
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

tlCell: a Software Transactional
Memory for the Cell Broadband Engine

Architecture

André Filipe da Rocha Lopes — 26949

Lisboa
(2010)

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

tlCell: a Software Transactional
Memory for the Cell Broadband Engine

Architecture

André Filipe da Rocha Lopes — 26949

Orientador: Prof. Doutor João M. S. Lourenço

Dissertação apresentada na Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa para
a obtenção do Grau de Mestre em Engenharia In-
formática.

Lisboa
(2010)

Dedicado à minha familia e amigos.

Acknowledgements

First of all I would like to thank Prof. Doutor João Lourenço for his guidance during the de-
velopment of this Dissertation but specially for his pedagogic and human skills, which are
remarkable. Without him it would had been a much more difficult journey. Also a very special
thanks to all the Professors of Computer Science Department which during the development
of this Dissertation had the time to help me whenever i needed, namely Prof. Doutor Hervé
Paulino and Prof. Doutor Pedro Barahona for having time to discuss some technical issues of
Cell Broadband Engine and also Prof. Doutor Paulo Lopes for restarting the blade server every
time I managed to deadlock it.

Also a very special thanks to Prof. Doutor José Cardoso e Cunha to which I have the greatest
respect and admiration and helped me follow this field of study when taking one of his subjects.

To all my colleagues, which stood by my side all the time and spent numerous hours in
Computer Engineer Department with me, a very special thanks.

A very special thanks to my family, for guidance, support and patience.
This work was partially supported by Sun Microsystems and Sun Microsystems Portugal

under the “Sun Worldwide Marketing Loaner Agreement #11497”.

vii

Summary

The evolution of computers grew exponentially in the last decades. The performance has al-
ways been the main concern resulting in increasing clock frequency of processors, which is not
feasible anymore due to power consumption of actual energy-starving processors. Cell Broad-
band Engine Architecture project started with the goal of delivering high performance with low
power consumption. The result is a heterogeneous multiprocessor architecture with a unique
memory design space towards high performance and reduced hardware complexity to reduce
the cost of production. In such an architecture it is expected that concurrency and parallelism
techniques improve performance substantially. However the high performance solutions pre-
sented for CBEA are very specific due to its novel architecture and memory distribution and
it is still hard to develop tools that are able to provide to the programmer an abstraction layer
that is able to exploit concurrency and manage consistency. Software Transactional Memory is
a programming model that proposes this abstraction layer, and is gaining increased popular-
ity and several prototypes have been developed with performance close to fine-grain specific
implementations for the domain problem. The possibility of using STM to develop a tool ca-
pable of hiding all the memory management and consistency in CBEA is very appellative. In
this document we specify a deffered-update STM framework for CBEA that takes advantage
of the SPEs for computational power using a commit-time locking mechanism for commiting
transactions. Also two different models are proposed, fully local and multi-buffered models in
order to better study the implications of our design choices.

Keywords: Software Transactional Memory, Cell Broadband Engine Architecture, Consistent
Transaction Layer.

ix

Sumário

Os computadores evoluı́ram exponencialmente na ultima década. A performance tem sido
o principal objectivo resultando no aumento do frequência dos processadores, situação que
já não é fazı́vel devido ao consumo de energia exagerado dos processadores actuais. A ar-
quitectura Cell Broadband Engine começou com o objectivo de providenciar alta capacidade
computacional com um baixo consumo energético. O resultado é uma arquitectura com multi-
processadores heterogéneos e uma distribuição de memória única com vista a alto desempenho
e redução da complexidade do hardware para reduzir o custo de produção. Espera-se que as
técnicas de concorrência e paralelismo aumentem a performance desta arquitectura, no en-
tanto as soluções de alto desempenho apresentadas são sempre muito especificas e devido à
sua arquitectura e distribuição de memória inovadora é ainda difı́cil apresentar ferramentas
passı́veis de explorar concorrência e paralelismo como um camada de abstracção. Memória
Transaccional por Software é um modelo de programação que propõe este nı́vel de abstracção
e tem vindo a ganhar popularidade existindo já variadas implementações com performance
perto de soluções especı́ficas de grão fino. A possibilidade de usar Memória Transaccional
por Software nesta arquitectura inovadora, desenvolvendo uma ferramenta capaz de abstrair o
programador da consistência e gestão de memória é apelativo. Neste documento especifica-se
uma plataforma deffered-update de Memória Transactional por Software para a arquitectura
Cell Broadband Engine que tira partido da capacidade computacional dos Synergistic Process-
ing Elements (SPEs) usando locks em commit-time. São propostos dois modelos diferentes,
fully local e multi-buffered de forma a poder estudar as implicações das escolhas feitas no de-
senho da plataforma.

Palavras-chave: Memória transacional por Software, Cell Broadband Engine Architecture, Con-
sistent Transaction Layer.

xi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem specification . 2
1.3 Thesis statement and contributions . 2
1.4 Document layout . 2

2 Related Work 5
2.1 Introduction . 5
2.2 Software Transactional Memory . 5

2.2.1 Transactional Model Properties . 6
2.2.2 Design approaches . 8

2.3 Consistent Transaction Layer (CTL) . 12
2.3.1 Introduction . 12
2.3.2 CTL Features . 12
2.3.3 CTL granularity . 13

2.4 Cell Broadband Engine . 14
2.4.1 Overview . 14
2.4.2 Memory and Communication . 16
2.4.3 Programming Models . 18

2.5 x86 vs Cell Broadband Engine instruction set architecture 19
2.5.1 x86 . 20
2.5.2 CBEA . 20

2.6 Software Managed Cache . 23

3 Architecture solution 25
3.1 Introduction . 25
3.2 Challenges . 26
3.3 Solution Layout . 27

3.3.1 Design Choices . 27
3.3.2 Algorithm . 29
3.3.3 API . 33

3.4 Evaluating Design Choices . 33

xiii

CONTENTS

3.4.1 Deferred update vs Direct update - Transaction Log Management 33
3.4.2 PPE vs SPE Validation . 35
3.4.3 Framework configuration . 35

3.5 Conclusions . 36

4 Implementation 37
4.1 Introduction . 37
4.2 Execution Flow . 38
4.3 Porting CTL from x86 to CELL . 38
4.4 Extending CTL to SPE’s . 39

5 Validation 43
5.1 Introduction . 43
5.2 Functional Validation . 43

5.2.1 Atomicity . 44
5.2.2 Consistency . 45
5.2.3 Isolation . 45
5.2.4 Implementation Validation . 46

5.3 Performance Evaluation . 47
5.3.1 PowerPC vs x86 Processor . 48
5.3.2 Ennals Harness test in SPE . 52

6 Conclusions and Future Work 55

xiv

List of Figures

2.1 General Architecture Design of CBEA. 14
2.2 Power Processing Element General Overview. 15
2.3 Synergistic Processing Element . 16
2.4 SPU registers, data types and preferred slot. 23

3.1 Visual caption of Algorithm for Fully Local Model. 30
3.2 Visual caption of Algorithm for Multi-buffered Model. 31

4.1 How to compile an executable. 38

5.1 Throughput Red-Black-Tree Harness . 48
5.2 Aborts Red-Black-Tree Harness . 49
5.3 Throughput Red-Black-Tree Harness . 50
5.4 Aborts Red-Black-Tree Harness . 50
5.5 Throughput Red-Black-Tree Harness . 51
5.6 Aborts Red-Black-Tree Harness . 51

xv

Listings

2.1 Atomic Blocks . 7
4.1 Declaration of SPE embeddeded code . 38
4.2 Composed Structure . 40
4.3 SPE control variable and local Transactional log variable 40
4.4 TxStart pseudo-code . 41
4.5 TxLoad pseudo-code . 41
4.6 TxStore pseudo-code . 42
4.7 TxCommit pseudo-code . 42
5.1 Transaction 1 — Conflict . 44
5.2 Transaction 2 — Conflict . 44
5.3 Transaction 1 - Abort . 44
5.4 Transaction 1 — Isolation . 45
5.5 Transaction 1 — Persistent Values . 46

xvii

1
Introduction

1.1 Motivation

As the need for high demanding processing in almost every aspect of our society grows, Cell
Broadband Engine Architecture (CBEA) was designed to provide a very high performance with
low power consumption. Cell Broadband Engine (CBE) appears as a very peculiar type of
architecture, leading to the need to develop brand new frameworks, compilers and runtime
management tools, therefore implying the need to redesign the application code to achieve the
expected performance from such an architecture.

