComp n Ed —d] out 	in

PosAccum

NegColumn n =

False [false—d in]

NegByteComp a Ed —d] out 	in

NegAccum

PatternMatcher m n =

m times

PosColumn n

[pout --Pin' SjnSoutD

out—). in 	 r--r0]

NegColtunn n

with out--Pin' 3inout'

outin' oüt 1 in' rin rout]

What we are doing here from an algebraic point of view is to

introduce a set of derived operators; for example for every n and r

we have a unary operator a times p with [r]; again for every n we

have a nullary derived operator PosByteComp n, etc. Similar kind of

programming will be done in Chapter 2. All these ideas will finally

be incorporated into a real programming language in Chapter 3.

54

55

1.12 Appendix: Some Proofs Needed for the Initiality Theorem

Theorem The operations are well defined:

ViaL. 	<Ci), 	lo--+l, 	A. 	aeAo-4<i,a>, 	0, 	where 	A=1..(1)1, 	is a

network;

if N is a network, 	so is N\a;

if 	N 	is 	a 	network 	and 	r 	a 	bijection 	on 	fsl, 	then NCr) 	is a

network;

if 	N,N' 	are 	networks 	and 	s,s' 	are 	compatible, 	then NIN' 	is a

network;

the operations have the correct type.

Proof

1 = <(i}, la-41, A. 	aeAa-4<1,a>, 0> is clearly a network.

N = <V,y,A,ir,E> and N\a = <V',y',A',',E'>:

we have V = V; y' = y; A' =

P' 	= 	(<v',b> 	I 	v'aV' 	and 	beIX(y'(b))l) 	= 	(<v,b> 	I 	veY 	and

bef.(y(b))1) = P; 	ir':A'-4P' 	= Tt\a is 1-1; 	type' = type;

El = E C PXP 	P'XP'; E' 	satisfies 1. 	and 2. because E does, and it

satisfies 3. as n'(A')AIE'l = n'a(A\a)i[E1 = it(A)rfE1 =

N = <V,y,A,,t,E> and NCr) =

we have V = V; 	y' = y; A' = r(A); type' = type;

P' 	= 	C<v',b> 	I 	v'eV' 	and baIX(y'(b))l}

= (<v,b> 	I veV and bef.(y(b))1) 	= P;

= nor 	is 1-1 as ir is 1-1 and r is a bijection;

El 	= E C PXP = P'XP'; E' 	satisfies 1. 	and 2. because E does, 	and it

satisfies 3. 	as n'(A')nfE'l = n(r 1 (r(A)))nfEl = ir(A)ei[E1 =

N = <V,y,A,n,E>, N' 	= <V',y',A',n',E'>

and NIN' = <V",y",A",ir",E">:

we have V" = VuV'; y" = yuy'; A" =

P" = (<v",b> 	I v"aV" and bef.(y"(b))1) = PuP';

56

= itl(A\C) g IT'l(A'\C) with C=AnA';

type "(v.a) 	= 	(y"(v))(a) 	= if (v,a)eP then type (v,a) 	else

type' (v,a);

Ell = EuE'u(<7Ta,n'a><i'a,7ta> I aeC) C P"XP"; E" is symmetric.

because so are E and E'; E" is a partial function because E,E' are

partial functions, T,n' are 1-1 and condition 3. holds for N and N'.

E" satisfies 2. because E' and E" do, VriV'=ø and s, s' are

compatible; E" satisfies 3. because:

ir"(A") nfE"l = ((n&(A\C) u n'4(A'\C))(AA') nIE"l

= ((iI(A\C))(A\C) u (7t'4(A'\C))(A'\C)) A

= (ir(A\C)AIE1) u (n(A'\C)nfE'l) =

(5) The sort of 1 is s =

the sort of N' = N\a is s' = type'o' = typeon\a = s\a;

the sort of N' = N(r) is s' = type' off' = typeonor 	sor;

the sort of N" = NIN' is:

= type"o" = (type utype')o(i$'(A\C)uir'4'(A'\C))

= (typeoit4(A\C)) U (type'oi'(A'\C)) = s4(A\A') j s'(A'\A).

a

Theore (Definability)

Every network can be denoted by a well sorted net expression (up to

network isomorphism).

Proof The proof is by induction on the size of V; since V#Ø, we

consider the cases where V is a singleton and where it has at least

two elements.

(1) V = {v}, N =

then y = vo—+l; P = (<v,a> I aefX(l)1); E = O as there is only one

vertex and self—loops are not allowed;

define f:A—+B where B=fX(l)1 as f(b) = f= 2 0 ff ;

define r:f(A)-4A as r(a) = f_ 1 (a).

N is defined by l\(B\f(A))Cr), in fact:

57

l\(B\f(A))(r) = < Cl), lo-41, 1X(l)1, ao-9<l,a>, 0> \(B\f(A)) (r)

= <(1), lo-41, B. aeBo-4<1,a>, 0> \(B\f(A)) [r]

= <(1), 10-1, f(A), aeBo-+<1,0, 0> (r)

= <(1), lo-41, f(A), aef(A)o-+<l,a>, 0> Cr)

= <(1), lo-91, r(f(A)), (aef(A)o-4<l,a))or " , 0

= <(1), lo-+l, A, it', 0> - N, where t'-(<a,<l,b>>I<a,<v,b>>en)

(2) V = V'uV" with #V',#V">l and V'riV"=O; N =

let r' = r'V'; P' = C<v,a> I veV' and a1).(y'(v))1); E' = EnP'XP';

A' = (acA I n(a)eP'); 7T3 = nlA';

let y" = ylY"; P" = (<v,a> I veV" and aef.(y"(v))1); E" = EnP"XP";

All = CasA I n(a) eP"); n 	ir4A";

let E'" = E\(E'uE") S (P'XP")u(P"XP');

let a:C—*(E"st(P'XP")) be a bijection such that Cn(A'uA")=O (a

assigns a new name to each connection between V' and V" in N);

let N' = <V',y',A'uC,n',E') where ir' =

and N" = <V",y",A"UC,,T",E"> where n" = nj u(l 2 oa)

It is easily verified that N' and N" are networks, moreover:

T = y'uy"; P = P'P"; P'rP" = 0; A = A'uA"; A'nA" = 0; ir = 7T U 7T

B 3 E'uE"; E'nE" = 0.

By induction hypothesis there are net expressions e' and e" defining

N' and N". We now show that e'Ie" defines N.

First, N'IN" is well defined; in fact VaeC. s'(a) = type'(ir'(a)) =

type'(1. 1a(a)) and s"(a) = type"(n"(a)) = type"(1 2a(a)), which are

the same because of condition 2. on N.

We have to verify that N'IN" = <V,y,A,ir,E>, in fact:

V'uV" = V; y'uy" =

(A'uA"uC)\((A'jC)1(A 1'C)) = (A'jA"jC)\C = A'uA" = A;

u n"4(A"uC)\C = n'A' u n"A"

= n6u0ioa)4A' u irU(2 oa)4A" = 	U ff 0 = it;

E'uE"u(<n'a,n"a>,<n"a,n'a) I aeC)

E'E"uC<4 1 (a),4 2 (a)),(2 (a),4 1 (a)> I aeC)

= E'uE"((v',v">,<v",v'> I aeC and <v',v">=a(a))

= v E" u 	=

El

Thoorea (Consistency)

Laws [I] .. t011 are valid up to network isomorphism.

Proof

[\]: e\a = <V,y,A,ir,E>\a = <V,y,A\a,n\a,E> = <V,y,A,ITE>

as a ft fa(e)1A.

[\\]: e\a\b = (V,79A,,E>\a\b

= <V,y,A\a\b,it\a\b,E> = <V,y,A\b\a,i\b\a,E> = e\b\a

[U]: efid) = <V,y,A,it,E>(id)

= <V,y,id(A),oid 1 1 E> = <V,7,A,lrE> = e.

(001: e(r)(r') = <V,y,A,n,E>(r)(r')

=

= <V,y,(r'or)(A)),no(r'or) 1 ,E> = e(r'or}.

((}\]: e(r)\r(a) = <V,y,A,,t,E>(r)\r(a)

= <V, Y, r(A)\r(a), (nor)\r(a), E>

= <V, y , r(A)\r(a), (t\a)o(r)\r(a), E>

= <V 1 y, (r\a)(A\a), (iT\a)o(r\a), E> e\a(r\a).

(I]: dc' = <V,y,A,n,E>l<V',y',A',it',E'>

= <VuV', 7U7', AGA', yr&(A\C) u ir'l(A'\C), EuE'uE">

= <V',1',A',n',E'>l<V,y,A,,E> = e'Ie.

[\I]: (ele')\a = (<V,y,A.7t,E>I<V',y',A',n',E'>)\a

= <VuV', yuy', (AOA')\a, (irl(A\C) u n'l(A'\C))\a, EiE'E")

= <VuV', 7U7', (A\a)G(A'\a), t4(A\a\D) u i'A'\a\D), EuE'F">

= <V,y,A\a,n\a,E>I(V',y' ,A'\a,n'\a,E'>

= (<V,y,A,n,E>)\aI(<V',7',A',n',E'>)\a = (e\a)l(e\a)

where C = AAA'

and D = A\aiA'\a = (AnA')\a = C\a = C because afa(eIe')1.

(AA')\a = (A\a)G(A'\a);

58

(t.I(A\C) u n'l'(A'\C))\a = (ITI(A\C))\a ii 0t'4(A'\C))\a

= (yrl(A\C)\a) U 0r'4(A'\C)\a) = itl'((A\a)\D) u

= (<7Ta,1r'a>,<n'a,1a> I aeD)

= (<1a,n'a),<n'a,1ta> I aeC) = F".

U) I]: (ele')(rur')

= <VuV',rijy',A0 9P0 ,E0 >

= <VUV',7U1',A1 ,ff 1 ,E1 >

=

=

= efrur")le'(r'ur")

where:

C=AnA';

D = (rur")A n (r'r")A' = r"(AnA');

A0 = (rvr')(AA') = r(A)Gr'(A') = (rir")A G (r'r")A' = A l ;

P0 = (nl(A\C) u n'4(A'\C))o(rur') 1

= (ir4(A\A') u

= (n&(A\A')or) U (ir'1(A'\A)or' 1)

= (lror 1) u (ir'or')

= ((no(rur")')r(A) Ii (n'o(r'r") 1)&r'(A')

= ((ito(rur") 1)((rur")A\(r' vr")A')

U

= ((io(rur") 1)4(((rvr")A)\D)

u (n'o(r'vr"))&(((r'r")A')\D)

= P1 ;

E0 = EuE'u(<ta,n'a),<,'a,na) I aeAnA'}

= EuE' u (<n(r" 1a),n'(r"'a)),<n'(r" 1a) ,(r"a)> I aer"(AnA'))

=

I aer"(AnA'))

= E1 .

= <VuV', yur', AeA', nit', EE'>

59

60

= <(VuV')uV", 	I 	t
, (AeA')GA", 7r7r '-", EE'—E">

= <V.i(v'jv"), yu(y'uy"), Ae(A'OA"), --- S_SS
,

=
	 to 	f

= <V,y,A,ir,E> I (<V 5 y' ,A' ,i' ,E' >1 <V",y' 5 ,A",ir",E">)

= el (e' le")

where:

AU' = AOA';

=

im l = t1(A\A') j

= 7T 1 4(A'\A") U W1 4 (All\Al)

= ,nt'(AA'\A") u r"A"\AA')

= (t(A\A') a ,T'(A'\A))1(AOA'\A") u r"4(A"\AOA')

= n4(A\A'\A") u ir'&(A'\A\A") u

= 74'(A\A'OA") W y!'l(A'\A\A") j i"1(A"\A\A') as AnA'zA" =

= it(A\A'A")

=

EE' = EuE'uC<xra,'a>,<n'a,na> I acAnA');

E'E" = E'uE"u{<,x'a.n"a>,<,t"a,n'a> I aeA'flA");

EE'—E" = EE'uE"u(<int'a,rr"a>,<n"a,irir'a) I aeAA'rA"}

= E'uE'uE" v (<ta,n'a>,<ir'ana> I aeAnA')

U C<na,,t"a>,<n"a,ira) IaeAflA") U (<j'a,ira>,<,t"a,ir'a) I aeA'A")

as AnA'nA" = 0

= EUE'E"Uf<rta,,T',T"a>,<n',T"a,Tra> I aeAjA'A")

= E—E'E"

a

61

2. Hardware Networks for VLSI

2.1 Introduction

This chapter presents case studies of several classes of

networks and their relationships -. Each class is meant to represent

an aspect of VLSI (Very Large Scale Integration) circuit design. In

general we will follow a top—down approach, starting with very

abstract networks (describing behaviours) and descending to very

concrete ones (describing geometric patterns). However, just to keep

our aim in mind, the first part of the chapter is dedicated to the

lowest and most concrete level: VLSI layouts.

We shall not and cannot go so far as to show a complete set of

algorithmic translations from behavioural descriptions to layouts;

this is a very complex problem with a large number of possible

options yet to explore. A translation process of this kind

inevitably requires a considerable amount of heuristics which could

only be tested by large—scale experiments. However we shall show how

to break the problem down into finding a set of translations between

intermediate levels of description. These levels are chosen to be

self—justifying, in the sense that they all occur naturally in VLSI

design and could be independently used as a basis for design tools;

indeed some of them are already used in this way. Moreover we shall

show the intermediate translations which are already known, sketch

some which are conceivable and discuss some new ones. All the

translations are modelled on the algebraic concept of homomorphism;

they preserve the structure of descriptions and are meant to be

mainly algorithmic, with few well localised heuristics.

Here is a picture of the general plan, which will become clearer

while reading this chapter; blobs are levels of description and

arrows are translations:

CTA

Translation of literals and operators

CSA

Translation of literals and operators
Flattening
Colouring

Planar
Sticks

Context splitting
Stretching

Grids 9
Inflation
Compaction

Layouts

Figure 2.1 Description levels and translations

Briefly, CA (Clocked Transition Algebra) is a behavioural

description level, CSA (Connector Switch Attenuator) are

switch—level diagrams, then there are stick diagrams, grids (a

metric version of stick diagrams) and finally layouts.

62

63

2.2 Layouts

VLSI technology implements a computational model which radically

diverges both from theoretical constructs such as sequential

machines and their languages, and from practical realities like

logic—gate hardware and its methodologies. It is probably no more

attractive to know what kinds of transistors are available in some

technology than it is to learn the instruction set of some

particular machine, but the two kinds of primitives are

fundamentally different, and their difference is bound to be

reflected in any high level tool or formalism devised to deal with

them.

It is therefore necessary to investigate some aspects of VLSI

technology, because they effectively create a new computational

paradigm (Kung 80, Chazelle 81). Fortunately, a rather clean

interface can be drawn between the design and fabrication

activities, thanks largely to the work of Carver Mead and Lynn

Conway [Mead 801. In the case of digital systems this interface can

on the one hand permit the designer to ignore most of the

fabrication parameters, and on the other hand permits the

fabrication process to ignore the meaning of the systems being

built. An effort is currently being made on both sides to adapt the

design and fabrication activities to this end.

Hence we take the view that the result of any VLSI design

activity is a layout, which is our interface to the physical world

of VLSI circuits. A layout is a set of geometric figures (generally

rectangles) describing the geometrical structure of the devices to

be fabricated. The rectangles are distributed over several planes,

to indicate the different materials and phases of the fabrication

processes. The position, size and overlapping of rectangles

64

determines the electrical characteristics of the devices being

fabricated, which are generally digital switches, resistors and

conductors. In the most desirable situation, the fabrication process

should act as a black box receiving layouts (pure geometric

information, free from fabrication details like electrical

parameters) and producing working chips at the other end. Here

"working" means corresponding to the layout specification, which is

purely syntactical and does not involve any knowledge of the

intended behaviour of the devices.

Layouts specify the physical dimensions of wires, transistors,

contacts etc. These specifications must obey some rules, which fall

into two general classes: minimal size of devices and minimal

separation between devices. Sizes and distances are expressed in an

abstract unit called X, which can be scaled up or (preferably) down

according to the particular fabrication process. Good values for X

in 1981 are around 2-3 microns; by 1990 	0.25 microns

(corresponding to 10 	 devices per silicon wafer) might be

widespread. At that point nMOS technologies encounter , foandamental

physical limits.

Geometrical design rules generally say that wires and transistor

must be at least 2% wide, and must be separated by at least 2X.

Similar constraints are imposed on contacts etc. The most standard

design rules in university environments are the ones described in

[Mead 801; a recent proposal for making them both more regular and

technology independent is discussed in (Sequin 811. Several example

layouts are given in chapter 3.

65

2.3 Clocked Networks

A clocked system is one where events only happen at discrete

time instants. The flow of time is governed by a global clock and

events are only observed during clock activity. Clocked systems

attempt to make the clock appear instantaneous, so that events are

fully determined at the clock instant. In practice the clock is

active for a finite and positive interval of time, and during this

interval events can very well be unstable.

Constraints must then be imposed on the clocking scheme and on

the structure of the systems so that events are stable during the

active—clock period. First of all, there should be no asynchronous

loop; if this condition is met, then it is possible to slow down the

clock rate until all the events have had time to stabilise.

Secondly, the system should be in isolation: there is no way to

guarantee the correct operation of a rigidly clocked system in the

presence of asynchronous input signals.

In spite of these problems, clocked systems are simple both to

model and to reason about because of the discrete timing assumption.

They are also simpler to implement, and most of the hardware systems

today are clocked (but see (Seitz 80, Barton 811 for arguments in

favour of self—timed systems). Our first example of a net algebra

will allow us the expression of the structure and the behaviour of

clocked systems; it is called Clocked Transition Algebra (CTA for

short).

2.3.1 Clocked Transition Algebra (CTA) Expressions

A CTA Expression is a net expression over a particular set of

literals. These are called clocked transition literals. As a simple

example, the clocked transition:

a in 	b out

66

means that the input from port a 	 is transmitted to port bout afterin

one clock period. The sort of this expression is:

T, out T)

for any type T. Here we take the brute force approach of considering

transitions as literals. Alternatively we might define an algebra of

transitions (expressions describing input values) and then combine

this algebra with the surrounding net algebra to obtain a bigger

derived algebra (Burstall 771.

Successive attempts 'at an exact interpretation of "4" will be

discussed, culminating with a formal semantics. For a first attempt,

every arrow "9" is taken to indicate a restoring stage where the

input from a is stored at time t to make it available on b at time

t+1. Every restoring stage is clocked. The situation can be

displayed as follows:

clock

a____ Restoring I 	b
Stage 	I-) out

Figure 2.2 A restoring stage

When the clock is active, the input from a is stored inside the box,

and the stored value is immediately available on b. This implies

that while the clock is active, a and b are physically connected.

Now consider the following loop:

I clock

a.
in

a
out

Figure 2.3 An asynchronous loop

Here we have a problem: when the clock is active, 	is

available on 	If the signal can go around the loop before theout

clock is deactivated, an attempt will be made to store

(instead of a 1) in the box. This situation is called an unstable

asynchronous loop (stable asynchronous loops are also possible). The

actual value stored in the restoring stage will depend on the number

of loops the signal manages to perform before the clock is shut

down, or even worse inconcreta situations the value stored will be

somewhere between a 1 and

To repair this problem we might try to make our active-clock

interval very short, but then it is difficult to reliably store the

value of "a 1 " in such a short time. The situation is so

uncomfortable that we switch to a different clocking scheme: instead

of a single-phase clock we adopt a two-phase non-overlapping clock,

41 and 42:

67

reset

Figure 2.4 Two—phase non—overlapping clock scheme

As shown in figure above, the first +1 pulse is also carried by a

special reset line which is used to obtain well defined starting

conditions.

For a second attempt, our loop can be reinterpreted as:

)

I2

	

i 	a
o in 	 i ut

	

>1RS21 	>___•%,

Figure 2.5 A different loop

During phase cp —a. is stored in the first box, and during +2 the

content of the first box is stored in the second one. Because the

two phases are not overlapping, input and output are never in

contact and the asynchronous loop is broken.

This scheme is not yet entirely satisfactory. For efficiency we

may want to insert some useful circuitry between the two above

68

restoring stages. In fact all is well so long as we correctly

alternate the two clock phases.

a. in
b
out

Figure 2.6 Final restoring stage

Our final interpretation for transitions is then that "" is

thought of as a single restoring block clocked by a single phase. To

avoid ambiguities, the arrows are sometimes subscripted by the

particular clock phase: "-4 1" for 4, and for 42• It is

possible to check syntactically that an assignment of phases is

correct; phases must alternate along every path in a net, and loops

must have an even number of arrows.

Very frequently we need to share an input between several

transitions and an implicit forking of the inputs is therefore

required (conversely, we insist that any mergeing of the outputs is

explicit). A special "," operator is used to indicate sharing, and

we write:

a 9ib 0 t. ajn 1cout

meaning that the input ainis shared by two transitions.

We can then consider clusters of transitions separated by "," as

literals in our Clocked Transition Algebra, and use net operations

to combine them. Furthermore we shall only allow transitions of the

same clock phase to be clustered together. We have 1—clusters which

input during phase 1 and output stably during phase 2, and

2—clusters which input during phase 2 and output stably during phase

1. For 2—clusters we also have to specify what their output will be

during the first clock pulse (i.e. on power—up or reset) because

69

70

they start producing an output before receiving any input.

Our final notation is as follows. Clusters of phase-1 transitions

will be denoted by:

Clusters of phase-2 transitions will be written:

<2:t 1—)'b 1v1, ... ,t ii '4b v >

where v1 .. .v are non—empty sets of admissible power—up values; in

the boolean case they can each be (tt), (ff) or (tt,ff). The

power—up values may be omitted, and they are then assumed to be

"don't care", i.e. (tt,ff) (nondeterministically true or false).

In examples we shall only use boolean transitions. The left hand

side of a boolean transition can consist of boolean constants (tt

and ff), boolean operations (-, A, V) and boolean—valued

conditionals ("a4b;c", i.e. "if a then b else c").

2.3.2 Main Example

We can now give a specification of the black boxes described in

the previous chapter, i.e. the positive and negative bit comparators

and accumulators. Positive boxes are clocked by + 1 and negative ones

by 42:

True =

<2: tt -9 true(tt}>

False =

<1: ff -4 false>

PosBitComp =

<1:-p. -4

	

-s in 	s

	

n 	out'

(d 1 A(p i =s i)) -4 d 	> n n 	out

NegBitComp =

<2:-p. -) pout,

g out'

d.A(p.s.) 9

PosAccum =

<1:-).. x out'
x i n 9x out'

in tin in) -9r out

~Cx iU=4tt;(t iUA(x inVd inM 9 tout>

[tout t in, tin tout]

<2:-t. -4t 	>

	

in 	out

71

72

NegAccum =

<2:—X.

	

in 	out

	

_x 	I

	

in 	out

	

-. i 	i =—t 	i ;—r - r

	

n 	n 	n 	out'

	

—X in 	inin =+tt;(t A(-x 	in)) V—d)) —+ t 	>

[t —t , t --t]

	

out 	in in out

<1:—t. - t 	>

	

in 	out

The same program that was shown in the previous chapter can be used

to put these pieces together. Note that PosAccum and NegAccum are

formed by the composition of two transition of opposite phase

feeding each other. This configuration produces the bit of storage

needed to remember the result of previous matchings.

2.3.3 Formal semantics of CIA

In this section we give a semantics to CIA expressions via a

translation to the Synchronous Calculus of Communicating Systems

(SCCS) [Milner 811. We do not offer an introduction to SCCS but

Chapter 5 can provide enough background, especially because, as

noted in Section 5.8, SCCS can be considered as the class of

1—synchronous real time agents.

First we introduce some notation in SCCS which allows us to

simulate value passing simply by indexing the port names;

for x a (tt,ff} is an abbreviation for "p(tt/x] + p(fu/x]"; "a?x:p"

is an abbreviation for "x a:p", (representing the act of inputting

the boolean value x from port a); "b!v:p" is an abbreviation for

"bv:p" (representing the act of outputting the boolean value v from

port b). Several input and output ports can be mixed together in the

same prefix, moreover the name of the indexes may be the same as the

ports they index. For example:

73

a?a, b?b, claVb: p = 	a,b S a bb C aVb p

inputs two values on the ports a,b and outputs their boolean or

(without any delay) on port c.

In the definition of clusters there is an implicit forking of

input signals. This can be modelled by the following combinator:

fork(a,n) 4 a?x,('1x): 1: fork(a,n)

Where an 	a,..,a (a times).

The semantics is given by a translation function Ifl from CIA to

sccs. We indicate by EI ...][a 1] a set of transitions "..." where the

set Ca 1) contains all the input ports used in the transitions, and

by ff ...]J[b/aj] the substitution of the input ports b. for a 1 in

"...". We omit the obvious definition of the translation for boolean

expressions.

11<1:t 1—b1 1..10 t-4b>11 [a 1 ..a]

(fork(a 1 ,n) X ... X fork(a ,n) X

iP.It 1 4b1]J(a/a.] X ... X [It —biJ(a/a.] X l:l:P)

\aj ...

where a1'...a'm are not in the sort of the transitions

ff<2:t1—b1v1,. .t n •bnv >II[a 1 ..aJ =

Zbb ev XX 	b1 !b 11 ..,b!b:

—4b >11 (a ..a I a a 	1 m

at -9 b]J(a 1 ..a] =

a n ?x : b!fftJJ[x 1 /a 11 ..,x Ia 1: 1

= apIJ\a

74

Etp(r)]J = EIpfl(r)

ffp(a 1 --b 1]qiI

(ffpfl(c 1 /a 1) X

where c are not in the sort of p and q

as an example, let us compute the semantics of <1:a'9b>, where we

use "" for SCCS's "strong congruence" (the same derivations are

valid for the "smooth congruence" of Chapter 5).

ff<1:a—*b>fl [a]

= (fork(a,1) X (siP. aa9b])(a'/a] X 1:1:P))\a'

= (fork(a,1) X (a'?y: b!y: 1) X 1:1:jP. ...)\a'

= (a?x,I'!x: 1: fork(a,1) X (a'?y: bly: iP. ...)\a'

= a?x: b!x: (fork(a,1) X iP. ...)\a'

= pP. a?x: biz: P

Hence <l:a'b> repeatedly accepts an input x during phase 1 and

produces the same output x during phase 2. Note that according to

this semantics no output is generated from b during phase 1 and no

input is accepted by a during phase 2. A more detailed semantics

might allow b to output nondeterministically tt or ff during phase 1

and a to input an unused value during phase 2; it seems sound to

regard these two semantics as essentially equivalent.

