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    ABSTRACT 

 

Indian Sign Language Numbers Recognition using Intel RealSense Camera 

Sravani Mudduluru 

  

The use of gesture based interaction with devices has been a significant area of 

research in the field of computer science since many years. The main idea of these kind 

of interactions is to ease the user experience by providing high degree of freedom and 

provide more interactive way of communication with the technology in a natural way. The 

significant areas of applications of gesture recognition are in video gaming, human 

computer interaction, virtual reality, smart home appliances, medical systems, robotics 

and several others. With the availability of the devices such as Kinect, Leap Motion and 

Intel RealSense cameras accessing the depth as well as color information has become 

available to the public with affordable costs. 

 The Intel RealSense camera is a USB powered controller that can be supported 

with few hardware requirements such as Windows 8 and above. This is one such camera 

that can be used to track the human body information similar to the Kinect and Leap 

Motion. It was designed specifically to provide more minute information about the different 

parts of the human body such as face, hand etc. This camera was designed to give users 

more natural and intuitive interactions with the smart devices by providing some feature s 

such as creating 3D avatars, high quality 3D prints, high-quality graphic gaming visuals, 

virtual reality and others.  
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 The main aim of this study is to try to analyze hand tracking information and build 

a training model in order to decide if this camera is suitable for sign language. In this 

study, we have extracted the joint information of 22 joint labels per single hand .We trained 

the model to identify the Indian Sign Language(ISL) numbers from 0-9. Through this study 

we analyzed that multi-class SVM model showed higher accuracy of 93.5% when 

compared to the decision tree and KNN models. 
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CHAPTER 1. INTRODUCTION 
 

With the advancement in technology the ways of user interaction with software has 

been changing from physically operating devices via keyboard to, interacting without any 

touch such as gestures, virtual reality etc. Gesture recognition has been main focus in 

recent times in the field of Computer Science in various areas. For example, Sign 

Language detection and translation, Robot control, medical systems, virtual environment, 

gaming, fitness etc. The main goal of gesture recognition is to build a software or a system 

that is capable of detecting and identifying particular human gestures in order to perform 

actions. This process is based on the mathematical analyzations of the gestures. 

Although much research work has been done since early 70’s, there are a lot of 

improvements going on. Gesture recognition is a challenging task and it is very complex 

to understand because every human has their own way of expressing gestures .So this 

will result in same gesture being expressed in different ways. Different tools such as Data 

glove, Kinect sensor, Intel RealSense camera etc. have been developed in order to track 

the person’s body movements to accurately detect the gestures. Traditional methods in 

computer vision are based on extracting the features by basically converting the 3D hand 

posture into a 2D image, and depend on template matching algorithms. With these 

methods there is lack of information that is needed for efficiently identifying the gestures. 

On the other hand, the information that is extracted directly from the camera in 3D is much 

more useful and efficient. 

Sign language uses gestures to express the meaning by combining hand shapes, 

hand movements, facial expressions and lip patterns. Sign language is not only used by 

deaf people but also by people who cannot physically speak. Sign language translators 
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can help people to communicate with other people through their gestures. There is a wide 

number of sign languages all over the world. Out of all these, American Sign Language 

(ASL) is popularly known [2]. Every sign language has its own symbols, rules and 

grammar. Data gloves are used to detect hand symbols related to sign language with the 

help of sensors. The sensors present in data glove provide very accurate and high quality 

measurements about the hand movement.  But they are not widely used because they 

are expensive. Moreover, they restrict the ease of user interaction because it needs the 

user to be physically connected with the device. Because of improved interactivity and 

user comfort, sign language recognition based on optical sensors with depth information 

has become more popular. Microsoft Kinect, Leap Motion, Intel RealSense are some of 

the devices that provide depth information and support hand gesture recognition. 

 Much work is being already done using the depth information from Microsoft’s 

Kinect and Leap Motion cameras related to sign language. Intel RealSense is the latest 

technology and not much work has been done with it regarding the sign language 

recognition. Intel RealSense Camera, a USB controlled input device was introduced by 

Intel, with the intention of allowing the user to interact with the systems more naturally 

and intuitively. This camera is mainly popular for the features such as face gesture 

recognition, 3D printing and scanning, video conferencing (to change the background) 

etc. The Intel RealSense camera is equipped with one HD camera, one Infrared camera 

and one infrared projector [1] .The Intel RealSense camera specifically is able to track the 

hand movements accurately in order to detect hand gestures that can be used for natural 

interaction. It is able to track 22 joints per single hand. Intel RealSense is capable of 

providing each minute detail of the 22 joint labels detected per hand such as finger 
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foldedness values, radius of the fingers, orientation of joints in both two dimensions and 

three dimensions, etc. The Intel RealSense SDK is able to provide information of a hand 

in different modes such as depth, color, cursor mode, etc. Intel RealSense SDK has a set 

of tracking features with robust API calls inbuilt, such as facial recognition, HandsViewer 

module etc. 

