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Hand posture recognition is an essential module in applications such as human-computer interaction (HCI), games, and sign
language systems, in which performance and robustness are the primary requirements. In this paper, we proposed automatic
classification to recognize 21 hand postures that represent letters inThai finger-spelling based onHistogramofOrientationGradient
(HOG) feature (which is applied with more focus on the information within certain region of the image rather than each single
pixel) and Adaptive Boost (i.e., AdaBoost) learning technique to select the best weak classifier and to construct a strong classifier
that consists of several weak classifiers to be cascaded in detection architecture. We collected 21 static hand posture images from 10
subjects for testing and training inThai letters finger-spelling. The parameters for the training process have been adjusted in three
experiments, false positive rates (FPR), true positive rates (TPR), and number of training stages (N), to achieve the most suitable
training model for each hand posture. All cascaded classifiers are loaded into the system simultaneously to classify different hand
postures. A correlation coefficient is computed to distinguish the hand postures that are similar.The system achieves approximately
78% accuracy on average on all classifier experiments.

1. Introduction

Sign language is a communication method for deaf or
nonvocal people. For a sign language system, there are two
main categories: (1) word-level vocabulary signs, which are
signs of the hand shape, orientation and movement of the
hands, arms, or body, and facial expressions simultaneously
to represent word meanings, and (2) finger-spellings, which
use only hand shape to spell the letters of theword in a spoken
language, representing names, places, technical terms, and
so on. However, most deaf and nonvocal persons, especially
children, have problems with finger-spelling skills because
finger-spelling is used infrequently in daily communication.
Therefore, in order to help these people improve their skills,
many systems specific to finger-spelling were proposed, for
example, the American (ASL) (Dinh et al. [1], Feris et al.
[2], Ricco and Tomasi [3], and Mo and Neumann [4]),
British (BSL) (Goh and Holden [5]), Australian (Auslan)
(Liwicki and Everingham [6]), Chinese (CSL) (Jiangqin and
Wen [7] and Teng et al. [8]), and Japanese (JSL) (Fujimura
and Liu [9] and Tabata and Kuroda [10]). In this work,

we have focused on Thai finger-spelling (ThSL). Saengsri et
al. [11] proposed a Thai letter finger-spelling by using the
data glove, a motion tracker, and Neural Network theory
to improve the accuracy of the system. Kanjanapatmata
[12] presented an image recognition method for the Thai
letter using a polar orientation histogram of the hand
image and an artificial Neural Network. Sakulsujirapa et al.
[13] presented an appearance feature lookup table to ana-
lyze hand posture patterns for identifying Thai letters in
finger-spelling. Sriboonruang et al. [14] proposed a method
combining the Zernike moment and wavelet moment to
capture a hand’s features and also using a fuzzy classification
algorithm to classify Thai finger-spelling hand postures.
Phitakwinai et al. [15] developed the Thai finger-spelling
letters and words of the Thai sign language translation
system using the scale-invariant feature transform (SIFT).
However, they cannot achieve the critical criteria, such as
accuracy, flexibility, and device constraints, and cannot run
in real time.

In this paper, we developed automatic classification to
recognize 21 hand postures that represent letters in Thai
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Figure 1: Thai letter finger-spelling recognition using HOG.

finger-spelling. In our implementation, an object detec-
tion approach based on Histogram of Orientation Gradient
(HOG) feature is applied as themain feature of hand postures
which focuses more on the information within a certain
region of the image rather than each single pixel. A feature is
trained to be a weak classifier using a histogram comparison.
In order to improve the detection speed, the weak classifiers
are trained into strong classifiers by the AdaBoost algorithm,
which were finally combined into a cascaded classifier for the
detection procedure. The experiment is designed to adjust
training parameters, false positive rates (FPR), true positive
rates (TPR), and number of training stages (𝑁), to achieve
a suitable training model for 21 hand postures. All cascaded
classifiers are loaded into the system simultaneously to
classify different hand postures. The correlation coefficients
are computed between inputs and pattern data to distinguish
the hand postures that are similar. The system process in this
method is shown in Figure 1.