2.3.4 Semantics of the main example

We can now compute the semantics of the pattern matcher:

True =

itP. true!tt: 1: P

False =

;LP. 1: falselff: P

PosBitComp =

P. p.?p i ,s ?s i ,d ?d. n in n in in

Pout 	,s 	I—s i ,d 	1-(d A(p)): P

	

out 	n out 	n out 	in 	in s in

NegBitComp' =

Zps d

=

Pout Ip t oss out is onto ,dout !d 0 ø:

;LP- p in?p iUs s in?s in ,d in?d in :

Pout !1in 1 5out 5 jn1dout hjuMPjnjn P

	

=p 	ip 	,s 	is 	5 d 	Id out onto , out outO out onto

p i ?p ,s ?s ,d ?d. n in in in in in

NegBitComp(—p.,--s.,-.d.A inSin

PosAccum' =

PosAccum(t)

PosAccun(t onto) = 	 -

((pp. x. ? X. ,x. ?x. ,r. ?r. ,d. ?d. ,t. ?t.
in in in in in in in in in in

	

out 	 !xin & rout ! - (4. 1 =t. ;r.),

t out N (Xi=tt;(tiA(x.Vdi))): P)

{ Itt , vItin) X

	

(t 	(t): Q. t ?t i : t 	!—t i : Q) out outO 	in n out 	n

(u/t1sV/t 0 })
\u\v

75

76

NegAccum' =

00t'x0tar0tst0t NegAccum(;L out'
 xout,rout,t out)

NegAccum(X onto, x onto, onto , oat 0 o) =

(X 	U. 	0,x 	Ix 	,r 	ir

	

out out 	out onto , out out

	

pP. X. ?X. 	i. ?x. ,r. ?r. ,d. ?d. ,t. ?t. in in in in in in in in in in

out Xin9boutin, rout 	in tin in D

	

t out 	in I—k 4 	 i in 	n tt;t A(-x 	in V—d): P)

(/t out' v/tin) x
(itQ. t i ?t i : t 	Nt i : Q)

	

n n out 	n

Cu/t in' v/t out)

Simplifying the expressions for PosAccum and NegAccum according to

the SCCS laws and recursion theorem we get:

PosAccum(t) =

X. ?X , in i ?x , in i ?r ,d; ?d. i in n n n n n in in

. 	I—X i ,x 	I—x i ,r 	!—(X i 	t;r i): out 	n out 	n out 	n 	n

PosAccum(. 1 =tt; (tA (xVd)))

NegAccum(X00 x00 9r 09 t) =

x out RtosxIx out out

Xi n in 3Xin in' Xin in' din in

NegAccum(-4. in 	i ,x n 	i ,A n 	in,- t;r 	. in 	 in =tt;—tA(—x V-d.) in

At this point we might try to proceed to compose the various

subcomponents in order to get the semantics of the whole circuit.

This is in principle no different from the manipulations with have

done so far, but the practical difficulties are overwhelming. A

77

proof of correctness would require induction on the size nXm of the

pattern matcher. This seems to be very lengthy to do by hand, and

without machine assistance the confidence in the accuracy of the

result would be very low. We try to show the practical difficulties

which arise, by composing a little 2X2 pattern matcher. We start

building up a positive column:

let (Pren) =

and (Nren) =

PN = (PosBitcoinp(Pren) X NegBitComp'fNrenfl\d

=12 	2
1out9Soutubout PN(p2 out' 32tout' d)

PN(p2to,s2to.d onto) =

(PosBitComp{Preu) X
_1 	1 	1 	1 	 2,2 	2,2
- Pjn ?P in s jnjnId .,indjnspoutpoutOsSoutiS onto sdotlt0.

P2 ?P4 2 ?

3

2 1 	1 	1
In. In in In , Out —pin out 	in•

in in in 	I 	in 	in in

PCol =

(Trne(E/true) x

PN(t/d in' a/d} X

PosAccum(d/d in))\t\d

=12 	2
Pots0t.d0t PC01(P2 Out' S2t,dt)

PCo1(2 	2 =

(True (i/true) X
2 	2

4(Pouto 5outo1douto)(t/din , a/dot) X
PosAccum(t)(cj/d.})\t\d

78

= P n ?P n 	n P out out Om ut! ut O

.. ?). i ,x i ?x i ,r i ?r i in n n n n n
2 	2 	2 	2 	1 	1 	1 	1

	

P2 ?p 	Sin?SinsPout 1in' Sout

out !iflI 'out ! -x. ,r

in 	in 	I 	In 	I 	in

X•=tt;tMxiVd to))

We now build a negative column:

11 let (Nren) = tP n1 Pin Pout 1P ont ssin1sin ,s ut /sout ,a1dout)

and (Pren) = 	in in Pout out s 3 in in 1 3outout sdl'din)

NP = (NegBitComp(Nren) X PosBitCouip(Prenfl\d

=11 	1
p0 t's 0 t.d0 t 	Out' Out out

=

(NegBitComp (p' 0 , s ' 0ad0)(Nren) X PosBitCompfPren))\d

2 	1
= n?nn?3 in' out 	utOmut!utO

d in in In in in in'

Pout 	n'ut !S,dt!(dtOA(Ps)):in in

in in ' -d in 	in in

NCo1 =

(False(?/false) X

NPCf/di , /dt) X

NegAcctun(d/d.D\f\d

=Z1 	1
rout' Sout d out Xout '1out '

NCo1 	Sut d0t "out' xotrout out

=

(False(?/false) X

X

in))\f\d

2 	2 	2 	2 	1 	1 	1 	1
= Pjn?Pin iSin 'SiniP out outOs Sout !3 onto ,

out Ix onto, x out !x00sr out !r00:

1 	1 	1.,1 	2 I—P2 	2 	2 S, in in in in Out 	in Out 	in

in?) jn ixjn?xini r?r1.

	

in' in 	n=4n'

;—r 1

—. 1 tt;tA (xV(d0toA (p=s))))in

Finally, we compose the two columns into a pattern matcher:

PM(P2p 	
2 	 P

outo , souto , uouto ,

=

n'1n' s2?s.

	

nt !to ,Pt !ptoX0 t Ix 	Ixonto:

	

2,2 	1,2 	1,2
PinPin1Sin' si n Irin rin '

Pout 	outo' s out 	utoaroutIXint;r onto :

	

in 	 in onto'n'n'

(ps) 9in1xinXint,rin9

Xjn=tt ;_tNA (x 1 V (dtoA

79

80

2.4 Connector—Switch—Attenuator (CSA) Networks

Classical switching theory turns out to be inadequate for

describing MOS circuits because, as we shall see later, the

underlying boolean logic model fails to account for MOS behaviour at

the transistor level. Hence we turn to a more sophisticated model,

known as the CSA (Connect or—Switch—Attenuator) model [Hayes 811. CSA

gives a static informal semantics to MOS networks, and can be the

basis for more formal and dynamic characterisations of MOS

behaviour.

The problem with the semantics of integrated circuits is that an

exact semantics, modelling what physically happens, seems to be

bound to be intractable for large circuits (not only for proofs but

even for descriptions); an extreme example of such a semantics is

the physics of semiconductor devices. On the other hand a tractable

semantics seems to be bound to be inexact, because of the highly

complex phenomena occurring in semiconductors which are often

exploited by electronic circuits.

Even if it is possible to make simplifying assumptions on the

behaviour of devices (and maybe require that these assumptions be

met by the fabrication processes) some very basis characteristics of

semiconductor devices are intrinsically complex, and critically

influence the behaviour of the simplest components.

The two troublesome features, which confer great expressive power

to these devices, are the bidirectional ity of wires and various

forms of capacitive effects. Because of bidirectionality it is

difficult to model components by input—output functions of some sort

(one possibility is to split every wire into two monodirectional

wires and use, for example, the semantic model of Chapter 4, but

this seems to lead to intractable formal systems). A more serious

81

difficulty is the modelling of capacitive effects, which in MOS

confer the ability to store information. Many circuits critically

use the relative sizes of capacitances and their decay times, so

that it is difficult to abstract from these electrical parameters

and it is not possible to use boolean algebra to model them.

An attempt to give static semantics to MOS circuits is reported

in (Hayes 811, where an elegant set of primitives is identified. A

very interesting dynamic semantics for MOS circuits is due to Bryant

(Bryant 811, deriving from a switch level simulation algorithm. The

value domain which we are going to investigate in this section

diverges slightly from (Hayes 811 and is a special case of the one

proposed in (Bryant 811. The original points in this section concern

the fact that we have a language for expressing CSA networks, and

that we regard CSA networks and expressions as an intermediate step

in the translation from behaviours to stick diagrams. Moreover, a

formal static semantics is defined for CSA circuits, and at the end

of the section we give an example of a translation from CTA

expressions into CSA.

2.4.1 The Value Domain

Electronic circuits are based on the movement of electrons in

conducting materials. Electrons move because of the electrostatic

force between them, i.e. because of the presence of an electric

field. The electrostatic force is conservative, and it is therefore

possible to mesure the work done in moving an electron from one

point to another, regardless of the path between the two points. The

amount of work needed to move a charge between two points, divided

by the value of the charge, is called the potential difference

between the points. Only the difference is significant, and the

potential value can be set to zero at an arbitrary point.

82

In digital circuits, at an appropriate level of abstraction, only

two values of the potential are relevant: the "zero" level, and

another level called "one". The potential difference between zero

and one corresponds to the potential difference of the power supply

relative to ground. Normally in a digital circuit no potential value

can exist below zero or above one, and the intermediate values only

exist for comparatively short times, during transitions from zero to

one and vice versa.

Boolean operations can be implemented in hardware on this simple

two--level domain, and the behaviour of circuits can be understood

using boolean algebras plus some notion of time. It all works very

well and these principles (plus some "tricks" here and there) are

used in all the digital systems built out of discrete hardware, e.g.

using Tl'L or CMOS gate—level chips [Melen 801.

Unfortunately, to fully exploit the possibilities of MOS devices,

this simple model is not sufficient. Physicists and electronic

engineers, who are familiar with charge distributions and

differential equations, work their way through VLSI technologies on

the ground of fairly detailed and precise models. Other kinds of

people (potential VLSI users) can choose between that and some rough

analogies, like for example the water—pipe model (Mead 801. Here we

use CSA models, which seem to capture most of the characteristics of

MOS devices at the proper level of abstraction. These models try to

reproduce a situation similar to the use of boolean algebras in

modelling gate—level hardware. Because we need to operate below the

gate level, the model is more refined and is based on a value domain

containing seven logical values.

The major step consists in realising that two voltage levels and

two current levels (at least) should be quantified in MOS circuits.

83

The voltage levels are T (for true, or 1) and F (for false, or 0).

The current levels are strong (connected to a strong source of

charges, like the power supply) and weak (weakened by some obstacle,

like a resistor, or coming from a weak source of charges, like a

capacitor). Combining them we get four values which can be

physically present on a line: strong one (1), strong zero (0),

weak one (1) and weak zero (0). Moreover T is used to denote 1 or 1

and F to denote 0 or 0, when we do not care to distinguish between

them.

The distinction between weak and strong values is important

because a weak value can coexist with a strong value of the opposite

sign on the same line; this situation is well defined and the strong

value overrides the weak one. The situation is not well defined when

two strong values of opposite sign coexist; to model this situation

we invent a new state, U, called undefined. Similarly the

coexistence of the two opposite weak values gives rise to a

weakly undefined situation U which can be overridden by a strong

value. The undefined states do not actually exist physically, and

they only reflect our inability to describe what exactly happens (or

our discomfort about the fact that something undesirable happens).

The correct interpretation of U is "we do not know whether it is 1

or 0" rather than "it is both 1 and 0" or "it is 0.5"; similarly for

U.

Finally, another state is needed to model the case of a point p

which is not connected to any source of charges. Such a point cannot

be said to have value T or F, because T and F are two definite

values of potential, while the potential of p is simply arbitrary.

Moreover, if we connect p to a source of charges, it will

immediately assume the potential of that source (assuming that p is

small enough) whatever that is. A point like p is said to be

84

floating, and the symbol for this state is Z.

These seven logical values can be arranged into a lattice V, to

show how they override each other when they coexist; the higher

values override the lower ones.

:$:

Figure 2.7 The partial order of CSA values

A basic operation on this lattice is the connection v'Ov" of two

logical values v'v" e V, defined as their least upper bound in V.

The following laws hold for 0:

Associativity: v 0 (v' 0 v") = (v 0 v') 0 v"

Commutativity: v 0 v' = v' 0 v

Absorption: 	v 0 v = v

Zero: 	 vOZ = v

One: 	 yOU = U

Apart from this basic connection operation, different VLSI

technologies can be characterised by different primitive functions

over V, generally reflecting the different kinds of switches present

in a particular technology.

In (Hayes 811 the two undefined states U and U are identified.

This reduces the number of primitive values to six, but leads to

85

problems because the set of values is not a lattice and the analogue

of 0 is not associative. The latter fact seems particularly

counter—intuitive.

2.4.2 Connectors, Switches and Attenuators

A CSA algebra is a network algebra over a set of CSA literals.

There are four classes of CSA primitives: Sources, Connectors,

Switches and Attenuators; we shall only consider a set of primitives

tailored to aMOS circuits.

Sources: a source is a one—terminal device which is either a

source of 1 (also called power, or VDD) or a source of 0 (also

called ground, or GND).

Connectors: a connector is a multi—way device which performs the

connection operation of all its terminals and produces the result on

all the terminals. A connector can have various shapes, but we

assume that all these shapes can be collapsed to a single point; we

do not consider delays or resistances inside connectors.

a3
0.

a4

Figure 2.8 A connector

Attenuators: an attenuator is a device which transforms strong

values into weak values. A 1 on one side of an attenuator becomes a

1 on the other side, and similarly for 0. The attenuator is

symmetric, and it is perfectly possible to connect one of its

terminals to 1 and the other one to 0; in this case the 0 on one

side will be overridden by 1 and the 1 on the other side will be

86

overridden by 0. This 	configuration is 	crucial 	for the

implementation of logical gates.

j
ru

Figure 2.9 An attenuator

The dual of the attenuator is the amplifier, a device which

transforms.weak values into strong ones; amplifiers can be built out

of attenuators, amplifying switches (which we have in nMOS) and

power supplies, and are not taken as primitives.

Switches: There can be a great variety of switches and new

switches can be introduced as required by some particular

technology; these devices have three terminals called gate, source

and drain (source and drain can be swapped without affecting the

behaviour).

The only switch available in nMOS is the switching—on—T switch.

More precisely, when the gate is T (i.e. 1 or 1) the junction

source—drain behaves like a connector; when the gate is F source and

drain are not connected; when the gate is Z or U then if

source=drain they remain unchanged, else source and drain are U;

when the gate is U then source and drain are U. The behaviour of the

switch with gate = Z is defined so that undefined states are

generated only when strictly necessary. This helps avoiding

situations in which undefined values propagate explosively all over

the circuit.

87

source

gate

drain

Figure 2.10 A switch

Switches have the important ability of working as dynamic storage

devices. An nMOS switch is basically a capacitor which influences

with its charge the flow of current in the gate—drain connection.

Hence a charged switch with an isolated gate will remember its state

until it discharges; if the switch is not refreshed it will

gradually lose its charge (whence the name of dynamic storage

device). The decay time is usually much larger than the clock

period, and static storage devices can be obtained by connecting

pairs of switches in such a way that they periodically refresh each

other.

2.4.3 Basic CSA Circuits

CSA circuits can be expressed

sources, connectors, switches and

in this section we shall just

pictures; examples of expressions

will be shown in section 2.5 f

constraints.

in net algebra notation by taking

attenuators as literals. However

describe basic CSA circuits by

of the same order of complexity

r stick diagrams with planarity

The most important nMOS structure is the inverter. An nMOS

inverter acts as a not—gate but, what is more interesting, it can be

used as a dynamic storage device. An inverter can be built by a

switch (called the puildown in this configuration) and an attenuator

(called the pullup) connected to power and ground.

1

Lt

111.1

i-I

Figure 2.11 A CSA inverter

The attenuator constantly supplies a weak one to the output. When

the value T is on the input, the switch connects a strong zero to

the output which overrides the weal one, and the result is F. When F

is on the input, the switch is open and only the weak one is

connected to the output; hence the result is T.

Inverters are often connected into shift register structures:

1

in

Es

out

Figure 2.12 Two shift register cells

When a two—phase non—overlapping clock is used, a signal can ripple

through a chain of shift register cells, getting inverted at each

stage. The switches controlled by the clock signals are called in

this configuration pass transistors. Note how each pass transistor

isolates (when open) the gate of the following switch, so that the

charge stored in the following stage is trapped into a dynamic

storage configuration.

More complex logic circuits can be built in essentially two ways;

0

89

by making more complicated puildown structures, or by making more

complicated pass transistor structures. Very common examples of the

first class are the nand and nor configurations:

1

1

in '

in 2

:s]

out

out

in

[I]

in

Figure 2.13 CSA Nand and Nor

while selectors and multiplexors can be built very cheaply as pass

transistor structures:

C
	'1jC 1 	 C,

in '

in

in3

in

out

Figure 2.14 A selector

As a last example we show an amplifier (also called non—inverting

superbuffer) which converts weak values to strong ones.

1.

90

in

at

Figure 2.15 An amplifier

Note that this amplifier can only work because n.MOS switches have

the ability of switching on weak values, so that they are themselves

proto—amplifiers.

2.4.4 Static Semantics of CSA

Because of the above mentioned difficulties in giving a formal

dynamic semantics for CSA, we define here a simpler static semantic,

which only works for circuits which can reach stability. We think

that this kind of semantics helps one to understand the general

behaviour of CSA circuits, and may be a good starting point for a

dynamic semantics.

A CSA expression is a net expression with several kinds of

literals. There are sources 1: (tt) and 0: (ff3, connectors C:

(c 1 9. ..,c}, a switch S: (g,s,d), an attenuator A: (s,d), and the

usual operators e\a, e(r), e[r]e'.

A static semantics can be given to CSA expressions by considering

the set of all the stable configurations of a CSA circuit.

Intuitively, a stable configuration is an assignment of values to

each point of a circuit which does not change when considering the

propagation of values through the circuit.

The values present on the. terminals of a CSA component or circuit

91

depend in general on the context in which we put the circuit. For

example the source 1:(tt) has a stable configuration which assigns

the value 1 to the port t (we write <tto—+1) for this

configuration), but in a context in which 1 is connected to 0 the

port tt will (stably) present the value U. There is no other stable

situation, so that the static semantics of 1 is C<tto—U>, <tto—+1>1

which is the set of all the stable value assignments to the ports of

1 in every possible context.

Formally, given the CSA value domain V and a finite set of port

labels A, a configuration (value assignment) on A is an association

c a VA of values to port labels, written <a 10-9v1, ... ,ao-4v) when

A = an I . A configuration set on A is a set CA VA ; sets C
will be used to give semantics to CSA circuits of sort A.

There is a natural partial ordering of configurations which is

the one induced by the ordering on V. namely for c,c' 8 VA:

c < c' 0 VaeA. c(a) < c' (a)

This partial order is not used in the formal development, but it is

convenient when drawing configuration sets, to give them some

structure.

Here are the configuration sets for sources:

U
tt 	I

1
(tt)

0 	 U

f 	I
0

(f f)

Figure 2.16 Sources

The stable configurations of a connector C are those in which

all the ports have the same value:

92

U...

< U. 	U \

(C 1 .. .C)

Figure 2.17 Connectors

For attenuators, we can think of trying all the possible pairs of

values for source and drain, and see which can be maintained. This

gives 17 stable configurations:

UU

11 	10 	01 	00

1U 	U1 	 UO 	OU

P1
LTJ 	 11 	11 	UU 	00 	00
I. 	 I

'•'% 'Vj

Al
d 	 11 	 00

V
zz

(s,d)

Figure 2.18 Attenuators

Switches have a large number of stable configurations, mostly

because source and drain are independent when the gate is F. The

configuration set also depends very much on the technology and we

just give one possible candidate:

93

• 	 1 	0 11 	00

2X 	= X= 	/U\ tJu

1 	0
\/

r #%J
11 	00
\/ z zz

X2 	= 	Xxx
UUU

' 	2 I 	1 (2X) 0(x

ill
g U(2X) _ ' 	._.__ 1(2X___- III) 0(X2)

Z(2X)

(g,s ,d)

Figure 2.19 Switches

Three operations on configuration sets can be defined,

corresponding to the net algebra operators. Restriction hides a port

in each of the configurations of a set:

CA\a : A\a 	A 	(cl(A\a) I c z CA)

Renaming simply changes the port names of the configurations:

CAfr:AA) : r(A) 	A 	Cc o 	I C e CA)

Composition merges two configuration sets CA and CA , . Two

configurations c a CA and c' a C. are compatible if they give the

same values to the ports which are being connected. The result of

the composition is then the set of all the compatible pairs of

configurations, which are merged pairwise while hiding, as usual,

94

the connected ports. In other words, the composition of two

configurations is stable if the component configurations are stable

and also the connection points are stable, i.e. if the values of the

connection points agree in the two configurations.

CAICA, :AOA'

fcOc' I ceC 	c'CCA,; VaeAiA'. c(a) = c'(a))

where cOc' A (<ao --- v> I a a AGA').

Let us see some examples; the first one is a "short circuit"

configuration which has a unique (undefined) stable state:

U

(s)

Figure 2.20 Short circuit

An attenuator connected to 1 has instead five configurations, which

are the configurations of the attenuator lattice having sU or s1:

uu

.s 	

/\
11 	10

'U

d 	 11
(s,d)

Figure 2.21 Powered attenuator

Here is a switch with the gate connected to the source:

Ui

/UU,

01 	00
\/
0U

11
AV

01

g

—

	

\ \/

00

0z

UU

•'1

01 	00 / IVU
0U n

\ 	01 00/

zz

(g,d)

Figure 2.22 Gate—to—source switch

this large number of possibilities reduces to just two if we connect

the gate to 1:

U I 	

1 	

(d)

Figure 2.23 Powered gate—to—source switch

Finally, we can use a gate—to--source switch to build an oscillator:

96

(s)

0

Figure 2.24 Oscillator

initially there is a 1 on the gate of the switch, which closes

connecting the gate to 0; then the switch opens again, and so on

forever. The static semantics of the oscillator contains a single

undefined configuration; all the other ones are unstable (note that

in the diagram for the gate—to—source switch there is no

configuration with g=l and d=O).

Given a circuit and its configuration set CA we might ask whether

the circuit is "well—behaved". This can be done by assigning

well—defined values (i.e. T or F) to some terminals designed as

inputs, and check that all the other terminals (the outputs)

stabilise in a unique and well—defined way. Formally this means that

if we choose the well—defined values v1 ...v, for the ports

a A, then the set Cc a CA I c(a) = v 1) should contain a

unique totally well—defined configuration.

Finally, note that the configuration set for switches is not a

lattice. This is sensible because if it were a lattice, we would

have lattices as semantics for all the literals. Then the semantics

of every CSA circuit would be a lattice, because the operations

preserve lattices, and we would be able to define a uniquely

determined relaxation operation mapping any arbitrary configuration

into the least upper bound of all the stable configurations bigger

than it. This would mean that every circuit could stabilise in a

97

unique "most defined" way, which is not what happens in reality

when, for example, we power up a flip—flop.

2.4.5 Main Example

The CSA layout of a positive bit comparator is shown in the next

figure.

1

P t

S ou

Pout

S.
in

L)LLL

Figure 2.25 Positive bit comparator

The bit comparator can be split vertically into two clocked

inverters which act as shift registers, surrounding a proper

comparator implemented as a 5—switch pulidown structure.

2.4.6 From CTA to CSA 	 -

The basic idea underlying the translations among net algebras is

that structure is preserved, i.e. net algebra literals and operators

are, more or less directly, mapped into similar literals and

operators of another net algebra. These translations are not,

technically, algebra homomorphisms because literals may be mapped to

98

complex nets with different sorts and signatures, and a single

composition can be mapped to a set of compositions. What is needed

here is a more general kind of algebra morphism called a derivor

[Goguen 78, Sannella 811.

The preservation of structure implies that our translations are

essentially simple because they only act locally, and hopefully the

redundancies possibly introduced by the translation process can be

removed by local optimisation.

Moreover, if structure is preserved, then the programmer has fine

control on the structure of the end product. This characteristic

makes our notations suitable for expressing special purpose

hardware, where the emphasis is always on how a computation is

carried out, rather then on the input—output behaviour. This is to

be contrasted with the attitude one might take to translating

arbitrary Algol—like programs in arbitrary (correct) ways into

general purpose hardware components (e.g. microprocessors and read

only memories). This approach can only produce standardised

architectures, unless complex optimisation strategies are applied in

order to rediscover the particular architecture one had in mind.

We show here how to systematically translate CTA expressions into

CSA. The major step consists in translating CIA literals into CSA

networks; the translation of the operators is then induced.

We assume that in a clocked transition tb, t is built from

input variables. boolean expressions and conditionals. Each value is

translated into a VDD line, a GND line and a value line. For example

an input variable of a phase—i cluster is translated as an

appropriate forking, clocked by phase i:

PE

1 3.

a 	
a
0

0 	 1 0

a

Figure 2.26 Input variable

Boolean operations liKe not, and, or etc. can be implemented by

standard gates:

1

a

0

1

b

0

Figure 2.27 And

and conditionals "a 4 b ; c" become:

1

aAb

[.]

100

a=b;c

1 -
0

0

Figure 2.28 Conditional

Transitions t--+b of phase i are translated by first translating t

and then composing an output box to the output. Phase-1 output boxes

are simply:

1 	 1

a 	 a

0 	 0

Figure 2.29 Phase-1 output box

while Phase-2 output boxes must consider the power—up values

specified in the transitions; there are three cases:

reset 	reset 	Ivreset 	reset 	".'reseti 	I reset

1 	 1 	1 	 1 	1 	 1

a 	 a a—? I 	a a 	 a

0 	 0 	0 	 0 	0 	 0

(tt} 	 (ff} 	 Ctt,ff}

Figure 2.30 Phase-2 output boxes

101

The CIA operators are translated into corresponding CSA operator,

noting that the CSA expressions have l's and 0's in their sort, and

these ports have to be properly connected.

The translation proposed above is only a simple example, and it

is very inefficient by VLSI standards. In fact, the signals are

restored at each step of the translation and the large number of

pullups introduced have large area and power requirements. A better

result can be obtained by translating each value into a pair of

lines (carrying the value and its complement), plus VDD and GND

lines, and introducing a restoring stage into the output box. The

translation for boolean operations and conditionals has to be

modified accordingly, and local optimisation can group most of the

logic into pulidown and pass transistor structures inside the output

box. A translation of this kind, for CMOS circuits, is sketched in

(Rem 81].

102

2.5 Stick Networks

2.5.1 Sticks

Stick diagrams were devised as an attempt to abstract away from

detailed geometric layouts while still retaining their essential

topological information content. Assuming that the design rules are

known and that electrical properties are ignored, a stick diagram is

about the minimal information allowing a human or a program to

reconstruct the original layout, or one very close to it. Stick

diagrams are meant to specify the choice of materials (i.e. colours)

and to hint at the general position and orientation of lines and

components, but to leave the exact geometry (and hence, the

electrical properties) of the circuit unspecified. The geometric

implementation of a stick diagram is usually one of the smallest

obtainable according to the geometry rules, unless the context

requires otherwise; in the latter case some stretching or routing is

required.

