26 research outputs found

    Vision-based methods for state estimation and control of robotic systems with application to mobile and surgical robots

    Get PDF
    For autonomous systems that need to perceive the surrounding environment for the accomplishment of a given task, vision is a highly informative exteroceptive sensory source. When gathering information from the available sensors, in fact, the richness of visual data allows to provide a complete description of the environment, collecting geometrical and semantic information (e.g., object pose, distances, shapes, colors, lights). The huge amount of collected data allows to consider both methods exploiting the totality of the data (dense approaches), or a reduced set obtained from feature extraction procedures (sparse approaches). This manuscript presents dense and sparse vision-based methods for control and sensing of robotic systems. First, a safe navigation scheme for mobile robots, moving in unknown environments populated by obstacles, is presented. For this task, dense visual information is used to perceive the environment (i.e., detect ground plane and obstacles) and, in combination with other sensory sources, provide an estimation of the robot motion with a linear observer. On the other hand, sparse visual data are extrapolated in terms of geometric primitives, in order to implement a visual servoing control scheme satisfying proper navigation behaviours. This controller relies on visual estimated information and is designed in order to guarantee safety during navigation. In addition, redundant structures are taken into account to re-arrange the internal configuration of the robot and reduce its encumbrance when the workspace is highly cluttered. Vision-based estimation methods are relevant also in other contexts. In the field of surgical robotics, having reliable data about unmeasurable quantities is of great importance and critical at the same time. In this manuscript, we present a Kalman-based observer to estimate the 3D pose of a suturing needle held by a surgical manipulator for robot-assisted suturing. The method exploits images acquired by the endoscope of the robot platform to extrapolate relevant geometrical information and get projected measurements of the tool pose. This method has also been validated with a novel simulator designed for the da Vinci robotic platform, with the purpose to ease interfacing and employment in ideal conditions for testing and validation. The Kalman-based observers mentioned above are classical passive estimators, whose system inputs used to produce the proper estimation are theoretically arbitrary. This does not provide any possibility to actively adapt input trajectories in order to optimize specific requirements on the performance of the estimation. For this purpose, active estimation paradigm is introduced and some related strategies are presented. More specifically, a novel active sensing algorithm employing visual dense information is described for a typical Structure-from-Motion (SfM) problem. The algorithm generates an optimal estimation of a scene observed by a moving camera, while minimizing the maximum uncertainty of the estimation. This approach can be applied to any robotic platforms and has been validated with a manipulator arm equipped with a monocular camera

