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Abstract

Using hidden Markov models (HMM's), an unobstrusive single view camera system is de-
veloped that can recognize hand gestures, namely, a subset of American Sign Language
(ASL). Previous systems have concentrated on finger spelling or isolated word recognition,
often using tethered electronic gloves for input. We achieve high recognition rates for full
sentence ASL using only visual cues.

A forty word lexicon consisting of personal pronouns, verbs, nouns, and adjectives is used
to create 494 randomly constructed five word sentences that are signed by the subject to
the computer. The data is separated into a 395 sentence training set and an independent 99
sentence test set. While signing, the 2D position, orientation, and eccentricity of bounding
ellipses of the hands are tracked in real time with the assistance of solidly colored gloves.
Simultaneous recognition and segmentation of the resultant stream of feature vectors occurs
five times faster than real time on an HP 735. With a strong grammar, the system achieves
an accuracy of 97%; with no grammar, an accuracy of 91% is reached (95% correct).
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Chapter 1

Introduction

To date, computers have had very limited means of communicating with humans. Most

common methods involve using a tethered device (keyboard, mouse, light pen, 3D tracker,

etc.) that limit the user's freedom of motion. Furthermore, the expressiveness of these

interactions has been very poor. With the advent of more powerful computers equipped

with video, vision based interfaces are becoming more feasible. Enabling the computer to

"see" its user allows for richer and more varied paradigms of man-machine interaction.

Recently, there has been a surge in interest in recognizing human hand gestures. While

there are many interesting domains, one of the most structured sets of gestures are those

belonging to sign language. In sign language, each gesture already has an assigned meaning

(or meanings) and strong rules of context and grammar may be applied to make recognition

tractable.

Most work on sign language recognition employs expensive wired "datagloves" that the

user must wear [39]. In addition, these systems mostly concentrate on finger signing, where

the user spells each word with hand signs corresponding to the letters in the alphabet [10].

However, most sign does not involve finger spelling but signs that represent whole words.

This allows signed conversations to proceed at about the pace of spoken conversation.

In this paper an extensible system is described that uses a single color camera to track

hands in real time and recognize sentences of American Sign Language (ASL) using hid-

den Markov models (HMM's). The hand tracking stage of the system does not attempt

to produce a fine-grain description of hand shape; studies have shown that such detailed

information may be unnecessary for humans to interpret sign language [28]. Instead, the



tracking process produces only a coarse description of hand shape, orientation, and trajec-

tory. The user is required to wear inexpensive colored gloves to facilitate the hand tracking

frame rate and stability. This shape, orientation, and trajectory information is then input

to an HMM for recognition of the signed words.

1.1 Applications

For many years the problem of continuous speech recognition has been a focus of research,

with the goal of using speech as an interface. Similarly, if a full vocabulary recognition sys-

tem for American Sign Language can be created, then ASL can be used in applications such

as word processing, operating system control, etc. Perhaps the most promising application

of an ASL recognition system is that of translation of ASL into written or spoken English.

The translation problem involves more than recognizing signs, however; some level of gram-

mar structure and meaning will have to be understood by the system to allow adequate

translation.

Gestures are often made at points of stress in a conversation, when illustrating a motion,

or when describing an object. In fact, research has been done on the language of these

gestures [6]. By recognizing gestures made in conjunction with spoken language, a computer

may be able to better understand the wishes of the user. If an ASL recognizer can be created,

then similar technology may be applied to these conversational gestures as well.

Recently, the field of video annotation has gained popularity. Given a huge database of

video footage, how are particular shots located? With a hand annotated database, a user

can search the text hoping that the annotator attended what is desired. However, hand

annotation is a time-consuming process. Instead, computer systems may be employed to

annotate certain features of sequences. A human gesture recognition system adds another

dimension to the types of features computers can automatically annotate.

1.2 Outline

Chapter 2 describes some attributes of American Sign Language and the scope of this thesis.

Chapter 3 discusses previous work in related areas and develops the reasoning for choosing

HMM's over other techniques. Details on the machine vision algorithms and the HMM



training and recognition methods used are provided in Chapter 4. Chapter 5 describes

the experiments performed and lists the results. An analysis of the results is provided in

Chapter 6, and a summary and discussion of future work is included in Chapter 7.



Chapter 2

Problem Description

When focusing the techniques of machine vision on the human body, many diverse fields are

addressed. Techniques from cognition, psychophysics, dynamics, photography, and athletics

can all be applied to help constrain problem domains.

2.1 Analyzing Human Body Motion

Photography has been used to help understand human body motion for over a century [25].

More recently, computers have been added to perform more complex analysis. Athletic

programs may use computer tracking systems and dynamics to help maximize the amount

of effort their athletes can produce. Many of these systems use hand labeled data or wired

sensor systems to produce the data. Fully reconstructing the motion of the human body

requires a tremendous amount of data. Therefore, both natural constraints of the human

body and simplifying assumptions are often used to curtail the amount of data needed for

analysis.

Several systems that address whole body systems have been developed in the past.

These include gait recognition and analysis systems [27, 14, 32, 42], ballet step recognition

[5], body capture [1], real-time interface systems [38, 23], and numerous others. Greater

accuracy and detail can be gained by focusing attention on the body part of interest. Recent

experimentation with active "focus of attention" systems is attracting interest to this topic

[9]. In the case of ASL, the hands and head are of the most interest.



2.2 American Sign Language

American Sign Language is the language of choice for most deaf people in the United

States. It is part of the "deaf culture" and includes its own system of puns, inside jokes,

etc. However, ASL is but one of the many sign languages of the world. A speaker of ASL

would have trouble understanding the Sign Language of China much as an English speaker

would Chinese. ASL also uses its own grammar instead of borrowing it from English.

This grammar allows more flexibility of word placement and sometimes uses redundancy

for emphasis. Another variant, English Sign Language has more in common with spoken

English but is not as widespread in America. ASL consists of approximately 6000 gestures

of common words with finger spelling used to communicate obscure words or proper nouns.

Finger spelling uses one hand and 26 gestures to communicate the 26 letters of the alphabet;

however, users prefer full word signs whenever possible since this allows sign language to

approach or surpass the speed of conversational English.