I 	 I

I. 	 I 	 Is 	I 	 I
.5 	 I 	 I' • 	 I

I 	 I 	 I 	 I

I-........
Code: 	 green,. blue; —•——— yellow.

Figure 2.31 A shift register stick diagram

There are two evident ways to analyse a stick diagram. The first

is to identify coloured lines, black dots and yellow patches as

basic constituents; a stick diagram is then an unstructured set of

such components. While this can be convenient for some purposes

103

(interactive graphic stick editors often work this way) we prefer to

look for a hierarchical decomposition, in order to turn stick

diagrams into a network algebra. The second approach is then to

identify the stick intersections (i.e. transistors, contacts and

crossovers) as the primitive objects, and to express stick diagrams

as hierarchies of connected intersections. Stick intersections also

happen to correspond to functional units in VLSI circuits, so that

the second approach is very helpful in relating semantic and

syntactic properties of circuits.

A stick diagram is a planar network. As explained in Chapter 1,

the ports of a planar network are organised into a cycle which

represents the anticlockwise order in which the ports appear in a

layout. This cyclic structure is preserved during composition, so

that starting from planar primitives we can only build planar

graphs. Here is an example of a sort:

(rs,re,rn,rw: red)

where rs,re,rn,rw (i.e. red south, red east, etc.) are all red

ports, and the cyclic order is rs<re<rn<rw<rs. Port names have no

particular significance, types are the three colours [green,red,

blue)

Two planar sorts are equal if they have the same set of ports,

associate the same types to the same port names, and if the cyclic

ordering of ports is the same. Swapping ports around the perimeter

is forbidden by the cyclic ordering, so that no non—planar

crossovers or unwanted transistors are generated. This constraint is

actually stronger than needed because it also forbids red—blue and

green—blue swappings and requires the introduction of red—blue and

green—blue crossovers among the literals.

0

104

2.5.2 Stick Expressions

A stick expression is a planar expression denoting a stick

network. Stick expressions are built from a set of literals denoting

the basic building blocks of stick diagrams. The set of literals is

listed here, together with their interpretation.

rn

rwE__. re

rs
RCon

gn

bw . be

gs
GBC0n

gn

CJW()

ge

gs
GCon

bn

bw 0 be
bs
BCon

bwQbe bw

RECross 	GBCross

gw 	ge bw 	be

	

GRC0n 	RBC0n

rn 	 rn

g 	g g 	g

	

E'Ians 	DTrans

Figure 2.32 Stick literals

There is a very simple correspondence between stick literals and

CSA literals. ETrans is a switch with gate at "rn' 9 and "rs", source

at "go" and drain at "gw". KCon.GCon.BCon,GRCon,RBCon and GBCon are

4—terminal connectors. RBCross,GBCross and DTrans are crossovers. An

attenuator is a composite object, which in stick terminology is

called a pullup:

PullUp =

GRCon\rs\gw Ern—rn]

Dtrans\rs(ge\gn) [go--gw.gw--gn]

GCon\ge

105

gs

Figure 2.33 A pullup

2.5.3 Examples

An inverter can be built by first defining VDD (power supply)

GND (ground) and PuilDown components:

VDD = GBCon\gn (bw\VDD,be\VDD0t)

GND = GBCon\gs Cbw\VDD1,be\VDD0t)

PullDown = ETrans\rs(gn\ge,gs\gw)

an then composing them vertically with a PullUp:

Inverter =

VDD [gs--gn]

PullUp [gs—gn]

GCross\gwfout\ge) [gs--gn]

PullDown{in\rn) [gs—gn]

GND

VDD. VDD
in 	 out

out

in

GND.
i-n

GND
out

Figure 2.34 An inverter

More complex examples involve parametric definitions, local

definitions (let—in), conditionals and recursion or iteration (we

have already seen some examples in Chapter 1).

In VLSI most of the parametric structures are regular arrays of

cells, and in these cases iteration is the most obvious programming

construct to use. We introduce iteration in the following

specialised form which applies only to the iterated connection of

sticks:

for <variable> in <list>

iter <body>

with <connection>

<list> is an expression denoting a list of integers, e.g. n..m is

the list of integers from n up to (or down to) m; <body> is an

expression denoting a stick diagram i.e. a stick expression

augmented by control structures like "let—in", "if—then—else" and

"for—iter"; and <connection> is an explicit composition operator

106

107

[r]. The body of the iteration (possibly containing the iteration

variable) is composed by the connection part to the accumulated

result of the previous iterations, while the iteration variable

ranges through the list. Bunched sorts are used extensively:

iteration very often bunches together many of the ports which are

not connected. Note that the form of iteration we use can be easily

translated into recursion, and of course no side effects are

involved.

We now program the tally circuit example of (Mead 801. A tally

circuit has n inputs and n+1 outputs, and the output k is high if

and only if k of the inputs are high. We are not interested here in

the behaviour of the tally circuit, but in its rather unusual

triangular topology. The reader is advised to draw the pictures

corresponding to the expressions we present.

First let us define the basic tally cell:

TallyCell =

NegPart (res 0 ---res1l PosPart

NegPart =

NegCross [neg —neg 0] NegGate

PosPart =

PosCross [pOSi--pOsout]

PosGate [de—gs, res0--gw]

GCon(gn\de, ge\res)

NegCross =

GBCross(gn\dw, bw\neg. , gs\dn, be\neg)

PosCross =

GBCross(gn\res., bw\pos1. gs\res 0 t. be\de)

NegGate =

GBCross(gn\res 1 , be\neg0t) Cgs--gw]

ETrans\rnfge\res out) (bw--be,rs--rs]

RBCon\rntbw\neg 1 }

PosGate =

GBCross(gs\de, be\pos0t) (ga--gel

ETrans\rntgw\ds) [rs--rn,bw--be]

RBCon\rs (bw\pos 1)

108

a w

res
in

d
e

res
out

neg. 	d 	pos. in S 	 in

Figure 2.35 Basic tally cell

Then the central part of the circuit can be composed by a double

iteration:

TallyBody n =

for j in (1..n+1]

iter (for i in (if j=u+1 then 1..n also 1..j)

iter TallyCell

with [dw—de, res--res0t])

[dw—gn, res--ge]

GCon\gs (gw\res)

with out ,ds—dn pos --pos]

Tally n =

TallyBody n \de \dn \pos0 	out

(res(n+l]—gs]

PullUp

note the debunching operation used to connect the pullup to the

tally body. The inputs are collected in the n—bunch pos j and neg

are their negations; res out are the outputs; the pullup should be

connected to VDD and all the remaining ports to GND.

109

res.
in

res.
in

res.
in

gn

res
out

res
out

res
out

res
out

u
in 	 neg. pos. nein n d
	

g.pOS.
in

S 	 S 	 S

Figure 2.36 Tally circuit

The next example is a PIA generator (PLA structures can implement

arbitrary finite state machines (Mead 80]). The generator accepts as

110

inputs two arrays of boolean values, (which can be automatically

generated from sets of boolean equations) coding the disposition of

switches in the so—called and and or planes.

We first introduce the basic building blocks of the PLA as

pictures:

b..w Efl b.e
g.w

r.s g.s
LeftEmptyCell

b. w 	
...

b. e

g. w 	 g.e

r.s
RightEmptyCell

r.n g.n

b.w. b.e

g .wL 	J g .e
r.s g.s

LeftFuiiCell

b.wffIj b.e

g.w 	 g.e

r.s
RightFul iCe 11

Figure 2.37 Building blocks for programmed cells

rs.n g.n

b.wl
g. W-

I 	\
....lb.e

I
g.e

r.n 	r.n
I 	I 	I

rs.n

bs.w 	bs.e bs.w(-)bs.e

b.w b.e .
r.s 	r.s rs.s g.w g.e

g.s

rs.s
PlaSpace PlaGround PlaSpaceGround

Figure 2.38 Building blocks for ground lines

b.n 	 b.n 	 b.n 	 b.n

phi2.e 	 I') g.e b.w('- r.e bs.w --- 	 ")

gnd.w .Igt.e 1 	' 	I 	I 	S— g.e
b.wf.....----.---Ir.e

b.s
vdd.w vdd.e 	* 1 Lj.e

b.s 	 b.s
OutputSpace 	PullupPair 	PlanesConnect 	PlaSpaceConnect

Figure 2.39 Peripheral building blocks

lii.

g.n g.n

gnd.e 	phi2.w('J--------- jPhi2.e

gnd.wT T..f gnd.e

vdd.e

I 	'•-_ I

phil.e 	vdd.w. Jvdd.e

PlaClockedOut

L.LL 	 i_.1

gnd.w

vdd. w

phi 1. w

g.s
PlaClockedln

Figure 2.40 Input and output

The following program generates a single plane; the inputs are a

pattern (i.e. an array of booleans arranged for convenience as a

list of lists of quadruples of booleans) and the frequencies with

which ground lines have to be interleaved with cells, in the

horizontal and vertical directions. Note that we use here

simultaneous iteration of two iteration variables through two lists.

let plane (pattern,Xspace,Yspace) =

for strip in pattern and Y in 0..(length pattern)-1

iter (PullupPair [b.e--b.w, g.e--g.w] row)

F'

where row

(for highleft,highrightjowleft,lowright in strip

and X in O..(length strip)-1

iter (if Y mod Yspace = 0

then if X mod Xspace = 0 And Not X = 0

then (PlaSpace (b.e--b.w, g.e--g.w] cell)

(r.n--r.s, g.n'—g.s, rs.n--rs.s]

(PlaSpaceGronnd Ebs e--bs .w] PlaGround)

else cell (r.n—r.s, g.n--g.s] PlaGround)

else if X mod Xspace = 0 And Not X = 0

then PlaSpace [b.e—b.w, g.e--g.w] cell

else cell

where cell = cell(higbleft,highright,lowleft,]owright)

with (b.e--b.w, g.e--g.w, bs.e—bs.w])

with [b.s--b.n, r.s—r.n, g.s—g.n, rs.s--rs.n]

\r.n \g.n \rs.n \bs.w

where cell(highleft,highright,lowleft,lowrjght) =

(if highieft then LeftFullCell also LeftEmptyCell

(b.e—b.w, g.e--g.wl

if highright then RightFullCell also KightEmptyCell)

(r.s—r.n, g.s--g.n]

(if lowleft then LeftFullCell also LeftEmptyCell

[b.e—b.w, g.e--g.w]

if lowright then RightFullCell else RightEmptyCell)

112

Note that the complication of the inner iteration loop is due only

to the interleaving of ground lines.

113

The generator composes an and—plane and an or—plane via a

connection strip. The and—plane is obtained by connecting the inputs

to a plane, and the or—plane by connecting the outputs to another

plane.

let.pla (andpattern,orpattern,space) =

(andplane (gnd.e--gnd.w, vdd.e--vdd.w, b.e--b.w, bs.e--bs.w]

conn 	tgnd.e--gnd.w, vdd.e--vdd.w, phi2.e--phi2.w,

r.e--r.s, g.e--g.s, b.n--b.s]

orplane) \phil.e \phi2.w

where andplane =

plane (andpattern,length(hd andpatteru),space) \ge

[r.s—r.n, g.s—g.n, b.s—vdd.w]

inputs

and orplane =

plane (orpattern,space,space)

(ge--g.n, bs.e--b.n]

Outputs

where inputs =

length(hd andpattern) times PlaClockedln

with (gnd.e--gnd.w, vdd.e--vdd.w, phil.e--phi2.w]

\gnd.w (g.s\in.$)

114

and outputs =

for Y in 1.. (length orpattern)

iter (if (Y mod space)0

then PlaClockedOut

(gnd.e--gnd.w, vdd.e--vdd.'w, phi2.e--phi2.w]

Output Space

also PlaClockedOut

with (gnd.e--gnd.w, vdd.e—vdd.w, phi2.e--phi2.w]

(r.s\out .

and conu =

for Y in O..(length pattern)-1

iter (if (Y mod space)=O

then PlaSpaceConnect (b.s--b.n] PlanesConnect

also PlanesConnect

with [b.s--b.n] \b.n

[b.s—b.n]

Output Space

A version of this program was written in the design system

described in Chapter 3 (the only differences, due to the geometric

nature of that language, being the use of geometric literals, and

the use of some "geometric renaming" (see Chapter 3)). The result is

shown in the next figure.

-

116

2.5.4 From CSA to Sticks

Three steps are needed to translate a CSA network into a stick

network. Here we simply sketch them.

The first step consists in finding an almost—planar embedding for

the graph of a CSA expression, imposing a planar sort on the CSA

network and possibly preserving the structure of the expression.

Note that a stick graph does not need to be completely planar

because of the crossover literals RBCross,GBCross and DTrans.

Planar embeddings are always possible by inserting extra

crossover components at critical points. The result should be

reasonably good if the initial CSA network was thought of in planar

terms (as should often be the case for VLSI networks), otherwise

very complex algorithms and heuristics will probably be needed to

get good results.

The second step is the "colouring" of the graph. Components like

switches, attenuators, power, ground and clocks have precisely

coloured terminals, and a simple colour propagation scheme (where

terminals of connectors may receive arbitrary colours) should be

sufficient to colour the whole graph.

The third step simply translates attenuators into pullup

structures, switches into transistors and connectors into wires and,

when needed, contacts.

117

2.6 Grid Networks

We are now going to investigate a net algebra which is situated,

so to speak, in between purely topological stick networks and purely

geometrical layout networks. This algebra can be of practical

significance because it seems to minimise the complexity of the

translations from sticks to layouts; it can be regarded as a very

abstract geometrical algebra or as a very concrete topological one.

2.6.1 Grids

A grid is an array of orthogonal segments such that all the

vertical segments intersect all the horizontal ones, and vice versa.

For convenience we shall lay the segments parallel to the axes of

the cartesian plane with spacing two units, end—points projecting of

one unit outwards, and with the origin in the lower left corner.

Figure 2.42 A canonical grid

The end—points of segments in a grid are called its ports; the

boundary of a grid is the set of its ports and the perimeter is

given by the cardinality of the boundary. The south, east, north and

west boundaries are defined in the obvious way and are also called

respectively the southeast,north and west of the grid; collectively

these are the sides of the grid. The knots of a grid are the

118

intersections of its segments, and the area is the number of knots.

A grid can be regarded as a rectangular matrix of knots. An

interpretation of a grid is a mapping from its knots into a set T of

tiles (which are little 2x2 squares). Here is the set of basic tiles

needed for n.MOS stick diagrams.

Figure 2.43 Basic tiles for nMOS stick diagrams

Non—basic tiles can be produced from the above tiles by rotation

and by dropping one or two of the segments joining the centre of a

tile to its boundary; the blank tile is needed to fill the empty

spaces of a stick diagram. An interpretation of a grid according to

this set of tiles is given in the next figure, showing a shift

register cell.

119

Figure 2.44 A stick diagram interpretation of a grid

The sort of a grid associates a name and a type to each port. The

ports are cyclically ordered anticlockwise, and assigned to one of

the four sides (south, east, north, west). There is a special name

called the NuilName and a special type called the NullType; the

NullName is always associated to the NuliType and vice versa. A pair

NullName—Nulltype is also called a null port, written "0", which

represents the lack of a proper port on the perimeter of the grid.

For example, the sort of the shift register cell is written:

(south: (0, 0, ClockOut: red, 0],

east: [GndOut: blue, Out: red, 0, 0, VddOut: blue],

north: U), Clockln: red, 0, 0],

west: (Vddln: blue, 0, 0, In: red, Gndln: blue])

A grid network (sometimes ambiguously called a grid) is an

interpreted grid together with a compatible grid sort. Grid networks

can be built by repeated compositions, starting from a set B of

basic grids (each b a B being a rectangular assembly of tiles t a T)

of sort given by X(b). A composition g'(r]g" of two grids g',g" is

obtained by embedding without overlapping g' and g" into a bigger

120

grid g. This embedding must satisfy [r] (in the evident sense) and

must also define the tiles of g which do not belong to g' or g". A

particular kind of grid composition will be analysed in a

forthcoming section.

The two other net operations are defined on grids as follows

(they just operate on the sorts leaving the underlying grids

unchanged):

Restriction: g\a transforms the name a in the sort 	(g) into

NuilName, and the associated type into NullType (a should not be

NuilName).

Renaming: gCr} applies the name—bijection r to the names in ar(g),

leaving the types unchanged (r should not contain any NullName).

2.6.2 Discrete Stretch Transformations

In this section we develop some tools needed to define grid

compositions. An n—dimensional discrete stretch transformation, or

stretching for short, is an n—tuple of boolean vectors S = Sill s n

(we are actually only interested in the cases n=l and n=2). For

every boolean vector S 1 we define #S as the length of the vector

and PS. as the number of "l 1"s (i.e. "true"s) in the vector. If

M is an n--dimensional matrix of size m
1 X. Am no then a

n—dimensional stretching can be regarded as a mapping:

S1 . .S : Ms .p5 09 M 	
n

The result matrix is obtained from the argument matrix by inserting

an (n—l)—dimensional plane orthogonally to the i—th dimension in

correspondence of every "0" in S 1 . For example:

1 	a 	ab 5

5 1 1010, s2 0 : 	c 	o— 	Sees

1 	 c 5 d 5

where * is any fixed fill—in value.

121

In the case of 1—dimensional stretching we can apply a stretching

to another stretching (using 0 as fill—in value). This allows us to

define the composition of stretchings as follows:

S 	S 	S' 	S' 	S CS') 	S (5') l" n ° 1 " n 	1 1 " n n

That this is really composition can be seen from the following

properties:

• 	(S 	S')(M) 	= S(S'(M))

o 5")

In case of 1—dimensional stretching we get the curious—looking

equation:

(S 0 S')(S") = (S(S'))(S") = S(S'(S"))

2.6.3 Normal Grid Composition

We are interested in a particular kind of grid—network

composition called normal composition. This composition might appear

to be exceedingly restrictive; actually there is no loss of

generality and we shall see in the following sections that any stick

expression can be mechanically translated into a series of normal

grid compositions in a non—unique but fairly controllable way.

Normal composition is determined (up to choice of stretch lines)

by specifying the connection side s of one of the networks; the

connection side of the other network is then taken to be the side

opposite to s. For consistency with stick expressions we shall use

the full notation g'(r]g" also in this case, where [r] is of the

form (a 1--b 1] and a 1 are all the non—null ports on one side of g'

and b 1 are all the non—null ports on the opposite side of g". We

extend this notation to expressions like g'(south—north]g" in order

to describe composition on sides with no non—null ports.

Normal composition is legal if and only if the number of non—null

122

ports on the two connection sides is the same and the names and

types of these ports match pairwise (according to [r]) moving in

parallel along the connection sides. The result grid is obtained by

minimally stretching the two component grids uniformly in the

connection—side direction until the level of all the non—null ports

match pairwise and the two connection sides have the same length.

Figure 2.45 Stretching

The exact choice of stretch lines is not important, as far as

stretching is minimal. The stretched grids are than embedded into a

grid of area the sum of their areas, with the connection sides

facing each other. The way in which the stretched areas are

filled—in with tiles, depends in general on their neighbouring

tiles, and should be specified together with the set of tiles T; in

case of nMOS stick diagrams we fill these spaces by the appropriate

straight—line tiles, so that connected stick nodes remain connected

under stretching. The result sort of normal composition is the sort

of the result grid, obtained from the component sorts by dropping

the ports on the respective connection sides and by possibly

inserting some null ports where stretching has occurred.

In order to compute the normal composition of grids, we might

represent grids as matrices and then define grid composition by

brute—force stretching of matrices. Instead, we describe an

efficient algorithm which simulates this stretching process by

considering grid sorts together with stretch transformations.

123

Let us assume that the grid composition g'(r]g" is normal and

legal in the sense previously defined. Starting from the sorts of g'

and g" we produce the sort of the result, together with the

bidimensional stretch transformations v',h' and v",h" (vertical and

horizontal respectively) to be applied to g and g" in order to

embed them exactly in the result.

The first step consists in identifying the connection sides in g'

and g", which are given by any pairs of connections as specified in

[r]. For convenience we fake a standard orientation for composition,

placing g' on the left and g" on the right; we define the

pseudo-east side of g' and the pseudo-west side of g" to be their

respective connection sides, and accordingly we pseudo-name all the

other sides of g' and g".

pseudo-north

pseudo- pseudo-"left to
	 "right" west 	 east

pseudo-south

Figure 2.46 Pseudo orientation of composition

Next we compute a minimal pair of 1-dimensional stretch

transformations, pseudo-v 9 and pseudo-v", which make the ports of g'

and g" match along the connection sides. This can be done by walking

in parallel on the pseudo-east and pseudo-west sides of a(g') and

a(g"), "skipping" all the null ports in pairs and "pushing" any

non-null port along one side (while skipping any null port on the

other side) until there is a non-null port on the other side, and

124

then skipping the pair. Here "skipping" means inserting a "1" in the

resulting transformation, and "pushing" means inserting a 09000.

1. 0
1 1
0 1
1 1.
1. 0
1 0
1 1
1 .1.

pseudo-v 1 pseudo-v"

Figure 2.47 A minimal stretching

Next we form the sort of the result in the following way:

- The resulting pseudo-south is the concatenation of the two

pseudo-south;

- The resulting pseudo-north is the concatenation of the two

pseudo-north;

- The resulting pseudo-west is the result of stretching the

pseudo-west of g' according to v', filling in with null ports;

- The resulting pseudo-east is the result of stretching the

pseudo-east of g" according to v"1 filling in similarly.

Finally we produce the stretch transformations:

- pseudo-v' and pseudo-v' 1 have already been produced;

- pseudo-h' is a vector of "l"s as long as the pseudo-south of g';

- pseudo-h" is a vector of "l"s as long as the pseudo-south of g".

All the results have to be renormalised with respect to the

pseudo orientation. The sort of the result gives the total size of

the composed objects and can be used in further compositions. The

stretch transformations v',h' and v",h" and the connection sides are

enough information for building a matrix of the result if we are

125

given matrices for g' and g". They can also be composed in

interesting ways with the stretchings computed from subexpressions

of g' and g", as we shall see shortly.

2.6.4 Grid Expressions

A grid expressions is an expression with operators "\a", "(r)"

and "[r]" (normal composition), over a set of grid literals denoting

basic grids. The grid denoted by a (legal) grid expression is

obtained by actually performing the operations described in the

expression. Grid expressions will be denoted by the letter 'g".

If we have a grid expression in form of a tree, we can apply the

grid composition algorithm described in the previous section from

the bottom up, obtaining at the end a corresponding tree of stretch

transformations plus the grid sort of the whole expression. The

stretch tree and grid sort of a grid expression g are produced as

follows:

- If g is a literal, the stretch tree is a leaf containing that

literal and the grid sort is the grid sort of g.

- If g is g'\a, we recur on g' obtainingits tree t' and sort s'.

The result tree is t' and the result sort is s'\a (restriction as

defined for grid networks).

- If g is g'Cr), we recur on g' obtaining its tree t' and sort s'.

The result tree is t' and the result sort is s'(r) (renaming as

defined for grid networks).

- If g is g'(r]g", we recur on g' and g" obtaining t',s' and t"s".

We apply the grid composition algorithm to s',s" obtaining a sort $

and two stretchings v',h', v",h". The result sort is s. The result

tree contains t',v',h', t",v"h" and the connection side of g'.

A

B 	 d 	C
C

C
00

I 	 1'

 1
1

 ii

0~~
A [a--dl B @I 	B

b

I

0J ii 	
01 	

south

10 	
1L

I I

A[a--dJB
[b—f , c- -e] C

B 	1

Figure 2.48 Stretch trees

2.6.5 Grid Recomposition

Given a grid expression we have seen how to produce a stretch

tree and a grid sort for it. To produce a picture of a grid, we walk

down the tree accumulating the stretch transformations as we

proceed. When we get to a literal we know its position and the

amount of stretching to be applied to it. Hence we draw the literal

in the computed position with the appropriate stretching patterns to

match its expected size.

The accumulation of stretch transformations is not done in the

126

ii

C

most obvious way, which would be by stretch composition: this method

127

produces, for every literal, a stretch transformation as big as the

whole final layout which places exactly the literal in the layout,

but gives no information about the amount of stretching to be

applied to it. Luckly enough, the kind of accumulation we need uses

less space, and produces for every literal a stretch transformation

as big as the stretching to be applied to the literal; the position

of the stretched literal in the global layout is derived by

maintaining an origin point as we go along.

The algorithm takes a stretch tree and its grid sort, and "draws'

the result; drawing is just an example of grid recomposition. We

start with a stretch tree t, a vertical—horizontal stretching v,h

all made of "l"s as big as the size of the grid sort, and an origin

0r0,O (the lower left corner of the layout).

If the tree t is a leaf, it contains a grid literal. We then

stretch the layout of this literal using v,h and draw it starting

from the origin Or.

If the tree t is a composition node, suppose it was generated by

the composition g'(r]g". Then t contains two subtrees t',t"

(corresponding to g' and g") two stretchings v',h' and v"h", and

the connection side of g'. Let us make up a pseudo orientation with

the connection side of g' on the east, modifying v,h etc.

appropriately into pseudo—v,pseudo—h, pseudo—v',pseudo—h',

pseudo—v't ,ps eudo—h" and pseudo—Or.

128

pseudo-v 	pseudo-v'

pseudo-v

pseudo-h .II

pseudo-Origin 	- 	 pseudo-h

Figure 2.49 Pseudo Orientation for stretching

We need to compute the stretchings and origins to be passed down

recursively to the subtrees; let's call them newv',newh',

newv",newh", Or' and Or". They can be obtained by "nupseuding" the

following definitions:

pseudo-newv' = pseudo-v o pseudo-v'

pseudo-newv" = pseudo-v a pseudo-v"

pseudo-newh' ,pseudo-newh" = split (pseudo-h,pseudo-h',pseudo-h")

pseudo-Or' = pseudo-Or

pseudo-Or" = (pseudo-Or.x + length(pseudo-newh')) ,pseudo-Or.y

where split(h,h',h") splits h into two parts newh',newh" such that

newh' concatenated to newh" is equal to h; pnewh'ph' and pnewh"=ph"

(it does not matter where the split exactly occurs). Nothing is

drawn for composition nodes, and we recur with t',v',h',Or' on one

side and t",v",h",Or" on the other side.

129

- I 'I 	i i 	 1
ii 	o lî____ = 	1[
ii 	 1[010l 	lLQlO1 	I

1111 	1111 	 1111 	
IC

Stretch(C,h11 1 1 i1(00))

ii 	
°LillL 	

o_ 	 _
 I 1J 	

o
0 	 0 	1 	

I
I 	 [0101 	11 	 0101
---------- 1

Stretch(B1 L1 (2,1)) 1

L

01

0

Stretch(A,1, (0 , 1))
0 	 I

01

Figure 2.50 Grid recomposition

2.6.6 From Sticks to Grids

It is conceivable to use stick expressions as a general purpose

Programming notation for stick diagrams and as a target language for

silicon compilers. However, in order to use them in this sense it is

necessary to develop an algorithmic translation from any stick

expression into layouts, and this will be done passing through

grids.