Although the Intel RealSense API is capable of detecting gestures such as a V 

sign, hand wave, pinch and few other gestures, a direct call in the API is not available to 

detect more custom signs. This , thesis will focus on experimenting with the 0 -9 digits 

from Indian Sign Language (ISL) in order to evaluate the performance and accuracy of 

the Intel RealSense camera with respect to hand gesture recognition. The software 

provided by Intel RealSense is capable of extracting the accurate data points that will be 

needed for the study, and this software will help us skip the phases such as preprocessing 

and other computer vision techniques that are needed to remove background noise in the 

image etc. 

The experiments in this project are based on the information that is collected from 

the Intel RealSense camera when the user is performing a particular sign from ISL to 

generate training data. Training data is generated by carefully analyzing which features 

to include and which features to exclude that does not make any difference. This data is 

split into both training and testing data. This data samples are tested with the Multi-class 

SVM in order to evaluate the accuracy of each sign from sign language.  We will be 

focusing on how accurate the camera can be used to identify the gestures in sign 

language and try to analyze the limitations of the camera, analyze the future 

improvements that are possible in these areas etc. The rest of the paper is organized into 
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background, related work, implementation, validation, conclusion and future work. 
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CHAPTER 2. BACKGROUND 
 

This chapter provides information on topics that may be useful for understanding 

further sections of this thesis document. In short this section will discuss Gesture 

recognition, Sign language recognition, Machine learning, Matlab. 

2.1 Sign Language Recognition 
 

Sign language involves non- vocal communication with a combination of hand 

movements, lip patterns and facial expressions in order to identify as a meaningful 

expression.  

History: In early 1500s people with impairments were neglected and nobody respected 

them, because they were unable to communicate with the world. In the 16th century an 

Italian physician Geronimo Cardano, declared that it is necessary to take care of the deaf 

community and they should be taught how to communicate with the world. Juan Pablo de 

Bonet created and published the first book on Sign language in 1620[2]. In 1755, Abbé 

Charles-Michel delÉpée created the first sign language school with no cost to students in 

France. Later they created finger spelling and gestures to recognize phrases and words. 

Later on, different sign languages have been created wherever deaf communities existed 

all over the world. There are different sign languages for example American Sign 

Language, British sign language, Chinese sign language and others. The American Sign 

Language (ASL) [9] is complete and widely used. ASL consists of 26 signs that are used 

to express words from the English language.  Indian Sign Language (ISL) has its own 

grammar and rules [1].
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2.2 Gesture Recognition 
 

In gesture recognition technology a camera reads the movements of the human 

body to communicate with the device that uses gestures as input to control the functions 

of that device. 

The basic steps involved in hand gesture recognition as shown in Figure 2.1 are:  

1. Image Acquisition: User input is captured as a single image or sequence of frames 

with single camera or sometimes two cameras.  

2.  Preprocessing: Preprocessing is the second phase of hand gesture recognition. In 

this process, the input image is divided into regions separated by boundaries by 

eliminating the noise.  

3.  Feature Extraction: Relevant data from the input are extracted as feature vectors 

and these features can be used for classification instead of using the entire input 

data.  

4.  Classification: It is the process of separating the features collected into predefined 

categories. Proper selection of the feature set and recognition algorithms can 

result in good performance of the classifier (accuracy in terms of identifying a 

gesture). 

   Figure 2.1 Basic Steps Involved in Gesture Recognition. 



  

 7 
 

2.3 Machine Learning 
 

Machine learning is defined as the methodology that can “detect patterns in data, 

and then use the uncovered patterns to predict future data, or to perform other kinds of 

decision making under uncertainty” [3]. It has been a significant subfield of Computer 

Science derived from pattern recognition and learning methodologies in Artificial 

Intelligence. In this research work, we have generated the input dataset from different 

users by extracting the joint information with the help of the Intel RealSense camera. 

Signs from the digits 0-9 of Indian Sign Language have been focused for this study. Only 

the significant features that we considered would be beneficial were included in the 

feature vectors by careful analyzations on the features that need to be excluded. Each 

time the user has to wait until the camera is calibrated and can completely detect every 

single joint of a user’s hand, before he starts performing a particular gesture. The data is 

provided by the Intel RealSense SDK from the API function calls. In this process a lot of 

data is written to the files from every frame, and we manually selected one particular 

frame for each gesture per person. Each feature set has the different properties about 22 

different joints such as finger openness value, radius of the finger , Image position values 

and world coordinate values in x, y, z axes. Detailed explanation of all the features that 

are considered for this study will be included in the Methodology section of this document. 