Conversants in ASL will often describe a person, place, or thing and then point to a

place in space to temporarily store that object for later reference [35]. For example, "the

man with the green sweater," "the old grocery store," and "the red garage" might be signed

and put into various positions in space. To then say "the man with the green sweater went

to the old grocery store and the red garage" would involve pointing to the location of the

man and then making the sign for "walk" to the position of the store and garage in turn.

For the purposes of this thesis, this particular spatial aspect of ASL will be ignored.

ASL uses facial expressions to distinguish between statements, questions, and directives.

The eyebrows are raised for a question, held normal for a statement, and furrowed for a

directive. While there has been work in recognizing facial gestures [11], facial features will

not be used to aid recognition in the task addressed.

Traditionally, there are three components of an ASL sign:

tabular (tab): The position of the hand at the beginning of the sign.

designator (dez): The hand shape of the hand at the beginning of the sign.

signation (sig): The action of the hand(s) in the dynamic phase of the sign.

In the Stokoe ASL dictionary [37], 12 tabulars, 19 designators, and 24 signations are



distinguished. Even though both hands are used in ASL, only seven of the signations use

two hands. Some signs depend on finger placement and movement to remove ambiguity,

but many signs are distinct even when the fingers are ignored.

2.3 Goals

While the scope of this thesis is not to create a person independent, full lexicon system for

recognizing ASL, a desired attribute of the system is extensibility towards this goal. Another

goal is to allow the creation of a real-time system by guaranteeing each separate component

(tracking, analysis, and recognition) runs in real-time. This demonstrates the possibility of a

commercial product in the future, allows easier experimentation, and simplifies archiving of

test data. "Continuous" sign language recognition of full sentences is desired to demonstrate

the feasibility of recognizing complicated series of gestures. Of course, a low error rate is

also a high priority.

Table 2.1: ASL Vocabulary Used

part of speech vocabulary
pronoun I you he we you(pl) they
verb want like lose dontwant dontlike love pack hit loan
noun box car book table paper pants bicycle bottle can

wristwatch umbrella coat pencil shoes food magazine
fish mouse pill bowl

adjective red brown black gray yellow

In this recognition system, sentences of the form "personal pronoun, verb, noun, adjec-

tive, (the same) personal pronoun" are to be recognized. This sentence structure emphasizes

the need for a distinct grammar for ASL recognition and allows a large variety of mean-

ingful sentences to be randomly generated using words from each class. Table 2.3 shows

the words chosen for each class. Six personal pronouns, nine verbs, twenty nouns, and

five adjectives are included making the total lexicon number forty words. The words were

chosen by paging through "A Basic Course in American Sign Language" by Humphries,

Padden, and O'Rourke and selecting those which would provide coherent sentences when

used to generate random sentences. At first a naive eye was used to avoid ambiguities in



Figure 2-1: Pronouns.

the selected signs, but this was shortly subsumed by the coherency constraint. Figures 2-1

to 2-5 illustrate the signs selected (from [17]).

The process of creating a new recognition system often limits the amount of initial

training that can be collected. False starts and complications sometimes require discarding

of data, making the initial process extremely frustrating for the subject. Therefore, the

author learned the necessary signs to provide the database.

Recognition will occur on sentences unseen by the training process. The task is to

correctly recognize the words in the given sentence in order and without inserting any addi-

tional words. Error and accuracy will be measured as in the continuous speech recognition

literature, incorporating substitution, insertion, and deletion errors.

You
/ \
- ~

~ *~. N

I V.

HE/SHE/IT, him,her



DONT-LIKE DON'T-WANT HIT

LIKE LOAN, lend LOSE

LOVE PACK WANT, desire

Figure 2-2: Verbs.



BOOK BOTTLE

BOX, package, room

COAT, jacket FISH EAT, FOOD

GLASS, CAN, cup MAGAZINE, brochufe, MOUSE
joumal, booklet

Figure 2-3: Nouns.

BOWL CAR

BICYCLE



PANTS PAPER, page

TAKE-PILL SHOES
Noun: pill

UMBRELLA

TABLE, desk

WRIST-WATCH

Figure 2-4: Nouns continued.

PENCIL



BLACK, Black-person BROWN GRAY

RED YELLOW

Figure 2-5: Adjectives.



Chapter 3

Background

Visual recognition of sign language requires two main components: hand tracking and

pattern recognition. Machine vision and virtual environment research have provided several

tools in addressing the former, and continuous speech recognition has provided an excellent

development platform for the latter. Here, recent tracking systems are surveyed, previous

sign language work is reviewed, and the benefits of applying HMM technology to machine

recognition of ASL are discussed.

3.1 Hand Recovery

With "multimedia" computers being packaged with video cameras, interest in human ges-

ture recognition has grown. A large variety of interfaces have been proposed, using video

driven gestures for mouse control [12], full body interactions [19, 23, 5], expression tracking

[11], conducting music [24], and electronic presentation [38].

Due to their expressiveness, the hands have been a point of focus for many gesture

recognition systems. Tracking the natural hand in real time using camera imagery is dif-

ficult, but successful systems have been demonstrated in controlled settings. Freeman [12]

has shown a hand tracker that can be used for navigating 3D worlds. A greyscale camera

tracks the hand in a small area on a table and uses hand and finger position to control the

direction of a virtual graphics camera.

Rehg and Kanade have shown a two camera system that can recover the full 27 degrees

of freedom in a hand [31]. While successfully demonstrating tracking with limited motion,



occlusion was not addressed. Furthermore, a simple background was required, which is

often impossible when observing natural hand gestures.

Simpler, less constrained hand tracking systems have been created in a variety of envi-

ronments. Krueger [19] has shown light table systems that tracked hands using single and

multiple cameras aimed at the entire body. Maes et al [23] showed a similar system with one

camera which allowed more arbitrary backgrounds to be used. Unfortunately, camera reso-

lution often limits whole body systems to recovering just the position of the hands. When

cameras are dedicated to the hands, more detail can be obtained. The "Hand Reader" by

Suenaga et al [38] recovers 3D pointing information by dedicating two cameras, at close

range, to the task. A limitation of such systems is that the working volume tends to be

small. Also, the cameras for these systems tend to be obtrusive in that they are placed near

the user. Longer focal length lenses may be used so that the cameras may be moved farther

from the user, but then the space needed by such systems becomes prohibitive. Another

solution is to monitor an entire room with a single fixed camera and use narrow field of

view cameras mounted on servo platforms to direct attention to specific areas of interest [9].