The first step consists in arranging the planar graph described

by a Stick expression on a rectangular grid. The arrangement of a

graph in some particular geometrical or topological space is called

a realisation of the graph. The choice of a particular grid

realisation for a particular stick diagram is purely arbitrary,

except that attempts will be made to keep the grid as small as

possible.

To limit the number of possible grid realisations for a given

130

expression, we shall also provide a context specifying constraints

on the relative position of ports on a grid. We consider rectangular

contexts only, where - the ports of a grid realisation liE on the

perimeter of a rectangle. Moreover every port will be explicitly

assigned to one of the four sides of the rectangle, named south,

east, north and west (this assignment should agree with the cyclic

ordering of ports).

Given a stick expression e, a context for e is a mapping of some

of the ports of a(e) into a side (south, east, north or west) in such

a way that all the east ports cyclically follow the south ports, and

so on for the other three sides. A context of this kind on (e) is

said to be compatible with e. A context is also said to be

compatible with a grid network g when it lists some of the non—null

ports of a(g) assigning them to the correct side. A full context

specifies the sides of all the ports of a(e).

a

de
i

.1.

. 	p 	p

1 	-
11 d

In

S 	$

a 	C

Le

Sort 	 Compatible context

Figure 2.51 A context

The Sticks—to—Grids algorithm takes as input a sorted stick

expression (i.e. a stick expression where all the subexpressions are

indexed by their sort) and a compatible full context, and produces a

grid network which realises the stick expression. The result is

supplied in the form of a grid expression where all the compositions

are normal. Previous sections have shown how to generate grid

layouts from grid expressions. (This form of the output is just for

131

explanatory purposes; we could combine this algorithm with the one

in Section 2.6.4, translating directly into stretch trees and grid

sorts.)

Basis of the recursion: we assume that for every stick literal

and for every compatible context there is a standard interpreted

grid network which is also compatible with the context (this

standard grid is chosen among all the grids satisfying the

requirements). This set of basic grid networks is rather big (there

are 140 full contexts for every stick literal) but can be cut down

by taking into account similarity and symmetries, and by

compromising on the grid area. We shall simply assume here that a

grid literal matching a given context is always selected and

returned as result for this base case. The next figure shows a set

of 35 minimal patterns for a transistor (most of them made of

several stick tiles); the missing patterns can be obtained by

rotation and by dropping some of the non—null ports (and

consequently modifying the tiles).

132

1 	rW

'' 	'

 • 	, 	 Ij 14e

s e n w 	s e n 	se 	 s 	 s e n

W

	

I r"44fl 	 w n 	w n 	 w n e

	

Lf 	S r{4fl 	 e 	 r4-
se 	 s 	 se 	 s 	 s

I 	w4 	I 	

n 	

n

	

i n 	w • e 	 wI . I 	we
I.T

s e n 	se 	 s 	 se 	 s

e 	el-1 	I

n e fl-, 	I _ 	_ 	:flfl W 	 _
____ _ 	 JsI

t u 	I 	w1e 	 W
S

S 	 se 	 S 	 s 	 s

	

 n 	 n

	

:se 	j
w s e n 	w s e 	 W 	 W e 	W

ne I 	I 	e

	

e 	n 	 n i 	I
WS 	 w s e 	ws

e

n w 	e 	n w s 	n 	s 	n 	s 	en w

Figure 2.52 Basic grids

The recursive step for a restriction e\a consists in recurring

with e and the current context, obtaining a grid expression g.

133

Because a is not in the current context, this is how partial

contexts are generated, even starting from full contexts. At the

base of the recursion, the ports not contained in the context are

unused (i.e. not connected to anything) and may be optimised away in

the grid layout (actually they must, to avoid "accidental"

connections). The resulting grid expression is then g\a.

The recursive step for a renaming e{r} consists in applying

to the context and recurring with e and the renamed context,

obtaining a grid expression g. The result is g(r).

The recursive step for composition is the interesting one. Given

a context and a composite stick expression e'(r]e", the problem is

to derive two subcontexts to be applied to the respective

subexpressions. This should be done in such a way that the resulting

composition is normal, so that we can apply the grid composition

technique developed in the previous sections when we come to need a

grid back as a result. Let us assume that (r] is

We define a pseudo orientation for the context

in the following way: a 1 faces pseudo—east, b 1 faces pseudo—west and

the pseudo—south side of the context is parallel to their connection

(this is always possible):

134

Context

Figure 2.53 Pseudo orientation of a context

We define the first cut as a point on the pseudo—south of the

context, which is after b 1 and before any other port (before—after

in the anticlockwise sense). The second cut is going to be placed

after and this can fall on any side of the context. Given any

placement of first and second cut, we must be able to split the

context into two parts and then insert a 1 ..a in one part and b1 . .b

in the other.

The second cut can fall in five substantially different places,

and each place corresponds to a different way of splitting the

context:

3

4

5 	 1

Figure 2.54 The five basic context splits

135

For each different split, there is a way of arranging the sorts

of e' and e" so that they will match the context. Here are five

examples of sort fitting in the standard pseudo orientation:

1 L 	 2 	
L

.1
R II

• 	1
R

5

L

Figure 2.55 Fitting the sorts

Moreover all the sort fitting patterns can be decomposed (in

several ways) into normal grid compositions:

1 2
L

If!
II 	 R
I.

I I

I I

[l

I Ii I

'JL I 4

a
L

R

Figure 2.56 Normal decomposition

In the case number 3, all we have to do is to break the context

in correspondence of the first and second cut, add the ports a 1 . .a

136

to the pseudo—east of the left context and b..b 1 to the pseudo—west

of the right context, and apply recursively the algorithm on the

subexpressions obtaining g' and g". The result is then g'(r]g" which

is a normal grid composition.

The process is similar in the other four cases, even if more

complicated. More than one grid composition may have to be

generated, and dummy grids may have to be inserted. Grid

decomposition is not a deterministic process, and heuristics are

needed to get better and smaller layouts.

As an example, let us try to fit the stick expression

ETrans[ge--gw](GCon\gn\gs)

in an unfriendly context where all the ports lay on a single side:

3

Vz ge
4

5 	cut 1

ETrans [ge--gw] (GCon gn gs)

Figure 2.57 Context splits

2

From the composition [ge--gw] we see that the cut must fall between

rs and ge on one side, and between ge and rn on the other side. This

corresponds to five possible cuts of the context; let us examine

them in turn, starting with 3 which is the easiest one. On the left

of the next figure are the normal decompositions, and on the right

the corresponding (possibly empty) grids:

L V S S• 	 _____
rngwrs 	ge

4.

rn gw rs 	ge

	

•BJ 	 __

L_J 	A• • . I I •_i 	 U J--j- •i
rn gw rs 	ge

2.A 	 U

.G J
rngwrs 	ge

• • S 	 _______

I
S S

S H

	

	BIJ1fl 	
L

• • • i I. 	 _____
-S S 5- -.•.- U rngwrs 	ge

Figure 2.58 Decompositions

There are also two alternative decompositions of 4 and 2:

137

138

2'.I 	 I

B'
I_•_•_• W___

rngwrs 	ge

41 I_I

flgs

rngwrs 	ge

Figure 2.59 Alternative decompositions

We can see that after compositions of. the grids on the right, we get

two different solutions which correctly fit the context.

Note that not all of the five decompositions can be used in any

case. A very simple minded heuristics for getting good results is to

use decomposition 3 whenever possible, otherwise 1 or 5 (because

they do not have alternative decompositions like 2 and 4), and then

2 or 2' or else 4 or 4. The choice between 2 and 2' or between 4

and 4' can critically influence the size of the result, because

these decompositions introduce empty areas.

Let us recall the phases of the Sticks—to—Grids algorithm:

From sorted stick expressions and contexts to grid expressions.

From grid expressions to stretch trees and grid sorts.

From stretch trees and grid Sorts to grid layouts.

where phases 1 and 2 can be combined into a single phase.

In phase 1, every stick composition e'(r]e" is translated into

the composition of two grid expression g',g" (corresponding to e'

and e") possibly augmented by a limited number of padding literals,

depending on the form and number of ports of the context. In phase 2

information is accumulated in a stretch tree in order to perform the

139

stretching of grids. In phase 3 the various partial stretching are

accumulated and the resulting stretched grid is produced.

The correctness of these translations can be expressed as the

coinmutativity of the following diagram:

Figure 2.60 Correctness of translations

Grids realise planar stick diagrams (note that there are several

grids for the same stick diagram). The translations are correct if

the stick diagram denoted by a stick expression is realised by the

grid produced by the Stick—to—Grid algorithm on that stick

expression.

The grid composition algorithm could be improved to include a

limited amount of routing, in order to avoid explosive stretching

situations. Moreover, iteration is probably going to be a primitive

control construct in stick expressions, and we can use this fact to

improve the form of the layout and to avoid "diagonal fugues" (i.e.

situations in which the cells of an array get incrementally

stretched).

The solution we have adopted for the base case (namely

140

considering all the possible grids for a given stick literal and

context) is not feasible for bigger literals which could arise in

practice, like standard cells and functional units. In those cases

some routing must be used to connect the cells to their expected

context; an interesting question is whether the decomposition

process can be driven so that the matching of standard cells and

contexts is made easy.

The most important operation in phase 2 is grid composition, i.e.

the computation of stretch vectors. In the worst case, the area of

the result grid is twice the sum of the areas of the component

grids, and the stretch vectors are as long as the sum of the sides.

Every composition node of - ; a stretch tree. contains two boolean

vectors of the same length as the result of the composition (the

other two vectors described in the algorithm are identically "1"'s

and do not need to be represented explicitly). Let us assume that

all the grid literals have size 4x4, (they are always smaller); if

g' and g" have size <z,z>, then in the worst case the stretch tree

of g'(rlg" has size 4z (the two stretch vectors) plus the size of

the trees for g' and g". For a balanced tree giving rise to a square

diagonal layout, this makes a total of 8(nlog a) bits of stretch

vectors and the resulting layout has area less than (4n) 2 . Even in

this pessimistic situation, the stretch vectors for a grid

expression with 1,000,000 literals would. occupy some 19 megabytes,

still in the range of current virtual memories. The construction of

the grid sort takes another 0(nlog n) space, but all this storage

(except for the final result) can be reclaimed during the process.

In practice the stretching algorithm is expected to behave in a

slightly better way, especially in case of structured design styles.

In the best "square" case (a balanced square composition of lxi

141

literals with no stretching) the size of the tree is nlog n and the

layout area is n. Hence, in the above example, the best square case

needs 2.4 megabytes.

This complexity analysis can however be rather pessimistic in

real situations, because of the hierarchical nature of our approach.

Stick expressions are very likely to contain a considerable amount

of sharing (e.g. register arrays and ALU's) and the shared parts are

very likely to get identically stretched. If we preserve this

sharing (for what is possible) during the translation to grid

expressions and the generation of stretch trees, a considerable

amount of space can be saved; this can be done at the expense of

checking for the occurrence of already processed subexpressions and

contexts. Then, for example, the storage occupation of stretch

vectors for regular arrays of cells becomes constant.

Other common parametric structures which are not likely to

contain sharing (e.g. PLA's and ROM's) have predetermined size and

do not need to be stretch—analysed. They can be conveniently

introduced as primitives at the stick expression level.

Phase 3 requires another O(nlog a) space to compute the stretch

vectors of the grid literals, but the stretch tree can be demolished

in the process so that little extra memory should be needed.

The time complexity can vary from linear in the number n of grid

literals (with a2 space occupation) to exponential (with optimal

space occupation). A satisfactory compromise should be achieved by

using heuristics, or (failing those) by direct user interaction.

2.6.7 From Grids to Layouts

And here is the final step in our long road towards layouts.

Some forms of translation from grid structures into layouts are

142

already well known: in general the sticks are first inflated into

lines and transistors of the appropriate size; then the result is

compacted in order to achieve low area occupation.

Mosteller describes a compaction algorithm which is at the basis

of an interactive editing system for sticks (Mosteller 811. The

great advantage of orthogonal grids is that the compaction can be

carried out independently on the x and y axis, achieving good

results.

Expansible grids also constitute the main data structure at the

basis of the remarkable VLSI workstation by Weste and Ackland (Weste

811. Their system retains geometrical information (like transistor

sizes) and compaction is used to optimise screen—drawn layouts and

after cell composition.

Both the approaches mentioned above allow the user to

interactively modify the default sizes of wires and transistors,

providing the same freedom as in hand—drawn layouts. On the other

hand these translations are not completely automatic, or at least do

not always lead to perfect layouts if used in an automatic way. This

is not a criticism of the above systems, which address different

issues, but an indication that further work is needed, especially in

the generation of electrical parameters from stick structures.

143

3. Sticks & Stones

In this chapter we describe a design language for VLSI, based on

the ideas presented in the first two chapters. The language works at

the geometrical layout level, constituting what is generally called

a "chip assembler", and produces output in a standard format

suitable for nMOS processing.

The language has been implemented as an experimental interactive

system which uses a colour graphics display for the preparation of

VLSI layouts. The examples shown here have been produced by this

system and drawn on a 4—colour flat—bed plotter (and then shaded).

This chapter can be read independently from chapters 1 and 2,

giving a self—contained description of the design system. As a

consequence some information concerning net algebras is repeated,

also to emphasise the occasional differences in style and semantics

due to practical implementation issues.

3.1 Introduction

The most important attribute of a flexible design language for

VLSI is perhaps its ability to parameterise any possible aspect of a

picture, such as its size, the number and type of components and the

distance between them. This suggests that the language should be

primarily text oriented but with graphic facilities; then

parameterisation can be easily achieved by using the parameter

passing mechanism of procedures. On the other hand, a display

oriented language has severe problems with parameterisation: it is

very easy to assemble figures on a screen with a pointing device,

but it is difficult to express how these figures are actually meant

to change as a function of some parameters.

Now purely textual languages for graphics suffer from severe

144

drawbacks as the identification of text and image can be very

difficult. Any such language should therefore be highly interactive

with immediate visual feedback, and the syntax should recall as far

as possible the structure of the picture, i.e. its topological

properties. This is in sharp contrast for example with graphic

packages, in their use as extensions to existing host languages.

The kind of language we are interested in should be able to

express VLSI circuits naturally in terms of their hierarchical

structure and their topological properties (Buchanan 80, Rowsou 80,

Williams 781 and the structure of the circuits should appear through

the text of the descriptions.

In Sticks&Stones, pictures are handled just like an abstract data

type within a general purpose programming language, so that every

picture is denoted by a program which builds it. The operations over

pictures are inspired by net algebras, whose expressiveness and

algebraic properties have been studied in the first two chapters.

These operations are topological in nature and give rise to programs

which are suggestive of the pictures they represent. Pictures are

embedded in an applicative higher—order language, which is based on

a subset of Edinburgh MI. [Gordon 79a]. The control structures of the

language can be very easily used to define arbitrary

parameterisations and conditional assemblies of pictures.

The language is applicative in two of the senses commonly

attributed to this word; it is expression oriented and free from

side—effects. Expressions seem to bemore suited than statements to

an interactive language. They improve and enforce the structured

description of àomplex pictures and help in keeping information

local. Every picture is taken to be an unmodifiable and unbreakable

object, which can only be used to make larger pictures, and which

145

can only be manipulated through its set of named ports. Picture

composition is then done by port names (and not by geometrical

position or displacement) with automatic translations and rotations.

There are many advantages in manipulating pictures by their ports

only. For example, the order in which the pictures have been put

together becomes irrelevant (as there is no way to access the inside

of the picture) and programs are guaranteed not to rely on

irrelevant structural details. Moreover, the orientation and scaling

of pictures are unimportant, and the system can automatically rotate

pictures and adjust them to fit the screen.

Side effects might be needed to edit a picture, but we regard

this problem as completely distinct from that of picture

construction. Editing a picture is also very different from editing

a text or a tree, as in the former case there may be very

troublesome context dependent effects, like those resulting from

increasing the size of a subcomponent. In this context, editing by

rebuilding can be much more convenient than editing by modifying,

especially if an adequate structure of program modules is provided.

If side effects are forbidden, a "correctness by construction"

approach can be applied. We might be able to show that a picture

enjoys some property P (e.g. absence of geometric rule violations)

if its basic components have the property P and if the picture

operations preserve the property P. Thus, the amount of checking to

be done when composing two pictures can be drastically reduced. In

the implementation of this system we decided to concentrate on

different issues, and we did not incorporate hierarchical checks

(such as hierarchical design rule checking [With.ney 81]), which

however seem to fit particularly well in this framework.

146

3.2 Pictures

We now describe how pictures can be generated. A picture is

either an elementary picture (called a form) or the composition of

smaller pictures. Pictures form an abstract data type and are

first—class objects in the language.

3.2.1 Forms

A form is made of a set of figures (boxes, polygons, etc.) with

a sort. The sort of a picture is a list of ports, and ports are used

to connect pictures together.

let bluesquare =

form(b.S W port [010,0,1];

b.E : W port (110,9011];

b.N : W port [111,180,1];

b.W : W port [011,270,11)

with B box (010,1 Ii];

bluesquare = <> 	(b.S:W; b.E:W; b.N:W; b.W:W) : (1,1]

A phrase like "let bluesquare = ... ;" is used to define the

variable "bluesquare" at the top level (the string "- " preceding

it, is the Sticks&Stones prompt). The answer from the system is

"bluesquare = -", where "-" is the result of the evaluation of

"...". In this case the result is a "<>" (i.e. a picture whose

structural details have been omitted) of sort "(...)" and of size

1,1 which is the size of the minimum enclosing rectangle.

b.N

147

b..W

b.E
b.S

Figure 3.1 A blue square

The figure bluesquare is a form (an elementary picture) made of a

single B (blue) box with lower left corner at the point 010, and

upper right corner at the point 111. It has four ports "b.S", "b.E",

N" and '%.W".

A port name can be any list of identifiers and numbers (starting

with an identifier) separated by dots, like "a" or "aaa.bbb.1c'.3";

these identifiers and numbers are called atomic parts of a

compound port name. Port names have no semantic significance, but

they will often suggest the function of their associated port (e.g.

"b.E" will stand for "blue East").

The port "b.S" is a W (white) port; geometrically this is the

vector with tail at 010 oriented 0 degrees anticlockwise from the x

axis and of length 1 (hence its tip is at ito). The north of a

vector is by convention in the tail—to—tip direction.

A more complete example is provided by an nMOS inverter:

b.

r. W

/ r

r'.E

9..s

- let inverter =

form (b.E:B port (515,90,4];

b.W.B port (119,270,4],

g.S:G port [2t0,0,2];

r.E:R port (6t1,9021;

g.E:G port (614,90,2];

r'.E:R port (617,90,2];

g.N:G port (4t15,180,2];

r.W:R port (0t3,270,21)

with B box (114,5110]

and G box (010,618; 218,4115]

and R box (017,6115; Otl,6t3]

and Y box (0.515.5,5.5P16.5]

and C box (215,419] ;

inverter = <> : (b.E:B; b.W:B; g.S:G; r.E:R; g.E:G;

r'.E:K; g.N:G; r.W:R) : (6,16.5]

Figure 3.2 An nMOS inverter

148

Ports of type B (blue) G (green) and R (red) are drawn in the

149

corresponding colour. Ports of any other type are also admitted, and

are drawn in the foreground colour (depending on the graphical

device).

Boxes can have colours B (blue) G (green) R (red) Y (yellow) C

(black) or W (white), and they may overlap; other colours are

syntactically admitted but are all drawn in the foreground colour.

Note that a list of rectangles can be specified after the keyword

"box".

Ports should always be oriented anticlockwise around a picture.

This is not mandatory, but picture composition is made connecting

ports on their east sides (tail to tip and tip to tail), and the

anticlockwise convention ensures that pictures are joined on their

outer sides. A picture may have no ports and/or no figures. The

empty picture is simply:

- form;

() : (0,0]

3.2.2 Restriction

Restriction is used to forget about some of the ports of a

picture; the syntax is: expression, followed by "\", followed by a

list of port names:

- inverter \ b.W I.E g.?;

(r.W:R) : (6,16.5]

150

Figure 3.3 Restriction

Question marks and exclamation marks are used to pattern match

port names. Any variable beginning with an exclamation mark (like

,'!", "II", "!abc" or '93") matches with a single atomic part of a

compound port name, while any variable beginning with a question

mark matches with an arbitrary number (zero included) of atomic

parts.

In the example above we withdraw the port b.W, all the E(ast)

ports and all the g(reen) ports from the inverter. The inverter

itself is not affected by this operation and a truly new picture is

generated.

3.2.3 Renaming

The renaming operation performs a simultaneous substitution over

the ports of a picture; the syntax is: -expression, followed by "C",

followed by a list of single renamings separated by ";", followed by

"1". A single renaming "a\b" means "a becomes b".

151

inverter (r'.E\inv.r'.E; !.W\inv.LW);

<> : (b.E:B; inv.b.W:B; g.S:G; r.E:R; g.E:G; inv.r'.E:R;

g.N:G; inv.r.W:R.) : [6,16.5]

foo. b

foo. r. W

coo

r.E

s.s

Figure 3.4 Renaming

Match variables instantiated in the left part of a substitution

can be used in , the right part to get group renamings like

"LW\jnv.!.W" which is an abbreviation for "b.W\inv.b.W;

r.W\inv.r.W". Note that "1.1" matches "a.a" but does not match

"a.b", which is matched by "I .1!", '- I.? - , "1.11 .?" or "7", but not

by "I ,' or "!.U.IU". You can go as far as "1.!.!!.? \

which renames "a.a.b.3.5" into "b.a.3.5.3.5.b". A question mark in

the left hand side can only appear as the last atomic part,

otherwise the matching might be ambiguous. A matching variable in

the right hand side which does not appear in the left hand side is

illegal.

3.2.4 Composition

Having two pictures, we can compose them by port names; the

152

syntax is: expression, "(:", list of single links separated by ";",

":1", expression. A single link has the form: portname 	"—" I

portname.

— redsquare (: r.E — g.W :1 greensquare;

(r.S:W; g.S:W; g.E:W; g.N:W; r.N:W; r.W:W) : (2,1]

r.W

r-- N

II\\\\\\\\\s\

\\\\\\\\\\\\

IMI

g.E
f-_s 	 s_s

Figure 3.5 Composition

where redsquare and greensquare are defined similarly to bluesquare.

This composition produces two adjacent squares, where the ports r.E

of redsquare and g.W of greensquare have been connected and

forgotten.

Several links can be specified inside the composition brackets,

separating them by semicolons. All the ports involved in a

connection are forgotten in the result, whose sort is otherwise the

union of the sorts of the composing pictures. Pattern matching is

not allowed in composition; programming experience has shown that

its use leads to unclear programs.

Composition is a symmetric operation (in the sense: P(:p 1--q:]Q

= Q(:q1—p 1 :]P), and as an infix operator associates to the left.

Every pair of ports which are being linked in a composition must

have the same type and the same size. Composition with the empty

picture by any pair of ports leaves a picture unchanged.

153

Connection of two ports is made tail to tip and tip to tail with

no distance between them. In case of connection of several pairs of

ports, the main link is connected first, and all the other pairs of

ports must face each other, maybe with a gap in the middle. The main

link is defined as the first link on the left, inside the

composition brackets.

3.3 Bunching

Every port is actually a bunch, or collection of collinear

vectors. Up to now we only considered single—vector ports, but a

port can also be a list of vectors:

R port (010,0,1; 210,0,1; 510 1 0 1 11

Every vector in a bunch must have the same type, orientation and

size and they must be collinear, but they can be differently spaced.

Bunches may also be interleaved. When two ports are composed, every

vector in one port must match with a corresponding vector in the

other port.

Bunches usually arise from composition: when two pictures are

composed, the ports with equal names which are not being linked get

bunched together:

- bluesquare(:b.E—b.W:]bluesquare;

: (b.S:B; b.E:B; b.N:B; b.W:B) : (2,1]

here b.S and b.N are two bunches of two ports, which are drawn as a

single arrow. Again bunching only succeeds for collinear ports of

the same size; otherwise an error is reported.

154

b.N

b.E

Figure 3.6 Bunching

Bunches allow one to compose regular arrays of pictures without

having to explicitly index the ports of every, picture in the array

by renaming them. They thereby keep the total number of ports in a

picture low, making composition simpler and more efficient.

3.4 Iteration

Iteration is used to make regular arrays of cells, as in:

- 3 times bluesquare with (:b.E—b.W:1;

(b.S:W; b.E:W; b.N:W; b.W:W) : [3,1]

Figure 3.7 "times" iteration

which is equivalent to:

b..W

b.S

155

- bluesquare (:b.E—b.W:]

bluesquare (:b.E—b.W:]

blue square ;

<> : (b.S:W; b.E:W; b.N:W; b.W:W): (3,1]

Iteration is equivalent to the obvious recursive program one

might write in the language, but is more efficient and syntactically

clearer. Iteration often produces bunches, as in the example above.

Iteration variables are admitted in the "for" form of iteration:

- 1t blue = bluesquarefb.?\?}

and red 	= redsquare(r.?\?)

and green = greensquarefg.?\?};

blue = <> : (S:W; E:W; N:W; W:W) : [1,1]

red = <> : (S:W; E:W; N:W; W:W) : (1,1]

green = 0 : (S:W; E:W; N:W; W:W) : (1,1]

- for square in [blue; red; green]

iter square

with (:E—W:];

<> : (S:W; E:W; N:W; W:W) : (3,1]

156

N

w

S

Figure 3.8 "for" iteration

which produces the above picture. The iteration variable "square"

takes in turn the values blue, red, green in the list.

Double iteration can be used to produce arrays of pictures:

- let squares array =

for row in array

iter for item in row

iter item

with (:E—W:]

with (:S—N:];

squares =

frA L1.

I ,

w
N

IN

Figure 3.9 Double iteration

157

(where "i' means that 'squares' is a function). This is the

definition of a parametric picture, that is a function taking a list

of lists (i.e. an array) of pictures and producing a picture. It can

be used as follows:

- squares [(blue; green; red 1;

(green; red; 	blue 1;

(red; 	blue; green]];

(S:W; E:W; N:W; W:W) : [3,3]

Sometimes it is useful to iterate through several lists at once;

this feature is used in the following definition of "squares'" which

substitutes a green column every three input columns:

- let squares' array =

for row in array

iter for item in row and i in 1: :length row

iter (i mod 3)=O 	green I item

with (:E—W:]

with (:S—N:];

squares' =

where the operation "n::in" produces the list of all numbers from n

to m, and "a 4 b I c" means "if a then b else c".