2. Proposed Method

This system recognizes 5 numbers and 16 letters of Thai
finger-spelling (Silanon [17]) which use single hand postures.
The digits and letters we recognize are the numbers “1,” “2,”
“3,” “4,” and “5” and letters “ ” (O ang), “ ” (Bo bimai),
“ ” (Do dek), “ ” (Fo fan), “ ” (Ho hip), “ ” (Cho chan),
“ ” (Ko kai), “ ” (Lo ling), “ ” (Mo ma), “ ” (No nue),
“ ” (Po phan), “ ” (Ro ruea), “ ” (So suea), “ ” (To tao),
“ ” (Wo waen), and “ ” (Yo yak). We collected these hand
postures from 10 subjects who were asked to stand in front
of white background. A web camera is used to capture an
image resolution of 640×480 pixels in laboratory with a light
condition. For each hand posture, there are 100 for training
and 50 for testing.The 21 hand postures forThai letter finger-
spelling are shown in Figure 2.

Next we collected all hand postures into a dataset for
a recognition process. We utilized HOG as the feature

descriptor for each hand posture. Let us introduce HOG.The
HOG features were used in many papers that address the
object detection problem (Dalal and Triggs [18], Li et al. [19],
Liu et al. [20], and Zhu et al. [21]). For HOG extraction, the
first step of the calculation is the computation of the gradient
values. This method requires filtering the gray scale image
with the following filter kernels:

𝐷𝑥 = [−1 0 1] ,
𝐷𝑦 = [−1 0 1]𝑇 . (1)

Therefore, given an image I, we obtain the 𝑥 and 𝑦 derivatives
using a convolution operation:

𝐼𝑥 (𝑟, 𝑐) = 𝐼 (𝑟, 𝑐 + 1) − 𝐼 (𝑟, 𝑐 − 1) ,
𝐼𝑦 (𝑟, 𝑐) = 𝐼 (𝑟 − 1, 𝑐) − 𝐼 (𝑟 + 1, 𝑐) . (2)

The orientation of the gradient is then transformed to polar
coordinates (𝜃), with the magnitude of the gradient |𝐺|:

𝜃 = tan−1
𝐼𝑦
𝐼𝑥 ,

|𝐺| = √𝐼2𝑥 + 𝐼2𝑦.
(3)

The image window is divided into a small spatial cell of size
of 8 × 8 pixels. The cells are rectangular, and the histogram
channels are spread over 0 to 1800, which determine 9 bins.
We group the 2 × 2 cells into single block feature (b) and
normalize the block feature to reduce the effect of change in
contrast between images of the same object by its Euclidean
norm:

b = b
‖b‖2 + 𝜀 . (4)

In this expression, 𝜀 is a small positive constant that prevents
a division by zero. A dimension feature of each block is
determined by the number of orientation bins in each cell.
Therefore, there are 36 dimensions for a block feature.
Figure 3 showed the process of HOG feature calculations.

The second step is to study the construction of the weak
classifier (ℎ𝑗) for hand postures. We estimate the distance
between the histogram of an input feature (𝑥𝑗) and a model
histogram 𝑚𝑗. The model calculated the average histogram
between all training positive examples. For each histogram
of the feature set, we have its corresponding model 𝑚𝑗. We
define the weak classifier as a binary function ℎ𝑗(𝑥):

ℎ𝑗 (𝑥) = {
{{
1 if 𝑑 (𝑥𝑗, 𝑚𝑗) < 𝜃𝑗
0 otherwise,

(5)

where 𝑑(𝑥𝑗, 𝑚𝑗) is the histogram comparison (Negri et al.
[22]) between the feature 𝑥𝑗 and the model 𝑚𝑗 and 𝜃𝑗 is
the feature threshold. In practice, no single weak classifier
can identify the object with high accuracy. We used the
AdaBoost learning algorithm (Chen and Georganas [23],
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Figure 2: The 21 example hand postures.
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Figure 3: HOG feature calculation.

Pavani et al. [24], and Viola and Jones [25]), which can
improve the accuracy detection. Now let us review the
AdaBoost algorithm. The algorithm takes as input a set of
𝑀 training samples, labeled as negatives (0) or positives (1):
{(𝑥1, 𝑦1) ⋅ ⋅ ⋅ (𝑥𝑁, 𝑦𝑁)}, where 𝑦𝑖 is the label of a certain
instance 𝑥𝑖, as shown in Figure 4.

