2,352 research outputs found

    Description and Optimization of Abstract Machines in a Dialect of Prolog

    Full text link
    In order to achieve competitive performance, abstract machines for Prolog and related languages end up being large and intricate, and incorporate sophisticated optimizations, both at the design and at the implementation levels. At the same time, efficiency considerations make it necessary to use low-level languages in their implementation. This makes them laborious to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and ancillary code) in a higher-level language can help tame this inherent complexity. We show how the semantics of most basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog, the abstract machine description can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-crafted emulators.Comment: 56 pages, 46 figures, 5 tables, To appear in Theory and Practice of Logic Programming (TPLP

    A compiler extension for parallelizing arrays automatically on the cell heterogeneous processor

    Get PDF
    This paper describes the approaches taken to extend an array programming language compiler using a Virtual SIMD Machine (VSM) model for parallelizing array operations on Cell Broadband Engine heterogeneous machine. This development is part of ongoing work at the University of Glasgow for developing array compilers that are beneficial for applications in many areas such as graphics, multimedia, image processing and scientific computation. Our extended compiler, which is built upon the VSM interface, eases the parallelization processes by allowing automatic parallelisation without the need for any annotations or process directives. The preliminary results demonstrate significant improvement especially on data-intensive applications

    Study and development of a software implemented fault injection plug-in for the Xception tool/powerPC 750

    Get PDF
    Estágio realizado na Critical Software e orientado pelo Eng.º Ricardo BarbosaTese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    A Scalable, Portable, and Memory-Efficient Lock-Free FIFO Queue

    Get PDF
    We present a new lock-free multiple-producer and multiple-consumer (MPMC) FIFO queue design which is scalable and, unlike existing high-performant queues, very memory efficient. Moreover, the design is ABA safe and does not require any external memory allocators or safe memory reclamation techniques, typically needed by other scalable designs. In fact, this queue itself can be leveraged for object allocation and reclamation, as in data pools. We use FAA (fetch-and-add), a specialized and more scalable than CAS (compare-and-set) instruction, on the most contended hot spots of the algorithm. However, unlike prior attempts with FAA, our queue is both lock-free and linearizable. We propose a general approach, SCQ, for bounded queues. This approach can easily be extended to support unbounded FIFO queues which can store an arbitrary number of elements. SCQ is portable across virtually all existing architectures and flexible enough for a wide variety of uses. We measure the performance of our algorithm on the x86-64 and PowerPC architectures. Our evaluation validates that our queue has exceptional memory efficiency compared to other algorithms and its performance is often comparable to, or exceeding that of state-of-the-art scalable algorithms

    CellSim: a validated modular heterogeneous multiprocessor simulator

    Get PDF
    As the number of transistors on a chip continues increasing the power consumption has become the most important constraint in processors design. Therefore, to increase performance, computer architects have decided to use multiprocessors. Moreover, recent studies have shown that heterogeneous chip multiprocessors have greater potential than homogeneous ones. We have built a modular simulator for heterogeneous multiprocessors that can be configure to model IBM's Cell Processor. The simulator has been validated against the real machine to be used as a research tool.Peer ReviewedPostprint (published version

    CONFIGEN: A tool for managing configuration options

    Full text link
    This paper introduces CONFIGEN, a tool that helps modularizing software. CONFIGEN allows the developer to select a set of elementary components for his software through an interactive interface. Configuration files for use by C/assembly code and Makefiles are then automatically generated, and we successfully used it as a helper tool for complex system software refactoring. CONFIGEN is based on propositional logic, and its implementation faces hard theoretical problems.Comment: In Proceedings LoCoCo 2010, arXiv:1007.083
    corecore