A selector is a realistic example of a parametric picture with

which can be built by double iteration. We first need to define

three basic building blocks: "pos" (an enhancement transistor),

"neg" (a depletion transistor) and "out" (a piece of the common

output):

158

	

 —letpos= 	-

(form (r.S:R port (210,0,2];

g.E:G port (6t2,90,2]; 	
' N

r.N:R port (416,180,2]; 	w 	. E
g.W:G port (0t4270,21)

with R box (2104t6] 	 r. S

and G box (012,614])

and neg =

(form (r.S:R port (210,0,2];

g.E:G port (612,90,2];

r.N:R port (416,180,2];

g.W:G port (014,270,21) 	g. W 	g. E
with R box (210,416]

and G box [012,6t4] 	
' S

and Y box (0.510.5,5.515.51)

	

and out = 	
g.N

(form (g.S:G port [210,0,2];

g.N:G port (416,180,2]; 	9.w ft

g.W:G port [014,270,21) 	
9.

with G box 1210,4t6; 012,214]);

We now need to put these pieces together: the following program

takes a number n and produces a selector with n control inputs (the

n—bunch "r.N"), n complemented control inputs (the interleaved

n—bunch "r'.N"), 2n input lines (the 2—bunch "g.W"), one output

line (the 1—bunch "g.N") and the appropriate pattern of enhancement

and depletion transistors (produced by the auxiliary function

"bit")

159

- let sel n =

for i in 1::exp(2,n)

iter (for j in n::I.

iter bit(i-1,j-1)=O 4

pos [:g.E—g.W:] (neg(r.?\r'.?))

neg (:g.E—g.W:] (postr.?\r'.?l)

with [:g.E—g.W:])

E:g.E—g.W:] out

with (:r.S—r.N; r'.S—r'.N; g.S—g.N:]

whererec bit(i,j) =

j=O =4 i mod 2 I bit(i//2,j-1);

here "exp" is exponentiation and "II" is integer division.

The circuit shown in the next figure is the result of the

evaluation of sel2 (selector with two control inputs). The selector

is obtained by two nested iterations, first building the rows and

then joining them up into an array. At the core of the double loop

we have to choose between a pair of pos—neg' and a pair of neg—pos'

(where pos' and neg' are pos and neg with their r ports renamed to

r'); this is done using a function "bit". The inner loop connects

all these pairs into a row, with the variable j ranging from n to 1.

At the end of the inner loop, an out element is added to the right

of the row. In the outer loop the variable i ranges from 1 to

while all the rows are connected from south to north by bunch

connections.

160

9.w

r.Sr'.S 	 g.S

Figure 3.10 A selector

It should be emphasised that the selector program contains no

explicit geometric information, and this is to be expected for many

common VLSI subsystems. The double loop (array) pattern is also very

common in structured design, and many other interesting examples can

be produced by the use of parameterisation and recursion.

3.5 Paths and Geometric Renaming

A path can be generated by taking a port and moving it around:

the wake of the port forms the resulting path. The outcome of, this

operation is a list of polygons (one or more for every step the port

has made) and a new port (i.e. the old port in the new position).

Hence a path is the following data type:

path = (polygon list) x port

Given a path the following operations extend it from the port,

thereby generating a new path:

161

stay: path -> path

move: num -> path -> path

step: nun -) path -> path

rotl: nun -> path -> path

rotr: nun -> path -> path

move': nun -> path -> path

step': nun -> path -> path

rotl': nun -> path -> path

rotr': nun -> path -) path

The operation stay leaves a path unchanged;

The operation move takes a positive number n, a path p and moves

the port of the path n units. The direction of movement is towards

the east of the port (i.e. generally outwards with respect to the

picture if anticlockwise ports are used). The new path generated is

made of the new port and the old polygon list with a new rectangular

polygon having the old and new ports as edges.

The operation step is like move, but "step n" means "move n times

the size of the port" for simple ports, and "move n times the size

of the vectors in the port" for bunches.

The operation roti (rotate left) takes a number n (in degrees), a

path p and rotates the port of the path n degrees anticlockwise

describing a circular are with centre in the tip of the port. If the

port is a bunch, the distances between the vectors are respected and

the result is a set of concentric paths. The new path generated is

made of the new port (or bunch) with the old polygon list plus the

new polygon(s) generated by the rotation.

162

The operation rotr (rotate right) is the same as rotl, but the

rotation is clockwise and its centre is in the tail of the port.

The operations move', step', roti' and rotr' are similar to their

unprimed versions, but they move a port without producing any path

between the old and new position. The operations move' and step'

also accept negative arguments.

Functions from paths to paths are called path functions; the

following are path functions:

stay

move 2

step 5

rotl 90

rotr 270

Function composition is used to compose path functions; in

particular it is convenient to use the inverse function composition

operator "&"

(f & g) x = g(f x)

Here is an example of a composite path function:

move 2 & roti 90 & step 4 & rotr 90 &inove 2

note that "&" behaves like an append on paths, as function

composition is associative.

How do we use path functions? Ports are not available to the user

as data objects separated from pictures, so that path objects can

never be built, and there is nothing to apply path functions to. The

163

only place where is possible to use path functions is in the

geometric renaming feature of the renaming operation:

- bluesquare C?\? move 2);

(b.S:W; b.E:W; b.N:W; b.W:W) : (5,5]

b.N

b.W
b.E

b.S

Figure 3.11 A blue cross

The meaning of this is to rename every port in bluesquare by its

own name, moving it 2 units outwards. The result is a blue cross of

size (5,51. The path function "move 2" is applied in turn to the

paths obtained pairing the ports of bluesquare with the empty list

of polygons.

Here is a very flexible blue square which can be stretched

symmetrically in four directions by applying a path to it:

- let bluewheel path = bluesquare C?\? path);

bluewheel =

- bluewheel (move 2 & rotl 45 & move 15 & rotr 135 &

move 30 & rotr 45 & move 20 & rotr 270);

<> : (b.S:W; b.E:W; b.N:W; b.W:W) 	[68.9,68.9]

164

b.E
b.N

b..E

Figure 3.12 Geometric renaming

A limited form of routing (called river—routing) can be obtained

by using geometric renaming on bunches:

- sel 2 fg.W \ g.W rotr 60 & rotl 60 & move 6) \ 7;

: () : (51.32.32]

Figure 3.13 Geometric bunch renaming

3.6 Figures

There i's a variety of elementary figures. Actually many of them

have no application in VLSI and are intended mainly for graphics.

All of the following options can appear syntactically after the

keyword "with" inside forms (in the place of boxes in the examples

of the previous section).

dot [pi; ... ;pk] draws dots at the specified points p1 ... pk.

line 111; ... ;lk] draws a set of lines 11 ... 1k; every line is

a list of points li(pl; ... ;pki] which are joined by straight

segments.

path [11; ... ;lk] draws a set of paths 11 ... 1k; every path is

a list of pairs of numbers and points 1i(nl,p1; ... ;nki,pki].

Adjacent points p(j),p(j+1) in a path are joined by a circular arc

of aperture n(j+1) degrees (if n(j+1) is 0 or any multiple of 360, a

straight segment is used). If n(j+1) is positive. the arc is convex

on the east of the vector p(j)-4p(j+1); if negative it is convex on

the west. The first aperture ni is not used.

spline (11; ... ;lkl draws a set of non periodic cubic B—splines

165

11 ... 1k; every spline is built from a list of control points

166

li=(pl; ... ;pkil. The spline does not pass through the control

points (except the first and the last), but is tangent to every

segment joining two adjacent control points.

loop [11; ... ;lk] draws a set of periodic cubic B—splines 11

1k; every spline is built from a list of control points 1i(pl;

;pki]. The spline is tangent to every segment joining two adjacent

control points (the last point is adjacent to the first) and

describes a closed curve.

box (pl,ql; ... ;pk,qk] draws a set of boxes with lower left

corner at the point pi and upper right corner at the point qi.

poly [11; ... ;lk] draws a set of polygons 11 ... 1k; every

polygon has a line 1i[pl; ... ;pki] as perimeter. The last point

pki is joined back to the first.

area [11; ... ;lk] draws a set of areas 11 ... 1k; every area has

a path li[nl,pl; ... ;nki,pkil as perimeter, where the first

aperture ni is used to join the last point back to the first.

blob (11; ... ;lk] draws a set of blobs 11 ... 1k; every blob has

a loop 1i(pl; ... ;pki] as perimeter.

text (pl,sl; ... ;pk,sk] draws a set of character strings si

sk starting respectively at the points p1 ... pk. Every string may

contain control information (following the escape character "%")

according to this code: '%r" change colour to red; "%g" change

colour to green; "%b" change colour to blue; "%y" change colour to

yellow; "%B" change colour to background (black for Charles, white

for HP plotter etc.); "%F" change colour to foreground (white for

Charles, black for HP plotter etc.); "%O" ... '%9" change text size

(O=min, 9max); "%S" halt plotting and wait for a carriage return to

continue (e.g. to change page on the HP plotter); "%x" for any other

167

character "x" to actually display "x" (e.g. "%%"). Note that the

escape character '%" is only interpreted by the plotting routines

while the normal escape character "I" should be used for any other

purpose (e.g. to insert a

3.7 Commands

The following commands are accepted at the top level.

mode: this command investigates the state of the environment,

showing what options are active and what are not. Options are:

print: when active, the result of every top—level evaluation is

printed at the terminal.

Charles: when active, the result of every top—level evaluation is

drawn on a Charles colour graphic terminal.

tektronix: when active, the result of every top—level evaluation is

shown on a Tektronix terminal.

hpplot: when active, the result of every top—level, evaluation is

plotted on a HP-7221A plotter.

drawnames: when a plotting device is active, draws the names of the

ports at their location.

drawports: when a plotting device is active, draws the ports at

their location as little arrows.

signature: when a plotting device is active, puts a signature

"Sticks&Stones" in the lower right corner.

page: when a plotting device is active, plots in "page" mode. Every

picture shown will fit incrementally the available space from top to

bottom (it will try to make pictures horizontally as large as

possible). On the HP plotter, pictures will fit an A4 sheet of

paper.

logfile: produces a log file "STICXS.LOG" containing a transcript of

the terminal input. Type "addmode logfi]e" to open a new logfile

(destroying the old one) and start writing on it, and "submode

168

logfile" to save it and stop writing on it.

addmode ml, ... ,mn: adds the modes mi to the current mode.

submod. ml , ... ,mn: subtracts the modes mi from the current

mode.

print v: prints the object v; all the plotting actions are

suppressed for the duration of this command.

draw v: draws the object v on the currently active device(s).

Print is suppressed for the duration of this command. If v is a

picture, it is plotted. If v is a list of a items, the screen is

horizontally divided into a viewports, and every item in the list is

drawn in a viewport; if an item in v is again a list, its viewport

is divided vertically, and so on horizontally and vertically to any

depth. If v is not a picture, nothing is shown (this should be

intended recursively.).

contents: shows the names of the variables defined at the top

level.

undo: the result of the last expression evaluated is always kept

in the top level variable "it". The command "undo" can be used to

reset "it" to its previous value (only once).

use: loads a module (described in section "Modules and

externals").

import: imports an external picture (described in section

"Modules and externals").

export: creates an external picture and generates a CIF file

(described in section "Modules and externals").

169

3.8 Modules and Externals

Some modules (called library modules) are predefined in the

system, as for example "constants" (basic cells) and "pla" (pla

generator). Modules can contain data (like "constants") or programs

(like "pla"), and can be used by the command:

- use constants,pla;

which loads the definitions contained in constants and pla.

New modules can be generated by editing files with extension

".STI", containing Sticks & Stones expressions and definitions.

Every module can "use" other modules.

Externals arise when, at the end of a session, we want to save

the pictures produced so far. If a very big and very time—consuming

ALU (Arithmetic—Logic Unit) has been produced, it can be saved as

follows:

- export ALU;

ALU exported

This command generates: (i) a CIF file of the ALU, called "ALU.CIF",

and (ii) a file containing boundary information about the ALU,

called "ALU.STX". The ALU can be recalled by:

- import ALU;

ALU = 0 :

170

The advantage of externals is that it is possible to use the ALU in

another session without having to build it again. To import

something takes almost no time, as only boundary information (i.e.

ports) is used (an imported picture is drawn as a white frame with

ports). Moreover the ALU can be used as a component of a CPU, and

when the CPU is exported, the system merges the already existing

ALU.CIF file with the rest of the picture. CIF files generated by

"export" can be used for plotting or for mask fabrication.

The import command is also used to interface already existing CIF

files to Sticks & Stones. Given a CIF file REG.CIF, we only have to

write a file REG.STX and then "import REG;". The STI file should

contain a form describing the ports of the KEG, and should declare

it to have a figure (e.g. a box) of the right size:

let KEG =

form (Vddln:B port ...; VddOut:B port ...;

Gndln:B port ...; GndOut:B port ...;

Busln:B port ...; BusOut:B port ...;

Keadln:R port ...; ReadOut:K port ...;

Writeln:R port ...; WriteOut:K port ...;

Clockln:K port ...; ClockOut:K port ...)

with W line ([0t0;3610;36t36;0t36;OiO]];

"export" uses a "line" to generate a white frame, like in this

example.

CIF files generated by Sticks & Stones are compact, as common

subpictures are factorised into CIF symbols, and calls to these

symbols are generated where necessary. Moreover they are commented:

every CIF symbol is associated to the name(s) used in

Sticks & Stones to denote it.

171

3.9 Efficiency

The composition algorithm is linear in the number of (bunch)

connections and independent of the number of ports of the sorts

involved.

If possible, iteration should be used instead of recursion and

the "times" form of iteration should be preferred. In the latter

case the iteration body needs to be evaluated just once (because the

language is applicative) instead of n times. But what is more

important, the system can use a logarithmic algorithm instead of a

linear one, producing at any step 1,2,4,8,16 etc. instantiations of

the iteration body and then composing them up to get the desired

number. The gain in efficiency is considerable: to produce a 16x16

array of four—port cells the "times" iteration takes 8 connections

against the 255 of the "for" iteration.

Because of the absence of side—effects, it is possible to share

in memory everything that is sharable; hence "let" should be used to

factorise common subexpressions. An array of 16x16 cells can be

produced by allocating just one cell plus 8 connection records. If

instead we put an expanded cell definition inside a double iteration

with iteration variables we can cause the allocation of 256

identical cells plus 255 connection records.

3.10 Conclusions

The implementation of Sticks&Stones allowed us to gain some

experience in the area of VLSI design tools, and to test and

demonstrate the practical utility of the notation we are proposing.

For example, the ideas of bunches and planar sorts can be considered

a direct consequence of the implementation effort and of the fact

that we had to cope with real—life circuits.

172

The 	subsequent 	investigation of more theoretical 	issues

(described in chapters 1 and 2), together with the experience

already gained, brought up new problems and ideas, so that

Sticks&Stones would probably be rather different, if we had to

implement it today. We would expecially like to make it safer to use

(by more rigorous syntactic checks) and more interactive (by the use

of pointing devices).

However we are now of the opinion that an experiment at the

layout level of description should not be repeated, and in the field

of silicon assemblers we should strive directly for stick—oriented

systems, as suggested in sections. 2.5 and 2.6. Sticks&Stones, in the

present form, still retains much interest for computer graphics, for

its ability to manipulate graphical and geometrical entities, and as

alternative to turtle graphics.

3.11 Syntax

3.11.1 Syntax Definition

The notation used here is explained in Appendix I.

topterm ::= (command I toplet I topletrec I term) S

command ::= mode I addmode I submode I print

draw I undo I use I begin I end

contents I import I export

mode ::= 'mode'

addmode :: 	'addmode' tide / ',')l

submode :: 'submode' tide I

print :: 'print' term

draw :: 'draw' term

undo ::= 'undo'

use :: 	'use' tide / ','}l

begin :: 'begin' port

end :: 'end' port

contents 	'contents'

import ::= 'import' ide

export 	'export' ide

toplet 	'let' declaration

topletrec :: 'letrec' declaration

term ::= variable I bool I string I number I point I pair I

list I form I composition I restriction I rename I

conditional I abstraction I application I iteration I

let I letrec I where I whererec I parterm I

and I or I not I minus I cons I append I sum I diff I

times I divide I equal I great I less I greateq I

lesseq I range I mod I directcomp I reverscomp

173

variable ::= ide

bool 	'true' I 'false'

string ::= "I characters

number 	unsignedreal

point 	term 't' term

pair 	term ',' term

list ::= '[' (term / ';') ' 1'

form 	'form' [sort] ['with' (figure / 'and')l]

sort :: 	'(' (port ':' ide ['port' term] / ';')l 'P

figure ::=ide shape term

shape ::= 'dot' I 'line' I 'path' I 'spline' I 'loop'

'box' I 'poly' I 'area' I 'blob' I 'text'

composition ::= term connection term

connection ::= '[:' (port '-' port

restriction :: term '\' (match}1

rename 	term 'C' (substitution

substitution ::= match '\' match [term] I

match term

iteration 	term 'times' term 'with' connection

'for' (struct 'in' term / 'and')l

'iter' term 'with' connection

conditional ::= term '' term 'I' term

abstraction 	'" (struct)1 '' term

application 	term term

let ::= 'let' declaration 'in' term

letrec 	'letrec' declaration 'in' term

where ::= term 'where' declaration

whererec 	term 'whererec' declaration

declaration 	(funstruct '' term / 'and'}l

174

funstruct ::= struct I ide (strnct)1

struct 	'(' ')' I ide I struct 't' struct I
struct ',' struct I '(' (struct I ';'} '1'

struct '' struct I '(' struct ')'

parterm ::= '(' term 9 1

and 	term 'And' term

or ::= term 'Or' term

not ::= term 'Not' term

minus ::= '-' term

cons 	term '' term

append ::= term 'a' term

sum :: term '+' term

diff 	term '-' term

times :: term '' term

divide ::= term 'I' term

equal 	term '' term

greater ::= term '>' term

less ::= term '<' term

greateq 	term '>' term

lesseq 	term ,<=' term

range ::= term '::' term

mod ::= term 'mod' term

directcomp ::= term 'o' term

reverscomp ::= term '&' term

175

6

176

letter ::= 'a' I ... I 'z' I 'A' I ... I

digit :: 	'0' I ... I 0 9'

ide ::= letter 	ide letter
	

ide digit

matchide ::= 'I ' I '?' I ide '1' I ide 'V I

matchide 'I' I natchide '?'

matchide letter I matchide digit

integer ::= digit I integer digit

unsignedreal ::= integer ['.' integer]

port :: ide I port '.' ide I port '.' integer

match ::=matchide I port '.' matchide I

match '.' matchide I match 	ide I

match '.' integer

3.11.2 Precedence of Operators

* ri" means that the infix open itor "" has left precedence m

and right precedence n. An expression Fix * y ' z" associates like

"(x * y) •' z " if n>n ' and like "x (y ' z) " if n<m'. Hence m<=n

means that "" is left associative and m>n that it is right

associative.

100 Or 100

200 And 200

301 , 300

401 - 400

500 a soo

600 = 600

700 > 700

700 < 700

700 >= 700

700 <= 700

800 mod 800

900 1 900

1000 :: 	1000

1100 + 	1100

1100 - 1100

1200 * 1200

1200 / 1200

1200 II 1200

1300 o 1300

1300 & 1300

1400 1400 	(application)

3.11.3 Predefined Functions

And (infix) boolcan and.

Or (infix) boolean or.

Not (infix) boolean not.

= (infix) equality over booleans, numbers, points,

pairs and lists only.

> (infix) greater than.

< (infix) less than.

> (infix) greater then or equal to.

< (infix) less than or equal to.

- (prefix) number complement.

+ (infix) number sum.

- (infix) number difference.

0 (infix) number product.

177

/ (infix) number division.

II (infix) integer division.

mod (infix) number modulo: "a mod b" is the

remainder of "a//b".

lit point left: lit (atb) = a.

rht point right: rht (atb) = b.

fst pair first: fst (a,b) = a.

snd pair second: sud (a,b) = b.

hd list head: hd [al; ... ;an] = ai. (n>O).

ti list tail: tl (al; ... ;an] = (a2; ... ;an] (n>O).

null list null: null [1 = true;

null (al, ... ,an] = false (n>O).

- (infix) list cons: a_[al; ... ;an]

= (a;al; ... ;an] (n>=O).

a (infix) list append: [al; ... ;an] a [bi; ... ;bm]

= (al; ... ;an;bl; ... ;bm] (n,m>0).

(infix) range: n::m = [n;n+1; ... ;m-1;m] (n<in);

= [n;u-1; ... ;m+1;m] (n)=m).

length list length: length [al; ... ;an] = a W=O).

o (infix) function composition: (f o g) a = f (g a).

& (infix) reverse function composition: (f & g) a = g (f a).

178

179

4. Analog Processes

In this chapter and in the next one we try to set up formal

frameworks in which the semantics of low—level hardware can be

defined and studied. In the process we revert from net algebras to

Miler's flow algebras [Milner 791 for consistency with existing

literature and because flow algebras are more convenient from a

formal point of view.

4.1 Introduction

In this chapter we develop a formal framework for describing

continuous interaction, like for example the gravitational

interaction of planets around a star. These interactions are not

"communications" in the sense of discrete packets of information

being exchanged, but rather various forms of "being in contact" on

an instant by instant basis.

Although most of the phenomena in concurrent systems can be

studied in a discrete framework, some of them seem to imply some

notion of continuity or, at least, of arbitrarily small

discreteness. A very well known example is the arbitration problem,

which disappears as soon as a discrete time scale is introduced;

other examples include measurement problems, and the study of

asynchronous interaction of internally synchronous systems. Most of

these problems are unwelcome, both from the theoretical and

practical point of view, and their study can help in understanding

when they can be safely ignored or controlled.

Asynchronous electronic circuits will be used as a source of

interesting examples, and we shall be able to model and analyse

asynchronous feedbacks, metastable states, arbitration and

indeterminacy. We shall also discover some basic (and plausible)

limitations on the kinds of systems we can express, which seem to

1

180

indicate some correspondence between our model and what we may

consider to be "physically feasible" processes.

Finally, it is interesting to notice that all these phenomena

arise from the mere consideration of concurrency in real time, and

do not necessarily depend on other characteristics of the physical

universe, like quantum mechanic or relativistic effects.

4.2 Analog Processes

A signal is a value varying through (continuous) time, which is

carried by a line (we use a, A etc. for lines). An analog process is

a collection of transformations of such signals (called

transitions), for example:

73Q8S4 11 	
te

V C 	
-

Signal S 	 Analog 	 Signal S

Figure 4.1 A process

The signals above can be expressed as functions of time:

S(t) = sin t 	S(t) = 1

and the process P transforming S. into S can be described by a

transition Tap which in this case might be:

Ta(s)(t) = 3(t) - sin t + 1

For then, applying Tapto Sa we get S as we have:

Tap 	t. Sa(t) - SIfl t + 1

= Xt. sin t - sin t + 1

= At. 1

= s

In general a process will consist of several transitions, and

181

systems will comprise several connected processes.

4.3 An Algebra of Analog Processes

A process is described by a collection of transitions U

where the term U denotes the signal produced by the transition, and

is an identifier denoting the output port of the transition. The

signal U is an expression of the input ports of the process. Here is

an example of the syntax we shall use to talk about transitions:

(a) X ((a U y) —4 6)

For clarity we shall sometimes prefix processes with input ports,

although this is not strictly necessary as the input ports of a

process will always coincide with the free variables of the signal /

part of the transitions:

CL y: a9XaUy96 	(0)

This is a process with input ports a,g and output ports P,S

(parentheses have been omitted).

The intended behaviour of processes will be explained by

algebraic laws. We shall only be concerned with some of the laws and

we shall not try to present a complete set of equations. The

following three laws express the fact that processes are unordered

collections of transitions:

(XX] 	(T X T') X T" = T X (T' X T")

(X] 	TXT 	= T' XT

[NIL] T X NIL = T

where NIL is the empty transition and T,T' and T" range over

transitions.

The intended meaning of the expression (0) above is a process

which at any instant of time produces on the output port A the

182

current value of the input port a, and on the output port 6 the

current value of the join (U) of a with y. The join operator

represents the simultaneous presence of two signals on the same

"line", and its exact meaning is left unspecified, except that the

join operation must exist for every pair of signals (of the same

type) and it must satisfy:

(UU] 	(M U M') U M" = MU (M' U M")

[U] 	MUM' = M'UM

For example, for boolean—valued signals s',s" we might define s'Us"

to be at any instant of time a boolean or, i.e.:

(s'Us")(t) = s'(t) V s"(t)

The existence of a constant -. (nosignal) is also assumed; it

relates to join as follows:

= M

In the previous boolean example we can define nosignal as the signal

constantly false, i.e.: ..(t) = false. The join operation is also

used in the following law, which accounts for the presence of

repeated output ports:

(UX] MXN — ft = MUN — p

Now we define some basic operators on processes, together with

their algebraic laws.

4.3.1 Composition

The composition of two processes P and Q is written PIQ. The

output ports of P are linked to those input ports of Q with the same

183

name, and the output ports of Q are linked to the input ports of P

with the same name; the idea being that signals flow through these

connections from one process to the other. We have the following

laws for composition:

(II] 	(P I Q) I K = P I (Q I K)

(I] 	P IQ = Q I P

(IX] 	(ll iTi) I 	= uIk eI u JTk

where I and I are disjoint sets of indexes

(Here ff i ,,Ti abbreviates T1 X ... X T with I=(1,...,n))

An example of law [IX] is:

(a: a .4) I (: 0 -4 y) = a : a '-4 	X

~y

Figure 4.2 Composition

Note that composition may introduce loops (P being both an input and

an output port) and indeed such loops may be present in the first

place. We shall come later to the exact semantics of such

situations; for the moment just think of a looping signal as

overwriting itself by a join operation.

4.3.2 Restriction 	 -

The restriction P\a of P cancels a from the input and output

ports of P, making communication via a impossible. We have:

184

(\] 	P\a = P 	if a f ports(P)

(\\] 	P\a\ 	= P\\a

(\I] 	(P I Q)\a = P \ a I Q\a

if not ((a a in—ports(P) and a a out—ports(Q)) or

(a a out—ports(Q) and a a in—ports(P)))

Now we need laws to distribute \. over X, and at first sight these

might be:

(1T.iT)\a = 11. 1(T\a)

(M — a)\a = NIL

L... a ... -9)\a

Unfortunately this does not work well in the case:

(a: M —9 a X a 9 0)\a = - 4

In fact we wish to interpret \a as a hiding operator, which should

not change the inner behaviour of the process. The result we want to

get is, at least:

(a: M 4 a X a 9)\a = M 9

But even this is not enough in the case where M is an expression

M[a] of a itself, e.g. when we have a loop over the restriction

variable whose result is exported through another output port (in

this case). To solve these problems we need to introduce

recursively defined signals (Pa. M):

(i1 	ha. M =

(Lpl 	Pa. M = M(ia. M)'a]

Then the law for restriction is:

185

(\X] 	(11i 8iMj-.9aj) \a= Uj ejT'j

where 1 = (id: a1 #a)

and T' =(M.—a.)($ia. U cti=QMj)/a]

Here U8iMi is the join of all the Mi, and it is .. if I is empty.

Examples:

(a: a '.4 0)\a = (ia. .:.) 9 A = 	-4

(a : a —A X —4 TMA = a: a -4

(a D: a -4 A X A -4 a) \A = a: a -9 a

(a: a 9 a) \n' = NIL

(a: a -4 a X a 4 AMCL = (;La. CO -4

The important point in law (\X] is that looping situations are

somehow hidden of preserved, but never "unfolded" by \a.