After this process, we tagged the feature set with the label so as to perform supervised 

learning to expect good accuracies. Once this tagging is finished we had a labeled dataset 
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that is ready for the training phase.   

   Figure 2.2 Supervised Learning Model Workflow 

A collection of feature sets should be extracted from the data in order to match the 

prediction process for the expected output. Selecting the dataset that is significant to the 

study out of huge amount of data is a critical task till date in Machine Learning. Once the 

feature set is selected the whole dataset is divided into different percentages of training 

and testing datasets. The training dataset is used to build the classification model to learn 

from the labeled data, and the classifier will be able to make predictions based on the 

given input samples. During the training phase, the classifier tries to learn from features 

as well as the labels and uses this learning in the testing phase to predict the samples 

based on the previous knowledge it has gained. These predictions are compared to the 

actual output to verify the accuracy. 

2.4 Ten-fold Cross Validation 
 

 Cross validation is the process of partitioning the data set into necessary testing 

and training datasets. This is also known as rotational cross validation. In a k-fold cross 
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validation process, the data is divided into equal subsets of k size which are called folds 

[9]. One of these sets will be considered as the test set and the remaining will be the 

training set. Once the model is trained with the dataset and predictions are made, this 

test set will become part of the training set in the next iteration. This process is repeated 

until each fold has got a chance as a test set. For example in a ten-fold cross validation 

the first set will be the testing data and other 9 sets will be training sets. And in the next 

iteration the second set will be the testing set and the remaining will be considered for 

training. This procedure is repeated until every set has got its chance as the test set. 

 

    Figure 2.3 Ten- Fold Cross Validation  

 The main advantage with this process is that effective utilization of the dataset as 

both training and testing datasets and each dataset is used for validation once. This will 

help in building a more accurate prediction model. The more folds, the higher accuracy 

can be expected. 

Ten-fold cross validation is the most used validation method by the researches, because 

of the proven results for having a good balance of producing good predictions given the 

reasonable size of data [6]. 
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2.5 Classifiers  
 

 Classification is the process of categorizing samples into categories that they 

belong to. Classifiers are the algorithms that learn from the previous observations and 

use that knowledge to do further classification. Classification can be of two types: First, 

binary classification categorizes the samples into two classes, while multi-class 

classification categorizing the samples to multiple classes. Classifiers that we analyze for 

this thesis support Multi-class SVM, Decision trees and KNNs.  

 

2.5.1. Multi-class SVM 
 

 Support vector machines were designed for binary classification but many 

problems deal with more than two classes. Multi-class SVM comes into the picture when 

there is a problem that needs more than “two class” classifications. Some of the problems 

where multi-class SVM is used are optical character recognition, speech recognition, 

bioinformatics and others [4]. Usually multi-class classification is achieved by binarizing 

one class versus all other classes. 

Following are the commands to use SVM that are supported in Matlab for this project. 
 
“  G1vAll=(Train_label==u(k)); 

 
models(k) = svmtrain(Train,G1vAll); 

 
svmclassify(models(k),Test); ” 
 

2.5.2 Decision Tree  
 
 A decision tree classifies the data based on the conditions that it forms from the 

root to the leaf nodes. It predicts the target values based on the tree that it forms during 

the training process. It can classify data into true or false, as well as multiple target 
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values. Decision nodes are the nodes in the tree from which the nodes are split based 

on a specific condition. One advantage of using decision trees is that they are non 

parametric, which means they have no assumptions about the distribution and the 

classifier structure. 

 

2.6 Performance Measures 
 
 To validate the model, after the classification is done, the accuracy has to be 

calculated.  

Some of the commonly used metrics in machine learning are accuracy, recall, precision, 

F-score. These values are calculated by considering different combinations of True 

Negatives, True Positives, False Negatives and False Positives. Positives are the 

observations that are selected by the classifier and negative are the observations that are 

not selected by the classifier. 

Accuracy of a classifier is calculated by number of correct observations divided by total 

number of observations. 

Accuracy=                    (True Positives+True Negatives)_______________________ 

(True Positives +False Positives+False Positives+False Negatives). 

Precision is calculated by the total number of positives divided by the number of 

classifications that belong to the positive class [7]. 

Precision =  True Positives__________ 

 (True Positives +False Positives). 

Recall is calculated by the total number of True Negatives divided by the total number of 

classifications that actually belong to the positive class [8]. 
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Recall=  _____     True Positives________ 

(True Positive+ False Negatives) 

The F-Score is the harmonic mean of Recall and Precision and is considered as balance 

for both Recall and Precision.  

