
P L A N N I N G A N D N AV I G AT I O N I N D Y N A M I C E N V I R O N M E N T S
F O R M O B I L E R O B O T S A N D M I C R O A E R I A L V E H I C L E S

D I S S E RTAT I O N

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

M AT T H I A S N I E U W E N H U I S E N

aus Münster

Bonn, November 2018

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaft-
lichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erster Gutachter: Prof. Dr. Sven Behnke

Zweiter Gutachter: Dr. Martin Saska

Tag der Promotion: 02.10.2019

Erscheinungsjahr: 2019

A B S T R A C T

Reliable and robust navigation planning and obstacle avoidance is
key for the autonomous operation of mobile robots. In contrast to
stationary industrial robots that often operate in controlled spaces,
planning for mobile robots has to take changing environments and
uncertainties into account during plan execution. In this thesis, plan-
ning and obstacle avoidance techniques are proposed for a variety
of ground and aerial robots. Common to most of the presented ap-
proaches is the exploitation of the nature of the underlying problem
to achieve short planning times by using multiresolution or hierarchi-
cal approaches. Short planning times allow for continuous and fast
replanning to take the uncertainty in the environment and robot mo-
tion execution into account. The proposed approaches are evaluated
in simulation and real-world experiments.

The first part of this thesis addresses planning for mobile ground
robots. One contribution is an approach to grasp and object removal
planning to pick objects from a transport box with a mobile manip-
ulation robot. In a multistage process, infeasible grasps are pruned
in offline and online processing steps. Collision-free endeffector tra-
jectories are planned to the remaining grasps until a valid removal
trajectory can be found. An object-centric local multiresolution rep-
resentation accelerates trajectory planning. The mobile manipulation
components are evaluated in an integrated mobile bin-picking sys-
tem.

Local multiresolution planning is employed for path planning for
humanoid soccer robots as well. The used Nao robot is equipped with
only relatively low computing power. A resource-efficient path plan-
ner including the anticipated movements of opponents on the field
is developed as part of this thesis. In soccer games an important sub-
problem is to reach a position behind the ball to dribble or kick it to-
wards the goal. By the assumption that the opponents have the same
intention, an explicit representation of their movements is possible.
This leads to paths that facilitate the robot to reach its target position
with a higher probability without being disturbed by the other robot.
The evaluation for the planner is performed in a physics-based soccer
simulation.

The second part of this thesis covers planning and obstacle avoid-
ance for micro aerial vehicles (MAVs), in particular multirotors. To
reduce the planning complexity, the planning problem is split into a
hierarchy of planners running on different levels of abstraction, i.e.,
from abstract to detailed environment descriptions and from coarse
to fine plans. A complete planning hierarchy for MAVs is presented,

iii

from mission planners for multiple application domains to low-level
obstacle avoidance. Missions planned on the top layer are executed by
means of coupled allocentric and egocentric path planning. Planning
is accelerated by global and local multiresolution representations. The
planners can take multiple objectives into account in addition to ob-
stacle costs and path length, e.g., sensor constraints.

The path planners are supplemented by trajectory optimization to
achieve dynamically feasible trajectories that can be executed by the
underlying controller at higher velocities. With the initialization tech-
niques presented in this thesis, the convergence of the optimization
problem is expedited. Furthermore, frequent reoptimization of the ini-
tial trajectory allows for the reaction to changes in the environment
without planning and optimizing a complete new trajectory.

Fast, reactive obstacle avoidance based on artificial potential fields
acts as a safety layer in the presented hierarchy. The obstacle avoid-
ance layer employs egocentric sensor data and can operate at the data
acquisition frequency of up to 40Hz. It can slow-down and stop the
MAV in front of obstacles as well as avoid approaching dynamic ob-
stacles.

We evaluate our planning and navigation hierarchy in simulation
and with a variety of MAVs in real-world applications, especially out-
door mapping missions, chimney and building inspection, and auto-
mated stocktaking.

iv

Z U S A M M E N FA S S U N G

Zuverlässige und sichere Navigationsplanung und Hindernisvermei-
dung ist ein wichtiger Baustein für den autonomen Einsatz mobiler
Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der
Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist
es in der mobilen Robotik unerlässlich, Änderungen in der Umge-
bung und die Unsicherheit bei der Aktionsausführung zu berücksich-
tigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung
und Hindernisvermeidung für eine Reihe unterschiedlicher Boden-
und Flugroboter entwickelt und vorgestellt. Den meisten beschriebe-
nen Ansätzen ist gemein, dass die Struktur der zu lösenden Proble-
me ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häu-
fig ist es möglich, mit abnehmender Genauigkeit zu planen desto
weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser An-
satz wird lokale Multiresolution genannt. In anderen Fällen ist eine
Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit
möglich. Die damit zu erreichende Beschleunigung der Planung er-
möglicht ein häufiges Neuplanen und somit die Reaktion auf Ände-
rungen in der Umgebung und Abweichungen bei den ausgeführten
Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experi-
mente sowohl in der Simulation als auch mit Robotern durchgeführt.

Der erste Teil dieser Dissertation behandelt Planungsmethoden für
mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus
einer Transportkiste zu greifen und zur Weiterverarbeitung zu ei-
nem Arbeitsplatz zu liefern, wurde ein System zur Planung mögli-
cher Greifposen und hindernisfreier Endeffektorbahnen entwickelt.
In einem mehrstufigen Prozess werden mögliche Griffe an bekannten
Objekten erst in mehreren Vorverarbeitungsschritten (offline) und an-
schließend, passend zu den erfassten Objekten, online identifiziert.
Zu den verbleibenden möglichen Griffen werden Endeffektorbah-
nen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnpla-
nung wird durch eine objektzentrische lokale Multiresolutionskar-
te beschleunigt. Die Einzelkomponenten werden in einem prototy-
pischen Gesamtsystem evaluiert.

Eine weitere Anwendung für die lokale Multiresolutionsplanung
ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kom-
men Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleis-
tung verfügen. Durch die Reduktion der Planungskomplexität mit
Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Pla-
ners ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Be-
wegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt
der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer gu-

v

ten Schussposition hinter dem Ball. Die Tatsache, dass die Gegen-
spieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über
mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden
möglich, die das Risiko, durch einen Gegenspieler passiv geblockt
zu werden, reduzieren, so dass die Schussposition schneller erreicht
wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsi-
mulation evaluiert.

Im zweiten Teil dieser Dissertation werden Methoden zur Planung
und Hindernisvermeidung von Multikoptern behandelt. Um die Pla-
nungskomplexität zu reduzieren, wird das zu lösenden Planungs-
problem hierarchisch zerlegt und durch verschiedene Planungsebe-
nen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere
Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Bei-
spiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht,
die mehr den Sensordaten entspricht und werden mit höherer Fre-
quenz ausgeführt. Die Granularität der resultierenden Pläne verfei-
nert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Disserta-
tion wurde eine komplette Planungshierarchie für Multikopter entwi-
ckelt, von Missionsplanern für verschiedene Anwendungsgebiete bis
zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter
Missionen werden durch zwei gekoppelte Planungsebenen erstellt,
erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden
ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Be-
schleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfrei-
heit und Länge der Pfade können auf diesen Planungsebenen weitere
Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berück-
sichtigung von Sensorcharakteristika.

Ergänzt werden die Planungsebenen durch die Optimierung von
Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte
Flugdynamik und erlauben damit ein schnelleres Verfolgen der op-
timierten Pfade. Um eine schnelle Konvergenz des Optimierungspro-
blems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initia-
lisierung entwickelt. Des Weiteren kommen Methoden zur schnellen
Verfeinerung des Optimierungsergebnisses bei Änderungen im Welt-
zustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hin-
dernisse oder Abweichungen von der Flugbahn, ohne eine komplette
Flugbahn neu zu planen und zu optimieren.

Die Sicherheit des durch die Planungs- und Optimierungsebenen
erstellten Pfades wird durch eine schnelle, reaktive Hindernisver-
meidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf
der Methode der künstlichen Potentialfelder. Durch die Verwendung
dieser schnellen Methode kombiniert mit der Verwendung von nicht
oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht
die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von
den Sensoren wahrgenommen wurden. Dabei kann der Multikopter

vi

abgebremst oder gestoppt werden, und sich von nähernden Hinder-
nissen entfernen.

Die Komponenten der Planungs- und Hindernisvermeidungshier-
archie werden sowohl in der Simulation evaluiert, als auch in in-
tegrierten Gesamtsystemen mit verschiedenen Multikoptern in rea-
len Anwendungen. Dies sind insbesondere die Kartierung von Innen-
und Außenbereichen, die Inspektion von Gebäuden und Schornstei-
nen sowie die automatisierte Inventur von Lägern.

vii

A C K N O W L E D G M E N T S

First of all, I would like to thank my supervisor Prof. Dr. Sven Behnke
for the opportunity to write my thesis in the Autonomous Intelligent
Systems group. I enjoyed the opportunity to work in the interesting
and emerging field of robotics, especially aerial robotics.

I’d like to thank my colleagues David Droeschel, Dirk Holz, Jan
Quenzel, Marius Beul, and Sebastian Houben for the close collabo-
ration in all aerial robotics related projects that facilitated a major
part of the research conducted in this thesis. The fruitful discussions
about challenges and solutions within the projects strongly facilitated
the development of working robotic systems upon which the work in
this thesis could build. Additional thanks goes to Marius Beul for as-
sisting in all flight related experiments as a safety pilot, even if the
experiments were not part of his research interests.

For the quick assistance whenever technical problems occurred, or
support during experiments and test campaigns was necessary, I’d
like to thank Michael Schreiber. He quickly solved virtually any prob-
lem and offered help from building components needed for testing,
over transport of equipment, to organizing test space.

I’d like to thank Hannes Schulz and Max Schwarz for many inter-
esting discussions, in particular about software tools and writing.

I am grateful for the opportunity to experience the highly motivat-
ing and challenging atmosphere of many international robotics com-
petitions as part of my research. For that I would like to thank the
numerous members of the team NimbRo for working together as a
team at several RoboCups in the @Home and soccer leagues, the Eu-
ropean Robotics Challenges (EuRoC), and the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC).

Special thanks go to my family which always supported me along
my way towards finalizing this thesis.

ix

C O N T E N T S

1 introduction 1
1.1 List of Contributions . 4
1.2 Thesis Outline . 4
1.3 Publications . 6

2 path planning and planning representations 9
2.1 Uniform Representations 9
2.2 Global Multiresolution 10
2.3 Local Multiresolution . 11
2.4 Path Planning . 13

I grasp and motion planning for ground robots 17
3 continuous motion planning based on projected

intentions 21
3.1 Related Work . 22
3.2 Robot Platform . 23
3.3 Path Planning Representations 24
3.4 Dynamic Planning with Intention Projection 29
3.5 Evaluation . 32
3.6 Conclusion . 34

4 grasp and trajectory planning for mobile bin-
picking 35
4.1 Related Work . 36
4.2 System Overview . 38
4.3 Shape Primitive Detection and Object Recognition . . . 39
4.4 Grasping of Shape Primitive Compounds 39
4.5 Evaluation . 45
4.6 Conclusion . 48

II multi-layered navigation for micro aerial ve-
hicles 51

5 hierarchical continuous 3d planning for mavs 53
5.1 Related Work . 56
5.2 System Setup . 60
5.3 Planning and Navigation Hierarchy 65

6 mission planning 69
6.1 Planning for Outdoor Mapping Missions 69
6.2 Planning for Warehouse Inventory Missions 71
6.3 Coverage Planning for Chimney Inspection Missions . 73
6.4 Mapping of Building Interiors from the Outside 74

7 allocentric and egocentric path planning 77
7.1 Global Path Planning . 77

7.1.1 Obstacle Cost Models 79

xi

xii contents

7.1.2 Specific Cost Models 80
7.1.3 Path Planning in Sensor Field-of-View 84

7.2 Local Path Planning . 88
8 trajectory optimization 93

8.1 Problem Formulation . 93
8.2 Initialization . 95
8.3 FoV-aware Trajectory Optimization 100
8.4 Frequent Reoptimization 102

9 fast reactive obstacle avoidance 105
9.1 Artificial Potential Fields 105
9.2 Obstacle Avoidance with Trajectory Prediction 107
9.3 Learning a Motion Model 110
9.4 Obstacle Avoidance with Direction-based Velocity Re-

duction . 112
10 evaluation 115

10.1 Simulation Environments 115
10.2 Path Planning . 116
10.3 Trajectory Optimization 123
10.4 Obstacle Avoidance . 140
10.5 Integrated Systems . 142

11 conclusion 151

III discussion and future work 155

lists of figures , tables , and videos 161

bibliography 169

1
I N T R O D U C T I O N

Within the last decade robots have started to become more and more
present in everyday environments. Starting with relatively simple
vacuum cleaning robots (Jones, 2006) and guide robots in museums
(NMA, 2016) or shops (Gross et al., 2009), robotic systems left the
controlled environments of industrial manufacturing cells. Current
developments include self-driving cars (Ulrich, 2016)—with driver as-
sistance systems that keep cars in a lane and control their velocity rel-
ative to obstacles already on the road (P. E. Ross, 2015)—and flying
robots for measurements (Hößler and Landgraf, 2014) and delivery
of small objects (Beer, 2016).

In contrast to the controlled environments in manufacturing cells,
where robots are usually stopped when a human enters their work-
space, the new application scenarios impose new challenges for robot
navigation. When deploying autonomous robots in environments not
solely controlled by the robot itself—e.g., spaces shared with humans
or other agents not connected with the robot—accounting for the dy-
namics is key for safe operation and effective mission completion.

Even in structured manufacturing environments the demand for
more flexible robot use in shared workspaces is rising (Szulewski,
2017). Furthermore, parts processed by humans or other machinery
are nor necessarily delivered to a robot work cell in a defined pose nei-
ther isolated from each other. Hence, even in these so far controlled
environments dealing with uncertainty and dynamics becomes nec-
essary for efficient processes.

In other applications the environment itself might not be known in
advance or just in a very coarse manner. Maps of the environment
might just be built at the time the robot perceives a part of the envi-
ronment for the first time. Instead of starting with empty maps, they
can be based on initial models that are refined when observed. Exam-
ples for such models are coarse building outlines or bounding shapes
of objects.

To address these challenges robots require abilities to perceive the
state of their environment, plan a sequence of actions to achieve their
goal or even fulfill multiple objectives, and to react on changes in the
world or deviations from the planned action sequence. In this thesis,
we address the planning and action generation parts in this sense-
plan-act loop.

We categorize aforementioned changes in the environment model
and deviations into four major classes with some typical attributes:

1

2 introduction

Figure 1.1: Static and semi-static objects can be collision hazards even in
known environments: doors can change the environment signif-
icantly, new obstacles can appear between visits of an area, and
small objects might not have been perceived during initial map-
ping of an environment.

large scale environment changes Major parts of the envi-
ronment model change, e.g., due to new perceptions of so
far unknown areas or changed topology caused by blocked or
newly opened passages. These changes often require complete
new global planning. Typically, such large changes appear over
long time scales or can be perceived well in advance. Hence,
only a relatively slow reaction is required. Finding new global
solutions might require a significant amount of time.

local environment and robot state changes Locally per-
ceived changes of the environment that can often be incorpo-
rated into the current action sequence by local deviations from
the global plan. These include smaller obstacles that cannot be
perceived from far away or low-frequency changes of the en-
vironment. The changes happen typically on a medium time
scale and reactions—and consequently planning times—have to
be quicker than for large scale changes. Due to the locality the
search-space for a solution is typically smaller.

dynamic changes of environment or robot state This
class subsumes quick dynamic changes in the world model—
including obstacles that are static but can only be perceived
short before an immanent collision—and deviations from the
planned action sequence by external influences. These changes
typically require an immediate reaction to recover to a safe
state. Quick action selection can typically be achieved by
leaving restoration of a consistent action sequence from the
safe state to achieving a goal to higher-level components.

small deviations from planned action sequence This
class of changes occurs continuously and has to be perceived
and corrected immediately. Usually this is performed by low-
level control layers with only very limited world knowledge.

introduction 3

Figure 1.2: The ability to navigate in dynamic environments is key for robots
in many applications. Persons or other robots can move unpre-
dictably or block ways. Also, objects might move, e.g., when
clearing a pile of unordered objects from a box.

This class of changes is only addressed indirectly by corrections
of larger deviations in the other classes in this thesis.

Figure 1.1 shows some examples of possible changes in relatively
static environments. Examples for these changes are doors and gates
that can be opened or closed, new obstacles can appear as fencing
or moved furniture, vegetation changes over time, and environment
models can be incomplete. Common to these changes is that they are
typically slow and predictable and often do not change much during
the duration of a single task or mission.

Dynamic changes in the environment are caused by moving per-
sons or animals in the workspace of the robot, other autonomous
agents, or (unintended) modifications caused by the robot actions,
e.g., by manipulating objects in a pile. These changes are typically
so fast that they have to be taken into account during the robot task
execution. To some extent these changes can be predicted by com-
munication or dynamic world models, but in general the prediction
is only valid for a short period of time, if at all. Figure 1.2 depicts
cases of dynamic changes of the environment. In addition, the execu-
tion of planned actions is often not perfect such that a robot deviates
from an initial plan with increasing task duration. This might render
executing the initial plan infeasible after a while.

We address the uncertainties in the environment and robot state by
reducing the complexity of the planning problems to facilitate short
planning times and allow for frequent replanning based on updated
environment models and robot state. Furthermore, if we can reason
about the nature of the dynamics, this knowledge can aid robot navi-
gation.

In the following chapters, we will present planning methods for
ground and flying robots that implicitly or explicitly address the dy-
namic nature of the environment.

4 introduction

1.1 list of contributions

In this thesis, we present integrated ground and aerial robotic systems
for a variety of application domains. The focus of this thesis lies on
the navigation parts of these systems. The key contributions are:

• Planning with an explicit representation of other robot move-
ments for the Nao. To achieve this with the very limited pro-
cessing power of the Nao V3, we employ local multiresolution
techniques to represent space and time dimensions.

• Employing local multiresolution obstacle representations and
multi-stage planning to speed up mobile bin-picking. Grasp and
trajectory planning for an anthropomorphic mobile robot are
split into offline and online planning stages. We use an object-
centric local multiresolution representation to detect collisions.

• A complete 3D planning and navigation hierarchy for MAVs.
The hierarchy starts with slower, abstract layers. The plans are
refined in layers with increasing frequency and less abstraction
to generate motion commands on the lowest layer.

• Tailored mission planners for new MAV applications. The appli-
cations are 3D mapping, chimney inspection, and autonomous
stocktaking in a warehouse. We evaluate integrated MAV sys-
tems in these application domains.

• Fast trajectory optimization for MAVs that facilitates frequent
reoptimization to react on perceptions and disturbances. A good
initialization of the optimization problem accelerates the initial
convergence to a feasible allocentric trajectory that can be fol-
lowed open-loop by a low-level controller. By continuous reop-
timization the trajectories are improved based on updated mod-
els. Local multiresolution in the time-dimension facilitates a re-
optimization frequency comparable to the control frequency.

• Planning and optimization for additional objectives. These ob-
jectives include restricting MAV movements to the sensor field
of view (FoV) and keeping sufficient structure required for lo-
calization in sight.

• Fast reactive obstacle avoidance for MAVs that operates at the
obstacle sensor frequency. A low-level obstacle avoidance layer
quickly reacting on sensor inputs ensures safe flight indepen-
dent of good localization and correct high-level plans.

1.2 thesis outline

This thesis is divided into two major parts. After a general overview
over the topic of the thesis, the first part covers planning for ground

1.2 thesis outline 5

robots, and the second part covers planning and navigation for MAVs.
The chapters in Part I are self-contained, including related work and
discussion of the results. Part II follows a different structure with a
joint discussion of related work and results.

In detail this thesis is structured as follows:
After this introduction chapter, in the next chapter we give an

overview over some planning representations and introduce the con-
cept of multiresolution. Furthermore, we describe basics of the em-
ployed planning algorithms. These basics are employed throughout
this thesis at multiple occurrences.

In Part I, we focus on ground robots. There, we give an overview
over planning for anthropomorphic ground robots.

As an example application for dynamics-aware path planning, we
developed intention projection-based planning in a soccer domain in
Chapter 3. Following obstacle-free paths towards the ball and avoid-
ing opponents while dribbling are key skills to win soccer games.
These tasks are challenging as the environment in soccer games is
highly dynamic and the opponents will often be very close or de-
liberately blocking the path. Thus, exact plans will likely become
invalid in short time and continuous replanning is necessary. Con-
sequently, path planning algorithms have to be fast. We employ local
multiresolution planning representations incorporating a time dimen-
sion, and we predict the opponent’s movement by projecting the plan-
ning robot’s intentions to the opponents.

In Chapter 4, we describe our approach to grasping individual ob-
jects from an unordered pile in a box with an anthropomorphic mo-
bile robot. We present a new framework to grasp objects composed
of shape primitives like cylinders and spheres. We implement object
grasping based on the shape primitives in an efficient multi-stage pro-
cess that successively prunes infeasible grasps in tests of increasing
complexity. Grasps and arm motions are planned in an efficient lo-
cal multiresolution height map. With our approach, our service robot
can grasp object compounds from piles of objects, e.g., in transport
boxes. All components are integrated and evaluated in a bin picking
and part delivery task.

In Part II, we extend these techniques to a hierarchical planning
and obstacle avoidance system for MAV navigation in 3D space.

We address multiple application scenarios for autonomous MAV
flight. We motivate these applications in Chapter 5. The chapter con-
tains the discussion of related work to our approaches to autonomous
MAV operation. We give an overview of our complete hierarchy for
planning and navigation from mission planning to obstacle avoidance.
All employed MAV systems are described there as well.

In Chapter 6, we detail our application-specific mission planners.
We present planners for outdoor mapping missions, automated stock-
taking, and the inspection of chimneys and buildings. The allocentric

6 introduction

and egocentric path planners for executing the missions are presented
in Chapter 7. This includes multiresolution planning and planning in
the sensor FoV for safe navigation.

For the generation of dynamically smooth trajectories, we devel-
oped a trajectory optimization layer built upon our path planner.
This layer is detailed in Chapter 8. Here, we present initialization
techniques for faster convergence as well as frequent multiresolution
reoptimization of the trajectory during the flight.

Our fast, reactive obstacle avoidance—acting as a low-level safety
layer—is described in Chapter 9. On this safety layer, we employ artifi-
cial potential fields to quickly react on newly perceived and dynamic
obstacles to slow-down the MAV or push it away from obstacles.

We evaluate the individual components and the integrated systems
in Chapter 10, followed by a discussion of Part II in Chapter 11.

In Part III, we discuss the work presented in both major parts and
give directions for future research.

A list with links to all referenced videos in this thesis can be found
online at www.nieuwenhuisen.de/thesis.

1.3 publications

Major parts of this thesis have been published before as peer-reviewed
conference papers or journal articles. The relevant publications per
part are listed here.

Part I Grasp and motion planning for ground robots

• Matthias Nieuwenhuisen, Ricarda Steffens, and Sven Behnke
(2012a). “Local multiresolution path planning in soccer games
based on projected intentions.” In: RoboCup 2011: Robot Soccer
World Cup XV. Ed. by Thomas Röfer, N. Michael Mayer, Jesus
Savage, and Uluç Saranlı. Vol. 7416. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 495–506

• Matthias Nieuwenhuisen, Jörg Stückler, Alexander Berner, Rein-
hard Klein, and Sven Behnke (2012b). “Shape-primitive based
object recognition and grasping.” In: Proceedings of the German
Conference on Robotics (ROBOTIK)

• Matthias Nieuwenhuisen, David Droeschel, Dirk Holz, Jörg
Stückler, Alexander Berner, Jun Li, Reinhard Klein, and Sven
Behnke (2013a). “Mobile bin picking with an anthropomorphic
service robot.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA)

Chapter 3 extends the work of a supervised Bachelor thesis on mul-
tiresolution path planning in dynamic environments for the Standard
Platform League (SPL) by Steffens (2010).

www.nieuwenhuisen.de/thesis

1.3 publications 7

Part II Multi-layered navigation for micro aerial vehicles

• Matthias Nieuwenhuisen, David Droeschel, Johannes Schnei-
der, Dirk Holz, Thomas Läbe, and Sven Behnke (2013b). “Mul-
timodal obstacle detection and collision avoidance for micro
aerial vehicles.” In: Proceedings of the European Conference on Mo-
bile Robots (ECMR)

• Matthias Nieuwenhuisen, Mark Schadler, and Sven Behnke
(2013c). “Predictive potential field-based collision avoidance for
multicopters.” In: International Arch. Photogramm. Remote Sens.
Spatial Inf. Sci. (ISPRS). Vol. XL-1/W2, pp. 293–298

• Matthias Nieuwenhuisen and Sven Behnke (2014a). “Hierarchi-
cal planning with 3D local multiresolution obstacle avoidance
for micro aerial vehicles.” In: Proceedings of the Joint International
Symposium on Robotics (ISR) and the German Conference on Robot-
ics (ROBOTIK)

• Matthias Nieuwenhuisen and Sven Behnke (2014b). “Layered
mission and path planning for MAV navigation with partial en-
vironment knowledge.” In: Proceedings of the International Confer-
ence on Intelligent Autonomous Systems (IAS)

• Matthias Nieuwenhuisen and Sven Behnke (2015). “3D plan-
ning and trajectory optimization for real-time generation of
smooth MAV trajectories.” In: Proceedings of the European Con-
ference on Mobile Robots (ECMR)

• Matthias Nieuwenhuisen, David Droeschel, Marius Beul, and
Sven Behnke (2016). “Autonomous navigation for micro aerial
vehicles in complex GNSS-denied environments.” In: Journal of
Intelligent & Robotic Systems 84.1, pp. 199–216

• Matthias Nieuwenhuisen and Sven Behnke (2016). “Local mul-
tiresolution trajectory optimization for micro aerial vehicles em-
ploying continuous curvature transitions.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

• David Droeschel, Matthias Nieuwenhuisen, Marius Beul, Dirk
Holz, Jörg Stückler, and Sven Behnke (2016). “Multi-Layered
Mapping and Navigation for Autonomous Micro Aerial Vehi-
cles.” In: Journal of Field Robotics 33.4, pp. 451–475

• Matthias Nieuwenhuisen, Jan Quenzel, Marius Beul, David
Droeschel, Sebastian Houben, and Sven Behnke (2017).
“ChimneySpector: Autonomous MAV-based indoor chimney in-
spection employing 3D laser localization and textured surface
reconstruction.” In: Proceedings of the International Conference on
Unmanned Aircraft Systems (ICUAS)

8 introduction

• Jan Quenzel, Matthias Nieuwenhuisen, David Droeschel, Mar-
ius Beul, Sebastian Houben, and Sven Behnke (2018). “Auton-
omous MAV-based indoor chimney inspection with 3D laser
localization and textured surface reconstruction.” In: Journal of
Intelligent & Robotic Systems. Available online

• Marius Beul, David Droeschel, Matthias Nieuwenhuisen, Jan
Quenzel, Sebastian Houben, and Sven Behnke (2018). “Fast au-
tonomous flight in warehouses for inventory applications.” In:
IEEE Robotics and Automation Letters 3 (4), pp. 3121–3128

• Matthias Nieuwenhuisen and Sven Behnke (2019). “Search-
based 3D planning and trajectory optimization for safe micro
aerial vehicle flight under sensor visibility constraints.” In: Pro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA)

2
PAT H P L A N N I N G A N D P L A N N I N G
R E P R E S E N TAT I O N S

In this chapter, we give an overview over commonly employed plan-
ning representations and the A* path planner. Variants of the A* path
planner are employed at different parts of this thesis.

Discrete representations of the state space are often used as base
for planning, particularly for search-based approaches. Common dis-
cretizations include the spatial discretization of the environment ge-
ometry (occupancy grid maps), discretization of time, and discrete
robot actions. While coarse representations—low spatial resolution,
large time steps and small number of actions—are generally easy to
compute, finer representations quickly hit memory limits and render
search-based approaches intractable. To make planning algorithms
tractable, multiresolution approaches have been developed that re-
duce the complexity and size of problems. The general idea of mul-
tiresolution is to represent a state or configuration as coarse as possi-
ble and as fine as necessary. Multiresolution approaches can be clas-
sified into global and local approaches.

2.1 uniform representations

Uniform occupancy grid maps are a commonly used spatial envi-
ronment representation. The environment is discretized into equally-
sized cells representing either a binary state—occupied or free—or
an occupancy likelihood. Grid cells can be accessed computationally
efficient by a simple linear mapping between spatial coordinates and
grid indices in constant time.

Graph search-based planning algorithms, e.g., A* search (Hart et
al., 1968), are particularly straightforward applied to grid maps as
grid cell centers can be interpreted as nodes of a search graph with
edges to all eight adjacent cells of the Moore neighborhood in 2D
grids or to all 3d − 1 cells of its generalization to d dimensions. Due
to the simple structure of the grid, there is no need to explicitly
model the cell connectivity. Furthermore, the number of different
edge lengths in the search graph is strictly limited to the number
of dimensions of the grid, e.g., straight along one grid axis, diago-
nal in the plane, and diagonal in three dimensions in a 3D grid. This
allows for the (partial) precomputation of traversal costs. Uniform
grids can be easily implemented because of their simplicity, which
allows arbitrary environments to be represented equally accurate, up
to a freely chosen resolution. This makes uniform grids a good choice

9

10 path planning and planning representations

Figure 2.1: OctoMap of a village. Global multiresolution allows for efficient
representation of large areas with high resolution—25 cm in this
map. The tree structure is depicted by black cell outlines.

for many applications. A major disadvantage is their computational
complexity, which does not scale well with increasing grid size and
dimensionality.

Uniform discretizations of the time dimension can be modeled
equally with directed implicit edges between the cells.

2.2 global multiresolution

Global multiresolution representations adapt their resolution to the
complexity of the represented entity. One well-known example of a
spatial global multiresolution representation is the quadtree in 2D or
octree in 3D (Meagher, 1980). Octrees partition the represented space
into eight octants recursively as long as the information in an octant
is consistent—e.g., fully occupied or fully free space—or the maxi-
mum resolution is reached. Thus, large areas of similar space can be
represented efficiently without loosing much accuracy. In contrast to
uniform representations, the structure of the grid needs to be mod-
eled explicitly introducing some overhead. Nevertheless, virtually all
environments are dominated by larger volumes of similar occupancy,
e.g., free space and solid objects. The OctoMap proposed by Hornung
et al. (2013) is a 3D occupancy grid map based on an octree, depicted
in Figure 2.1. We use OctoMap representations as an allocentric envi-
ronment representation in several parts of this thesis. Planning algo-
rithms based on global multiresolution include Multiresolution Field
D* by Ferguson and Stentz (2006) and kinodynamic motion planning
by interior-exterior cell exploration (KPIECE) by Şucan and Kavraki
(2008).

2.3 local multiresolution 11

Figure 2.2: Connectivity in local multiresolution grid. Centered grids with
different resolutions are embedded into each other. The edge
connectivity between cells from different levels differs from the
connectivity in a uniform grid. Red lines and arrows depict the
edges between neighboring cells. Left: Excerpt of 2D grid. The
robot is in the center of the grid. Right: Cut through 3D grid. In
the 3D case only the connectivity of one example cell is depicted
by red arrows.

2.3 local multiresolution

Local multiresolution refers to approaches where the resolution of the
represented entity is higher the more local it is. For spatial representa-
tions this translates to a high resolution in the center of a grid-based
map and decreasing resolution for outer grid cells. In the time do-
main the resolution of the near future is high and decreases with
increasing time.

Our local multiresolution representations are inspired by the work
of Behnke (2004), a method for resource-efficient path planning.
The spatial environment representation consists of multiple origin-
centered grids with different resolutions embedded into each other.
With increasing distance to the origin, the grid resolution decreases.

We embed grids with M cells in each dimension into each other. A
grid at multiresolution level l has a cell size sl of 2lsmin, where smin is
the cell size of the innermost grid. Thus, the resolution of the embed-
ded grids is higher than the resolution of the containing outer grids.
The embedded grid with dimensionality d replaces the cells with the
indices

[
M
4 : 3M4

]d
of the outer grid. Consequently, it covers a quarter

of the surface of the outer grid in 2D or an eighth of the volume in
3D, We repeat this until the minimal cell size is reached. The result-
ing multiresolution representation containing LMd cells covers the
same surface or volume as a uniform d-dimensional grid with N grid
cells per dimension. Here, L = log2(N/M) + 1 is the number of nec-
essary resolution levels given desired uniform and multiresolution
discretizations. Figure 2.2 depicts 2D and 3D local multiresolution
grids.

12 path planning and planning representations

rA rS rCrC rS rA
C
os
ts

Distance

Figure 2.3: We model obstacles in the local multiresolution grid as a fixed
core rC, a safety area with maximum costs rS, and an avoidance
zone with linear decreasing costs rA. With increasing distance to
the grid origin the radii of these areas increase and their maxi-
mum cost decreases to account for the uncertainty in measure-
ments (red: close, green: medium, blue: far away obstacle).

The neighborhood of an inner grid cell consists of 3d− 1 neighbors,
similar to the neighborhood of the uniform grid. However, the cells
at the border to a coarser grid have fewer neighbors, whereas the
grid cells at the border to a finer grid have more neighboring cells.
In the 2D case, for example, cells at the border to coarser grids have
seven neighbors at the edges and six neighbors at the corner and the
grid cells at the border to finer grids have nine neighbors and eight
neighbors, respectively. Higher dimensional grids show even more
special cases.

Thus, cell adjacencies cannot be handled implicitly as in the uni-
form grid, but have to be modeled explicitly. In addition to these spe-
cial cases, edge lengths differ between resolution levels causing more
overhead for precomputations of traversal costs. Both overheads are
compensated by a significantly reduced number of overall grid cells.

Figure 2.3 shows our obstacle model composed of: a core radius rC
of the perceived obstacle enlarged by the approximate robot radius,
a distance-dependent minimum safety distance rS with maximum
costs, and an area rA = 2(rC + rS) with decreasing costs that can
be traded off against other costs, e.g., path length. For a distance d
between a grid cell center c and the obstacle center o the obstacle
costs ho are given by

ho(d) =

hmax if d 6 (rC + rS)

hmax

(
1−

d−(rC+rS)
2(rC+rS)

)
if (rC + rS) < d < 3(rC + rS)

0 otherwise

.

(2.1)

2.4 path planning 13

To match the multiresolution structure of the underlying grid and
to account for the uncertainties of farther away perceptions, we in-
crease the radius of obstacles with increasing distance to the grid
center. To achieve this, the distance-dependent part

rS = rC + 0.1 · ‖o‖

grows linearly with the distance of the obstacle o to the map center.
The maximum obstacle costs hmax are defined as

hmax =
r2C

(rC + rS)2
.

Thus, the integral of the obstacle cost stays constant by reducing its
maximum costs with increasing radius, illustrated by the three dif-
ferently colored cost functions in Figure 2.3. A constant cost integral
is required to represent that the obstacle costs when covering the
whole area of the uncertain obstacle position is the same as covering
a smaller area with a certain obstacle position.

In contrast to global approaches, the structure of the representation
is solely defined by the locality of grid cells and not by the structure
of the represented environment. Instead of resembling the complex-
ity of the represented environment, local multiresolution represen-
tations model, e.g., the uncertainties caused by local sensing with
only relative precision and by the prediction of the near future. Lo-
cal multiresolution planning exploits the fact that the world changes
continuously while the plan is processed. Another use case of local
multiresolution planning is precise planning in the vicinity of a goal
and approximate planning while approaching it.

Analogous to uniform representations, multiresolution representa-
tions can be employed for time discretizations.

2.4 path planning

For motion and path planning a variety of planning algorithms
exist in the literature. Many state-of-the-art algorithms are either
sampling-based or search-based planners. Sampling-based planners,
e.g., rapidly-exploring random trees (RRTs) (LaValle, 1998) and
KPIECE (Şucan and Kavraki, 2008), are primarily used for high-
dimensional planning problems where modeling and/or searching
the state space is intractable. The advantages regarding computa-
tion time and memory footprint come at the cost of only stochas-
tic completeness—existing solutions are not necessarily found in the
given planning time and found solutions are not optimal. Search-
based planners are complete and optimal, but suffer from the curse-
of-dimensionality, i.e., the problem complexity increases exponen-
tially with the number of state space dimensions.

14 path planning and planning representations

Algorithm 1 A* algorithm with closed list.

1: procedure A* Search(planning_grid, start_node, target_node)
2: Initialize open_list . Priority queue
3: start_node.costs← 0

4: add start_node to open_list
5: while open_list not empty do
6: current_node← first element from open_list
7: remove first element from open_list
8: if current_node = goal_node then
9: return best solution

10: end if
11: if current_node not in closed list then
12: expand_node(current_node)
13: add current_node to closed list
14: end if
15: end while . No solution found
16: end procedure

A widely used search-based planning algorithm is A* search by
Hart et al. (1968)—an informed extension of Dijkstra’s algorithm (Di-
jkstra, 1959). We distinguish between the concepts of a path and a
trajectory. A path is an ordered set of segments connecting a start and
a goal configuration, e.g., connecting 3D points in Euclidean space. A
trajectory is a path with timing information. Thus, a trajectory con-
tains the derivatives of the path, e.g., its velocities and accelerations.
Given an undirected graph with edge weights, A* finds a cost-optimal
path from a start to a goal node in the graph.

The start node is initialized with zero costs, other nodes have infi-
nite costs. Dijkstra’s algorithm always expands the node with the min-
imal costs that has not been expanded before until a path to the goal
node has been found. To achieve this a priority queue is maintained
with the costs to reach a node as key. By contrast, in the A* algorithm,
the graph search is directed towards a goal node by a heuristic that es-
timates the remaining costs to reach the goal from a given node. The
key for the priority queue is in this case the sum of the costs to reach
a node plus the heuristics value. Thus, nodes are sorted according to
the estimated costs a minimal path would have from start to goal via
this node. If the heuristic is admissible, i.e., it never overestimates the
remaining costs, the planner remains complete. For the special case
of a heuristic that is always zero the A* search is equal to the Dijkstra
algorithm.

In general, the A* search works with arbitrary undirected, weighted
graphs. For path planning, grid graphs embedded into the environ-
ment representation are often employed. The edge weights then rep-

2.4 path planning 15

Algorithm 2 Node expansion procedure of the A* algorithm.

1: procedure expand_node(open_list,node)
2: successors← all neighbors of node not in closed list
3: for all successors as successor do
4: if successor is in obstacle then
5: add successor to closed list
6: continue with next successor node
7: end if
8: g← node.value+ edge costs . edge length × costs
9: if successor is in open_list ∧ g > successor.value then

10: continue with next successor node
11: . node is already in open_list with a better g value
12: end if
13: successor.value← g

14: successor.score← g+ heuristic from successor to goal
15: insert successor into open_list
16: end for
17: end procedure

resent, e.g., distances between nodes in the state space and proximity
to obstacles.

Algorithm 1 shows a variant of the A* algorithm with closed list.
The cost to reach a node is called the node value, the sum of costs and
heuristic is called the node score. Nodes that have been expanded
once are added to the closed list as by definition no shorter path to
these can be found. Thus, nodes on the closed list are not considered
for further expansions in the remaining iterations. The search termi-
nates when the goal node has to be expanded in the next step. In this
case no shorter path to the goal can be found. By backtracking from
goal node to start node the best solution is determined and returned.
This solution can either be determined by explicit backtracking from
goal to start by pointers to the parents of the nodes or implicitly by
following the least cost path. While the first method is always pos-
sible, the later method is only possible if the expansion step can be
inverted uniquely.

Algorithm 2 details the node expansion step. The cost values and
scores of all neighbor nodes that are not in the closed list are cal-
culated and the nodes are added to the open list priority queue if
the costs are not prohibitively high, e.g., if the nodes are too close to
obstacles. Costs to traverse an edge are often calculated by multiply-
ing the edge length in a grid voxel with the grid value, e.g., a value
depending on the distance to the next obstacle.

Many search-based planners build upon the basic A* algorithm.
Examples are, e.g., D* Lite (S. Koenig and Likhachev, 2005) which
inverts the search from goal to start and can efficiently repair paths

16 path planning and planning representations

when obstacles in the vicinity of the start node are perceived, and
ARA* (Likhachev et al., 2004) which starts with a suboptimal path
and improves the path as long as a time budget is not exceeded.

Modified versions of the A* path planner are widely used through-
out this thesis. Other planners employed for specific problems are
introduced in the corresponding chapters.

Part I

G R A S P A N D M O T I O N P L A N N I N G F O R
G R O U N D R O B O T S

P L A N N I N G A N D N AV I G AT I O N F O R G R O U N D
R O B O T S

In this part of the thesis, we investigate multiresolution techniques for
planning and collision avoidance in the context of ground robots. The
navigation and motion generation for ground robots—while being a
research topic since the field of robotics has been established decades
ago—is still an important aspect of current robotic developments.

Early approaches to navigation of mobile robots focused on short-
est paths in completely mapped or modeled, static environments
(Lozano-Pérez and Wesley, 1979). For robots to be able to operate
in coexistence with humans outside of controlled lab environments
where, e.g., furniture or other objects are moved and people are
present, navigation approaches have been extended to navigate in
(partially) unknown (Stentz, 1994) and even dynamic environments
(Fox et al., 1997). In the next chapter, we focus on the domain of hu-
manoid soccer robots as an example for 2D path planning. The prop-
erties of this particular application are that virtually no static environ-
ment is present, at least not within the bounds of the soccer field, but
a number of dynamic obstacles in form of teammates and opponents
that move on the field. Furthermore, the opponents—in contrast to
most other agents in robotic workspaces that can share the effort of
avoiding each other (Silva and Fraichard, 2017)—are uncooperative
and even deliberately obstructive.