Being an alternative to conventional systems, it is hard to expect from the common pro-
grammer the knowledge to code in CBE taking out of the architecture the real potential of it.
This represents a massive effort to provide tools to the programmers so that they can abstract
from the architecture design. Due to its heterogeneous multiprocessor architecture, concur-
rency and parallelism techniques are expected to greatly improve the speedup of the applica-
tion code, but they also represent increased difficulty in its implementation, consistency and
debugging.

Software Transactional Memory (STM), due to its properties such as being time-line execu-
tion independent and providing the concepts of atomicity and isolation, presents an approach
to this high-level abstraction tools for the programmer on CBEA. With transactions, the pro-
grammer is able to define computations inside the scope of a transaction and benefit from the
Transactional Manager to avoid inconsistency in the execution of code and relieves the pro-
grammer from the need of explicitly controlling the contention on the objects being accessed in
the critical sections.

With these premises STM can offer great advantages in such novel architecture with still
complex synchronization mechanisms, hoping to provide an abstraction layer to the program-

1

1. INTRODUCTION 1.2. Problem specification

mer.

1.2 Problem specification

Most STM engines implement transactional memory for threads executing in the address space
of a single computer. Exceptions, such as XSTM [Noe] and the distributed multiversioning STM
engine presented by [MMA06], refer to a distributed shared memory system. A STM engine
for CBEA does not suit the normal parameters of a simple shared memory system since the
sub-processors, the Synergistic Processing Element (see section 2.4.1 for more details), cannot
address directly the memory. All data transfers between the sub-processors and shared mem-
ory have to be made through Direct Memory Access (DMA) transfers (see section 2.4.2 for more
details). Also, the SPE’s are Single Instruction Multiple Data (SIMD) processors, with distin-
guish Instruction Set Architecture (ISA) from the main processor, which arises the need to have
special concerns on the specification of a STM framework for the CBE to allow users to take
advantage of the massive computational power of these processors.

Also the versatility of the CBEA allows to use it for several different programming paradigms
which makes the task of developing and evaluating an STM framework for this architecture
complex but also challenging. Providing several distinct synchronization methods, an het-
erogeneous multi-processor architecture, a novel memory distribution, a high capacity Bus
(Element Interconnector Bus), the distinct compilers, frameworks and open-source libraries
available the possibilities are almost infinite.

1.3 Thesis statement and contributions

With this study we intend to show that Transactional Memory paradigm fits CBEA.

The expected contribution is the specification and development of a STM engine for CBE
under Linux operating system that allows integration with different programming models. We
use Consistent Transaction Layer [Cun07] (also known as CTL) as a basis, due to its feature
richness and the good performance achieved on x86 architecture. The integration of CTL on
CBEA has several modifications, respecting to the different architecture design, supporting the
heterogeneous multiprocessor architecture, its different instruction set architecture (ISA) and
taking advantage of the unique memory layout and high memory bandwidth available.

The prototype implements a STM engine for CBEA, and it is benchmarked and tested to
certify its correctness execution and performance achieved. We expect to contribute to the sci-
entific community with the development of this prototype, providing detailed documentation
and presenting the results achieved.

1.4 Document layout

This document is divided in 6 chapters.

2

1. INTRODUCTION 1.4. Document layout

• Chapter one introduces the problem, discusses the motivation and presents a brief solu-
tion layout.

• In chapter two we present related work. We describe the actual state with STM program-
ming model, with an introduction to Transactional Memory properties and features, fol-
lowed by a description of CTL. Also in chapter two, the Cell Broadband Engine and its
functionalities are discussed, as well as CBEA and x86 ISA relevant differences.

• Chapter three presents the architecture solution for the specific problem, discussing the
pros/cons of design choices on the provided solution.

• Chapter four discusses the implementation issues of the framework.

• In chapter five the validation and benchmarking of the prototype are presented. Also the
results are discussed.

• Chapter six draws last conclusions on the development of this dissertation and discusses
open issues that may be added in a future work.

3

2
Related Work

2.1 Introduction

In this chapter it is introduced the state of the technologies used in the study of this Disser-
tation. The first section introduces Software Transactional Memory (STM) and its properties.
Afterwards Consistent Transaction Layer (CTL), a STM framework developed for x86 proces-
sor, is introduced and its properties explained since we use this framework as a basis for our
prototype.

The following section explains the Cell Broadband Engine Architecture (CBEA), the design,
properties and communication mechanisms that the architecture provides. Afterwards a com-
parison between x86 processor and Cell Broadband Engine Instruction Set Architecture (ISA) is
made in order to understand the distinctions between them. The following section introduces
Software Managed Caches (SMC) since it can greatly improve the performance of our solution
in the specific architecture (CBEA). The last section introduces STM benchmarks, the specific
problems in benchmarking STM application and some of the solutions and models provided
in the scientific community in order to effectively and accurately benchmark STM implemen-
tations.

2.2 Software Transactional Memory

Transactions are well known in the world of Databases, they are in great part responsible for
the success of Database programming model. Transactions in databases provide a way to ex-
ecute queries of code concurrently maintaining consistency of persistent memory. Applying
this transactional model to other programming models is becoming of great importance, spe-
cially with the current growing of multi-core processors. Single-chip processors have reached

5

2. RELATED WORK 2.2. Software Transactional Memory

a limit in performance, it is not feasible anymore to increase the clock frequency, if we consider
performance per energy consumed, and this evolution leads us to the present state, where ap-
plications and systems are not prepared for this multi-core or multi-processor architectures.
Providing tools that help to exploit concurrency and parallelism has revealed to be a very de-
manding task [LR06].

Writing concurrent programs is not trivial [Han77], and is mostly based on explicit lock-
ing of critical sections where concurrent data accesses may occur and it is always implemen-
tation dependent. Transactional memory was proposed as a new abstraction for program-
ming [Lom77], providing a high level abstraction for concurrency control in a multi-threaded
or multi-processor environment. Being able to consider several pieces of code as transactions
and executing them concurrently as if they were being executed sequentially brings notorious
benefits.

Transactional Memory (TM) shifts the burden of synchronizing and coordinating parallel
computation from the programmer to the TM framework, and the performance results are fre-
quently equivalent or closed to fine grain lock based implementations. Although transactions
are not the only way to control parallel computation (we still have locks, semaphores, mutexes
and monitors) the higher-level abstraction sure makes transactional memory very appellative.
This idea came from Lomet [Lom77] in 1977, who did not present any practical implementa-
tion until Herlihy and Moss proposed a hardware supported transactional memory [HEM93]
in 1993. The term STM was first introduced by Shavit, and Touitou in 1995 [ST95] and described
the first software implementation of a transactional memory.

In the sub-sequent sections it will be introduced the transactional model properties and
design approaches for software transactional model, specifying the advantages and disadvan-
tages of the different possibilities.

2.2.1 Transactional Model Properties

ACID properties

Transactions use the ACID(Atomicity, Consistency, Isolation and Durability) properties as fun-
damentals.

• Atomicity — This property states that either all the transaction instructions return suc-
cessful, and therefore the transaction commits successfully, or if one of the instructions
fail, the whole transaction aborts and none will be executed.

• Consistency — Consistency is directed related to data, specifically to data handled by a
transaction. It is important that a transaction leaves a consistent data when it ends (either
an abort or a commit). Every transaction expects reading a consistent state.

• Isolation — This specific property is very important for parallel environments. Each
transaction has to run correctly even with other transaction executing concurrently, not
affecting its data. Frequently it is assumed that the result of two concurrent transactions
must be the same as if they were executed serially.

6

2. RELATED WORK 2.2. Software Transactional Memory

• Durability — After a transaction commits, the changes have to be persistent, even in case
of system crash.

Usually transactions are closely related with databases, which are context specific, they
interact with I/O devices and deal with persistent writes, where the property Durability is very
important to assure persistent memory correctness. In STM, Durability is not taken into account,
since we are dealing with memory writes/reads and data in memory is usually transient.

Transactions States

In the programmer perspective, there are three possible outcomes for a transaction. A trans-
action might commit; abort; or run in a undefined state [SKS05]. A transaction commits when
all the instructions of the transaction have been successful. It aborts when any of the instruc-
tions fails. It might be undefined if it neither aborts or commits which results in a undefined or
unhandled error on the execution of the transaction.