F-Score=  2PR____                    

(P+R)  

Where P stands for Precision and R stands for Recall. 

Balanced F-Score: when either of Recall or Precision is very high, then a weight can be 

used to balance the F-Score result. This is called Balanced F-Score. 

2.7 Matlab Machine Learning Toolkit 
 

 Matlab comes with the statistics and Machine Learning toolkit, which supports 

different learning models. The Matlab Coder can even generate C-Code for any given 

classification model. 

Matlab has a feature called Classification Learner App which will easily allow the user to 

select from a variety of the classification models and experiment with the data. Some of 

the models that are included in this app are decision trees, regression, support vector 

machines and others. Matlab provides a nice UI for the user to select and experiment with 

the subsets of feature sets and visualize the results. It automatically trains the model 

given the data and can help users with best model to select. By default this classification 

learner app takes care of overfitting and also gives another option of holdout validation 

[5]. It also allows the users to use cross-validation with different folds to validate the 

model. 
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CHAPTER 3.  RELATED WORK 
 

Although there exists previous work in different sign languages in different 

countries with different devices such as Kinect and Leap Motion, not much work has been 

done using the Intel RealSense camera. But the main motivation for this paper comes 

from the following academic papers with the authors researching different experiments 

with devices in order to perform gesture recognition. Each of these systems are 

developed by implementing different algorithms, features and methodologies etc. This 

section discusses the implementation, results obtained and future scope of the works 

done by the researchers. 

3.1. Real Time Letter Recognition for ASL: (Arabic Sign Language) using Leap Motion 

Controller and Kinect: 

The authors in [11] developed a supervised learning model using two cameras, 

Leap Motion controller and Kinect. They tried to build the model by considering the two 

depth images from both cameras and extracted 3D world coordinate orientations of each 

joint in the hand. With this model the authors claim that users will be able to perform 

actions in front of the camera, and the corresponding letters in ASL are then displayed to 

the user. 

The Kinect and Leap Motion controller were placed at distance of 50 centimeters 

apart from each other. The main features they considered for recognition are bone 

directions along with the features such as the fingertip, bone center point, bone from point, 

and bone to point. 
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  Figure 3.1 Screenshot of Leap Motion Tracking ASL signs 

The authors claim that, with their model they were able to detect 26 out of 28 signs 

with 100 % accuracy. One of the main advantages of this model is that it makes use of 

both cameras, the  Kinect is used for tracking the joints and the Leap Motion is used to 

track more detailed information such as finger details. With the use of the Leap Motion 

they tried to overcome the limitation that they had with the Kinect in terms of finger detail 

information. The main drawback is the fact that the total number of samples during the 

training is very less. 

3.2. Finger Spelling Recognition using Leap Motion Controller 
 

Second is the research done on detecting and analyzing the finger spellings using 

the Leap Motion controller. In this paper, the authors proposed a finger spellings 

recognition model that can detect 16 finger spellings using their own sign language 

recognition model. The rate of recognition for finger spelling can be varied if the order of 

the representation in a decision tree is changed. To obtain the optimal solution they used 

generic algorithms and performed several experiments such as finding crossover 

probabilities, and finding appropriate mutation probabilities [12]. They obtained an 
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accuracy of 82.71% recognition rate. The main drawback of this model is that the decision 

tree is fixed and if the hand movements for the other two finger spellings are also included, 

the recognition rate at different conditional branches will change and affect the accuracy 

of the model.  

3.3 Sign Language Recognition using Leap Motion and Kinect 
 

In this study the authors proposed a model for manual American Sign Language 

alphabets by extracting the features based on finger positions and orientations of the 

fingers [13].In this study the authors compared the depth information from both Kinect 

and Leap Motion controllers and detailed how the combined data can be used to improve 

the recognition rate further. Features that they extracted from the Leap Motion include 

position of finger tips, palm center, hand orientation etc. Features extracted from the 

Kinect sensor are from both depth and color from the 3D points of the hand. Their 

database consisted of 10 different gestures performed by 14 users 10 times each for a 

total of 1400 samples. With the Leap Motion features they prove that, the three features 

when combined together have improved the accuracy to 81 %, than using them 

individually. Kinect provides more information but it is less accurate when compared to 

Leap Motion. 
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CHAPTER 4. METHODOLOGY 
 

This chapter will explain in detail the methodology of how the features were 

extracted and the model was trained and evaluated. We have experimented the model 

with different supervised learning models such as Decision trees and KNNs. 