Another important ability for ground robots is picking and plac-
ing objects or tools. In the first applications of stationary industrial
robots, arm trajectories were programmed as a list of trajectory points
to pass through by an operator (Pieper, 1968). Later, trajectories were
generated online with consideration of self-collisions and collisions
with the environment (Maciejewski and Klein, 1985; Pieper, 1968). For
more flexibility, manipulator arms have been attached to mobile robot
platforms (Khatib, 1999) to enlarge their workspace significantly. In
Chapter 4, we describe an integrated, autonomous mobile manipula-
tion system for bin-picking, i.e., picking objects from an unordered
pile of objects from a transport box. This requires flexible adaption of
manipulator trajectories to many different configurations of the envi-
ronment. To speed up the planning of final grasps and object removal,
we employ local multiresolution techniques.

Due to the different nature of the applications robot soccer and mo-
bile bin-picking, the two chapters of this thesis part are self-contained.
The related work is accordingly discussed in the corresponding chap-
ters.

19

3
R E S O U R C E E F F I C I E N T C O N T I N U O U S M O T I O N
P L A N N I N G B A S E D O N P R O J E C T E D I N T E N T I O N S

In the domain of humanoid robot soccer competitions, an important
skill for the robots is the ability to reach a position behind the ball
facing the opponent’s goal. Collision-free movements are not only im-
portant because of possible penalties for pushing the opponent, but
also because collisions can easily lead to a fall and significantly slow
down the robot. This is particularly challenging, as the environment
is very dynamic and multiple agents compete to achieve similar ob-
jectives. Figure 3.1 shows a typical game situation, where three robots
can see the ball and are trying to reach positions close to it.

One approach to navigation on a soccer field is reactive action gen-
eration. Perceptions are directly mapped to actions, i.e., direction and
velocity of the robot motion, by incorporating the target position and
the position of obstacles. The mapping may depend on additional fac-
tors, like the role assigned to the robot or the game state, but it does
not consider the (foreseeable) future. This can lead to inefficient obsta-
cle avoidance, e.g., the robot passes an obstacle on the side closer to
its target just to be blocked by the next obstacle in the same direction.

On small mobile robot platforms—like the Nao, used in this work—
the computational resources are often limited due to weight and
power constraints. Accordingly, exact planning—even for relatively
small problem instances—is not possible in real-time. Moreover, per-
forming time-consuming planning, and committing to a long-term
plan, is not an option in highly dynamic domains like soccer. Due
to the limited capabilities of the robot sensors, it is furthermore not
possible to estimate precise obstacle positions. As a consequence, not
only the dynamic environment has to be taken into account, but path
planning has to deal with uncertainties too.

We address these challenges by using approximate path planning
with replanning every time a new state of the environment is per-
ceived. With increasing time since the last perception, the prediction
of the world state becomes more uncertain. Consequently, planning
steps in the far future should be more approximate than planning
steps that have to be executed immediately, as the former will likely
be invalid at the time they are executed. In order to reduce the com-
plexity of the plan representations, we employ local multiresolution
methods, namely, a local multiresolution grid and a log-polar grid.
Both representations have in common that the resolution decreases
with increasing distance from the robot.

21

22 continuous motion planning based on projected intentions

Figure 3.1: Typical situation in a humanoid robot soccer game. Several
robots see the ball and try to reach poses behind the ball, facing
towards the opponent’s goal. The direct paths to the intended
target positions are depicted by colored lines.

In arbitrary situations, it is hard to predict the movements of dy-
namic obstacles without tracking them. Thus, these movements are
often modeled as random noise. In contrast, the movements of the
opponent in soccer games are aimed at scoring goals. We employ this
fact to gain a better estimation of probable obstacle trajectories by
projecting the intentions of the planning robot to other field players.

3.1 related work

In soccer games, we historically employed a hierarchical reactive
approach to control the robot motion (Behnke and Stückler, 2008).
The approach presented in this thesis is based on planning however.
It considers the foreseeable future to determine obstacle-free robot
paths. Continuous replanning allows for constant incorporation of the
most recent sensory information, and for quick reactions to changes
in the environment.

Many planning-based systems exist in the literature for 2D robot
navigation. The key challenge is the computational complexity of
real-time planning and execution on a computationally limited robot.
Kaelbling and Lozano-Pérez (2011) reduce the complexity of task
planning by top-down hierarchical planning. In their approach, an
agent commits to a high-level plan. The refinement of abstract ac-
tions is performed at the moment an agent reaches them during plan
execution. We follow the same assumption that there is likely a valid
refinement at the time an abstract action has to be concretized, and
that every plan can be reversed without huge costs in case there is no
such refinement.

3.2 robot platform 23

Karkowski and Bennewitz (2016) plan footsteps for the Nao robot
in cluttered environments using an RGB-D sensor mounted on the
robot head. Whereas the plans are mostly computed by external hard-
ware, the authors report that the algorithm can be ported to a Nao
onboard computer more recent than the one employed in this thesis
and runs at 10Hz there. We make the assumption that in our domain
the robot can be abstracted to an omnidirectionally moving platform
without planning individual footsteps as the environment is not clut-
tered.

Strategic positioning of soccer robots has been proposed by Kaden
et al. (2013). They weight Voronoi cells in a map to find good posi-
tions for the different roles of field players. This map is also used
to plan paths that can, e.g., avoid a blockage of the line-of-sight be-
tween a striker and the opponent’s goal. We, in addition, predict the
movement of an opponent to employ this knowledge in planning.

A method for resource-saving path planning is the local multires-
olution Cartesian grid described in Section 2.3. This representation
resembles well the uncertainty in future actions by as the planning
resolution decreases with increasing distance to the robot and, thus,
become more approximate. In addition, it was designed for soccer
robots (Behnke, 2004) and, consequently, for the problem domain con-
sidered here.

Apart from Cartesian occupancy grid maps (Thrun et al., 2006), po-
lar coordinate-based grids can be found for egocentric robot motion
planning in literature (Borenstein and Koren, 1991; Lagoudakis and
Maida, 1999). In these grids, the environment close to the robot has a
high Cartesian resolution that decreases with the distance, due to the
fixed angular resolution. Polar grids with hyperbolic distance func-
tions are used to represent infinite radii within a finite number of
grid cells. This property is used to plan long-distance paths in out-
door environments (Sermanet et al., 2008).

Longega et al. (2003) extend polar grids to log-polar grids by using
a logarithmic discretization for the grid radii. Like the local multires-
olution grid, this approach emphasizes a more precise path planning
in the vicinity of the robot. Furthermore, polar grids have the advan-
tage of easily allowing the integration of obstacles that are perceived
by sensors with an angular characteristic, such as ultrasonic sensors
and cameras.

3.2 robot platform

In the RoboCup Standard Platform League, Nao robots from Alde-
baran Robotics are used (RoboCup Technical Commitee, 2010). The
Nao V3+ edition, used in the 2010 and 2011 RoboCup competitions,
where our team NimbRo participated, has 21 degrees of freedom. The
environment is perceived by two cameras—from which only one can

24 continuous motion planning based on projected intentions

be used at a time—and two ultrasonic sensors. In our system, we con-
tinuously switch between the two cameras, which results in a frame
rate of approximately 14Hz. The ultrasonic sensors are located at the
robot chest, covering an angle of approximately 110° in front of the
robot. Their detection range is 300–700mm1.

The ultrasonic sensors measure the distance towards an obstacle,
but not its precise angular position. In contrast, both cameras provide
the exact direction towards an obstacle, but no precise distance. This
leads to uncertainties which have to be taken into account.

The Nao V3+ robot is equipped with an x86 AMD Geode LX 800
CPU running at 500MHz. It has 256MB of RAM and 2GB of persis-
tent flash memory2. The built-in processor has the advantage of low
power consumption, with the tradeoff of low computational power.
Compared to state-of-the-art computer systems, the resources are
rather limited. Hence, a low system load is an important requirement
for the development of new software components.

Our software is based on the framework of the German SPL team
B-Human (Röfer et al., 2010). The framework consists of several mod-
ules executing different tasks, e.g., perception of ball, lines, robots,
locomotion, and behavior control. In addition to these modules the
3D simulator SimRobot is part of the framework. For our tests, we
extended the framework by a new path planning module.

3.3 path planning representations

At RoboCup 2010, we used reactive target selection and obstacle
avoidance behaviors. Thus, a gait target vector (vx, vy, vθ), which de-
termines the walking speed in the forward, lateral, and rotational
directions, respectively, is determined merely by direct perceptions
and active behaviors. Typical behaviors that influence the direction
of the gait target vector include approaching the ball and avoiding
obstacles. The approach behavior generates a direct gait target vector
moving the robot to a pose behind the ball facing towards the oppo-
nent’s goal. Obstacles induce repulsive forces affecting the direction
and magnitude of the gait target vector. This lets the robot bypass an
obstacle or leads to a stop in front of it.

Our approach to planning a path to a target introduces a planning
layer between the abstract behaviors and motion control. Waypoints
provided by this layer are used to determine the target velocities for
the locomotion layer. The abstract behaviors configure the planner,
and perceptions are integrated into the world representation of the
planner.

In our implementation, we employ A* search with closed list, intro-
duced in Section 2.4. We implemented our planner with three differ-

1 Nao User’s Guide Ver 1.6.0, Aldebaran Robotics
2 Nao Academics Datasheet, Aldebaran Robotics

3.3 path planning representations 25

Figure 3.2: Obstacle model for soccer robots. The black squares depict occu-
pied cells in a uniform obstacle grid. Left: Ultrasonic measure-
ments (green) are represented as arcs discretized to the map
resolution. Right: Visually perceived obstacles (e.g., goal posts,
yellow) are discretized circles of known radius.

ent types of representations: a uniform, a local multiresolution, and
a log-polar grid. All representations have in common that their coor-
dinate system is fully egocentric, i.e., they are translated and rotated
according to the robot pose.

Obstacle Representation

Obstacles are represented by their core radius and obstacle costs, as
depicted in Figure 2.3 in Section 2.3. For visually perceived obsta-
cles, we use the known radius of goalposts and other robots as core
radii. Ultrasonic measurements are treated as obstacle arcs enlarged
by measurement uncertainty and then discretized into single small
occupancies. Figure 3.2 shows these obstacle representations. In ad-
dition to the static core radius of the obstacles, we add a component
that increases linearly with the distance to the grid center. This com-
ponent represents the uncertainty in distant measurements and the
obstacle movements. To keep the cost integral of an obstacle constant,
the maximum costs are reduced accordingly. Furthermore, obstacles
are enlarged by the approximate robot radius to allow for planning
with a point-like robot. Finally, a safety margin with linearly decreas-
ing costs is added to the obstacle, before it is inserted into the map.
This allows to plan between robots standing close to each other, but
avoids the vicinity of obstacles if this is possible without larger de-
tours.

26 continuous motion planning based on projected intentions

(a) Local multiresolution grid (b) Log-polar grid

Figure 3.3: Multiresolution grid representations. Non-uniform grids allow a
given area to be covered with multiple orders of magnitude less
cells than uniform ones. Depicted are planned paths on a soccer
field (red dots and lines) starting from the robot position in the
center of the grid to the ball 3m in front of it. The robot is facing
the positive x-axis. Occupied cells are marked by black dots. The
local multiresolution grid covers the area with five levels and
8× 8 cells on each level, and the log-polar grid with 16 discrete
steps for angle and distance, respectively.

Uniform Grid

As a baseline we employ a simple uniform robot-centric 2D grid map
as described in Section 2.1. Obstacle positions, i.e., goalposts and
other robots perceived by the vision system, and filtered distance
measurements from the ultrasonic sensors, are maintained in exter-
nal data structures and inserted into the map before each planning
step. This avoids costly moving and rotating of cell occupancy proba-
bilities while the robot is moving.

To allow for planning close to the ball and opponent players, a
fine resolution of the planning grid is required. Especially in envi-
ronments with open space characteristics, like a soccer field, more
efficient representations are possible.

Local Multiresolution Grid

The local multiresolution grid—described in Section 2.3—allows for
exact planning if the robot is close to the ball and takes into account
the uncertainty of local sensing and the own and opponent’s move-
ments, implicitly. Figure 3.3a shows an 8× 8 local multiresolution
grid with a minimum cell size of 100mm—the approximate footprint
of the Nao robot—that covers an area of 163.84m2 with 256 cells us-
ing five grid levels. By contrast, a uniform grid covering the same
area consists of 16 384 cells. Incorporating obstacles into the grid is
analogous to the case of a uniform grid.

For path planning with the A* search algorithm, the costs of each
step are calculated by means of the Euclidean distance of the centers

3.3 path planning representations 27

of both cells and the added costs of the target cell. The employed
heuristic is the distance from the current grid cell to the target.

The advantages of this representation are the low requirements on
the robot memory and on computational power. Moreover, uncertain-
ties occurring in dynamic environments are considered by the increas-
ing cell size with increasing distance from the robot.

Log-Polar Grid

Although our soccer robots are able to walk omnidirectionally, the
highest speed can be achieved in the forwards direction. Further-
more, the robot sensors are designed for perceiving the environment
in front of the robot. Accordingly, walking in the forwards direction
towards the target, i.e., to the next waypoint of the plan, is preferred
for long distances. On a soccer field with only smaller obstacles, it
is likely that relatively long straight segments are often part of the
plans. As our grid representations are egocentric, a target in front of
the robot is on the positive x-axis. As this axis is a cell boundary in
every resolution, this case is not well supported by the local multires-
olution grid. Due to imprecise measurements of the target and inaccu-
rate motion execution, distant targets in a uniform grid presumably
change their respective cells, too.

This leads us to a grid representation that fits the motion and sens-
ing characteristics of the robot in a more efficient way. In contrast to
the Cartesian grid representations, a polar grid representation pro-
vides a straight path towards targets in front of the robot if there are
no obstacles. In addition, sensor measurements relevant to path plan-
ning are best represented in polar coordinates on our robots. Ultra-
sonic measurements are represented as a distance and an apex angle,
and visual perceptions are estimated distances and directions to ob-
stacles. Both can be easily incorporated in a grid representation in
polar coordinates.

We represent the environment in polar coordinates with an angle θ
and a distance ρ with regard to the robot pose, written as tuple (θ, ρ).
The robot faces in the direction of the positive x-axis. We discretize
the angular component θ into T equally sized sectors. The first sector
is defined such that the positive x-axis becomes the angle bisector of it.
Hence, small angular inaccuracies in the perception or gait execution
will not change the grid cell of a waypoint or the target that is on the
x-axis straight ahead.

To reach the implicit consideration of uncertainties and computa-
tional advantages of the local multiresolution grid, the cells of our
polar grid grow exponentially with the distance. In order to achieve
this, the logarithm of the distance to the robot is partitioned. To de-
fine a minimal cell size and still achieve a reasonable growth until the
maximum radius, we use a slightly shifted logarithm to avoid the ini-

28 continuous motion planning based on projected intentions

tial strong slope of the logarithm. The calculations to determine the
polar coordinates (θ, ρ) of a point (x,y) in Cartesian coordinates, and
the corresponding discretized grid cell (r, t) are

ρ = logb

((
(b− 1)

√
x2 + y2

l

)
+ 1

)
,

θ = arctan
(y
x

)
,

(r, t) =
(
bρc ,

⌊(
T

2π

)
θ+ 0.5

⌋)
,

where b is the base of the logarithm, l is the minimal cell size and T
is the number of angular partitions.

Hence, the inverse operation is described by

(x,y) =
(
l(br+0.5 − 1)

b− 1

)(
cos(θ)

sin(θ)

)
.

In our implementation, we use a base b of 1.1789 and a minimal
cell size l of 100mm. This base has been selected such that we reach
a maximum radius of 7211mm with 16 cell rings, which is sufficient
to plan paths for any two points within the SPL field boundaries. We
use 16 steps for the angular component as well, leading to 256 cells
in total, the same number of grid cells used in the local multiresolu-
tion grid. The resulting grid is depicted in Figure 3.3b. Obstacles are
maintained in the same external representations used for the other
grid representations.

The costs of each step are calculated by means of the Euclidean
distance of the centers of both cells, as in the local multiresolution
grid. We calculate the heuristic likewise. The cell distances are precal-
culated to decrease the computational complexity of the logarithmic
and trigonometric operations. Consequently, single node expansions
of a planner are not more costly in this representation than in uniform
grids.

Implementation Details

In our 2D planning implementation, we neglect the orientation and
velocities of the robot for efficiency reasons. Consequently, due to the
frequent replanning, sudden changes of the gait target vector are pos-
sible. To avoid this, we introduce a virtual obstacle behind the gait tar-
get vector, which represents its starting speed, depicted in Figure 3.4,
following ideas from Behnke (2004). The polar grid representation
employs a semicircle with cost interpolation between a minimum at
the edges and a maximum at the midway of the circle segment. In
contrast, the Cartesian grid representations use a rectangle having

3.4 dynamic planning with intention projection 29

Figure 3.4: An artificial obstacle that leads to a preference of paths to-
wards the current walking direction to avoid sudden directional
changes. Cells with higher costs are drawn darker. The red arrow
depicts the gait target vector. Left: Cartesian grid. Right: polar
grid.

the same characteristic. When the robot is moving, this obstacle is op-
posed to the gait target vector with costs corresponding to the scalar
magnitude of the velocity.

To generate motion commands for a planned path, the planning
module sends the next waypoint on the path to the motion control
in every execution cycle. Replanning is performed if the robot move-
ment along the path exceeds a threshold. Between consecutive plan-
ning calls, the plan is adjusted using odometry data. The resulting
gait target vector is the weighted vector of position and angle of the
waypoint relative to the robot. If the angle between robot and way-
point is larger than 30° the robot only rotates towards the waypoint.
If the angle is below 20° the robot simultaneously rotates towards
the waypoint and walks omnidirectionally into its direction. In the
hysteresis interval 20–30° the robot stays in the previous state.

3.4 dynamic planning with intention projection

Most of the obstacles apparent on the soccer field are not static. As
described before, we take this into account by smoothing distant ob-
stacles. If the movement of the other robots can be estimated in ad-
vance, it is possible to avoid future positions of these. Naturally, it is
not possible to reason about the exact behaviors and targets of the op-
ponent team. Thus, we have to apply situation specific assumptions
for probable movements of the opponent. For example, if our robot
intends to reach a position where it can get ball possession, this intent
is projected to the opponent. Thus, we assume it will move to a posi-
tion where it can control the ball, too. This assumption is reasonable,
as opponents with the same intent as the planning player will more
likely intersect the planned path than robots with different intents.

Our dynamic obstacle model extends the static obstacle model by
introducing an assumed target relative to the obstacle and a velocity
vector v. To be consistent with the multiresolution representation of

30 continuous motion planning based on projected intentions

space, the obstacle radius is increased and the costs are decreased
with increasing distance to the robot. We assume that the opponent
may either keep standing still or move to the target with any speed
up to a maximum vmax. This results in a uniform probability distri-
bution of the opponent’s position along a vector vmaxt. We model
this by growing the obstacle representation into the direction of its
movement up to the assumed target with advancing time t. The over-
all costs of the obstacle are kept constant. Hence, the costs per grid
cell of the obstacle decrease.

To represent the resulting different shapes of obstacles at different
times, we extend the grid representation to the time dimension. The
resulting three-dimensional grid is discrete in time and this discretiza-
tion may not necessarily equal the space discretization for arbitrary
robot speeds. To take this into account, we explicitly calculate the
average time the robot needs to follow the planned path up to the
current grid cell and discretize it afterwards to determine whether
edges connecting nodes within the same time level can be followed.

Figure 3.5 shows an example where the planned paths with and
without dynamic planning are qualitatively different. Our robot aims
to reach a position next to the ball to dribble it towards the oppo-
nent goal. Therefore, it has to walk around the ball. Another player
is approaching the ball from the left bottom side of the map. Utiliz-
ing a planning algorithm not taking the directed movement of this
robot into account, the robot would try to pass the ball at the side the
opponent is coming from, possibly having to avoid it later on. The
dynamic approach plans the same shortest path, if the opponent is
still far away. Otherwise, the ball is passed on the other side, where
an intersection with the opponent’s path is unlikely.

Obviously, adding the time dimension makes the planning com-
putationally more involved. For the uniform time discretization we
use a 16 s lookahead, discretized into 1 s steps. This results in a local-
multiresolution grid with 4096 cells. Thus, we reduce the complexity,
following the same ideas of a multiresolution representation as in
the space dimensions. The minimal time an opponent robot needs to
reach a cell corresponds to the distance of that robot to the cell. Here,
we have three qualitatively different cases to consider:

• The robots are close to each other and to the cell. Thus, the cell
is represented at a fine spatial resolution and an intersection of
the robot paths may occur soon. A finer temporal resolution is
necessary.

• The cell is further away. Hence, it is represented at a coarse
spatial resolution and coarse temporal resolution is sufficient,
regardless of the position of the opponent.

3.4 dynamic planning with intention projection 31

Exact Multiresolution Approx. reachability

t
=
0
s

t
=
0
s

t
=
1
s

t
=
2
s

op
p.

fa
rt

he
r

aw
ay

t
=
2
s

t
=
4
s

op
p.

&
ba

ll
cl

os
er

t
=
3
–1
5
s

...

t
=
8
s

op
p.

pa
ra

lle
l

t
=
1
6
s

t
=
1
6
s

w
/o

ti
m

e
di

m
.

Figure 3.5: The planning robot and an opponent aim to reach opposing po-
sitions behind the ball towards their respective goals. The oppo-
nent’s position is propagated over time by elongating the cor-
responding obstacle shape until it reaches the target. The time
increases from the top (t = 0) to the bottom images (t = 16 s). The
left image series shows the uniform time discretization and the
middle series the multiresolution time discretization. The first
four figures in the right column depict the implicit consideration
of time for different configurations of ball and opponent. The
bottom-right figure shows the baseline without the time dimen-
sion.

32 continuous motion planning based on projected intentions

• The cell is close to the planning robot, but the opponent is fur-
ther away. In this case a coarse resolution is sufficient to deter-
mine, if an intersection of paths in this cell is likely.

Figure 3.5 (center) depicts snapshots of the ball approach example
using a multiresolution time representation. The discrete time steps
tm are defined as

tm(i) =

0 if i = 0

2i if i > 0
.

The resulting grid contains 1280 cells and covers the same time and
space as the uniform grid.

As the speed of the planning robot is bound, the time necessary
to reach cells increases linearly with distance to the robot, defining a
lower envelope of the reachable cells. Thus, major parts of the three-
dimensional grid cannot be reached. Especially, the fine-grained tem-
poral resolution steps are mostly below this envelope. For the plan-
ner it is of primary importance if a path through a cell may possibly
cause a collision in the future. Shortest paths often start with long
straight segments towards the target. In the case of an apparent ob-
stacle, the segment is split into two segments with an intermediate
point that modifies the path to be collision-free. The time to follow
the first segment can be approximated by a linear function of the dis-
tance between robot and endpoint of that segment. This leads us to an
implicit incorporation of the time dimension into our obstacle model.
We determine the minimal distance to the line segment between the
opponent and its assumed target. With the linear time approximation
function, we get the approximate time of the probable intersection of
the two paths. This approximation is used to estimate the distribu-
tion over the possible positions of the obstacle on the field. As time is
only implicitly taken into account for planning, the planning problem
stays two-dimensional.

3.5 evaluation

We evaluate the efficiency of our planning representations and the
intention projection quantitatively and qualitatively in simulation and
on the robot.

Planning Representations

In the first experiment, we measure the planning time required with
the three planning representations in the simulator and on a Nao
robot with regard to four different test cases. These test cases repre-
sent all possible qualitative constellations found on the soccer field.
The four cases are

3.5 evaluation 33

Table 3.1: Path planning time with different grid representations on the Nao.

Test case Planning time for grid type (in ms)

uniform local multiresolution log-polar

no obstacles 2.9 0.4 0.3

ultrasonic 12.2 0.8 1.2

camera 18 2.3 3.0

ultrasonic & camera 23 3.0 3.5

I) no obstacle is detected,

II) obstacles are detected either in the ultrasonic sensor measure-
ments or

III) through cameras, and

IV) obstacles are measured by both, ultrasonic sensors and cameras.

The used sensors influence the planning time, because sonar sensors
can only perceive close obstacles and have a low angular resolution.
This results in only few, but large obstacles in the vicinity of the robot.
In every test case, the target is 4000mm in front of the robot and
five other robots are positioned on the field. In order to avoid an
influence of noisy sensor data and for a better reproducibility, we
set the egocentric obstacle positions manually when testing on the
real robot and use ground truth data in simulation. The measured
execution times are averaged over 1000 planner runs.

The results of the tests on the Nao robot are shown in Table 3.1.
Overall, the multiresolution approaches clearly outperform the uni-
form grid planning representation. Furthermore, there are differences
between the local multiresolution and the log-polar grid, as the first
has a lower computational complexity.

Planning with Intention Projection

We compare the planning time on the Nao robot for the ball approach
example. To plan a path around the ball without considering the op-
ponent’s movement takes on average 1.6ms, and with 16 uniform
time discretization steps 55.4ms. The multiresolution discretization
with 5 steps takes 7.9ms and the implicit approach takes 3.3ms. With
every representation of the time component it is possible to use the
shortest path if the opponent is sufficiently far away and to avoid the
opponent’s path if it is closer. Figure 3.6 shows resulting trajectories
for all three representations.

34 continuous motion planning based on projected intentions

O
pponent

Opponent

Start
Start

Figure 3.6: Comparison of the robot trajectories while using the planner
without time consideration (green), with uniform time discretiza-
tion (blue), and with implicit time incorporation (red). The target
is a point behind the ball (circle). An opponent is approaching
from the bottom right side. In the example on the left side the
opponent is farther away than in the example depicted on the
right side. Both planners that propagate the opponent’s position
plan qualitatively similar path. While following the plan without
representation of the time, the robot had to replan to avoid a col-
lision with the opponent in the case depicted in the right figure.
Field coordinates are in mm.

3.6 conclusion

In this chapter, we evaluated two approaches to path planning which
are applicable to soccer robots with relatively low computational re-
sources. Both approaches make use of properties found in the soccer
domain. An important property is the lack of static obstacles in the
environment of the soccer field. For this reason, it allows planning
at a coarse resolution for regions which are far from the robot. Fur-
thermore, one can expect to find a valid plan refinement in order to
avoid dynamic obstacles while approaching them. Consequently, our
grid representations employ a decreasing resolution for distant parts
of the environment.

As virtually all obstacles are dynamic, it is likely that the situa-
tion in distant cells will have changed at the time a plan refinement
will be necessary. Therefore, we are convinced that approximate plan-
ning with continuous and fast replanning is superior to slower ex-
act planning. Furthermore, the estimation of possible future obstacle
positions is likely to improve plans with regard to the need of nec-
essary replanning. Thus, we use assumptions about the behavior of
soccer playing robots to estimate their trajectories. The real-robot ex-
periments reveal that the speedup facilitates real-time planning on
the Nao.

4
G R A S P A N D T R A J E C T O RY P L A N N I N G F O R
M O B I L E B I N - P I C K I N G

Object manipulation is a key capability in many industrial and ser-
vice robotics applications. Removing individual objects from an un-
ordered pile of parts in a carrier or box—bin picking—is one of the
classical problems of robotics research. It has been investigated by nu-
merous research groups in the last decades (Ikeuchi et al., 1983; Liu
et al., 2012; Rahardja and Kosaka, 1996).

In general, grasp planning addresses the problem of selecting feasi-
ble grasps given the specifications of the object to grasp, the robot
kinematics, and the surrounding scene. A variety of approaches
determine contact points for each finger for precision fingertip
grasps (Borst et al., 1999; Heester et al., 1999). In contrast, power
grasps that exploit contacts with finger surfaces and the palm may
yield much more stable grasps. To generate a rich set of finger-
tip and power grasps, pre-grasp shape approaches have been pro-
posed (Miller et al., 2003; Xue et al., 2009).

Typical bin picking solutions consist of a 3D sensor mounted above
the box, a compute unit to detect the objects, estimate their pose and
plan grasping motions, and an industrial robot arm that is equipped
with a gripper. In order to extend the workspace of the robot and
to make bin picking available for environments that are designed for
humans, we implement bin picking using an autonomous anthropo-
morphic mobile robot. Due to the inaccuracies in perception and navi-
gation of the mobile base to the bin, this poses an additional challenge
of varying positions of the manipulator relative to the box. Stückler et
al. (2012) developed an approach to grasping objects from a table top
that is based on sampling feasible grasps on segmented point clouds
and fast, but conservative, collision check heuristics for our service
robot.

Here, our scenario is motivated by industrial applications. We con-
sider the task of grasping objects of known geometry from an un-
ordered pile of objects in a transport box, depicted in Figure 4.1. The
grasped object is to be transported to a processing station where it is
placed. Due to the operability of the robot in environments designed
for humans, this scenario is easily transferable to a household sce-
nario, e.g., clearing a shopping box.

Solving this mobile manipulation task requires the integration of
techniques from mobile robotics, like localization and path planning,
and manipulation, like object perception and grasp planning. In this
chapter, we focus on the grasp and retrieval planning.

35

36 grasp and trajectory planning for mobile bin-picking

Figure 4.1: Mobile bin picking scenario. Cosero grasps objects from a trans-
port box. It navigates to a processing station and places the ob-
jects there.

We present an efficient pre-grasp shape approach to plan grasps
for objects that are composed of shape primitives like cylinders and
spheres. These shape primitives are used for both object recognition
and grasp planning in an integrated and efficient way. With the pro-
posed approach, our service robot can grasp object compounds from
piles of objects. For the perceived objects, we plan feasible grasping
motions for a 7-DoF (degrees of freedom) manipulator. In order to
gain efficiency, we plan grasps in a multi-stage process in which
we successively prune infeasible grasps in tests with ascending com-
plexity. We plan reaching motions with an efficient multi-resolution
sampling-based method. We integrated all components to perform
the complete task and evaluated the performance of the integrated
system.

4.1 related work

Despite its long history, static bin picking is still an active research
area. One implementation of Papazov et al. (2012) utilizes a Microsoft
Kinect sensor mounted above a table to acquire depth images of the
scene. Object models are matched to the measured point cloud by
means of a normal-based RANSAC (Fischler and Bolles, 1981) proce-
dure. Papazov et al. consider table-top scenes where multiple objects
are arranged nearby, including the stacking of some objects. They se-
lect the object to be grasped based on the center-of-mass height (high
objects are preferred). Each object is associated with a list of predeter-
mined grasps, which are selected according to the orientation of the
gripper (grasps from above are preferred) and checked for collisions.
The grasping is performed by a compliant lightweight robot arm with
parallel gripper. Bley et al. (2006) propose another approach of grasp

4.1 related work 37

selection by fitting learned generic object models to point cloud data.
In contrast to our approach they manipulate separated objects.

E. Klingbeil et al. (2011), utilized a Willow Garage PR2 robot to
grasp unknown objects from a pile on a table and read their bar-codes
to demonstrate a cashier checkout application. Because the dense
packing of objects in a pile poses considerable challenges for percep-
tion and grasping, Chang et al. (2012) proposed pushing strategies
for the interactive singulation of objects. Gupta and Sukhatme (2012)
estimate how cluttered an area is and employ motion primitives to
separate LEGO bricks on a pile.

Manipulation in restricted spaces like boxes and shelves leads to
difficult high-dimensional motion planning problems. To this end,
Cohen et al. (2011) proposed a search-based motion planning algo-
rithm that combines a set of adaptive motion primitives with motions
generated by two analytical solvers.

All the above approaches are demonstrated with a stationary robot.
By contrast, Chitta et al. (2012) proposed an approach to mobile pick-
and-place tasks, which integrates 3D perception of the scene with
grasp and motion planning. The approach has been used for ap-
plications like table-top object manipulation, fetching of beverages,
and the transport of objects. In these applications, objects stand well-
separated on horizontal surfaces or are ordered in feeders.

The Armar robots (Vahrenkamp et al., 2012) demonstrated tasks in
a kitchen scenario that require integrated grasp and motion planning.
Beetz et al. (2011) let a PR2 and the robot Rosie cooperatively prepare
pancakes, which involves mobile manipulation and the use of a tool.

Common to most of these mobile manipulation demonstrations is
that the handled objects are well-separated. Since the work described
in this chapter was first presented—the system described here was to
the best of our knowledge one of the first mobile bin-picking system—
new approaches to mobile bin-picking and bin-picking in general
have been developed. A direct successor of our system is a mobile
manipulator for an automated kitting task (Holz et al., 2015). The sys-
tem consists of a FANUC arm mounted on a mobile base. Schwarz et
al. (2017) developed a fast, stationary system for object retrieval and
storage in an automated warehouse. Another stationary bin picking
system for the Amazon Picking Challenge was developed by Hernan-
dez et al. (2017). Both systems employ an overhead camera system to
perceive objects in a tote at a fixed position and a 6-DoF industrial
manipulator arm.

Domae et al. (2014) find feasible grasps by calculating graspability
maps from depth images. The method allows fast grasp selection, but
considers a simplified problem where all grasps are top-grasps. We
follow a more flexible approach to full 6-DoF grasp planning.

Another approach inspired by the Amazon robotics challenge is
affordance-based grasp evaluation (Zeng et al., 2018). They grasp any

38 grasp and trajectory planning for mobile bin-picking

reachable object in a bin by applying one of four grasping primitives
depending on the perceived object shape and recognize it after the
grasp.

An example for learning grasps of objects in clutter is (Laskey et
al., 2016). A manipulator learns to push unwanted objects out of its
way to reach a target object. The employed gripper is restricted to
2-DoF—rotation around one joint and linear extension of the arm.

4.2 system overview

We consider a scenario where unordered parts need to be grasped
from a transport box, as shown in Figure 4.1. The objects are trans-
ported to a processing station and placed there.

For the experiments, we use the cognitive service robot Cosero
(Stückler et al., 2011), which navigates on an eight-wheeled omni-
directional base and has an anthropomorphic upper body with two
7-DoF arms that end in grippers with two Festo FinGripper fingers.
Due to the Fin Ray effect, the finger tips passively bend inwards, cre-
ating a closure around a grasped object. To extend the workspace, the
upper body of the robot can be twisted around the vertical axis and
lifted to different heights. With only 32 kg, Cosero has a low weight,
compared to other service robots. Nevertheless, its arms can lift a pay-
load of maximum 1.5 kg each. The robot senses its environment in 3D
with a Microsoft Kinect RGB-D camera in the pan-tilt head. For obsta-
cle avoidance and tracking in farther ranges and larger field of views,
it is equipped with multiple laser rangefinders (LRFs), of which one
in the chest can be pitched and one in the hip can be rolled. The
main computer is a quadcore notebook with an Intel Core i7-Q720
processor.

We divide the mobile bin picking task into the cognition phase
where the robot explores the transport box and recognizes the top-
most objects, the pick-up phase where the robot grasps a top-most
object out of the transport box, and the place phase where the robot
places the object on the processing station.

The autonomous robot behavior is generated in a modular control
architecture, using the interprocess communication infrastructure of
the Robot Operating System (ROS) (Quigley et al., 2009). We imple-
mented the mobile bin picking task as a finite-state machine. It mon-
itors the state of task fulfillment and triggers individual behaviors in
the appropriate order. The task starts with the robot navigating to
the transport box. When the robot is in front of the transport box, it
switches to a local navigation mode that accurately aligns it to the
box. The next step is the acquisition of a 3D point cloud of the en-
tire transport box, which is then processed by the object recognition
module. The detected objects are fed to the grasp planner, which se-
lects an appropriate grasp and plans trajectories for approaching the

4.3 shape primitive detection and object recognition 39

object and for removing it from the box. After the planned grasping
motion is executed, Cosero navigates to the processing station using
the environment map and local alignment with the processing station.
Finally, our robot releases the object into the processing station. This
process continues until the transport box is empty.

To cope with the challenges of mobile bin picking, we use a global-
to-local strategy for approaching the transport box and fetching the
work piece. We use a global navigation approach based on Adap-
tive Monte Carlo localization (AMCL) (Fox et al., 1999) and A*-based
path planning (see Section 2.4) in a given occupancy grid map using
an LRF to roughly approach a pose in the map. A local navigation
approach accurately aligns the robot with the transport box and the
processing station.

4.3 shape primitive detection and object recognition

To grasp objects from an unordered pile in a transport box it is neces-
sary to recognize these objects robustly in point cloud data. In our sys-
tem, we recognize the objects and determine their pose by employing
the shape primitive-based object recognition from Berner et al. (2013).
Shape primitives, e.g., cylinders, spheres, and planes, are searched by
a RANSAC-based approach in the point cloud. Objects are modeled
as a graph with nodes representing shape primitives and edges rep-
resenting their relative poses. We use a similar representation in our
grasp planner to determine generally feasible grasps, depicted in Fig-
ure 4.2 The sensor transmits measurements of the scene as 3D point
cloud messages to the object perception module. After the detection
and recognition of objects in the scene, the object perception module
provides a list of detected objects and their 3D poses to grasp and mo-
tion planning. Besides the parameterized object model, the 3D points
filtered from the points on the detected objects are transmitted for the
collision map. The points and object representations are stored in a
multiresolution height map, detailed in the next sections.

4.4 grasping of shape primitive compounds

We investigate efficient solutions to grasp and motion planning in
order to achieve fast planning and short delays between object per-
ception and motion execution. In our approach, we first determine
feasible, collision-free grasps at the object. We rank these grasps and
find the best grasp that is achievable by a collision-free reaching mo-
tion.

40 grasp and trajectory planning for mobile bin-picking

T3T1
T2

Figure 4.2: Primitive compound object. We model objects for grasp planning
as a set of geometric primitives with possible grasps and corre-
sponding transformation matrices T. Top: Sphere and cylinder
primitives, possible grasps are depicted by arrows. Bottom: Com-
pound object (model and photo) and all possible grasps before
further filtering.

Grasp Planning

For grasp planning, we find feasible, collision-free grasp postures on
the object to grasp. We define a grasp as a tuple containing

• the final pose of the gripper when grasping the object (the grasp
pose),

• the closure of the gripper (according to object width),

• an initial pose of the gripper (the pre-grasp pose) for approach-
ing the grasp pose, i.e., in a distance of 10 cm to the object,

• a score encoding preferences for certain grasps, e.g., grasping
cylinders instead of spheres, and preferring, as the grasp pose,
the central part of the cylinder.

We plan grasps in an efficient multistage process that successively
prunes infeasible grasps in tests with increasing complexity: In the
first stages, we find collision-free grasp poses on the object, irrespec-
tive of the pose of the object and not considering its scene context.

4.4 grasping of shape primitive compounds 41

Figure 4.3: Analytical offline grasp pruning. In a first step, we prune grasps
where the line of sight between the grasp pose and the projec-
tion to the corresponding shape primitive is obstructed by other
primitives of the compound object. From left to right: Photo of
the object, union of all possible grasps of the individual prim-
itives, pruned grasps, and remaining grasps of the object com-
pound. The color of the arrows depict the corresponding shape
primitive.

These poses can be precalculated efficiently in an offline planning
phase. We sample grasp poses on the shape primitives. From these
poses, we extract grasps that are collision-free from pre-grasp pose to
grasp pose according to fast collision-check heuristics.

Sampling of Grasps

We sample equidistant grasp poses at the surface of an object model.
Since the objects are described by compositions of parametric shape
primitives, we sample grasps efficiently according to the primitives
(see Figure 4.2 for an example). The pre-grasp pose is then selected
to lie along the local surface normal at the sampled grasp position
and in a distance corresponding to the length of the gripper. Accord-
ingly, the orientation of the grasp pose is restricted to point along the
normal. From one sampled grasp position, we then generate multiple
grasp poses by sampling different rotation angles around the normal.
By collecting the grasp poses sampled on all primitives of an object
model, we obtain an initial set of grasp candidates.

Constraining Grasps by In-Object Feasibility

We evaluate a local primitive-dependent score of the candidates and
remove those grasps that are in collision within the object itself. We
first remove all candidates where the line segment between the grasp
pose and the pre-grasp pose intersects another primitive, depicted in
Figure 4.3. For the remaining set of candidates, we simulate a grasp
by transforming the gripper model to the grasp pose and checking
collisions of the gripper shape with the object model (see Figure 4.4).
By this, a considerable amount of infeasible grasps can already be
rejected. For each remaining grasp, we compute a quality score. This
local primitive-dependent score prefers stable grasps, e.g., at the cen-
ter of mass of the shape primitives.

42 grasp and trajectory planning for mobile bin-picking

Figure 4.4: Offline collision checking with gripper model. In a second offline
preprocessing step, we prune more generally infeasible grasps by
collision checking with a gripper model and an object. Left: We
check for collisions of the open gripper with the object at the
grasp pose. By this, we take the actual gripper geometry into
account in order to prune grasps that have been sampled on
a specific shape primitive in the object but result in collisions
of the gripper at further shapes. Right: Grasps pruned by colli-
sion checking. The color of grasp poses depict the corresponding
shape primitive.

This set of grasps can be computed offline for a particular object
compound, since this set is determined without taking the surround-
ing and the reachability in specific object poses into account. That is,
for every object compound, we only have to determine (and evaluate)
this set of grasps once.