4.3.3 Renaming

The renaming 	 is the process obtained from P

by simultaneously substituting a1 ... a for the (input and/or output)
RC L)

ports 	 A renaming (RI = (a 1 / 1) is a bijection R:L-4 over

the ports L of P, i.e. the Pi the ports of P. and the a 1 are

distinct. Dummy substitutions will be omitted, so that (I = (a 1 /a 1).

WI 	PC) = P

[0O] P(RUS) = PCS o RI

Em] 	(P\a)(R) = (P(R pIa))\

if a a ports(P) and 	range(R)

MI] 	(PIQ)(R) = (P(R'))I(Q(R"))

where K' = K restricted to ports(P)

and
	

K', = K restricted to ports(Q)

186

To distribute (R) over X we actually perform a syntactic

substitution:

[(IX] 	(lli 8iTi)(aj/) = 11•

Example:

(a : a 	X - a) WA, /aJ = A a: 0 	X a -

The algebraic laws we have presented so far form what we shall

call an analog algebra. These laws can be grouped into two

categories: external laws (relating I, \a and (RI: (II], [I], (\],

[\\]. (\I],. [0]. ((H)], ([I\] and U)]) concerning the synthesis

of processes from simpler processes, and internal laws (all the

others) concerning the inner structure of processes. The external

laws are just those of Miler's flow algebras [Milner 791. Flow

algebras are extended in [Milner 781 by a set of internal laws for

communicating processes, and are then called behaviour algebras. Our

internal laws are quite different from Milner's ones, but they seem

to fit very well in the general framework of flow algebras, even if

the meaning of I, \a and (R) is radically different.

4.4 A Denotational Model

In the rest of this chapter we shall study a particular analog

algebra, built within the framework of denotational semantics. This

will allow us to study the exact meaning of processes just by

computing their semantics and observing their input—output

behaviour. The denotational semantics will also prove useful in

discussing some delicate situations arising from feedback loops and

recursively defined signals.

Processes are collections of transitions; in particular PL, L' is

the domain of processes with L inputs and L' outputs, namely

187

associations of transitions with L inputs to the output ports L':

PLL , =L' — TL

Here L,L' range over finite subsets of PLab, the set of port labels,

and TL is the domain of transitions with L inputs (and one output).

The domain P of processes is given by:

A
= 	L,L' LL,LD

A transition with L inputs is a function taking ILl input signals

and producing an output signal, hence:

TL

where S is a domain of signals.

Signals are functions from time to a domain of values. We can

have several types of signals, like boolean signals, real signals,

etc.

S 	K - V

where K is the flat domain of positive real numbers, and V is a

given data domain which is an abelian monoid <V,+,V> with V strict

(i.e. iVx = 1). We define:

+
(s' U S 19(t) A s' (t) V S 11 (t)

for all t c K and s',s" 8 S. This definition will make (1, [] and

(.L] hold when we give the semantics.

We need some notation for elements in these domains; .—notation

will be used for signals $ e S = K—*V. Elements of S will be

denoted by expressions like:

(a1 :s 1 , ... , a:s] for a1 ** a e L, s. .s 1 e S

which are meant to be unordered tuples of labelled signals a 1 :s 1

with the additional property:

(.. a:s', a:s" .. I = (.. CL: s'Us" .. I

and operations:

188

\a : 5" 	L\ (a)

SL + S

X SL #

defined as:

(a 1 :s 1]\a = (cz:s] with id, je(i 8IIaa)

[a1 :s 1].a = 5kkk 	where U0 =

[a :s 	[a,:s] = (a1:sa aj:s]

Elements of TL = SL —4 S of the form:

... x.a1 ... x.a 	...

will be abbreviated (with a change of font) as:

... a1 ...

where Cal .. a. I is an unordered tuple of variables. Notice that

this notation allows for unordered application by label names (i.e.

call—by—keyword), as in:

(X(a1 a2]. a1 • a2)(a2 :3, a1 :51 = 5*3

Finally, processes p a 'L.L' = L —4 TL of the form:

x. (x=a1) =4 t; ... ; (x=a) 	t; (XC]..)

(where "a=b;c" means "if a then b else c") will be abbreviated as:

(t 1 4 a1 ; ... ; t n —9 a n)

There are three semantic evaluation functions:

I': terms X ports X vars —3 T

S: signals X ports —4 S

IP: processes X ports —4 P

for term expressions

for signal expressions

for process expressions

with two kinds of environments:

vars = Ida —4 V

ports = L —4 S

We shall first discuss the semantics of process expressions, then

the semantics of signal expressions, giving the syntax at the same

time. We shall not treat the semantics of terms, as term expressions

189

will always have an evident meaning.

The following is the semantics of a very simple process,

consisting of a single transition:

fl'ffa 1 : S —9 A]Ji

	

T XP. ().(a 1]. SffSBa1 	P(a 1)(cz:a]/a j] —9)

	

(note that P(a 1)(a:a] = 	if a1

The fixpoint and the join operation are needed just in case 0 is

equal to one of the a1 , i.e. when there is a feedback. Otherwise the

previous expression reduces simply to:

[Ma 1]. saS]J(a 1/a1 -4)

In case of feedback, say a3 . the input to a3 is a3 (the input to

process P) joined to what comes out of 0 , which is P(a3)(a 1 :a.]. In

fact P((L3) is the transition associated with a 3=, which receives as

input the same input of the process: (a:a].

The same idea is used in giving the semantics of composition, in

which the component processes may feed each other in complex ways.

The composition operation on processes is defined as:

plq = let p = (s 	lj) where s1 = .(ah]. M. 1.

	

and q = Ur
i
 4

J
&. 	

J

	

} where r 	X[bt]. N in

7 XR. (X(ahbk] . 5i((ah U R (ah) (ah:ahs Pk:bk])] —4

U (X [ahbk] . r[k:(bk U R(k)(a.h:ah , Pk.bk])l 9 J

and we have the evident semantics:

]PffPIQThi =]PffP]Ja I]PffQlJa

This 	composition is 	commutative 	((I] 	holds); 	to 	prove

associativity ([II]) we had to assume absorption of U. i.e. s U s

s (which also implies PIP = P; we do not know whether this is a

necessary condition). The other laws of analog algebras are easily

190

verified, if we complete the definition of IP by the following

equations:

]PffNILfli =).x. ()(]. ..)

]PE[T1 X ... X TJIi =]P [IT 1]a I ... I WffTlJa

WffP\aThi =

XeL'. XxeSLJ . (]PffPP,llo)()(x\a U [x:.&])

PffPCp/a1)]Ja =

let p =]P11P11

in Xy. X Eb i 1. y=1 =0 p(ai)(a:b]; ... ;

p(a)(a:b]; ..

We now consider signals; a simple way to specify them is to

describe their value at any instant of time, using a sort of

).—notation, where "at" is read "at time t" and t is the only

variable (if any) free in V:
€

saat.vBor = Ix. lraV]nx/t] 	(€is the empty environment)

for example at. 3sin t. We have the equivalences - = at. 4 and

a U b = at. a(t) V b(t). The notation IV will be used as an

abbreviation for at. V, when t is not a free variable in V, like in

t3 = at. 3.

Signals can also be defined by recursion:

Sffta. SBcr = Y Xa. SEISBa(a/a]

like in

a. at. t<i. = f; aft-1)

Two other useful abbreviations are conditional signals and delays:.

S =4 S' ; 5" = at. S(t) = s'(t) ; S 11 (t)

S , A s" = at. t<S"(t) :4 + ; S'(t—S"(t))

A simple example of delay is S A 13 which is the signal S constantly

delayed by 3 units of time, yielding 4 during the first three units

.of time. This notation also allows us to express variable delays.

191

Notice that the a—notation has too great an expressive power,

being able for example to define a signal in terms of the "future"

of another signal (or even of itself; e.g. pa. at. a(t+1)), but we

might impose syntactic restrictions to avoid that, leaving A as a

primitive.

Summarising the syntax, we have terms V. signals M and processes

P. Terms are boolean expressions and conditionals with at most one

free variable t ranging over reals.

V :: 'true' 	'4' I BooleanExpression I

V '' V ';' V I Port '(' t

M ::= 'at.' V 	'1'' V I '.' I Port I

M 'U' M I 'ji' Port '.' M I

M '=' 14 	14 I M 'A' M I ,

14 ('+' I '-' I '*' I 'I' I '=') M

P 	(PortIl ':' CM '-9' Port / ' X')l I

NIL I P 'I' P I P '\' Port I

P 'C' (Port 'I' Port / ',') 9'

4.5 Feasibility

Great care has been put into the definition of the algebraic

laws and of the denotational semantics, in order to be able to treat

circularities. The simplest example of feedback can be found in the

following fast loop process:

a: a —9 a

CL

Figure 4.3 Fast loop

This process has an input port a, whose input is mixed to the output

coming from the output port a. This process has no internal delay,

and the output at any instant t depends on the input at the same

instant t, which depends again on the output at time t. Computing

the semantics:

p]Pffa: a - aflci

= Y XP. (X[a]. Sffa]Ju(a U P(a)Ea:a]/a] - a)

= 7).P. [[a]. a U P(a)(a:a] + aJ

It is not immediately clear what p does, but we can try to

understand its behaviour by applying some input. We first extract

thetransition we are interested in (there is only one in this case)

applying it to the output port a:

p(a) = .[a]. a U p(a)(a:a]

Then we apply an input signal to see what is the response of the

transition:

p(a)Ea:a] = a U p(a)(a:al = 1.

the result is 1, because of strictness of U.

Here we have a first example of a clearly "infeasible" process,

which denotes 1, the undefined element. We can also see that a slow

loop is not mapped to I and is well—defined everywhere. Set

p 	IPifa: a A ti — a]Jsi

= 7 XP. (X[a]. Xt. t<1 =4 4; (a U P(a)(a:a])(t-1) — a)

p(a)(a:a] =).t. t<1 	4; (a U p(a)(a:a])(t—l)

There are also processes whose output signals are only partially

undefined; an example is the Zeno loop:

192

193

a: a A (at. t<1 =4 l—t; 0) '9 a

This is a feedback loop which increases its speed, and at a finite

point in time reaches an infinite speed (i.e. a zero delay). The

output of the Zeno loop for a nosignal input is).t. t<l 4 4; L.

As a general principle, the output of a feedback loop is defined

as long as the delay in the loop is greater than zero. This may look

trivial, but feedback loops appear in almost any interesting

process, and this simple fact has several intriguing consequences.

We are going now to look at some of these.

4.6 Expressibility

We have seen that we can express several physically infeasible

processes. This suggests that our formalism has too great an

expressive power, and we might try to impose some constraints in

order to exclude unwanted processes. However it would be wrong to

think that we can express anything we like. In particular there are

several processes which, we conjecture, cannot be exactly expressed,

and yet admit approximations up to an arbitrary degree of accuracy.

We shall call such inexpressible processes perfect, and shall call

their expressible approximations imperfect.

Consider for example the following (naive) memory cell:

CL : auft A 11

To work properly as a (write once) memory cell, this process must

receive a set impulse of length 1 on a. Then this impulse enters the

loop and is "remembered". This memory cell presents two main

defects: it will not work properly (i) if the set impulse is longer

than 1 as it will overwrite itself, or (ii) if the set impulse is

shorter than 1, as it will not fill the loop period. We can solve

the first problem by the following (improved) memory cell:

CL : (a=. = a ;) A ti 9

194

This process will cut off its a line after having received a signal

different from .. for one unit of time. But the second problem still

remains; if the a signal differs from •. for less than one unit of

time, the output A is not constant. The same problem occurs when the

set impulse changes its value during the setting time; then a

varying signal is recorded into the feedback loop and the output of

the memory cell oscillates: we get a (quench free) metastable state.

In effect what we really want is a perfect memory cell which

stores constantly the value of an instantaneous setting spike, so

that there can be no indeterminacy due to fluctuations of the input

signal. Notice that starting from our improved memory cell we can

get better and better approximations to a perfect cell, simply by

reducing the delay in the feedback loop. Unfortunately if we reduce

the delay to zero, we do not get a perfect storage device, but only

an undefined output. Hence there seems to be no expression denoting

a perfect memory cell (which yet exists inside our semantics

domains) because there seems to be no way of defining a storing

device without the use of feedbacks.

Therefore, expressible memory cells are imperfect. It is

important to notice that many useful processes have memory cells (or

their equivalent) as basic building blocks, and such processes must

take into account this imperfection and are likely to be themselves

imperfect. In general an imperfect process works "correctly" under

some classes of input signals, but in certain critical circumstances

there is no way to guarantee its intended operation.

4.7 Indeterminacy

Consider the problem of designing a process which determines the

time of occurrence of an event, or which measures the value of a

signal when some event (e.g. "measure it now") occurs. First we must

195

agree on a definition of determining or measuring, and a sensible

one seems to be storing constantly for an unlimited amount of time.

We shall not go into the details of such design because it is very

similar to the problem of producing a perfect memory cell. In fact

it is not difficult to see that perfect determination is impossible,

just because perfect storage devices are infeasible.

A well known case of indeterminacy is arbitration, where a device

attempts to determine which of two events arrives first. A simple

way of implementing an arbiter is to use a decider and a memory

cell. The decider tells at - any instant whether the first, the second

or both signals are arriving, and the memory cell tries to remember

the first decision of the decider. But memory cells are imperfect

and so are arbiters based on memory cells. If the two signals arrive

too close, the decider changes its decision while the memory cell is

storing it, and the output of the cell is unstable.

If we had a perfect memory cell we could build a perfect arbiter

this way:

I

Figure 4.4 An arbiter

where the decider D is

196

D a a :

(a) 	(=.) = ..; " first";

(=..)4 "a first";

"a and P together"

-4 1

which at any instant outputs one of four different messages: .., "a

first", " first" or "a and P together". The perfect cell then

remembers the first (arbitrarily short) decision different from

An alternative way of building an arbiter is by using two

detectors to determine the time of occurrence of two events, and

then compare these times. But detectors are imperfect because time

is a continuously changing quantity which cannot be stored

instantaneously, hence arbiters built in this way are imperfect.

In general the order or coincidence in time of two events cannot

be determined. The order cannot be determined when the signals are

too close, and the coincidence cannot be determined when the

simultaneous signals are too short.

4.8 Flip—Flops

In this last section we analyse a particular analog process,

showing in detail how its behaviour can be derived from its

semantics. Here V=(true,false,}, +=false and Vor.

R

$

8

r

Figure 4.5 Flip—Flop

197

This is an SR flip—flop. In one of its steady state conditions we

have the following values on the ports:

R=S=sfalse; 	rtrue

Starting from this condition and applying a set pulse to the port S

we get s = true and r = false. Another set pulse has no effect. Then

applying a reset pulse to the port ft we change the output back to s

= false and r = true. Another reset pulse has no effect. Applying

both a set and a reset signal, the output signals oscillate between

true and false, and this is called a metastable state. The actual

behaviour of a real flip—flop in a metastable state can be rather

different from the one described above [Chaney 731. We believe it

can be modelled by introducing some "quench", but we shall not

undertake this analysis here.

The SR can be synthesized from smaller components:

OR = jul in2: (jul or in2) A id' --> out

NOT = in: (not in) A id" -4 out

OR1 = OR (K/mi, r/in2, wi/out)

0R2 = OR (S/ml, s/in2, w2/out)

NOT1 = NOT [wi/in, s/out)

NOT2 = NOT (w2/in, r/out)

SR = (OR1 I NOT1 I 0R2 I NOT2)\wi\w2

It is an easy exercise to show that this is equivalent to:

SR = S K s r:

uot(K or r) A id 4 s X

not(S or s) A id -, r

198

where d = d'+d". Unfortunately if we try to switch on the flip—flop

without supplying any signal (i.e. supplying false on all the

inputs) we immediately get a metastable state. This happens because

starting with false on all the inputs, we are not in the steady

state condition. To enforce a well defined start, we supply true to

r for the first d seconds. At that time the signal from S reaches r

and the system is ready to work. Hence we redefine:

SR = S R s r:

not(R. or r) 11 id '9 s X

(not(S or s) A id) U (at. t<d) - r

Computing the semantics:

SR = IPffSRIJa

=Y).SR.

(X[S R s r].).t.

t<d 	false;

not(R(t—d) or r(t—d) or SR(r)(S:S,R:R,s:s,r:r](t—d))

--4s ;

).[S R s r]. .t.

t<d 	true;

not(S(t—d) or s(t—d) or SR(s)(S:S,R:R,s:s,r:r](t—d))

)

and extracting the output transitions:

199

SR(s) = 7).T. [X(S R s r]. Xt. t<d =4 false;

not(R(t—d) or r(t—d) or

(t<2d 4 true;

not(S(t-2d) or s(t-2d) or

T(S:S,R:R,s:s,r:r](t-2d)))

SR(r) =

We look at the output signals in absence of input:

SR(s)(S:.L, R:., s:..,

= 7 XS. Xt. t<2d =0 false; S(t-2d)

= 	t. false

SR(r)(S:'., K:.', s:.',

=).t. true

This means that for S = 1false we obtain s = Ifalse, r = ttrue; we

are in the steady state condition. Now we supply a pulse t. t<i)

of an unspecified length it:

SR(s)(S:(Xt. t<ir), R:.., s:-., r:..]

= 7).S. Xt. t<2d 4 false; t<2d+it 4 true; S(t-2d)

There are two' cases: (i) the length of the set pulse is it>2d; then

the flip—flop is properly set (the expression above reduces to

.t. t<2d false; true)

200

S

IT

S 	 I 	I
d 2d

Figure 4.6 Stable state

or (ii) the length of the set pulse is n<2d; then the flip—flop is

in a metastable state and the output signal oscillates between true

and false.

TI

S 	
i 	I 	I 	L_.. 	 I '—H
d 2d

Figure 4.7 Metastable state

4.9 Conclusions

We have shown how analog processes can be studied from a

semantic point of view. The proof techniques for equivalence (a

process is a simplified form of another one) and correctness (a

process implements a given transition) of analog processes are

reduced to the standard proof techniques used in denotational

semantics.

Direct "execution" of the semantic equations of a process

provides a simulation technique. If we wish to know the output of a

port at time t, we apply t to the output signal of the corresponding

transition; the value is computed recursively backwards in time

201

until (hopefully) a base value is found near time 0. In this sense

it would be possible to devise an implementation for the language we

have described.

Several semantic problems need further investigation, expecially

regarding the relations between the formal semantics and our

intuitions about analog processes.

202

S. Real Time Agents

Without trying to make any final assessment of the structure of

the physical world, one might tale the view that at an appropriate

level of abstraction there are entities which act and influence each

other's behaviour through a continuous interaction. These entities

are called here agents and their interactions are assumed to happen

in real time. The picture becomes particularly interesting when we

allow our agents to behave nonda termini stically both in the actions

they can perform and in the time they take to do it. The ability to

express nonde termini stic systems is the major difference between

this chapter and the previous one, deeply influencing the semantic

techniques we use.

5.1 Introduction

This chapter is inspired by Miler's approach to synchronous

processes, as reported in (Milner 811. The main differences are the

use of a continuous time domain and a continuous—nonde termini sm

operator. Milner has shown that many of the characteristics of

concurrent processes can be modelled and, more importantly,

manipulated in an algebraic framework tailored to synchronous

discrete interaction. Although much can be done in a discrete—time

model by reducing the grain of discreteness to the desired level, we

think it is interesting to see what can be gained in a

continuous—time framework and what additional difficulties arise.

5.1.1 Methodology

We begin with a general presentation of the operational approach

to the semantics of concurrent systems (Plotkin 811.

There is a set of agents p a P which may perform actions a a A.

The semantics of agents is given by a set of binary relations a

over P (for all a a A). When 	a 	p' we say that the agent p

203

performs the action a and becomes the agent p'.

The set P is defined as the free algebra over a signature Z, i.e.

P is the set of syntactic expressions for agents which are built

from a set of operators in Z. Some structure is usually imposed on

the set A, e.g. an abelian monoid or group.

An operational semantics is defined which specifies the relations

--1-4. These relations are expressed in a syntax—directed way: for

every op a Z we say how to derive the reductions

a 	q" of p from the reductions of p 1 , ...

A congruence relation "" is defined over P together with some

useful proof method for proving properties like p—q. This congruence

relation defines a Y.—algebra P/— which is the semantics of agents.

A set of algebraic laws holding in P/- is derived. This set of

laws is particularly interesting when it is complete for finite

expressions in P, i.e. when the congruence is the same as the

congruence generated by the laws. This means that two finite agents

p,q a P are equivalent if and only if they can be proved equivalent

using the laws. Gordon Plotkin remarked that this property does not

hold in general for infinite agents (e.g. recursive agents) but it

can lead to a powerful proof system when coupled with an induction

theorem.

5.1.2 The Action Monoid

Agents progress by performing actions. Actions are denoted by

the letters a,b,c and d, and the set of all the actions is A.

Actions can be performed concurrently, so we denote by ab (or

simply ab) the simultaneous occurrence of actions a and b. We also

admit a neutral action 1, so that <A,,l) is an abelian monoid,

i.e.:

204

Unit: 	 a 1 =a

Commutativity: 	a b = b a

Associativity: 	a (b c) = (a b) c

Communication between agents can be modelled by requiring A to be a

commutative group <A,,1,>, where

Inverse: 	a i = 1

We may require A to be a free group over a set N of atomic actions

(generators) denoted by greek letters a,,y,&.

A successful communication between two agents is represented by

the matching of two actions a and 1. The fact that ai = 1 means that

communication involves exactly two agents, that the respective

communication capabilities are consumed during the process and that

an external observer is unable to tell which communication took

place (he can only observe 1). Note that communication here means

simple synchronisation, and does not involve the passage of values.

5.1.3 Time

The central idea in real time agents is the explicit use of time

information when expressing the behaviour of agents. Time is assumed

to be dense, i.e. for every two instants t 0 ,t 1 it is always possible

to find an instant t such that t 0 <t<t 1 . The real numbers are the

obvious choice for a dense domain of time, but rational numbers will

also do.

We shall formalise the idea of observing a real time system

during intervals of time, (i.e. not observing at time instants) and

we want to rule out the possibility of observing zero—length

205

actions. Hence the variables denoting time will range over a dense

domain 1K (for ronos) = that is the set of strictly positive

real numbers. The letters t,u,v,w,x,yz will range over 1K.

5.2 Deterministic Agents

We first examine agents which are deterministic, in the informal

sense that every agent has a unique possible development in time. A

formal property corresponding to the idea of determinism will be

examined later.

5.2.1 Signature

We start with a very simple set of operators to form our

expressions. This set will be gradually expanded making clear what

results extend from the smaller signatures to the larger ones.

Our initial signature Z.D (where D stands for deterministic)

consists of: a constant 1 representing the neutral agent always

performing the neutral action 1; a unary prefix operator a[t]: which

represents the act of performing the action a for an interval of

time t; and the binary infix operator X representing the synchronous

composition (coexistence) of two agents.

8 0

a[t]: 	C 	 for all acA and talK

X

Finally an agent (denoted by p,q,r,$) is an expression built over

the signature The set of agents PD is the free

algebra over

5.2.2 Operational Semantics

Now we shall specify how our agents behave, by defining a set of

binary relations) (for acA and talK) over PD. We read p 	q as

206

"p moves to q performing a for an interval t", or "p takes t to move

under a to q".

The reduction rules for deterministic agents are as follows:

[1-4] 	 1

(a[]-4] 	 a[t]:p) p

a[t+u]:p) a[u]:p
ab

p t)p' 	q

p q 	> p'xq'

Rule [1-31 asserts that 1 moves under 1 for an arbitrary

interval t to produce 1 again.

Rule [a[]-4] says that a(tl:p takes t to move under a to p, with

t>O.

Rule (a(la[]-31 has to do with the density of time; it says that

after an interval t, a(t+u]:p has only reached a[u]:p. Note that it

is possible to split actions at arbitrary points, but this is done

consistently so that the final outcome remains the same.

Rule (X-3] gives meaning to the coexistence of two agents: if p

takes t to move under a to p' and q takes t to move under b to q',

then pXq takes t (the same t) to move under ab to p'Xq'. Note that

if q is of the form b(t+u]:q", we can use (a(]a[] -3] to get a

t-derivation of q, so that we can use

This set of operational rules enjoys two fundamental properties:

a a 	 a Lemma 5.1 (Density Lemma) ' t;-,,,-> r) q. '> q, q u > r

Proof Induction on the structure of the derivation of pt -)r U

Lemma 5.2 (Persistency Lemma) Vp,t. Jpl. pnIal .a 9 t1. .t.

and p 	p1 •..

207

Proof Induction on the structure of p. The case pp'Xp" needs the

Density Lemma 0

We shall abandon the persistency lemma later, but density is

fundamental for all the systems we study. When adding a new operator

to our signature, most of the results for the old signature extend

to the new one, provided that density is preserved.

5.2.3 Observation

Agents will be observed by considering the sequences of actions

they can perform. If the agents p and q are in the relation

p) q, and q and r are in the relation q) r, then we can

consider the composition of the relations) and) (denoted

)o 	>) so that p and r are in the relation p ()o)) r.

Definition 5.1

>o 	> 	(<p,r> I 	q. <p,q>e 	> and <q,r>e 	>3 U
(a1 ...a) 	a1 	a

We write 	 for 	 > (n>O). Moreover a sequence (t 	.tn Ti 	 n

of actions is denoted by

	

—A 	 —A

	

a = 	 with #a — n

and a sequence of time intervals by

t A (t i p ••itn) 	with 	#t 	n 	and 	1t

We want to observe actions in such a way that, for example, the

sequences
(a, a) 	 (a)
(1,1)> 	and 	(2)4

are indistinguishable. This can be done by considering similar

sequences in the following informal sense:

(a,b,b,b) 	 (a,a,b,b)) 	,_ _

	

is similar to) (2,2,2,2) 	 1,1,3,3,.,
(a,b) 	

is 	 (a,b)
(1,2)> 	similar to (2,1)

208

Definition 5.2 Similarity is the least equivalence relation, 	,

between relations, 	>, such that:
t

If a = ... 	 an = b 1 = ... = bm and It =

then
t _u 	—

bp 	 of 	
boo If 	 and to 	U' 	 t" 	U"

—, 	_,, 	i, 	 1.i•

	

then)o 	 Z)o)
t

S 	
SI 	 US

a
Note that if 	 > then Xt =

	

t 	U

The following abbreviation will be used:

Definition 5.3 p 	q 0 3)) such that p 	q U
t 	 to 	t 	 t'

We can also talk about finer and coarser sequences and the meet

of two similar sequences:

Definition 5.4) 	is finer than 	> when 	> < 44, where ~
t u 	t 	u

is the least relation satisfying:

(a 	...a)

(t1...t)> ~

If 	> •~ and) boo
t ' u'

then 	.)
—a,

o 	—

a.1
- 	

, b')
tS tS a"

0

Definition 5.5 -L! 4 is coarser than) (written) ~ 	3)
— 	 t 	 u 	 t 	u

if 	 >11
U

209

Theorem 5.1

The relation (defines a partial order over the set of transition

relations). Moreover:
t

(i)If) 	~)then)
t 	U 	 t_ 	U

U 	 a (b) then 	> 	(b)
t 	() 	t 	(u)

The meet (greatest lower bound) of two similar sequences

> (written 	> A -4--4) exists and is unique.
t

Proof Directly from the definitions U

Finally the Density Lemma implies the following:

Lemma 5.3 (Refinement Lemma)

If)qand)<) then p)qU
t 	 u 	t 	 u

Remark: the Refinement Lemma can also be expressed as:

	

>< -:&4 implies)
U 	 t 	 t 	U

Lemma 5.4 (Similarity Lemma)

If 	> = 	> then 1 4 > 1

	

t 	—
If 	> 	> then a(t]:p 	> p

If)) then a(t+u]:p) a(u]:p
t 	 — 	t

(4)If)and) 	>then 	 ab
t 	 _t 	 t

p)p' 	q
t 	 t

pXq) p'Xq'
t

Proof Trivial, except that (4) uses the Refinement Lemma U

5.2.4 Equivalence

Informally, the behaviour of agents is given by their reduction

chains, and we want to regard as equivalent agents which have the

"same" reduction chains (i.e. which perform the "same" actions) even

if they are syntactically different as members of PD. After having

210

defined a congruence relation - over PD so that p—q iff they perform

the same actions, we can then take the equivalence class of p in

as the semantics of p.