    Robot Navigation in Human Environments

    Get PDF
    For the near future, we envision service robots that will help us with everyday chores in home, office, and urban environments. These robots need to work in environments that were designed for humans and they have to collaborate with humans to fulfill their tasks. In this thesis, we propose new methods for communicating, transferring knowledge, and collaborating between humans and robots in four different navigation tasks. In the first application, we investigate how automated services for giving wayfinding directions can be improved to better address the needs of the human recipients. We propose a novel method based on inverse reinforcement learning that learns from a corpus of human-written route descriptions what amount and type of information a route description should contain. By imitating the human teachers' description style, our algorithm produces new route descriptions that sound similarly natural and convey similar information content, as we show in a user study. In the second application, we investigate how robots can leverage background information provided by humans for exploring an unknown environment more efficiently. We propose an algorithm for exploiting user-provided information such as sketches or floor plans by combining a global exploration strategy based on the solution of a traveling salesman problem with a local nearest-frontier-first exploration scheme. Our experiments show that the exploration tours are significantly shorter and that our system allows the user to effectively select the areas that the robot should explore. In the second part of this thesis, we focus on humanoid robots in home and office environments. The human-like body plan allows humanoid robots to navigate in environments and operate tools that were designed for humans, making humanoid robots suitable for a wide range of applications. As localization and mapping are prerequisites for all navigation tasks, we first introduce a novel feature descriptor for RGB-D sensor data and integrate this building block into an appearance-based simultaneous localization and mapping system that we adapt and optimize for the usage on humanoid robots. Our optimized system is able to track a real Nao humanoid robot more accurately and more robustly than existing approaches. As the third application, we investigate how humanoid robots can cover known environments efficiently with their camera, for example for inspection or search tasks. We extend an existing next-best-view approach by integrating inverse reachability maps, allowing us to efficiently sample and check collision-free full-body poses. Our approach enables the robot to inspect as much of the environment as possible. In our fourth application, we extend the coverage scenario to environments that also include articulated objects that the robot has to actively manipulate to uncover obstructed regions. We introduce algorithms for navigation subtasks that run highly parallelized on graphics processing units for embedded devices. Together with a novel heuristic for estimating utility maps, our system allows to find high-utility camera poses for efficiently covering environments with articulated objects. All techniques presented in this thesis were implemented in software and thoroughly evaluated in user studies, simulations, and experiments in both artificial and real-world environments. Our approaches advance the state of the art towards universally usable robots in everyday environments.Roboternavigation in menschlichen Umgebungen In naher Zukunft erwarten wir Serviceroboter, die uns im Haushalt, im Büro und in der Stadt alltägliche Arbeiten abnehmen. Diese Roboter müssen in für Menschen gebauten Umgebungen zurechtkommen und sie müssen mit Menschen zusammenarbeiten um ihre Aufgaben zu erledigen. In dieser Arbeit schlagen wir neue Methoden für die Kommunikation, Wissenstransfer und Zusammenarbeit zwischen Menschen und Robotern bei Navigationsaufgaben in vier Anwendungen vor. In der ersten Anwendung untersuchen wir, wie automatisierte Dienste zur Generierung von Wegbeschreibungen verbessert werden können, um die Beschreibungen besser an die Bedürfnisse der Empfänger anzupassen. Wir schlagen eine neue Methode vor, die inverses bestärkendes Lernen nutzt, um aus einem Korpus von von Menschen geschriebenen Wegbeschreibungen zu lernen, wie viel und welche Art von Information eine Wegbeschreibung enthalten sollte. Indem unser Algorithmus den Stil der Wegbeschreibungen der menschlichen Lehrer imitiert, kann der Algorithmus neue Wegbeschreibungen erzeugen, die sich ähnlich natürlich anhören und einen ähnlichen Informationsgehalt vermitteln, was wir in einer Benutzerstudie zeigen. In der zweiten Anwendung untersuchen wir, wie Roboter von Menschen bereitgestellte Hintergrundinformationen nutzen können, um eine bisher unbekannte Umgebung schneller zu erkunden. Wir schlagen einen Algorithmus vor, der Hintergrundinformationen wie Gebäudegrundrisse oder Skizzen nutzt, indem er eine globale Explorationsstrategie basierend auf der Lösung eines Problems des Handlungsreisenden kombiniert mit einer lokalen Explorationsstrategie. Unsere Experimente zeigen, dass die Erkundungstouren signifikant kürzer werden und dass der Benutzer mit unserem System effektiv die zu erkundenden Regionen spezifizieren kann. Der zweite Teil dieser Arbeit konzentriert sich auf humanoide Roboter in Umgebungen zu Hause und im Büro. Der menschenähnliche Körperbau ermöglicht es humanoiden Robotern, in Umgebungen zu navigieren und Werkzeuge zu benutzen, die für Menschen gebaut wurden, wodurch humanoide Roboter für vielfältige Aufgaben einsetzbar sind. Da Lokalisierung und Kartierung Grundvoraussetzungen für alle Navigationsaufgaben sind, führen wir zunächst einen neuen Merkmalsdeskriptor für RGB-D-Sensordaten ein und integrieren diesen Baustein in ein erscheinungsbasiertes simultanes Lokalisierungs- und Kartierungsverfahren, das wir an die Besonderheiten von humanoiden Robotern anpassen und optimieren. Unser System kann die Position eines realen humanoiden Roboters genauer und robuster verfolgen, als es mit existierenden Ansätzen möglich ist. Als dritte Anwendung untersuchen wir, wie humanoide Roboter bekannte Umgebungen effizient mit ihrer Kamera abdecken können, beispielsweise zu Inspektionszwecken oder zum Suchen eines Gegenstands. Wir erweitern ein bestehendes Verfahren, das die nächstbeste Beobachtungsposition berechnet, durch inverse Erreichbarkeitskarten, wodurch wir kollisionsfreie Ganzkörperposen effizient generieren und prüfen können. Unser Ansatz ermöglicht es dem Roboter, so viel wie möglich von der Umgebung zu untersuchen. In unserer vierten Anwendung erweitern wir dieses Szenario um Umgebungen, die auch bewegbare Gegenstände enthalten, die der Roboter aktiv bewegen muss um verdeckte Regionen zu sehen. Wir führen Algorithmen für Teilprobleme ein, die hoch parallelisiert auf Grafikkarten von eingebetteten Systemen ausgeführt werden. Zusammen mit einer neuen Heuristik zur Schätzung von Nutzenkarten ermöglicht dies unserem System Beobachtungspunkte mit hohem Nutzen zu finden, um Umgebungen mit bewegbaren Objekten effizient zu inspizieren. Alle vorgestellten Techniken wurden in Software implementiert und sorgfältig evaluiert in Benutzerstudien, Simulationen und Experimenten in künstlichen und realen Umgebungen. Unsere Verfahren bringen den Stand der Forschung voran in Richtung universell einsetzbarer Roboter in alltäglichen Umgebungen