Considering In-Environment Feasibility

During online planning, we examine the remaining grasp poses in the
actual poses of the objects to find those grasps for which a collision-
free solution of the inverse kinematics in the current situation exists.
Grasps from below the object are considered as infeasible and filtered
first. Next, we test grasp and pre-grasp positions against our height-
map. The remaining grasps are ranked first by the object ranking—
the quality score computed offline—and second by the grasp ranking.

The grasp ranking includes

• height of the grasp pose above the ground plane to prefer
grasps at high positions,

• angle of the grasp w.r.t. the robot, preferring top grasps from
above the object,

• and deviation of the arm posture from convenient joint angles.

4.4 grasping of shape primitive compounds 43

Figure 4.5: Planned endeffector trajectories for grasping a compound object
from a transport box. The trajectories for the approach (left and
middle) and grasp (right) phases are shown as blue lines.

Collision-free inverse kinematics solutions are searched for the
grasps in descending order. We allow collisions of the fingers with
other parts in the transport box in the final stage of the grasp, i.e.,
in the direct vicinity of the object to grasp. The shape of the fingers
allows for pushing them into narrow gaps between objects. If a valid
solution is found, we employ motion planning to find a trajectory. If
none is found, we continue with the grasp evaluation.

Motion Planning

Our grasp planning module finds feasible, collision-free grasps at the
object. The grasps are ranked according to a score which incorporates
efficiency and stability criteria. The final step in our grasp and motion
planning pipeline is now to identify the best-ranked grasp that is
reachable from the current posture of the robot arm. We solve this by
successively planning reaching motions for the found grasps (see Fig-
ure 4.5). We test the grasps in descending order of their score. For
motion planning, we employ a bidirectional version of KPIECE (Şu-
can and Kavraki, 2008) with lazy evaluation (LBKPIECE).

We split the reaching motion into multiple segments:

• moving the endeffector over the transport box,

• reaching the pre-grasp pose,

• and finally grasp.

This allows for a quick evaluation if a valid reaching motion can be
found by planning in the descending order of the probability that
planning for a segment will fail.

Multiresolution Height Map

To speed up the process of evaluating collision-free grasp postures
and planning trajectories, we employ a local multiresolution height
map based on the 2D multiresolution grid described in Section 2.3.

44 grasp and trajectory planning for mobile bin-picking

Figure 4.6: Local multiresolution height map. Left: The height map is object-
centric, i.e., it has a high resolution close to the object the robot
attempts to grasp. Right: We filter out grasp candidates that lie
below the height value in the corresponding grid cells. A 3D rep-
resentation of the height map is used for arm trajectory planning.

Our height map is aligned with the ground plane and each cell con-
tains the maximum height of an object projected into the grid. We
make the assumption that the objects in the transport box can only be
accessed from above and that objects positioned below other objects
cannot be directly picked. Consequently, we reduce the full 3D en-
vironment representation to this simpler 2.5D representation to sim-
plify the collision checking process to a query if the height coordinate
of a point is smaller than the value in the corresponding grid cell.

Planning in the vicinity of the object needs a more exact environ-
ment representation as planning farther away from it. This is accom-
plished by centering the collision map at the object. This approach
also leads to implicitly larger safety margins with increasing distance
to the object as the grid resolution decreases (see Figure 4.6).

Removal Planning

After the execution of the reaching motion, we check if the grasp was
successful based on the gripper servo feedback. If the object is within
the gripper, a removal motion is planned with the object model at-
tached to the endeffector using the detected object pose. We allow
minor collisions of the object and the endeffector with the collision
map in a cylindrical volume above the grasp pose. Finally, the work
piece is deposited at the processing station. To reach it, global navi-
gation and local alignment are used in the same way as for the box
approach.

4.5 evaluation 45

Figure 4.7: Grasp planning experiments in simulation. We employed the
physics-based simulator Gazebo for testing and evaluating our
approach before transferring it to the real robot.

Implementation Details

To speed up our grasp and motion planning pipeline, we imple-
mented it in a way that directly after a feasible grasp is found plan-
ning for a reaching motion is performed. Only if no reaching mo-
tion can be found, further grasps are evaluated. We implemented
the handling of different failure conditions during grasp execution
to increase the robustness of our system. The planning and execu-
tion pipeline has been adapted to allow for choosing between both
arms to execute a grasp. The preference for an endeffector is based
on object position—objects in the left half of the transport box are
preferably grasped with the right arm and vice versa. If a grasp fails,
i.e., the reaching motion is aborted during execution, or no object is
measured in the gripper after grasping, one more attempt of execu-
tion another grasp is performed. After two failed grasps, we switch
the used arm and try to reach the objects with the other gripper. If
that fails after another two attempts, we assume that our model of
the transport box is no longer valid and rescanning is necessary.

4.5 evaluation

We evaluated our grasp and motion planning pipeline in simulation
as well as in two scenarios—an industrial application and in the
RoboCup@Home competition—with the real robot.

Simulation Experiments

The evaluation in a physical simulation of the robot allows for re-
producible experiments. Our simulation environment is based on the
Gazebo simulator (N. Koenig and Howard, 2004) and shown in Fig-
ure 4.7. We placed a single dumbbell-shaped object (see Figure 4.2)
randomly in a transport box and measured the time for planning
and the success rate. In ten runs, our approach requires on average
14.9 s to choose a non-colliding grasp that is within the workspace
of the robot. We then plan reaching motions to choose a reachable

46 grasp and trajectory planning for mobile bin-picking

Figure 4.8: Example of a mobile bin picking and delivery run. From left to
right: the robot grasps an object out of the transport box and puts
it on the processing station.

grasp within 2.45 s on average. Note, that multiple reaching motions
may have been evaluated. A successful reaching motion is planned
in 0.45 s on average. In all test runs, the robot succeeded to grasp the
object.

Lab Experiments

Our experiments in the lab were inspired by an industrial scenario.
We let our robot Cosero clear a transport box filled with up to ten
pipe connectors as depicted in Figure 4.1. We split the complete task
into single runs where the robot picks up one pipe connector and de-
livers it. Figure 4.8 shows a series of images from a successful run. The
complete execution of the grasp and delivery of the object is shown
in Video 4.11. In Table 4.1 we report timings, the number of detected
objects per run, and the number of trials needed to successfully pick
objects for clearing one complete transport box. On average our ap-
proach required 5 s to detect objects, 19.9 s to choose a grasp, and 3.8 s
to plan a valid reaching motion. This includes one run, where the
robot aborted the execution of a planned motion and replanned for
the other arm (Run 5 in Table 4.1). In Run 2 in Table 4.1 noisy measure-
ments of the used Kinect sensor lead to wrongly connected primitives
in the object detection. This is not a large problem for our approach,
as grasps are calculated on a per-primitive-base, but it slows down
the grasp evaluation as an additional phantom object is detected and
grasps for that object are evaluated.

In total, we have recorded 32 runs for this scenario, including the
ten runs discussed in the previous paragraph. In 28 runs, the robot
could successfully grasp a pipe connector and deliver it to the pro-
cessing station. In nine of these successful runs, the robot first failed
to grasp an object, detected its failure, and performed another grasp.
This was the case, for instance, when the object slipped out of the
gripper after grasping. In four runs, the object was not successfully
delivered to the processing station. In three out of the four failed
runs the last object could not be detected. In one instance, the object
slipped out of the gripper after lifting. This is caused by the fact that

1 Video 4.1: www.nieuwenhuisen.de/thesis/bin-picking-industrial.mp4

www.nieuwenhuisen.de/thesis/bin-picking-industrial.mp4

4.5 evaluation 47

Table 4.1: Timings for grasp and motion planning and number of found ob-
jects while clearing a transport box. In Run 5, reaching the ini-
tially chosen grasp pose was aborted and replanning was neces-
sary, leading to higher evaluation and planning times. In Run 2
the detection result includes two false positives.

Run Detections Duration (in s) Trials

Selection Planning

1 4 / 10 4.0 1.2 1

2 10 / 9 16.6 2.9 1

3 8 / 8 33.7 3.0 1

4 5 / 7 28.1 6.8 1

5 4 / 6 48.2 9.3 3

6 4 / 5 9.9 4.9 1

7 3 / 4 30.2 3.0 1

8 3 / 3 10.0 1.2 1

9 2 / 2 9.0 3.7 1

10 1 / 1 9.5 1.6 1

Avg. 76% 19.9 3.8 1.2

Table 4.2: Time needed for phases of the bin picking demonstration. The
values for the subphases grasp selection and motion planning are
based on a subset of ten runs, the complete clearing of one box
filled with ten objects.

Phase Duration (in s)

Mean Std. dev.

Navigation (transport box) 20 8

Approaching (transport box) 16 11

Cognition phase 83 41

- Grasp selection 19.9 14.4

- Motion planning 3.8 2.6

Grasping 36 7

Navigation (processing station) 26 9

Approaching (processing station) 22 9

Putting the object on the processing station 18 2

G
rasp

we have to allow collisions between the gripper and other objects dur-
ing the grasp. Occasionally, these minor collisions can cause changes
in the object pose that can make the chosen grasp impossible or un-

48 grasp and trajectory planning for mobile bin-picking

Figure 4.9: Public demonstration of mobile bin picking at RoboCup 2012.

stable. We report mean and standard deviation of the required time
for the individual phases of the individual 32 runs in Table 4.2. The
cognition phase includes object perception and detection as well as
the grasp and motion planning. Please note, that the timings for the
grasp selection and motion planning within the cognition phase are
averaged over the ten runs it took to clear one completely filled box.
One can see that the longest phase is the cognition phase where ob-
jects are detected and the grasping motion is planned. This phase also
includes the transmission of the sensor data to the object recognition
module on a physically distinct computer.

In addition, we tested the applicability to grasp other shape
primitive-based objects in earlier stages of the development as shown
in Video 4.22.

RoboCup@Home Competition

To demonstrate the robustness of our motion planning, we used the
system in the finals of the RoboCup@Home competition 2012 in Mex-
ico City. In contrast to the industrial scenario, we picked a package of
tea from a transport box to store it in a shelf as an example of a typical
household task. For object detection, we used the table-top segmenta-
tion from (Stückler et al., 2011) and integrated it with our grasp and
motion planning pipeline. Instead of the model-based offline process-
ing of grasps, we performed the sampling of grasps after perception
and started directly with the online grasp evaluation phase. The task
was successfully fulfilled and contributed—in addition to other sub-
tasks performed by our two robots—to winning the competition. In
Video 4.33, we show footage from the finals.

4.6 conclusion

In this chapter, we presented an integrated system for a mobile bin
picking application. This requires a combination of navigation, ma-
nipulation, and perception skills.

2 Video 4.2: www.nieuwenhuisen.de/thesis/bin-picking-dumbbell.mp4
3 Video 4.3: www.nieuwenhuisen.de/thesis/bin-picking-robocup.mp4

www.nieuwenhuisen.de/thesis/bin-picking-dumbbell.mp4
www.nieuwenhuisen.de/thesis/bin-picking-robocup.mp4

4.6 conclusion 49

We employ methods to flexibly grasp objects composed of shape
primitives. Grasping objects is realized as a multistage process from
coarse, i.e., global navigation in the environment, to fine, i.e., plan-
ning a collision-free endeffector trajectory within a multiresolution
collision map.

We solve grasp and motion planning in a multi-stage process with
tests of increasing complexity. We divide grasp planning into an of-
fline and an online planning stage: In the offline phase, we examine
the feasibility of grasps irrespective of the actual situation of the ob-
ject in the scene. In the actual scene, these grasps are further evaluated
for collisions with the environment and reachability by the robot.

We showed the applicability of our approaches in a mobile bin
picking and part delivery task in our lab, where the service robot
Cosero cleared a transport box with pipe connectors. Among other
skills, we demonstrated mobile bin picking in the RoboCup@Home
final.

Part II

M U LT I - L AY E R E D N AV I G AT I O N F O R M I C R O
A E R I A L V E H I C L E S

5
H I E R A R C H I C A L C O N T I N U O U S 3 D P L A N N I N G F O R
M I C R O A E R I A L V E H I C L E S

In recent years, micro aerial vehicles (MAVs) became increasingly
popular for inspection and surveillance tasks. In the future, the appli-
cation of MAVs will extend to even more domains, e.g., delivery (Ack-
erman, 2014) or aerial manipulation tasks (Jiang and Voyles, 2013).
With MAVs it is possible to reach otherwise inaccessible areas with
low effort, e.g., it is possible to inspect structures in higher altitudes
without the need for scaffolds or climbers. Nevertheless, at the mo-
ment most of the MAVs are remotely controlled or navigate to fixed
global navigation satellite system (GNSS) waypoints that are reached
in an obstacle-free altitude and hold the position. More complex op-
erations have to be performed by a human operator. This restricts the
applications to well observable obstacle-free areas in the line of sight
of an operator. Flying in more challenging 3D environments, like low
altitude flight in outdoor environments with vegetation or indoor en-
vironments, demands a higher level of autonomy.

Especially on larger sites, a constant connection to the MAV may
not be maintainable. Also, passages may be narrow and surrounding
environmental structures may be hard to perceive for a human oper-
ator. In order to safely navigate in such environments, an alternative
is to have an autonomous MAV that can on its own—and without
interaction with the operator—solve well-defined sub-tasks, i.e., au-
tonomously approach multiple view-poses and collect (and/or trans-
mit) sensor information. For the autonomous operation of MAVs, a
key prerequisite is the planning of collision-free trajectories.

We aim for fully autonomous safe operation of MAVs in known
and (partially) unknown environments. Obstacles can either be static,
like houses and power poles, or dynamic, like humans or animals. In
this thesis, we cover three application scenarios:

Creation of 3D Maps on Demand

Our MAV operates in an outdoor environment to acquire laser scans
and camera images to build high-quality 3D maps of buildings and
their surroundings. Special focus lies on the inspection of building
facades (L. Klingbeil et al., 2014). Hence, our MAV has to operate in
the vicinity of buildings and other structures, e.g., trees and power
cables. Figure 5.1 shows the mapping of an old manor house close to
trees and bushes. To achieve these objectives, we cannot solely rely
on predefined GNSS waypoint following—especially as the accuracy

53

54 hierarchical continuous 3d planning for mavs

Figure 5.1: Autonomous outdoor mapping. We build mission-specific out-
door maps on demand employing an autonomous MAV. Left:
Photo of the depicted area. Middle: We start with a coarse envi-
ronment model—derived from city and elevation models. Right:
We incorporate newly perceived obstacles, e.g., vegetation, into
allocentric navigation obstacle maps during the flight.

drops in the vicinity of larger obstacles—but need more elaborated
means of navigation.

In this application domain, we assume—in contrast to fully au-
tonomous exploration—to have partial environment knowledge in
advance. For initial mission and path planning, we employ digital
elevation models (DEMs) and 3D city models acquired by land sur-
veying authorities. These models—specified as Level-of-Detail 2 in
CityGML (Gröger et al., 2008)—contain building footprints, heights,
and roof shapes. These models do not include smaller structures,
which constitute a collision hazard for the MAV. Thus, the initial
mission plans need to be adjusted on the fly, whenever more infor-
mation becomes available during a flight. Nevertheless, buildings are
often the largest obstacles and might inhibit local path planners to
find a feasible path towards the global goal. Other obstacles, e.g.,
power poles, vegetation, or building attachments, are likely to be
small enough to be covered by our local obstacle map, built by means
of efficient multiresolution scan registration. Hence, a globally consis-
tent path enables a local planner to navigate towards a global goal.

Automated MAV-based Inventory Taking

Our MAV operates in the indoor environment of a warehouse (see
Figure 5.2). In contrast to ground-based inventory, an MAV can easily
reach shelf positions at higher levels and scan RFID tags or optical
markers on wares and storage places. Nevertheless, remotely control-
ling an MAV in complex 3D environments is much more demanding
than controlling a ground vehicle. Furthermore, narrow passages and
fully closed rooms also prevent the use of GNSSs like global position-
ing system (GPS) or GLONASS such that GNSS-based hovering or
waypoint following is not an option.

Initial acquisition of a warehouse model can be performed by guid-
ing the MAV remotely. To ensure safe operation in the narrow cor-
ridors between shelves with only onboard sensors, reliable obstacle
avoidance without allocentric localization is an important skill. Thus,

hierarchical continuous 3d planning for mavs 55

Figure 5.2: Flight in a warehouse. In indoor environments MAVs in gen-
eral have to operate close to obstacles. Reliable obstacle avoid-
ance is important not only for autonomous, but also for remote-
controlled operation in these scenarios.

indoor operation of MAVs requires assisted teleoperation, i.e., adding
an obstacle avoidance layer between the operator command input and
the MAV controller, or fully autonomous operation.

Inspection of Chimneys

MAVs have a high potential to reduce the required time and costs
for the inspection of industrial chimneys. This application requires
a combination of some techniques from the aforementioned applica-
tions. We assume to have a coarse initial model, which consists of a
geometric primitive such as a cylinder or a cone that can be easily
parameterized from the chimney construction documents, and the
MAV has to operate in narrow confined spaces. Figure 5.3 shows our
MAV during autonomous flight in a chimney. To build detailed 3D
models of the chimney surface with a 3D laser scanner and RGB-D
cameras, the MAV has to approach the surface closely. Due to the
height of chimneys, this cannot be accomplished by a human pilot in
a safe way. Figure 5.3 shows an example of the pilot’s perspective in a
chimney. Thus, fully autonomous operation with obstacle avoidance
is necessary. Specific to this application is the focus on navigation rel-
ative to the surface—which is a 2D manifold—and a strongly reduced
complexity of allocentric planning by a nearly convex workspace.

Common to all of these approaches is a multi-layered approach
to navigation. This enables the MAV to quickly react on obstacles
and to allow for globally consistent planning. Our planning hierar-
chy goes from slower deliberative to fast reactive layers and includes
mission planning, global and local path planning, and fast local ob-
stacle avoidance. We generate motion commands for the different un-
derlying motion controllers (Beul and Behnke, 2017; Beul et al., 2015;
Kamel et al., 2017).

56 hierarchical continuous 3d planning for mavs

Figure 5.3: Industrial chimney inspection. Surface inspection in industrial
chimneys with MAVs requires safe navigation in proximity to
the surface in a small confined space. The perspective of a pilot
on the bottom of a chimney makes flight maneuvers in larger
heights hard to control without automation (MAV circled red).
Left: Manual chimney inspection from the outside in larger dis-
tance from the wall is not suitable for 3D surface reconstruction.
Center: Autonomous flight close to the walls. Right: Manual op-
eration in larger heights inside the chimney is prohibitive, espe-
cially in daylight conditions.

5.1 related work

In the last years MAVs have become popular in many areas. This
raised the demand for more autonomy. First assistance functions for
MAVs were hovering at a specified GNSS position (Bouabdallah et al.,
2004). This was extended to processing a list of waypoints or follow
a specified trajectory (Puls et al., 2009). Usually, this does not include
obstacle avoidance and the MAV approaches waypoints on a direct
line while flying at a height that is assumed to be obstacle-free. A
special case is returning to a previously recorded position, e.g., the
start position, where tracing back the trajectory to reach the current
position (DJI, 2017b). Some of the first fully autonomous MAV sys-
tems were presented by Grzonka et al. (2012) and Shen et al. (2011).

Still, for most MAVs employed in real world applications a human
pilot is necessary to teleoperate the vehicle to ensure safe operation
in the vicinity of obstacles. It is an active research area to overcome
this limitation.

Path Planning

An early example for autonomous indoor MAV flight is Grzonka et al.
(2012). However, they simplify path planning and obstacle avoidance
to a 2D manifold in a fixed distance to the ground due to the em-
ployed 2D laser rangefinder (LRF) and very limited compute power
on the MAV. We allow omnidirectional 4D movements (3D transla-

5.1 related work 57

tion + yaw rotation) of our MAV. Similar to their work, we reduce the
planning dimensionality by deriving the MAV orientation from the
planned 3D path in many applications.

Heng et al. (2014) use a multiresolution grid map to represent the
surroundings of a quadrotor. A feasible plan is generated with a vec-
tor field histogram. Schmid et al. (2014) autonomously navigate to
user specified waypoints in a mine. The map used for planning is cre-
ated by an onboard stereo camera system. By using rapidly-exploring
random belief trees (RRBTs), Achtelik et al. (2014) plan paths that do
not only avoid obstacles, but also minimize the variability of the state
estimation. Other search-based methods for obstacle-free navigation
include work of MacAllister et al. (2013). They use A* search to find
a feasible path in a four-dimensional grid map. They also incorpo-
rate the asymmetric shape of their MAV. SPARTAN from Nuske et
al. (2015) generates an approximation of a 3D visibility graph on the
fly. Here, also A* search is employed to find a shortest path in the
visibility graph.

Due to the limited computational power onboard the MAV, in
particular low computational costs are crucial for the applicability
of these methods. To meet real-time demands, layered planning ap-
proaches are often used.

Andert et al. (2010) use a three-level hierarchical behavior control
algorithm to fly a helicopter through a gate. Whalley et al. (2014) em-
ploy five navigation layers to fly 230 km/h with a helicopter. Obsta-
cles are detected and avoided with an onboard laser scanner. While in
their work sensing and consequently planning is limited to a narrow
field of view (FoV) in flight direction, we employ full 3D planning,
including flying sideways and backwards. The sampling-based BIT*
planner is used by Lan et al. (2016) to plan a geometric obstacle-free
path for an MAV. This path is refined to a dynamically feasible tra-
jectory employing a second layer which connects path points with
generated trajectory segments.

Many approaches address the problem of planning sensor poses
(Englot and Hover, 2010; Stefas et al., 2018). In contrast to our work
on planning paths that stay in the sensor FoV, they aim at covering
allocentric areas of interest, not necessarily in the direction of flight.
We aim at covering egocentric areas of interest that move together
with the MAV. Costante et al. (2018) extend RRT* by photometric
information. This yields paths that minimize the localization error
during flight. Nevertheless, they do not consider sensor constraints
for obstacle avoidance.

Trajectory Optimization

To plan high-dimensional trajectories, often sampling-based planners
are employed, including KPIECE (Şucan and Kavraki, 2008) and ran-

58 hierarchical continuous 3d planning for mavs

domized kinodynamic planning (LaValle and Kuffner, 2001). Imple-
mentations for many sampling-based planners are provided in the
Open Motion Planning Library (OMPL) (Şucan et al., 2012). In ad-
dition to those sampling-based motion planning algorithms, trajec-
tory optimization allows for efficient generation of high-dimensional
trajectories. Covariant Hamiltonian optimization and motion plan-
ning (CHOMP) is a gradient-based optimization algorithm proposed
by Zucker et al. (2013). It uses trajectory samples, which initially
can include collisions, and performs a covariant gradient descent by
means of a differentiable cost function to find an already smooth and
collision-free trajectory. A planning algorithm inspired by CHOMP
is stochastic trajectory optimization for motion planning (STOMP)
by Kalakrishnan et al. (2011). STOMP combines the advantages of
CHOMP with a stochastic approach. In contrast to CHOMP, it is
no longer required to use cost functions for which gradients are
available, while the performance stays comparable. This allows to in-
clude costs with regard to, for instance, general constraints or motor
torques. Pavlichenko and Behnke (2017) use a modified version of
STOMP for multicriteria optimization. The optimized criteria include
the trajectory duration and joint limits, in addition to obstacle costs,
but no sensor visibility constraints. Another algorithm derived from
CHOMP is ITOMP, an incremental trajectory optimization algorithm
for real-time replanning in dynamic environments (Park et al., 2012).
In order to consider dynamic obstacles, conservative bounds around
them are computed by predicting their velocity and future position.
Since fixed timings for the trajectory waypoints are employed and
replanning is done within a time budget, generated trajectories may
not always be collision-free.

The real-time generation of highly dynamic trajectories is mostly
performed in free space inside of motion capture volumes, e.g., to
quickly reach also dynamically changing goal states (Mueller et al.,
2015). Other approaches plan collision-free trajectories in advance
and execute those with high precision (Richter et al., 2013). Similar to
our approach, they plan MAV trajectories in a low dimensional space
(using RRT*) and optimize the trajectory with a dynamics model after-
wards to achieve short planning times. Our approach does not have
the constraint that the optimized path has to include the planned
waypoints. Another approach using optimization by means of polyno-
mial splines between waypoints focuses on time-optimal trajectories
computed in real-time (Bipin et al., 2014). Collisions are avoided by
intermediate waypoints from a high-level planner and are not explic-
itly considered in the optimization process. These approaches assume
complete knowledge of the environment and very reliable control of
the MAV. In most application scenarios outside of a controlled lab,
the environment can change unpredictably or acquiring a model of
the environment itself is the mission objective. Thus, closing the gap

5.1 related work 59

between conservative flying in free space and dynamic trajectory fol-
lowing is key to expand the application domain of MAVs.

Andreasson et al. (2014) employ optimization to compute steerable
trajectories for automated ground vehicles. Similar to our approach,
they first plan a path and optimize it to a drivable trajectory in a sec-
ond step. While they use a lattice-based 2D planner, we plan in the
3D state space and employ an intermediate step to get closer to a dy-
namically feasible trajectory. For flying an MAV inside of ships, Fang
et al. (2017) also add a global planning layer to initialize trajectory
optimization. Nevertheless, their planning layer is restricted to 2D. In
contrast, we plan and optimize in 3D space.

Optimization of trajectories with continuous timings can be
achieved by fitting polynomials to the trajectory points (Oleynikova
et al., 2016). We aim at using a time discretization that matches the
discretization of the underlying controller for the beginning of the
trajectory.

Majumdar and Tedrake (2017) use compositions of preprocessed
trajectories to generate flight paths that are safe under uncertainty in
real-time. In contrast, we frequently modify a trajectory in real-time
to react on changes in the environment and uncertain path execution.
Zhang et al. (2018) generate a set of dynamically feasible paths prior
to a flight and quickly select suitable ones based on sensor input
during the flight.

Obstacle Avoidance

So far, most of the approaches to obstacle avoidance developed for
MAVs are camera-based, due to the limited payload.

Early reactive collision avoidance algorithms for MAVs are based
on optical flow (Green and Oh, 2008) or a combination of flow and
stereo vision (Hrabar et al., 2005). However, solely optical flow-based
solutions cannot cope well with frontal obstacles and these methods
are not well suited for omnidirectional obstacle avoidance as needed
for our scenarios. Mori and Scherer (2013) detect obstacles by visual
features. This allows to react on frontal obstacles. A learning-based
visual approach has been presented by S. Ross et al. (2013). The MAV
predicts steering angles based on video data and is corrected by a su-
pervisor after the flight if a prediction would lead to a collision. These
approaches are mostly employed to steer an MAV through vertical
obstacles, like trees. Obstacle avoidance in recent consumer MAVs is
also based on visual cues (DJI, 2017a). Hence, collision avoidance is
restricted to the FoV of the cameras.

Israelsen et al. (2014) present an approach to local collision avoid-
ance that works without global localization and can aid a human
operator to navigate safely in the vicinity of obstacles. Similar to our
approach, this can be used for assisted teleoperation to prevent a pi-

60 hierarchical continuous 3d planning for mavs

GPS

3D laser scanner

Stereo cameras

Onboard PC

Figure 5.4: MoDCopter MAV. Our MAV is equipped with eight co-axial ro-
tors. For localization and obstacle perception it employs a multi-
modal sensor setup, including a continuously rotating 3D laser
scanner, two stereo cameras, and a precise GPS system.

lot to crash into obstacles. We extend this idea by actively avoiding
approaching obstacles instead of only restricting the possible pilot
commands.

A two-level approach to collision-free navigation using artificial po-
tential fields on the lower layer is proposed by Ok et al. (2013). Similar
to our work, completeness of the path planner is guaranteed by an
allocentric layer on top of local collision avoidance. In contrast to this
work, we consider the current motion state of the MAV and select mo-
tion commands accordingly. Johnson and Mooney (2014) use reactive
obstacle avoidance on a small helicopter for velocities up to 12m/s.
This is achieved by a selection of motion primitives from a small sub-
set of possible motions to locally avoid obstacles. They do not address
hover conditions with approaching obstacles.

Florence et al. (2016) use a combination of vision and a 2D laser
scanner to avoid obstacles at high velocities. Their system flies in clut-
tered unknown environments with large state uncertainties. For our
application, we rely on high-level planning to surround larger obsta-
cles.

Obstacle avoidance for teams of MAVs have been proposed by Baca
et al. (2018). Similar to our work, they use obstacle avoidance as a
safety layer below other planning layers. The MAVs share informa-
tion about their future trajectories to avoid each other if the high level
plans would yield a collision. As the focus here lies on the coordina-
tion of MAV teams in an open space, no external sensing is used and,
thus, obstacle avoidance relies on the shared information.

5.2 system setup

We developed and tested our MAV planning and navigation compo-
nents on multiple flying platforms. This section gives a brief overview
over the four main platforms used in this thesis.

5.2 system setup 61

Dual 3D laser scanner

Onboard
computer

Stereo cameras

GPS WiFi

Figure 5.5: AIRCopter MAV. Our second flying platform is a hexarotor
that was developed for autonomous warehouse inventory. It is
equipped with three stereo camera pairs, a continuously rotating
laser scanner aiding obstacle perception and indoor localization,
and an RFID scanner.

MoDCopter

Our first MAV platform MoDCopter is an octorotor platform with a
co-axial arrangement of rotors, depicted in Figure 5.4 (Holz et al.,
2013). This yields a compact flying platform that is able to carry a
plurality of sensors and an onboard computer with sufficient com-
puting power (Intel Core i7-3820QM 2.7GHz, 8GB RAM) for sensor
data processing and navigation planning. To allow for safe omnidirec-
tional operation of the MAV in challenging environments, the MAV
is equipped with a multimodal sensor setup. Our main sensor for
obstacle perception is a continuously rotating 3D laser scanner based
on a lightweight Hokuyo UTM-30LX-EW 2D LRF that measures dis-
tances of up to 30m (Droeschel et al., 2013). The measurement density
of the 3D laser scanner varies and has its maximum in a forward-
facing cone. This laser covers the space around the MAV in almost
all directions—only a small cone towards the upper rear of the MAV
is shadowed—at a rate of 2Hz. Two stereo camera pairs—pointing in
forward and backward direction—are used for visual odometry and
obstacle perception. Equipped with fish-eye lenses they cover a large
area around the MAV. For outdoor localization the MAV is equipped
with a u-blox GNSS module. This module can be replaced with a
precise differential GPS (Eling et al., 2013) if required.

AIRCopter

The second MAV platform AIRCopter, depicted in Figure 5.5, is a
hexarotor with a frame surrounding the rotor plane to enhance safety
in indoor environments (Beul et al., 2015). While fragile equipment
like computer and laser scanner lie in the core of the MAV, the frame
protects the rotors and is used for mounting multiple sensors. In con-

62 hierarchical continuous 3d planning for mavs

3D laser scanner
Stereo camera
with LED
illumination

Onboard PC VI sensor

Figure 5.6: ChimneySpector MAV. Our MAV is a hexarotor equipped with a
rotating 3D laser scanner for localization and obstacle avoidance,
a VI-sensor for visual odometry estimation, and a stereo camera
for surface reconstruction.

trast to the MoDCopter platform, the hexarotor design makes the MAV
slightly larger while yielding more thrust per rotor. For sensor data
processing and navigation planning, the MAV is equipped with an
Intel Core i7-4770R quadcore CPU (3.2GHz) and 16GB RAM.

The AIRCopter platform is equipped with an evolved multimodal
sensor setup for state estimation, obstacle detection, localization and
mapping. It has three stereo camera pairs, yielding an omnidirec-
tional FoV. Furthermore, it has a 3D laser scanner consisting of two ro-
tating Hokuyo UST-20LX laser scanners, reducing the area occluded
by the MAV and doubling the perception frequency for large parts
of the environment to 4Hz. Each laser scanner provides a scanning
range of up to 20m with 270° apex angle. For stocktaking applica-
tions it is equipped with an RFID reader.

ChimneySpector

Our chimney inspection robot ChimneySpector is based on the Ascend-
ing Technologies Neo hexarotor platform (Quenzel et al., 2018). With
a diameter of about only 80 cm, the platform is well-suited for indoor
flights. Figure 5.6 shows the MAV and the used sensor setup.

A rotating Hokuyo UST-20LX LRF on top of the MAV is employed
for localization and obstacle avoidance. The sensor rotates at a fre-
quency of 1Hz yielding a spherical 3D FoV. Due to the 270° apex
angle and its mounting pose, it covers the space above the MAV with
2Hz—chimney inspection starts at the ground and thus unknown ob-
stacles are more likely to be above the MAV—and the space below
with 1Hz.

The platform is equipped with a front-facing Skybotix VI-Sensor
(Nikolic et al., 2014) used as stereo camera system for visual odometry.

5.2 system setup 63

GPS

Velodyne
laser scanner

Camera

Onboard PC

RFID reader

Figure 5.7: MBZIRC2 MAV. MBZIRC2 is based on the commercially avail-
able DJI Matrice 600 platform. It is equipped with a high-
frequency Velodyne Puck LITE 3D laser scanner. For stocktaking
applications it has two cameras pointing to both sides and an
RFID reader.

For surface reconstruction and inspection, the MAV is equipped with
a compact stereo camera rig at the rear-end of the MAV. The MAV is
equipped with a small and lightweight Intel NUC PC with an Intel
Core i7-5557U dual core CPU running at 3.1GHz and 16GB of RAM.
The overall weight of the system with all sensors and batteries is
about 3.4 kg.

MBZIRC2

The newest employed MAV is based on the commercially available
DJI Matrice 600 hexarotor platform, depicted in Figure 5.7 (Beul et
al., 2018). With a diameter of 1.7m it is larger than the previously em-
ployed MAVs, this requires even more accurate navigation for flying
in indoor environments. In contrast to the other MAVs, the Matrice
600 is equipped with a fixed Velodyne Puck LITE laser scanner that
captures the surroundings of the MAV with up to 20Hz—an order of
magnitude faster than the rotating 3D laser scanners. This facilitates
quick detection and propagation of dynamic and static obstacles, but
at the price of a limited FoV compared to the near spherical FoV
of the other MAVs. The employed scanner setup allows for fast nav-
igation, but requires tailored navigation approaches to address the
sensing limitations.

For stocktaking missions in a warehouse, it is equipped with an
RFID reader, similar to the AIRCopter platform. Onboard computa-
tion is performed on a PC equipped with an Intel Core i7-6770HQ
quadcore CPU running at up to 3.5GHz and 32GB of RAM. The
MAV takeoff-weight is approximately 11 kg.

64 hierarchical continuous 3d planning for mavs

General Components

On all our MAVs, we employ the Robot Operating System (ROS) by
Quigley et al. (2009) as middleware. For low-level velocity and atti-
tude control, the MoDCopter and AIRCopter MAVs are equipped with
Pixhawk flight control units (Meier et al., 2012). The ChimneySpector
and MBZIRC2 MAVs are equipped with proprietary flight control
units, namely the AscTec Trinity and the DJI A3, respectively.

For allocentric localization, we use GNSS outdoors and laser-based
6D localization employing a previously acquired environment map
(Droeschel et al., 2014a) in GNSS-denied environments. Low-level
(egocentric) state estimation, e.g., attitude, velocity, and acceleration,
is performed employing visual odometry and inertial measurement
unit (IMU) measurements—allocentric localization information is in-
corporated indirectly through an extended Kalman filter (EKF). We
control the MAVs egocentrically. Hence, allocentric localization is not
required for basic operation. Control commands sent from the on-
board computer to the Pixhawk flight control unit are egocentric 4D
velocities (linear velocities and yaw rate).

On the ChimneySpector—in contrast to MoDCopter and AIRCopter—
we rely on a proprietary flight control unit, and we employ control
components provided to the participants of the European robotics
challenges (EuRoC) by the challenge hosts. Consequently, the low-
level interfaces differ from the Pixhawk-based systems. To keep the
differences between the MAV systems small, we estimate the MAV
odometry with a port of the modified Pixhawk state estimation filter
used on our previous MAVs to the onboard PC. The AscTec Trinity is
controlled by attitude and thrust commands, calculated onboard the
PC with the linear model predictive controller (MPC) from Kamel et
al. (2017). We modified the MPC to be controllable by either veloc-
ity setpoints—similar to the two previous systems—or trajectory seg-
ments including positions and derivatives generated by higher layers.

Also, MBZIRC2 is equipped with a proprietary flight controller. It
provides different control modes, e.g., position control, velocity con-
trol, or attitude control. We employ the low-level attitude control
mode, the attitude commands are generated by the MPC from Beul
and Behnke (2017). Input to the controller are either pose setpoints or
intercept points that include the current pose of a target point and its
velocity. In the first case the MAV reaches the position with a given
velocity, in the second case the MAV intercepts the moving target and
follows its movement. Similar to the ChimneySpector, we employ the
PC port of the Pixhawk state estimation filter.

5.3 planning and navigation hierarchy 65

Coarse Environment Model

Allocentric SLAM Map

Egocentric Map

Local Obstacle Map

MAV Sensors

Laser scans

Registered scans

Egocentric
MRS maps

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 10−2Hz Allocentric goal

10−1Hz
Excerpt of allo-
centric path

100Hz
Intermediate goal
on egocentric path

101Hz Velocity setpoints

A
llo

ce
nt

ric
E
go

ce
nt

ric

Sl
ow

D
el

ib
er

at
iv

e
Fa

st
R
ea

ct
iv

e

Perception and Mapping Navigation and Control

Figure 5.8: Planning hierarchy for a mapping mission. From top to bottom
the execution frequency increases while the environment repre-
sentations become more local and the planned action sequences
cover shorter durations and become more specific.

5.3 planning and navigation hierarchy

To operate MAVs in complex environments for inspection or mapping
missions, safe navigation in the vicinity of obstacles is key. Especially
when operating indoors, the free space is restricted and keeping a
large safety margin to obstacles is not an option. Hence, only quick
reactions given the observed vehicle and environment state ensure
the successful and safe mission completion. To allow for direct re-
actions on obstacle perceptions on one end and consistent mapping
and complex planning on the other end, our system architecture is
layer-based (see Figure 5.8) with slower global layers on the top (de-
liberative planning, allocentric mapping) and faster local layers on
the bottom (reactive obstacle avoidance, egocentric obstacle maps).
From top to bottom the abstraction level of planning and mapping
is reduced and the processing frequency approaches the sensor mea-
surement frequency. In the following, we will focus on the planning
part of our hierarchy.

To plan an initial mission, we need a coarse (semantic) model of
the environment; to plan collision-free paths, we need a finer and
up-to-date consistent geometric model; and to avoid collisions, we
need a non-aggregated local representation of the close vicinity of
the MAV. The planned actions also have different granularity, which
is represented by the planning frequency, from once per mission to
multiple times per second. The higher-layer planners set goals for the
lower-level planners which produce more specific action sequences
based on more local and up-to date environment representations. In
detail, the navigation layers are:

66 hierarchical continuous 3d planning for mavs

• Mission planning: The topmost layer is a mission planner. Input
to the mission planner is a set of view poses defined by the user.
A coarse static environment model is employed to determine
a cost-optimal sequence of view poses. The result of mission
planning is a flight plan composed of an ordered list of 4D way-
points (x, y, z, yaw). It is executed once per mission.

• Global path planning: The global path planner operates either on
a static or updatable geometric allocentric environment model
to plan a 3D path to the next active view pose in the flight
plan. Replanning based on the current MAV state is performed
every 5–10 s to account for deviations from the flight path and to
incorporate updated allocentric maps. Output is an allocentric
4D path to either trajectory optimization or local path planning,
depending on the application.

• Trajectory optimization: We employ trajectory optimization as a
way to generate dynamically feasible allocentric trajectories. A
globally planned 4D path is refined given dynamic constraints
of the MAV. The resulting trajectory is smooth and can be fol-
lowed with low-level controllers. Positions, velocities, and accel-
erations are defined for every point of the trajectory.

• Local path planning: The local path planning layer employs ego-
centric multiresolution map and plan representations. This layer
plans based on the allocentric path within the range of the on-
board sensors. It refines the global path according to the actual
situation at 1–2Hz, the duration of perceiving the environment
in every direction with the 3D laser scanner. Output to the next
layer is the next intermediate 4D waypoint on the local plan
relative to the MAV.

• Obstacle avoidance: Due to the complex flight dynamics of the
MAV and dynamic or previously unknown obstacles, it is nec-
essary for the MAV to quickly react on deviations from the plan.
Between the control and the planning layers, we employ a fast
reactive collision avoidance module based on artificial potential
fields as a safety measure. It reacts directly on the available sen-
sor information at a higher frequency than used for planning.
This enables the MAV to immediately react to perceived obsta-
cles in its vicinity. Also in manual operation, obstacle avoidance
assists a human pilot to operate the MAV safely in challenging
situations, e.g., flying through a narrow passageway. The output
of this layer are egocentric 4D velocity commands.

• MAV controller: Within the lower layers, high-frequency con-
trollers stabilize the attitude of the multicopter. A control layer
provides an interface to the higher layers, allowing control of

5.3 planning and navigation hierarchy 67

linear and angular velocities instead of the multicopter attitude
and thrust. This layer is out of the scope of this thesis.

In the following chapters, we will detail the layers of the navigation
hierarchy from the deliberative layers on the top to the reactive layers
on the bottom.