We are going to define the following equivalence:

p is equivalent to q iff every time that p can reduce under a

sequence of actions 	> to p', then q can reduce by a similar
t

sequence --!--4 s to some q' equivalent to p' (and vice versa). This
t

equivalence is called smooth equivalence because it ignores the

"density" of individual actions and only considers their coarse

result.

We first define a formula]D() parametrically in an arbitrary

relation z over PD:

Definition 5.6

n)

pq 	iff V a eA, t elK.

both p) p' =('. q 	
)5 q' and 	' z q')

and q) q' 	(p'• 	
a)S p' and 	' z q')

U

Definition 5.7 Smooth equivalence (-) is the maximal fixpoint of

the equation Z = ID(Z) in the lattice of binary relations over PD ii

Theorem 5.2 (Park's Induction Principle [Park 81])

p — q if 3RçPDXPD .

<p,q> a K

R

a

Condition (ii) can be written more explicitly as:

211

<p, q> a R =

(ii') VP 	> p'. 3<p',q'> 8 K. q)S q'

(ii") V) q'. 3<p',q'> a K. p)S t

Theorem 5.3

- is an equivalence relation.

- is a congruence with respect to ID = (1, a[t]:, XL

J)_ is a ID-algebra.

Proof

Ci) Easily verified.

(ii) We have to show that for every 	context C(x]:

p - q 4 C[p] - C[q]

It is enough to show (by Park's induction) that:

p - q 4 a(t]:p 	a(t]:q.

p - q=pXrqXrandrXp - rXq.

For (1) take K A (<a(tl:p,a[t]:q> I p - q>) v -.

(1.base) <a[t]:p,a(t]:q> a K by definition;

(1.step) if reR because re- then rc]D(K) by definition of -;

if <a[t]:p,a(t]:q>eR where pq, suppose a(t]:p

it may only have been derived from Ea[]-41 or (a(]a(1-1.

(1.step.(a[]—)]) a[t]:p)p with ba, ut, Pp.

By Ea[]-91: a(t]:q)q with <p,q> a K by hypothesis.

(l.step.(a[la(]-41) a(tl:p 	>a(t-u]:p with ba, u<t, Patt-u]:p.

By (a(]a[]—]: a(t]:.q)a(t-u]:q with (a[t-u]:p,b(t-u]:q> a K.

The rest is symmetric, for a[t]:q

For (2) the proof follows the same theme, with R 	(<pXr,qXr> I p -

q>) u - (and symmetrically in the second case), using the similarity

lemma, and hence depending on the density lemma.

(iii) This is a standard algebraic result, based on (ii).

U

212

5.2.5 Algebraic Laws

The following holds:

(Xl] 	pXl - p

(X] 	p X q 	q X p

(XX] 	pX(qXr) - (pXq)Xr

(1(1 1] 	1(t]:1 - 1

(a(]a(]] 	a[t]:a(u]:p - a(t+u]:p

(a[]X] 	a(t]:p X b(t]:q 	- ab[t]:(pXq)

All the laws can be proved smoothly by Park's induction. Both the

congruence property for X and the factorisation law [a[]X] depend

only on the density lemma; whenever we modify our signature we need

only to make sure that the density lemma still holds.

The following results tell us that our set of laws is rich and

consistent:

Definition 5.8 Let us denote by E the congruence defined by the

set of laws (Xl] ... [a[]X]. We say that p is convertible to q iff

pm q U

Theorem 5.4 (Soundness)

p 0 q =4 p -

Proof

Induction on the derivation of p E q, using the fact that 	is a

congruence and the laws are valid U

Definition 5.9 S isn a[t1]:p
A a1 (t 1]:.. .a(t1:p (n>O) Ii

Definition 5.10 An agent is in sequence form if it is of the form

S 	a.(t.]:1 U

213

Definition 5.11 An agent is in normal form if it is in sequence

form Sj< a 1 (t 1]:1 with (n>O 4 a#l) and (n>2 4 Vi<n. aa.+i) I]

Theorem 5.5 (Normal Forms)

Every agent is convertible to a sequence form.

Every sequence form is convertible to a normal form.

Every agent has a unique normal form.

Proof Simple inductions on the structure of terms 0

Theorem 5.6 (Completeness)

p - q =+ p 9 q

Práof

First prove that for p',q' in normal form, p'—q' 4 p'=—q' by

induction on the structure of p' and q' (this is easy because of the

simple structure of normal forms: we even have p'—q' 4, p'-- q'). In

general, by the normal form theorem, p and q have respective normal

forms p' and q' (so that pmp' and qmq'). By soundness p'—p—q—q'. So

by the first part of the proof p'=—q'. Hence p5p'9q'mq fl

5.2.6 Determinacy

We said that our agents are deterministic; in fact there are

very strong properties that agents must obey in reductions. The most

important ones are collected in the following action lemmas:

214

Lemma 5.5 (Action Lemmas)

If 1 	p then a = 1, p = 1

If a(t]:p) q then u 	t

If att]:p (b)>s q then b = a
(u)

If a[t]:p 	q and u > t then p (b) q s
(u) 	 (u—t)

If a(t]:p (a)>s q then p = q

If att] :p (b) >S q and u < t then q = a(t—u] :p

If p'Xp" 	> q then 3a',a",q',q".

a ' 	 ____) q', p") q", a = a'a", q = q'Xq"

U

These action lemmas imply, by simple structural induction, the

following important properties:

Theorem 5.7 (Vertical Determinacy)

p)ci and p 	>ra=b El

Theorem 5.8 (Horizontal Determinacy)

If p 	> q, p) r and 	 ?.) then q = r
t 	 u. 	 t 	U 	- 	-

If p - q, p) p', q 	> q' and) = 4-4 then p' -
t 	 U. 	 t 	U

U

In this formal sense, our agents are completely deterministic,

and we can also see that it is possible to introduce two orthogonal

kinds of nondeterminism. This will be done in the next section.

5.3 Nondeterministic Agents

5.3.1 Signature

Let us now consider the signature

215

o 	a IND ()

a(t): 	e 11 for all asA and tail

+ 	e Z ND

The agent 0 has no actions, not even neutral actions. When a

system reaches the state 0, a catastrophe occurs and time ceases to

flow; hence 0 is called a disaster.

The prefix operator a(t): represents the act of performing the

action a for a positive interval of length at most t; we shall say

that this operator introduces horizontal continuous nondeterminism

in the sense that arrows can be stretched horizontally according to

the duration of a(t):.

The binary operator + represents the choice of two possible

behaviours, and it introduces vertical discrete nondetexminism; the

sense of these adjectives may be made clear by the following

diagram, where the action monoid is on the vertical axis and time is

on the horizontal axis. The behaviour of an agent is then a

(possibly discontinuous) trajectory in this space.

A

t

Figure 5.1

5.3.2 Operational Semantics

There are no axioms for 0.

The agent a(t):p takes time vt to move under a to p, and

a(t+u):p takes time v(t to move under a to p + a(u):p. Hence a(t):p

can choose at any move to shorten its life span by some amount;

216

moreover at any point in time it can stop its a—action and start

executing P.

If p takes t to move under a to p', then p+q may move under a to

P' taking time t, or else if q takes u to move under b to q', then

p+q may move under b to q' taking time u.

(aO—+] 	 a(t):p) p 	 v_~ t

(aOO—*] 	a(t+u):p v" p + a(u):p vst
a b P)p' 	q
____ 	 __ p+q 	P' 	p + q

 _ —_4 q'

5.3.3 Algebraic Laws

Applying the same definition of smooth equivalence to the new

signature and operational semantics, we obtain the following holding

in

[+0] 	p+O - p

[+p] 	 p + p - p

[+] 	 p + q - q + p

[++] 	 p + (ci + r) - (p + q) + r

[aO+] 	a(t+u):p - a(t+u):p + a(t):p

(aOaO] 	a(t+u):p - a(t):(p+a(u):p)

5.3.4 Combined Calculus

D

	

We now merge the two signatures into 0 A - 	 ND with P 0

being the free I 0—algebra. We have to abandon the persistency lemma,

because of the presence of 0. The density lemma, however, still

hods:

,. 	 __ Lemma 5.6 (Density Lemma) p a t+u' r 	q. p 	
_ > q, q) r U

Extending the usual definition of equivalence to

217

Theorem 5.9

- is an equivalence relation.

- is a congruence with respect to 10

P0/— is a 1°—algebra U

We obtain a new set of laws describing the interactions between

the two smaller signatures:

(XO] 	pXO 	0

(X+] 	p X (q + r) - (p X q) + (p X r)

(101] 	1(t):1 -

This does not give us a complete set of laws; we lack the

distributivity of a(t): over X and some law relating a(t): to a[t]:.

Laws relating a(t): and X are called factorisation theorems. (The

operator lB used below is explained in the next section; the laws

(FT2] and [Fr4] hold also with all the 4B elided.)

EFT11 	(a(t):p X b(t):q)&B - 0 if ab p B

[Ff2] 	(a(t):p X b(t):q)4B - (ab(t):(pXq))B

if either Vu<t. (pX(q+b(u):q))4B - (pXq)48

or Vu<t.v<u. (pX(q+b(u):q))4B - (pXq+a(v):pXb(v):q)B

and either Vu<t. ((p+a(u):p)Xq)4B - (pXq)lB

or Vu<t.v<u. ((p+a(u):p)Xq)B 	(pXq+a(v):pXb(v):q)B

and either Vu<t. ((p+a(u):p)X(q+b(u):q))1B - (pXq)B

or Vu<t.jv<u. ((p+a(u):p)X(q+b(u):q))&B - (pXq+a(v):pXb(v):q)B

and either Vu<t. (pXq+a(u):pXb(u):q)4B - (pXq)B

or Vu<t.jv<u. (pXq+a(u):pXb(u):q)4B - ((p+a(v):p)X(q+b(v):q))4B

(Fr3] 	(a(t):p X b[t]:q)B - 0 if ab A B

fr4Lt]

(FT4] 	(a(t):p X b(t]:q)4B 	(ab(t]:(pXq))IB

if Vu<t. (a(u):pXb(u]:q)B - (pXb(u]q)4B

and Vu<t.v<u. (a(u):pXb[u]:q)B - ((p+a(v):p)Xb[u.]:q)lB

These laws constitute a major departure from the equational style

we have observed up to now, and may be an indication that we have

not chosen the best possible set of primitive operators. On the

other hand they seem to reflect rather faithfully the complex

relationships between a synchronous deterministic world and an

asynchronous nondeterministic one (Z), and we could not devise a

simpler formulation. The factorisation theorems can usually be much

simplified in practical situations (e.g. replacing "Vu(t" by "Vu"),

and they turn out to be very useful in proving equational laws of

interesting derived operators, as we shall see later.

219

5.4 Communication

In order to model communication, our action monoid A will be

assumed to be an abelian group <A,,1,> freely generated by a set

of names N. For B C A we define B (I I a a B); then N is the set

of conames and L A NuN is the set of labels or atomic actions.

Communication occurs when two complementary actions occur

together, like in

a(t]:p X i(t]:q - ai[t]:(pXq) - 1[tl:(pXq)

In a composition pXq we implicitly establish communication channels

between all the complementary actions of p and q. Since this

connections are implicit in the naming conventions of actions, we

need some operator to control this naming activity, so that we can

prepare agents for purposeful compositions.

5.4.1 Restriction

The restriction operator IB, for B C A and 1 a B is used to

extract a subset of the possible actions of an agent, inhibiting the

rest of the actions.

a
p)q

p4B_)qlB if a a B

Thus p4B can only perform actions which are in B. The action 1 is

never inhibited by definition; it represents the possible anonymous

occurrence of a communication event inside p.

It should be stressed that restriction is not a hiding of some

internal actions, but it represents their inhibition, the

impossibility of their occurrence in isolation (they may occur if

complemented). Restriction can be used to drive and determine the

internal behaviour of an agent, as in the following example:

220

p 1 a(t]:1 + b(t]:1

pl,a) - a(t]:]L

p4f1,b) - b(t]:]L

where in each case one of the two sides of + is forced. This idea

can be used to channel communication, as in:

	

P 	(&(t]:1 + b(t1:1) X

p4(1,1) - i(tl:1

where in the first case a b—communication, and in the second case an

a—communication, are forced.

Restriction can induce disaster:

(a(t]:p)4(1) - 0

but can also avert disaster:

(a[t]:0 + b(u1:1)4(1,b) - b(u]:1

Here are the laws of restriction:

(4] 	p&B - p 	ifP 8 PB

(4a[]:] 	(a[t]:p)4B - 	
a(t]:(p4B) if a a B

0 otherwise

	

(

[4a0:] 	(a(t):p)4B - S
at:p&B if a a B

0 otherwise.

(4+] 	(p + q)4B - p4B + q4B

These laws are also valid if we only assume A to be a monoid, but

note the absence of a law for X. This is better studied in the case

of the next operator we examine.

The delabel]ing operator p\c is a particular case of restriction.

It is used to restrict over a set B in which some atomic action a

and its complement E never appear as factors; then p4B means

221

hereditarily removing all the c-communications capabilities of p.

Definition 5.12 p has 	sort B (or p has B) 	if whenever
a0 	a 	

(n>0) and 	-A--4 p" then aeB U t o

Definition 5.13 If B C L then B is the submonoid of A generated by

BU

We can now define delabelling as:

p\a A 	
*

with laws:

(\] p.a 	- 	p if p has B and a,E A B

o if a or E is a factor of a
[a 	:\] (a(tl:p)\a - S

\a[t]:(p\a) otherwise

0 if a or U is a factor of a
[aO:\] (a(t):p)\a - 	S

a(t): (p\a) otherwise

(X\] (p X q)\a - 	p\a X q\a

if p has B, q has C and a,t BnC

[+\] (p + q)\a - 	p\a + q\a

(\\] p\a\ 	-

5.4.2 Morphisms

We need a way of renaming actions, so that we can easily set up

communication channels. The most general form of renaming is called

a morphism p(4) where +: A-4A is a monoid homomorphism:

a.
P 	'p

P (4)

We shall write p(a./.) for the unique monoid morphism renaming the

222

generators P i to a in p and leaving the other generators unchanged.

Here are the laws for morphisms:

(LI] 	p0 - p

((411 	P(4) - p(4'l 	if pePC and 4(a)=4'(a) for all aeC

((4fl4')] p14)(49 - p{$' o 4}

[a(]:(4)] 	(a(t]:p)(4) 	- 4(a)(t]:(p(4))

(aO:(4)] 	(a(t):p)(4) 	4(a)(t):(p141)

(XC4)1 	(p X q)(4) - p(41 X q(4)

(+(4)] 	(p + q)(41 - p(4) + q{4}

(4(4)] 	p4B(4) 	p(4114(B)

5.4.3 Delays

We want to be able to model agents in which the actions of an

(output) port are the delayed copy of the actions of another (input)

port. It is not enough to have a delay operator which delays a whole

agent, because this means delaying all the (input and output) ports

by the same amount.

Hence we define the operator AtM 	for any M C N containing

1:

ab

[A M-41
Pt+M) (qAM)X(1[u]:b[t]:1)

if factors(a) S MuM and 	cs)p (tivñ) = $

where factors(a) is the set of prime factors (generators) of a, i.e.

not including 1.

Here are the laws for delays:

223

tM] 	pAtM - p 	if p has M

(AIM a[u]:] 	(ab(t]:p)AM - a(t]:(pAM) X l[u]:b[t]:1

if factors (a) 5 MuM and 4efovs (6) A 0

(AMX] 	(p X q)AM 	pAtM X

(AM+] 	(p + q)AtM - pAtM + qM

(A t MA U M] 	PA t MA U M - pAt+u M

[A t
U

MA M'] 	pAMAM' - pAM'AtM

We shall show some example involving delays after having defined

recursive agents.

5.5 Recursion

A recursive definition facility will now be introduced in our

language. Its general form for a single recursive definition is:

xr

where x is a variable and r is a context, i.e. a term possibly

containing variables. We have the operational rule:

a r 	>p
(4=] 	

x

The effect of 4= is equivalent to the introduction of a new

constant x a Z, like in

x 4= 1 + a(t]:x

To satisfy this definition, it is sufficient to find a p such that

p1+a(t]:p

because all our laws are valid up to equivalence. In fact it is easy

to show that [4=] implies x - p.

But we still need to specify which particular x we want, when

several of them are available, like in the definition x 4= x. To

avoid this problem we restrict our admissible definitions to those

224

having a unique solution up to equivalence; thus there is no doubt

about which x we mean. We shall do so by imposing syntactic

restrictions on the form of our definitions, or more precisely on

the form of our sets of definitions (to take into account mutual

recursion).

Definition 5.14 A definition set is a set of pairs (<x 1 ,r.>),

written fx 1 	r) or 	4 	, where the x 1 are variables and the

are contexts El

Definition 5.15 r4;/x) is the result of simultaneously replacing

each x by Pj in r II

Definition 5.16 A 1—step expansion of a definition set 	4= is

obtained by replacing x1r i by x1r[r/x) (for some i and j) in

4=. A finite expansion +' of 2+ is an expansion obtained by a

finite number of 1—step expansions. U

Lemma 5.7 If 	is a finite expansion of 	then for all ,

- 	- 	a

Definition 5.17 A variable x is guarded in a context r if all the

occurrences of x are in subterms of r of the form a[t]:r' or

a(t):r'. A context r is guarded if all its variables are guarded El

In order to have unique solutions for our definition sets, we

need to exclude definition sets which expand indefinitely but only

approach a finite limit (i.e. such that the sum of the durations of

an infinite chain of actions is finite). Definition sets in which

every infinite reduction chain has an infinite duration are called

persistent.

Definition 5.18 A definition set (1 1 	r1) is guarded if there is a

finite expansion (x 1 4 r1 such that each rj is guarded U

225

Definition 5.19 A definition set (x 1 4= r) is persistent if

whenever -(/) then for all J , p, >P implies that there exists

a finite expansion r' of r such that r 	>Srj with r(p/x)—P U

Lemma 5.8 Every persistent definition set is guarded 0

Lemma 5.9 Every finite guarded definition set is persistent U

Remark I: the previous lemma becomes false if we introduce

"time—shrinking" operators in our signature, like:
a

p)q

Ap

In fact, take rAa[t]:x and p=Aa(tl:1, with ai41; we can show:

Aa(t]:1 - Aa[t]:Aa[t]:1

by Park's induction. Hence p-r(p/x) is a solution for (xr} and

p-4-41, but for any expansion r of r we can only have reductions

of the form

-4-4 s r' = Aa(t]:...Aa(t]:x with r'tp/x) 1 1

Remark II: the following infinite definition set is guarded but

not persistent:

(Z U 4= 1 [n]:Zn,2 I nelK)

In fact Vn. pl is a solution (suggested by Matthew Hennessy) and

p=1) 1 but there is no finite expansion 4 of Z1 such that

4) 1; in fact all the expansions of Z 1 have the form 4 =
l(1]:l(l/2]:l[1/4]:l(l/8]:..,. where the sum of the durations of the

actions is always less than 2.

Theorem 5.10 (Recursion Theorem)

Every persistent definition set 	has a unique solution up to

-, i.e.: p - r 1 (p/) and q 1 - r 1 (q/) =0 p 1 - qi

Proof Let Z 	(<C(/),C(/)> I C is a context)

- pi 	q (take C = x1).

226

- C('/) 	> P may hold because:

either C) C' with P=C'(/);

then also CCq/)) Q=C'tq/), and Q=P

or x is not guarded in C and p j a 	P;

then because 	is persistent there is a finite expansion

with r a >SrD and

Then also r(/))Sr(/}, and since

we have q) 5Q.-r(/}.

Hence C(q/))S Q with Q z p

U

Let us try a simple example of recursive definition:

Xa =

The agent]Ea produces a—actions indefinitely. Using the recursion

theorem it is possible to show that the "1" in the definition of

is non critical:

a[t]:lKa

- a(t]:a[l]:lKa

- a[t+1]:]Ka

- a(1]:a[t]: a

Hence the equation

x 	a(1]:x

is satisfied both by 1K5 (by definition) and by a[t]:iKalp and by the

recursion theorem we can conclude that:

- a[t]: 5 for any t

and also that, for a1:

- 1

Similarly from the equation:

X Xb

- a(l]:]K5 X

- ab(l]:(]K5

227

we can deduce:

a 	b - 	ab

Going back to the delay operator, we can define a not gate with

delay z in the following way:

Not' z 4 a0i(z):Not' z + a10 (z]:Not'

Not z 4= (Not'Lp1) X p0 [z]:1

This not gate is not completely satisfactory, because it assume that

its input signal changes at multiples of z (otherwise a disaster

occurs). We shall see in a later section how to solve this problem

of unsynchronised input by using nondeterministic guards.

5.6 Indefinite Actions and Delays

We shall see that one frequently uses nonde termini st ic guards

a(t): only to prove that the particular t we use in not really

important. This situation can be made systematic by defining an

operator a.p (indefinite action) performing an action a for an

arbitrary amount of time:

a.p 4= a(1):(p + a.p)
This particular choice of unit delay in the above definition makes

no difference, as we have:

a(t):(p + a.p)

- a(t):(p +

a(t+1):(p

a(1):(p +

a.p - a(1):(p

a(1):(p +

Hence a.p - aft

a(t):(p + a.p + a.p)

a.p+ a(1):(p + a.p))

+ a.p) 	 by (aO+]

a.p + a(t):(p + a.p)) 	by [aO+]

+ a.p)

a.p + a.p)

+ a.p)

by recursion theorem.

Moreover a.p enjoys the laws:

228

[1.0] 	1.0 - 1

[a.] 	a.p - a.(p + a.p)

(a.Xb.] 	a.p X b.q - ab.(pXq + a.pXq + pXb.q)

Note the importance of the law (a.Xb.]; it allows us to equationally

factorise actions in horizontally nonde termini stjc agents, which we

could not do for the 'a(t):' operator. The law is proved by the

factorisation theorems, thereby demonstrating some of their power.

The above laws can be proved as follows:

1.0 - 1(1):(0 + 1.0) - 1(1):(1.0)

Hence 1.0 - 1

1.1 - 1(1):(1 + 1.1)

1 - 1(1):1 - 1(1):(1 + 1)

Hence 1.1 	1

a. (p + a. p) - a(1):(p + a.p + a. (p + a.p))

a.p 	a(1) (p + a. p) - a(1) : (p + a.p + a. p)

Hence a.p - a.(p + a.p)

a.p X b.cj - a(1):(p+a.p) X b(1):(q+b.q)

- ab(1):((p+a.p) X (q+b.q)) 	(*)

ab(1):(pXq + a.pXq + pXb.q + a.pXb.q)

ab.(pXq + a.pXq + pXb.q)

- ab(1):(pXq + a.pXq + pXb.q + ab.(pXq + a.pXq + pXb.q))

Hence a.p X b.q - ab.(pXq + a.pXq. + pXb.q)

229

The step leading to () uses a factorisation theorem ([FT2]); the

four hypotheses of the theorem can be verified as follows (using the

fact that a.p—a(t):(p+a.p) and b.q—b(t):(q+b.q)):

(p+a.p) X (q+b.q+b(t):(q+b.q)) - (p+a.p) X (q+b.q)

(p+a.p+a(t):(p+a.p)) X (q+b.q) - (p+a.p) X (q+b.q)

(p+a.p+a(t):(p+a.p)) X (q+b.q+b(t):(q+b.q)) - (p+a.p) X (q+b.q)

(p+a.p)X(q+b.q) + a(t):(p+a.p)Xb(t):(q+b.q) - (p+a.p) X (q+b.q)

A closely related operator to a.p is indefinite delay:

p+a.p

where the agent p may be activated immediately, or delayed

indefinitely by an action a. The following laws can all be easily

proved from the properties of a.p:

-

- a a 	a

- ap

b ap X 8bq - 8ab8a X &q)

6a1' X 6b q - &(ôpXq + pXôq)

5.7 Synchronising on Non—Synchronous Input

Suppose we want to express an agent I which takes an input on

port a and produces the same value as output on port 	without any

delay. The simplest form of I, written 'null with null=(nil),

accepts a single value nil and can be written:

230

	

'null 	aniibnii(ll:Inu1j

i.e.I 	—iK 	-

	

null 	aflilbnjl

The next simplest form of I is 'bool with bool=(l,h) (low and

high) and, surprisingly, this cannot be written with deterministic

guards. In fact the definition:

	

'bool 	albl[l]:IbOOl + ahbh(l]:Ib OO l

will not work because the input
'bool may change at any time, while

for example the guard a11 (1]: once selected must be taken to

completion. The "1" in the definition of
'bool is critical, and

cannot be replace by a different number without changing the

behaviour of the agent. Computing the behaviour in case of

unsynchronised input we obtain, for example:

	

bool 	ah(O.S]:]Ki)\al\ah 	bh[O. 5]. 0

while we might expect the result to be bh(O.S1: 1K
1
. The example

above behaves correctly if we replace "1" by "0.5" in the definition

of I
bool' but of course we can always pick up an input waveform so

that the output degenerates to 0.