From the point of view of the system the transaction might be active, partially committed,
committed, failed or aborted. An active transaction refers to a running transaction. In case of
instructions completion (those inside the scope of a transaction) the transaction will try to com-
mit, it is considered partially committed. If all changes were successful then the transaction is
considered committed In case of any failure, the transaction must rollback, therefore encounter-
ing itself in a failed state, which is succeeded by the Aborted state, referring to the completion
of the rollback leaving the data consistent.

Basic Constructs

An atomic block represents the blocks of code that will be executed as transactions. An example
of this can be seen below.

Listing 2.1: Atomic Blocks

1 int calculate_square_area(int x, int y){

2 atomic{

3 int z = multiply(x,y);

4 }

5 }

All the operations inside an atomic block have the Isolation and Atomicity properties assured
and any function called inside an atomic block inherit the same properties.

Nested transactions

Nested transactions are transactions executed inside transactions. The original transaction is
called the outer transaction, and the sub-transactions are the inner transactions. Several differ-
ent approaches are made towards nested transactions behavior. This differences are how the
transaction should handle the inner transactions respecting to data, and when aborting if the

7

2. RELATED WORK 2.2. Software Transactional Memory

outer transaction should abort or not. Nested transactions were introduced by Moss [Mos81].
There are three types of Nested Transactions:

• Flattened Nesting — Flattened transactions behave, as the name says, as if the inner trans-
action expanded into the outer transaction. Aborting the inner transaction makes the
outer transaction to abort as well and committing the inner transaction has no effect un-
til the outer transaction commits. Data from a inner transaction is visible to the outer
transaction, but not to the other transactions. These are easy to implement but a very
simplistic way to approach nesting, but they can be used in a high rate commit scenario,
where performance is critical.

• Open Nesting — Open nesting most specific attribute is that the result of the changes made
by a inner transaction is made visible, not only to the outer transaction, but also for the
rest of the system. Notice that even if the outer transaction aborts, the results altered by
the previously committed inner transaction are still visible.

• Closed Nesting — Closed transactions aborts without aborting the outer transaction. When
it commits passes control to the outer transactions, and changes made by the inner trans-
action become visible to parent transaction, but not to the rest of the transactions.

Distributed transactions

Distributed transactions happen often in the context of large databases, where data might be
replicated through distributed data centers. To maintain certain properties, like atomicity, each
agent must coordinate between them. A common approach for this is the Two-Phase Commit
protocol. Each transaction acts as an agent, and whenever there is the need to commit a transac-
tion the first phase of the protocol begins. The transaction responsible for the commit, lets say
the manager, asks each agent the request to commit. After each agent “approve” the request,
which implies that they execute the transaction to the point where they are able to commit,
the responsible for the protocol initiation then starts the second phase, which is the effective
commit of the changes, and afterwards the release of the locks. If any of the agents does not
succeed in any of the phases, it informs the manager, which will message all the agents that the
protocol has failed and therefore no changes will be made.

This protocol is widely known and used, but the fact that holds the locks while the protocol
is in execution is a drawback since it minimizes concurrency and strongly affects performance.

2.2.2 Design approaches

Concurrency Control and Conflict Detection

Concurrency Control is necessary to synchronize concurrent accesses to an object/data.
When dealing with concurrent transactions sooner or later a conflict will happen. By con-

flict we mean that at least two transactions are accessing the same data, and one of them is
trying to modify the data.

8

2. RELATED WORK 2.2. Software Transactional Memory

There are three possible states. A conflict occurs, a conflict is detected and a conflict is
resolved. An occurrence of a conflict doesn’t mean that it is immediately detected. We consider
a conflict resolved when a TM rules/protocol is applied to resolve the conflict.

Resolving a conflict can be made in several ways. It varies on concurrency control mecha-
nism of the TM namely if it is a pessimistic or optimistic concurrency control mechanism. In a
pessimistic concurrency control approach, all the three stages happen sequentially. As soon as
a conflict happens, it is detected and resolved. In a optimistic concurrency approach the same
is not true. Conflict detection and resolution can be delayed.

Conflict Detection can be made at one of these times [LR06].

• Detected on open happens when we try to access the object or data at the first reference
to the object.

• Detected on validation can be made at any time of a transaction execution, and even sev-
eral times. This validation is a routine to validate the data set, checking if it has been
modified by any other transaction. The result of this varies depending on the TM imple-
mentation.

• Detected on commit validates the data-set before committing, checking if any data has
been modified by other transaction.

Early detection avoids lost computation on a transaction, since it could abort immediately.
However there are cases where an early detection aborts the transaction that could have com-
mitted otherwise.

Keeping track of object accesses through a list of transactions accessing the object can be
difficult to maintain since there are no guarantees of how many transactions will access the
data, obligating therefore to an implementation of dynamic structures so that no boundary
exceptions occur. This boundary problem may occur with versioning data-sets, since it can as
well outbound the max value, but it is a fairly easier problem to overcome.

Several possibilities can happen with conflicts. If a system desires to allow concurrent reads,
can even not track the reads like Invisible read TM system [LR06], but any transaction that
performed a read on some data-set must validate it before committing.

Scott [Sco06] identified 4 policies for detecting conflicts:

• Lazy invalidation — T1 writes an object. T2 reads the same object and T1 commits before
T2

• Eager Write-Read — T1 writes an object. T2 reads the same object but none of the trans-
actions has committed yet

• Mixed Invalidation — T1 writes an object. T2 reads the same object and then writes into
the same object and none of the transaction has committed yet

• Eager Invalidation — T2 reads an object. T1 writes into the same object and none of the
transaction has committed.

9

2. RELATED WORK 2.2. Software Transactional Memory

When a conflict occurs, in a Late Concurrency Control approach, a transaction might be
executing in a inconsistent state. This has to be either prevented or corrected.

• The validation method requires validation of the read-set to assure that the data is con-
sistent. Depending if “operating” in deferred-update or direct-update mode, rules have
to be made to guarantee the consistency of data.

• Invalidation method invalidates the read-sets of an object/data when that data-set is ac-
cessed by any transaction aiming to modify the same data-set.

• It is still possible to allow inconsistency toleration, since validation might be expensive.
This approach needs to guarantee that none of the other concurrent transactions will
execute correctly using any data manipulated by this inconsistent transaction.

Weak and Strong Isolation

There are two types of isolation, weak and strong [BLM05]. When we access data in a trans-
action environment, we use a STM engine, therefore we expect the engine to protect our data
from concurrent transactions. But what if a non-transactional access is made to the data? Weak
isolation allows the data access, therefore expecting the programmer not to access data outside
of the transaction environment, or access it in a controlled way, so that it does not corrupt the
data.

In closed memory systems such as C where malloc()/free() instructions prevail we have to
take in account recyclable data, so that non-transactional instructions might access it.

Strong Isolation states that data is protected from non-transactional access, so it is only
possible to access it through the STM engine. Basically it turns every single instruction out of
Transactional environment into a transaction, forcing it to respect the transaction engine rules.

Transaction granularity

Transaction Granularity refers to the amount of data that is being controlled by the STM for
conflicts. Granularity can differ from system to system, some refer to an object, some for blocks
of data or words. These are distinguished by it’s size, therefore implying fine grain or coarse
grain. The finer the grain, more concurrency is allowed, the coarser the grain, more simplified
approach and less overhead is achieved.

Coarse object granularity is appellative, since we can associate metadata easily to the object,
but if we are accessing just a small amount of data in the object, and other transaction tries to
access a different data in the object, it won’t be able to.

Blocking vs Non-Blocking synchronization

Early TM systems used nonblocking synchronization, this type of synchronization offers a
stronger guarantee of forward progress, while blocking synchronization imposes concurrency
limitations.

10

2. RELATED WORK 2.2. Software Transactional Memory

Ennals [Enn05] suggested that system deadlocks prevention are the only compelling reason
to implement non-blocking transactions systems.

TL2 [DSS06] article suggests that experience until now reveal that blocking synchronization
STM systems perform better and are easier to implement than non-blocking synchronization
systems.

There are mainly three types of forward progress guarantee [LR06]:

• Wait freedom is the strongest guarantee that all threads accessing a common set of objects
make forward progress.

• Lock freedom assures that at least one thread makes forward progress from all the set of
concurrent threads.