6
M I S S I O N P L A N N I N G

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 10−2 Hz Allocentric goal

10−1 Hz
Excerpt of allo-
centric path

100 Hz
Intermediate goal
on egocentric path

101 Hz Velocity setpoints

A
llo

ce
nt

ric
M

ap
s

Eg
oc

en
tr

ic
M

ap
s

Navigation and ControlOn top of our planning hierarchy is the mission planning layer. This
layer allows for high-level interaction with the user and is, naturally,
tailored to the specific application domain we address. We consider
two qualitatively different mission types. Our first type are missions
where the micro aerial vehicle (MAV) executes a series of discrete
waypoints. A set of mission-relevant 4D view and auxiliary poses for
the MAV is specified by a human operator or an external view pose
planning module. The mission planner determines the best order of
the mission poses in terms of total flight path costs. We employ this
type of mission planning for, e.g., mapping or inspection applications.
The second mission type is the coverage of areas or objects with the
MAV onboard sensors. Here, a user defines an area of interest and the
mission planner generates coverage tours. We employ mission plan-
ners of this type for, e.g., chimney inspection, automated inventory
taking, and mapping the interior of buildings from the outside.

Common to all these approaches is our assumption that partial
environment knowledge—either from models or maps acquired be-
fore the mission—is available. Thus, our MAV does not explore the
environment fully autonomously. Nevertheless, newly acquired infor-
mation can be incorporated into lower layers during flight, such that
the MAV can deviate from the initially planned mission to account
for obstacles.

6.1 planning for outdoor mapping missions

For the mapping of outdoor building complexes and the surround-
ing environment MAVs are superior to ground vehicles. They are
able to overfly obstacles and capture buildings from the ground up
to the roof. To build and refine outdoor maps on demand, we start
with already available information. For the initial mission and path
planning, we employ digital elevation models (DEMs) and 3D city
models acquired by land surveying authorities (Figure 6.1b) in out-
door applications. These models—specified as Level-of-Detail 2 in
CityGML (Gröger et al., 2008)—contain building footprints, heights,
and roof shapes. Figure 6.1 shows the input data that is stored effi-
ciently in an OctoMap (Hornung et al., 2013), detailed in Section 2.2.
Other structures are added to the map during flight as they are per-
ceived.

An operator defines observation poses for the mapping mission in
the initial map by either setting the poses in an operator front end or

69

70 mission planning

(a) Digital Elevation Model (DEM) (b) LoD 2 model of an office building

(c) Combined DEM and LoD 2 models of a farm area

Figure 6.1: The static environment representation a priori known, consists of
(a) a digital elevation model and (b) a 3D city model. The color
corresponds to height. For planning, geometric representations
of both are stored in an OctoMap that allows efficient storage of
larger areas (c).

teach-in the poses during manual flight. The estimated flight costs be-
tween every pair of observation poses is determined by means of the
global path planner described in the next section, operating on the
static environment model. Figure 6.2 shows an example specification
to map an old manor house and all optimal flight paths between the
observation poses. Our path planner is undirected. Thus, the mission
planner has to evaluate n2/2 allocentric plans in total. For efficiency,
we reuse information in the grid-based path planning representation
in consecutive planning cycles. As the map is static, the obstacle in-
duced costs can be reused for every plan. Furthermore, we reuse the
costs to reach each grid cell if the start node remains the same, which
is the case for an average of n/2 plans per node.

The evaluation of the minimal-cost order of mission poses is an
instance of the traveling salesman problem (TSP). As our problem
instance usually is comparably small (tens of poses), it is feasible to
solve the problem exactly. In this case, we employ the freely available
Concorde TSP solver (Applegate et al., 2006) with our previously cal-
culated distance matrix. For larger problem instances, we employ the
approximation by Lin and Kernighan (1973). Together with the costs
of pairs of mission poses, the corresponding planned paths are stored.
These paths can serve as initial guess to speed up the global path plan-

6.2 planning for warehouse inventory missions 71

Figure 6.2: Mission planning for outdoor mapping. A mission planner eval-
uates the best execution order of mission poses (black arrows).
Left: All cost-optimal trajectories between each pair from the set
of mission waypoints, including the current robot pose (red ar-
row). Right: The optimal flight plan to reach all waypoints and
return to the start pose. The cost function allows for positions
close to the building but penalizes these more than paths farther
away.

ning on the next lower layer. The result of mission planning is a flight
plan composed of an ordered list of 4D waypoints (x, y, z, yaw).

An interface to modules for more high-level interaction with the
user was established to the software from Loch-Dehbi et al. (2013).
By employing this interface a user can select parts of buildings in a
semantic map to be inspected, e.g., the rain gutter of a building. The
external software generates poses along the building part that a cam-
era on the MAV shall observe, the mission planner then generates in-
spection poses for the MAV in a safe distance and includes these into
the mission. Another extension to our approach includes the use of
simultaneous localization and mapping (SLAM)-based maps to oper-
ate in combined indoor and outdoor environments. Figure 6.3 shows
an example solution for a mission to inspect parts of a hall and a
garage, based on a laser map.

6.2 planning for warehouse inventory missions

Another application domain we cover is autonomous warehouse in-
ventory. Here, we employ semantic descriptions of the warehouse
structure to derive an initial map (Figure 6.4).

The layout of large warehouses yields in general a very structured
basic environment. Large halls are filled with shelves containing stan-
dardized storage units, e.g., capable to store exactly one EUR-palette
of size 800mm× 1200mm. Thus, on the topmost layer, we describe
equal parts of a warehouse by numbers of shelves, unit height, and

72 mission planning

Figure 6.3: Mission planning in combined indoor/outdoor laser map. Mis-
sion poses are depicted by green arrows. Red lines depict
planned cost-optimal paths between mission poses. The number
of possible flight paths is reduced by the constraints that the
MAV has to fly through the doors. Left: Planned paths between
each pair of mission relevant poses. Right: Cost optimal flight
path that yields a cost-optimal order of mission poses from the
current MAV pose. Color encodes height.

the numbers of units in horizontal and vertical direction. If the stor-
age unit IDs are assigned in a systematic way, we can derive a map-
ping between storage unit coordinates, scan positions, and IDs auto-
matically. In our evaluated scenario this is the case—storage unit IDs
contain shelf number, vertical and horizontal position and sub-unit.
Otherwise, a simple mapping table can still be easily created without
exactly measuring unit positions in the warehouse. Figure 6.4 depicts
a resulting model of a warehouse. We derive an initial OctoMap from
the model for navigation planning. For development and debugging,
flight plans containing flights to individual storage units and cover-
age paths for whole shelves can be assembled employing an RViz-
based interface. In real-world applications, IDs of shelves or units to
inspect will be provided by a warehouse management system (WMS).

Coverage paths to inventorize shelves are generated employing
a user-defined distance to the shelf and the sensor apex angles. A
10% overlap between scans allows to detect visual tags that could
be cropped otherwise and mitigates the effects of small deviations
from the flight altitude. To mitigate effects of motion blur, a constant
velocity without stopping in front of individual storage units can be
advantageous. Thus, the mission planner allows for continuous flight
by removing colinear waypoints on an inventory mission if specified
in the mission profile. Missions can include an arbitrary set of indi-
vidual storage units and coverage patterns which are then ordered
and connected to a complete trajectory by formulating the mission
as a TSP, as before. For simplicity, we omit the horizontally flipped
version of coverage patterns—i.e., with endpoints on the top-left and
bottom-right instead of bottom-left and top-right—as this would re-
sult in an ambiguity of the pattern endpoints and add additional
complexity to the optimization problem without much gain.

6.3 coverage planning for chimney inspection missions 73

Figure 6.4: Coverage planning in semantic map. Based on warehouse param-
eters a semantic map of the shelves is generated. Green dots de-
pict storage units. Left: An operator can command coverage tours
to inventorize complete shelves (red path in left aisle), flights to
specific storage units (black path to right aisle), or a combina-
tion as part of a more complex flight plan. Right: To aid initial
mission and path planning, we derive an OctoMap from the se-
mantic map (color depicts height).

6.3 coverage planning for chimney inspection missions

Furthermore, we developed similar methods for the inspection of in-
dustrial chimneys based on simple geometric parameters that can be
easily measured or derived from blueprints or aerial photography.
We model chimneys either as a regular prism—with the parameters
width and height of one wall segment and the number of segments—
or as a conic section—with bottom and top radii and height.

Capturing the surface of a chimney requires a steady flight path
with a fixed distance between sensor and walls. Furthermore, the im-
ages need sufficient overlap in every direction to build a consistent
3D model for the whole flight. These demands are hard to fulfill in
manual operation, especially given the turbulent air movement close
to the walls pushing the MAV away and requiring constant control ac-
tions. Thus, we operate the MAV fully autonomously except for start
and landing. To cover the whole surface, we plan an upwards spiral-
ing inspection path starting at 1m above the ground. The parameters
of the spiral are determined by the sensor characteristics, i.e., hori-
zontal and vertical apex angles and best scanning distance, and the
part of the chimney to cover.

In a first setup, we captured the surface of a chimney with an RGB-
D camera. This demanded a large overlap between the images in all
four directions. Given an image overlap of 50% as a constraint, our
coverage planner generates an upwards spiraling base motion over-
laid with a circling motion parallel to the wall to ensure a good image
overlap and facilitate loop closures. This pattern has been found to
be advantageous over a simple spiraling motion. Figure 6.5 shows the
resulting inspection path in our octagonal chimney mock-up.

74 mission planning

Figure 6.5: Inspection of chimney mock-up. For building a 3D chimney
model with an RGB-D sensor requires sufficient overlap between
images. Thus, our mission planner generates a double spiral cov-
erage pattern.

For the coverage of larger surfaces the vision setup was improved.
With the improved setup, the coverage pattern can be simplified to
a single spiral. The generation of this spiral is analogue to the base
spiral in the aforementioned scenario. Figure 6.6 shows the resulting
path for an actual industrial chimney.

After a first complete inspection, the user can specify poses for a
targeted second inspection, e.g., to take close-up images of potential
defects in the chimney. The MAV processes a set of inspection poses
and determines an optimal processing order to achieve a short inspec-
tion flight employing a TSP solver. Figure 6.7 shows the solution for
an example targeted inspection mission with nine inspection poses.
Selection of poses for targeted inspection is assisted by a graphical
tool on the ground station that shows the recorded video streams
from the MAV to an operator. The operator can select points in time
when potential defects are visible in the stream. These times are then
matched to MAV poses and stored for a second, more detailed inspec-
tion mission.

6.4 mapping of building interiors from the outside

In the context of mapping buildings, detailed scans of the facade are
of special interest. Not only to facilitate high resolution surface mod-
eling, but also to map the basic structure of the interior of build-
ings from the outside, e.g., to guide rescue personnel. For interior
mapping the windows are of particular interest. Many building fa-
cades have a regular structure. Thus, we follow an approach to model
the facade similar to modeling warehouses: First, we define window
templates by width, height, and margins between windows. Then, a
facade segment is modeled as a matrix of dimension floors × win-
dow positions with indices to the matching window templates and a
transformation to the corresponding facade in world coordinates. Fig-
ure 6.8 shows a facade model with two types of windows templates.

6.4 mapping of building interiors from the outside 75

Figure 6.6: Coverage tour in the chimney. Based on a few chimney parame-
ters, we plan sensor coverage tours in a coarse geometric chim-
ney model (left, red). The MAV moves from the bottom to the
top in a spiraling motion (sensor poses depicted by coordinate
axes). In contrast to the initial laser map captured from the start-
ing position (center), the geometric model covers the complete
chimney. Right: Photo of the chimney for comparison.

Figure 6.7: Targeted inspection. After an operator selected targets to rein-
spect, the observation poses (green arrows) are sent to the MAV
where a mission planner finds an optimal processing order. The
left figure depicts all possible paths between view poses and the
start/return pose (blue arrow), the right figure shows the best
mission path. The MAV navigates to these poses autonomously
and hovers there for several seconds to acquire more detailed
data of the surface. Black dots depict the chimney map.

76 mission planning

Figure 6.8: Facade model and graph structure. Left: Regular building fa-
cades are modeled by a small set of parameters. An operator can
select which windows are part of a mapping mission. Windows
depicted in green are part of the mission. The arrows depict end-
points of the sweeping motion, black lines connect endpoints to
obstacles blocking the observation pose. Top right: Photo of the
modeled facade. Bottom right: We model our problem as fully
connected graph (blue) of sweep line endpoints (solid red) and
sweep nodes (red cirles). Sweep nodes facilitate a sweeping mo-
tion along the vertical window edges.

To gain good coverage of the interior with the relatively sparse
Velodyne laser scans, the MAV sweeps in front of both vertical edges
of a window. For planning the optimal coverage tour for one or mul-
tiple facades, we model the facades as a graph and employ the afore-
mentioned TSP solvers. We modify the fully connected graph con-
taining all nodes that represent start and endpoints of individual
sweep edges by adding nodes with a dimensionality of two to graph
edges coincident with sweep edges, depicted in Figure 6.8. The edge
weights of sweep lines are zero—the weight would only add a con-
stant cost overhead as all sweep line edges will be traversed. All other
edge weights are determined by global path planning.

7
A L L O C E N T R I C A N D E G O C E N T R I C PAT H
P L A N N I N G

Whereas the mission planning layer generates an ordered list of view
poses—including entry and exit poses to coverage patterns—we em-
ploy allocentric and egocentric deliberative path planning to deter-
mine shortest paths from the current micro aerial vehicle (MAV) pose
to the next mission pose. The environments in which MAVs operate
become more challenging with new applications, e.g., indoor and dis-
aster response operations. These scenarios prohibit the optimistic as-
sumption that direct flight paths are obstacle-free at a certain altitude
that can be reached. Furthermore, the assumption that the environ-
ment is static cannot be made in the presence of human or machine
activities, or when the structural integrity of a building cannot be
assured. Hence, continuous monitoring of the environment that is
traversed and quick reaction to unforeseen obstacles is key to safe
and collision-free flights. In this chapter, we detail both the allocen-
tric planning layer and the egocentric layer. Both layers have much in
common while operating on different environment representations
and time scales.

7.1 global path planning

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 10−2 Hz Allocentric goal

10−1 Hz
Excerpt of allo-
centric path

100 Hz
Intermediate goal
on egocentric path

101 Hz Velocity setpoints

A
llo

ce
nt

ric
M

ap
s

Eg
oc

en
tr

ic
M

ap
s

Navigation and ControlThe next layer in our planning hierarchy below the mission planner
is a global path planner. This layer plans globally consistent plans,
based on

I) the (updated) OctoMap environment model, discretized to grid
cells with 0.25–1m edge length, depending on the mission re-
quirements,

II) the current pose estimate of the MAV, and

III) the next mission waypoint, including 3D position, yaw orienta-
tion, and required accuracies.

The planning frequency is in the order of 0.1Hz and we use the A*
algorithm to find cost-optimal paths.

We assume that for most MAV application domains most obsta-
cles which are not known in advance and, thus, not represented in
our allocentric map can be surrounded locally without the need for
global replanning. Hence, it is sufficient to replan globally on a more
long-term time scale to keep the local planner detours synchronized
to the global plan and to avoid the MAV to get stuck in a local mini-

77

78 allocentric and egocentric path planning

mum that the local planner cannot solve due to its restricted planning
horizon.

In general, we employ A* graph-search on a representation based
on a modified grid-based graph, detailed in Chapter 2.1. We repre-
sent nodes by indices to underlying grids. Thus, all properties of a
node can be accessed in constant time. These properties include, e.g.,
the costs to reach a node from the start. The planning graph is com-
plemented by additional helper data structures for efficiency reasons.
An obstacle cost grid and a heuristic grid store these calculated val-
ues after the first node expansion. We maintain another grid as closed
list to allow for efficient checks whether a node has already been ex-
panded before. Another grid stores whether a node is already in the
open list. In our implementation, we usually do not require this dis-
tinction, as we will detail later. As priority queue for our open list, we
employ a heap.

The general case of finding obstacle-free shortest paths is straight-
forward with a cost function modeling the distance from graph nodes
to the nearest obstacles. Instead of a simple Euclidean distance func-
tion, we use a partial linear distance function which has I) prohibitive
high costs inside and in the vicinity of obstacles up to the minimum
safe distance Ds, II) linearly decreasing costs between the safe dis-
tanceDs and a distanceDo that should be avoided if possible, III) and
zero costs for larger distances. The weight w of an edge in the graph
is then

we = li(ci + 1) + li+1(ci+1 + 1),

where li denotes the edge length in grid cell i and ci the cost function
for that cell. With this edge weight function paths close to obstacles
are avoided if that would not lead to long detours. Edges with pro-
hibitive costs are not expanded in our A* implementation and the
corresponding nodes are directly added to the closed list.

As a modification to the standard A* algorithm, we do not search
and remove duplicate nodes in the open list, when we reduce the
value of a node. In general, the algorithm would check if a node is
already in the open list and compare both values. If the node is not in
the open list, it is added to the priority queue. If the new node value
is higher, it is discarded. If the new value is smaller, the value of the
node in the open list would be updated and its position in the open
list would be updated accordingly.

By representing the nodes by their indices in the open list, we can
maintain a common lookup table that contains the current node val-
ues of all instances of a node. So, the algorithm can look up the cur-
rent value of the node in the open list without searching this instance.
Instead of reducing the value of the node in the open list, we update
the lookup table and add another instance of the node to the open
list, regardless of if it is already in the list. This leads to a longer

7.1 global path planning 79

and partially unsorted open list at the advantage of saving the time
to search for the duplicates and restoring the heap property of the
whole open list every time a node value is decreased. Still, the heap
property that the node with the lowest value is always in front of the
open list is maintained: If the value of a node is reduced it is added at
the corresponding position in front of the duplicate that was added
before. Thus, by also maintaining a closed list, the duplicates that are
at wrong positions in the open list are already closed if they arrive at
the front of the open list and can simply be discarded without much
overhead.

7.1.1 Obstacle Cost Models

For efficient distance queries for the calculation of obstacle costs, we
have investigated different obstacle representations. As the initial Oc-
toMap representation is well suited to efficiently represent occupancy
but does not allow for efficient distance queries, we derive distance
representations from it. The representations for our planner are

• a uniform resolution k-d tree,
• a multilevel k-d tree,
• and a multilevel k-d tree with different levels of abstraction for

the MAV.
The k-d tree-based representations (Bentley, 1975) are built with

the center points of the occupied cells. Thus, half of the cell size of
one cell has to be subtracted from a distance query result to get the
approximate distance to an occupied cell. The uniform resolution k-d
tree representation is derived from a fully expanded OctoMap, i.e., all
occupied leaves exist, resulting in a single tree with as many leaves as
the OctoMap has. Our multiresolution k-d tree is built from a pruned
OctoMap, i.e., inner nodes will replace all child nodes if they have the
same occupancy. We build one k-d tree per OctoMap depth contain-
ing the center points of all occupied nodes that have no children. The
result of a distance query is now the minimum of distance queries to
all k-d trees. For a typical OctoMap, we now have 16 distance queries
instead of a single one, but on potentially much smaller individual
k-d trees, depending on the structure of the data. For all three repre-
sentations, we employ the k-d tree implementation from Blanco and
Rai (2014).

Common to all these representations is that the MAV is approxi-
mated by a bounding sphere. This simplifies the distance calculation
as the distance to the next obstacle is the distance of the MAV pose
reduced by the bounding sphere radius. Nevertheless, this approxi-
mation has the disadvantage that a bounding sphere might be a too
conservative approximation if the MAV is not equally sized in all
dimensions. This constrains the set of reachable positions. For exam-
ple, the employed Matrice 600 platform has a diameter of 1.7m, but a

80 allocentric and egocentric path planning

Figure 7.1: MAV representation abstraction levels. If a single bounding
sphere is too conservative for planning, we employ iteratively
finer MAV models with decreasing distance to obstacles.

height of only 0.5m. Thus, we model the MAV with multiple levels of
abstraction, from a single bounding sphere to a set of spheres cover-
ing the MAV shape, depicted in Figure 7.1. The coarsest model of the
MAV is employed in the initial distance query. Only if the distance
is below a threshold, the planner iteratively refines the model until
the finest resolution is reached or the distance is below the thresh-
old for further refinement. Figure 7.2 shows the reachable cells with
and without multiple abstraction levels. Our refinements converge to
a cuboid with an ground plane edge length of the MAV diameter
instead of a cylinder. This results in corner cells that become unreach-
able with increasing MAV model resolution (red cells in Figure 7.1).
In our implementation, the effect is mitigated by taking the maximum
distance to obstacles from multiple abstraction levels.

7.1.2 Specific Cost Models

In addition to finding a shortest, obstacle-free path between two poses
other objectives might be of interest depending on the mission profile.
When planning w.r.t. multiple objectives cj, the modified edge weight
w∗e employed in our planner is

w∗e = li(
∑
j

ajcj,i + 1) + li+1(
∑
j

ajcj,i+1 + 1),

where aj are weighting factors of the individual objective costs. The
objectives that we address in this section are to support laser-based
localization, avoiding wind, and to stay within the range of commu-
nication infrastructure.

Supporting Laser-based Localization

For application-specific maps, it is often not necessary to cover the
whole reachable environment, but only the parts that are relevant
for mission execution. In particular, they cannot cover the complete
space outside of buildings. The laser-based localization that we em-
ploy (Droeschel et al., 2014a) needs to perceive sufficient structure

7.1 global path planning 81

Figure 7.2: Reachable cells with three levels of MAV model abstraction.
Green depicts cells reachable with the fine Matrice 600 model
but not reachable with the coarse model. Especially cells above
or below horizontal surfaces become reachable. Some cells close
to corners become unreachable due to the more rectangular ap-
proximation of the MAV, depicted in red. This effect can be mit-
igated by using the maximum distance of all abstraction levels.
Occupied grid cells are depicted in light gray. The photo shows
the mapped environment.

Ds Do Dp1 Dp2 Distance

C
os

ts

Max.

0

Obstacle costs
Perception costs

Figure 7.3: Cost function for allocentric planning. We model the traversal
costs for a grid cell in our global planners as a piece-wise linear
function of the distance to the next obstacle (red). With increas-
ing distance, we have fixed maximum costs in the direct vicin-
ity of obstacles, linear decreasing costs to fly farther away from
obstacles where possible, and a range with zero obstacle costs.
As our laser-based localization needs structure, the perception
costs increase linear, when flying too far away from obstacles
(blue). The resulting traversal costs are a linear combination of
both functions.

82 allocentric and egocentric path planning

Figure 7.4: For robust LRF-based localization, laser scans have to contain suf-
ficient structure. We modify the traversal costs to not only avoid
obstacles, but also keep them within sensor range. We compare
the resulting traversal costs for a cut through a map some meters
above the ground plane. Left: Obstacle avoidance only. Right: Ob-
stacle avoidance and robust localization.

to work robustly. Hence, the MAV should not fly in completely un-
mapped or free space, e.g., at a height where the ground is no longer
observed by the laser rangefinder (LRF). To ensure robust localiza-
tion even in partial maps and unbound environments, we employ an
approach inspired by coastal navigation (Roy et al., 1999).

The cell traversal costs for the path planner are calculated according
to the function depicted in Figure 7.3. Similar to our general approach,
our obstacle cost function hc(d) decreases with increasing distance to
obstacles until distance Do. Starting at a distance Dp1, the percep-
tion cost function hp increases up to a maximum at Dp2 to keep the
obstacles in the observable range of the MAV. Our cost model h(d)
is:

hc(d) =

∞ if d 6 Ds,

hmax
1−d+Ds
Do−Ds

if Ds < d < Do,

0 otherwise;

hp(d) =

0 if d 6 Dp1,

hmax
d−Dp1
Dp2−Dp1

if Dp1 < d < Dp2,

hmax otherwise;

h(d) = w1 · hc(d) +w2 · hp(d),

with equal weights w1 = w2. Ds is the safety distance around ob-
stacles the robot should never enter (at least the robot radius). Fig-
ure 7.4 illustrates the resulting traversal costs with and without our
approach.

7.1 global path planning 83

Figure 7.5: Costmaps for wind and signal strength. Left: We employ a sim-
plified wind model to estimate the magnitude of wind. Shown
is a slice of the 3D magnitude model overlaid on our obstacle
map. Darker areas depict stronger magnitude. Right: Estimated
signal strength from two WiFi access points. Close to the access
points (arrows) the signal is strong (red) and becomes weaker
(blue) until a threshold. Obstacles block the signal.

Wind Model

We model the strength of constant wind in the vicinity of structures.
For this, we use a very simplified model neglecting the turbulent be-
havior of wind very close to structures, and we make the assumption
that the wind is constant in direction and magnitude for the time of
at least one planning and execution cycle. Whereas the simplifying
assumptions do not allow to accurately estimate the required control
effort, it still is possible to employ less wind affected areas behind
larger structures. Furthermore, safety margins in more windy areas
could be increased.

We discretize the wind field into uniform voxels. The grid is ori-
ented such that the wind direction coincides with the grid x-axis. All
voxels with the lowest x index not inside of obstacles are initialized
with the wind magnitude in free space, e.g., measured by a wind es-
timator on the control layer. While sweeping a filter plane along the
x-axis, the wind magnitude of voxels inside of obstacles is set to zero.
The magnitude of wind in other voxels is determined by applying a
2D filter kernel averaging wind magnitudes from the previous voxel
plane. Figure 7.5 illustrates a slice through a 3D wind map.

Communication Quality Model

For some missions the communication with a control station is im-
portant. We address this by modeling the signal strength from, e.g.,
WiFi access points, in a 3D map. Figure 7.5 shows an example with
two WiFi access points. For each voxel in the cost grid, a line-of-sight
check to each signal source is performed. This is achieved by raycast-

84 allocentric and egocentric path planning

x

y

ψ

1

1

ta
n
φ 2

1

Figure 7.6: Modified grid for FoV-aware planning. Left: Outgoing edges
from a grid cell (green) when planning with horizontal visibility
constraints. Depicted are the planar position and the orientation
ψ of an MAV. The z-dimension is omitted for clarity. Right: To
allow only transitions within the vertical FoV φ of a sensor, we
remove the vertical edges (red) and use anisotropic grid cells.

ing in the obstacle OctoMap. If no line-of-sight to any signal source
exists, the signal strength s is zero. Otherwise, it is the maximum of

s = argmax
i

(
(smax − smin) − 20 log10

ri
rmin

)
,

for all signal sources i with maximum signal strength smax
(−30 dBm), threshold smin under which the signal strength is con-
sidered too low for communication (−70 dBm), the distance ri to the
signal source and radius rmin where the signal has the assumed max-
imum strength.

7.1.3 Path Planning in Sensor Field-of-View

To increase the safe flight speed, a faster perception of the environ-
ment for localization and obstacle avoidance is inevitable. Modern
lightweight 3D laser scanners as the Velodyne Puck LITE acquire 3D
point clouds of the environment at a high frequency. Nevertheless,
this comes at a price: The new laser scanner setup employed on the
Matrice 600 MAV does only cover a vertical FoV of 30° in contrast
to the 180° of the slower omnidirectional laser scanner employed on
the other MAV platforms. This raises the demand for paths that let
the MAV only move within the FoV of the scanner to reliably detect
obstacles that impose a collision hazard. Similar considerations have
to be taken into account when using camera or radar sensors that are
typically restricted not only in the vertical FoV but also in the hori-
zontal FoV. Consequently, these sensors furthermore require that the
MAV is only flying into forward direction of the sensor.

One option would be to define motion patterns for ascent and de-
scent that ensure the perception of the flight path and to plan at
fixed altitudes in-between. Nevertheless, this yields far from optimal
flight paths. Thus, our approach extends the planning specification by
adding these additional visibility constraints. Paths are safe, if they
do not only stay in a safe distance to known obstacles but also if

7.1 global path planning 85

Figure 7.7: Planning under visibility constraints. Left: Without visibility con-
straints the shortest path (yellow) from a start (green) to a target
position (red) below solely descents in place. Right: With visibil-
ity constraints the MAV has to move within the field of view of
the LRF and consequently follows a longer descent path with a
vertical angle of 15°.

unknown obstacles can be reliably perceived by obstacle avoidance
sensors. The ascent and descent angles of planned paths should stay
within the vertical FoV of our obstacle sensor.

FoV-aware Planning Representation

To plan an obstacle-free path incorporating the visibility constraints
by graph-search—which is complete and optimal w.r.t. the planning
specification—requires a modification of the underlying grid-based
graph structure. From the 26 edges connecting nodes centered in the
voxels of the grid with their Moore neighborhood, we remove the two
edges connecting voxels directly above or below the current voxel to
prohibit ascent and descent movements in place. For the case of a
vertical apex angle φ of the obstacle sensors smaller than 90° the an-
gular resolution of the remaining uniform voxel grid of 45° is still
too coarse to represent the allowed maximum ascent and descent an-
gles of φ2 . In our case the apex angle of the LRF is 30° requiring an
angular resolution of 15°. To increase the angular resolution, we em-
ploy an anisotropic voxel grid with horizontal edge lengths of vxy
and a voxel height of vz = tan(φ2)vxy. A schematic of the anisotropic
grid is depicted in Figure 7.6. The resulting graph structure enforces
restricted ascents/descents within the FoV of the sensors. Figure 7.7
illustrates the resulting plans with and without consideration of visi-
bility constraints.

To penalize frequent changes in the flight direction and to facilitate
forward flight for sensors with this requirement, we introduce the
direction of flight as an additional planning dimension. Without this
modification, a zigzag motion to ascent or descent would be equal to

86 allocentric and egocentric path planning

larger straight glide paths in path costs, but would significantly slow
down the MAV due to numerous stops to change direction. The di-
rection of flight is discretized to the eight possible transitions in the
plane, angles of up to 45° are not penalized. We remove edges yield-
ing larger changes in direction, thus, these transitions are still pos-
sible, but at the cost of multiple intermediate transitions. Figure 7.6
depicts the modified planning grid.

The MAV orientation in the planned path depends on the actual
sensor constraints. If paths for MAVs with front-facing sensors, e.g.,
cameras, are planned, the MAV orientation is coupled to the flight di-
rection dimension. Thus, the MAV yaw angle is linearly interpolated
along plan edges such that the angle between the front of the MAV
and the current flight direction is at most 45° and arrives at a differ-
ence of 0° when the next waypoint is reached. For sensors with a hor-
izontal FoV of at least 90° the full path segment between waypoints is
guaranteed to be visible. Sensors with a smaller FoV require rotating
the MAV in place until the path segment is in the sensor FoV before
starting with the position interpolation. In omnidirectional mode, e.g.,
for laser sensors, the yaw orientation of the MAV can be freely set to
mission requirements and the flight direction dimension is solely re-
stricting sudden direction changes.

To speed up the node expansions without the requirement to pro-
cess and store the whole graph structure in advance, our planner
employs look up tables (LUTs) for edge costs and possible angular
transitions. Furthermore, obstacle costs per vertex are cached in a
lower dimension grid until they are invalidated by map updates.

FoV-aware Heuristic

As the Euclidean distance heuristic strongly underestimates altitude
changes, we employ a modified heuristic better suited for our plan-
ning structure. Figure 7.8 illustrates the idea. For a node position pn
and a target position pt, we define the heuristic h(pn,pt) = h(d) on
the position difference d as

h(d) =
√
d2x + d

2
y + z

2
e + zz, (7.1)

ze = min (|dz|, tan
φ

2

√
d2x + d

2
y), (7.2)

zz =
max (0, |dz|− ze)

vz

√
v2xy + v

2
z, (7.3)

where ze is the slope-restricted Euclidean altitude change that is pos-

sible over a distance
√
d2x + d

2
y with maximum angle φ/2; zz is the

shortest possible detour to overcome the remaining altitude differ-
ence.

7.2 local path planning 87

Start

Goal

dz

ze

dxy =
√

d2
x + d2

y

Figure 7.8: FoV-aware heuristic. The Euclidean distance (dashed line) un-
derestimates the path length in our planning representation. We
split the heuristic into two parts. First, a Euclidean part (green)
to the closest point to the goal the MAV can reach on a straight
line given the sensor constraints. And Second, an estimate for
the shortest possible path for the remaining vertical distance to
the goal |dz|− zz (blue).

2

Corollary 1. The heuristic h(.) is an admissible heuristic for A* search in
the visibility constrained graph structure.

Proof. In the first case

|dz| 6 tan
(
φ

2

)√
d2x + d

2
y

follows that ze = |dz| and Equation (7.3) vanishes. The remaining
heuristic term

h(d) =
√
d2x + d

2
y + d

2
z = ||d||2

is then the Euclidean distance which is an admissible heuristic.
In the other case, ze is the maximum altitude change that is possi-

ble with the allowed ascent angle, i.e., pn + (dx,dy, ze) is the closest
point to pt that can be reached on a straight line from pn without
violating the angular constraint. All points closer to the target pt in z
would increase the distance in the x-y-plane with factor 1/ tan (φ/2)

which is > 1 following the assumption that φ 6 90◦ for this case and
Equation (7.2). The remainder zr = |dz|− ze can only be eliminated

by an ascent through zr
vz

voxels with edge length
√
v2xy + v

2
z each re-

sulting in the value of zz which has to be added to the distance to
the closest point. Thus, no shorter path exists and the heuristic is
admissible in both cases.

Figure 7.9 shows the difference in node expansions with and with-
out our modified heuristic for the path depicted in Figure 7.7.

88 allocentric and egocentric path planning

Figure 7.9: Visibility constraint planning heuristic. A standard Euclidean
distance heuristic strongly underestimates the cost of altitude
changes in the grid. This results in more unnecessary node ex-
pansions (green). Our modified heuristic expands fewer nodes
(red). Left: Top-view. Right: Side-view. Red lines depict the plan-
ning volume.

7.2 local path planning

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 10−2 Hz Allocentric goal

10−1 Hz
Excerpt of allo-
centric path

100 Hz
Intermediate goal
on egocentric path

101 Hz Velocity setpoints

A
llo

ce
nt

ric
M

ap
s

Eg
oc

en
tr

ic
M

ap
s

Navigation and Control Below the allocentric planning layer our hierarchy contains the ego-
centric or local path planner. The local planner is based on the same
techniques as described in the global path planning section. Hence,
we will only focus on the differences in this section.

In contrast to the global path planner, the local path planner op-
erates on a restricted view on the environment based on local sen-
sor perceptions. A path planned on this layer is also expressed in
robot-centric coordinates with the MAV in the center of the planning
representation. The purpose of this layer is mainly to quickly react
on obstacles not represented in the allocentric representation of the
environment.

We make the optimistic assumption that most obstacles not known
in advance can be surrounded locally. Thus, at the time they are per-
ceived a local modification of the globally planned path is often suf-
ficient. While the local obstacle avoidance layer—detailed in Chap-
ter 9—below the local path planner operates on a comparable envi-
ronment representation, and can avoid small obstacles without the
need for replanning, its abilities are limited.

To close the gap between slow allocentric planning and fast reactive
obstacle avoidance, we add an intermediate local planning layer. This
allows the global planner to replan on a more long-term time scale,
while preventing the obstacle avoidance to get stuck in a local mini-
mum. Whereas the assumption of local surroundability might not al-
ways hold—e.g., in maze-like environments—this layer still facilitates
quick solutions in situations that can be resolved locally without wait-
ing for another allocentric planning cycle. Figure 7.10 shows an exam-
ple where reactive obstacle avoidance without replanning would fail
to surround an obstacle, but the local planner can find a valid plan.

The local planner runs at a frequency in the order of 2Hz. This is
equal to the rate at which the rotating laser scanner of many of our

7.2 local path planning 89

Figure 7.10: Avoidance of unknown obstacles. To surround a priori un-
known obstacles (green rectangle in this example), we employ
an egocentric path planner. Left: Artificial potential forces (ar-
rows) push the MAV away from obstacles, but the MAV will
get stuck in a local minimum (red circle) while approaching
a waypoint in the direction of the black line. Right: Frequent
egocentric replanning resolves this local minimum in the next
planning cycle.

MAVs acquire a new 3D point cloud of the close environment. The
spatial planning horizon is restricted to the measurement range of
the laser sensor This is sufficient as no local planner deviations from
the allocentric plan are possible beyond this horizon. The minimum
possible planning horizon would be the distance the MAV can travel
within one planning cycle. Scans are aggregated into a grid-based
local multiresolution obstacle map (Droeschel et al., 2014b) with an
edge length of the map of 40m. To avoid obstacles not locally per-
ceived but represented in the allocentric map, it is possible to add
the occupied parts of the allocentric map inside of the local planning
volume to the egocentric map.

Fast replanning with low latencies is performed by employing
3D local multiresolution path planning, detailed in Section 2.3. This
efficient planning technique allows for frequent replanning, which
makes 3D navigation in dynamic, unpredictable environments possi-
ble. Its planning representation—a grid-based robot-centric obstacle
map with higher resolution in the center and decreasing resolution
with increasing distance from the MAV position—resembles the on-
board sensor characteristics with distance dependent precision and
the uncertainty in the motion execution of the MAV by external influ-
ences, e.g., gusts of wind.

A typical approach to couple global and local planners is to use a
waypoint on a, potentially simplified, allocentric plan as the goal for
the local planner, e.g., the next point where the path makes a turn.
As the global path is already cost-optimal with respect to the allocen-
tric map, we want the local plan to follow the global path as close as
possible. Furthermore, waypoints on the allocentric plan that are not

90 allocentric and egocentric path planning

Figure 7.11: Coupling of local plan to allocentric plan. The local plan (red)
is coupled with the allocentric plan (black) by a cost term that
penalizes deviations from the allocentric plan. The blue lines
depict the deviation vectors at example points, the star is the
planner goal. The gray circular obstacle is in the allocentric map,
the green rectangular obstacle has to be surrounded based on
the local map.

mission critical can be blocked by locally perceived obstacles. Thus,
enforcing that these waypoints have to be reached or, otherwise if
that’s not possible, wait for a corrected allocentric plan is disadvanta-
geous. Consequently, it is not sufficient to send the next waypoint of
the global path to the local planning layer as goal pose.

Instead, the input to the local planner is the complete global plan.
Hence, the path costs of the global path are a lower bound to path
costs for refined plans, based on newly acquired sensor information—
mostly dynamic and static previously unknown obstacles—and a lo-
cal path deviating from the global plan cannot be shorter in terms of
path costs. Locally shorter plans on layers below the allocentric path
planner with a local view on the map may yield globally suboptimal
paths. Thus, we add the estimated path costs between waypoints of
the global plan to its edges to facilitate efficient exploration of the
search space on the local path planning layer. Also, mission goals are
marked as the local planner has to reach these exactly. If this is not
possible, the mission planning layer has to resolve this failure condi-
tion.

In every planning cycle, the local obstacle map obtained from the
onboard sensors is merged with a local excerpt of the allocentric
world model given the current MAV pose estimate. Distances to all
obstacles are calculated for estimating their radius in later processing
steps. We use lazy evaluation of the obstacle costs in the planning
grid during the node expansions of the planner.

The local planner is initialized with a local goal on the global path.
This goal is the intersection of the global plan with the local planning
volume. If the global plan contains mission-relevant waypoints within
the local planning volume, the closest of these is taken as the local
goal.

7.2 local path planning 91

Figure 7.12: Surrounding obstacles by local planning. While following a
planned allocentric path (yellow) based on the allocentric en-
vironment model (blue), a tree is perceived with local sensing
(colored measurements). The local multiresolution path planner
finds a local plan around the obstacle without global replanning
(green). Left: When the MAV (red box) is still farther away, the
local plan around the obstacle is coarse due to the multiresolu-
tion planning. Right: As the MAV approaches the obstacle, the
plan gets finer. Behind the obstacle it returns to the global plan.

To bind the local plan to the globally consistent path we add a
proximity term to the local planner cost function. The cost function
for a cell with center c incorporates the sum of all obstacle costs ho
according to Equation (2.1) and the distance of the cell’s center to the
closest path segment s of the global plan G:

cost(c) =
∑

o∈Obst.

ho(dist(c,o)) + γ argmin
s∈G

dist(c, s).

The parameter γ controls how tightly the local plan is bound to the
global plan. Figure 7.11 illustrates the binding of the local to the
global path.

Similar to the global planner, we embed an undirected graph into
this grid and perform A* graph search (see Section 2.4) from the cen-
ter of the MAV-centered grid to the goal. As the MAV is at the grid
center between cells, we add additional edges from the center to the
eight adjacent cells. The costs of expanding an edge e from a grid cell
cfrom to a cell cto are the cell costs multiplied by the lengths of the
edge within the respective cells:

cost(e) = ‖efrom‖cost(cfrom) + ‖eto‖cost(cto).

The edge length ‖ec‖ within a cell is the Euclidean distance from the
cell center to the intersection point between the cells.

Figure 7.12 shows a local deviation from a global plan without
global replanning. It can be seen that the local plan returns to the
allocentric plan after locally surrounding the obstacle. The provided
trajectories serve as input for the local collision avoidance layer, that
we will detail in Chapter 9.

8
T R A J E C T O RY O P T I M I Z AT I O N

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

Trajectory Optimization

Frequent Reoptimization

< 10−2 Hz Allocentric goal

100 Hz
Intermediate goal
on egocentric path

101 Hz Velocity setpoints

A
llo

ce
nt

ric
M

ap
s

Eg
oc

en
tr

ic
M

ap
s

Navigation and ControlIn contrast to fixed-wing micro aerial vehicles (MAVs), multirotors
are capable of flying omnidirectionally and can stop or change direc-
tion within a short time horizon. Hence, when flying with low veloc-
ity, the dynamics of a multirotor MAV can be neglected on higher
planning layers. When aiming at shorter mission execution times,
higher average velocities are desirable, though. To achieve these, we
extend our path planning by optimizing flight trajectories with a sim-
ple MAV dynamic model.