This technique allows high detail and a wide range of motion, but suffers from the coupled

motion problems of an active camera.

Tracking can often be simplified through using calibrated gloves or wired sensors. Dorner

[10] uses a specially calibrated glove with different colors for each finger and the wrist and

markers at each finger joint and tip. This, combined with Kalman filtering, simplifies

occlusion problems and allows recovery of a detailed hand model through a wide range of

motion. Datagloves by VPL are often used for sensing as well [24, 39, 4]. These systems

offer precision, a relatively large range of motion (the sphere defined by the length of the

tether), and very fast update rates at the expense of being wired to a sensing system.

3.2 Machine Sign Language Recognition

Excellent work has been done in support of machine sign language recognition. Sperling

and Parish [35, 28] have done careful studies on the bandwidth necessary for a sign conver-

sation using spatially and temporally subsampled images. Point light experiments (where

"lights" are attached to significant locations on the body and just these points are used for



recognition), have been carried out by Poizner et al [29] and Tartter and Knowlton [41].

Tartter's 27 light experiment (13 lights per hand plus one on the nose) showed that a brief

conversation in ASL was possible using only these stimuli. Poizner's experiments used only

9 lights (on the head and each shoulder, elbow, wrist, and index finger) to convey limited

information about ASL signs. These experiments suggest that ASL might be recognizable

even in an impoverished environment.

Most of the above experiments studied ASL in context. However, most machine recog-

nition systems to date have studied isolated and/or static gestures. In many cases these

gestures are finger spelling signs, whereas everyday ASL uses word signs for speed.

Tamura and Kawasaki demonstrated an early image processing system which could

recognize 20 Japanese signs based on matching cheremes [40]. A chereme is composed of

the tab, dez, and sig as discussed earlier. Charayaphan and Marble [7] demonstrated a

feature set that could distinguish between the 31 isolated ASL signs in their training set.

Takahashi and Kishino in [39] discuss a Dataglove-based system that could recognize 34

of the 46 Japanese kana alphabet gestures (user dependent) using a joint angle and hand

orientation coding technique. From their paper, it seems the test user made each of the 46

gestures 10 times to provide data for principle component and cluster analysis. A separate

test set was created from five iterations of the alphabet by the user, with each gesture well

separated in time. While these systems are technically interesting, they suffer from a lack

of training and have limited expandability beyond their sample domains.

3.3 Previous Use of Hidden Markov Models in Gesture

Recognition

While the continuous speech recognition community adopted HMM's many years ago, these

techniques are just now entering the vision community. Most early work was limited to

handwriting recognition [21, 26]. More recently, He and Kundu [13] report using contin-

uous density HMM's to classify planar shapes. Their method segmented closed shapes

and exploited characteristic relations between consecutive segments for classification. The

algorithm was reported to tolerate shape contour perturbation and some occlusion.

Another early effort by Yamato et al uses discrete HMM's to successfully recognize



image sequences of six different tennis strokes among three subjects. This experiment is

significant because it used a 25x25 pixel quantized subsampled camera image as a feature

vector. Even with such low-level information, the model could learn the set of motions to

perform respectable recognition rates.

Schlenzig et al [33] also use hidden Markov models for visual gesture recognition. The

gestures are limited to "hello," "good-bye," and "rotate". The authors report "intuitively"

defining the HMM associated with each gesture and imply that the normal Baum-Welch

re-estimation method was not implemented. However, this study shows the continuous

gesture recognition capabilities of HMM's by recognizing gesture sequences.

Several vision systems have been developed with technology closely related to HMM

methodology. Darrell [8] uses the dynamic time warping method to recognize gestures

("hello" and "good-bye") through time. Siskind and Morris [34] argue that event perception

requires less information and may be an easier problem than object recognition. To this

end they have constructed a maximum likelihood framework using methods similar to those

used in hidden Markov model training to recognize the events "pick up," "put down,"

"drop," and "fall" from edge-detected movies of these actions. While these projects do not

use HMM's per se, they set the stage for the idea that visual information can be modeled

and used for recognition through time, much like speech recognition. In fact, Siskind and

Morris make similar comparisons as those below between continuous speech recognition and

vision.

3.4 Use of HMM's for Recognizing Sign Language

While the above studies show some promise for using HMM's in vision, what evidence is

there that HMM's can be eventually used to address the full ASL recognition problem?

The answer to that question lies in the comparison of the ASL recognition domain to the

continuous speech recognition domain where HMM's have become the technology of choice.

Sign language and continuous speech share many common characteristics. Sign language

can be viewed as a signal (position, shape, orientation of the hands, etc.) over time, just like

speech. Silences in both speech and ASL are relatively easy to detect (hesitating between

signs will be considered equivalent to stuttering or "ums" in speech), and all of the informa-



tion needed to specify a fundamental unit in both domains is given contiguously in a finite

time period. The onset and offset paths of a sign depend on the temporarily neighboring

signs. Correspondingly, spoken phonemes change due to coarticulation in speech. In both

domains, the basic units combine to form more complex wholes (words to phrases in sign

and phonemes to words in speech). Thus, language modeling can be applied to improve

recognition performance for both problems.

In spite of the above similarities, sign language recognition has some basic differences

from speech recognition. Unlike speech where phonemes combine to create words, the

fundamental unit in much of ASL is the word itself. Thus, there is not as much support

for individual word recognition in sign as there is in speech. Also, the fundamental unit

in sign can switch suddenly (for example, changing into finger spelling for proper nouns).

Furthermore, the grammar in ASL is significantly different than that of English speech

(ASL is strongly influenced by French). However, even given these differences, there seems

a strong likelihood that HMM's should also apply to sign language recognition.