System Setup: Hardware and Software Requirements: 

The Intel RealSense SDK has particular hardware and software requirements to support 

proper functioning. It requires a USB 3 port to connect the Intel RealSense Camera, 8GB 

free disk space, Windows 8 or 10, and a 64 bit operating systems. We used Microsoft 

Visual Studio 2015 for this project. 

4.1 Gesture Selection 
 

 The gestures that we selected for this study are the digits 0 to 9 from the Indian 

Sign Language. Every sign from 0 to 9 was declared clearly in Indian Sign Language 

grammar, so that there is not much scope for the camera to get confused due to 

ambiguity. All the signs were performed in front of the camera by the user’s hand facing 

towards the camera. The methods that are used for this process are basically provided 

by the Intel RealSense API. We used the Hands Viewer API part for our experiment where 

there are methods that make the processing much easier. The Hand module consists of 

different modes like cursor mode extremities mode and full hand mode. For this study we 

extracted only the information from 1080p HD sensor camera of the device using full hand 

mode tracking. But the Intel RealSense camera also has IR sensors to track depth 

information 

Cursor mode: The cursor mode is very accurate when compared with the other two but 

is limited to support only few gestures. 
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Extremity mode: This will track and shows the entire hand boundary along with the 

fingers but does not provide details about the joints on the fingers. It provides the 

extremities of the hand which include left most, right most, bottom most, top most, center 

point on the hand.  

Full hand mode: It provides the 3 dimensional skeleton of the hand including 22 joints 

information and supports many gestures when compared with other modes.  

This Hand module API tries to focus only on the hand part and normalizes all sizes 

of the hand parts, making the processing easier for further feature extraction. 

 Every user is asked to perform the signs from 0 to 9 in order to extract joint 

information about 22 joints that are present in a single hand. Every user will have to open 

their hands full in order to make sure that the camera is calibrated and then they can 

perform each sign individually. The distance of the user’s hand from the camera is very 

important because the camera tries to calculate all the 22 joints, very close or very far 

can make the user’s hand go out of focus and may result in wrong data. 

 The Intel RealSense camera is capable of detecting one or two hands, and the 

users were able to perform the gestures with either their left hand or their right hand. It 

points to the center of the joint and draws labeled different joint lines for every finger, and 

it is not difficult for the camera to give accurate values.  

 For querying the hand data, first we need to initialize and configure the Hand 

module which is done by initializing the Sense Manager. The Sense Manager is a simple 

interface that supports hand tracking, face detection, voice recognition and others. We 

can configure the Hand module to extract different hand configuration information. For 

example, hand segmentation images, joint tracking information, enable tracked joints, and 
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enable normalized joints etc. 

But since our research is based on joint information we have configured the hand 

module to extract joint information, which uses the function enableTrackedJoints. This 

can provide the rotation and position data of all 22 joints that are detected per hand. We 

have used the following functions in order to extract the joint position and orientation of 

each joint in the x, y and z axes. 

1. IsCalibrated: This will return true if the camera is able to detect all the joints in the 

hand for the user. Once the calibration is completed then an alert is issued. A valid 

calibration is essential for accurate information. 

2. HasTrackedJoints: this function returns true if the tracked joint data exists 

otherwise it returns false. 

3. QuerytrackedJoints: This function will help to retrieve the tracking information from 

the joint. This function uses joint label and joint data as parameters. Joint label is 

the enumerator that has variables such as JOINT_WRIST, JOINT_CENTER, and 

so on to the 22 joint labels per hand as shown in the Figure 1. 
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Figure 4.1 Joint Labels 

And joint data structure will contain the parameters such as confidence, Position World, 

Position Image, local rotation, global orientation and speed. 

4. HasNoramlizedJoints: This function returns true if the normalized joint data is 

present otherwise false. 

5. QueryNormalizedJoints: It returns the data of the normalized joint form the tracked 

skeleton. 

 

4.2 Feature Selection 
  

 For this project we have considered different features that were provided by the 

Intel RealSense SDK, Hands Viewer module. 

Following are the collection of feature vectors that we considered for our feature 
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vectors. 

1. Openness Property: This will range from 0 (all fingers completely closed) to 

100(All fingers wide spread). 

2. Finger Data: Finger data can provide two properties: foldedness value and radius 

of the finger [14]. 

a. Foldedness: This will range from 0(the finger is completely closed towards 

the center of the palm) to 100(the finger is open).    

      

 

 

Figure 4.2 Finger Foldedness 

 

 
b. Radius: This will return the radius of five finger tips of a user measured in 

pixels. It is an approximation of the fingertip mass.  