Continuous perception of the environment and tracking the MAV
state is a prerequisite for safe operation. To react on the perceived
changes timely, frequent adaptation of the planned flight trajectory
is inevitable. When aiming at fast trajectory execution, the flight dy-
namics have to be taken into account in addition to spatial constraints.
To reduce the complexity of this kinodynamic planning problem, we
follow a multistage approach from a 3D spatial planner to dynamic
12D trajectory optimization. First, we plan a coarse obstacle-free 3D
path, second, we process this plan to fill missing dimensions (i.e.,
yaw rotation, velocities) with an initial guess as close as possible
to the expected final result, and third, we optimize this initializa-
tion trajectory w.r.t. control and obstacle costs to obtain a smooth
trajectory that can be followed with low control effort. To obtain
smooth collision-free trajectories, we use the gradient-based trajectory
optimizer CHOMP (covariant Hamiltonian optimization and motion
planning) from Zucker et al. (2013).

In this chapter, we employ a static environment model similar to
our allocentric path planner, detailed in Section 7.1. Furthermore, we
relax the static world assumption in Section 8.4 by reoptimizing the
trajectory when the environment changes.

8.1 problem formulation

The static state of an MAV is a 6-tuple of a 3D position p = (x,y, z)
and a 3D orientation r = (roll,pitch,yaw). Although in general
poses of the MAV are six dimensional, for multirotors only four di-
mensions can be controlled independently. The roll and pitch angles
directly influence the horizontal acceleration of multirotors. Thus, our
start and goal poses are 4D tuples (x,y, z, θ) with a 3D position and
yaw-rotation θ. Here, we assume that velocity and acceleration at start
and goal pose are zero, even though this assumption can be relaxed.

93

94 trajectory optimization

To generate smooth trajectories for our MAV, we need poses and ve-
locities as input for the underlying model predictive controller (MPC)
(Beul and Behnke, 2017). Input to the controller is an 8D trajectory
containing 4D poses and the corresponding velocities. We achieve this
by formulating trajectory planning as an optimization problem. For
accurate trajectory following, we have to optimize the trajectory for
low acceleration control costs. Consequently, outputs of our trajectory
optimization step are time-discretized 12D trajectories with 4D poses,
velocities, and accelerations without discontinuities. Accordingly, the
goal is to find a trajectory, which minimizes the costs calculated by a
predefined cost function.

As an input, the trajectory optimizer gets a start and a goal con-
figuration x0 = (px0,py0 ,pz0, θ0)>, xN = (pxN,pyN,pzN, θN)> ∈ R4. The
output of the algorithm is a trajectory Θ ∈ R4×(N+1) consisting of
one trajectory vector Θd = (xd0 , . . . , xdN)

> ∈ RN+1 per dimension d,
discretized into N + 1 waypoints. To be directly executable by the
MAV controller, in general the trajectory points need to have a fixed
duration ∆t = 10ms. We relax this assumption in Section 8.4. Besides
a cost function, the trajectory optimizer has to be initialized with an
initial trajectory, e.g., an interpolation between start and goal config-
uration.

The optimization problem we solve iteratively is defined as

min
Θ

[
N∑
i=0

q(Θi) +
∑
d

1

2
Θd
>

RΘd
]

.

The state costs—obstacle costs, velocity, and visibility constraints—
are calculated by a predefined cost function q(Θi) for each state in Θ.
Θd
>RΘd is the sum of control costs along the trajectory in dimension

d with R being a matrix representing control costs. The trajectory
optimizer now attempts to solve the defined optimization problem by
means of the gradient-based optimization method CHOMP (Zucker
et al., 2013).

If a gradient for the used cost function cannot be computed, an
alternative is to optimize the trajectory w.r.t. to the cost function q(Θ̃i)
with Θ̃ = N(Θ,Σ) being a noisy state parameter vector with mean Θ
and covariance Σ by means of a stochastic optimizer (Kalakrishnan
et al., 2011).

The cost function q(Θi) is a weighted sum of I) piecewise linear
increasing costs co induced by the proximity to obstacles, II) squared
costs ca caused by acceleration limits, III) squared costs cv caused
by velocity constraints, and IV) costs from violating visibility con-
straints. The obstacle costs co increase linear with a slope ofar from a
maximum to a minimum safety distance. From the minimum safety
distance to the obstacle, the costs increase with a steeper slope oclose

to allow for gradient computation in the vicinity of obstacles.

8.2 initialization 95

Velocities and accelerations as derivatives of the state are implicitly
modeled by the duration between discretization steps.

To efficiently obtain obstacle costs during optimization, we calcu-
late a distance field (Kalakrishnan and Anderson, 2009) with a 20 cm
resolution from our static environment model. We propagate dis-
tances up to a maximum distance where obstacle costs are zero. Our
distance-dependent obstacle costs are modeled as a piecewise linear
function, similar to the basic cost model in Section 7.1, with decreas-
ing costs up to a maximum distance from obstacles of 4m.

8.2 initialization

Initialization of the optimizer with a control cost-optimal interpola-
tion between start and goal configuration leads to trajectories that con-
verge to a non collision-free local minimum in general. Furthermore,
the trajectory optimization converges faster when the initialization is
close to the (locally) optimal trajectory. Hence, a good initialization
of the trajectory is necessary to facilitate quick convergence to a valid,
collision-free optimum.

Thus, to find valid paths between start and goal configuration,
we plan collision-free paths employing an A* path planner (see Sec-
tion 7.1) in a low-dimensional subspace of only the 3D translational
part of the trajectory. We simplify the resulting plans to reduce dis-
cretization effects. Although, these coarse plans prevent an optimizer
to get stuck in local minima that yield infeasible trajectories, they are
far from smooth and lack velocity and acceleration dimensions. We
mitigate the influence of the suboptimal initialization by approximat-
ing optimal velocities and accelerations with a simple MAV dynamics
model and by smoothing the input trajectory to a trajectory requiring
less control effort. Even though the optimal solution is naturally not
known in advance, we can make some assumptions about the MAV
dynamics that reduce the convergence time and avoid infeasible local
minimum trajectories. With these fast preprocessing steps, we achieve
a combined planning and optimization time of approximately 1 s for
allocentric trajectory generation. Figure 8.1 shows resulting trajecto-
ries from each of the processing steps, i.e., a planned path, a spline
interpolation of this path with motion model-based timings, and the
resulting trajectory after 500 optimizer iterations.

As our MAV is approximately rotational symmetric, we omit plan-
ning for the heading and initialize the yaw trajectory with a control
cost-optimal interpolation.

Transition Between Path Segments

The translational part of the planned flight paths is a sequence of
straight line segments connecting start and goal position. By em-

96 trajectory optimization

Figure 8.1: Exact planning of smooth trajectories with velocity and acceler-
ation dimensions for MAVs is often prohibitively slow for fre-
quent replanning. We plan coarse 3D trajectories (pink), incorpo-
rate simple assumptions about the MAV dynamics (white), and
optimize this initial guess quickly to obtain the least cost kinody-
namic trajectory (yellow) w.r.t. distance to obstacles and control
costs.

ploying a grid-based planner, the transition between consecutive seg-
ments is restricted to a few discrete angles. After simplification of the
initial plan, the discretization effects are mitigated, but still present,
resulting in discontinuities in its derivatives—most importantly ve-
locity and acceleration. These discontinuities cause gradients of large
magnitude during optimization. Thus, a lot of optimization effort is
spent on smoothing these transitions instead of optimizing the con-
tinuous parts of the trajectory.

A first solution is to employ cubic spline interpolation to acquire
smoother trajectories. The sampling points are the endpoints of the
segments from the simplified planned path at the transition times
estimated by our simple motion model, detailed later in this chap-
ter. Splines mitigate the discretization effects leading to lower ac-
celerations. Figure 8.2 shows the necessary accelerations to follow
the planned and spline-based trajectories. Nevertheless, splines can
overshoot and cause collisions without further processing. Further-
more, the trajectories tend to oscillate. The derivatives at the sampling
points are omitted. We calculate velocities and accelerations along the
trajectory after the spline interpolation. Even though the spline-based
trajectories are smooth, acceleration and velocity limits can still be vi-
olated without further optimization by non-optimal timings and large
curvature necessary to pass the planned waypoints.

8.2 initialization 97

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Ac
ce

le
ra

tio
n

[m
/s

^
2]

Timesteps [n]

Plan
Spline

A
cc

el
er

at
io

n
[m
/
s2

]

Timesteps [n]

Figure 8.2: Accelerations of the trajectory before optimization. Initialization
with the path from a grid-based planner yields high accelerations
at the connection points between plan intervals. Spline interpola-
tion of the path reduces these spikes yielding faster convergence.

Continuous Curvature Transition Segments

We address the aforementioned issues with spline interpolation by
introducing connections with continuous curvature between straight
segments. These continuous curvature transition segments (CCTSs)
mitigate the influence of suboptimal initialization by modifying the
planned path locally. To assure that the modified path remains colli-
sion-free without costly exact planning of the connecting segments,
we calculate spheres containing solely free space around the segment
transitions. The radius of a sphere around the transition between path
segment si−1 to si is calculated as

ri = min

(
1

2
‖si−1‖,

1

2
‖si‖,do(i)

)
,

where do(i) is the distance to the nearest obstacle. The start and end
points of the connecting segment are the intersection points of the
planned path with the sphere. We construct the connecting segment
in a planar subspace defined by start point, end point, and transition
point. In the following, we will use 2D coordinates on this plane.

As connecting segments, we employ clothoids—also often referred
to as Euler spirals. Clothoids are curves with linear increasing curva-
ture κ(l) = lσ along the curve. The Cartesian coordinates are given
by

x(l) =

√
π

σ
C

(√
l2σ

π

)
, y(l) =

√
π

σ
S

(√
l2σ

π

)
,

with C(x) =
∫x
0 cos(π2 t

2)dt and S(x) =
∫x
0 sin(π2 t

2)dt and sharpness
σ.

98 trajectory optimization

Figure 8.3: Construction of transition segments. Transition segments (red
dashed line) connect two straight line path segments (black solid
lines) with continuous curvature inside a bounding sphere re-
stricted by the distance to obstacles and other waypoints. Their
shape is defined by heading change δ (violet dotted lines). The
initially normalized transition segments are scaled by the radius
of the bounding sphere. The segments are constructed by two
clothoids mirrored in the center (short black lines). Transitions
for sharper heading changes of 90° and 135° are depicted by blue
dotted lines.

To calculate the sharpness parameter for our clothoid segment, we
follow ideas from Fraichard and Scheuer (2004). The parameter σ for
a normalized clothoid depends on the change in heading between
start and end of the clothoid segment. Due to the construction of
the start and end points of our connecting segment, the curvature
is zero and the tangents of the connecting curve and the circle are
orthogonal. Without loss of generality, we assume that the heading
and the position at the beginning of the segment are zero. For heading
δ after the transition follows

σ(δ) =

π

[
cos δ2C

(√
δ
π

)
+ sin δ2S

(√
δ
π

)]2
sin2

(
δ
2

)
and a length L(δ) = 2

√
δ
σ of the clothoid segment. We can construct

the connecting segment from two clothoid segments, one starting
with curvature zero at the start point to an intermediate point with
heading δ

2 and a segment mirrored at the end point of the first seg-
ment. Figure 8.3 illustrates the segment construction. Finally, the re-
sulting normalized connecting segment is scaled and projected back
into the 3D space. To simplify the calculations, we do not restrict
the maximum curvature. This ensures that a continuous solution can
always be found even if locally not dynamically feasible. We leave
finding a globally feasible solution to the subsequent optimization
stage.

8.2 initialization 99

To allow for arbitrary spaced sampling, we fit cubic splines to the
resulting path consisting of straight line segments and clothoid transi-
tion segments. In contrast to fitting splines to the initial path contain-
ing only straight line segments, we achieve a much closer approxima-
tion of the path. Thus, the spline-based path is always collision-free
if the planned path is collision-free.

Model-based Initialization

The planned path is a timingless list of 4D (x, y, z, yaw) spatial
waypoints. After initialization of the trajectory optimizer with the
planned path, which is optimal given the plan discretization and di-
mensionality, we need to re-parameterize the planned path from a
discrete-space to a discrete-time representation to match the fixed-
duration timesteps of the parameter vector. We rediscretize the path
according to a simple analytical motion model with bounded accel-
eration to a 10Hz time resolution. To get an easy to compute closed-
form solution for our discretization, we assume that the MAV starts
with a maximum acceleration a(0) = amax, stops with a maximum
deceleration a(T) = −amax at the end of the trajectory, and a linear
transition between these states. With an estimated flight duration of
T for the whole trajectory, we can derive a simple motion model of
the MAV for acceleration a(t), velocity v(t), and position x(t)

a(t) = −2
amax

T
t+ amax, (8.1)∫

a(t)dt = v(t) = −
amax

T
t2 + amaxt, (8.2)∫∫

a(t)dt = x(t) = −
amax

3T
t3 +

1

2
amaxt

2, (8.3)

at time t ∈ [0, T].
With x(T) = L, given a total length L of the planned path, and

Equation (8.3) we can calculate the estimated flight duration T as

L = −
amax

3T
T3 +

1

2
amaxT

2 ⇒ T =

√
6L

amax
.

With T = (N+ 1)∆t, we get the necessary number of time steps N for
our trajectory discretization.

A uniform discretization of the planned path into theseN timesteps
can serve as an input to the optimizer. Such a discretization would as-
sume a constant velocity and, thus, zero acceleration along the trajec-
tory. These derivatives are far from optimal. Hence, a large amount of
optimization effort is spent on optimizing the timing of the trajectory.

The position x(t) ∈ [0,L] is the part of the planned path that has
been traversed until time t. This can be used to rediscretize the path
with a better initial guess about velocities and accelerations that re-
duce the control costs over the complete trajectory. Instead of equal-
length path segments per time step, we set the discrete time steps

100 trajectory optimization

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250

Po
si

tio
n

[m
]

Timesteps [n]

w/o timing
w/ timing

Figure 8.4: Uniform plan discretization (red) vs. discretization according to
motion model (blue) of the MAV trajectory in the x-coordinate.
Discretizing according to a motion model facilitates faster con-
vergence of the trajectory optimizer.

t = i∆t along the path according to x(t). Figure 8.4 shows the effect
of the timing-based discretization on the initial parameter vector. The
velocities at the start and goal are lower and the velocity in the middle
of the trajectory is higher.

8.3 fov-aware trajectory optimization

Similar to the planning approaches described in Chapter 7, an im-
portant objective is to perceive obstacles with the MAV onboard sen-
sors. While we can employ a path planner to plan paths in the field
of view (FoV) of the sensors in the initialization step, we have to
also modify the trajectory optimization objective function to preserve
the sensor coverage property after optimization. The trajectory ascent
and descent angles should stay within the vertical FoV of our obstacle
sensor. The resulting trajectories contain velocity and acceleration in-
formation employed by our low-level controller to accurately follow
the intended paths.

To enforce the visibility constraints, we look at the local path tri-
angles defined by a segment between two trajectory points Θi−1, Θi
and its projection to the x-y-plane Θi−1,xy, Θi,xy. Let Θi−1 and Θi be
two consecutive trajectory points in Θd. Then the visibility constraint
for a sensor apex angle of φ is defined as

∣∣atan2 (Θi,z −Θi−1,z,
∥∥Θi,xy −Θi−1,xy

∥∥)∣∣ 6 φ

2
.

If this constraint is violated, we locally modify the trajectory points
to flatten the path triangle. Simultaneously, we reduce the altitude

8.3 fov-aware trajectory optimization 101

φ/2

gi−1

gi

Θi−1

Θi

dmax,zdz

dmin,xy

‖Θi −Θi−1‖

Figure 8.5: Gradients for FoV-aware optimization. If the ascent (or descent)
angle between two consecutive waypoints Θi−1 and Θi is out of
the sensor FoV φ, this case is depicted by the red triangle, then
the altitude change dz is modified such that the constraint vio-
lation dz − dmax,z is reduced to half. The remaining violation
is mitigated by stretching the planar projection of the movement
Θi,xy −Θi−1,xy to reduce the difference to dmin,xy. Thus, the
trajectory becomes reshaped towards the blue triangle by the gra-
dients gi−1,gi.

difference dz and stretch the movement in the x-y-plane, depicted in
Figure 8.5. The partial gradients gi−1 and gi to modify the trajectory
points are defined as

dmin,xy =
|dz|− dmax,z

tan(φ/2)
−
∥∥Θi,xy −Θi−1,xy

∥∥ ,

gi−1,x = wv cos(α)
dmin,xy

2
,

gi−1,y = wv sin(α)
dmin,xy

2
,

gi−1,z = wv sgn(−dz)
|dz|− dmax,z

4
,

gi = −gi−1,

where wv is a weighting factor and α is the direction angle of the
path segment projected to the x-y-plane. dmin,xy denotes the min-
imum planar distance to reach the angular constraint with a given
dz and dmax,z is the maximum allowed distance in z to reach the
constraint with a given planar distance. Thus, half of the constraint
violation is distributed to the altitude gradients and the other half is
used to elongate the path. As a result, the optimized paths can lunge
out to reduce the ascent/descent angles. Figure 8.6 shows the result-
ing trajectory for an ascent in place and Figure 8.7 shows resulting
trajectories with and without visibility constraints after the optimiza-
tion step in an outdoor map. To reach the target position close to a

102 trajectory optimization

Figure 8.6: Optimized trajectory for an ascent in place. We initialize the tra-
jectory optimization with a planned path (purple) with transition
segments (purple spheres). The result after optimization yields a
smooth spiral (colored axes). Left: Perspective. Right: Top-down
ortho projection.

building our approach generates a spiraling descent. Please note that
the sensor visibility constraint is satisfied along the whole trajectory
if it is satisfied in the discrete trajectory points by construction.

8.4 frequent reoptimization

To react on deviations from the planned trajectory and to avoid ob-
stacles perceived with onboard sensors the trajectory is continuously
re-optimized during flight. Optimizing a high-dimensional trajectory
with a time resolution of 10ms is prohibitively slow. Nevertheless,
the high time resolution at fixed duration is only required for the
prediction horizon of the MAV controller. If we perform replanning
sufficiently fast, the remainder of the trajectory can be represented
at a lower time resolution, even with varying durations of trajec-
tory points. We employ a local multiresolution time discretization—
detailed in Section 2.3 and extending ideas from Behnke (2004) and
Steffens et al. (2014). The prediction horizon is represented at a con-
stant high resolution, after that the resolution decreases linearly. This
resembles the uncertainty in the trajectory execution and percep-
tion in the future. As result, it is computationally feasible to plan
at the control rate for the prediction horizon of a model predictive
controller and at lower resolution to the global goal configuration.
The duration of trajectory point i is d(i) = ∆t for i 6 ifix and
d(i) = (1+ c · (i− ifix)) · ∆t for i > ifix with multiresolution factor

8.4 frequent reoptimization 103

Figure 8.7: Optimized trajectories without (red) and with visibility con-
straints (blue). The constrained trajectory lunges out to keep the
ascent and descent angles within the field of view of the onboard
sensors. The flight starts on the left.

c = 0.1 in our implementation. This results in an overall duration
from the trajectory start to point i of D(i) = i∆t for i 6 ifix and

D(i) = ifix∆t+

(
∆i+

∆i∑
k=1

ck

)
∆t (8.4)

= ifix∆t+

(
∆i+ c

∆i2 +∆i

2

)
∆t (8.5)

with ∆i = i− ifix for i > ifix. We set ifix to 10, hence replanning has to
be performed in 100ms.

To calculate the derivatives for our trajectory given an arbitrary
time discretization, we employ finite differencing (Fornberg, 1988).
Due to the non-equal time difference between consecutive trajectory
points, it is necessary to compute a differencing filter per trajectory
point. Nevertheless, the time discretization is fixed over the whole op-
timization process, thus these filters can be precomputed. To allow for
numerical differentiation of the first trajectory points, an additional
padding of six time steps of fixed resolution is added at the beginning
and end of the trajectory. The padding is fixed and not altered during
the optimization process. In the first run the paddings are initialized
with the start and goal configurations of the trajectory, respectively.

During execution of the trajectory, we shift the trajectory padding
corresponding to the elapsed time. Hence, the trajectory padding al-
ways contains the past six trajectory states representing the dynamic
state in the past that led to the current state. Consequently, the trajec-
tory optimization finds feasible followup trajectories implicitly. The
remaining trajectory is mapped to the new time parameterization by
means of linear interpolation between trajectory points. We initialize

104 trajectory optimization

the optimizer with the current remaining flight trajectory shortened
by the estimated reoptimization duration. The duration estimate is
based on the last reoptimization duration with an added 10% over-
head as the duration is dominated by the remaining trajectory length
which gets shorter during flight. Finally, the reoptimized part of the
trajectory is merged with the currently executed trajectory.

After this reparameterization, some subsequent optimization steps
are necessary to find the new local optimal solution, even if the MAV
was not disturbed. In our implementation, we have restricted the re-
optimization iterations to one fifth of the initial optimization itera-
tions. As the trajectory points in the padding are not differentiable
with the finite differences method, their derivatives have to be repre-
sented explicitly. Thus, our intermediate trajectories are 12+1 dimen-
sional, containing 4D poses, velocities, accelerations plus duration.

The trajectory can be reoptimized with few iterations for small
changes in the environment, e.g., small or dynamic obstacles. The
optimizer is initialized with the already optimized trajectory from
the previous iteration and the updated environment model. Conse-
quently, the initialization steps necessary for the first trajectory can
be omitted and the trajectory converges fast to a new local optimum.

In case of disturbances of the MAV state while following an op-
timized trajectory, e.g., by strong gusts of wind, the remaining tra-
jectory has to be adapted quickly. As the MAV dynamic state is not
altered and thus the motion direction cannot be changed immediately,
we move the initial part of the old trajectory to the deviated current
MAV pose. We distribute the trajectory error over the remaining part
of the trajectory. This part is then used as initialization for optimiza-
tion yielding locally optimal trajectories to the goal.

If complete replanning is necessary during the trajectory execution
due to topological changes in the environment that cannot be solved
by reoptimization, the initialization steps including allocentric plan-
ning have to be repeated. In contrast to the initial planning, the tra-
jectory padding of the sampled trajectory is now filled with a future
part of the currently executed trajectory to take the dynamic state of
the MAV into account for the followup trajectory.

The optimization cannot leave a local optimum if another trajec-
tory would be closer to a global optimum. This can happen by newly
perceived obstacles blocking or influencing the old locally optimal
trajectory. To avoid this, we perform global replanning from points
on the trajectory in the more distant future to the goal and newly
initialize and optimize the remaining part of the trajectory, similar to
the initial trajectory planning.

9
FA S T R E A C T I V E O B S TA C L E AV O I D A N C E

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 10−2 Hz Allocentric goal

10−1 Hz
Excerpt of allo-
centric path

100 Hz
Intermediate goal
on egocentric path

101 Hz Velocity setpoints

A
llo

ce
nt

ric
M

ap
s

Eg
oc

en
tr

ic
M

ap
s

Navigation and ControlWe use reactive obstacle avoidance as a low-level safety layer com-
plementing the deliberative path planning layers. For our application,
reactive obstacle avoidance has two important properties—compared
to fast local planning (Vanneste et al., 2014), or optimization-based
approaches (Israelsen et al., 2014). First, it has the ability to elude
approaching dynamic obstacles, depicted in Figure 9.1. This might
include leaving a hover position or even moving into the opposite
direction of the commanded flight path and not only modifying fu-
ture flight paths up to a stop in front of obstacles. Second, a hazard
minimizing solution will always be found even if the distance con-
straints are violated. Furthermore, reactive obstacle avoidance is com-
putationally cheap and, consequently, can be executed with the lidar
frequency of 10Hz.

Another use-case that is facilitated by reactive obstacle avoidance is
assisted flight. The obstacle avoidance layer can help a human pilot to
prevent collisions in complicated situations, e.g., while flying through
a narrow passage (Figure 9.1).

In this chapter, we summarize general artificial potential fields and
detail our obstacle avoidance approaches with and without trajectory
prediction.

9.1 artificial potential fields

The major design goal of our approach to obstacle avoidance is to
react quickly on newly perceived obstacles. For this purpose, we ex-
tend artificial potential fields (Ge and Cui, 2002) and operate on ag-
gregated egocentric sensor data at approximately the frequency they
are processed. The artificial potential field approach is inspired by
physical potential fields. In general, the robot is modeled as a particle
passively moving through a field induced by attractive and repul-
sive forces. One or more goals induce attractive forces. In this thesis,
we consider only one goal, the waypoint wt, inducing the attractive
force vector Fa. This attractive force directs the MAV towards the
goal. A waypoint is either selected from a planned path or from user
input. When employing a planner, it has to ensure that local minima
are avoided. Perceived obstacles induce repulsive forces on the flying
robot. The magnitude of the repulsive force Fr of the closest obstacle
o at a position p is calculated as

‖Fr,p‖ = costs (argmino (‖o− p‖)) ,

105

106 fast reactive obstacle avoidance

Figure 9.1: Reactive obstacle avoidance. Our local obstacle avoidance algo-
rithm acts as a safety measure between control inputs given by
a planning layer or a human pilot remotely controlling the robot.
This ensures safe operation in challenging situations. Left: A hu-
man pilot manually steers the MAV through a narrow passage-
way between vegetation and scaffolding leading to a collision
that could have been avoided by obstacle avoidance. Right: A
person approaches the MAV hover position, the MAV avoids this
dynamic obstacle.

where costs(.) is a function that is zero in a user-defined safe distance
to obstacles and raises with decreasing distance. This yields a repul-
sive force vector

Fr,p = ‖Fr,p‖
p− o

‖p− o‖
.

The resulting force at a discrete position is now the weighted sum
of the attractive and repulsive forces

Fp = aFa,p + bFr,p,

with user-defined weighting factors a,b. A 2D example of the result-
ing potential field is depicted in Figure 9.2.

In general, the input to our obstacle avoidance algorithm is an ag-
gregated robot-centered 3D occupancy grid based on measurements
from a laser rangefinder (LRF) or an egocentric 3D point cloud from,
e.g., stereo cameras and a target position or velocity vector, depend-
ing on the application. As most of the cells in our obstacle map are
free space, we do not precalculate the forces for every cell, but only for
cells that intersect with the bounding box of the MAV. For efficiency
reasons, we calculate the force affecting one particle by selecting the
closest obstacle. The effects caused by this simplification are mitigated
by extending the standard potential field-based approach by relaxing
the assumption that the robot is one idealized particle. We account
for the shape of the MAV by discretizing it into cells (blue grid cells
in Figure 9.3). Every cell is considered as one particle in the algorithm.
This leads to a robot model containing particles in the center of the

9.2 obstacle avoidance with trajectory prediction 107

Figure 9.2: Artificial potential field. The local trajectory of the robot (green)
is influenced by a weighted sum of attractive (left) and repulsive
forces (middle). This induces an artificial potential field to nav-
igate collision-free to an intermediate goal (right). The margins
around obstacles without arrows depict the minimum safety dis-
tance.

cells pi. The force affecting this model is the average of all individual
forces

Fp =
1

N

N∑
i

Fpi .

Thus, we do not need to enlarge obstacles and avoid oscillations
caused by the discretization.

Our formulation allows to evaluate the effects of the potential field
on the MAV orientation. As the MAV is represented as a discretized
3D model, we can calculate the angular momentum on the MAV cen-
ter by all artificial forces Fpi applied to the individual robot cells i
and their respective relative positions pi:

M =
∑
i

pi × Fpi .

From the three rotational velocities, only the yaw velocity can be cho-
sen independently of the linear velocities of the MAV. Hence, we
project all pi and Fpi to a plane parallel to the ground. Thus, we
get an acceleration around the z-axis resulting in an angular velocity.
This can be used to orient less circular robots, e.g., an MAV with a
sensor pole, away from obstacles. As our MAV is approximately cir-
cular, we give precedence to the orientation commanded by higher
layers.

The motion command sent to the low-level MAV controller is cal-
culated according to the resulting artificial forces. Output is a safe
position or velocity vector, respectively. Maintaining the MAV atti-
tude based on these outputs is the task of the underlying low-level
controllers.

9.2 obstacle avoidance with trajectory prediction

In contrast to the idealized massless particle assumed in the potential
field approach, frequent acceleration and deceleration of the MAV

108 fast reactive obstacle avoidance

Figure 9.3: We discretize our MAV into cells (blue) and calculate the forces
per cell. The artificial force applied to the MAV is the average of
all forces. The nearest obstacles to the cells are depicted by red
lines.

to follow the most cost-efficient path through the field is disadvan-
tageous. To be able to totally change the motion direction at every
discrete position would require low velocities. Hence, we accept sub-
optimal paths, as long as they do not lead to a motion state that will
cause a collision in the future, e.g., if the MAV becomes too fast in
the vicinity of obstacles. We take the special properties of MAVs in
contrast to earthbound vehicles into account, by extending the clas-
sic potential field approach to collision avoidance with a prediction
of the outcome of a chosen control for a fixed time horizon. This im-
proves the navigation performance and closes the gap between pure
reactive control and planned motions.

As additional input for our algorithm, we consider the current mo-
tion state xt of the MAV at discrete time step t. The motion state
xt consists of the current linear velocity vt = (vx, vy, vz), the rota-
tional velocity around the z-axis ωt, and the attitude of the MAV
Rt = (Rx,Ry) in an egocentric coordinate frame aligned to the floor.
The target waypoint wt is defined by a 3D position and 1D orienta-
tion wt = (x,y, z,ψ).

To account for the dynamic state xt of the MAV, we predict its fu-
ture trajectory Θt given the current linear velocities vt, the attitude
Rt, and the probable sequence of motion commands ut:t+n given in
the next n time steps (Figure 9.4). The trajectory is predicted employ-
ing a learned motion model of the MAV, detailed in Section 9.3, and
the expected resulting forces along the trajectory, given the current
environment representation.

These predicted forces are used to influence the motion command
selection. Larger forces indicate that the MAV will come close to an
obstacle in the future while following the trajectory started by the
current motion command. Hence, the next velocity commanded to

9.2 obstacle avoidance with trajectory prediction 109

Figure 9.4: Trajectory rollout. We predict the influence of a motion command
by rolling out the robot trajectory (green) using a learned motion
model. The current artificial repulsive forces are depicted in red.
Left: MAV flying through a window. Right: An obstacle is block-
ing the direct path (black) out of a garage.

the low-level controller needs to be reduced, accordingly. This is im-
plemented in our algorithm as a reduction of the maximum velocity
for the next motion command, if the magnitude of the forces along
the trajectory becomes too large. For the prediction of the trajectory,
this new maximum velocity is assumed as the maximum in the pre-
dicted future.

The prediction of the trajectory Θt is implemented as follows

Θt = pt:t+n = (pt,pt+1, . . . ,pt+n) ,

pi+1 = Axi +Bui + pi i ∈ [t : t+n− 1] ,

ui = CFpi ,

where A,B denote matrices based on our motion model (described
in the next section) to estimate a pose difference given the dynamic
state and a control input u. C denotes a mapping of a force vector to a
velocity command. Given the estimated sequence of future positions
pt:t+n, we search the smallest index i ∈ (t : t+n) for which the mag-
nitude of the force exceeds a threshold, i.e., ‖Fpi‖ > Fmax. If such an
i exists, we reduce the maximum velocity vmax to

vnew =

(
1

2
+
i

2n

)
vmax.

Hence, while approaching an obstacle the maximum velocity com-
manded to the MAV is gradually reduced.

In the case that no trajectory with sufficiently small predicted forces
can be found, the MAV stops. Here, we exploit the property of mul-
ticopters that, in contrast to fixed-wing unmanned aerial vehicles
(UAVs), the dynamic state of the system can be changed completely
within a short time. As a result, the look-ahead needed to estimate
the effects of a control input is tightly bound. We have chosen the

110 fast reactive obstacle avoidance

length of the trajectory rollout as the time the multicopter needs to
stop, which has been empirically measured to be one second for the
employed control parameters.

9.3 learning a motion model

To obtain a motion model of our MAV, we fly our multicopter remote-
controlled within a motion capture (MoCap) system. This system pro-
vides ground-truth data of the robot position and attitude at an aver-
age rate of 100Hz allowing for the derivation of the robot dynamic
state. Due to inconsistent delays within the MoCap system, captured
data is often noisy and unsuitable for simple delta-time differentia-
tion needed to correctly calculate the dynamic state. Thus, after cap-
turing, all data is processed using a low-pass filter allowing for more
accurate estimates of instantaneous velocities.

To determine the influence of control inputs to the system, we have
to synchronize the user commands to the filtered state measurement.
Due to the aforementioned MoCap time delays and the architecture
of the data capturing system, which does not allow for explicit time
synchronization, these two components are initially captured using
different computer systems and fused later in a postprocessing step
to avoid additional network delays. As the capture times of both com-
ponents rarely coincide, we match the interpolation of the filtered
state with control commands. Allocentric MoCap measurements are
transformed from the capture frame into the egocentric MAV frame,
the control inputs are normalized to the interval [−1, 1]. The final state
estimate data can be used to derive the motion model parameters.

Several effects from flying within the MoCap system must be con-
sidered before an appropriate motion model can be derived. Due to
a restricted capture volume, external thrust effects can be observed
due to ground, ceiling, and wall planes interacting with the propeller-
generated wind. These effects are minimized when flying within the
central region of the capture volume, thus data acquisition is only
performed within this restricted volume. Additionally, some maneu-
vers are impossible to capture due to both safety and acceleration
constraints. However, as flying advanced maneuvers is not targeted
in this work, this issue can be safely ignored. Using this simple set of
capture constraints, external factors to the motion of the MAV can be
minimized.

We model the flight dynamics as a time-discrete linear dynamical
system (LDS) xt+1 = Axt + But that predicts the state of the MAV
at the time t+ 1 given the current state estimate xt—i.e., attitude Rt,
position pt, angular ωt and linear vt velocities, and thrust Tt—and
the user control input ut. The state transition model A and control
input model B are fitted to the captured data using ordinary least
squares. Additionally, the yaw component of the model is considered

9.3 learning a motion model 111

to be independent of the remaining parameters. Due to the proper-
ties of a multicopter, the attitude in the horizontal plane (i.e., roll and
pitch) when maintaining altitude is nearly proportional to the acceler-
ation along the corresponding axis for small angles (Beul and Behnke,
2016). Furthermore, for small vertical accelerations the thrust is domi-
nated by the hover thrust compensating the gravity vector. We neglect
the effects caused by drag, as our MAV flies at relatively low speed.
With these simplifications and considering only the horizontal planar
velocity and attitude, i.e., x- and y-axis, the transition model A for the
corresponding velocities has the general form:

[
Dxx Dxy Axx Axy

Dyx Dyy Ayx Ayy

]
with state input xt =

vx

vy

Rx

Ry

 ,

where Dij represents the dampening effects in the i-axis given the j-
axis velocity and Aij represents the acceleration effects from attitude
in the i-axis given the j-axis attitude. Generally the dampening terms
Dxx, Dyy are close to 1; Dxy, Dyx are close to 0 while the acceler-
ation terms Axy, Ayx correspond to the proportionality constant of
the attitude; Axx, Ayy are close to 0 (note that an attitude in one axis
affects the acceleration of the perpendicular axis). Additionally, due
to a non-symmetric inertia tensor of the multicopter, these matrix val-
ues may also not be symmetric resulting in different accelerations and
dampening for the forward and lateral movements. The reduced state
input consists of the planar velocity (vx, vy) and the corresponding
rotations roll and pitch (Rx, Ry).

Through similar analysis, the control-input model B in the horizon-
tal plane velocity and attitude has the general form:

ΦAxαx ΦAxαy

ΦAyαx ΦAyαy

δxx δxy

δyx δyy

 with control input ut =

[
αx

αy

]
,

where ΦAij represents the integrated accelerations from control in-
put angles over the time period used for model learning in the i-axis
from control input j. δij approximates the reaction constants of the
multicopter system to reach a desired attitude in the i-axis from the
j-axis desired input. The control input is the desired attitude, i.e., roll
and pitch angles. BothΦAxαx ,ΦAyαy are relatively large whileΦAxαy ,
ΦAyαx are small showing an independence between multicopter rota-
tion axes. The δ values also show an independence between rotation
axes. However, their values are specific to the multicopter control re-
action speed, control delay, thrust output, and time period used for
learning.

112 fast reactive obstacle avoidance

Critical
distance

Active avoidance
sphere radius

Passive avoidance
sphere radius

Distance
to obstacle

St
re

ng
th

1

spush

sreduce

Figure 9.5: Reactive obstacle avoidance. Top-Left: The MAV velocity setpoint
vector vin is split into the projection towards an obstacle vobst
and the remainder vfree. If the MAV is not close to obstacles, the
output velocity vout is equal to the setpoint. Top-Middle: When
an obstacle is in the passive avoidance sphere (dotted orange),
vin is reduced by vslow = −sreducevobst. Top-Right: Obstacles
in the active avoidance sphere (dotted red) induce an additional
repulsive force resulting in the pushing velocity vpush directing
the MAV into free space. For simplicity, we depict velocity vec-
tors, the pose modification vectors follow straightforward. Bot-
tom: Scaling factors in relation to the obstacle distance.

In addition to predicting the trajectory for the purpose of collision
avoidance, this model can be utilized in the low-level velocity con-
troller (Achtelik et al., 2009), for kinodynamic motion planning (Şu-
can and Kavraki, 2008), and to predict away system delays due to the
time difference of control input and control execution. Furthermore,
we built a simulation environment using the model to ensure realistic
behavior of the simulated multicopter.

9.4 obstacle avoidance with direction-based velocity

reduction

Based on our obstacle avoidance with trajectory prediction, we devel-
oped a simplified version without the need to learn an MAV motion
model and a reduced set of parameters. This modified algorithm fa-
cilitates smoother flight in narrow spaces by adding two spheres of
influence around the MAV, depicted in Figure 9.5. Obstacles in the
passive avoidance sphere with radius dp cause a reduction of the
MAV motion into the direction of the obstacles. In the active avoid-
ance sphere with radius da, obstacles exert artificial repulsive forces,
increasing with proximity, that push the MAV away. By dividing the
obstacle avoidance into these two phases, we achieve a stable equi-

9.4 obstacle avoidance with direction-based velocity reduction 113

Figure 9.6: Laser scan of a person avoided by reactive obstacle avoidance. A
person (circled blue in the laser scan) approaches the MAV. The
MAV is repelled by the artificial forces (red lines) and dodges
the obstacle. Green lines depict the influence of obstacles in the
passive avoidance distance.

librium distance between obstacles and MAV regardless of the MAV
control inputs without influencing the motion into orthogonal direc-
tions in the passive sphere—e.g., the MAV can follow an exploration
pattern along a shelf even if the commanded pattern is too close to
the shelf due to protruding goods. Figure 9.6 shows the influence of
obstacles in the two spheres during a flight in a warehouse.

Our new obstacle avoidance layer can operate on—in addition to
egocentric velocities as before—allocentric and egocentric target posi-
tions to allow a more flexible selection of planning and control layers.
For simplicity of notation, all further calculations are depicted in an
egocentric MAV frame to omit the localization transform matrices,
allocentric positions and velocity vectors follow straightforward. If
both spheres are obstacle-free, we execute the commands from the
planning layer unaltered. Egocentric targets farther away than 1m

are first normalized, shorter vectors are processed without prior nor-
malization to avoid a speed up of the MAV while approaching an
obstacle. The new egocentric target position tnew is calculated as

tnew = torig − cospush + fosreduce.

Here, co is the projection of the current target torig onto the direction
of the obstacle, thus, the part of the command that steers the MAV
closer to the obstacle. The artificial force direction fo is a normalized
vector pointing away from the obstacle. The magnitudes of the slow
down strength sreduce and the push back strength spush, depicted in
Figure 9.5, are calculated as

sreduce =
dp − d

dp − da
,

spush =
da − d

da − dc
,

114 fast reactive obstacle avoidance

with distance d to the obstacle and critical distance dc. Both results
are clipped to the interval [0, 1] afterwards. Their value is a linear in-
terpolation between free-space distance and the safety distance, and
an interpolation between safety distance and critical distance, respec-
tively.

Overall, this approach allows for less conservative safety
distances—facilitating inspection and mapping closer to obstacles—
while still maintaining safe navigation.

10
E VA L U AT I O N

In this chapter, we evaluate the individual components of our plan-
ning hierarchy as well as the integrated micro aerial vehicle (MAV)
systems. We report quantitative and qualitative results from simu-
lated experiments and flight tests with the different MAVs detailed
in Section 5.2.

10.1 simulation environments

For testing and evaluation, we employ different simulation environ-
ments. While several aspects of the system are simulated in very basic
simulators, e.g., assuming that all actions are executed perfectly and
making obstacles visible to the algorithms when in proximity, we also
employ three different physics-based simulators for the integrated
systems. In this section, we briefly describe these simulators.

Gazebo with Motion Model

Our first simulation environment is based on the physics-based sim-
ulation framework Gazebo from N. Koenig and Howard (2004). The
Simulator is well integrated into the robotics middleware Robot Oper-
ating System (ROS). Gazebo can simulate complex 3D environments,
actuators, and many sensors, e.g., cameras, laser rangefinders (LRFs),
and ultrasonic sensors. Nevertheless, the physics engine of Gazebo is
not aiming at simulating flying robots. Thus, we extended the simu-
lator to move objects according to a black box motion model, given
external control inputs and timings from simulation. Here, we can
use a learned motion model, detailed in Section 9.3, of an MAV as
plugin to move it realistic, without loosing other capabilities of the
simulator like the simulated sensors or collision detection. Further-
more, we extended Gazebo with modules to support multi-echo LRFs
(e.g., Hokuyo UTM-30LX-EW) and electromagnetic grippers. In our
experiments, we employed a learned motion model of the AR.Drone.
This simulator is mainly used for simulating an AR.Drone and our
Pixhawk-based MAVs MoDCopter and AIRCopter.