Then a group of classifiers is tested from the set of samples
and the best weak classifier, according to a minimum error,
is chosen. Finally, the algorithm computes the parameter 𝛼
associated with the chosen weak classifier, which measures
the importance of the weak classifier’s contribution to the

final strong classifier.The process is repeated𝑇 times, extract-
ing a newweak classifier per iteration.Thus theweak classifier
and the corresponding weight are determined through the
boosting procedure. The prediction of a strong classifier for
the binary classification problem has the following form:

𝐻(x) = {{
{{{
1, object 𝑘∑

𝑖=1

𝛼𝑖ℎ𝑖 (x) ≥ 1
2
𝑘∑
𝑖=1

𝛼𝑖
0, clutter otherwise.

(6)

The pseudocode of AdaBoost algorithm adapted to the object
detection problem is shown in Pseudocode 1.

For object detection, a cascaded classifier is built which
consists of serially connected nodes labeling a test image as
either object or clutter. Each node contains a boosted set of
weak classifiers. In Figure 5, the third node of the cascaded
classifier is expanded to show the 𝑘weak classifiers presented
inside it. A given test image is scanned at all positions and
scaled by the cascaded classifier. When an image subregion
x is put to a node, it is classified by all the weak classifiers
presented in the node, and the weighted average of their
decisions is calculated as the final decision of that node. An
image subregion is labeled as an object when it is identified as
object by𝑀 nodes of the cascade (see Figure 5). On the other
hand, if a subregion is labeled as a clutter by any node, it will
not be processed by the successive nodes. Thus, a detection
system based on cascaded classifier architecture will be fast
in scanning the entire test image.

3. Experiments

The experiments are conducted in the laboratory with con-
trolled light conditions.The positive training set images were
collected as 100 original samples for each hand posture.
However, we can also generate more positive samples from
existing ones by varying the brightness or the contrast. Thus,
we have a set of 500 training images for each hand posture.
The negative samples come from 17,000 images without a
hand posture. The cascaded training process involves two
types of trade-offs (1) the number of stages (𝑁) and (2)
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(i) Given images (𝑥𝑖, 𝑦𝑖) where 𝑦𝑖 = 0, 1 for negative and positive examples.
(ii) Initialize weight 𝑤1,𝑖 = 1/2𝑚, 1/2𝑙 for 𝑦𝑖 = 0, 1 respectively,
where𝑚 and 𝑙 are the number of negatives and positive.
(iii) Set of weak classifier ℎ𝑗
(iv) Initial True Positive Rate and the False Positive Rate
For 𝑡 = 1, . . . , 𝑇:
(1) Normalize the weights, 𝑤𝑡,𝑖 ← 𝑤𝑡,𝑖/∑𝑛𝑗=1 𝑤𝑡,𝑗
(2) the error of the weak classifier: 𝜀𝑗 = ∑𝑖 𝑤𝑖|ℎ𝑗(𝑥𝑖) − 𝑦𝑖|
(3) Choose the classifier, ℎ𝑗, with lowest error
(4) Set 𝛽𝑡 = 𝜀𝑡/(1 − 𝜀𝑡) and 𝛼𝑡 = log(1/𝛽𝑡)

Update weights: 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽1−|ℎ𝑗(𝑥𝑖)−𝑦𝑖 |𝑡

(v) The final strong classifier is:𝐻(𝑥) = ∑𝐾𝑖=1 𝛼𝑖ℎ𝑖(𝑥)

Pseudocode 1: The AdaBoost algorithm.

(a) (b)

Figure 4: (a) Positive samples and (b) negative samples.
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Figure 5: The structure of cascaded classifier.

the threshold of true positive rate (TPR) and false positive
rate (FPR) of each stage to achieve higher detection and a
lower false positive rate. Unfortunately, finding this optimum
is a tremendously difficult problem. In practice, a simple
hypothesis structure is used to produce an effective classifier,
which is highly efficient. Each stage in the cascade reduces
the false positive rate and increases the true positive rate. A
classifier is trained by adding a number of stages until the
target for false positive rate and detection rate is met (these

rates are determined by testing the detector on a testing set). A
target is selected for the maximum reduction in false positive
rate while maintaining the minimum decrease in detection.

