11,019 research outputs found

    Building Intelligent Communication Systems for Handicapped Aphasiacs

    Get PDF
    This paper presents an intelligent system allowing handicapped aphasiacs to perform basic communication tasks. It has the following three key features: (1) A 6-sensor data glove measures the finger gestures of a patient in terms of the bending degrees of his fingers. (2) A finger language recognition subsystem recognizes language components from the finger gestures. It employs multiple regression analysis to automatically extract proper finger features so that the recognition model can be fast and correctly constructed by a radial basis function neural network. (3) A coordinate-indexed virtual keyboard allows the users to directly access the letters on the keyboard at a practical speed. The system serves as a viable tool for natural and affordable communication for handicapped aphasiacs through continuous finger language input

    Thai Finger-Spelling Recognition Using a Cascaded Classifier Based on Histogram of Orientation Gradient Features

    Get PDF
    Hand posture recognition is an essential module in applications such as human-computer interaction (HCI), games, and sign language systems, in which performance and robustness are the primary requirements. In this paper, we proposed automatic classification to recognize 21 hand postures that represent letters in Thai finger-spelling based on Histogram of Orientation Gradient (HOG) feature (which is applied with more focus on the information within certain region of the image rather than each single pixel) and Adaptive Boost (i.e., AdaBoost) learning technique to select the best weak classifier and to construct a strong classifier that consists of several weak classifiers to be cascaded in detection architecture. We collected 21 static hand posture images from 10 subjects for testing and training in Thai letters finger-spelling. The parameters for the training process have been adjusted in three experiments, false positive rates (FPR), true positive rates (TPR), and number of training stages (N), to achieve the most suitable training model for each hand posture. All cascaded classifiers are loaded into the system simultaneously to classify different hand postures. A correlation coefficient is computed to distinguish the hand postures that are similar. The system achieves approximately 78% accuracy on average on all classifier experiments

    Comparative Study of Nonverbal Sign Language and Verbal Oral Language

    Get PDF
    Sign and oral languages are comparatively analyzed and compared in current study. Investigating common points, the points of difference, advantages and disadvantages and weakness and strengths of each one of these two languages show that sign language is a regular arbitrary system that follows specific rules. In order to convey the meaning in this communicational system, manual communication is used instead of sound patterns. The thing wrongly believed is that sign language has a direct relationship with oral one. In other words, it is an oral language done by sign language but scientific studies have proved the reverse relation. Despite all these explanations, the relationship between sign languages and oral ones cannot be denied. Comparative study in this field will be done in this paper

    Active Learning for Multilingual Fingerspelling Corpora

    Full text link
    We apply active learning to help with data scarcity problems in sign languages. In particular, we perform a novel analysis of the effect of pre-training. Since many sign languages are linguistic descendants of French sign language, they share hand configurations, which pre-training can hopefully exploit. We test this hypothesis on American, Chinese, German, and Irish fingerspelling corpora. We do observe a benefit from pre-training, but this may be due to visual rather than linguistic similaritie

    Dynamic Hand Gesture Recognition of Arabic Sign Language using Hand Motion Trajectory Features

    Get PDF
    In this paper we propose a system for dynamic hand gesture recognition of Arabic Sign Language The proposed system takes the dynamic gesture video stream as input extracts hand area and computes hand motion features then uses these features to recognize the gesture The system identifies the hand blob using YCbCr color space to detect skin color of hand The system classifies the input pattern based on correlation coefficients matching technique The significance of the system is its simplicity and ability to recognize the gestures independent of skin color and physical structure of the performers The experiment results show that the gesture recognition rate of 20 different signs performed by 8 different signers is 85 6

    Visual recognition of American sign language using hidden Markov models

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1995.Includes bibliographical references (leaves 48-52).by Thad Eugene Starner.M.S

    Japanese sign language classification based on gathered images and neural networks

    Get PDF
    This paper proposes a method to classify words in Japanese Sign Language (JSL). This approach employs a combined gathered image generation technique and a neural network with convolutional and pooling layers (CNNs). The gathered image generation generates images based on mean images. Herein, the maximum difference value is between blocks of mean and JSL motions images. The gathered images comprise blocks that having the calculated maximum difference value. CNNs extract the features of the gathered images, while a support vector machine for multi-class classification, and a multilayer perceptron are employed to classify 20 JSL words. The experimental results had 94.1% for the mean recognition accuracy of the proposed method. These results suggest that the proposed method can obtain information to classify the sample words

    Japanese sign language classification based on gathered images and neural networks

    Get PDF
    This paper proposes a method to classify words in Japanese Sign Language (JSL). This approach employs a combined gathered image generation technique and a neural network with convolutional and pooling layers (CNNs). The gathered image generation generates images based on mean images. Herein, the maximum difference value is between blocks of mean and JSL motions images. The gathered images comprise blocks that having the calculated maximum difference value. CNNs extract the features of the gathered images, while a support vector machine for multi-class classification, and a multilayer perceptron are employed to classify 20 JSL words. The experimental results had 94.1% for the mean recognition accuracy of the proposed method. These results suggest that the proposed method can obtain information to classify the sample words

    Indian Sign Language Numbers Recognition using Intel RealSense Camera

    Get PDF
    The use of gesture based interaction with devices has been a significant area of research in the field of computer science since many years. The main idea of these kind of interactions is to ease the user experience by providing high degree of freedom and provide more interactive way of communication with the technology in a natural way. The significant areas of applications of gesture recognition are in video gaming, human computer interaction, virtual reality, smart home appliances, medical systems, robotics and several others. With the availability of the devices such as Kinect, Leap Motion and Intel RealSense cameras accessing the depth as well as color information has become available to the public with affordable costs. The Intel RealSense camera is a USB powered controller that can be supported with few hardware requirements such as Windows 8 and above. This is one such camera that can be used to track the human body information similar to the Kinect and Leap Motion. It was designed specifically to provide more minute information about the different parts of the human body such as face, hand etc. This camera was designed to give users more natural and intuitive interactions with the smart devices by providing some features such as creating 3D avatars, high quality 3D prints, high-quality graphic gaming visuals, virtual reality and others. The main aim of this study is to try to analyze hand tracking information and build a training model in order to decide if this camera is suitable for sign language. In this study, we have extracted the joint information of 22 joint labels per single hand .We trained the model to identify the Indian Sign Language(ISL) numbers from 0-9. Through this study we analyzed that multi-class SVM model showed higher accuracy of 93.5% when compared to the decision tree and KNN models
    • …
    corecore