• Obstruction freedom is in others words an optimistic concurrency control, since the only
requirement is that a subset of data (partially completed operation) can be rolled back.

Direct and deferred update

Direct and deferred update state how data should be handled when its modified.

Using direct update approach implies that the data is directly updated when it is modified,
therefore adding the need to keep a log change, so if the transaction aborts, we are able to
rollback all the instructions, leaving a consistent and unchanged state of the data regarding
the beginning of the transaction. The data has to stay the same, as if the transaction has never
happened.

When deferred update is used, the data is handled locally, through a copy. If the transaction
commits successfully, the data then is moved to the proper location. Of course this is not as
simple as this description, some considerations have to be taken into account regarding data
accessed by other transactions. If no other transaction modified the state of the data, then the
effective changes are made into memory. Aborting a transaction in deferred update is as simple
as deleting the private copy of the transaction.

The direct update mode speeds up the reads since they simply access shared memory to
read, however they maintain locks on variables until transactions commit. On the other hand
deferred update minimizes the overall contention by only acquiring the locks on commit time,
but the drawback is the necessity to check the write set of current transaction, verifying if any
change was made to the variable that we wish to read [Cun07].

Lock Placement

When a update to memory segment has to be made, independently of its granularity, there is
the need to lock any accesses to that segment from other transactions. We can opt for defining
a variable adjacent to data which will indicate if the data is locked or not, through a single bit
variable. There is also the possibility to define a separate table with all the locks.

11

2. RELATED WORK 2.3. Consistent Transaction Layer (CTL)

2.3 Consistent Transaction Layer (CTL)

2.3.1 Introduction

CTL [Cun07, CLD08] was developed in Universidade Nova de Lisboa by Gonçalo Cunha as his
Master Thesis and adds some functionalities to Transactional Locking 2 [DSS06], a global ver-
sioning clock based STM engine presented by Sun Microsystems. Some of the added function-
alities are the basis of a STM engine design, others performance related. Besides his objective
to improve the STM engine, the objective was that CTL would ran in x86 processor instead of
SPARC, and that it would use GCC instead of SUNPRO C compiler.

Transactional Locking 2 (TL2) was chosen due to its singular characteristics. Although it
is a lock based implementation, it helds locks for very short periods of time (only on commit
time), and it suits open memory programming languages such as C. Also, the global versioning
clock presented a new approach towards consistency validation of transaction states. TL2 used
a redo logging strategy and allowed lock to be placed on a separate table or adjacent to data,
depending on compile time options from part of the user. CTL ended as a prototype with more
features than the TL2, that will be described in the following sections.

2.3.2 CTL Features

User abort

CTL provides a way to a user to explicitly abort a transaction. This is very useful in some cases,
since it might be needed to abort a transaction, not because of transaction inconsistency but
due to logic in program execution.

Automatic transaction retry

Automatic transaction retry happens when two transactions collide, therefore one of them has
to abort. If there is no automatic transaction retry the programmer has the need to explicitly
test if the transaction committed successfully. With Automatic transaction retry implemented
in CTL the transaction automatically retries, corresponding to a exactly one successful commit.
This has been achieved with setjmp/longjmp instructions. The setjmp routine saves the processor
state on the beginning of a transaction, while longjmp restores the processor state that has been
previously saved by setjmp.

Transaction Nesting

CTL transaction nesting is partially based on Closed Nesting. If the execution of a sub-transaction
commits successfully the transaction log is concatenated with the log of the outer transaction.
In case where the sub-transaction aborts the log is discarded and the control passes to the par-
ent transaction. However when a collision with other transaction is detected even the parent
transaction aborts, since the conflicting variable might as well been read by the parent transac-

12

2. RELATED WORK 2.3. Consistent Transaction Layer (CTL)

tion. This can be avoided by validating the whole read set of all transactions, assuring that the
parent transaction is still in a consistent state.

Update techniques and validation modes

CTL was developed based on TL2, which used the deferred update technique with a redo logging.
CTL not only implements the deferred update mode, as well as direct update mode using a
undo log. These extra features developed in CTL allows the user of CTL to use, according to
application necessity, each one of the approaches. With the deferred update technique, none of
the changes is made visible to all other transactions until the transaction commits successfully.
This is achieved through keeping a temporary copy of the real values (the redo log), combined
with the global versioning clock to assure state consistency of the transactions.

The direct update mode approach, results in direct changes of the memory values, keeping
an undo log, allowing rollback in case the transaction has to abort leaving therefore the data
consistent.

When a transaction starts, it reads the global version clock into a transaction timestamp.
When a transaction loads, transaction checks if the variable is already in the write set, if it does
mean that it has already been accessed within the transaction and returns the value written in
the write-set, otherwise, logs the read in the read-set and returns the value. For the read to be
valid, the transaction must check if the lock isn’t held, if the lock version is the same in both
checks (before and after the read) and that the lock version is lower or equal to the transac-
tion timestamp, guaranteeing that the transaction is in a consistent state. When a Transactional
Store happens, the transaction logs the write on the write set. When a transaction commits, the
corresponding locks are obtained, the read set is validated, the global version clock is incre-
mented, the new variable values are copied from the redo log to the corresponding memory
positions and finally the locks are released with an updated version corresponding to the new
global version clock number. Aborting a transaction is as simple as discarding the redo log (in
redo mode).

2.3.3 CTL granularity

CTL allows Object mode besides word mode [CLD08]. This results in coarser granularity, that can
be very useful when several modifications are made in the same object, since with the object
mode we only have to acquire one lock for the whole object, reducing therefore the meta-data
size, and the transaction overhead of validating all the read-sets in the word mode since only
one entry is made to the undo-log for several reads on the same object. However it has also
drawbacks, since coarser granularity reduces concurrency.

13

2. RELATED WORK 2.4. Cell Broadband Engine

2.4 Cell Broadband Engine

2.4.1 Overview

CBE began as a challenge to improve the relation between power consumption and perfor-
mance to high demanding processing applications. Sony, Toshiba and IBM started a joint ven-
ture to design an architecture capable of providing such demanding goal.

To be able to take a look into the Cell advantages and disadvantages it is important to talk
about metrics. Several metrics are usually used to prove/test architectural design efficiency,
such as performance per cycle or design frequency, but as we move into a world where power is
more expensive and specially limited, we have to take into consideration the power efficiency
of our systems. Several metrics can be used to measure this efficiency, such as energy per
operation or performance per transistor. In the design of CBEA these kind of metrics were
taken in consideration.

Most architectures now-a-days do not take into consideration the power/performance ra-
tio, and some architectural choices like virtual memory, caches, out-of-order executions and
hardware branch predictors decrease this ratio substantially [Pet05], so in CBE, some sacrifices
were made in order to improve this ratio. Most of the disadvantages resulting of these “sacri-
fices” go to the programmer, that have to take some issues in consideration on the development
of applications.

Cell Architecture Design

CBEA was finally designed as shown in figure 2.1 and it is composed by a main processor(PPE),
eight cores (SPE), an interconnection bus (EIB) and system memory.

Figure 2.1: General Architecture Design of CBEA.

The CBE has a heterogeneous multi-core processor configuration, pursuing the objective
of taking advantage of the parallelism techniques, residing its computational power on the
SPEs units. This choice of heterogeneous multi-core architecture was made due to the fact that
the architecture would have to handle heavy computation (and therefore the SIMD dataflow of

14

2. RELATED WORK 2.4. Cell Broadband Engine

SPEs are a good choice) and manage an Operating System (OS), that have very frequent context
switches.

The Power/Performance ratio was roughly taken in consideration and several choices were
made in order to improve this ratio. For instance, the PPE and the SPEs do not support out-of
order execution, neither have branch predictors by hardware. These choices reduce the price
and power consumption of Cell.

Power Processing Element

The Power Processing Element (PPE) is the responsible for the management of the system. It
controls all the 8 cores (SPEs).

The PPE is a 64 bit PowerPC 970, running at 3.2GHz, 2-way simultaneous multithreading
processor. It consists of a Power Processing Unit (PPU), and a 512KB 8-way set associative
write-back cache, used for both instructions and data as shown in figure 2.2(extracted from Cell
Broadband Engine Handbook. [IBM07a]) .

Figure 2.2: Power Processing Element General Overview.