To test a hypothesis, there are three experiments based on
testing different parameters to determine better performance
of the classifier. We divide the experiment into three parts,
that is, training with FPR, training with TPR, and training
with 𝑁. In the first experiment, we tested the performance
of correct classification with different FPR: the fraction of
negative training samples incorrectly classified as positive
samples or values in range (0, 1]. This value is varied from
0.05 to 0.5 in step of 0.05. Other training parameters are
fixed; for example, TPR is 0.995, 𝑁 is 5, and training size is32 × 32 pixels. To evaluate the performance of the training
classifier, 50 images with a similar background and light
condition (which are not used as training samples) for each
hand posture class are tested. Each image has a resolution
of 640 × 480 pixels. Table 1 shows the performance of 21
trained classifiers for all test images. Figure 6 shows some of
the detection results of the “ ” (Ko kai) hand posture from
each FPR value. From Table 1, outcomes are called “Hit” and
“Miss” and “False” detection.The “Hit” detection is that hand
posture is presented: the classification model must decide
whether a hand posture is presented. The “Miss” detection
is that hand posture is presented: the classification model
decides otherwise. The “False” detection is an error in the
evaluation process, in which a tested image is mistakenly
found to be detected.
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FPR = 0.40 FPR = 0.35 FPR = 0.30 FPR = 0.25 FPR = 0.20 FPR = 0.15 FPR = 0.10 FPR = 0.05

TPR = 0.995
Size = 32 × 32

N = 5

Figure 6: Result for “ ” (Ko kai) hand posture (adjusting FPR).

TPR = 0.995 TPR = 0.997 TPR = 0.999

FPR = 0.15
Size = 32 × 32

N = 5

Figure 7: Result for “ ” (Ko kai) hand posture (adjusting TPR).

We heuristically find which value of FPR optimizes the
performance of our classifier model. This value is varied
experimentally based on each hand posture to achieve the
best result. From experiment, the most suitable value of
FPR for model is ranging from 0.05 to 0.30. The value of
this parameter, for each hand posture class, is chosen from
the case of maximum “Hit” detection (which is italicized
bold in Table 1). For example, the hands posture class of
“ ” (Ko kai) with a FPR of 0.15 is selected because it
provides the maximum “Hit” detection result. By analyzing
the experimental result carefully, we found that lower value
for FPR can achieve less “False” detection. Nevertheless,
results in “Miss” detection and “False” detection are still not
suitable for use in real-time applications.

To reduce the probability of “Miss” and “False” detec-
tions, the second experiment is implemented to increase TPR:
the fraction of correctly classified positive training samples
or values in range (0, 1]. This parameter was varied as 0.995
(1st experiment), 0.997, and 0.999, respectively. 𝑁 is still 5.
FPR for each hand posture class is also selected from the
first experiment. Table 2 shows the performance of 21 trained
classifiers with different TPR. According to this experiment,
the results of some hand posture classes have improved
(which are italicized bold in Table 2). For instance, for the
class of “ ” (Ko kai), TPR of 0.997 is selected. However, this
value does not affect to the “Miss” detection; but the “False”
detection impact starts to occur as it has decreased slightly. A
high value of the TPR results in a greater number of correct
detections. However, it increases the training and detection
times. The classification model is chosen from maximum
“Hit” detection in each hand posture class. Although the
classification model has improved, the “False” detection is
still high. Figure 7 shows some of detection results of the
“ ” (Ko kai) hand posture from each TPR value. To reduce
the number of “False” detections, the third experiment is
implemented by increasing the number of 𝑁. The 5th, 6th,

N = 5 N = 6 N = 7 N = 8

FPR = 0.15
TPR = 0.997

Size = 32 × 32

Figure 8: Result for “ ” (Ko kai) hand posture (adjusting𝑁).

7th, 8th, 9th, and 10th stages were trained. FPR and TPR are
selected from the first and the second experiments. Table 3
shows the results of training stage variation.