Hidden Markov models have intrinsic properties which make them very attractive for

ASL recognition. All that is necessary for training, except when using an optional boot-

strapping process, is a data stream and its transcription (the text matching the signs). The

training process can automatically align the components of the transcription to the data.

Thus, no special effort is needed to label training data. The segmentation problem, as often

seen in handwriting research, can be avoided altogether [36].

Recognition is also performed on a continuous data stream. Again, no explicit seg-

mentation is necessary. The segmentation of sentences into words occurs naturally by

incorporating the use of a lexicon and a language model into the recognition process. The

result is a text stream that can be compared to a reference text for error calculation. Con-

sequently sign language recognition seems an ideal machine vision application of HMM

technology. The problem domain offers the benefits of scalability, well defined meanings,

a pre-determined language model, a large base of users, and immediate applications for a

recognizer.

Finally, HMM methodology is related to techniques that have been used previously in

vision with success. Dynamic time warping, expectation maximization, Q-learning, neural

nets, and several other traditional pattern recognition techniques resemble portions of the



modeling and recognition processes. The major advantage HMM's have over these other

techniques is the ability to selectively, knowledgeably, and scalably tailor the model to the

task at hand.



Chapter 4

Tracking and Modeling Gestures

Using Hidden Markov Models

As shown in the last section, using computer vision to observe human motion is becoming

a rich and diverse field. Traditionally, HMM's have been the domain of speech recognition,

where a very rich system of modeling has evolved. In the following sections the vision

methods used to track the hands are described, and the basics of HMM's are applied to

ASL recognition.

4.1 Hidden Markov Modeling

While a substantial body of literature exists on HMM technology [43, 16, 30, 2, 20], this

section modifies a traditional discussion of the algorithms so as to provide the perspective

used for recognizing sign language. A simplistic example develops the fundamental theory in

training and testing of a discrete HMM which is then generalized to the continuous density

case used in the experiments. For broader discussion of the topic, [16] is recommended.

Figure 4-1: The ASL sign for "I."
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Generated sequence: +++++|000| ------

Figure 4-2: A sample HMM topology with transition probabilities.
sequence can be divided into the states which produced each section.

Pr

+ 0 -
Symbol

Pr

+ 0 -

Symbol

Note that generated

+ 0 -

Symbol

Generated sequence: +0++++00-0--+--

Figure 4-3: The same 3 state topology with output probabilities added. Now the state
sequence can no longer be precisely recovered.



A time domain process demonstrates a Markov property if the conditional probability

density of the current event, given all present and past events, depends only on the jth most

recent events. If the current event depends solely on the most recent past event, then the

process is a first order Markov process. While the order of words in American Sign Language

is not truly a first order Markov process, it is a useful assumption when considering the

positions and orientations of the hands of the signer through time. Consider the hand

actions for the isolated gesture "I" (Figure 4-1). These actions might be separated into the

onset movement of the hand to the chest, pointing at the chest, and the offset movement of

the hand back to a rest position. If the y movement of the right hand is used as a feature in

recognizing these actions (say, at 5 frames/sec), the onset, pointing, and offset actions would

correspond to a predominantly positive motion from the floor (+), a relatively stable period

(0), and a predominantly negative motion respectively (-). Consider the onset, pointing,

and offset actions to be "states" in a Markov model of the motions involved in the sign

"I" (see Figure 4-2). Note that each state might transition back to itself. This corresponds

to the inherent time aspect of the separate actions of the gesture. For example, the onset

action may take a second, corresponding to four transitions (5 frames/sec) of the onset

state back to itself. Similarly, the pointing and offset actions may take varying amounts

of time to complete. This is reflected in the transition probabilities shown in Figure 4-2.

In this simple example, associated with each state are the data of positive, negative, or no

y movement. Thus, the model can be used to generate appropriate y movement for the

gesture "I". However, in real life the motions for the gesture "I" are not deterministic. Due

to possible indecision and wavering of the hand the actual y motion of the right hand might

consist of varying proportions of positive, negative, and no motion during any given action.

To reflect this, the model is changed to that in Figure 4-3 where the output of each state

is a discrete probability distribution (output probability) of the three possible y classes.

Now, if the model is used to generate appropriate y motion it is not obvious from which

state each y movement is generated. This attribute is the reason for the word "hidden" in

hidden Markov models; the state sequence is not obvious from the generated set of motions.

This example demonstrates one other assumption for first order HMM's, that the output

probability depends only on the current state and not on how or when the state was entered.

The previous paragraph described how to use HMM's to generate a sequence of symbols



that statistically resembles the data that the modeled process might produce. For the rest

of this section, this idea is turned around to show how HMM's can be used to recognize a

similar string of symbols (which will now be called observations). In addition, the algorithms

needed to train a set of HMM's are described.

In order to proceed, a clear standard for notation is needed. Below is a list of symbols

that will be used in this discussion. The meaning for some of these variables will become

clearer in context, but the reader is urged to gain some familiarity with them before con-

tinuing.

T: the number of observations.

N: number of states in the HMM.

L: distinct number of possible observations (in this example three: +, 0, -).

s: a state. For convenience (and with regard to convention in the HMM literature), state

i at time t will be denoted as St = i.

S; the set of states. SI and SF will be used to denote the set of initial and final states

respectively.

Ot: an observation at time t.

0: an observation sequence 01, 02, .. OT.

v: a particular type of observation. For example, v1 , v 2 , and v 3 might represent +, 0, and

- y motion respectively.

a: state transition probability. a- represents the transition probability from state i to

state j.

A: the set of state transition probabilities.

b: state output probability. bj(k) represents the probability of generating some discrete

symbol Vk in state j.

B: the set of state output probabilities.

7r: initial state distribution.



A: a convenience variable representing a particular hidden Markov model. A consists of A,

B, and 7r.

a: the "forward variable," a convenience variable. at(i) is the probability of the partial

observation sequence to time t and state i, which is reached at time t, given the model

A. In notation, at(i) = Pr(01, 02, ..., Ot, st = il A).

#: the "backward variable," a convenience variable. Similar to the forward variable,

#t(i) = Pr(Ot+1, Ot+2, ... , OrlSt = i, A), or the probability of the partial observation

sequence from I + 1 to the final observation T, given state i at time I and the model

A.

y: generally used for a posterior probabilities. yt(i, j) will be defined as the probability of

a path being in state i at time t and making a transition to state j at time t + 1, given

the observation sequence and the particular model. In other words, 7t(i,j) = Pr(st =

i, st+1 = jlO, A). 7t(i) will be defined as the posterior probability of being in state i

at time t given the observation sequence and the model, or 7t(i) = Pr(st = ilO, A).