Let us now redefine I bool by using nondeterministic guards:

	

bool 	albl (l) :IbOO l + ahbh(l):Ib o l

we can now prove that the choice of "1" in the definition is not

critical:

bool - alEl(t):IbOOl + ahbh (l) :Ibl

bool - alj (l):IbOOl + ahbh (t) :Ibl

Then we can prove the desired properties of 'bool' using the

factorisation theorems [FT3] and [FT4] to relate the asynchronous

231

behaviour of 'bool to a synchronous input:

bool X ahtt].p)\ah 	httL(1bOOlXP)\ah

bool X 11[t]:p)\a1 - Sl[t]:(IbOQlXp)\al

The other factorisation theorems ((FT11 and (Ff21) are needed to

prove the interactions of two asynchronous agents; for example in

the proof of:

(IboolEci/bi) X Ibool(Ci/ai))\ci - bool (is(l,h))

5.8 An Asynchronous Rising Edge Counter

We now discuss an example of the application of nonde termini stic

guards. Suppose we have a boolean signal:

t i. t2 	t3 	t4 t5 	t6 	t7 	t8 	t
	tjQ

Figure 5.2

where the length of the segments t is completely arbitrary. The

problem consists in counting the number of rising edges (i.e.

transitions from low to high) which have occurred in the signal at

any given time. It is pretty well evident that there can be no

solution using deterministic guards as any proposal would be bound

to fail for some input waveform.

The counter has two states: Low s and Highs, and n is increased at

any passage from Low to High (for simplicity, the count n is not

supplied as an explicit output)

LOWn 	l(l):Lown + h(1):High 1

High4= l(1):Low, + h(1):High

Note how the guards "1" and "h" are programmed to last as long as

their corresponding asynchronous inputs. As usual, we first have to

prove some invariance lemmas:

Lows 	l(t):Low + h(1):High 1

/

232

High 	l(l):Low + h(t):High

Lowe 	1(1) :Low + h(t) :High 1

Highs - l(t):Low + h(1):High

The following equivalences state the correctness of the counter;

the input signal is assumed to be a sequence of deterministic

guards, and the equival nces can be proved by using (Fr3] and (Fr4].

(Lowe X I(t]:p)\l - l[t]:(Low X p)\l

(Highs X (t]:p)\h - l[t]:(fiigh X p)\h

(Lows X (t]:p)\h - 1(t1:(lligh 1 X p)\h

(:aigh X I(t]:p)\l
	

l[t]:(Low X p)\l

5.9 Descriptive Operators

Some operators can be introduced in order to describe properties

of agents, without adding any expressive power themselves.

Here is a very simple descriptive operator:

	

p 	>q

	

ffp 	1Tq

Definition 5.20 An agent p is persistent if Up - 1 El

The persistency operator allows us to distinguish agents which

may end up in disaster from agents which carry on forever. This

operator can help us if we want to exclude nonpersistent agents of

any kind from the class of "physically existent" or "implementable"

agents.

In order to talk about synchrony, we can introduce a

synchronisation operator r'1 designed to "impose" a clock on an

otherwise unsynchronised agent. We actually introduce an indexed

family r t of such operators, meaning that rtp synchronises p to a
clock of period t a X.

a
p 	>q

> r t q

ir+ -41J'tp) a(v]:q

Rule [V-] says that 	can perform "t—ticks" only if p can,

i.e. p must be synchronisable to a clock of period t, otherwise rtp

will stop.

Rule 	 is introduced in order to preserve the density

lemma.

Definition 5.21 An agent p is t—synchronous if p - 	U

The definition of t—synchrony intends to capture the idea that

all the "significant changes" (i.e. transitions from an a—action to

a different b—action) in a t—synchronous agent occur at instants

which are divisors of t. For example:

p 4 a[2]:b[2]:p

p 	is 2—synchronous, 	1—s7nchronous, 	etc., 	but 	it 	is not

3—synchronous, 4—synchronous, etc. because p cannot produce any

action longer than 2. Note that 1 is t—synchronous for all t.

Definition 5.22 An agent p is non—synchronous if it is not

t—synchronous for any t U

An example of non—synchronous process is provided by a "bouncing

ball" agent which is persistent and changes its output at a faster

and faster rate:

Pn 4= a[l/n]:b(l/n1:p 1

If we eliminate the nonde termini stic guard 1'8(t):" from our

signature, and we replace "a[t]:" by "a(l]:" (abbreviated "a:"),

234

than all the agents which can be expressed are 1-synchronous. The

set of 1-synchronous agents corresponds exactly to the

synchronous-CCS calculus [Milner 811, in the sense that the same set

of laws holds.

Finally we can try to characterise some form of asynchronous

behaviour by the following operator:

a
P)q

(A-4] Ap
t+u Aq

which stretches by arbitrary amounts all the actions of an agent.

Definition 5.23 An agent p is asynchronous if f p Ap El

Note that this definition allows us to make a subtle distinction

between non-synchronous or non t-synchronous agents (which are

deterministic) and asynchronous ones (which are completely

nonde termini stic) and that many other behaviours lay in between.

235

6. Conclusions

6.1 Achievements and Future Work

This thesis has demonstrated how algebraic techniques can be

naturally applied to several aspects of hardware description and

verification, with particular emphasis on the syntax and semantics

of VLSI circuits and design systems. Indeed, we might say that our

effort was not to apply preconceived techniques to new problems, but

rather that the problems themselves seemed to fit naturally in a

environment which had developed for different (but after all,

related) purposes.

In Chapter 1 we have introduced a notation for the structural

description of networks, giving laws for net expressions which

characterise a suitable kind of graphs. This work might be extended

in several directions. Infinitary sorts might be useful in some

applications; for example the sorts used in Chapter 3 are finite

but, as explained in Section 1.10, they might be naturally regarded

as uncountably infinite. An attempt could be made to axiomatise

planar networks, and to prove completeness and initiality theorems

with respect to that axiomatisatjou; we have taken the simpler

approach of defining planar networks as a particular case of

networks, without trying to characterise them (Section 1.7). Planar

sorts and cycles might be extended to three—dimensional objects in

order to express the incompenetrability of solids; this is briefly

discussed in Section 1.10. Finally, the problem of deciding the

equivalence of two net expressions (or equivalently the isomorphism

of two net graphs) appears to be polynomial, but we need to study

tight upper bounds and to provide good equivalence algorithms.

In Chapter 2 we have shown how a wide variety of levels of

description of hardware circuits can be cast in similar formal

	

• 	 236

frameworks, so that the passage between levels is facilitated. A

formal semantics has been given for the topmost behavioural level

which concerns synchronous systems; formal proofs concerning these

systems seem to be well suited to mechanistion, but they also badly

require mechanical aids. A more complex problem is the definition of

viable semantics for non—synchronous systems; Chapters 4 and 5

attack this problem, but further work is needed.

A major problem left unsolved in this thesis is the definition of

a satisfactory dynamic semantics of low—level hardware (i.e. below

the gate level). Rather accurate informal models are discussed in

Section 2.4 but difficulties arise in, formalisation; certain

semantic techniques (like those discussed in chapter 4) could be

applied in principle, but they seem to give rise to intractable

formal systems. The static CSA semantics we present seems instead

rather satisfactory because it can model the context—dependent

relaxation processes which are characteristic of low—level hardware,

and can help in understanding the dynamic behaviour of circuits.

In the study of the translations between levels, two novel

algorithms have been presented. One is an efficient stretching

algorithm for grid structures, which simulates the two—dimensional

stretching of matrices by the composition of stretching

transformations. The second is an algorithm for the context—driven

translation of purely topological planar stick diagrams (represented

by textual expressions) into grid structures, and hence into

layouts. Both algorithms need to be tested, expecially because the

latter algorithm uses limited heuristics.

In Chapter 3 we have described an experimental system for the

design of VLSI layouts, which uses algebraic concepts to abstract

away from geometric details. The system is built around a functional

237

higher—order language, which provides the necessary control and

parameterisation structures. Interactive graphical feedback is used

in the development of programs in order to better relate the textual

representations to geometrical layouts. The system might be improved

in several directions; in particular, planarity checks and design

rule checks were not included in the implementation to allow for a

deeper investigation of other innovative features.

Finally we have presented two different attempts towards the

formalisation of real—time systems using, respectively, denotational

and operational semantics techniques. The theories developed seem to

give rise to satisfactory semantic models, but much theoretical and

practical work has to be carried out in order to test these ideas on

large scale applications. It is hoped that formal systems of this

kind can be used to formulate and prove properties of low—level

hardware; encouraging steps in this direction are described in

[Gordon 81a, Gordon 81b]. Several intuitive properties of the analog

processes formal system have been left as conjectures which we

believe could be formally stated and proved in our framework.

6.2 The Future

6.2.1 VLSI

VLSI is going to become the single most important technology of

the next 20 years, and probably longer. It is already the most

sophisticated technology ever devised, and its potentialities are

today too remote to be fully appreciated. Even its limitations are

too remote, and it seems that for some time the main difficulties

will consist in effectively exploiting the remarkable features which

are presently available.

The shape of things to come in VLSI is usually expressed by

Moore's Laws (so—called). The First Law is very optimistic (slightly

238

more optimistic than reality) stating that the number of devices per

silicon chip doubles every 2-3 years. This "law of nature" was

discovered in the mid—sixties and the exponential rate of growth it

forecasts has been essentially respected up to now, and it will also

be roughly respected in the next 5-10 years. After that, some very

basic physical limits of the present integration technology will be

reached, although progress may continue in other directions.

Hence in about 10 years we shall be able to put something like

100 million transistors on a silicon wafer. We have to think about

how to use them in interesting ways. Exciting possibilities have

already been found which critically use the features of VLSI

technology [Kung 801, and many more remain to be discovered.

Almost every aspect of computer science will have to cope with

this new technology. Even the less technology—related disciplines,

like complexity theory, semantics, formal languages, algorithms and

software engineering are going to be deeply influenced by this new

way of looking at computation. This is just the beginning, and we

should carefully try to avoid repeating old mistakes.

6.2.2 Design Tools

Moore's Second Law is, instead, very pessimistic. It says that

the design time of VLSI chips grows exponentially with the number of

devices per chip (and that we are already close to the

almost—vertical zone).

The biggest task for the design tool designers in the next few

years will be to falsify this law. This cannot be done by linearly

improving existing design systems and methodologies; totally new

lines of attack are required. It is far too early now to guess what

kind of design systems will prevail. It seems certain that

239

translation techniques and effective graphic interaction will be

useful, but it is not at all clear how.

One noticeable trend is towards very complex systems with

data—bases maintaining multiple levels of descriptions of circuits,

where the user can jump from level to level editing text and

graphics and optimising subcircuits, a ad where the system preserves

the overall integrity of the design by making expert autonomous

decisions based on complex heuristics.

This is not our aim; we have tried to demonstrate that the

problems involved can best be cast in a simple framework involving a

few primitive concepts, and many interesting translations are almost

completely algorithmic, using only limited heuristics or a few user

interactions at critical points. As many examples in computer

science have shown, sometimes only simple solutions are able to

solve complex problems.

6.2.3 Semantics

Given the complexity of future hardware systems, and their

widespread use in all aspects of human life, important security

problems arise. How can we know that chips controlling critical

systems, like power plants, airplanes, cars etc. will not contain

fatal "bugs", or that they will be immune to catastrophic hardware

failures? In the case of microcoded systems, or hardware—software

combinations, we cope with the still noticeably unsolved problem of

medium—large scale software verification. One (not yet well founded)

hope here is that abundance of hardware will let us write software

suitable for formal verification.

Further work is needed in the semantics and verification of

hardware systems; at the most abstract level this reduces to the

240

problem of giving tractable semantics to extensively concurrent

systems. For the purposes of verification, one should be aware of

formal systems which are completely satisfactory from the point of

view of expressiveness and generality, but which do not allow us to

carry out complex proofs because of technical clumsiness. In this

respect equational approaches like [Milner 801 are promising,

because they seem to be very suitable for mechanisation.

At lower levels (like the CSA level and below) not even semantics

is well established. This is to be attributed to the fact that in

electronic circuits the semantics of the whole is not a simple

function of the semantics of the parts, and complex relaxation

processes are involved. The main semantic techniques seem to come

from the field of circuit simulation, and simulation is not

satisfactory from a semantic point of view. Even simulators are

often criticised on the ground of not being realistic, but this

unrealism may be because they. have to compromise between accuracy

and efficiency; disregarding efficiency there may be a satisfactory

semantic model.

In conclusion the current lack of flexible verification systems

may be because verification is at the same time a very difficult

problem in each of several distinct areas: mathematical foundations,

artificial intelligence, semantics and software engineering. There

is some indication that these areas are slowly converging towards

viable solutions, and together with the steady increase in

computational power we retain some hope for future success.

241

Appendix I. Syntax Description Notation

The following conventions are used to present grammars:

- strings between single quotes "" are terminal symbols;

- "'" is the null string;

- identifiers are non—terminals;

- juxtaposition is concatenation;

is disjunction;

- 	... 1" means zero or one times "...";

)n" means n or more times "..." (default n0);

)n" means n or more times "..." separated by "--"

(default n0);

- parenthesis "(...)" are used for precedence;

- "::=" is used for mutually recursive definitions.

As an example, the metanotation is described in terms of itself:

Grammar :: (Identifier '::' Term)

Term ::=

[Characters

Identifier]

Term Term I

Term 'I' Term I

Term

Term ('I' Term] ')' [Integer]

'(' Term ')'

Appendix II. Table of Symbols

0 empty set

sets

set descriptions

a a A set membership

AuB set union

AnB set intersection

A\B set difference

AB symmetric difference (A\BvB\A)

ACB A is a subset of B

A3B A is a superset of B

Isi cardinality of a set S

A--)B function space

BA function space A—)B

f: A—B f is a function from A to B

f: ao-4b f maps a into b

rfl domain of a function

fA function restricted to the domain A

idA identity function on A

fog function composition ((fog)(a) 	= f(g(a)))

f#g function pairing 	((f#g)<a,b> = <f(a),g(b)>)

f inverse function

f(a) function application

AXB cartesian product

pair

left projection (<a,b>4 1=a)

right projection (<ab>1 2 b)

As set of finite lists over A

[e 1 ;..;e] list 	(nO)

242

243

- 	 boolean not

A 	 boolean and

V 	 boolean or

implies

implied

if and only if

V 	 forall

exists

ab;c 	 if a then b else c

let a 1=N1 and .. and an=Nn in M

binds N i to a 1 in the scope M

M where a1=N1 and .. and

binds N 1 to a 1 in the scope M

9 	 equivalence

= 	 equality

isomorphism

equal by definition

S 	 Sort

S 	 set of sorts

W e S 	 list of sorts

= <S, Z> 	signature

e w,s 	operator syiol of rank w,s, arity w, sort s

A = <A,A1> 	algebra with carriers A and operations At

 of A named by a, 5

Types

Por tNanie $

a,b

A B, C

s: A —> Types

net algebra types

net algebra port names

port names

finite sets of port names

net algebra sort

A 	 operator
'W ' S

e net expression

e 	(a1 : 	T1) syntax for sorts

1 e IL literal

sort of a literal

e\a restriction

e(r) renaming e(a 1 \b 1) 	(a 1 becomes b)

I implicit composition

e[r]e' explicit composition e(a --bile'

sort of an expressions

convertibility

t —4 b 	 clocked transitions

41142 	 clock phases

—4 b 1 > 	phase-1 clusters

—4 b 1v> 	phase-2 clusters

tt,ff 	 boolean true and false

o CSA strong zero

1 CSA strong one

o CSA weak zero

1 CSA weak one

U CSA strong undefined

U CSA weak undefined

Z CSA floating

F either 0 or 0

T either 1 or 1

0 CSA connection operation

GND ground

VDD power supply

lambda notation for functions

244

245

M--9, a 	 analog process transition

X 	 product of transitions

U 	 join of signals

NIL 	 empty transition

nosignal

U ie,Ti indexed product of transitions

I composition of analog processes

\a restriction

at.V pointwise definition of signals

recursively defined signal

MEN/a] syntactic substitution (N replaces a)

(aI} renaming (A i replaces a)

L finite set of labels

PL,LIL')TL a domain of processes

P=ZL L'L L' domain of all processes

TL=SL - S a domain of transitions

S=K ---)V a domain of signals

time 	(positive reals)

V a domain of signal values

<V,4,V> 	 signal monoid

[a:s] 	 labelled tuples of signals

(a 1 :s 1].as 	fieldextraction

abbreviates Xx.M(x.a 1 /a 1]

syntax for processes

Y 	 least fixpoint operator

semantics of terms

S 	 semantics of signals

IP 	 semantics of processes

tV 	 8t.V when t does not occur in V

SAS' 	 delay operator on signals

I 	 semantic bottom

246

References

[Barton 811 E.E.Barton: A Non—Metric Design Methodology for VLSI.

In: I.P.Gray(ed.): VLSI 81. Academic Press, 1981.

(Batalj 811 J.Bataii, N.Mayle, H.Shrobe, G.Sussman, D.Wejse:

The DPL/Daedalus Design Environment.

In: I.P.Gray(ed.): VLSI 81. Academic Press, 1981.

[Bryant 811 R.E.Bryant: A Switch Level Model of MOS Logic Circuits.

In: I.P.Gray(ed.): VLSI 81. Academic Press. 1981.

[Buchanan 801 I.Buchanan: Modelling and Verification in Structured

Integrated Circuit Design. Ph.D. Thesis, Dept. of Computer

Science, University of Edinburgh, 1980.

(Burge 751 W.H.Burge: Recursive Programming Techniques. Addison

Wesley, 1975.

(Burstall 771 R.M.Bursta]l, J.A.Goguen: Putting Theories Together

to Make Specifications. Proc. of the 5th International Joint

Conference on Artificial Intelligence, Cambridge, Mass. 1977.

[Cardelli 801 L.Cardelli: Analog Processes. Proc. 9th Symposium on

Mathematical Foundations of Computer Science. Lecture Notes in

Computer Science n.88, Springer—Verlag 1980.

[Cardelli 81a] L.Cardelli, G.Plotkin: An Algebraic Approach to

VLSI Design. In: .T.P.Gray(ed.): VLSI 81. Academic Press, 1981.

[Cardelli 81b] L.Cardelli: Sticks & Stones: An Applicative VLSI

Design Language. Internal Report CSR-85-81, Dept of Computer

Science, University of Edinburgh.

(Cardelli 821 L.Cardelli: Real Time Agents. Proc of the 9th

International Colloquium on Automata, Languages and Programming,

Aarhus 1982 (to appear).

(Chaney 731 T.J.Chaney, C.H.Molnar: Anomalous Behaviour of

Synchronizers and Arbiter Circuits. IEEE Transaction on

Computers, April 1973.

(Chazelle 811 B.Chazelle, L.Monier: Optimality in VLSI.

In: I.P.Gray(ed.): VLSI 81. Academic Press, 1981.

(Clark 801 W.A.Clark: From Electron Mobility to Logical Structure:

A View of Integrated Circuits. Computing Surveys 12(3) 1980.

(Conway 801 L.A.Conway, A.Bell, M.E.Newel].: MPC 79: The Large-Scale

Demonstration of a New Way to Create Systems in Silicon.

Lambda 1, 2, 1980.

[Fairbairn 781 D.G.Faj.rbajrn, I.A.Rowson: ICARUS: An Interactive

Integrated Circuit Layout Program. Proc. 15th Design Automation

Conference, 1978.

[Floyd 801. R.W.Floyd, J.D.Ullman: The Compilation of Regular

Expressions into Integrated Circuits. In: Proc. 21st Annual

Symposium on Foundations of Computer Science. IEEE Computer

Society.

247

(Foster 801 M..J.Foster, H.T.Kung: The Design of Special-Purpose

VLSI Chips: Example and Opinions. Computer 13(1).

(Foster 811 M.I.Foster, H.T.Kung: Recognize Regular Languages with

Programmable Building-Blocks. In: J.P.Gray(ed.): VLSI 81.

Academic Press, 1981.

(Goguen 781 I.A.Goguen, .T.W.Thatcher, E.G.Wagner: An Initial

Algebra Approach to the Specification, Correctness and

Implementation of Abstract Data Types. In: R.T.Yeh(ed.):

Current Trends in Programming Methodology. Vol IV,

Prentice-Hall, 1978.

[Gordon 79a] M.I.Gordon, R.Milner, C.P.Wadsworth: Edinburgh LCF.

Lecture Notes in Computer Science, n.78. Springer-Verlag 1979.

[Gordon 79b] M..J.Gordon: Denotational Description of Programming

Languages. Springer-Verlag, 1979.

(Gordon 81a] M.J.Gordon: A Very Simple Model of Sequential

Behaviour of aMOS. In: I.P.Gray(ed.): VLSI 81.. Academic Press,

1981.

[Gordon 81b] M.I.Gordon: Register Transfer Systems and Their

Behaviour. Proc. of the 5th International Conference on

Hardware Description Languages, 1981.

248

[Gratzer 791 G.Gratzer: Universal Algebra. Springer-Verlag, 1979.

[Hayes 811 J.P.Hayes: A Logic Design Theory for VLSI. Proc. 2nd

Caltech Conference on VLSI. Caltech, January 1981.

[Hennessy 801 M.Hennessy, R.Milner: On Observing Nondeterminism and

Concurrency. Proc. ICALP 80. Lecture notes in Computer Science

n.85. Springer—Verlag 1980.

[Johanusen 791 D.Johannsen: Bristle Blocks: A Silicon Compiler.

Proc. 16th Design Automation Conference. June 1979.

[K:ung 801 K.T.Kung, C.E.Leiserson: Algorithms for VLSI Processor

Arrays. In: C.A.Mead, L.A.Conway: Introduction to VLSI Systems.

Addison Wesley, 1980.

[Lattin 811 W.W.Lattin, J.A.Bayliss, D.L.Budde, J.R.Rattner,

W.S.Richardson: A Methodology for VLSI Chip Design.

Lambda 2(2), 1981.

[Locanthi 781 B.Locanthi: LAP: A SIMULA Package for IC Layout.

Caltech Display File #1862, 1978.

[MacQueen 791 D.MacQueen: Models for Distributed Computing.

Report n.351, IRIA—Laboria, 1979.

(Masumoto 801 R.T.Masumoto: The design of a.16x16 Multiplier.

Lambda 1(1), 1980.

(Mead 801 C.A.Mead, L.A.Conway: Introduction to VLSI Systems.

Addison Wesley, 1980.

249

[Melen 801 R.Melen, R.Garland: Understanding CMOS Integrated

Circuits. H.W.Sauis&Co. 1980.

(Mikkelson 811 I.M.Mikkelson, L.A.Eall, A.K.Malhotra, S.D.Seccombe,

M.S.Wilson: An NMOS VLSI Process for Fabrication of a 32b CPU

Chip. IEEE International Solid State Circuits Conference, 1981.

[Milner 781 K. Milner: Synthesis of Communicating Behaviour.

Proc. 7th Symposium on Mathematical Foundations of Computer

Science, Lecture Notes in Computer Science, n.64.

Springer—Verlag 1978.

[Milner 791 R.Milner: Flowgraphs And Flow Algebras. Journal of the

ACM, 26(4), 1979.

(Milner 801 R. Milner: A Calculus of Communicating Systems.

Lecture Notes in Computer Science, n.92. Springer—Verlag 1980.

[Milner 811 R.Milner: On Relating Synchrony and Asynchrony.

Internal Report CSR-75-80. Dept. of Computer Science,

University of Edinburgh.

[Mosteller 811 R.C.Mosteller: REST - A Leaf Cell Design System.

In: I.P.Gray(ed.): VLSI 81. Academic Press, 1981.

(Mudge 811 J.C.Mudge: VLSI Chips at the Crossroads.

In: I.P.Gray(ed.): VLSI 81: Academic Press, 1981.

[Newman 791 W.M.Newman, R.F.Sproull: Principles of Interactive

Computer Graphics. McGraw—Hill 1979.

250

[Park 811 D.M.R.Park: Concurrency and Automata on Infinite

Sequences. Proc. GI Conference, 1981.

[Patil 741 S.S.Patii.: Bounded and Unbounded Delay Synchronizers

and Arbiters. Computation Structures Group Memo 103,

M.I.T. June 1974.

(Piloty 811 R.Piloty: A Language System for Hardware Description.

Proc. of the 5th International Conference on Hardware

Description Languages, 1981.

[Plotkin 811 G.D.Plotkin.: A Structural Approach to Operational

Semantics. Report DAIMI FN-19, Dept. of Computer Science,

University of Aarhus, 1981.

[Preparata 791 F.P.Preparata, J.Vuillemin: The Cube—Connected-

Cycles: A Versatile Network for Parallel Computation.

Proc. 20th Annual Symposium on Foundations of Computer Science,

October 1979.

(Rem 811 M.Rem, C.Mead: A Notation for Designing Restoring Logic

Circuitry in cMOS. Proc. 2nd Caltech Conference on VLSI.

Caltech, January 1981.

(Rivest 801 R.R.Rivest: A description of a Single Chip

Implementation of the RSA Cipher. Lambda 1(3) 1980.

(Rowson 801 J.A.Rowson: Understanding Hierarchical Design.. Ph.D.

Thesis, California Instituite of Technology, 1980.

[Rupp 811 C.R.Rupp: Components of a Silicon Compiler System.

In: I.P.Gray(ed.): VLSI 81. Academic Press, 1981.

(S.A. 771 Scientific American, September 1977.

(Special issue on microelectronics)

(Sannella 811 D.Sannella: A New Semantics for Clear. Internal

Report CSR-79-81, Dept. of Computer Science, University

of Edinburgh, 1981.

(Scott 761 D.S.Scott: Data Types as Lattices. SIAM Journal of

Computing, 4, 1976.

(Seitz 801 C.L.Seitz: System Timing. In: C.A.Mead, L.A.Conway:

Introduction to VLSI Systems. Addison Wesley, 1980.

(Sequin 811 C.H.Sequin: Generalized IC Layout Rules and Layout

Representations. In: I.P.Gray(ed.): VLSI 81. Academic Press,

1981.

(Smith 801 L.D.Smith: The Elementary Structural Description

Language. CSR-53-80, Dept. of Computer Science, University

of Edinburgh, 1980.

(Sproull 801 R.F.Sproull, R.F.Lyon: The Caltech Intermediate Form

for LSI Layout Description. In: C.A.Mead, L.A.Conway:

Introduction to VLSI Systems. Addison Wesley, 1980.

(Steele 801 G.L.Steele Jr., G.J.Sussman: Desing of a LISP—Based

Microprocessor. Communications of the ACM 23, 11, 1980.

252

(Stoy 771 J.E.Stoy: Denotational Semantics: the Scott—Strachey

Approach to Programming Language Theory. M.I.T. Press, 1977.

(Tarolli 801 G.Tarolli: Chip Assembler. Proc. Computer

Architecture Conference, 1980.

(Trimberger 791 S.Trimberger: A CAD System Combining Interactive

Graphics and a Layout Language. Caltech SSP File #2499, 1979.

[Weste 811 N.Weste, B.Ackland: A Pragmatic Approach to Topological

- Symbolic-IC Design. In: I.P.Gray(ed.): VLSI 81. Academic Press,

1981.

(Whitney 811 T.E.Whitney: A Hierarchical Design—Rule Checking

Algorithm. Lambda 2, 1, 1981.

(Williams 781 LT.D.Williams: Sticks - A Graphical Compiler for High

Level LSI Design. Proc. NCC, May 1978

253