In most cases, classifiers with more stages achieved lower
“False” detection. At the same time, classifiers with more
stages provided more result in the “Miss” detection category
as well. Classifiers with many states can have an overfitting
model problem. An overfitting model generally occurs when
a model is excessively complex, such as having too many
training cycles or parameters relative to the number of
observations. The model begins to memorize training data
rather than learning to generalize from trend. Therefore, its
performance is good on the training examples, while the
performance on unseen data becomes worse. There is no
reliable method to select the classification that always works.
Therefore, a target of the classification model is selected for
the maximum reduction in “False” detection and minimum
decrease in “Hit” detection (which are italicized bold in
Table 3). Figure 8 shows some of the detection results of “ ”
(Ko kai) hand posture from each number of stages.

After the target classification models have been selected,
we implement a multiple cascades structure to classify differ-
ent hand postures. In structure, all cascades are loaded into
the system simultaneously, and each cascade is responsible
for detecting a single hand posture. Rectangle detection for
different labels is used to tell which hand posture is detected.
Based on the experimental results, we found that this method
is fast enough to run in real time when we load all trained
cascaded classifiers at the same time. Confusion may occur
between hand postures. For example, the “ ” (Ko Kai) hand
posture and number “2” hand posture may be confused
with each other. However, this confusion can be resolved by
computing the correlation coefficient between the detection
results, with a set of appropriate reference images of the
hand postures. Then, we pick the matched hand posture
by choosing the one that gives the maximum correlation
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Table 2: The performance of 21 trained classifiers (adjusting TPR).

TPR = 0.995 (1st experiment) TPR = 0.997 TPR = 0.999
Hit Miss False Hit Miss False Hit Miss False

“1” 45 5 198 45 5 305 46 4 247
“2” 49 1 138 49 1 129 48 2 102
“3” 49 1 58 49 1 59 49 1 32
“4” 41 9 51 32 18 16 41 9 24
“5” 48 2 91 45 5 49 47 3 62
“ ” 50 0 69 49 1 87 49 1 77
“ ” 42 8 276 28 22 295 35 15 197
“ ” 48 2 42 43 7 86 43 7 69
“ ” 44 6 164 41 9 124 37 13 98
“ ” 33 17 376 22 28 351 29 21 361
“ ” 44 6 114 44 6 118 45 5 95
“ ” 47 3 34 47 3 21 46 4 79
“ ” 47 3 0 46 4 0 43 7 1
“ ” 40 10 276 43 7 194 40 10 218
“ ” 45 5 301 45 5 159 37 13 418
“ ” 46 4 153 46 4 178 41 9 167
“ ” 44 6 54 46 4 83 44 6 60
“ ” 49 1 6 50 0 22 50 0 29
“ ” 47 3 66 45 5 65 47 3 42
“ ” 40 10 278 36 14 469 30 20 467
“ ” 46 4 39 46 4 73 44 6 107

r = 0.5720 r = 0.52667

Figure 9: Correlation coefficient.

coefficient. We computed the correlation coefficient (𝑟) as
follows:

𝑟 = ∑𝑚∑𝑛 (𝐴𝑚𝑛 − 𝐴) (𝐵𝑚𝑛 − 𝐵)
√∑𝑚∑𝑛 (𝐴𝑚𝑛 − 𝐴)2∑𝑚∑𝑛 (𝐵𝑚𝑛 − 𝐵)2

. (7)

Here 𝐴 and 𝐵 are images of the same size. 𝐴 and 𝐵 are
the means of image elements. An example of the correlation
coefficient of the “ ” (Ko kai) hand posture and number
“2” hand posture is shown in Figure 9, with correlation
coefficients of 0.5720 and 0.5267, respectively.

Table 4 gives the confusion matrix for the detection of
all hand posture classes, using a combination of all cascades,
which were tested with 50 test images for each hand posture
class. Rows are targets and sum up to one and columns are
predictions. This shows confusion between similar-looking
hand postures such as “ ” (Ko kai) confused with “2” (6%)
and also “ ” (Lo ling), “ ” (Mo ma), and “ ” (No nu). By
analyzing the detection results, we found that some of the

Figure 10: All hand postures detection.