While a few other variables will be introduced in the description of the following algo-

rithms, the above variables are typically found in descriptions of work in the field.

There are three key problems in HMM use. These are the evaluation problem, the

estimation problem, and the decoding problem. The evaluation problem is that given an

observation sequence and a model, what is the probability that the observed sequence was

generated by the model (Pr(OA))? If this can be evaluated for all competing models for

an observation sequence, then the model with the highest probability can be chosen for

recognition.

Pr(OA) can be calculated several ways. The naive way is to sum the probability over

all the possible state sequences in a model for the observation sequence:

T

Pr(O IA) = ( (j a., tbst(Ot)
allS t=1

The initial distribution 7r, is absorbed into the notation for a,0 si for simplicity in this

discussion. The above equation can be better understood by ignoring the outside sum and

product and setting t = 1. Assuming a particular state sequence through the model and



the observation sequence, the inner product is the probability of transitioning to the state

at time 1 (in this case, from the initial state) times the probability of observation 1 being

output from this state. By multiplying over all times 1 through T, the probability that the

state sequence S and the observation sequence 0 occur together is obtained. Summing this

probability for all possible state sequences S produces Pr(OIA). However, this method is

exponential in time, so the more efficient forward-backward algorithm is used in practice.

The forward variable has already been defined above. Here its inductive calculation,

called the forward algorithm, is shown (from [16]).

* a1 (i) = ribz(0 1), for all states i (if iESI, 7r; = g-;otherwise ri = 0)

* Calculating a() along the time axis, for t = 2,..., T, and all states j, compute

at(j) = [[cat_1(i)aij]b(Ot)

* Final probability is given by

Pr(O|A) = Z ar(i)
icSF

The first step initializes the forward variable with the initial probability for all states,

while the second step inductively steps the forward variable through time. The final step

gives the desired result Pr(OIA), and it can be shown by constructing a lattice of states

and transitions through time that the computation is only order O(N 2T).

Another way of computing Pr(O IA) is through use of the backward variable /, as already

defined above, in a similar manner.

13T(i) = , for all states ieSF; otherwise OT(i) = 0

* Calculating #() along the time axis, fort = T-1 T-2, ..., 1 and all states j, compute:

#t(j) = Zaibj(Ot+1)#t+1i(i)



. Final probability is given by:

Pr(OIA) = E ribb(O 1)#1(i)
ieS1

The estimation problem concerns how to adjust A to maximize Pr(OIA) given an obser-

vation sequence 0. Given an initial model, which can have flat probabilities, the forward-

backward algorithm allows us to evaluate this probability. All that remains is to find a

method to improve the initial model. Unfortunately, an analytical solution is not known,

but an iterative technique can be employed.

Referring back to the definitions and the gesture "I" example earlier, it can be seen that

5 7t(1)
teot=+

is the expected number of times "+" should occur (given the observation and model) during

a typical onset action of the gesture "I." The total expected motions (+, 0, -) given the

model and observation during the onset action is

T

E 70()
t=1

Note that now, from the actual evidence and these two calculations, a new estimate for the

respective output probability (for up in the onset gesture) can be assigned. Generalizing

for a new estimate of a given output probability,

bj(k) = Ectv t
zt= 1 yi

Similarly, the evidence can be used to develop a new estimate of the probability of a

state transition. Thus,

Initial state probabilities can also be re-estimated through the formula



ri = -1i)

Thus all the components of A, namely A, B, and 7r can be re-estimated. Since either

the forward or backward algorithm can be used to evaluate Pr(O|A) versus the previous

estimation, the above technique can be used iteratively to converge the model to some

limit. While the technique described only handles a single observation sequence, it is easy

to extend to a set of observation sequences. A more formal discussion can be found in

[16, 2, 43].

While the estimation and evaluation processes described above are sufficient for the

development of an HMM system, the Viterbi algorithm provides a quick means of evaluating

a set of HMM's in practice as well as providing a solution for the decoding problem. In

decoding, the goal is to recover the state sequence given an observation sequence. The

Viterbi algorithm can be viewed as a special form of the forward-backward algorithm where

only the maximum path at each time step is taken instead of all paths. This optimization

reduces computational load and additionally allows the recovery of the most likely state

sequence. The steps to the Viterbi are

* Initialization. For all states i, 61(i) = ribi(01); i(i) = 0

* Recursion. From t = 2 to T and for all states j, 6t(j) = Max;[6t_1(i)aggb3(O );

(j) = argmaxi[6t_1(i)aij]

* Termination. P = MaxsesF[6T(8)]; ST = aTgmax,,s,[T(S)

* Recovering the state sequence. From t = T - 1 to 1, st = Ot+1(st+1)

In many HMM system implementations, the Viterbi algorithm is used for evaluation at

recognition time. Note that since Viterbi only guarantees the maximum of Pr(O, SIA) over

all S (as a result of the first order Markov assumption) instead of the sum over all possible

state sequences, the resultant scores are only an approximation. For example, if there are

two mostly disjoint state sequences through one model with medium probability and one

state sequence through a second model with high probability, the Viterbi algorithm would



favor the second HMM over the first. However, [30] shows that the probabilities obtained

from both methods may be typically very close.

In practice, the Viterbi algorithm may be modified with a limit on the lowest numerical

value of the probability of the state sequence, which in effect causes a beam search of

the space. While this modification no longer guarantees optimality, a considerable speed

increase may be obtained. Furthermore, to aid in estimation, the Baum-Welch algorithm

may be manipulated so that parts of the model are held constant while other parts are

trained.