Notice that although it is a PowerPC 970 based processor, and it uses its instruction set, its
design is much more simpler in order to lower the cost of the hardware. The fact that it uses
the same instruction set allows the programmers to start with software based on traditional
PowerPC architecture, improving afterwards the software for the CBEA.

The PPU has a 32KB 2-way set associative reload-on-error instruction cache and a 32KB
4-way set associative write-through data cache.

Synergistic Processing Element

The Synergistic Processing Elements (SPE) are 128 bit SIMD ”slaves” of the SPE, and the true
potential of computation workload of the CBEA. A single SPE contains a Local Store (LS), Syn-
ergistic Processing Unit (SPU) and a Memory Flow Controller (MFC). The LS consists of 256KB

15

2. RELATED WORK 2.4. Cell Broadband Engine

Figure 2.3: Synergistic Processing Element

of unified memory for both data and instructions. The only way to move data to and from LS
is through the MFC, which is responsible for all data transfer capabilities of the SPE.

The SPE uses a three level memory organization, (Registers, Local Store and System Mem-
ory), that breaks from conventional architectures. This three level organization, combined with
asynchronous DMA transfers explicitly parallelizes both computation and data transfers. With
this approach, it is possible to minimize the latency on accessing system memory on conven-
tional systems.

In figure 2.3 (extracted from SCOP3: A Rough Guide to Scientific Computing On the PlaySta-
tion 3) we can take a deeper look at the SPE. We can see the interaction between LS and MFC
for data transfer, as well as the two SPU pipelines, the odd pipeline and the even pipeline. The
odd pipeline is responsible for memory operations, while the even pipeline is responsible for
the computation. This pipelining allows us to perform two SIMD instructions per cycle, one
compute instruction and one memory operation.

2.4.2 Memory and Communication

Memory in CBE

Memory in CELL, due to its heterogeneous multiprocessor architectural design, is decentral-
ized. This introduces a very sensitive area of CELL since taking good advantage of the archi-
tecture depends on the effective usage of the memory.

The way the PPE and the SPEs access main memory differ substantially. To access the main
memory, the PPE accesses main storage with load and store instructions, to or from a private
register file. The SPE’s on other hand must move data from main memory to its Local Store

16

2. RELATED WORK 2.4. Cell Broadband Engine

(LS) before the SPU can fetch instructions.

Since the SPE’s can only execute code inside its LS, data has to be moved into it from main
memory and then moved back to main memory. This is possible by using DMA transfers. This
data-flow from SPE’s LS and main memory is intermediated by two interface controllers, the
MIC (Memory interface controller) connected to the system memory and the MFC (Memory
Flow Controller), in which the DMA engine is integrated. The MFC allows the SPE to pipeline
the data while working on current computation, therefore providing a very powerful combi-
nation for non-locking computation. These two interfaces provide several mechanisms to the
programmer to manage memory and synchronization.

The Memory Flow Controller provides to the SPE data transfer and synchronization capa-
bilities. It implements the interface between SPU and EIB, LS and system memory. Notice that
any data transfer can be initiated by either the SPU or SPE.

The Cell BE memory and DMA architecture are fairly flexible. The PPE provides to the
MFC some resources, such as MMIO registers, with effective-address alias on main storage, so
others SPEs or the PPE can access and control the SPU. The local stores of the SPEs are mapped
into the global address space. The PPE can access (through DMA) local stores on the SPEs,
and can set access rights. The SPEs can initiate DMA to any global address, including the local
stores of other SPEs.

Communication

There are three possible ways of communication in CBE. Through DMA transfers, signals
or mailboxes. The most important one is obviously DMA transfers specially due to its non-
blocking facility.

DMA are non-blocking transfers, which allows to pipeline the data while computing the
data. DMA can be issued from PPE to SPE, from SPE to PPE and from SPE to SPE. DMA
messages are not ordered and they have a maximum size of 16KB, but it is always possible to
combine multiple DMA transfers to move data bigger than 16KB. DMA lists are perfect for this,
and they can combine up to 2048 DMA transfers. Each SPE is capable of queuing 16 requests.
Also there is a proxy queue, that the PPE and other SPEs are able to access. This proxy queue
can queue 8 requests. These lists are made available by the DMA engine in each MFC.

Signals are 32bit registers in SPU. Each SPU have two signal-notification channels. They
are a very trivial way of communication, it can be used to signal the completion of a task.
Each register has a corresponding MMIO register on which the data is written by the sending
processor. Each SPE can only access his own registers, therefore if any other SPE, or even the
PPE, has the need to access the information, it can be done by accessing the respective MMIO
register. Any read made by the SPE on its own registers will clear atomically the channel,
contrary to any MMIO read, that wont clear the channel.

Mailboxes are queues for exchanging messages. Mailboxes are blocking operations and
some precaution is advised to use it, since any request to read on a mailbox that is empty
will block the SPE. The same behavior happens when you write in a full mailbox. There are

17

2. RELATED WORK 2.4. Cell Broadband Engine

counters available to verify the state of the queue. Still, they provide a good way to message
another SPEs. Mailboxes are 32-bit messages, and they have a FIFO queue. Each SPE have
a four-entry inbound mailbox and a two one-entry outbound mailbox. Mailboxes are not a
good way to acknowledge transference completion because SPE knowledge of DMA transfer
completion is that the local buffer is ready for reuse, so there is a possibility that the mailbox
will be read by the PPE but the data isn’t there yet. Also, obligating the PPE to continuously
check the outbound mailbox of the SPE might flood the bus.

Barriers and Fences are mechanisms to order DMA messages within the queue or tag group.
Issuing a barrier will order it with respect to messages issued before and after the current mes-
sage. A fence will only order it to respect of the previous messages. Although these mecha-
nisms are very useful, it is recommended to use them as less as possible since it wont allow the
arbiter to improve the performance of the DMA transfers.

2.4.3 Programming Models

This section exploits the programming models for CBEA. Achieving the best performance on
any architecture depends on the exploitation of its specifications. In CBEA we can define two
main models, PPE-centric, and SPE-centric.

As CBE attracts several different sectors of computer science community, there are several
programming models that fit well in this architecture [BLKD07].

Function-Offload Model

Also called Remote Procedure Call Model, this model is PPE-centric. The PPE manages the ap-
plication, and offloads the computation to the SPEs. It is the most basic approach to the CBEA.
After identifying the code to be run on the SPE, a remote procedure is called through a stub,
hiding the communication issues to the programmer. This stub will manage the procedure and
communication both ways.

Computation-Acceleration Model

This model is SPE-centric. It uses the PPE almost only as a system service or a controller.
This model relies on the SPE for high computation, so it is more adequate for computational
demanding tasks.

It can use shared memory among the SPEs or a message-passing model for data bulk move-
ments. The workload can be partitioned either by the programmer or the compiler. Shared and
distributed techniques are used in this programming model.

Streaming Model

The streaming model treats the SPEs as pipelines, where each SPE is responsible for a different
task (not necessarily though) on the data. The pipelining can be serial or parallel, being possible

18

2. RELATED WORK 2.5. x86 vs Cell Broadband Engine instruction set architecture

to achieve better results in a two data streams model than in a one data stream model as stated
in [JGMR07].

This approach is suited for computation demanding tasks and also for the tasks that have
the need for big transfers of data, since the internal bandwidth available between the SPEs is
from far much bigger than system storage. But notice that it is important that the workload can
be divided in equal parts, otherwise, there is no sense in having an SPE with a huge workload
and another idling. In this model the PPE simply acts as a stream controller.

Shared-Memory Multiprocessor Model

The CBE can be used as a shared-memory model. With DMA cache coherency we can imple-
ment this model by DMA commands, from LS to the shared memory and vice-versa. The PPE
and SPE have all the same address space in memory. This is only possible because of the global
addressing schema of the CBE. DMA also provides lock-line commands, which allows us to
make atomic update primitives.

Asymmetric-Thread Model

The Asymmetric-Thread Model is very widespread on SMP. In CBE this Model is possible,
and is even implemented by the SPU Runtime Management Library SDK, but the preemptive
context-switching in the SPEs impose some overhead and costs, since SPEs support it more for
debugging purposes.

User-Mode Thread Model

The User-Mode thread is a model where a thread is run by an SPE, which manages microthreads
or user-threads. The SPE thread is supported by the Operating System, but the microthreads are
supported by user-software without the interference of the OS.