     

 

 

          Figure 4.3 Fingertip Radius  

3. Position World: Geometric position of a joint in world coordinates in meters 

4. Position Image: Geometric position of a joint in depth coordinates. 

We collected 143 features per sign which are included in the feature vector. 

4.3 Data Collection  
 

 A total of 40 users, both CalPoly students and outsiders, were asked to perform 
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the user experiments with the camera and the information was collected for all the signs 

from 0 to 9. The user was able to see how the hand is being tracked with the help of the 

visualizer provided by the Intel RealSense SDK. This helped the users to see how their 

hand was tracked in real time and how the camera is able to detect the joints and details 

from their hands. A total of 40x10 samples were collected from the participants. The users 

were encouraged to perform the gestures at different angles and with both left and right 

hands.  

  

 

 

 

 

 

 

 

  

    

 

 

Figure 4.4 User hand after Calibration  

Due to the hardware limitations of the camera a few gestures were tracked 

completely wrong. For example the camera had difficulty with the sign 9 when compared 

with any other sign. One reason for that is due to the portion of the hand that is not visible 
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to the camera. Because of this, the camera assumes and tries to approximate the invisible 

fingers and results in incorrect information about the joints. 

 

4.4 Labeling 
  

For this study, the users were allowed to perform in front of the camera to extract 

the features from frames. All the serialized and normalized arrays of values from the 

frames are written to a file. And one set of values is picked manually by observing the set 

carefully. I.e. selecting the set of features that were recorded after the calibration process 

is finished. One limitation of the camera that caused difficulty to the users is that, once 

the user’s hand is very close or far from the camera, it goes out of the boundary and the 

user cannot return to the gesture directly. Instead the user will have to do the calibration 

process again and then perform the gesture to obtain accurate readings. 

 We created two separate data files: one consisted of an array of feature vectors, 

and the other file consisted of the corresponding class names of the feature vector. Since 

the data has a large of number of frames we had to select the feature vectors for each 

symbol for every user and do the labeling. 

4.5 Extraction  
 

 Selecting the features was a difficult and important task in this project. It was 

difficult for us to decide on the features because of the fact that the Intel RealSense API 

can provide a lot of information about a hand. So we analyzed what are the feature points 

that may differ for the 0 to 9 signs that can significantly help the classification process. 

We have tried to experiment with two methods. One way was to collect a dataset by 

capturing the images that contain depth and RGB information, but this method was not 
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feasible for our study because of the limitation to obtain a huge training dataset of images 

for deep learning. Previous research conducted by other researchers had shown that 

deep learning will require a huge dataset and cannot guarantee expected results. So, we 

decided to proceed with creating features sets with the numerical joint values. We decided 

to consider radius of finger, finger foldedness value, and global and local positions of the 

joints in the x, y, and z dimensions. We did some data analytics and removed the values 

from the feature vectors that did not contribute to the classification process. We have 

extracted 121 features per sign per user in the feature vector that we used for training. 

 

 

 

4.6 Training 
 
 For training purposes we chose supervised learning model multi-class SVM. A total 

of 40x10 samples were manually labeled for training the classification model. We 

considered different splits of the training data to compare the performance with respect 

to training size. We have written code in Matlab which will help us change the training and 

testing samples in different proportions and it will also allow us to choose different subsets 

of feature vectors.   

 Matlab has a classification learner app as the feature in the tool that will allow us 

to create a training model easily with different algorithms. With this inbuilt feature we will 

be able to consider different machine learning algorithms and experiment to see the 

variation in the results. But for this project, we had considered multi-class SVM ,decision 

trees, and KNN learning models. 
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4.7 Evaluation  
 

Our algorithm in Matlab is written in such a way that the dataset is divided in the 

different portions for both training and testing samples. But for testing purposes we 

provided the model with unlabeled data to measure the performance of the model. The 

predictions that are made by the classifier are compared to the actual label for that 

particular gesture and verified. All the performance measures are recorded to compare 

the results. 

In addition to calculating the performance based on accuracy we measured the 

accuracy in terms of training time and testing time for the two classifiers and compared 

the results. We calculated accuracy based on the number of True Positives, True 

Negatives, False Positive and False Negatives. The training time will be much higher if 

we consider a real time incremental model which would add all the frames to the training 

set that are being recorded, which will need much more processing power and requires 

extra disk space.  
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CHAPTER 5. RESULTS 
 

 This study generated a significant amount of analyzations to understand the better 

performance of the model as well as the camera. We tried to make different splits of the 

training samples in order to analyze which percentage of training split showed better 

performance. We experimented with different features to analyze which features 

significantly increased the performance as well as to identify which features might not be 

that suitable to consider for this recognition model. We generated confusion matrix for the 

decision tree model with 10 fold validation in order to analyze which class had more 

difficulty in classification. 