To date, the example using the y motion in the gesture "I" assumed quantization of the

motion into three classes +,0, and -. It is easy to see how, instead of quantizing, the actual

probability density for y motion might be used. However, the above algorithms must be

modified to accept continuous densities. The efforts of Baum, Petrie, Liporace, and Juang

[3, 2, 22, 18] showed how to generalize the Baum-Welch, Viterbi, and forward-backward

algorithms to handle a variety of characteristic densities. In this context, however, the

densities will be assumed to be Gaussian. Specifically,

bg(I) 1 e(0t-Aj)'U'(Ot-ttj)

V(27r)n Io-j|

Initial estimations of p and a may be gotten by dividing the evidence evenly among the

states of the model and calculating the mean and variance in the normal way.

T

[pi = (ZOt
t=1

O-j E(Ot - pg-)(Ot - pj)'
t=1

Whereas flat densities were used for the initialization step before, here the evidence is

used. Now all that is needed is a way to provide new estimates for the output probability.

We wish to weight the influence of a particular observation for each state based on the

likelihood of that observation occurring in that state. Adapting the solution from the

discrete case yields



==

and

_ E- 1 _t(j)(Ot - -)(0t - )

In practice, pu is used to calculate 6T instead of the re-estimated Aj for convenience.

While this is not strictly proper, the values are approximately equal in contiguous iterations

[16] and seem not to make an empirical difference [43]. Since only one stream of data is

being used and only one mixture (Gaussian density) is being assumed, the algorithms above

can proceed normally incorporating these changes for the continuous density case.

4.2 Feature Extraction Given Binarized Images of the Hands

In the previous discussion, the y motion of the right hand, a scalar quantity, was used

to demonstrate the mathematics behind continuous density HMM's. However, there is no

factor excluding the use of vectors (in fact, the equations are written for vector form). Fea-

ture vectors will simply result in multi-dimensional Gaussian densities. Given this freedom,

what features should be used to recognize sign language?

Previous experience has shown that starting simple and evolving the feature set is often

best [36]. Since finger spelling is not being allowed and there are few ambiguities in the

test vocabulary based on individual finger motion, a relatively coarse tracking system may

be used. Based on previous work [23], it was assumed that a system could be designed to

separate the hands from the rest of the scene (explained in the next section). Traditional

vision algorithms could then be applied to the binarized result. Besides the position of the

hands, some concept of the shape of the hand and the angle of the hand relative to horizontal

seemed necessary. Thus, an eight element feature vector consisting of each hand's x and

y position, angle of axis of least inertia, and eccentricity of bounding ellipse was decided

upon. The eccentricity of the bounded ellipse was found by determining the ratio of the

square roots of the eigenvalues that correspond to the matrix



a b/2

b/2 c

where a, b, and c are defined as

a = (x)2d'dy'

b = x'y'dx'dy'

c = (Y')2dxldy'

(x' and y' are the x and y coordinates normalized to the centroid)

The axis of least inertia is then determined by the major axis of the bounding ellipse,

which corresponds to the primary eigenvector of the matrix [15]. Figure 4-4 demonstrates

bounding ellipses fitted to the images of the hands. Note the 180 degree ambiguity in the

angle of the ellipses. To address this problem, the angles were only allowed to range from

-90 to +90 degrees.

4.3 Recovering the Hands from Video

Since real-time recognition is a goal, several compromises were made. The subject wears

distinctly colored gloves on each hand (a yellow glove for the right hand and an orange

glove for the left) and sits in a chair before the camera (see Figure 4-5). Figure 4-6 shows

the view from the camera's perspective and gives an impression of the quality of video that

is used. Color NTSC composite video is captured and analyzed at a constant 5 frames per

second at 320 by 243 pixel resolution on a Silicon Graphics Indigo 2 with Galileo video

board. To initially find each hand, the algorithm scans the image until it finds a pixel of

the appropriate color. Given this pixel as a seed, the region is grown by checking the eight

nearest neighbors for the appropriate color. Each pixel checked is considered to be part

of the hand. This, in effect, performs a simple morphological dilation upon the resultant

image that helps to prevent edge and lighting aberrations. The centroid is calculated as
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Figure 4-4: Bounding ellipses generated by tracking code.
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Figure 4-5: Tracking environment.

a by-product of the growing step and is stored as the seed for the next frame. Given the

resultant bitmap and centroid, second moment analysis is performed as described earlier.

4.4 Selecting an HMM Topology

Previously, a 3 state model was used to represent the gesture "I." While this seems sufficient

to model a simple gesture, such a model will not do as well in general. For more complex

signs such as "table" which involves repetitive motion (onset; up, down, up motion of

the right hand patting the left forearm; and offset), more states are necessary. In fact, a

particular sign requires a different number of states if the gesturer is allowed to abbreviate

the sign. However, through use of skip transitions, where the model has a certain probability

of skipping part of the modeled sign, abbreviated signs can be accommodated (see Figure

4-7).

Skip transitions can also be used to avoid the task of determining the topology of each

sign. For example, the model in Figure 4-7 can be trained to accommodate a three state

sign like "I" through use of the skip states as well as a five state sign like "table," where the

skip transitions would have low weights. Thus, once the minimum and maximum number



Figure 4-6: View from the tracking camera.

Figure 4-7: A more generalized topology
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of states required is determined, a common topology may be used for all signs without too

much loss of power (an added benefit is ease of coding).

4.5 Training an HMM network

When using HMM's to recognize strings of data, such as continuous speech, cursive hand-

writing, or ASL sentences, several methods can be brought to bear for training and recogni-

tion. Generally, individual models are concatenated together to model the larger language

structures. Continuous speech recognition efforts have particularly advanced this field.

In speech, the fundamental unit (at least for these purposes) is the phoneme. Models

for the individual phonemes can be trained separately, but this training is of limited utility

if the goal is to recognize continuous sentences. In particular, the "co-articulation" effects

of several phonemes spoken together may cause phonemes taken from continuous speech to

differ significantly from phonemes spoken in isolation. An initial solution to this problem is

to train on phonemes that have been manually segmented from continuous speech. When

first addressing a task, manual segmentation is often worthwhile, especially when there

is a small amount of training data and statistics on the field are not generally available.