RotorS

RotorS from Furrer et al. (2016) is an extension to Gazebo targeted at
simulating flying robots, in particular multirotors. Instead of using a
learned motion model, RotorS simulates the flight dynamics based on

115

116 evaluation

physical parameters, e.g., the MAV layout and inertia, and the rotor
torque. This allows for a flexible design of MAVs, but requires more
knowledge about the flight dynamics and low-level controllers. The
real MAVs employed in this thesis already abstract from this low-level
layer by taking attitude or linear velocities as control inputs. To close
the gap, we employ a modified version of the model predictive con-
troller (MPC) by Kamel et al. (2017) as part of the simulator to obtain
a velocity interface. Furthermore, RotorS provides additional sensors
that we employed in testing, e.g., global navigation satellite system
(GNSS) and inertial measurement unit (IMU) sensors. We used this
environment mainly to simulate the ChimneySpector MAV.

DJI Hardware-in-the-Loop

To simulate the flight dynamics of the DJI MAVs, we employ a com-
bination of Gazebo and the hardware-in-the-loop (HIL) simulator DJI
Assistant 2 provided by the manufacturer. The DJI Assistant 2 runs on
a dedicated PC which is connected to the MAV flight controller and
simulates the MAV movement and sensor data, i.e., IMU and GNSS
measurements. In addition, the onboard PC is connected to the flight
controller similar to operating the real MAV. Thus, from a control
perspective the simulation is completely transparent and can be used
to simulate MAV flights not relying on other sensor input. Neverthe-
less, as the DJI Assistant 2 simulator can not simulate environment
structures or sensors like LRFs, we feed the position, velocity, and
attitude data from the flight controller to the Gazebo simulator. This
data is then used to move and orient the simulated MAV accordingly,
comparable to the black box model described above.

10.2 path planning

Allocentric Planning

First, we evaluate individual properties of our path planner quantita-
tively. We investigate the influence on the planning duration of our
design decision to employ a longer open list, i.e., not resorting the
heap on key decreases, on the planning time. In our planners, we
employ the binary heap implementation gheap1. The planning times
are measured in a series of plans requiring from 737 to 665 194 node
expansions. Table 10.1 reports the durations for a subset of the plans.
The results show that a longer open list reduces the planning time by
several orders of magnitude when using a heap-based priority queue
by omitting the costly resorting of the heap structure.

When planning with sensor field of view (FoV) constraints, we em-
ploy a tailored heuristic. The largest impact on the number of ex-

1 https://github.com/valyala/gheap

10.2 path planning 117

Table 10.1: Planning duration with short and long open list (in s). The re-
ported durations for the short open list are the minimum from
three runs.

Expansions 4k 43k 114k 175k 295k 551k 665k

Duration (long) 0.04 0.13 0.26 0.37 0.63 1.16 1.31

Duration (short) 0.06 0.59 3.85 9.05 21.69 121.76 233.90

panded nodes in the A* search is expected, if the major difference be-
tween start and goal pose is a change in altitude without moving in
the plane. We evaluate the heuristic in a grid with a horizontal edge
length of 25 cm and a vertical sensor FoV of 30°, equal to the FoV
of the Velodyne Puck LITE. For an ascent of 7m in place the plan-
ner expands 943 505 nodes before reaching the goal with a Euclidean
distance heuristic. Our FoV-aware heuristic reduces the number of
expanded nodes to 285 411, which is approximately 30% of the base-
line. For the trajectories depicted in Figure 10.16 and Figure 10.19 the
node expansions compared to the baseline are reduced to 63 percent
(5 907 649 vs. 9 443 491 expansions) and 88% (3 766 025 vs. 4 255 730
expansions), respectively.

For the evaluation of the three different employed obstacle cost
representations, detailed in Section 7.1.1, we consider two different
OctoMaps with a resolution of 0.25m. The first OctoMap is a map
of a building facade, a part of a courtyard, and some vegetation (see
Figure 7.2) built from LRF measurements. This map contains 165 972
occupied octree leaves from which 30.2% can be pruned to larger oc-
tree nodes (maximum depth 15: 115 804 nodes; depth 14: 6143 nodes;
depth 13: 16 nodes). The second OctoMap represents the Franken-
forst manor house depicted in Figure 10.3. This map is based on a
level of detail (LoD) 2 model and does not contain the ground from
the corresponding digital elevation model (DEM). Here, only 0.8% of
the 39 366 leaves can be pruned. Table 10.2 shows the results of this
evaluation.

We evaluate three different cases for employing MAV models with
multiple levels of abstraction:

• refinement of the model if it is within the maximum distance
where an obstacle induces costs,

• refinement of the model only if it is so close to an obstacle that
a cell becomes unreachable, and

• always using the finest MAV model.
The main advantage of the multilevel k-d tree representations is the
reduced memory consumption. For the facade map the reduction is
27%. For large, densely occupied maps, this is advantageous. Nev-
ertheless, the overhead for the evaluation of cell costs introduced by
the multilevel k-d tree representations is higher than the advantage

118 evaluation

Table 10.2: Comparison of obstacle cost representations. For the abstraction
levels, we report results for refining the MAV model in the case
an obstacle induces any costs (refine max.), if a cell would be
unreachable without refinement (refine min.), and for always us-
ing the finest MAV model. Durations for initializing (init) and
for evaluating the obstacle cost (eval) are in ms. Free denotes the
number of cells with obstacle costs lower than the maximum.

Representation Facade map Manor house map

Init Eval Free Init Eval Free

Uniform 239.5 1133.3 283k 490.0 1932.0 355k

Multilevel 82.4 1324.9 283k 23.0 1931.5 355k

Abstraction

- Refine max. 81.1 4131.6 296k 22.1 3089.5 361k

- Refine min. 71.4 2777.1 296k 16.9 2047.8 361k

- Only finest 74.6 8396.4 294k 18.3 13522.0 358k

of searching in smaller trees with our employed maps. The long ini-
tialization duration of our uniform obstacle representation is domi-
nated by a full expansion of the octree in the initialization step. This
duration could be reduced by expanding only the occupied space if
necessary.

It can be seen that using three levels of abstraction strongly reduces
the time required to determine the obstacle costs for the whole grid
in contrast to always employing the finest MAV model. A further
reduction can be achieved by only refining the model if a cell would
not be reachable otherwise. This can lead to an overestimation of
obstacle costs in other cells. In the facade map, these representations
yield 4.5% more reachable cells, especially close to the ground and
on top of protruding building parts. For the manor house map this
increase is lowered to 1.7% due to the not represented ground. All
results are averaged over ten runs.

We show the necessity for frequent replanning on the allocentric
layer in some qualitative experiments. The experiment shown in Fig-
ure 10.1 is inspired by a typical situation in one of the university
buildings. Depicted is a situation in which a previously open gate
is closed and blocks a passageway. This change in the environment
is too large, such that the local planner cannot find a local detour.
Consequently, the global map needs to be updated with local sensor
information. By frequent replanning, a new globally consistent path
is found shortly after the blockage is incorporated into the allocentric
map. Figure 10.2 shows resulting plans towards a goal at different
stages of the flight. The general applicability of our planning hier-
archy was tested by simulated following of globally planned paths

10.2 path planning 119

Figure 10.1: Example of frequent replanning on the allocentric planning
layer. New sensor information (red dots) is incorporated into
the allocentric map (colored voxels) to update the global plan.
Left: Photo of a passageway with a closing gate. Middle: In
the global world model the gate is open, the initial plan goes
through the passageway. Right: While approaching the closed
door (circled yellow) the MAV perceives it and updates the
model. An alternative path over the building is planned.

Figure 10.2: Updated global plans at different stages of the flight depited in
Figure 10.1. The green line depicts the MAV trajectory, starting
on the left side. The dotted lines depict plans from the respec-
tive MAV position towards the goal (red cross). The black circle
marks the MAV position where the closed passage is perceived
and the global plan is updated.

based on a city model represented in an 100m× 100m× 100m grid
with 1m cell size. Our combination of allocentric and egocentric plan-
ners is able to achieve the required replanning frequencies on the
MoDCopter onboard PC.

Figure 10.3 shows results from planning a flight path with different
wind speeds. Whereas the MAV plans the shortest path in the absence
of wind, it plans a qualitatively different path in the case of strong
wind. In the second case, the path leads the MAV through the areas
with lower wind speeds behind a large building.

Egocentric Planning

Local multiresolution planning acts as a layer to make frequent re-
planning feasible. Thus, we evaluate the reduction in the required

120 evaluation

Figure 10.3: Planning with wind. The MAV plans qualitatively different
paths depending on the wind speed. Left: No wind. Right:
Strong wind from the left. The obstacle map (colored voxels) is
overlaid with a slice from the wind model. Darker cells depict
stronger wind.

planning time when employing multiresolution representations. On
most of the employed MAVs, the onboard PC sends motion com-
mands to the low-level controller with 10Hz. Full 3D environment
updates are acquired with 2Hz with the rotating LRFs, whereas par-
tial updates are available with up to 40Hz. Thus, replanning times be-
low 500ms allow reacting on newly perceived obstacles in every full
3D scan. Durations below 100ms allow replanning at the frequency
of our obstacle avoidance layer.

We compared our path planner with local multiresolution grid
with two uniform grid representations. The MAV follows a list of
waypoints in simulation with an unknown obstacle which has to be
surrounded locally. Figure 10.4 shows the example situation and re-
sulting planning times during the path following. Input to the local
planner is the next waypoint on the allocentric path or, if outside of
the egocentric planning volume, the point where the allocentric path
intersects with the planning volume. The multiresolution grid has an
inner cell size of 0.25m and the duration of one planning cycle is on
average 12ms, measured on the MoDCopter onboard PC. The maxi-
mum measured duration is 35ms. With a uniform grid with cell size
0.25m, the average planning time of 26ms is still acceptable. Never-
theless, the maximum planning time of 3.4 s exceeds the desired time
window of 100–500ms by a factor of seven. Increasing the cell size
to 1m reduces the planning times to 4ms in average and 20ms in
maximum. Our multiresolution approach results in 3% longer trajec-
tories than the higher resolution uniform approach. Using the lower
resolution uniform grid results in 9% longer trajectories. Table 10.3
summarizes the results.

We tested the tighter coupling of our global and local path plan-
ning layers to evaluate the computation time and the resulting flight

10.2 path planning 121

P
la
nn

in
g
ti
m
e
(i
n
s)

Replanning iteration

Uniform Multiresolution

0

1

2

3

0.01

0.02

0 50 100 150 200 250 0 50 100 150 200 250

Figure 10.4: Plot of planning times per iteration. Inset: The MAV is ap-
proaching an obstacle (purple) where it has to deviate from
the globally planned path (black). The local path is depicted
by green arrows. Left: If the uniform grid with 0.25m cell size
is used the available planning time is exceeded substantially.
Right: The local multiresolution planner is able to replan with-
out a strong increase in planning time.

paths. As before, the MAV follows a globally planned path and has
to avoid obstacles that are not in the a priori known world model.
For evaluation, we manually removed obstacles from our allocentric
map and plan global paths based on this modified map and local
paths based on our local map incorporating laser measurements. Fig-
ure 10.5 shows plans while locally surrounding one of the shelves
in the indoor evaluation area. When newly perceived obstacles have
to be avoided, the planning time for a uniform grid with high reso-
lution can substantially exceed the time window for replanning. By
contrast, the local multiresolution planning is always fast enough for
continuous replanning.

Table 10.3: Planning time and trajectory lengths of local path planner with-
out trajectory coupling. Lenghts are normalized to the length of
the shortest trajectory.

Grid representation Cell size Planning time (in ms) Length

(in m) Min. Max.

multiresolution 0.25 12 35 1.03

uniform 0.25 26 3395 1.00

uniform 1.00 4 20 1.09

122 evaluation

Figure 10.5: Local plan around an obstacle. The allocentric path planner
(black line) plans globally consistent paths based on our allo-
centric map (blue and green boxes). Our local path planner (red
arrows) is coupled to the allocentric plan, but surrounds obsta-
cles in the vicinity of the MAV based on our local obstacle map
(gray and red boxes). The MAV pose is depicted by the axes.

Table 10.4: Planning time of local path planner with trajectory coupling.
Case A: Maximum planning time if the allocentric plan can be
followed. Case B: Maximum planning time when deviating from
the allocentric plan.

Grid representation Cell size (in m) Planning time (in ms)

Min. Max. (A) Max. (B)

multiresolution 0.25 10 40 60

uniform 0.25 10 210 720

uniform 1.00 10 210 8200

We compared the computation times of our local planner when
employing different planner representations: two uniform grids and
our local multiresolution grid with 8× 8× 8 cells per level. All grids
have a size of 32m× 32m× 32m. Here, we measured the runtimes
on the MoDCopter onboard PC employing data recorded during au-
tonomous operation for our integration experiments in a decommis-
sioned car service station described in Section 10.5. Table 10.4 sum-
marizes the results. While the planning times remain sufficiently low
for frequent replanning when employing the multiresolution grid, the
maximum planning times become prohibitively long when using the
uniform grids. The minimum planning time with all representations
is approximately 10ms. For the maximum planning time, we report
two results: A) maximum planning time if the allocentric plan can
be followed, B) maximum planning time when deviating from the
allocentric plan. In case A, the planning with the multiresolution
grid takes up to 40ms, both uniform grid-based planners need up
to 210ms. In case B, the maximum planning time with the multireso-

10.3 trajectory optimization 123

Figure 10.6: OctoMap of the evaluation area. We have restricted the max-
imum allowed altitude for our experiments to approximately
10m over ground, otherwise flying at higher altitudes always
yields shortest paths. Yellow: Obstacles influencing the MAV at
10m altitude. Red: Obstacles the MAV cannot overfly.

lution grid increases to 60ms, whereas the maximum planning times
with the uniform grids increase to prohibitively long 720ms (1m),
and 8.200ms (0.25m), respectively.

10.3 trajectory optimization

We evaluate the individual components of our trajectory optimization
pipeline, which are

• the influence of our spline- and motion model-based initializa-
tion techniques and the continuous curvature transition seg-
ments (CCTSs), detailed in Section 8.2,

• optimization with sensor visibility constraints (see Section 8.3),
• and frequent reoptimization with multiresolution in time (see

Section 8.4).
Furthermore, we show the applicability of our approach by simu-
lated flights of MAVs in the RotorS simulator as well as with the HIL
simulator, both detailed in Section 10.1. We perform proof-of-concept
flight experiments with the ChimneySpector MAV in a motion capture
system and with the DJI Matrice 600 outdoors.

Initialization and Optimization

In these experiments, we evaluate the improvements of plan- and
spline-based initialization for our trajectory optimizer without CCTSs.
The experiments are performed employing an outdoor map contain-
ing buildings from a village and a farm area, depicted in Figure 10.6.
In this environment, shortest paths are often direct connections at a

124 evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000
Tr

aj
ec

to
ry

 C
os

ts

Iteration

Plan Uniform
Spline Uniform

Plan Accel.
Spline Accel.

Figure 10.7: Trajectory costs (state and control costs) per iteration of the
optimizer. Whereas the optimizer converges to nearly the
same value for all initializations, spline-based initializations
(green/pink) reach a low value much faster. Also, the combi-
nation of spline-based initialization with non-uniform accelera-
tions (pink) reduces the convergence time.

certain height. To avoid this simple solution, we restrict the allowed
flight altitude to a fixed absolute height. Depending on the terrain
elevation, this limit is 10–14m above ground-level. Some buildings
are higher than this allowed altitude and have to be surrounded by
the MAV. The path planning grid has a size of 100m× 100m× 14m
and a cell size of 1m. Our distance field is 3m larger in every dimen-
sion to allow for correct gradient calculations and has a resolution
of 20 cm. The higher resolution of the distance field compared to the
planner grid is exploited in the following optimization step. Here,
the allowed minimum distance to obstacles is 2m, the maximum dis-
tance influenced by an obstacle is 4m. The generation of the initial
distance field from an OctoMap takes 6.1 s. All timings are evaluated
on a single core of the MoDCopter MAV onboard computer.

In the first experiment, we plan a path of 229m for further opti-
mization. A valid path is found in 0.46 s. Our second step, the cal-
culation of timings and spline-based-trajectories runs in under 1ms.
Figure 10.7 shows the convergence of the trajectory optimizer in our
four evaluation cases:

• uniform sampling of the planned path as initialization for the
optimizer,

• sampling of the planned path according to a motion model,
• spline interpolation with uniform sampling,
• combining spline interpolation and motion model.

The costs of a trajectory are a sum of state and control costs. The con-
trol costs penalize the change in control input, i.e., minimize the jerk
of the trajectory. State costs incorporate obstacle costs, accelerations,
and velocities of the MAV. Clearly, the spline-based initializations
start with much lower trajectory costs and converge faster to the local

10.3 trajectory optimization 125

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Tr
aj

ec
to

ry
 C

os
ts

Iteration

Plan Uniform
Spline Uniform

Plan Accel.
Spline Accel.

Figure 10.8: Summed control costs per iteration of the optimizer. After ini-
tialization the overall control costs of the trajectory could be
reduced by 25–34% by employing better timings and by ap-
proximately 75% by using splines in this example.

optimum. The influence of the motion model-based timing correction
can be seen in the first iterations of the plan-based initializations. Nev-
ertheless, it has no observable effect if combined with splines at the
beginning of the optimization. This can be explained by a larger over-
shoot causing higher velocities and obstacle costs in parts of the initial
trajectory increasing the state costs while reducing the control costs.
We depict the control cost part without state costs in Figure 10.8. Here,
the initialization with motion model-based timings is clearly better in
both cases, with and without a combination with splines. We achieve
25% and 34% lower control costs in the beginning by using improved
timings and approximately 75% lower initial costs by using splines.
In combination, the initial control costs can be reduced by 77%. In
normal operation, we stop the optimization after 500 iterations. The
optimization process takes 0.96 s for trajectory points with a ∆t of
0.05 s.

Figure 10.9 shows a comparison of the position trajectories for
(x,y, z) after initial planning, spline interpolation and optimization.

In the second experiment, we generate trajectories for pairs of obsta-
cle-free start and goal poses uniformly distributed over the evaluation
area. We omit trajectories between poses with less than 70m distance.
This results in 1,216 trajectories with an average length of 101m. The
shortest planned path was about 72m, the longest path was about
155m. We stop the optimization after 500 iterations and evaluate the
trajectory cost reduction with our proposed initializations during op-
timization. We calculate the cost reduction ri after optimizer iteration
i as

ri =
(
1− ci/c

base
i

)
· 100%.

Here, cbasei is the average cost of a trajectory after iteration i with
the baseline algorithm and ci is the average cost with the evaluated

126 evaluation

-15

-10

-5

 0

 5

 10

x
-D

iff
e
re

n
c
e
 f

ro
m

 L
in

e
 o

f
S
ig

h
t

[m
]

A* Plan
Spline

Optimized

-15

-10

-5

 0

 5

 10

 15

 20

 25

y
-D

iff
e
re

n
c
e
 f

ro
m

 L
in

e
 o

f
S
ig

h
t

[m
]

A* Plan
Spline

Optimized

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

z
-D

iff
e
re

n
c
e
 f

ro
m

 L
in

e
 o

f
S
ig

h
t

[m
]

Timesteps [n]

A* Plan
Spline

Optimized

Figure 10.9: Comparison of trajectories for individual position dimensions
at different stages of optimization. Planned paths (red) with
applied timing correction require still large accelerations when
the movement direction changes. Spline interpolation (green)
mitigates these effects, but tend to overshooting and are bound
to the initial plans sampling points. The optimized trajectories
(blue) are much smoother and reduce the necessary control ef-
fort.

10.3 trajectory optimization 127

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

Co
st

 R
ed

uc
tio

n
[%

]

Iteration

Timing
Spline

Both

Figure 10.10: Reduction of trajectory costs compared to baseline (initializa-
tion with A* planned path) in each optimizer iteration. The
results are an average over 1216 trajectories.

initialization. Figure 10.10 shows the trajectory cost at each iteration
compared to the baseline, i.e., direct initialization with the plan from
the grid-based planner. With enough iterations, the cost reduction
converges to zero as the optimization initialized with the baseline
approach will finally converge to the local optimum, but this makes
frequent planning infeasible. Especially the spline-based initialization
reduces the initial cost drastically. Combined with the motion model-
based timing correction, after 500 iterations the trajectory is still less
costly than without. By means of spline interpolation, the initial costs
can be significantly reduced. This leads to faster convergence, result-
ing in 20–45% less costly trajectories after 250 iterations and 9–24%
less costly trajectories after 500 iterations, compared to the baseline.

Employing motion model-based timings reduces the cost at some
iterations when directly applied to a planned path. But higher ve-
locities and accelerations in other iterations can lead to much higher
control costs in cases where connections between plan segments have
to be traversed with high speeds. This results in low improvements
or even negative effects. A positive effect can be observed in the long
run, after the initial plan has been smoothed enough by optimization.

Table 10.5 shows the average and maximum runtimes of the plan-
ning and trajectory optimization. In 98.8% of the optimization runs,
the summed planning and optimization times are below 1 s. Some
more complex trajectories take longer planning and optimization
time (maximum 1.45 s), yielding an average total optimization time
of 0.64 s.

In the next experiments, we evaluate our clothoid-based CCTSs in
combination with our motion model- and spline-based initializations.

Figure 10.11 shows the reduction of the maximum accelerations at
transitions between consecutive path segments. The initial planned
path has discontinuities in the derivative of the trajectory causing

128 evaluation

Figure 10.11: Accelerations of initial trajectory. Left: Straight line trajecto-
ries have discontinuities causing large accelerations at the
transition points (Baseline, planned path from A* planner).
Our approach—a combination of continuous curvature transi-
tion segments with spline interpolation—reduces these accel-
erations much closer to feasible accelerations (approximately
3m/s2 for our MAV). Better initial guesses for the trajectory
lead to faster convergence. Right: Spline interpolation com-
bined with clothoid transitions further mitigate effects caused
by discretization. Splines fitted to the initial trajectory result in
even smaller accelerations, but cannot assure obstacle-freeness
of the resulting path. Our approach alters the path only locally
and only if in obstacle-free volumes.

large accelerations for single time steps. In contrast, our approach—a
combination of CCTSs with spline interpolation—reduces the maxi-
mum acceleration at transition points significantly. Spline interpola-
tion alone—without clothoid segments—has the potential to reduce
the accelerations further by dropping guaranteed obstacle-freeness.
Our approach preserves obstacle-freeness by inserting local changes
into the plan in an obstacle-free volume. We depict the acceleration
reduction factors in dependence of the transition angle and radius of
the free-space spheres in Figure 10.12. We generated 10m long trajec-
tories with one transition between line segments in the middle with
uniform time discretization. Resulting acceleration reductions are re-

Table 10.5: Runtimes of planning and optimization averaged over 1216 tra-
jectories.

Phase Duration (in s)

Mean Std. dev. Maximum

Path Planning 0.07 0.03 0.29

Optimization 0.58 0.13 1.16

Total 0.64 0.14 1.45

10.3 trajectory optimization 129

Figure 10.12: Acceleration reduction with CCTSs. Depicted is the reduc-
tion factor abaseline

max /aours
max of the maximum accelerations en-

countered with the baseline trajectory—planned with the A*
planner—and ours on a double logarithmic scale. An order of
magnitude of reduction can already be observed at less than
one meter of free space with smaller transition angles. A transi-
tion with an angle of 135° still causes large accelerations when
generated in a small free-space sphere due to the high nec-
essary maximum curvature. In non-artificial scenarios angles
beyond 90° are uncommon.

ported for free space from 5 cm up to 5m and typical angles of 45°,
90°, and 135°. The initial accelerations are already an order of mag-
nitude smaller within a free-space volume of 1m with our approach
for typical heading changes. Only the angle of 135° shows less reduc-
tion, because the maximum curvature for large heading changes still
causes large accelerations when performed in a small radius. Nev-
ertheless, such large heading changes are very uncommon with a
grid-based planner in real world scenarios.

In simulation, the ChimneySpector MAV followed trajectories
around a power plant that is part of the RotorS simulator. We defined
a path by 12 via-points that constrain the optimization topological
to a trajectory traversing eight apertures in the building. Our prepro-
cessing calculates free-space bounding spheres at the via-points and
inserts CCTSs. Finally, the path is optimized and executed with fre-
quent reoptimization. Figure 10.13 shows an example trajectory. We
show a comparison of the convergence behavior with and without
CCTSs in Video 10.12.

2 Video 10.1: www.nieuwenhuisen.de/thesis/optimization-ccts.mp4

www.nieuwenhuisen.de/thesis/optimization-ccts.mp4

130 evaluation

To test the applicability of our approach, we performed proof-of-
concept real robot experiments. We followed trajectories generated
by our approach with uniform timing trajectory optimization with
∆t = 10ms with the ChimneySpector MAV and the MPC from Kamel
et al. (2017). State feedback was provided by a motion capture sys-
tem. The complete optimized trajectory is given to the MPC as an
input without further reoptimization. In four experiments the com-
manded trajectories could be followed with only a small time delay.
Thus, the motion dynamics model employed during optimization re-
sembles the real MAV flight dynamics. Figure 10.14 shows the results
of one exemplary trajectory execution. The shape and dynamics of
the reference trajectories are qualitatively well-matched by the MAV,
showing the applicability of our approach to robot navigation. Video
10.23 shows two more experimental flights with the ChimneySpector
MAV.

FoV-aware Trajectory Optimization

We analyze the trajectory planning and optimization in the sensor
FoV qualitatively in the outdoor farm map and regarding the ascent
and descent angles with and without our approach.

With our approach the ascent and descent angles of the trajectories
are bounded by the FoV of the onboard sensor. When ascending or
descending in place, as depicted in Figure 10.15, the shortest path
yields angles close to 90° for the whole flight, clearly not covered by
the onboard sensor. The resulting spiral motion after optimization fa-
cilitates a very smooth ascent with angles always close to the allowed
maximum. The right part of Figure 10.15 shows the angles per pair
of trajectory points along the path after optimization.

A more realistic example in the outdoor farm map where buildings
block the line-of-sight between start and target poses is depicted in
Figure 10.16. As the start pose is close to an L-shaped building, the
MAV has to fly away from the facade first and perform a partial spi-
raling motion to gain altitude. After passing the building through a
cut-in between higher parts of the roof, the descent is smoothly dis-
tributed along the remaining trajectory. In comparison to the planned
path—which is also valid w.r.t. visibility constraints—the optimized
trajectory can be flown at higher velocity since it does not contain
sharp turns. Thus, the optimized trajectory is less compact. The cor-
responding angles between consecutive trajectory points for this ex-
ample are depicted in the left part of Figure 10.17. The right part of
Figure 10.17 shows the optimized trajectory without constraints as a
reference. It can be seen that without constraints the trajectory goes
up nearly vertical, reduces the ascent angle nearly linearly until it de-
scents nearly vertical again The visibility constraints are violated for

3 Video 10.2: www.nieuwenhuisen.de/thesis/optimization-chimneyspector.mp4

www.nieuwenhuisen.de/thesis/optimization-chimneyspector.mp4

10.3 trajectory optimization 131

Figure 10.13: Processing steps of trajectory optimization. To compute dy-
namically feasible trajectories, we initialize the optimization
with a collision free path of straight line segments (violet).
We construct CCTSs (white) bound by obstacle-free spheres
(violet spheres). After estimating velocities and accelerations
along the trajectory with a simple MAV dynamics model, we
optimize this initial trajectory to a dynamically feasible local
optimum preserving the topological constraints (yellow).

Time from takeoff [s]

D
is
ta
nc
e
fr
om

or
ig
in

[m
]

x-axis y-axis

Figure 10.14: Trajectory following with ChimneySpector MAV. We tested the
dynamic feasibility of the generated trajectory for direct exe-
cution on an MAV while flying in a motion capture system.
The green graph depicts the reference trajectory in the x and y
axes, the red graph pose measurements from the motion cap-
ture system. Blue depicts the trajectory error.

Figure 10.15: Angles for ascent in place. In the example depicted on the
left the MAV ascents continuously with 15° with our approach
(blue graph). Without constraints the ascent angle is 90° (red
graph).

132 evaluation

Figure 10.16: Plan and trajectory in outdoor map. Whereas the planned path
(purple) is more compact and shorter, the optimized trajectory
allows higher velocities due to a smoother flight path. The
flight direction is from right to left.

approximately 75% of the flight time, resulting in a large collision
hazard. With enabled visibility constraints the ascent and descent are
within the maximum allowed band.

We evaluate the applicability of our approach for MAV control with
our DJI Matrice 600 MAV. In addition to outdoor experiments, we em-
ploy our HIL simulator. The optimized trajectories are executed by
the MPC from Beul and Behnke (2017). Input to the controller are the
next trajectory point position and velocity with 10Hz. The commands
are sent open-loop according to the calculated timings. By predicting
intercept points given the target position and velocity the MPC is
able to track the trajectory accurately without large contouring error.
We report absolute trajectory errors (ATEs) between optimized tra-
jectories and the pose estimates of the MAV during simulated flight
in Table 10.6. The ATEs are averaged over ten flights per example.
Spiral and Flight 1 are the trajectories depicted in Figure 10.15 and
Figure 10.16, respectively. Flight 2 and Flight 3 are longer trajecto-
ries with different start and end points in the same map. The MAV
reaches velocities of up to 2.43m/s from an allowed maximum of
3m/s in the controller. Thus, the resulting trajectories are within the
dynamic limits of the MAV without slowing down the MAV too much.

10.3 trajectory optimization 133

Figure 10.17: Angles for outdoor trajectory. Without constraints, the ascent
and descent angles of the MAV trajectory, depicted on the
right, change nearly linear from 75° to −80° (red) caused by an
arc-shaped trajectory over the building. With enabled visibility
constraints, the trajectory is divided into an ascent, flight, and
descent phase (blue). The angles stay within the band defined
by the FoV of the sensor (gray lines).

Table 10.6: Absolute trajectory errors (ATE) during trajectory execution sim-
ulation (in m). The ATEs are averaged over ten flights. vmax is
the maximum reached velocity along the trajectory in m/s.

Spiral Flight 1 Flight 2 Flight 3

ATE 0.22 0.46 0.59 0.67

RMSE 0.14 0.30 0.34 0.37

vmax 1.22 2.43 2.26 2.34

Figure 10.18 shows a comparison of the trajectory setpoints and the
flown trajectories for the first run of each of the examples.

The outdoor experiments with the DJI Matrice 600 MAV were per-
formed in a free-space area augmented with artificial obstacles in
the map. Figure 10.19 shows an example with a high wall with an
opening at a height of 4m. To overcome the wall without violating
the sensor FoV constraint the MAV flies two connected partial spi-
rals. A second performed experiment includes an artificial wall with
a uniform height of 4m. In these experiments the MAV plans and
optimizes two qualitatively different trajectories, depending on the
exact start condition. The trajectories can either be of a shape com-
parable to the experiment with the opening or have a U-shape with
roughly straight ascent and descent segments. The third conducted
experiment is an ascent in place similar to the spiral depicted in Fig-
ure 10.15.

134 evaluation

Figure 10.18: Trajectory tracking during flights. Green depicts the trajectory
setpoints, blue the odometry estimates during the four exam-
ple flights Spiral (top-left) and Flight 1-3.

For state estimation in these experiments, we employ the onboard
filter of the DJI flight control incorporating global positioning system
(GPS) and IMU measurements. As no ground truth apart from this
is available, the ATEs reported in Table 10.7 represent the trajectory
tracking error based on the onboard state estimate. Video 10.34 shows
footage of our outdoor experiments and results from the simulation
experiments.

Frequent Trajectory Reoptimization

First, we evaluate the reoptimization of trajectories with uniform reso-
lution. We disturb the MAV flight by simulating strong gusts of wind
while the MAV follows a trajectory. As baseline, we apply the transfor-
mation between the old MAV pose and the disturbed one to an initial
fixed part of the trajectory and perform complete replanning and op-
timization from the endpoint of that fixed trajectory part to the goal.
The fixed part is the part the MAV will follow during replanning due
to its current dynamic state. Figure 10.20 shows the cost reduction
of the trajectory during initial optimization and while reoptimizing
the trajectory after two gusts of wind, each pushing the MAV away
4.25m. Reoptimization yields a close-to-optimal cost trajectory in less

4 Video 10.3: www.nieuwenhuisen.de/thesis/optimization-constraints.mp4

www.nieuwenhuisen.de/thesis/optimization-constraints.mp4

10.3 trajectory optimization 135

Figure 10.19: Real world experiment for FoV-aware optimization. A free-
space area on the campus is augmented with artificial obsta-
cles. Top-left: OctoMap of the environment. Top-right: Photo
of the environment overlaid with artificial wall. Bottom: Our
MAV plans and optimizes a trajectory to overcome the wall
(flight from front/left to rear/right). The optimized trajecto-
ries are successfully followed by the DJI Matrice 600 MAV. The
depicted voxels have an edge length of 1m.

than 100 iterations. By contrast, the complete replanning needs about
500 iterations. To evaluate the overall compute time, we simulated
MAV flights, disturbed every second by strong gusts of wind. On
average the reoptimization finished in 18.3% of the time a complete
reoptimization required. The maximum was 28.3% and the minimum
14.8%. When no disturbances occur the trajectory is improved with
every reoptimization step, further converging towards a local mini-
mum.

Figure 10.21 shows the resulting trajectories in a simulated exper-
iment where the MAV is pushed away 3m from its current position
every second. The resulting pose error is distributed to the trajectory
followed by reoptimization.

In the second experiment, we evaluate reoptimization to react on
new environment perceptions by placing an unknown cuboid obsta-
cle of size 4m× 4m× 4m randomly in the environment. We con-
strain the center point of the obstacle to lie within a corridor with
radius 1m to the line of sight between the start and goal pose of the
MAV outside its sensor range. The line of sight is the best trajectory

136 evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

C
o
s
ts

Iterations [n]

Initial Optimization
Reoptimization

Replanning

Figure 10.20: Costs per iteration during frequent trajectory optimization.
Frequent reoptimization allows for quick reactions on devi-
ations while following a trajectory. The initial trajectory is
planned and optimized for 500 iterations (red). Reoptimizing
the old trajectory yields a close-to-optimal new trajectory with
fewer iterations than complete replanning.

Figure 10.21: We employ frequent optimization to recover from disturbances
during trajectory execution. In this example the MAV follows
an initial trajectory from start to goal (black). Gusts of wind
push it away from the trajectory, the colored trajectories depict
the newly optimized trajectories after every gust of wind.

10.3 trajectory optimization 137

Figure 10.22: Continuous reoptimization allows for surrounding of previ-
ously unknown obstacles. The red line depicts the initial trajec-
tory; the green arrows depict the actual flown trajectory. The
black line shows the resulting optimized trajectory if the obsta-
cle is known in advance for reference. The obstacle is depicted
by the isosurfaces for minimal and safe distance. The flight
direction is from left to right.

Table 10.7: ATEs during trajectory execution in real MAV experiments (in
m). The ATEs are for individual flights. vmax is the maximum
reached velocity along the trajectory in m/s.

Spiral Wall Opening

ATE 0.29 0.26 0.17

RMSE 0.41 0.28 0.19

vmax 1.89 1.79 1.60

found by initial optimization. The scanner range of the MAV is re-
duced to 15m to avoid early detection of the obstacle. Figure 10.22
shows the initial optimized trajectory and the actual flown trajectory
with reoptimization for an example experiment. The experiment is
shown in Video 10.45. With 10 iterations per reoptimization it took on
average 110ms depending on the remaining trajectory length, with a
maximum of 500ms for the full trajectory. This is sufficient to find a
feasible trajectory in a safe distance while approaching the obstacle.
Further reduction of this duration is possible with multiresolution,
which we did not employ here. The timing measurements and trajec-
tory following were performed on the DJI Matrice 600 onboard PC
employing the HIL simulator.

The next experiment evaluates the refinement of multiresolution
trajectories during the flight employing the RotorS simulation of the
ChimneySpector MAV. When using multiresolution, especially with
a high multiresolution factor c in Equation (8.4), the resulting op-
timized trajectories diverge from the uniform discretized trajectory
with increasing duration from the start pose. This effect is mitigated
by frequent reoptimization as the diverged trajectories are refined

5 Video 10.4: www.nieuwenhuisen.de/thesis/optimization-reoptimization.mp4

www.nieuwenhuisen.de/thesis/optimization-reoptimization.mp4

138 evaluation

Figure 10.23: Comparison of initially planned and executed multiresolution
trajectories. The top bundle of trajectories depicts the multires-
olution trajectories from start (left) to goal (right) for multires-
olution factors c from 0.1 to 1. The trajectories diverge with in-
creasing duration caused by the different discretizations. Nev-
ertheless, the bottom bundle shows that the resulting trajecto-
ries, when executed, are very similar due to frequent reopti-
mization during execution. For better visibility the two bun-
dles are plotted with an artificial offset. All axes are in meters.

before the MAV executes them. For our evaluation, we reoptimized
the trajectory every ten time steps, i.e., every 100ms, during execu-
tion. The top part of Figure 10.23 shows the resulting initial trajecto-
ries with different multiresolution factors c. Plots of the actual flown
trajectories are depicted in the bottom part of the figure. These tra-
jectories are very similar to each other, showing that frequent reop-
timization mitigates the effects of larger multiresolution factors fa-
cilitating faster optimizer iterations. For initial optimization, we em-
ploy 500 iteration steps as in the first experiment. Figure 10.24 shows
the duration of these initial optimizations depending on the selected
multiresolution factor c and the uniform discretization of the trajec-
tory. All timings are measured on a computer with Intel Core i7 940
CPU. It can be seen that whereas the uniform time resolution has to
be reduced by at least an order of magnitude to achieve acceptable
optimization speed, introducing multiresolution allows for real-time
replanning with high resolution in the controller prediction horizon.
In our implementation, we use a multiresolution factor of 0.1. As a
result, the optimization of a multiresolution trajectory with an ini-
tial resolution of 0.01 s requires approximately the same amount of

10.3 trajectory optimization 139

Figure 10.24: Optimization duration with and without multiresolution. Top:
Black dots depict the duration of 500 optimizer iterations de-
pending on the multiresolution factor c in Equation (8.4). Blue
stars depict the duration of non-multiresolution optimization
depending on the uniform discretization of the trajectory. The
optimization with c = 0.1 requires approximately the same
amount of time as a uniform discretization of 0.1 s (circled red).
Bottom: Comparison of the time discretization for the circled
cases. The bottom line depicts the uniform time discretization.
The top line depicts the multiresolution discretization.

time as with a uniform time discretization of 0.1 s The bottom part of
Figure 10.24 compares the time discretization for these cases. The bot-
tom line depicts the uniform time discretization which is an order of
magnitude coarser than needed by low-level control of the Chimney-
Spector MAV. The top line depicts the multiresolution discretization
which is much finer at the beginning and gets coarser in the future.
Video 10.56 shows the optimization process and trajectory following
with local multiresolution.

Map Updates

As a prerequisite for reoptimization the employed distance field
has to be updated. Even though the implementation of efficient
environment representations is out of scope of this work, we per-

6 Video 10.5: www.nieuwenhuisen.de/thesis/optimization-mr.mp4

www.nieuwenhuisen.de/thesis/optimization-mr.mp4

140 evaluation

Figure 10.25: Comparison of MAV trajectories (in the xy-plane, in meters)
while flying through a scene containing three walls with
window-like openings (black bars). Left: Trajectories without
our approach. Right: Trajectories with adaptive velocity reduc-
tion and a 1 s look-ahead. The look-ahead leads to smoother
trajectories, especially in the vicinity of narrow passageways
(e.g., lower right corner).

formed a proof-of-concept experiment to assess the general possi-
bility of frequent updates. We employed a rotating LRF that—with
modifications—is the main sensor for most of the used MAVs. This
scanner measures 1080 distances per scan line at 40Hz. Thus, the time
window for incorporating a single scan line into the distance field is
25ms. The maximum required time measured on the ChimneySpector
onboard PC is 29ms, exceeding the time window by 4ms. However,
when incorporating complete 3D scans of a cluttered environment
with obstacles in any direction into an empty distance field, the up-
dates are possible in real-time on average. The mean time per scan
line for the first complete 3D scan of an environment—a half rotation
of the laser scanner, yielding 20 scan lines—is approximately 10ms.
With only small changes in the environment and no movement of the
MAV, distance field updates are performed in 0.2–5ms per scan line.
This shows that distance field updates are possible with the required
frequency.

10.4 obstacle avoidance

We evaluate the accuracy of our learned motion model and the per-
formance and reliability of our predictive collision avoidance module
in simulation and on the real MAV systems.

We tested obstacle avoidance with trajectory prediction in waypoint
following scenarios in simulation.

We compared our approach with a classic potential field ap-
proach without look-ahead in a scenario containing several walls with
window-like openings of different size. Furthermore, we evaluated
the effect of a fixed reduction of the velocity with and without trajec-

10.4 obstacle avoidance 141

Table 10.8: Effect of slowing down with and without prediction compared
to the standard potential field approach (baseline). Fixed slow
down due to predicted future forces leads to a slight increase in
the flight time, but a decrease in the average repulsive force ap-
plied to the MAV. Adapting velocities according to the predicted
duration of the flight until the force threshold is reached mitigate
the slow down effects.