“Miss” detections are caused by the excessive in-plane or out-
of-plane rotations due to hand posture variations and finger-
spelling styles of different users. For the “False” detection,
we found that the classification error might have occurred
because there are some hand postures in Thai finger-spelling
which are similar. For example, hand postures of “ ” (O ang),
“ ” (Mo ma), and “ ” (So suea) are all represented by a
closed fist but differ only in the thumb position (depending
on subject’s dexterity), leading to higher confusion levels.
Besides, the majority of “False” detections happened in small
image areas. However, these small false detection boxes can
be easily eliminated by defining a threshold for rectangular
size. All hand postures detection is shown in Figure 10.
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Table 5: General comparison with existing systems.

Work Device Background Outfit Real time Letters Recognition rate
Saengsri et al. [11] Sensor glove No No Yes 16 94.44%
Kanjanapatmata [12] No Yes Yes No 15 72%
Veerasakulthong [16] Color glove Yes Yes No 31 88.26%
Sriboonruang et al. [14] No Yes Yes No N/A∗ 72%
Sakulsujirapa et al. [13] No Yes Yes No 42 81.43%
Phitakwinai et al. [15] No Yes Yes No 15 79.90%
Our method No No No Yes 21 78%
∗N/A: not available.

Figure 11: Real-time detection for the “ ” (Ko kai) hand posture.

To give general comparison between previous methods
and our proposed method, some existing research works
involving Thai finger-spelling recognition are shown in
Table 5.We compared the general conditions not only for our
method but also for some previous research that used other
additional devices such as a sensor glove or a color glove.
Regarding the background of the image, some researchers set
background to a constant color. In terms of the outfit, users
are asked to wear long-sleeves shirts. Concerning the number
of the letters that can be recognized in the system, our system
is not as good as the method that used additional devices
such as glove based method because the image is not as good
as a signal from an electronic sensor, especially when fingers
occlude or stick together. For methods that use only camera
images, it is also hard to compare recognition performance
achieved from different datasets for testing in Thai finger-
spelling. For the recognition rate, our average classification
precision is around 78% for 21 hand postures classification.
Although our work does not yield a more significant result
compared to other techniques, by analyzing other conditions
(see Table 5), they need to set background such as black
or white color, additional device is required such as color
glove to separate hand from other parts of body, and most
of existing works cannot run in real time, while our system
does not need to do any preprocessing or segmentation before
computing the finger-spelling recognition and is fast enough
to be run in real-time situation and clutter background as
shown in Figure 11.

4. Conclusion

We proposed an approach to recognize hand posture in
real time with a single web camera as the input device.
The approach focused on hand posture recognition with
HistogramofOrientationGradient (HOG) and theAdaBoost
learning algorithm. The Histogram of Orientation Gradient
feature can effectively describe the hand posture pattern with
a computation of gradient orientation.This feature allows the
system to be able to distinguish the hand postures that are
similar. The AdaBoost learning algorithm can greatly speed
up detection performance and construct a strong classifier by
combining a sequence of weak classifiers. The experimental
results were tested by adjusting training parameters, false
positive rates (FPR), true positive rates (TPR), and number of
training stages (𝑁), to achieve the best classifier. A target of
the classification model is selected for the maximum reduc-
tion in false detection and minimum decrease in detection.
Based on the cascaded classifier, a multiple cascaded struc-
ture was implemented to classify different hand postures.
The correlation coefficient must be computed when hand
postures confuse each other. From experimental result, we
found that the average classification accuracy is around 78%.
For work comparison, our method does not need to do any
preprocessing or segmentation before computing the finger-
spelling recognition and is fast enough to be run in real time.
Furthermore, thismethod can be usedwith other problems in
object detection field such as human, car, or symbol detector.
In future work, we will implement the sequence recognition
for other letters in Thai finger-spelling. Some letters in Thai
finger-spelling occur from combination of hand posture. For
example, “ ” (Ko kai) combined with digit “1.”This sequence
of hand posture will be translated to “ ” (Kho Khai). For
sequence recognition, a Finite State Machine (FSM) or a
HiddenMarkovModel (HMM) can be used to define the rule
for the recognition process. Furthermore, if information of
finger was taken into account and trained with more dataset
images, then the errors of the classifier should be reduced.
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