However, manual segmentation often has error and ambiguity. Furthermore, since the goal is

recognition and not segmentation, it does not matter if the final system uses co-articulation

to help recognize the phonemes. In fact, co-articulation is beneficial in that it provides

context for recognizing the words of the sentence. To take advantage of this, two forms of

context dependent training are used, embedded and context training.

Embedded training addresses the issue of segmentation. While initial training of the

models might rely on manual segmentation or dividing the evidence evenly among the

models, embedded training trains the models in situ and allows these boundaries to shift

through a probabilistic entry into the initial states of each model [43].

Context training uses the co-occurrence of two or more fundamental units to allow

recognition of blocks of units, which have more evidence than single units alone. In speech

recognition, two and three phoneme blocks (biphones and triphones) are generally used.

Note that recognition of these blocks might violate the first-order Markov assumption that

was made earlier. However, by unrolling these blocks in the Viterbi process, the first-order



assumption can be preserved.

A final use of context in speech recognition is on the word level. Statistical grammars

relating the probability of the co-occurrence of two or more words can be used to weight

the recognition process. Grammars that associate two words are called bigrams, whereas

grammars that associate three words are called trigrams.

In ASL, the fundamental unit is the sign. Since most signs represent whole words,

context training occurs at the sentence level. In fact, three sign contexts (trisines) might

represent most of a sentence. With finger spelling however, a more direct relation of sign

to phoneme, word to word, and sentence to sentence can be established. This may present

a challenge in higher level language modeling in the future, but a simple solution is simply

to treat finger spelling as if it was on a word level. Statistical grammars may have a place

in helping to merge these two levels of signing. With exclusive word signing, grammars are

still useful. Generally, context training occurs at the model level using the training data

provided. However, grammars are trained separately and can be trained solely on potential

word orders. For example, in speech, a grammar may be trained on the articles from the

Wall Street Journal from the past three years, while speech is only available for a small

fraction of these articles. Thus, grammars might provide additional constraints on the data

and simplify recognition.

A common mistake in neural net and HMM training is to provide too little training

data. How many examples are enough? This, of course, is highly dependent on the task.

In general, the data should be representative of the task domain. Training samples should

include as much variance as is possible and reasonable for the task. Another issue is the

role of context. While the scope of this thesis includes forty signs, trisine contexts may

expand this number to 64,000 three sign combinations. In practice, the constraints of the

language curtail this exponentiation. In fact, given the sentence structure used for the

task proposed, only 2580 distinct trisines and 364 bisines are possible. The largest class

of trisines, "pronoun verb noun," has 1080 members. The largest class of bisines, "verb

noun," has 180 members. Note that while context is a powerful tool, it is not necessary for

each context to be present in the training data for that context to appear as a result from

recognition. Training can be "pooled" from small contexts or even the individual units to

gain evidence for a new context during recognition. Of course, the best situation is for all



contexts to be seen before recognition, but this is not always possible when a recognition

task includes models with a low probability of occurrence.

Weighing these factors against the time and expense of collecting data, 500 sentences

were determined sufficient for an attempt at the task. Separating the database into 400

training and 100 test sentences gives an average of between 20 to 80 training examples of

each sign (depending on class) with a good likelihood that each bisine occurs at least once.



Chapter 5

Experimentation

The results of the handtracking discussed in the last section can be seen in Figure 5-1.

Tracking markers are overlaid on the camera images. The center of the arrow tracks the

right hand while the incomplete diamond tracks the left. The length and width of the

indicators note the length of the major and minor axes of the bounding ellipses while the

angle of the indicators show the angle of the principle axes. Occasionally tracking would

be lost (generating error values of 0) due to lighting effects, but recovery was fast enough

(within a frame) so that this was not a problem. The 5 frame/sec rate was maintained

within a tolerance of a few milliseconds. However, frames where tracking of a hand was lost

were deleted. Thus, a constant data rate was not guaranteed.

Of the 500 sentences collected, six had to be thrown out due to subject error or outlier

signs. Each sign ranged from approximately 1 to 3 seconds in length. No intentional pauses

were given between signs within a sentence, but the sentences themselves were distinct.

Table 5.1: Percentage of words correctly recognized

test on training test on independent test set
grammar 99.4% 97.0%
no grammar 95.9% (93.5% accuracy) 95.0% (90.7% accuracy)

(D=13, S=88, 1=60, N=2470) (D=3, S=22, I=21,N=495)

To avoid the boot strapping segmentation process, the evidence in the sentences was

evenly distributed between the words. Initial estimates for the means and variances of the

output probabilities were provided by iteratively using Viterbi alignment on the training



Figure 5-1: Hand tracking of the second half of a sentence "paper yellow we."
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data and then recomputing the means and variances by pooling the vectors in each segment.

Entropic's Hidden Markov Model ToolKit (HTK) was used as a basis for this step and all

other HMM modeling and training tasks. The results from the initial alignment program

are fed into a Baum-Welch re-estimator, whose estimates are, in turn, refined in embedded

training which ignores any initial segmentation. For recognition, HTK's Viterbi recognizer

was used both with and without a strong grammar based on the known form of the sentences.

Gesture recognition occurs at a rate five times faster than real time. Contexts were not

used, since a similar effect could be achieved with the strong grammar given this data set.

Word recognition results are shown in Table 5.1. When testing on training, all 494

sentences were used for both the test and train sets. For the fair test, the sentences were

divided into a set of 395 training sentences and a set of 99 independent test sentences. The

99 test sentences were not used for any portion of the training. Given the strong grammar

(pronoun, verb, noun, adjective, pronoun), insertion and deletion errors were not possible

since the number and class of words allowed is known. Thus, all errors are substitutions

when the grammar is used (and accuracy equals percent correct). However, without the

grammar the recognizer is allowed to match the observation vectors with any number of

the 40 vocabulary words in any order. Thus, deletion (D), insertion (I), and substitution

(S) errors are possible. The absolute number of errors of each type are listed in Table 5.1

as well. The accuracy measure is calculated by subtracting the number of insertion errors

from the number of correct labels and dividing by the total number of signs. Note that,

since all errors are accounted against the accuracy rate, it is possible to get large negative

accuracies (and corresponding error rates of over 100%). Most insertion errors occurred at

signs with repetitive motion.