It is possible for the microthreads to be ran in different SPEs. The SPU schedules task in
shared memory, that can be processed by any SPU available.

This model has the advantage that has a predictable overhead, since it is running on a set
of SPUs, managed by a SPE.

2.5 x86 vs Cell Broadband Engine instruction set architecture

Instruction Set Architecture (ISA) is the boundary between software and hardware. In other
words it allows privileged software to manage the hardware. The ISA defines the instruction
set (range of instructions available), datatypes available, the addressing modes(define how to
calculate the effective memory address of an operand by using information held in registers)
and the instruction formats.

x86 is a Complex Instruction Set Computer (CISC) while CBE is a Reduced Instruction Set
Computer (RISC). The fact that x86 is a CISC is more due to retro-compatibility than any other
reason.

19

2. RELATED WORK 2.5. x86 vs Cell Broadband Engine instruction set architecture

There are several types of addressing modes, they specify how to reach the operands. The
instructions addresses specify how to calculate the effective memory address of an operand by
using information held in registers. There are several different types of addressing modes like
Register Direct or Register Indirect. The first define the value of operand directly in the register,
the former define the address of the operand in the register.

2.5.1 x86

The x86 architecture is a variable instruction length, primarily two-address CISC design with
emphasis on backward compatibility. x86 allows non-aligned data, but it is not advisable to do
so, due to performance issues. The x86 provide 8 General Purpose Registers (GPRs), six segment
registers, one flags register and an instruction pointer. x86 is little-endian meaning that multi-
byte values are written least significant byte first.

x86 supports 32bit 16bit and 8bit datatypes, single and double precision IEEE floating point.
The operand types in x86 can be passed mainly in 3 ways, directly in the instruction, it can

be stored in register and it can be in memory. Obviously if the operand is stored in memory
a bus access has to be made, therefore making the execution slower. The reduced number
of GPRs has made register-relative addressing (using small immediate offsets) an important
method of accessing operands.

Several extensions to the ISA have been added to x86, like MMX and Streaming SIMD
Extension (SSE) which allow SIMD instructions and advanced math operations.

2.5.2 CBEA

Cell Broadband Engine is as we know a heterogeneous multiprocessor architecture intended to
support a wide variety of needs. As SPEs are designed for computationally intensive tasks and
therefore SIMD processors, their Instruction Set differ from the PPE, actually being very close
to the PPE’s Vector/SIMD Multimedia Extension (VMX or AltiVec). This means that we have
two different instruction sets in CBEA. The instruction set for the PPE, which is an extended
version of the PowerPC instruction set, and the SPU ISA.

Power Processing Element and PowerPC

The PPE instruction set is based in the PowerPC 2.0.2 ISA and has some enhancements. This
enhancements are the VMX, that add 128 bit datatypes for vector and scalar operations, some
new instructions and C/C++ Intrinsics for VMX. Intrinsics are C language commands, in the
form of function calls, that can substitute one or more in-line assembly-language instructions.
The CBE programming handbook [IBM07b] gives a general view of the PPE ISA but detailed
descriptions can be found in the PowerPC user Instruction Set Architecture [WSMF03] manual.
CBE provide 32 General Purpose Registers (GPRs) [IBM07c].

The data types supported by the PPE can be viewed in table 2.1.
In CBE when a instruction is presented to the processor, the two most low-order bytes are

ignored. The addresses point to the Most Significant Byte (MSB) since CBE uses the big-endian

20

2. RELATED WORK 2.5. x86 vs Cell Broadband Engine instruction set architecture

Table 2.1: PPE supported datatypes

Datatypes Lenght
Fixed Point
Byte (Signed and Unsigned) 8
Half word (Signed and Unsigned) 16
Word (Signed and Unsigned) 32
Double Word (Signed and Unsigned) 64
Floating Point
Single precision 32
Double precision 64

convention.
The load and store addressing modes always define a base index and there are three differ-

ent possibilities:

1. Register - Load or store the contents of Register

2. Register + Register - Indexed form of the Load and Store instruction form the sum of the
contents of Register plus the contents of base register.

3. Register + Displacement - Forms the sum of Register and a 16bit signed-extended immedi-
ate field of instruction and sums the content of base register.

Instructions in PowerPC are 4 bytes long and aligned on word (4-bytes) boundary. It can
have up to three operands, most of them specify a 2 source operands and one destination
operand. In table 2.2 we can see those instructions. Below we introduce the instruction types
available for PowerPC.

Synergistic Processing Unit

The SPU ISA provides 7-bit register operand specifiers to directly address 128 registers using a
SIMD computation approach for both scalar and vector data. The SPU ISA operates on SIMD
vector operands, with support for some scalar operands. Any scalar operand must be issued
within the preferred slot, that are the left-most bytes in the registers (the 4 first bytes). Notice
that SPU is a Load/Store architecture, which means it can only access data to move it to the
registers, in other words, it cannot operate in LS.

The datatypes supported by the SPU are: byte, halfword, word, double word and quad-
word as shown in the figure 2.4 (extracted from Cell Broadband Engine Programmer Handbook).

The instructions in SPU have to take in consideration the existence of two pipelines. This
allows two up to two instructions per cycle. The pipeline destination depends on the type of
instruction issued.

The C-language intrinsics set [IBM08a] represent in-line assembly-language intrinsics in the
form of function calls. They provide the programmer with explicit control of the SPE SIMD

21

2. RELATED WORK 2.5. x86 vs Cell Broadband Engine instruction set architecture

Table 2.2: Types of Instructions in PowerPC
Type of instruc-
tion

Description

Load and Store Fixed point or floating point loads and stores. The fixed point loads support
byte, half-word, word and double word loads and stores between storage
and GPRs. Floating point supports word and double word load and stores
between storage and floating-point registers (FPRs)

Fixed-Point
Instructions

Arithmetic, compare, logical and rotate/shift instructions

Floating-Point In-
structions

Floating point arithmetic, multiply-add, compare and move instructions

Memory Syn-
chronization
Instructions

They control memory operation order. They include load and stores with
reservation features.

Flow Control In-
structions

Instructions flow control mechanisms like branching

Processor Con-
trol Instructions

Synchronization for memory accesses and cache managing capabilities.

Memory and
Cache Control
Instructions

These control caches, TLBs and segment registers

instructions without directly managing the registers. It is also in the interest of the programmer
to use this extensions since the compilers that supports them will produce efficient code for
SPEs. Intrinsics allows the user to make not only data Load and Stores and instruction scheduling
but much more.

Intrinsics are divided into three sub-areas. Specific intrinsics are the functions that are mapped
one-to-one with assembly in-line instructions. Generic Intrinsics are the functions that include
more than one assembly in-line instruction. Composite Intrinsics are the most complex type,
they can be considered as a list of Generic Intrinsics.

Since the LS is single-ported (can only access one address per cycle) and it is a unified
memory for both instructions and data, it might happen instruction starvation, since DMA
transfers have priority over instructions fetches. To try to avoid this, it is useful to transfer as
much data as possible in one chunk, for both DMA transfers and instruction fetches. The LS
allows 32 instruction fetch loads per requests.

22

2. RELATED WORK 2.6. Software Managed Cache

Figure 2.4: SPU registers, data types and preferred slot.

2.6 Software Managed Cache

Caches are storage mechanisms that duplicate data in order to increase performance, that oth-
erwise would have to access some higher latency cost memory/storage. Widely known in form
of hardware caches on modern CPU’s, they store data in small hardware mechanisms part of
CPU in order to improve performance and reduce accesses to system memory. The concerns in
caches has always been managing inconsistency on several private copies, since data structures
or variables are replicated through the caches. Therefore this inconsistency has to be controlled,
either by software schemes or hardware schemes. Caches are used on systems to improve the
performance of irregular pattern in memory accesses since they have a good probability of
a given data is already present “locally“ instead of having the necessity of accessing system
memory. This happens by exploiting several techniques like the spatial locality of memory
accesses.

DMA transfers can be of high cost depending on the granularity of the data being trans-
ferred. One way to improve this is to make DMA transfers as big as possible in order to reduce
the overhead. In the approach where user fetches data from main memory ”on-demand”, that
is, as the data is being requested, it might happen that the buffer (EIB) will be filled very quickly,
reducing performance.