 Through this study we found that features such as hand openness values, radius 

of fingertip, foldedness values of the fingertips showed higher accuracy when compared 

to the joint orientation information. But overall the model showed good performance in 

terms of accuracy when all the 121 features were considered. The following tables 

represent different splits of training sizes with different features sets. 

Multi-class SVM:  

Table 5.1  Performance when 1-11 features are considered (openness value, radius of 

five finger tips and foldedness values of five finger). 

Training Size   Accuracy 

    200 99 

    240 99.37 

    280 100 

    320 100 
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    360 100 

 

 

Graph 1 Accuracy vs Training size for features such as radius, openness, finger 

foldedness values 

        Table 5.2  Performance when 121 features are considered  

Training size       Accuracy 

    200 93.5 

    240 93.1 

    280 92.5 

    320 95.0 
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    360 95.0 

 

 

 

 

 

 

 

 

Graph 2  Accuracy vs Training size when whole set of features are considered. 

Table 5.3 Performance when only position values of joints are considered.  

    Training Size        Accuracy 

    200 95 

    240 94.3 

    280 91.6 
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Graph 3 Plot that depicts Accuracy Vs Training size when position values of joints are 

considered. 

 We have found an important observation while experimenting with just the position 

values of the joints, which says “the training data reached maximum number of iterations 

and did not reach convergence”. This means that these features taken alone cannot 

contribute for further classification, and that these particular features can only be 

considered into entire feature sets for classification. 
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 We have found that, features such as hand openness value, radius of fingertips, 

foldedness values of fingers have shown higher accuracy when compared to the results 

with position values of the joints. But overall, we found that when all the features 

considered the model showed an average accuracy of 93.82. 

 We used classification learner app available in Matlab in order to build different 

models such as decision trees and KNNs and calculated the accuracies. Following table 

shows the results for KNNs and Decision tress with different validation folds. 

Table 5.4 Results from classification learner app  

     Number of folds in validation 

 As we can see from the above table, decision trees had shown an average 

accuracy of 84.89% accuracy when compared to KNNs with different validation splits. 

Classifier 5 20 30 50    holdout 

Tree Complex 84.3% 84.8% 84.8% 84.5% 83% 

Tree Medium 84.3% 86.3% 85.3% 86% 83% 

KNN Weighted 51.5% 54.3% 55.1% 54.5% 56% 

KNN Medium 45.5% 49.3% 48.8% 48.0% 49% 

KNN Fine 51.7% 52.8% 53.5% 52.5% 48% 
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 Table 5.5 Confusion matrix for decision tree model 

 

         

We plotted the confusion matrix for the decision tree with 10 fold cross validation 

model. From the above figure, we can analyze that Class ‘0’ and Class ’9’ had the least 

number of true calculations when compared with the other classes. One reason for this 
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is that the features for these symbols are similar. Classes’ 3’ and ‘8’ have distinct 

features with 100% accuracy. 
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CHAPTER 6. FUTURE WORK 
 

 
 The main aim of this study was to determine if the Intel RealSense camera is 

suitable to use for recognizing sign language gestures. In this process we tried to extract 

information provided by the Intel RealSense camera and tried to manually select a set of 

feature vectors from the joint information. This information was used to build training 

models using multi-class SVM, decision trees and KNNS. The entire training and testing 

process was done offline which means we extracted the data from the user first and then 

tried to build the training model in Matlab. One area for future work, is that we can train a 

model in real time while the user is performing experiments in front of the camera. But the 

limitations with this process is that, it needs lot of disk space (as in real time it writes a lot 

of frames) and high processing power (in order to maintain high performance). 

 Another scope of improvement with this trained model is, it can be used to build 

applications that will help users to interact and perform some action based on the 

recognized gesture. This can be expanded to recognize alphabets and other simple 

grammar in sign language. This kind of model can be used to build an application that 

can predict and autofill the words that the user is trying to communicate based on the 

previously interpreted signs by the model. 

 In this study we tried to manually select only one feature set per sign from each 

user, but it can be made more efficient by making this feature selection process automatic.  

Previously we have researched different ways and methods that showed proven results 

from different researchers but we have decided to go forward with the joint information.  

Deep learning usually has shown good performance in terms of identifying even complex 

features that are difficult for the humans to identify. This method will be successful if we 
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have a very huge amount of training data. Due to time limitations and the difficulty of 

obtaining huge training set, we have decided not to move forward with deep learning. 

 One area of research can be to expand the sign language grammar with the help 

of Intel RealSense camera as well as using other sensors such as Kinect or Leap Motion. 