Chapter 6

Analysis and Discussion

While these results are far from being sufficient to claim a "working system" for full ASL

recognition, they do show that this approach is promising. The high recognition rate on

the training data indicates that the HMM topologies are sound and that the models are

converging. Even so, the remaining 6.5% error rate (error rates will be based on accuracy

measures) on the "no grammar" case indicates that some fine tuning on the feature set

and model is in order. The 3.0% error rate on the independent test set shows that the

models are generalizing well. However, a close look at the text produced by the recognition

process shows some of the limitations of the feature set. Since the raw positions of the hands

were used, the system was trained to expect certain gestures in certain locations. When this

varied due to subject seating position or arm placement, the system could become confused.

A simple fix to this problem would be to use position deltas in the feature vector instead.

Examining the errors made when no grammar was used shows the importance of finger

position information. Signs like "pack," "car," and "gray" have very similar motions. In

fact, the main difference between "pack" and "car" is that the fingers are pointed down

for the former and clenched in the latter. Since this information was not available to the

model, confusion could occur. While recovering general and/or specific finger position may

be difficult in real time in the current testing area, simple palm orientation could be used

for discrimination instead. In the current system, a simple implementation would be to

paint the back of the gloves a different color than the palm.

A more interesting problem in the no grammar results was that signs with repetitive or

long gestures were often inserted twice for each actual occurrence. In fact, insertions caused



almost as many errors as substitutions. Thus, a sign "shoes" might be recognized as "shoes

shoes," which is a viable hypothesis without a language model. However, both problems

can be addressed using context training or a statistical or rule-based grammar.

Using context modeling as described before may improve recognition accuracy. While

the rule-based grammar explicitly constrained the word order, statistical context modeling

would have a similar effect while leaving open the possibility of different sentence structures.

In addition, bisine and trisine contexts would help fine-tune the training on the phrase level.

However, trisine modeling would not support the tying of the beginning pronoun to the

ending pronoun as the grammar does. If task oriented or domain centered sentences were

used instead of randomly generated sentences, context modeling and a statistical grammar

would improve performance considerably. For example, the random sentence construction

allowed "they like pill gray they" which would have a low probability of occurrence in

everyday conversation. As such, context modeling would tend to suppress this sentence in

recognition unless strong evidence was given for it. In speech and handwriting, a factor of 2

and factor of 4 cut in error rate can be expected for application of contexts and grammars

respectively [36]. While ASL does not have the same hierarchy of components as speech

and handwriting (letters to words to sentences), the factor of 3 decrease in error when the

grammar was applied hints at similar performance increases at the sentence level.

While extending this recognition system to the full 6000 word ASL lexicon would present

unforeseen problems, some basic improvements could be made to begin adapting the system

to the task:

* Use deltas instead of absolute positions. An alternative is to determine some feature

on the subject from which the positions can be measured (for example, the centroid

of the subject).

* Add finger and palm tracking information. Exact position information may not be

necessary. Some simple starting features may be how many fingers are visible along

the contour of the hand and whether the palm is facing up or down.

* Collect appropriate domain or task oriented data and perform context modeling.

These improvements do not address the subject independence issue. Just as in speech,

making a system which can understand different subjects with their own variations of the



language involves collecting data from many subjects. Until such a system is tried, it is

hard to estimate the number of subjects and the amount of data that would comprise

a suitable training database. In general, the training database should span the space of

required input, with many examples of each context. Independent recognition often places

new requirements on the feature set as well. While the modifications mentioned above may

be sufficient initially, the development process is highly empirical.

So far, finger spelling has been ignored. However, incorporating finger spelling into the

recognition system is a very interesting problem. Of course, changing the feature vector to

address finger information is vital to the problem, but adjusting the context modeling is also

of importance. With finger spelling, a closer parallel can be made to speech recognition.

Here, trisine context is at a lower level than grammar modeling and will have more of an

effect. A point of inquiry would be switching between the different modes of communication.

Can trisine context be used across finger spelling and signing? Is it beneficial to switch to a

separate mode for finger spelling recognition? Can natural language techniques be applied,

and if so, can they also be used to address the spatial positioning issues in ASL? The answers

to these questions may be key in creating an unconstrained sign language recognition system.



Chapter 7

Summary and Future Work

An unencumbered way of recognizing a subset of American Sign Language (ASL) through

the use of a video camera has been shown. Using hidden Markov models, low error rates

were achieved on both the training data (.6%) and an independent test set (3%). Instead of

invoking complex models of the hands, simple position and bounding ellipse tracking at 5

frames/sec were used to generate the requisite feature vectors. These feature vectors were

then converted to text by the recognition process at five times faster than real time.

The recognition system presented does not purport to be a solution to machine ASL

recognition. Issues such as finger spelling and the spatial positioning aspects of ASL were

ignored. However, immediate extensions of the system toward this goal have been pre-

sented. In fact, a constrained, person dependent, complete lexicon system may be possible

using the principles described here. Unfortunately, collecting a suitable training database

is prohibitive for the 6000 word task.

An immediate future goal is to train the system on a native ASL signer. Now that

a stable training process has been created, collecting this data will be simpler, and the

experimental results will provide an initial benchmark for the utility of the system.

Research into removing the constraint of using colored gloves for tracking is underway.

While a primitive system has already been created, tracking the hands in front of the face

and across the variable background of clothing has proven difficult with the current low

resolution, single camera environment. Faster hardware, better lighting and calibration,

and more sophisticated algorithms are being applied to create a system which can provide

not only the current level of tracking, but also an improved, more stable set of features for



recognition.

While the current system's components each run in parallel in real time, a direct con-

nection between the two modules has not been established. With this addition, immediate

sentence translation should be possible. Since recognition time increases with the log of the

size of the lexicon, considerable expansion should be possible while still providing immedi-

acy.

Currently the system ignores semantic context given by facial expressions while signing.

By adding expression tracking techniques demonstrated by Essa and Darrell [11], this in-

formation might be recovered in the current system. An active camera to provide higher

resolution "focus of attention" images might also be added to the current apparatus. This

would help alleviate the constraint of constant position when signing as well as provide

better data for the tracking software.
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