For the reasons stated above a private software-managed cache can be used in SPE’s LS in
order to improve performance. Specially regarding the write-set, since each load in the scope
of a transaction must verify the write-set for previous changes on that address. Since we will be
flushing the write-set into main memory, due to memory limitations of the LS, the latency will
increase upon a TxLoad() command, therefore, using a cache for the write-set will hopefully
reduce the latency on accessing the write-set.

In this particular case, CBE architecture, the LS can be regarded as caches, where they fetch
data from main memory. This way it is expected that a software managed cache can improve the

23

2. RELATED WORK 2.6. Software Managed Cache

hit-ratio of data on LS and reduce the overhead of DMA transfers, since transfers will fetch not
only the specific data but also the surroundings.

CBEA provides a software managed cache as an API for usage on the SPEs. This software
managed cache combined with the STM framework can provide a powerful tool towards perfor-
mance and efficiency.

24

3
Architecture solution

3.1 Introduction

Transactions allows to execute pieces of code atomically, which results in either all the opera-
tions inside the scope of the transaction being executed return successfully or none will. Most
modern processors architectures are evolving to multi-core. To really take advantage of multi-
core or multi-processor architectures it is necessary to rethink the whole applications in order to
take advantage of the parallel programming techniques. Therefore STM has been gaining pop-
ularity and importance by taking advantage of this multi-core architecture effectively instead
of simply dividing threads into each processor core.

In such architectures, like CBEA, it is expected that concurrency and parallelism techniques
improve performance substantially, however the high performance solutions presented for
CBEA are very specific due to its novel architecture and memory distribution and it is still
hard to develop tools that are able to provide an abstraction layer to the programmer that is
able to exploit concurrency and manage consistency. Software Transactional Memory is a pro-
gramming model that proposes this abstraction layer, and is gaining increased popularity and
several prototypes have been developed with performance close to fine-grain specific imple-
mentations for the domain problem. The possibility of using STM to develop a tool capable of
hiding all the memory management and consistency in CBEA is very appellative. In this chap-
ter we propose to specify a STM engine to CBEA and discuss the advantages and disadvantages
of different STM approaches on implementing such engine.

Developing a STM framework to CBE presents several challenges due to the unique design
of this architecture. Most of the known STM frameworks execute in the address space of a
single computer, which means the processor is able to load/store directly from system mem-
ory/registers. This is similar to CBEA if we take in consideration only the PPE, but not if we

25

3. ARCHITECTURE SOLUTION 3.2. Challenges

want to use the whole set of processors available (PPE plus SPEs), since SPEs are not able to di-
rectly access system memory. This introduces the challenge of effectively using the three level
(registers, local store and system memory) SPEs memory that breaks from conventional archi-
tectures. The usage of a previous STM framework as a basis, Consistent Transactional Layer
(CTL), is made due to its feature richness and good performance achieved, namely the redo
and undo log modes and automatic transaction retry in case of failure.

3.2 Challenges

In an architecture where the sub-processors do not allow direct addressing of system mem-
ory, instead using DMA transfers for data transfer among main and local memories, imposes
higher concerns when developing a simple program. This happens because the data that is
being moved between the main memory and the sub-processors have no integrity check, being
possible that different copies of the same data are manipulated concurrently, therefore delegat-
ing the concern of integrity check to the programmer of the application.

We will now discuss the overall problems in programming in such peculiar architecture.
This represent general issues. Afterwards the specific problems that an implementation of a
STM framework might bring are approached.

In CBEA, the LS’s size limitation of 256KB for both code and data is really the main concern.
This can be fulfilled very quickly and some techniques like code overlay [IBM07d] are used
in order to overcome the problem for the code size problem. For the data bulk movement
problem the correct management from the programmer is expected in order not to exceed the
size allowed.

Mailboxes are 32 bit messages and are used as communication mechanisms between PPE
and SPES and also between SPES. As they can be a good mechanism of communication they
may also impose stalling of the processor, since reading an empty mailbox will stall until an
entry is detected. The same happens when writing into a full mailbox. This might even be
the expected behavior of the program, since execution may be unfeasible until the expected
message arrives. But this stalling behavior in a non-deterministic execution flow of concurrent
threads might be a problem.

So when it comes to develop a STM framework capable of using SPE’s in a transactional
environment its possible to identify some problems.

1. No matter we are working in deferred update mode or direct update mode, a log has
to be kept for each transactional read or write. This mechanism, combined with the low
space available on SPE, imposes even more space problems. The STM future user, which
is unaware of the details of the implementation will face even less memory available if
we choose to follow the natural solution of keeping the logs locally in LS. These might
grow very fast, and that will depend on the specific program using the STM.

2. When working in an SPE perspective, we imagine we need to make a change, actually
a very sensitive change in some remote memory location (main memory). In these cases

26

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

an atomic CAS is most of the times made (in form of inline gcc asm), in order to prevent
any preemption from the cpu. Atomic functionality through DMA can be made from the
SPE side to main memory, making a correspondence to the lwarx and stwcx (processor
atomic instructions) PPE operations. Still this represents a higher latency if we wish to
implement a routine which has several steps of verification (Lock acquisition, effective
changes on memory positions and completion of validation).

3. DMA transfers must be aligned to boundaries. Maximum efficiency is reached when
memory is aligned to 128 bits, being possible to transfer 1, 2, 4, 8 and multiples of 16
bytes. So it is not possible to transfer a structure that has 6 bytes, unless we divide it in
two distinct transfers or we pad the structure to one of the possible transfer sizes. This
concerns the development of the STM framework but also the user that must take this in
consideration when coding for CBEA.

3.3 Solution Layout

The CBE, considering it is a Heterogeneous multi-processor architecture with local store for
each SPE, intuitively fits well in a Transactional Memory framework working in deferred update
mode, since we would compute all instructions on the SPE’s and we would only need to vali-
date the read/write-set on commit time reducing overheads on accessing main memory. This
goes toward a function off-load model, where we offload task to SPE’s to be executed. The
costs from working on direct-update mode would grow, since we would increase latency on
accessing main memory for each write to a variable, therefore this approach is at first sight
undesirable. Minimizing accesses to main memory equals minimizing latency resulting in an
increased performance.

The proposal is to use a shared-memory model, where transactions are executed in the
SPEs and the PPE simply acts as a manager and transaction validator. Although transactions
are allowed in the Power Processing Element (PPE) the focus will be on developing the support
for transactions in the SPE’s due to their high processing capacity.

In this approach the SPE fetches data necessary to its own LS (on demand), computing
the code and changes are only made visible upon commit, meaning we will be working in a
deferred update mode. This represents developing a library to the SPU that will allow the pro-
grammer to start a transaction within SPE context, load a variable, either from main memory
or local store, store a value and commit a transaction. On the other side, the PPE, we will have
also a library (an extended CTL) which will be able to validate the transaction.

3.3.1 Design Choices

As stated above, a deferred update STM framework seems to fit better in this particular archi-
tecture than a direct update STM framework.

In order to develop a STM framework to CBEA and study the impact of the design choices
in performance a base model is presented and afterwards a multi-bufferd model.

27

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

1. As a first model approach (Fully Local Model) a simple framework is capable of execut-
ing transactions in SPE environment. This straightforward approach intends to present
a functional way to execute transactions without any special performance improvement
nor memory size concerns. This model has a limitation which is the memory. In this
model the programmer has to be aware that it might happen that a very big transac-
tion might out limit the memory space allowed in the LS. This is because of the write-
set and read-set having a fixed size in LS (SPE) and that the log is never flushed into
main-memory. This model suits for transactions with low workload and low data bulk
movement which will never overpass the LS max size. Although this approach has clear
disadvantages concerning memory it has also advantages, since the memory is always
present in LS reducing overhead on memory communication to main memory. So if it is
guaranteed by the user that the transaction will never exceed LS size it might even be a
better approach than the following model. This will be further discussed in Section 3.5.
An interesting approach that would complement this one would be to make an inter-
mediate step between first and second model where the read-set is flushed but not the
write-set, this would still translate in high performance and it would free some space.