Flight time Experienced force

(in s) average % of baseline

Baseline 11.90 (0.5) 0.44 (0.06) 100

Slow down 12.56 (0.8) 0.43 (0.04) 98

Slow down 1 s 14.30 (1.7) 0.28 (0.04) 64

Adaptive velocity 1 s 12.90 (0.8) 0.30 (0.01) 68

tory prediction, i.e., reduced velocity if a force threshold is reached
now or in the predicted time horizon, respectively. Example trajecto-
ries from the test runs are depicted in Figure 10.25. We summarize the
average repulsive forces, a measure of the proximity of obstacles dur-
ing a flight, and the average durations of the test runs in Table 10.8.
No collisions occurred during these test runs. The prediction of the
near future outcome of motion commands leads to smoother trajec-
tories, keeping the MAV further away from obstacles than the same
potential field approach without trajectory prediction while allowing
comparable velocities as the classic approach.

We evaluated the learned motion model by comparing the propa-
gated dynamic state of an MAV given a user input with ground truth
data from the motion capture (MoCap) system (Figure 10.26). The pre-
dicted state of the MAV matches the real state well for time periods
sufficiently long for our predictive approach.

Our collision avoidance approach runs at approximately 100Hz on
a single core of an Intel Core 2 processor, which includes data acqui-
sition and map building. Hence, this collision avoidance algorithm
is particularly well suited for MAVs with relatively small processing
power or complex scenarios where the onboard computer has to carry
out many other processing tasks in parallel.

We evaluated the reactive obstacle avoidance system quantitatively
as part of the European Robotics Challenge, combined with stereo
camera obstacle perception instead of the laser obstacle map. The
MAV was steered velocity controlled through free space and towards
obstacles of different shape and size. The maximum linear velocity
was 1m/s. Our ChimneySpector MAV was able to safely stop in front
of every obstacle: In 40% of the evaluated cases in the optimal dis-
tance range, in the other cases not more than 0.4m off, yet still in
a safe range. This error was measured with a MoCap system by the

142 evaluation

Figure 10.26: Learning a motion model. Left: Experimental setup, AR.Drone
flying in a MoCap volume. Right: Comparison of predicted
pitch angle (in rad) and resulting linear velocity (in m/s) with
ground-truth given the same initial state and user input. The
linear model is not able to model the transient responses to
user input changes and the final dampening exactly, but mod-
els the system well during majors parts of the test flight.

challenge hosts and encompasses the error of visual perception and
reactive obstacle avoidance.

We show qualitative results of the reactive obstacle avoidance in
two supplemental videos. In Video 10.67, we show experiments with
the MoDCopter MAV and our potential field-based method from Sec-
tion 9.2. The prediction horizon for the MAV movement is set to zero,
thus, no trajectory is rolled out in these experiments. Our obstacle
avoidance approach with velocity reduction, detailed in Section 9.4,
is presented in Video 10.78 employing the DJI Matrice 600.

10.5 integrated systems

We evaluate our components as integral parts of several integrated
MAV systems. In this section, we describe the performed experiments
in indoor and outdoor scenarios.

Mapping of a Manor House

One of the first applications for the MoDCopter MAV was the auton-
omous mapping of an old manor house, as described in Section 6.1.
The first performed mission included the inspection of a rainwater
gutter along one side of the house. Four observation poses were de-
fined employing the operator graphical user interface (GUI) from
Loch-Dehbi et al. (2013) based on a semantic LoD 2 model. Before
takeoff for the actual inspection mission, the defined observation

7 Video 10.6: www.nieuwenhuisen.de/thesis/avoidance-outdoor.mp4
8 Video 10.7: www.nieuwenhuisen.de/thesis/avoidance-indoor.mp4

www.nieuwenhuisen.de/thesis/avoidance-outdoor.mp4
www.nieuwenhuisen.de/thesis/avoidance-indoor.mp4

10.5 integrated systems 143

poses—plus a return pose at a fixed height above the start pose—
are processed by a mission control layer, incorporating the mission
planner. After takeoff, the global planner begins to continuously plan
paths to the next mission relevant pose. The allocentric world model
employed for path planning—represented in an OctoMap—is contin-
uously updated during the mission. Localization of the MAV is per-
formed by using GPS. In a first inspection flight, two of these poses
were inspected. Due to strong GPS drift the next allocentrically de-
fined poses were too close to the building and could not be reached—
the reactive obstacle avoidance held the MAV in a safe distance to the
facade—such that these poses were skipped and the MAV returned
autonomously to the takeoff position. This experiment is shown in the
first part of Video 10.89. In future missions, we allowed an adaption
of the view poses along the surface normal to cope with inaccurate
allocentric localization. We show a successful inspection mission cov-
ering the whole gutter as part of a demonstration to experts in the
second part of the video.

Furthermore, we performed a fully autonomous mapping mission
to acquire data for postprocessing by the 3D simultaneous localiza-
tion and mapping (SLAM) system from (Droeschel et al., 2014a). The
scenario involves vegetation such as trees and bushes and is difficult
to traverse from all sides by humans. Therefore, a manual flight by
a human pilot controlling the MAV was not possible in this scenario.
The user manually defined a set of mission-relevant view poses given
the coarse LoD 2 world model of the environment. In addition to
poses configured in the operator GUI, some view poses were trained
by manual flight to good observation poses in this experiment. When
the pilot gave a command, the operator added the current MAV pose
to the list of observation poses remotely These view poses where
roughly specified to cover the building facade from all sides.

Figure 6.2 shows a solution for the mission described here. The
MAV successfully traversed the building in all experiments without
colliding with an obstacle. The overall flight duration was approxi-
mately 8min. Figure 10.27 shows a local deviation from the allocen-
tric path while returning to the start position employing local plan-
ning.

Processing the data to build maps is out of the scope of this thesis.
The resulting 3D maps based on the data acquired during these flight
experiments are reported by Droeschel et al. (2016).

Inspection of a Decommissioned Car Service Station

To evaluate the applicability of our approaches for navigation in in-
door environments, we tested our components as part of an MAV
mapping and inspection system. The main goal of this experiment

9 Video 10.8: www.nieuwenhuisen.de/thesis/mapping-outdoor.mp4

www.nieuwenhuisen.de/thesis/mapping-outdoor.mp4

144 evaluation

Figure 10.27: Deviation from allocentric plan. The local plan (red) is cou-
pled with the allocentric plan (black). Based on an updated lo-
cal map (cyan voxels) the MAV surrounds an obstacle locally
while approaching its target position. The blue lines depict the
deviation vectors at example points, the green arrow indicates
the goal for local planning.

was to autonomously navigate to certain predefined waypoints in a
hall, employing solely means of localization that are available in both
indoor and outdoor environments. During flight, the MAV mission
was to detect visual features (AprilTags (Olson, 2011)), representing
interesting locations near the trajectory.

Local navigation and control were performed using visual odom-
etry (Geiger et al., 2011) and allocentric localization was performed
employing laser pose tracking (Droeschel et al., 2014b).

First, a pilot navigated the MAV manually through a hall, a garage,
and an outdoor part connecting these two buildings. Subsequently,
we derive an OctoMap for mission and path planning from the 3D
map that has been built from the data collected during this flight.
In applications where such an initial flight is not feasible, building
construction plans could be used instead, similar to the coarse models
in outdoor environments.

Second, we defined a mission with six observation poses—plus a
return pose 2m above the start pose—in the smaller building part, a
decommissioned car service station. Our mission planner plans paths
between every pair of mission poses and determines the best visiting
order. After takeoff, the global planner begins to continuously plan
paths to the next mission-relevant pose. The local obstacle avoidance
keeps the MAV successfully away from obstacles like hanging cables
and debris, lying around in the hall. In these experiments, we planned
allocentric paths in a grid with a cell size of 0.5m. An excerpt from
the map and the inspection poses are shown in Figure 10.28. The
MAV successfully reached all poses in the experiments without col-

10.5 integrated systems 145

Figure 10.28: Inspection mission in a car service station. Left: The view poses
(black arrows) are overlaid over the map of the area and the
flown trajectories from 10 flights. The blue arrow depicts the
MAV return pose. Right: A small pipe structure (circled blue)
hangs from the ceiling close to one observation pose. The bot-
tom figure shows how the obstacle is perceived by the MAV.
Red lines depict the artificial repelling forces of the reactive
collision avoidance.

liding with an obstacle. We show the experiment in Video 10.910. In
experiments without running localization module, the MAV still was
able to avoid dynamic and static obstacles with the local collision
avoidance layer, since this layer solely relies on egocentric velocity es-
timates, e.g., from an integration of visual odometry, accelerometers,
and gyroscopes.

Figure 10.28 shows a situation from one of the runs where the MAV
is flying towards a mission view pose. Close to the view pose, a long
thin structure is hanging from the ceiling. The structure is perceived
with the onboard sensors and avoided by means of artificial repelling
forces. In our test setup, many smaller and larger structures obstruct
the free space. In all cases, the MAV deviated from the direct path or
moved away from a hover position to avoid a collision. Figure 10.29
shows the magnitudes of repelling forces while fulfilling a planned
mission. The shown positions are from the ten autonomous flights
shown in Figure 10.28 plus one additional mission with observation
poses closer to some obstacles. Samples for illustration are taken ev-
ery 500ms.

10 Video 10.9: www.nieuwenhuisen.de/thesis/integration-indoor.mp4

www.nieuwenhuisen.de/thesis/integration-indoor.mp4

146 evaluation

Figure 10.29: Artificial forces from the reactive collision avoidance. Shown
is the strength of repelling forces pushing the MAV away from
obstacles at samples along the trajectories of ten autonomous
flights. Green: small magnitude / Red: large magnitude. The
photos show some obstacles and their approximate position in
the maps.

Chimney Inspection

We tested and demonstrated our integrated system in two close-
to-application scenarios: Inspection and reconstruction of a narrow
chimney mock-up and a decommissioned industrial chimney. Both
scenarios were defined in close collaboration with a chimney inspec-
tion service contractor. We employed the ChimneySpector MAV for
these flights. In Video 10.1011 and Video 10.1112, we show footage
from our experiments.

Experiments in Chimney Mock-up

First, we used an octagonal chimney mock-up with an inradius of
1.8m and a height of 4.4m, shown in Figure 6.5. The mock-up con-
sisted of eight wooden panels with styrofoam structures on the inner
sides resembling the stonework and concrete patterns that can be
found in many industrial chimneys. Single structure elements were
of size 1.0× 0.5m and each of the stone walls—except of the wall con-
taining an entry to the mock-up—was plastered with a single type of
elements resulting in repetitive patterns. In addition, one panel car-
ried a rusty iron surface as found in chimneys with a metal alloy on
the inner side. Some bricks in the styrofoam elements were carved
out to represent defects. These experiments were performed with an
SR300 sensor instead of the stereo camera setup employed in later ex-
periments. This sensor requires a distance of 0.8–1.0m from the sur-
face for good data acquisition. Consequently, this yielded a remaining
safe navigation space with a diameter of only ≈1.2m. The mock-up
was designed and built by the chimney inspection service contractor
to facilitate the transferability to real inspection applications.

11 Video 10.10: www.nieuwenhuisen.de/thesis/chimneyspector-coverage.mp4
12 Video 10.11: www.nieuwenhuisen.de/thesis/chimneyspector-inspection.mp4

www.nieuwenhuisen.de/thesis/chimneyspector-coverage.mp4
www.nieuwenhuisen.de/thesis/chimneyspector-inspection.mp4

10.5 integrated systems 147

2
We started with an initial coverage flight to acquire RGB-D data

of the chimney surface. For surface coverage, the MAV followed a
horizontally and vertically spiraling pattern with the RGB-D sensor
directed to the nearest surface in order to enable loop closings in the
later surface reconstruction.

The flight to acquire data for the majority of the chimney surface
took seven minutes. We covered 36m2 of the chimney surface with a
single charge of batteries. All defects were covered by that area. The
flight was fully autonomous, except for start and landing.

After the coverage flight, a downsampled version of the recorded
video stream was transferred to the ground control station. Here, an
operator can identify and store poses for a more detailed inspection
in the video stream. In the test case, the operator could identify all
ten defects in the images. The MAV poses, corresponding to the im-
ages showing defects were saved for a second flight to reinspect those
defects. To exemplify the targeted inspection of previously identified
defects, the MAV then autonomously planned an inspection mission
and followed a path, adopting all stored poses in a useful order and
held its position for several seconds to demonstrate reaching the de-
sired position. All poses were successfully reached and the defects
were clearly identified in the data captured during the second flight.
After the targeted inspection, the acquired data was transferred to the
ground control station for further offline processing.

On average, we acquired depth information for 95.5% of the pixels,
thus, the sensor was almost always positioned in an optimal distance
to the surface.

The acquired data was used by Quenzel et al. (2018) to reconstruct
the surface of the chimney walls. The surface reconstruction is out of
the scope of this thesis, results of the reconstruction are presented in
their article.

Experiments in a Decommissioned Industrial Chimney

Based on the experiments in the chimney mock-up, we improved our
system setup and transferred our system to a scenario closer to the in-
spection of actual industrial chimneys as the next step. We evaluated
and demonstrated our system in a chimney of a decommissioned
coking plant at the Zollverein Coal Mine Industrial Complex in Es-
sen, Germany. The total height of the chimney is 98m. The inradius
at the bottom is 2.75m and tapers to 2.2m on the top. An improved
camera setup allowed us to increase the distance to the surface to
1.5m, resulting in a larger covered area. Furthermore, we could omit
the smaller vertical spirals for better coverage of the surface. Both
improvements yielded a much higher surface coverage speed. The
MAV flew at a maximum speed of 1.5m/s. In total, the area covered
with a single charge of batteries could be increased to 140m2 due to

148 evaluation

Figure 10.30: Photos of warehouse. Left: Overview over the two aisles used
for our evaluation. Right: Autonomous flight along an aisle for
stocktaking.

the faster coverage procedure. The autonomous flight time was 3:27
minutes, plus an additional minute for manual start, landing, and
hovering phases. As a result, we covered seven times the surface area
per flight time than in the previous experiment.

Similar to the inspection of the chimney mock-up, an operator se-
lected poses of interest based on the data captured during the initial
flight. During the final evaluation, an operator selected three poses
for reinspection. All of these poses could be reached and the defects
were clearly visible in the captured video data.

The total surface of the chimney is approximately 1520m2, thus, we
could cover the complete surface with 11 of such flights, resulting in
38:30 minutes of coverage time. With an estimated overhead of 2min
per flight for ascent, descent, and battery change, an MAV-based in-
spection system could cover this exemplary industrial chimney in
approximately one hour.

Stocktaking in a Warehouse

We evaluated our AIRCopter and DJI Matrice 600 MAVs in a large, ac-
tive warehouse to facilitate autonomous stocktaking, detailed in Sec-
tion 6.2. The building area of the warehouse, depicted in Figure 10.30,
is 100m× 60m with approximately 12 000m2 storage front.

First, we evaluated the AIRCopter MAV as part of a demonstration
to an external reviewer by flying autonomous missions in a ware-
house. The MAV visits several manually defined observation poses
on different heights along a shelf based on an allocentric map created
with the SLAM approach from Droeschel et al. (2014a). Figure 10.31
shows one example mission. The MAV successfully accomplished
multiple missions with a duration between ∼2–5min and a total tra-
jectory length of ∼40–80m each.

To evaluate the local obstacle avoidance, we control the MAV with
egocentric velocity commands, i.e., a zero velocity setpoint for move-
ments in the plane and rotations, and a small descent velocity to keep
the MAV close to the ground. The obstacle avoidance keeps the MAV

10.5 integrated systems 149

Figure 10.31: Flight operator view for stocktaking missions. The command
and control interface depicts in the main window the allocen-
tric obstacle map, the MAV pose (red shape), future mission
waypoints (black arrows), obstacle-induced forces if applicable,
and 3D coordinates of detected tags. An operator can switch
between manual, velocity controlled, and fully autonomous
operation.

at a safe distance to the ground. Figure 10.32 shows an experiment
where a person approaches the MAV. The MAV avoided all static and
dynamic obstacles based on the 3D laser scans. Video 10.1213 shows
the autonomous mission execution including reactive obstacle avoid-
ance.

A second demonstration was performed with the DJI Matrice 600
MAV. In contrast to the first experiment, the mission planner now em-
ploys poses and coverage patterns requested by the warehouse man-
agement system (WMS). This is achieved by aligning our obstacle
map with a semantic map containing storage units. To demonstrate
autonomous stocktaking operations, we specified a mission contain-
ing the complete inventory of one shelf row and the inspection of a
single storage unit in another row employing the WMS. Thus, the mis-
sion included following a coverage pattern and planning an obstacle-
free path to the remote shelf row. The MAV executed this mission
autonomously multiple times while avoiding static obstacles, e.g., the
shelves and stock protruding from the shelves. The MAV reached ve-
locities up to 2.1m/s. As no dynamic obstacles above the MAV were
to be expected in this demonstration, we neglected the planning with
visibility constraints in favor of faster mission execution.

To test the avoidance of dynamic obstacles, we let the MAV hover
at a height of 2m above the ground after finishing the stocktaking
mission. A person approached the MAV, which avoided the dynamic
obstacle by means of our reactive obstacle avoidance, shown in Fig-
ure 9.6. Furthermore, a person stepped into the way of the MAV while

13 Video 10.12: www.nieuwenhuisen.de/thesis/integration-warehouse.mp4

www.nieuwenhuisen.de/thesis/integration-warehouse.mp4

150 evaluation

Figure 10.32: The MAV is pushed away from an approaching person and the
ground by potential field-based obstacle avoidance. Red lines
in the right figure depict forces induced by the local obstacle
map on the MAV. Voxels corresponding to the person are col-
ored yellow for illustration.

it approached a waypoint. The MAV stopped at a safe distance in all
cases. Video 10.1314 shows the experiments in the warehouse.

14 Video 10.13: www.nieuwenhuisen.de/thesis/integration-warehouse-m600.mp4

www.nieuwenhuisen.de/thesis/integration-warehouse-m600.mp4

11
C O N C L U S I O N

In this part of the thesis, we detailed a complete navigation hierarchy
for micro aerial vehicles (MAVs) from slow deliberative planning to
fast reactive obstacle avoidance. The allocentric and egocentric plan-
ning layers can be complemented by trajectory optimization to ac-
quire dynamically feasible trajectories including velocity commands.

With tailored mission planners, we can operate MAVs in a variety
of application domains. We plan shortest routes between observation
poses for outdoor 3D mapping or targeted inspection in chimneys.
For the mapping of chimney surfaces or autonomous stocktaking in
warehouses, we plan coverage patterns suiting the requirements of
onboard sensors. We combine these two approaches for the inspection
of building parts, where coverage patterns are connected by planned
path segments, yielding an overall shortest coverage tour.

By employing a global-to-local approach in our navigation plan-
ning pipeline, we achieve replanning frequencies that match the rate
of expected changes in the environment model on different layers
without losing the property of globally consistent plans. The plans
on all layers are updated with appropriate frequencies and newly ac-
quired information can be incorporated into globally optimal plans
after a short time period.

We presented an approach to speed up trajectory generation for
MAVs based on a grid-based path planner followed by trajectory op-
timization. The optimized trajectories are smooth in position, veloc-
ity, and acceleration of the MAV, facilitating higher possible execu-
tion speed. Key for accelerating the optimization process is a good
guess for an initial trajectory and its derivatives. We employ a simple
motion model derived from the acceleration capabilities of the MAV,
combined with cubic spline interpolation and clothoid-based contin-
uous curvature transition segments (CCTSs). The local modifications
by the CCTSs smooth the trajectory while ensuring the guaranteed
obstacle-freeness of the initial allocentric plan. This significantly re-
duces acceleration peaks and thus expedites the convergence of tra-
jectories to a locally optimal and globally feasible trajectory.

The trajectory optimization is sped up by means of a local mul-
tiresolution discretization of the time dimension along trajectories.
This makes frequent reoptimization feasible and allows to plan tra-
jectories with the same time discretization as the low-level controller
generating attitude and thrust setpoints for the MAV.

Planning MAV trajectories imposes new challenges due to the abil-
ity for omnidirectional movement not only in the plane, but also in

151

152 conclusion

height. Whereas the environment for ground vehicles can be covered
relatively well with onboard obstacle sensors, the movement direc-
tions combined with a limited payload prohibits complete and high-
frequency coverage of the space around an MAV for many applica-
tions. We extended our combined planning and trajectory optimiza-
tion approach with the ability to plan allocentric paths within the
field of view (FoV) of planar omnidirectional 3D sensors with a re-
stricted vertical apex angle. The resulting optimized trajectories are
thus safe and dynamically feasible.

We showed that an MAV is able to follow the optimized trajectories
with two different model predictive controllers (MPCs) in real world
experiments with our ChimneySpector and Matrice 600 MAVs and in
simulation employing a DJI flight control unit in the loop.

We developed a fast, reactive collision avoidance layer to quickly
react on new measurements of nearby obstacles. It serves as a safety
measure between higher planning layers or commands given by a hu-
man pilot and the low-level control layer of the MAV. We investigated
how the limitations of standard potential field-based approaches—
making the assumption that the motion of a vehicle can be changed
immediately at any position in the field—can be overcome. One pos-
sibility is the prediction of the future trajectory resulting from the
current dynamic state and the artificial potential field. This leads to
safer and smoother trajectories for a multicopter based on learned
motion models.

We simplified and robustified this approach for safe operation in
the vicinity of obstacles by influencing velocities on the commanded
flight direction in addition to the perceived obstacles. This leads to
more stable behavior for conservative flight dynamics as required by
most of our applications. The efficacy of our obstacle avoidance is
shown in many experiments with our integrated systems and quanti-
tatively as part of a competition.

Overall, the components developed within this thesis have been
employed in many real MAV experiments as part of integrated sys-
tems where the only manual interactions were the starting and land-
ing phases. Thus, the systems are able to complete missions fully au-
tonomous. We demonstrated that multilayered navigation planning
results in a high capability to cope with dynamically changing envi-
ronments and perpetually new obstacle perceptions. The applicabil-
ity and reliability of our components as part of several integrated
systems was proven by I) autonomously accomplishing a mission
to map a building and its surroundings while flying in the vicinity
of buildings, trees, cables and other potential obstacles and sources
for collision, II) flying in a warehouse for stocktaking including the
avoidance of dynamic obstacles, and III) capturing data for chimney
inspection by smooth coverage flights in a chimney mock-up and in

conclusion 153

an industrial chimney and reinspecting the identified defects at more
detail in a second mission.

Part III

D I S C U S S I O N A N D F U T U R E W O R K

D I S C U S S I O N A N D F U T U R E W O R K

In this thesis, we covered different approaches to operate and navi-
gate in dynamic environments for mobile ground robots and micro
aerial vehicles (MAVs). A key for the safe and efficient operation
of robot platforms in dynamic environments is the ability to react
to changes in an adequate timeframe. The duration of an adequate
timeframe is defined by multiple factors: the expected frequency
of changes in the environment, the closeness of the robot to these
changes, hazards caused by the dynamics, and the time-sensitiveness
of the task to fulfill. Even though stopping and planning a new ac-
tion sequence in case of changes might look like an option always
available in the first place, this behavior might become dangerous or
at least disadvantageous in various situations. For example, dynamic
obstacles can come closer and the robot has to actively perform ac-
tions to avoid a collision. In other situations, e.g., soccer games, wait-
ing too long before selecting the next actions can hinder the robot
to fulfill its task successfully as the opponent can take advantage of
these delays and take the ball or even score a goal.

Already, these two examples show, that it can be necessary to select
the next actions quickly even though they are not optimal. To avoid
suboptimal performance, the quick action selection has to be com-
plemented by close to optimal long-term planning. In this thesis, we
investigated different approaches to combine quick action selection
with deliberative long-term planning.

One approach investigated here is to reduce the time required for
long-term planning to the timeframe required to select actions. This
comes generally at the price of a reduced planning accuracy, e.g.,
coarse environment representations or long steps between consecu-
tive actions. These effects can be mitigated by accepting these coarse
plans as long as they are not to be executed in the near future and use
exact plans in the proximity of the robot. Local multiresolution plan-
ning, detailed in Section 2.3, is one solution to get a continuous tran-
sition between high- and low-resolution plans. Examples for this ap-
proach are our planner for soccer robots (see Chapter 3), the egocen-
tric planning layer in our MAV navigation hierarchy (see Section 7.2),
and the continuous trajectory reoptimization, detailed in Section 8.4.
The main advantage of employing local multiresolution planning is
that a consistent sequence of actions—including all transitions—is
planned based on common data. Nevertheless, the major disadvan-
tage is that the planning horizon is restricted as otherwise the future
planning steps become too coarse to be beneficial. Furthermore, the

157

158 conclusion

planning duration will exceed the allotted timeframe eventually with
increasing planning horizons.

Another option is to split the planning problem into layers with
different properties on optimality and achievable action selection fre-
quency. These layers can be loosely or tightly coupled. A typical ex-
ample for loose coupling is that long-term plans define a coarse list of
intermediate points that the short-term action selection has to reach
to avoid local minima. We employ this loose coupling in our MAV
navigation hierarchy, e.g., between our mission planner for outdoor
3D mapping (see Section 6.1) and the allocentric planner. The order
of observation poses is optimal w.r.t. the initial world model, but the
allocentric planner, detailed in Section 7.1, can deviate from the as-
sumed initial plan in any way. A prerequisite for loose coupling is
that the world model of the more local planner is at least as complete
as the model of the more global planner. Otherwise, the more local
planner could plan infeasible shortcuts.

Tighter coupling can be achieved by penalizing deviations from the
long-term plan. In this case the local plan can only deviate from the
global plan if necessary, e.g., if the action sequence defined by the
global plan can not be executed based on an updated or more exact
world model. The requirement for a complete world model for the
local planner can be relaxed with tighter coupling as infeasible de-
tours can only be planned if the allocentric plan is no longer valid.
Such a failure condition has to be resolved by new long-term plan-
ning on an updated world model. We employ this tighter coupling in
our egocentric MAV planning layer, detailed in Section 7.2.

This layered approach to navigation allows us to be as precise and
optimal as necessary on the top layers at a price of long planning
times and as quick as necessary on the lower layers at the price of
locality. By adding more layers these properties can be traded off
gradually. In contrast to local multiresolution planning, multiple rep-
resentations of the world have to be maintained suiting the individual
layers of the hierarchy.

For the task of bin-picking, detailed in Chapter 4, we split the plan-
ning problem into phases—from planning feasible grasps to the arm
motion required for removal of an object from the box—instead of
hierarchical layers. Phases that can be preprocessed offline are pre-
calculated independent of the actual problem. All other phases are
ordered according to the probability of a failure in the corresponding
phase. This allows us to avoid planning for phases that are costly, but
likely to succeed before valid solutions to the more critical phases
have been found. For example, the final part of a grasping motion is
much more likely to fail than the much longer trajectory before.

All the planners mentioned above have in common that the objec-
tive is to find a less costly solution to a given problem. One major
objective is to minimize the resulting overall path length while avoid-

conclusion 159

ing obstacles. Depending on the application, also other objectives play
a role. In this thesis, we extended the objective functions by restrict-
ing the path to stay locally in the sensor field of view (FoV) to ensure
safe obstacle avoidance. Furthermore, we presented cost models to
incorporate wind, the ability to communicate, and structure required
for laser-based localization into our planner objectives.

In Chapter 3, we showed that neglecting the dynamics in the world
can lead to longer paths to reach a target pose. We incorporated the
expected movement of another moving agent into our world model
to avoid necessary changes to the path in the near future. To reduce
the planning complexity, we proposed to reduce the time dimension
to a single value per geometric state and investigated the effects.

To facilitate smooth robot trajectories geometric planning is not suf-
ficient. Instead of full kinodynamic planning, we employ geometric
planning in conjunction with trajectory optimization. This combina-
tion has the advantage that the planning problem itself stays tractable
and still optimal given the reduced dimensionality. Still, the resulting
trajectories can be executed by a robot without slowing down at in-
termediate waypoints. Further possible options are discussed in the
next section.

outlook and future work

The methods presented in this thesis yield working solutions for the
presented application domains. Nevertheless, ample directions for fu-
ture research extending our ideas remain open. Here, we suggest
some potential follow-up improvements building upon this thesis.

So far, we addressed the dynamics in the environment by fast and
frequent replanning of paths and trajectories in the case of MAV nav-
igation. As one starting point to improve the resulting plans, we pro-
pose to incorporate planning in the time dimension with explicit rep-
resentation of expected obstacle movements. To achieve this, the ap-
proximation techniques developed for the soccer domain from Chap-
ter 3 could be ported to the employed planners for MAV planning. In-
stead of intention projection—or projecting intentions only in special
cases—the movement of obstacles can be estimated by tracking and
predicting their current motion. Ideally, a combination with semantic
classes—cars move differently than pedestrians or animals—would
yield a good estimate of the environment changes in the near future.

In Chapter 8, we generate dynamically feasible trajectories that can
be followed by the low-level controller open-loop. Nevertheless, this
is achieved by conservative assumptions about the performance of
the controller, e.g., not exhausting the dynamic limits of the MAV.
We propose to integrate the trajectory rollout part of the controller
from Beul and Behnke (2017) into the planning layers such that the
resulting trajectories would be much closer to the achievable flight dy-

160 conclusion

namics. One option would be to connect states in a kinodynamic plan-
ner by employing trajectories generated by the controller and check
for obstacle-freeness of these rollouts. To keep the planning problem
tractable, hierarchical planning and multiresolution techniques are in-
evitable. A geometric coarse path planned by our search-based plan-
ning hierarchy could define a safe corridor in which a kinodynamic
trajectory could be planned by, e.g., sampling-based planning. The
sampling resolution would correspond to the local environment com-
plexity.

Another option without explicit integration of the controller into
the planners is to learn cost functions based on sampled trajectory
rollouts. This would lead to plans that could be followed at higher
velocities as the MAV can, e.g., lunge out before or after direction
changes. Maximum velocities in the intermediate waypoints would
be calculated in a post-processing step in this scenario. Apart from the
characteristics of the underlying controller other objectives could be
learned. Gräve (2015) teaches a robot arm tasks like grasping an object
by demonstration. Similar techniques could be applied on MAVs to
learn to fly like a human pilot.

Bottlenecks of high-dimensional large-scale planning are the re-
quired space to store planning representations and the planning time
to cover the large state space. Even though modern hardware miti-
gates these effects partially, the problem instances one tries to solve
grow. In Chapter 7, e.g., we plan in the sensor FoV. This adds a ro-
tation dimension. Planning with explicit representation of obstacles
adds a time dimension. Thus, approximations for some dimensions
have to be found, similar to the velocity obstacle in Chapter 3. To com-
bine the power of high-dimensional planning with the efficient use of
resources of the approximations, both could be combined by adapt-
ing the planning dimensionality locally, complementary to adapting
the resolution depending on the local complexity of the environment.

For planning and optimization of trajectories with sensor visibility
constraints, we make the assumption that the sensor FoV is only de-
pendent on the MAV 4D pose (x, y, z, yaw). This approximation is
only valid if accelerations during the flight are considerably low as
the accelerations directly affect the MAV attitude. As we already op-
timize trajectories including accelerations, we propose to employ this
information to modify the sensor FoV accordingly along the trajec-
tory. This would ensure safe obstacle avoidance also for very dynamic
flights.

L I S T O F F I G U R E S

Figure 1.1 Examples of collision hazards 2
Figure 1.2 Examples of dynamic environments 3
Figure 2.1 OctoMap with structure 10
Figure 2.2 Connectivity in local multiresolution grid . . . 11
Figure 2.3 Local multiresolution obstacle model 12
Figure 3.1 SPL game situation 22
Figure 3.2 Obstacle model 25
Figure 3.3 Multiresolution grid representations 26
Figure 3.4 Artificial obstacle to avoid dynamically infea-

sible movements 29
Figure 3.5 Comparison of obstacle representations 31
Figure 3.6 Comparison of robot trajectories 34
Figure 4.1 Mobile bin picking scenario 36
Figure 4.2 Compound object for grasp planning 40
Figure 4.3 Analytical offline grasp pruning 41
Figure 4.4 Offline collision checking with gripper model 42
Figure 4.5 Planned endeffector trajectories for grasping a

compound object 43
Figure 4.6 Local multiresolution height-map for fast

grasp selection and collision checking 44
Figure 4.7 Grasp planning experiments in simulation . . 45
Figure 4.8 Example of a mobile bin picking and delivery

run . 46
Figure 4.9 Public demonstration of mobile bin picking at

RoboCup 2012 48
Figure 5.1 Outdoor mapping of an old manor house . . . 54
Figure 5.2 Flight in a warehouse 55
Figure 5.3 Industrial chimney inspection 56
Figure 5.4 Photo and CAD drawing of MoDCopter plat-

form . 60
Figure 5.5 Photos of AIRCopter platform 61
Figure 5.6 ChimneySpector MAV 62
Figure 5.7 DJI Matrice 600 platform MBZIRC2 63
Figure 5.8 MAV planning hierarchy 65
Figure 6.1 Digital elevation model (DEM) and 3D city

model . 70
Figure 6.2 Mission planning for an outdoor mapping

mission . 71
Figure 6.3 Mission planning in combined indoor/out-

door laser map 72
Figure 6.4 Coverage planning in semantic warehouse map 73

161

162 List of Figures

Figure 6.5 Inspection of chimney mock-up 74
Figure 6.6 Coverage tour in a chimney 75
Figure 6.7 Targeted chimney inspection 75
Figure 6.8 Window inspection facade model and graph

structure . 76
Figure 7.1 MAV representation abstraction levels 80
Figure 7.2 Reachable cells with levels of abstraction . . . 81
Figure 7.3 Cost function for allocentric planning 81
Figure 7.4 2D cut through cost map for allocentric planning 82
Figure 7.5 Costmaps for wind and signal strength 83
Figure 7.6 Modified grid for FoV-aware planning 84
Figure 7.7 Planning under visibility constraints 85
Figure 7.8 FoV-aware heuristic 87
Figure 7.9 Visibility constraint planning heuristic 88
Figure 7.10 Obstacle avoidance local minimum 89
Figure 7.11 Coupling of local plan to allocentric plan . . . 90
Figure 7.12 Surrounding obstacles by local planning 91
Figure 8.1 Initialization trajectories for optimization . . . 96
Figure 8.2 Accelerations of the trajectory before optimiza-

tion . 97
Figure 8.3 Construction of transition segments 98
Figure 8.4 Plan discretizations according to motion

model of the MAV trajectory 100
Figure 8.5 Gradients for FoV-aware optimization 101
Figure 8.6 Optimized trajectory for an ascent in place . . 102
Figure 8.7 Comparison of trajectories without and with

visibility constraints 103
Figure 9.1 Reactive obstacle avoidance situations 106
Figure 9.2 Illustration of artificial potential fields 107
Figure 9.3 Discretization of the MAV for potential field-

based obstacle avoidance 108
Figure 9.4 Predicted future trajectory rollout 109
Figure 9.5 Reactive obstacle avoidance spheres of influence 112
Figure 9.6 Reactive obstacle avoidance with artificial po-

tential fields . 113
Figure 10.1 Example of frequent replanning on the allo-

centric planning layer 119
Figure 10.2 Updated global plans at different stages of a

flight . 119
Figure 10.3 Planning with wind 120
Figure 10.4 Plot of planning times uniform vs. multireso-

lution . 121
Figure 10.5 Local plan around an obstacle 122
Figure 10.6 OctoMap of the evaluation area for trajectory

optimization . 123
Figure 10.7 Trajectory costs per iteration of the optimizer . 124

List of Figures 163

Figure 10.8 Summed control costs per iteration of the op-
timizer . 125

Figure 10.9 Comparison of trajectories for individual po-
sition dimensions at different stages of opti-
mization . 126

Figure 10.10 Reduction of optimized trajectory costs com-
pared to baseline 127

Figure 10.11 Accelerations of initial trajectory. 128
Figure 10.12 Acceleration reduction with continuous curva-

ture transition segments. 129
Figure 10.13 Processing steps of trajectory optimization . . 131
Figure 10.14 Trajectory following with ChimneySpector . . 131
Figure 10.15 Angles for ascent in place 131
Figure 10.16 Plan and optimized trajectory in outdoor map 132
Figure 10.17 Angles for outdoor trajectory 133
Figure 10.18 Trajectory tracking during flights 134
Figure 10.19 Real world experiment for FoV-aware opti-

mization . 135
Figure 10.20 Costs per iteration during frequent trajectory

optimization . 136
Figure 10.21 Intermediate results of frequently optimized

trajectories . 136
Figure 10.22 Surrounding an unknown obstacle by continu-

ous trajectory optimization 137
Figure 10.23 Comparison of initially planned and executed

multiresolution trajectories 138
Figure 10.24 Optimization duration with and without mul-

tiresolution . 139
Figure 10.25 Obstacle avoidance: Comparison of MAV tra-

jectories with and without motion prediction . 140
Figure 10.26 Example of a learned motion model 142
Figure 10.27 Deviation from allocentric plan 144
Figure 10.28 Inspection mission in a car service station . . . 145
Figure 10.29 Influence of reactive obstacle avoidance during

flights . 146
Figure 10.30 Photo of a warehouse 148
Figure 10.31 Flight operator view for stocktaking missions . 149
Figure 10.32 Reactive avoidance of an approaching person . 150

L I S T O F TA B L E S

Table 3.1 Comparison of planning times 33
Table 4.1 Timings for grasp and motion planning 47
Table 4.2 Timings for mobile bin picking phases 47
Table 10.1 Planning duration with short and long open list 117
Table 10.2 Comparison of obstacle cost representations . 118
Table 10.3 Planning time of local path planner without

trajectory coupling 121
Table 10.4 Planning time of local path planner with tra-

jectory coupling 122
Table 10.5 Timings of allocentric planning and optimization128
Table 10.6 Absolute trajectory errors (ATE) during trajec-

tory execution simulation 133
Table 10.7 absolute trajectory errors (ATEs) during trajec-

tory execution in real MAV experiments 137
Table 10.8 Influence of velocity reduction for obstacle

avoidance . 141

164

L I S T O F V I D E O S

Video 4.1 The service robot Cosero clears a transport
box in an industrial bin-bicking scenario
www.nieuwenhuisen.de/thesis/

bin-picking-industrial.mp4 46
Video 4.2 Grasping of dumbbell-shaped objects from a

box
www.nieuwenhuisen.de/thesis/

bin-picking-dumbbell.mp4 48
Video 4.3 Demonstration of bin-picking at RoboCup

2012
www.nieuwenhuisen.de/thesis/

bin-picking-robocup.mp4 48
Video 10.1 Convergence of trajectory optimization with

and without CCTSs
www.nieuwenhuisen.de/thesis/

optimization-ccts.mp4 129
Video 10.2 Following optimized trajectories with

ChimneySpector
www.nieuwenhuisen.de/thesis/

optimization-chimneyspector.mp4 130
Video 10.3 Trajectory optimization with sensor visibility

constraints
www.nieuwenhuisen.de/thesis/

optimization-constraints.mp4 134
Video 10.4 Frequent trajectory reoptimization to react on

unknown obstacles
www.nieuwenhuisen.de/thesis/

optimization-reoptimization.mp4 137
Video 10.5 Local multiresolution trajectory optimization

www.nieuwenhuisen.de/thesis/

optimization-mr.mp4 139
Video 10.6 Demonstration of potential field-based obsta-

cle avoidance
www.nieuwenhuisen.de/thesis/

avoidance-outdoor.mp4 142
Video 10.7 Reactive obstacle avoidance with velocity

reduction in a warehouse
www.nieuwenhuisen.de/thesis/

avoidance-indoor.mp4 142
Video 10.8 Autonomous mapping of a manor house

www.nieuwenhuisen.de/thesis/

mapping-outdoor.mp4 143

165

www.nieuwenhuisen.de/thesis/bin-picking-industrial.mp4
www.nieuwenhuisen.de/thesis/bin-picking-industrial.mp4
www.nieuwenhuisen.de/thesis/bin-picking-dumbbell.mp4
www.nieuwenhuisen.de/thesis/bin-picking-dumbbell.mp4
www.nieuwenhuisen.de/thesis/bin-picking-robocup.mp4
www.nieuwenhuisen.de/thesis/bin-picking-robocup.mp4
www.nieuwenhuisen.de/thesis/optimization-ccts.mp4
www.nieuwenhuisen.de/thesis/optimization-ccts.mp4
www.nieuwenhuisen.de/thesis/optimization-chimneyspector.mp4
www.nieuwenhuisen.de/thesis/optimization-chimneyspector.mp4
www.nieuwenhuisen.de/thesis/optimization-constraints.mp4
www.nieuwenhuisen.de/thesis/optimization-constraints.mp4
www.nieuwenhuisen.de/thesis/optimization-reoptimization.mp4
www.nieuwenhuisen.de/thesis/optimization-reoptimization.mp4
www.nieuwenhuisen.de/thesis/optimization-mr.mp4
www.nieuwenhuisen.de/thesis/optimization-mr.mp4
www.nieuwenhuisen.de/thesis/avoidance-outdoor.mp4
www.nieuwenhuisen.de/thesis/avoidance-outdoor.mp4
www.nieuwenhuisen.de/thesis/avoidance-indoor.mp4
www.nieuwenhuisen.de/thesis/avoidance-indoor.mp4
www.nieuwenhuisen.de/thesis/mapping-outdoor.mp4
www.nieuwenhuisen.de/thesis/mapping-outdoor.mp4

166 List of Videos

Video 10.9 Indoor flight in a decommissioned car service
station
www.nieuwenhuisen.de/thesis/

integration-indoor.mp4 145
Video 10.10 Autonomous coverage flight in a chimney

mock-up and a decommissioned industrial
chimney
www.nieuwenhuisen.de/thesis/

chimneyspector-coverage.mp4 146
Video 10.11 Targeted inspection of chimney defects

www.nieuwenhuisen.de/thesis/

chimneyspector-inspection.mp4 146
Video 10.12 Autonomous flight in a warehouse

www.nieuwenhuisen.de/thesis/

integration-warehouse.mp4 149
Video 10.13 Autonomous flight in a warehouse with DJI

Matrice 600
www.nieuwenhuisen.de/thesis/

integration-warehouse-m600.mp4 150

Download links and players for all videos listed here can be found
online at www.nieuwenhuisen.de/thesis.

www.nieuwenhuisen.de/thesis/integration-indoor.mp4
www.nieuwenhuisen.de/thesis/integration-indoor.mp4
www.nieuwenhuisen.de/thesis/chimneyspector-coverage.mp4
www.nieuwenhuisen.de/thesis/chimneyspector-coverage.mp4
www.nieuwenhuisen.de/thesis/chimneyspector-inspection.mp4
www.nieuwenhuisen.de/thesis/chimneyspector-inspection.mp4
www.nieuwenhuisen.de/thesis/integration-warehouse.mp4
www.nieuwenhuisen.de/thesis/integration-warehouse.mp4
www.nieuwenhuisen.de/thesis/integration-warehouse-m600.mp4
www.nieuwenhuisen.de/thesis/integration-warehouse-m600.mp4
www.nieuwenhuisen.de/thesis

A C R O N Y M S

AMCL adaptive Monte Carlo localization

ATE absolute trajectory error

BIT batch informed trees

CCTS continuous curvature transition segment

CHOMP covariant Hamiltonian optimization and motion planning

CityGML City Geography Markup Language

DEM digital elevation model

DoF degree of freedom

EKF extended Kalman filter

EuRoC European robotics challenges

FoV field of view

GNSS global navigation satellite system

GPS global positioning system

GUI graphical user interface

HIL hardware-in-the-loop

IMU inertial measurement unit

ITOMP incremental trajectory optimization for real-time replanning

KPIECE kinodynamic motion planning by interior-exterior cell ex-
ploration

LDS linear dynamical system

LoD level of detail

LRF laser rangefinder

LUT look up table

MAV micro aerial vehicle

MoCap motion capture

MPC model predictive controller

167

168 acronyms

OMPL Open Motion Planning Library

RFID radio frequency identification

ROS Robot Operating System

RRBT rapidly-exploring random belief tree

RRT rapidly-exploring random tree

SLAM simultaneous localization and mapping

SPARTAN sparse tangential network

SPL Standard Platform League

STOMP stochastic trajectory optimization for motion planning

TSP traveling salesman problem

UAV unmanned aerial vehicle

WMS warehouse management system

B I B L I O G R A P H Y

Achtelik, Markus, Abraham Bachrach, Ruijie He, Sam Prentice, and
Nicholas Roy (2009). “Autonomous navigation and exploration
of a quadrotor helicopter in GPS-denied indoor environments.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Achtelik, Markus, Simon Lynen, Stephan Weiss, Margarita Chli, and
Roland Siegwart (2014). “Motion- and uncertainty-aware path
planning for micro aerial vehicles.” In: Journal of Field Robotics
31.4, pp. 676–698. issn: 1556-4967.