This can help in having more accurate model, and can be further expanded to different 

modules that can identify different sign languages from all around the world. 
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CHAPTER 7. CONCLUSION 
 

  
 This study sought to examine and analyze if the Intel RealSense camera is able  

to identify gestures accurately and efficiently. We developed a simple system to store the 

data that we extracted from different participants and used that to train and test our 

machine learning model. We experimented with Multi-class SVM , Decision trees and 

KNNs to compare which classifier is best suitable. 

 Through our study we were able to analyze that since we considered only numbers 

recognition, the classifier did not have much problems during classification because there 

were no two signs that have similar representations. But if the model is expanded to 

identify the alphabets also, then there might be a chance of confusion between the signs 

that have same representations. The finger spellings of alphabets from ISL are included 

in Appendix C.  

Some of the examples that fall into similar representation category of signs are: 

1. number ‘0’ and alphabet ‘O’.  

2. number ‘2’ and alphabet ‘V’ 

Previously shown studies have experimented with devices such as Kinect, Leap 

Motion, Data glove etc. But, Intel RealSense is latest technology that supports gesture 

recognition. So, we wanted to evaluate the device to see if it can be used for sign 

language recognition. Through this study we found that our model showed a good 

average accuracy of 93.5% and the camera was able to detect important information. Our 

study was limited to just identifying Indian Sign Language(ISL) numbers from 0-9.This 

study will hopefully serve as a foundation for expanding the improvements in sign 

language recognition using this device. Through this study we found out that multi-class 
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SVM classifier has shown better performance when compared with other models. 
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               APPENDICES 

Appendix A 

 
This section will provide the details of the representations of the signs, the code 

that we used in Matlab and the sample training file. These images were obtained from 

Intel RealSense SDK interface while the users were performing gestures. 

 

 

 

 
 
 

 
 

 
 
 

 
 

 
Figure A.1 Sign 0 in ISL 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

Figure A.2 Sign 1 in ISL 
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    Figure A.3 Sign 2 in ISL 

 
 

   
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

    
     

 
Figure A.4 Sign 3 in ISL 
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     Figure A.5 Sign 4 in ISL 

 
 

 
 
 

 
    

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
        Figure A.6 Sign 5 in ISL 
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    Figure A.7 Sign 6 in ISL 

 
 
 

 
 

 
    
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

     Figure A.8 Sign 7 in ISL 
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    Figure A.9 Sign 8 in ISL 

 
 

    
 
     
     Figure A.10 Sign 9 in ISL 
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Figure A.11 Decision tree model for 1 to 11 features from the feature vector with 10 fold 
cross validation. 
 

Op: Openness value 
F1_R: Radius of thumb finger 

F1_F: Foldedness value of thumb finger 
F2_R: Radius of index finger 
F2_F: foldedness value of index finger 

F3_R: Radius of Middle finger 
F3_F: foldedness value of Middle finger 

F4_R: Radius of Ring finger 
F4_F: foldedness value of Ring finger 
F5_R: Radius of Pinky finger 

F5_F: foldedness value of Pinky finger 
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Appendix B  

 
Sample Training Data set of a User 
 

0 -  9, 0.00841647, 28, 0.00841647, 17, 0.00841647, 7, 0.00841647, 1,   0.00841647, 0 

1 - 64, 0.00845668, 25, 0.00845668, 100, 0.00845668, 75, 0.00845668, 8, 0.00845668, 
36 

2- 49, 0.0086112, 0, 0.0086112, 100, 0.0086112, 100, 0.0086112, 0, 0.0086112, 0 

3- 90, 0.00847481, 0, 0.00847481, 100, 0.00847481, 100, 0.00847481, 94, 0.00847481, 
23 

4- 100, 0.00825778, 0, 0.00825778, 100, 0.00825778, 100, 0.00825778, 100, 
0.00825778, 100 

5- 100, 0.00826447, 100, 0.00826447, 100, 0.00826447, 100, 0.00826447, 100, 
0.00826447, 95 

6- 14, 0.00836978, 90, 0.00836978, 0, 0.00836978, 5, 0.00836978, 0, 0.00836978, 100 

7- 20, 0.00844361, 0, 0.00844361, 59, 0.00844361, 0, 0.00844361, 0, 0.00844361, 10, 

8- 51, 0.00853083, 100, 0.00853083, 100, 0.00853083, 95, 0.00853083, 0, 0.00853083, 

0 

9- 0, 0.00854994, 0, 0.00854994, 0, 0.00854994, 0, 0.00854994, 0, 0.00854994, 17 
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Appendix C 
 

 
 

A.12 ISL Alphabets [30]. 
 

 

 

 

 

 

 