    A hybrid approach to simultaneous localization and mapping in indoors environment

    Get PDF
    This thesis will present SLAM in the current literature to benefit from then it will present the investigation results for a hybrid approach used where different algorithms using laser, sonar, and camera sensors were tested and compared. The contribution of this thesis is the development of a hybrid approach for SLAM that uses different sensors and where different factors are taken into consideration such as dynamic objects, and the development of a scalable grid map model with new sensors models for real time update of the map.The thesis will show the success found, difficulties faced and limitations of the algorithms developed which were simulated and experimentally tested in an indoors environment

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    Secure indoor navigation and operation of mobile robots

    Get PDF
    In future work environments, robots will navigate and work side by side to humans. This raises big challenges related to the safety of these robots. In this Dissertation, three tasks have been realized: 1) implementing a localization and navigation system based on StarGazer sensor and Kalman filter; 2) realizing a human-robot interaction system using Kinect sensor and BPNN and SVM models to define the gestures and 3) a new collision avoidance system is realized. The system works on generating the collision-free paths based on the interaction between the human and the robot.In zukünftigen Arbeitsumgebungen werden Roboter navigieren nebeneinander an Menschen. Das wirft Herausforderungen im Zusammenhang mit der Sicherheit dieser Roboter auf. In dieser Dissertation drei Aufgaben realisiert: 1. Implementierung eines Lokalisierungs und Navigationssystem basierend auf Kalman Filter: 2. Realisierung eines Mensch-Roboter-Interaktionssystem mit Kinect und AI zur Definition der Gesten und 3. ein neues Kollisionsvermeidungssystem wird realisiert. Das System arbeitet an der Erzeugung der kollisionsfreien Pfade, die auf der Wechselwirkung zwischen dem Menschen und dem Roboter basieren

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen für mobile Roboter und Multikopter Zuverlässige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein für den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlässlich, Änderungen in der Umgebung und die Unsicherheit bei der Aktionsausführung zu berücksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung für eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen Ansätzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen Fällen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein häufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgeführten Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experimente sowohl in der Simulation als auch mit Robotern durchgeführt. Der erste Teil dieser Dissertation behandelt Planungsmethoden für mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung für die lokale Multiresolutionsplanung ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleistung verfügen. Durch die Reduktion der Planungskomplexität mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die Planungskomplexität zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgeführt. Die Granularität der resultierenden Pläne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie für Multikopter entwickelt, von Missionsplanern für verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Beschleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfreiheit und Länge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berücksichtigung von Sensorcharakteristika. Ergänzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der künstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nähernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von Gebäuden und Schornsteinen sowie die automatisierte Inventur von Lägern

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    The Complete Reference (Volume 4)

    Get PDF
    This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features.info:eu-repo/semantics/publishedVersio

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]
    corecore