Ackerman, Evan (2014). “When drone delivery makes sense.” In: Spec-
trum, IEEE 25.

Andert, Franz, Florian-Michael Adolf, Lukas Goormann, and Jörg
S. Dittrich (2010). “Autonomous vision-based helicopter flights
through obstacle gates.” In: Selected papers from the 2nd Interna-
tional Symposium on UAVs. Springer, pp. 259–280.

Andreasson, Henrik, Jari Saarinen, Marcello Cirillo, Todor Stoyanov,
and Achim J. Lilienthal (2014). “Drive the drive: From discrete
motion plans to smooth drivable trajectories.” In: Robotics 3.4,
pp. 400–416.

Applegate, David, Robert Bixby, Vasek Chvatal, and William Cook
(2006). Concorde TSP solver.

Baca, Tomas, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay
Kumar (2018). “Model predictive trajectory tracking and collision
avoidance for reliable outdoor deployment of unmanned aerial
vehicles.” In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Beer, Kristina (2016). DHL: Erfolgreiche Tests mit Paketkopter, der selb-
stständig be- und entlädt. url: www . heise . de / newsticker /

meldung / DHL - Erfolgreiche - Tests - mit - Paketkopter - der -

selbststaendig-be-und-entlaedt-3198938.html.
Beetz, Michael, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz

Mösenlechner, Dejan Pangercic, Thomas Rühr, and Moritz
Tenorth (2011). “Robotic roommates making pancakes.” In: Pro-
ceedings of the International Conference on Humanoid Robots.

Behnke, Sven (2004). “Local multiresolution path planning.” In:
RoboCup 2003: Robot Soccer World Cup VII, pp. 332–343.

Behnke, Sven and Jörg Stückler (2008). “Hierarchical reactive control
for humanoid soccer robots.” In: International Journal of Humanoid
Robots 5.3, pp. 375–396.

169

www.heise.de/newsticker/meldung/DHL-Erfolgreiche-Tests-mit-Paketkopter-der-selbststaendig-be-und-entlaedt-3198938.html
www.heise.de/newsticker/meldung/DHL-Erfolgreiche-Tests-mit-Paketkopter-der-selbststaendig-be-und-entlaedt-3198938.html
www.heise.de/newsticker/meldung/DHL-Erfolgreiche-Tests-mit-Paketkopter-der-selbststaendig-be-und-entlaedt-3198938.html

170 bibliography

Bentley, Jon Louis (1975). “Multidimensional binary search trees used
for associative searching.” In: Communications of the ACM 18.9,
pp. 509–517.

Berner, Alexander, Jun Li, Dirk Holz, Jörg Stückler, Sven Behnke, and
Reinhard Klein (2013). “Combining contour and shape primitives
for object detection and pose estimation of prefabricated parts.”
In: Proceedings of the IEEE International Conference on Image Process-
ing (ICIP).

Beul, Marius and Sven Behnke (2016). “Analytical time-optimal tra-
jectory generation and control for multirotors.” In: Proceedings of
the International Conference on Unmanned Aircraft Systems (ICUAS).

— (2017). “Fast full state trajectory generation for multirotors.” In:
Proceedings of the International Conference on Unmanned Aircraft Sys-
tems (ICUAS).

Beul, Marius, David Droeschel, Matthias Nieuwenhuisen, Jan Quen-
zel, Sebastian Houben, and Sven Behnke (2018). “Fast autono-
mous flight in warehouses for inventory applications.” In: IEEE
Robotics and Automation Letters 3 (4), pp. 3121–3128.

Beul, Marius, Nicola Krombach, Yongfeng Zhong, David Droeschel,
Matthias Nieuwenhuisen, and Sven Behnke (2015). “A high-
performance MAV for autonomous navigation in complex 3D en-
vironments.” In: Proceedings of the International Conference on Un-
manned Aircraft Systems (ICUAS).

Bipin, Kumar, Vishakh Duggal, and K. Madhava Krishna (2014). “Au-
tonomous navigation of generic quadrocopter with minimum
time trajectory planning and control.” In: Proceedings of the IEEE
International Conference on Vehicular Electronics and Safety (ICVES).

Blanco, Jose Luis and Pranjal Kumar Rai (2014). nanoflann: a C++
header-only fork of FLANN, a library for Nearest Neighbor (NN) wih
KD-trees. https://github.com/jlblancoc/nanoflann.

Bley, Florian, Volker Schmirgel, and Karl-Friedrich Kraiss (2006). “Mo-
bile manipulation based on generic object knowledge.” In: Pro-
ceedings of the IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN).

Borenstein, Johann and Yoram Koren (1991). “The vector field
histogram—fast obstacle avoidance for mobile robots.” In: IEEE
Transactions on Robotics and Automation 7.3, pp. 278–288. issn: 1042-
296X.

Borst, Christoph, M. Fischer, and Gerd Hirzinger (1999). “A fast
and robust grasp planner for arbitrary 3D objects.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA).

Bouabdallah, Samir, Pierpaolo Murrieri, and Roland Siegwart (2004).
“Design and control of an indoor micro quadrotor.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA).

https://github.com/jlblancoc/nanoflann

bibliography 171

Chang, Lillian, Joshua R. Smith, and Dieter Fox (2012). “Interactive
singulation of objects from a pile.” In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA).

Chitta, Sachin, E. Gil Jones, Matei Ciocarlie, and Kaijen Hsiao (2012).
“Perception, planning, and execution for mobile manipulation in
unstructured environments.” In: IEEE Robotics & Automation Mag-
azine 19.2, pp. 58–71.

Cohen, Benjamin J., Gokul Subramanian, Sachin Chitta, and Maxim
Likhachev (2011). “Planning for manipulation with adaptive mo-
tion primitives.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA).

Costante, Gabriele, Jeffrey Delmerico, Manuel Werlberger, Paolo
Valigi, and Davide Scaramuzza (2018). “Exploiting photometric
information for planning under uncertainty.” In: ed. by Antonio
Bicchi and Wolfram Burgard, pp. 107–124.

Dijkstra, Edsger W. (1959). “A note on two problems in connexion
with graphs.” In: Numerische Mathematik 1.1, pp. 269–271.

DJI (2017a). Mavic Pro user manual v2.0.
— (2017b). Phantom 4 Pro/Pro+ user manual v1.2.
Domae, Yukiyasu, Haruhisa Okuda, Yuichi Taguchi, Kazuhiko Sumi,

and Takashi Hirai (2014). “Fast graspability evaluation on single
depth maps for bin picking with general grippers.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA).

Droeschel, David, Matthias Nieuwenhuisen, Marius Beul, Dirk Holz,
Jörg Stückler, and Sven Behnke (2016). “Multi-Layered Mapping
and Navigation for Autonomous Micro Aerial Vehicles.” In: Jour-
nal of Field Robotics 33.4, pp. 451–475.

Droeschel, David, Michael Schreiber, and Sven Behnke (2013). “Omni-
directional perception for lightweight UAVs using a continuous
rotating laser scanner.” In: International Arch. Photogramm. Remote
Sens. Spatial Inf. Sci. (ISPRS). Vol. XL-1/W2, pp. 107–112.

Droeschel, David, Jörg Stückler, and Sven Behnke (2014a). “Local
multi-resolution surfel grids for MAV motion estimation and 3D
Mapping.” In: Proceedings of the International Conference on Intelli-
gent Autonomous Systems (IAS).

— (2014b). “Local multiresolution representation for 6D motion esti-
mation and mapping with a continuously rotating 3D laser scan-
ner.” In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

Eling, Christian, Lasse Klingbeil, Markus Wieland, and Heiner
Kuhlmann (2013). “A precise position and attitude determina-
tion system for lightweight unmanned aerial vehicles.” In: Inter-
national Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (ISPRS).
Vol. XL-1/W2, pp. 113–118.

172 bibliography

Englot, Brendan and Franz Hover (2010). “Inspection planning for
sensor coverage of 3D marine structures.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Fang, Zheng, Shichao Yang, Sezal Jain, Geetesh Dubey, Stephan Roth,
Silvio Maeta, Stephen Nuske, Yu Zhang, and Sebastian Scherer
(2017). “Robust autonomous flight in constrained and visually
degraded shipboard environments.” In: Journal of Field Robotics
34.1, pp. 25–52.

Ferguson, David and Anthony Stentz (2006). “Multi-resolution field
D*.” In: Proceedings of the International Conference on Intelligent Au-
tonomous Systems (IAS).

Fischler, Martin A. and Robert C. Bolles (1981). “Random sample con-
sensus: A paradigm for model fitting with applications to image
analysis and automated cartography.” In: Communications of the
ACM 24.6, pp. 381–395.

Florence, Pete, John Carter, and Russ Tedrake (2016). “Integrated
perception and control at high speed: evaluating collision avoid-
ance maneuvers without maps.” In: Proceedings of the International
Workshop on the Algorithmic Foundations of Robotics (WAFR).

Fornberg, Bengt (1988). “Generation of finite difference formulas on
arbitrarily spaced grids.” In: Mathematics of computation 51.184,
pp. 699–706.

Fox, Dieter, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun
(1999). “Monte Carlo localization: Efficient position estimation for
mobile robots.” In: Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI).

Fox, Dieter, Wolfram Burgard, and Sebastian Thrun (1997). “The dy-
namic window approach to collision avoidance.” In: IEEE Robotics
& Automation Magazine 4 (1), pp. 23–33.

Fraichard, Thierry and Alexis Scheuer (2004). “From Reeds and
Shepp’s to continuous-curvature paths.” In: IEEE Transactions on
Robotics 20.6, pp. 1025–1035.

Furrer, Fadri, Michael Burri, Markus Achtelik, and Roland Siegwart
(2016). “RotorS–A modular Gazebo MAV simulator framework.”
In: Robot Operating System (ROS): The complete reference. Ed. by
Anis Koubaa. Vol. 1. Chap. 23, pp. 595–625.

Ge, Shuzhi Sam and Yun J. Cui (2002). “Dynamic motion planning
for mobile robots using potential field method.” In: Autonomous
Robots 13.3, pp. 207–222.

Geiger, Andreas, Julius Ziegler, and Christoph Stiller (2011). “Stere-
oScan: Dense 3D reconstruction in real-time.” In: Proceedings of
the IEEE Intelligent Vehicles Symposium (IV).

Gräve, Kathrin (2015). “Lernen komplexer Aufgaben aus Demon-
stration und eigener Erfahrung.” PhD. Mathematisch-
Naturwissenschaftliche Fakultät, Universität Bonn.

bibliography 173

Green, William E. and Paul Y. Oh (2008). “Optic-flow-based collision
avoidance.” In: IEEE Robotics & Automation Magazine 15.1, pp. 96–
103.

Gröger, Gerhard, Thomas H. Kolbe, Angela Czerwinski, and Claus
Nagel (2008). OpenGIS city geography markup language (CityGML)
encoding standard. Standard. Open Geospatial Consortium Inc.

Gross, Horst-Michael, Hans-Joachim Boehme, Christof Schroeter,
Steffen Mueller, Alexander Koenig, Erik Einhorn, Christian Mar-
tin, Matthias Merten, and Andreas Bley (2009). “TOOMAS: Inter-
active shopping guide robots in everyday use - final implementa-
tion and experiences from long-term field trials.” In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS).

Grzonka, Slawomir, Giorgio Grisetti, and Wolfram Burgard (2012). “A
fully autonomous indoor quadrotor.” In: IEEE Transactions on Ro-
botics 28.1, pp. 90–100.

Gupta, Megha and Gaurav S. Sukhatme (2012). “Using manipulation
primitives for brick sorting in clutter.” In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A formal
basis for the heuristic determination of minimum cost paths.” In:
IEEE Transactions on Systems Science and Cybernetics 4.2, pp. 100–
107.

Heester, Robert D., Murat Cetin, Chetan Kapoor, and Delbert Tesar
(1999). “A criteria-based approach to grasp synthesis.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA).

Heng, Lionel, Dominik Honegger, Gim Hee Lee, Lorenz Meier, Petri
Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys (2014).
“Autonomous visual mapping and exploration with a micro
aerial vehicle.” In: Journal of Field Robotics 31.4, pp. 654–675. issn:
1556-4967.

Hernandez, Carlos, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser,
Jethro Tan, Kanter van Deurzen, Maarten de Vries, Bas van Mil,
Jeff van Egmond, Ruben Burger, Mihai Morariu, Jihong Ju, Xan-
der Gerrmann, Ronald Ensing, Jan van Frankenhuyzen, and Mar-
tijn Wisse (2017). “Team Delft’s robot winner of the Amazon Pick-
ing Challenge.” In: RoboCup 2016: Robot World Cup XX. Ed. by
Sven Behnke, Raymond Sheh, Sanem Sarıel, and Daniel D. Lee.
Springer International Publishing, pp. 613–624.

Holz, Dirk, Matthias Nieuwenhuisen, David Droeschel, Michael
Schreiber, and Sven Behnke (2013). “Towards multimodal omni-
directional obstacle detection for autonomous unmanned aerial
vehicles.” In: International Arch. Photogramm. Remote Sens. Spatial
Inf. Sci. (ISPRS). Vol. XL-1/W2, pp. 201–206.

174 bibliography

Holz, Dirk, Angeliki Topalidou-Kyniazopoulou, Francesco Rovida,
Mikkel Rath Pedersen, Volker Krüger, and Sven Behnke (2015).
“A skill-based system for object perception and manipulation for
automating kitting tasks.” In: Proceedings of the IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).

Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard (2013). “OctoMap: An efficient probabilis-
tic 3D mapping framework based on octrees.” In: Autonomous
Robots. doi: 10.1007/s10514-012-9321-0.

Hößler, Tom and Tom Landgraf (2014). “Automated traffic analysis
in aerial images.” In: Proceedings of the International Conference on
Computer Vision and Graphics (ICCVG), pp. 262–269.

Hrabar, Stefan, Gaurav Sukhatme, Peter Corke, Kane Usher, and
Jonathan Roberts (2005). “Combined optic-flow and stereo-based
navigation of urban canyons for a UAV.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Ikeuchi, Katsushi, Berthold K.P. Horn, Shigemi Nagata, Tom Calla-
han, and Oded Feirigold (1983). “Picking up an object from a pile
of objects.” In: Proceedings of the International Symposium on Robot-
ics Research.

Israelsen, Jason, Matt Beall, Daman Bareiss, Daniel Stuart, Eric
Keeney, and Jur van den Berg (2014). “Automatic collision avoid-
ance for manually tele-operated unmanned aerial vehicles.” In:
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA).

Jiang, Guangying and Richard Voyles (2013). “Hexrotor UAV plat-
form enabling dextrous aerial mobile manipulation.” In: Proceed-
ings of the International Micro Air Vehicle Conference and Flight Com-
petition (IMAV).

Johnson, Eric N. and John G. Mooney (2014). “A comparison of au-
tomatic nap-of-the-earth guidance strategies for helicopters.” In:
Journal of Field Robotics 31.4, pp. 637–653. issn: 1556-4967.

Jones, Joseph (2006). “Robots at the tipping point: The road to iRobot
Roomba.” In: IEEE Robotics & Automation Magazine 13.1, pp. 76–
78.

Kaden, Steffen, Heinrich Mellmann, Marcus Scheunemann, and
Hans-Dieter Burkhard (2013). “Voronoi based strategic position-
ing for robot soccer.” In: Proceedings of the International Workshop
on Concurrency, Specification and Programming (CS&P).

Kaelbling, Leslie P. and Tomás Lozano-Pérez (2011). “Hierarchical
task and motion planning in the now.” In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Kalakrishnan, Mrinal and Ken Anderson (2009). MoveIt: Propaga-
tion distance field. Online available: github.com/ros-planning/
moveit_core.

https://doi.org/10.1007/s10514-012-9321-0
github.com/ros-planning/moveit_core
github.com/ros-planning/moveit_core

bibliography 175

Kalakrishnan, Mrinal, Sachin Chitta, Evangelos Theodorou, Peter Pas-
tor, and Stefan Schaal (2011). “STOMP: Stochastic trajectory opti-
mization for motion planning.” In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Kamel, Mina, Thomas Stastny, Kostas Alexis, and Roland Siegwart
(2017). “Model predictive control for trajectory tracking of un-
manned aerial vehicles using robot operating system.” In: Robot
Operating System (ROS): The complete reference (Volume 2). Ed. by
Anis Koubaa. Springer, pp. 3–39.

Karkowski, Philipp and Maren Bennewitz (2016). “Real-time footstep
planning using a geometric approach.” In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Khatib, Oussama (1999). “Mobile manipulation: The robotic assis-
tant.” In: Journal of Robotics and Autonomous Systems 26 (2–3),
pp. 175–183.

Klingbeil, Ellen, Deepak Rao, Blake Carpenter, Varun Ganapathi, An-
drew Y. Ng, and Oussama Khatib (2011). “Grasping with appli-
cation to an autonomous checkout robot.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

Klingbeil, Lasse, Matthias Nieuwenhuisen, Johannes Schneider, Chris-
tian Eling, David Droeschel, Dirk Holz, Thomas Läbe, Wolfgang
Förstner, Sven Behnke, and Heiner Kuhlmann (2014). “Towards
autonomous navigation of an UAV-based mobile mapping sys-
tem.” In: Proceedings of the International Conference on Machine Con-
trol & Guidance (MCG).

Koenig, Nathan and Andrew Howard (2004). “Design and use
paradigms for Gazebo, an open-source multi-robot simulator.”
In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Koenig, Sven and Maxim Likhachev (2005). “Fast replanning for navi-
gation in unknown terrain.” In: IEEE Transactions on Robotics 21.3,
pp. 354–363.

Lagoudakis, Michael G. and Anthony S. Maida (1999). “Neural maps
for mobile robot navigation.” In: Proceedings of the International
Joint Conference on Neural Networks.

Lan, Menglu, Shupeng Lai, Yingcai Bi, Hailong Qin, Jiaxin Li, Feng
Lin, and Ben M. Chen (2016). “BIT*-based path planning for mi-
cro aerial vehicles.” In: Proceedings of the Annual Conference of the
IEEE Industrial Electronics Society (IECON).

Laskey, Michael, Jonathan Lee, Caleb Chuck, David Gealy, Wesley
Hsieh, Florian T Pokorny, Anca D Dragan, and Ken Goldberg
(2016). “Robot grasping in clutter: Using a hierarchy of super-
visors for learning from demonstrations.” In: IEEE International
Conference on Automation Science and Engineering (CASE).

176 bibliography

LaValle, Steven M. (1998). Rapidly-exploring random trees: A new tool
for path planning. Tech. rep. Computer Science Dept., Iowa State
University.

LaValle, Steven M. and James J. Kuffner (2001). “Randomized kinody-
namic planning.” In: The International Journal of Robotics Research
20.5, pp. 378–400.

Likhachev, Maxim, Geoffrey J. Gordon, and Sebastian Thrun (2004).
“ARA*: Anytime A* with provable bounds on sub-optimality.” In:
Advances in Neural Information Processing Systems (NIPS), pp. 767–
774.

Lin, Shen and Brian Wilson Kernighan (1973). “An Effective Heuris-
tic Algorithm for the Traveling-Salesman Problem.” In: Operations
Research 21.2, pp. 498–516.

Liu, Ming-Yu, Oncel Tuzel, Ashok Veeraraghavan, Yuichi Taguchi,
Tim K Marks, and Rama Chellappa (2012). “Fast object localiza-
tion and pose estimation in heavy clutter for robotic bin picking.”
In: The International Journal of Robotics Research 31.8, pp. 951–973.

Loch-Dehbi, Sandra, Youness Dehbi, and Lutz Plümer (2013).
“Stochastic reasoning for UAV supported reconstruction of 3D
building models.” In: International Arch. Photogramm. Remote Sens.
Spatial Inf. Sci. (ISPRS). Vol. XL-1/W2, pp. 257–261.

Longega, L., Stefano Panzieri, Federica Pascucci, and Giovanni Ulivi
(2003). “Indoor robot navigation using log-polar local maps.” In:
Proceedings of the International IFAC Symposium on Robot Control
(SyRoCo).

Lozano-Pérez, Tomás and Michael A. Wesley (1979). “An algorithm
for planning collision-free paths among polyhedral obstacles.” In:
Communications of the ACM 22.10, pp. 560–570.

MacAllister, Brian, Jonathan Butzke, Alex Kushleyev, Harsh Pandey,
and Maxim Likhachev (2013). “Path planning for non-circular
micro aerial vehicles in constrained environments.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA).

Maciejewski, Anthony A and Charles A Klein (1985). “Obstacle avoid-
ance for kinematically redundant manipulators in dynamically
varying environments.” In: The International Journal of Robotics Re-
search 4.3, pp. 109–117.

Majumdar, Anirudha and Russ Tedrake (2017). “Funnel libraries for
real-time robust feedback motion planning.” In: The International
Journal of Robotics Research 36.8, pp. 947–982.

Meagher, Donald (1980). Octree encoding: A new technique for the rep-
resentation, manipulation and display of arbitrary 3-D objects by com-
puter. Tech. rep. Rensselaer Polytechnic Institute.

bibliography 177

Meier, Lorenz, Petri Tanskanen, Lionel Heng, GimHee Lee, Friedrich
Fraundorfer, and Marc Pollefeys (2012). “PIXHAWK: A micro
aerial vehicle design for autonomous flight using onboard com-
puter vision.” In: Autonomous Robots 33.1-2, pp. 21–39.

Miller, Andrew T., Steffen Knoop, Henrik I. Christensen, and Peter K.
Allen (2003). “Automatic grasp planning using shape primitives.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Mori, Tomoyuki and Sebastian Scherer (2013). “First results in detect-
ing and avoiding frontal obstacles from a monocular camera for
micro unmanned aerial vehicles.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Mueller, Mark W., Markus Hehn, and Raffaello D’Andrea (2015).
“A computationally efficient motion primitive for quadrocopter
trajectory generation.” In: IEEE Transactions on Robotics 31.6,
pp. 1294–1310.

Nieuwenhuisen, Matthias and Sven Behnke (2014a). “Hierarchical
planning with 3D local multiresolution obstacle avoidance for mi-
cro aerial vehicles.” In: Proceedings of the Joint International Sym-
posium on Robotics (ISR) and the German Conference on Robotics
(ROBOTIK).

— (2014b). “Layered mission and path planning for MAV naviga-
tion with partial environment knowledge.” In: Proceedings of the
International Conference on Intelligent Autonomous Systems (IAS).

— (2015). “3D planning and trajectory optimization for real-time
generation of smooth MAV trajectories.” In: Proceedings of the Eu-
ropean Conference on Mobile Robots (ECMR).

— (2016). “Local multiresolution trajectory optimization for micro
aerial vehicles employing continuous curvature transitions.” In:
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

— (2019). “Search-based 3D planning and trajectory optimization
for safe micro aerial vehicle flight under sensor visibility con-
straints.” In: Proceedings of the IEEE International Conference on Ro-
botics and Automation (ICRA).

Nieuwenhuisen, Matthias, David Droeschel, Marius Beul, and Sven
Behnke (2016). “Autonomous navigation for micro aerial vehicles
in complex GNSS-denied environments.” In: Journal of Intelligent
& Robotic Systems 84.1, pp. 199–216.

Nieuwenhuisen, Matthias, David Droeschel, Dirk Holz, Jörg Stück-
ler, Alexander Berner, Jun Li, Reinhard Klein, and Sven Behnke
(2013a). “Mobile bin picking with an anthropomorphic service
robot.” In: Proceedings of the IEEE International Conference on Robot-
ics and Automation (ICRA).

178 bibliography

Nieuwenhuisen, Matthias, David Droeschel, Johannes Schneider,
Dirk Holz, Thomas Läbe, and Sven Behnke (2013b). “Multimodal
obstacle detection and collision avoidance for micro aerial vehi-
cles.” In: Proceedings of the European Conference on Mobile Robots
(ECMR).

Nieuwenhuisen, Matthias, Jan Quenzel, Marius Beul, David Droe-
schel, Sebastian Houben, and Sven Behnke (2017). “Chimney-
Spector: Autonomous MAV-based indoor chimney inspection em-
ploying 3D laser localization and textured surface reconstruc-
tion.” In: Proceedings of the International Conference on Unmanned
Aircraft Systems (ICUAS).

Nieuwenhuisen, Matthias, Mark Schadler, and Sven Behnke (2013c).
“Predictive potential field-based collision avoidance for multi-
copters.” In: International Arch. Photogramm. Remote Sens. Spatial
Inf. Sci. (ISPRS). Vol. XL-1/W2, pp. 293–298.

Nieuwenhuisen, Matthias, Ricarda Steffens, and Sven Behnke (2012a).
“Local multiresolution path planning in soccer games based on
projected intentions.” In: RoboCup 2011: Robot Soccer World Cup
XV. Ed. by Thomas Röfer, N. Michael Mayer, Jesus Savage,
and Uluç Saranlı. Vol. 7416. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 495–506.

Nieuwenhuisen, Matthias, Jörg Stückler, Alexander Berner, Reinhard
Klein, and Sven Behnke (2012b). “Shape-primitive based object
recognition and grasping.” In: Proceedings of the German Conference
on Robotics (ROBOTIK).

Nikolic, Janosch, Jörn Rehder, Michael Burri, Pascal Gohl, Ste-
fan Leutenegger, Paul T. Furgale, and Roland Siegwart (2014).
“A synchronized visual-inertial sensor system with FPGA pre-
processing for accurate real-time SLAM.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

NMA (2016). Robot tours in the national museum Australia. url: www.
nma.gov.au/engage-learn/robot-tours.

Nuske, Stephen, Sanjiban Choudhury, Sezal Jain, Andrew Chambers,
Luke Yoder, Sebastian Scherer, Lyle Chamberlain, Hugh Cover,
and Sanjiv Singh (2015). “Autonomous exploration and motion
planning for an unmanned aerial vehicle navigating rivers.” In:
Journal of Field Robotics 32.8, pp. 1141–1162.

Ok, Kyel, Sameer Ansari, Billy Gallagher, William Sica, Frank Del-
laert, and Mike Stilman (2013). “Path planning with uncertainty:
Voronoi uncertainty fields.” In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Oleynikova, Helen, Michael Burri, Zachary Taylor, Juan Nieto, Roland
Siegwart, and Enric Galceran (2016). “Continuous-time trajectory
optimization for online UAV replanning.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

www.nma.gov.au/engage-learn/robot-tours
www.nma.gov.au/engage-learn/robot-tours

bibliography 179

Olson, Edwin (2011). “AprilTag: A robust and flexible visual fiducial
system.” In: Proceedings of the IEEE International Conference on Ro-
botics and Automation (ICRA).

Papazov, Chavdar, Sami Haddadin, Sven Parusel, Kai Krieger, and
Darius Burschka (2012). “Rigid 3D geometry matching for grasp-
ing of known objects in cluttered scenes.” In: The International
Journal of Robotics Research 31.4, pp. 538–553.

Park, Chonhyon, Jia Pan, and Dinesh Manocha (2012). “ITOMP: In-
cremental trajectory optimization for real-time replanning in dy-
namic environments.” In: Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS).

Pavlichenko, Dmytro and Sven Behnke (2017). “Efficient stochastic
multicriteria arm trajectory optimization.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Pieper, Donald Lee (1968). “The kinematics of manipulators under
computer control.” PhD. Stanford University.

Puls, Tim, Markus Kemper, Reimund Küke, and Andreas Hein (2009).
“GPS-based position control and waypoint navigation system for
quadrocopters.” In: Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).

Quenzel, Jan, Matthias Nieuwenhuisen, David Droeschel, Marius
Beul, Sebastian Houben, and Sven Behnke (2018). “Autonomous
MAV-based indoor chimney inspection with 3D laser localization
and textured surface reconstruction.” In: Journal of Intelligent &
Robotic Systems. Available online.

Quigley, Morgan, Ken Conley, Brian P. Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng (2009).
“ROS: An open-source robot operating system.” In: Proceedings
of the ICRA Workshop on Open Source Software.

Rahardja, Krisnawan and Akio Kosaka (1996). “Vision-based bin-
picking: Recognition and localization of multiple complex objects
using simple visual cues.” In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Richter, Charles, Adam Bry, and Nicholas Roy (2013). “Polynomial
trajectory planning for quadrotor flight.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

RoboCup Technical Commitee (2010). RoboCup standard platform
league rule book.

180 bibliography

Röfer, Thomas, Tim Laue, Judith Müller, Armin Burchardt, Erik Dam-
rose, Alexander Fabisch, Fynn Feldpausch, Katharina Gillmann,
Colin Graf, Thijs Jeffry de Haas, Alexander Härtl, Daniel Honsel,
Philipp Kastner, Tobias Kastner, Benjamin Markowsky, Michael
Mester, Jonas Peter, Ole Jan Lars Riemann, Martin Ring, Wiebke
Sauerland, André Schreck, Ingo Sieverdingbeck, Felix Wenk, and
Jan-Hendrik Worch (2010). B-Human team report and code release
2010. www.b-human.de/downloads/bhuman10_coderelease.pdf.

Ross, Philip E. (2015). Watch this Tesla drive itself. url: spectrum.ieee.
org/cars-that-think/transportation/self-driving/watch-

this-video-of-teslas-autopilot-in-action.
Ross, Stéphane, Narek Melik-Barkhudarov, Kumar Shaurya Shankar,

Andreas Wendel, Debadeepta Dey, J. Andrew Bagnell, and Mar-
tial Hebert (2013). “Learning monocular reactive UAV control in
cluttered natural environments.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Roy, Nicholas, Wolfram Burgard, Dieter Fox, and Sebastian Thrun
(1999). “Coastal navigation – Mobile robot navigation with un-
certainty in dynamic environments.” In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Schmid, Korbinian, Philipp Lutz, Teodor Tomić, Elmar Mair, and
Heiko Hirschmüller (2014). “Autonomous vision-based micro air
vehicle for indoor and outdoor navigation.” In: Journal of Field
Robotics 31.4, pp. 537–570.

Schwarz, Max, Anton Milan, Christian Lenz, Aura Munoz, Arul Sel-
vam Periyasamy, Michael Schreiber, Sebastian Schüller, and Sven
Behnke (2017). “NimbRo Picking: Versatile part handling for
warehouse automation.” In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Sermanet, Pierre, Raia Hadsell, Marco Scoffier, Urs Muller, and Yann
LeCun (2008). “Mapping and planning under uncertainty in mo-
bile robots with long-range perception.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Shen, Shaojie, Nathan Michael, and Vijay Kumar (2011). “Autono-
mous multi-floor indoor navigation with a computationally con-
strained MAV.” In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA).

Silva, Grimaldo and Thierry Fraichard (2017). “Human robot motion:
A shared effort approach.” In: Proceedings of the European Confer-
ence on Mobile Robots (ECMR).

Stefas, Nikolaos, Patrick A. Plonski, and Volkan Isler (2018). “Approx-
imation algorithms for tours of orientation-varying view cones.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

www.b-human.de/downloads/bhuman10_coderelease.pdf
spectrum.ieee.org/cars-that-think/transportation/self-driving/watch-this-video-of-teslas-autopilot-in-action
spectrum.ieee.org/cars-that-think/transportation/self-driving/watch-this-video-of-teslas-autopilot-in-action
spectrum.ieee.org/cars-that-think/transportation/self-driving/watch-this-video-of-teslas-autopilot-in-action

bibliography 181

Steffens, Ricarda (2010). “Multiresolutions Pfadplanung in dynamis-
cher Umgebung für die Standard Platform League.” Bachelor the-
sis. Rheinische Friedrich-Wilhelms-Universität Bonn.

Steffens, Ricarda, Matthias Nieuwenhuisen, and Sven Behnke (2014).
“Continuous motion planning for service robots with multireso-
lution in time.” In: Proceedings of the International Conference on
Intelligent Autonomous Systems (IAS).

Stentz, Anthony (1994). “Optimal and efficient path planning for
partially-known environments.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Stückler, Jörg, Dirk Holz, and Sven Behnke (2012).
“RoboCup@Home: Demonstrating everyday manipulation
skills in RoboCup@Home.” In: IEEE Robotics & Automation
Magazine 19.2, pp. 34–42.

Stückler, Jörg, Ricarda Steffens, Dirk Holz, and Sven Behnke (2011).
“Real-time 3D perception and efficient grasp planning for every-
day manipulation tasks.” In: Proceedings of the European Conference
on Mobile Robots (ECMR).

Şucan, Ioan A. and Lydia E. Kavraki (2008). “Kinodynamic motion
planning by interior-exterior cell exploration.” In: Algorithmic
Foundation of Robotics VIII, Int. Workshop on the Algorithmic Foun-
dations of Robotics (WAFR). Vol. 57. Springer Tracts in Advanced
Robotics. Springer, pp. 449–464.

Şucan, Ioan A., Mark Moll, and Lydia E. Kavraki (2012). “The Open
Motion Planning Library.” In: IEEE Robotics & Automation Maga-
zine 19.4, pp. 72–82.

Szulewski, Piotr (2017). “Towards self-organizing production environ-
ments.” In: Mechanik 7.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox (2006). Probabilis-
tic Robotics. MIT Press.

Ulrich, Lawrence (2016). “Top ten tech cars 2016.” In: Spectrum, IEEE
(Apr. 2016), pp. 34–45.

Vahrenkamp, Nikolaus, Tamim Asfour, and Rüdiger Dillmann (2012).
“Simultaneous grasp and motion planning: Humanoid robot
ARMAR-III.” In: IEEE Robotics & Automation Magazine 19.2,
pp. 43–57.

Vanneste, Simon, Ben Bellekens, and Maarten Weyn (2014). “3DVFH+:
Real-time three-dimensional obstacle avoidance using an Oc-
toMap.” In: Proceedings of the Workshop on Model-Driven Robot Soft-
ware Engineering (MORSE).

182 bibliography

Whalley, Matthew S., Marc D. Takahashi, Jay W. Fletcher, Ernesto
Moralez, LTC Carl R. Ott, LTC Michael G. Olmstead, James C.
Savage, Chad L. Goerzen, Gregory J. Schulein, Hoyt N. Burns,
and Bill Conrad (2014). “Autonomous Black Hawk in flight: Ob-
stacle field navigation and landing-site selection on the RASCAL
JUH-60A.” In: Journal of Field Robotics 31.4, pp. 591–616. issn: 1556-
4967.

Xue, Zhixing, Alexander Kasper, J. Marius Zoellner, and Rüdiger Dill-
mann (2009). “An automatic grasp planning system for service
robots.” In: Proceedings of the International Conference on Advanced
Robotics (ICAR).

Zeng, Andy, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois
R Hogan, Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu,
Eudald Romo, Nima Fazeli, Ferran Alet, Nikhil Chavan Dafle,
Rachel Holladay, Isabella Morena, Prem Qu Nair, Druck Green,
Ian Taylor, Weber Liu, Thomas Funkhouser, and Alberto Ro-
driguez (2018). “Robotic pick-and-place of novel objects in clutter
with multi-affordance grasping and cross-domain image match-
ing.” In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

Zhang, Ji, Rushat Gupta Chadha, Vivek Velivela, and Sanjiv Singh
(2018). “P-CAP: Pre-computed alternative paths to enable aggres-
sive aerial maneuvers in cluttered environments.” In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS).

Zucker, Matthew, Nathan Ratliff, Anca Dragan, Mihail Pivtoraiko,
Matthew Klingensmith, Christopher Dellin, J. Andrew (Drew)
Bagnell, and Siddhartha Srinivasa (2013). “CHOMP: Covariant
Hamiltonian optimization for motion planning.” In: The Interna-
tional Journal of Robotics Research 32.9-10, pp. 1164–1193.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 List of Contributions
	1.2 Thesis Outline
	1.3 Publications

	2 Path Planning and Planning Representations
	2.1 Uniform Representations
	2.2 Global Multiresolution
	2.3 Local Multiresolution
	2.4 Path Planning

	Grasp and Motion Planning for Ground Robots
	3 Continuous Motion Planning Based on Projected Intentions
	3.1 Related Work
	3.2 Robot Platform
	3.3 Path Planning Representations
	3.4 Dynamic Planning with Intention Projection
	3.5 Evaluation
	3.6 Conclusion

	4 Grasp and Trajectory Planning for Mobile Bin-picking
	4.1 Related Work
	4.2 System Overview
	4.3 Shape Primitive Detection and Object Recognition
	4.4 Grasping of Shape Primitive Compounds
	4.5 Evaluation
	4.6 Conclusion

	Multi-layered Navigation for Micro Aerial Vehicles
	5 Hierarchical Continuous 3D Planning for MAVs
	5.1 Related Work
	5.2 System Setup
	5.3 Planning and Navigation Hierarchy

	6 Mission Planning
	6.1 Planning for Outdoor Mapping Missions
	6.2 Planning for Warehouse Inventory Missions
	6.3 Coverage Planning for Chimney Inspection Missions
	6.4 Mapping of Building Interiors from the Outside

	7 Allocentric and Egocentric Path Planning
	7.1 Global Path Planning
	7.1.1 Obstacle Cost Models
	7.1.2 Specific Cost Models
	7.1.3 Path Planning in Sensor Field-of-View

	7.2 Local Path Planning

	8 Trajectory Optimization
	8.1 Problem Formulation
	8.2 Initialization
	8.3 FoV-aware Trajectory Optimization
	8.4 Frequent Reoptimization

	9 Fast Reactive Obstacle Avoidance
	9.1 Artificial Potential Fields
	9.2 Obstacle Avoidance with Trajectory Prediction
	9.3 Learning a Motion Model
	9.4 Obstacle Avoidance with Direction-based Velocity Reduction

	10 Evaluation
	10.1 Simulation Environments
	10.2 Path Planning
	10.3 Trajectory Optimization
	10.4 Obstacle Avoidance
	10.5 Integrated Systems

	11 Conclusion

	Discussion and Future Work
	Lists of Figures, Tables, and Videos
	List of Figures
	List of Tables
	List of Videos
	Acronyms

	Bibliography