2. The second model (Multi-buffered Model) aims at solving the memory limitation on LS.
In this model a multi-buffered approach is implemented in order to flush the local log into
main memory. Therefore this model overpasses the memory limitation by using buffers
to keep the transaction log. This way whenever one buffer is full, that buffer is swapped
with an empty one and the log is flushed into main-memory in order to free more space
for the user. With this approach the user will be able to execute big workload transactions.
In this model the Read Log can be flushed into main memory without any further concern,
but the same does not happen with the Write Log. According to our model the transaction
log is dispatched to main-memory introducing a problem. Whenever a transaction issues
a TxStore, which is writing into a variable, it is necessary to verify if that memory position
has been written previously in the current transaction scope. Therefore any TxStore that
does not find an entry in local memory, for the specific address being written, can not
assume that it does not exist, it must verify main memory to check for the log entry. This
is made by searching remotely in the main memory for the given address and returning
a value.

In table 3.1 we can see the properties of the Model. Our Model provides a weak isolation
since we allow non-transactional accesses in transactional scope. We use word granularity
in our framework working in deferred update. The synchronization method is blocking on
commit time, since in order to effectively issue changes in memory we need to assure no other
transaction will corrupt the data, therefore using a blocking mechanism to protect the data-set
from unwanted changes. Also we provide an early inconsistency detection mechanism in our
algorithm. Regarding transaction nesting, it is only supported in PPE transaction scope.

28

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

Table 3.1: STM solution properties
Property Value
Isolation (Weak or Strong) Weak
Transaction Granularity Word
Direct or Deferred Update Deferred
Concurrently Control Versioning
Synchronization Blocking on Commit time
Conflict Detection Early inconsistency detection or at Commit time
Inconsistent Reads None
Conflict Resolution Abort Conflicting transaction (abort backoff exponential)
Nested Transactions Closed Transaction Nesting on PPE environment
Exceptions None

3.3.2 Algorithm

In this section we present the algorithm for the execution of the STM framework. First we
introduce the fully local model as described in Section 3.3 along with figure 3.1. Afterwards
the multi-buffered model is presented supported by figure 3.2.

Fully Local Operational Model

As suggested by its name, this model assumes a fully local transactional execution that will not
exceed the LS size. It is responsibility of the programmer to not exceed this limit. Note that the
logs are protected against overflows but the correct execution will not behave as expected if LS
is full since it will be impossible to issue Transactional Loads or Stores. This model presents a
simple approach towards developing a STM framework. Figure 3.1 illustrates the behavior of
the execution and its corresponding data movement.

Lets analyze in detail how the transaction behaves in Fully Local model.

• A transaction is initiated on PPE side. All the necessary data structures are initialized
in main memory. The SPE execution is started and the memory addresses are passed as
arguments to the SPE thread execution.

• As the execution starts on SPE side, the memory references which are passed by argument
are obtained on a call to TxStart(). These includes both the STM framework and the
user code memory references.

This is due to the design choice of passing the library memory locations by argument and
not by a message passing mechanism. All the process of initializing the framework works
in non-transactional context.

• A TxStart() is issued in SPE context. This starts all the local transaction data structures,
namely the redo log and global transaction information.

• Whenever a TxLoad() is issued, the correspondent data is searched in LS, verifying if it
is already present locally. If it is, the correspondent value is returned to the user, otherwise

29

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

Figure 3.1: Visual caption of Algorithm for Fully Local Model.

the correspondent data-set is transferred from main memory to a local store address and
the data value is returned to the user.

• A TxStore() will simply record the value in the redo log.

• A TxCommit() command will start the validation step. The log is transferred to main
memory and the SPE transaction is terminated. The PPE will validate the read-set in order
to issue the write-set changes. If the read-set is consistent then the transaction commits,
otherwise it is retried.

• If a TxAbort occurs, the SPE transaction is terminated and the all the local data structures
are freed.

Multi-buffered Operational Model

The Multi-buffered model aims to overpass the memory limitation of the local memories in
SPE. By keeping the logs in buffers we can dispatch the buffers into main memory, releasing
space in LS for further use. As stated in Section 3.3.1 this model introduces the problem of a
given log entry not being present in local store when a TxLoad is issued, which has the neces-
sity to check for previous entries in current transactional execution scope. This is solved by
searching for the given address in the transactional log in main memory. Figure 3.2 illustrates
the behavior of the execution and its corresponding data movement.

In step 2 of the figure the variable &Memory sent to the SPE refers to the memory address
allocated in step 1, which is the library memory space for that specific SPE, meaning that is the
correspondent address that the transaction will use to transfer the transaction log.

30

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

Figure 3.2: Visual caption of Algorithm for Multi-buffered Model.

The step 4 represents the mid-step of flushing the read-set to main memory in order to obtain
more free space.

Lets analyze in detail how the transaction behaves in Multi-buffered model.

• A transaction is initiated on PPE side. This results in starting the necessary structures in
main memory (Transaction ID), mallocing memory for further transference of data on the
end of SPE Transaction execution for the PPE side, and afterward, initiate the SPE context,
loading the program execution of the SPE side and passing by argument the pointers
necessary to the SPE so it knows which memory positions to fetch data from, and where
to store it.

This memory positions could be passed by a message passing mechanism, but these ap-
proach is more effective since we don’t need to dynamically adapt the memory locations
during runtime.

• A Transaction is started within the SPE context. This will create the necessary data struc-
tures internally in LS, specifically the write/read-set and store the clock version received
by argument.

The resulting execution on SPE side starts the execution with the following premises.
First, it knows the Effective Address where to fetch the data necessary to the user program
(user space memory). It also knows the Effective Address where to load/store STM related
data (library space memory). Afterwards the normal execution of the user program will
occur.

31

3. ARCHITECTURE SOLUTION 3.3. Solution Layout

• When a TxLoad() is issued, this will trigger a verification, checking if the data-set re-
quested is already present in the write-set, if it is, the correspondent address is returned
and the read-set is updated. If the data is not present locally (in LS) then it is necessary
to fetch the data from main memory through DMA transfer, returning the address of its
new current storage in LS.

Here we use a double-buffering approach to maintain the read-set. This results in two
buffers. As soon as one of the buffers is full the second buffer is used automatically, while
the first is flushed into main memory for validation later at commit time.

When unavoidably we need to dispatch the write-set into main memory, the SPE is re-
sponsable for verifying the write-set present in main memory for the correspondent data.
This will impose higher latency, but it is necessary in order to allow, for instance, running
big transactions.

• When a user issues a TxStore an entry is logged into the write-set, in the form of a pair
AvPair(address,value), of the current transaction in order to be committed after-
wards. A double-buffer technique is also used to maintain the write-set, since we want to
keep as most free space in the LS as possible.

• A transaction commit call (TxCommit) happens on the end of the current scope of exe-
cution. At this point it is necessary to validate the read/write-sets in order to effectively
commit the transaction and the changes be made visible in main memory. For this to
happen the read/write-set are moved into main memory to the previously determined
address malloc’ed by the PPE and that was received upon beginning of the transaction.
Therefore the DMA call transfering the data is made, and the PPE is responsible for vali-
dating the dataset. Since the PPE knows which memory previously allocated corresponds
to which SPE, the SPE simply has to halt, waiting on an answer of whether to commit or
to abort.

• When a Transaction abort call occurs (TxAbort), the local files are simply discarded and
the execution is terminated.

• The PPE validates the read-set. This happens by verifying each entry’s version with the
current version present in main memory. If any of the main memory entry’s version
exceeds the version presented in the read-set then the transaction must abort.

In figure 3.2 it is possible to see the behavior of the STM framework during the execution.
The numberings represent the temporal execution of the steps. For simplicity we only represent
one SPE.

32

3. ARCHITECTURE SOLUTION 3.4. Evaluating Design Choices

3.3.3 API

This section describes the API available for the programmer.

SPE library – tl spu

• unsigned long long TxStart(long long int argp);

Starts a transaction, receiving as argument (argp) the composed structure of pointers to
user memory address and library memory address (see Section 4.4 for more details), re-
turning the user memory address.

• void TxLoad(unsigned long long dest, intptr t volatile address, int

size);

Loads a value from main memory, located at address, of a given size to a given destination.

• void TxStore(unsigned long long address, intptr t value);

Stores a value into a given address.

• void TxCommit(void);

Commits a transaction.

• void TxAbort(void);

Aborts a transaction.

PPE library – tl ppu

• TxStartSPE(spe program handle t spuCode, intptr t struct);

Starts a transaction in SPE executing the given user code in variable spuCode. The second
argument is the user struct that is intended to be passed by argument and it can be null.

3.4 Evaluating Design Choices

In this section we intend to describe what are the consequences and advantage of the design
choices over our two models, relating performance, memory operations and architecture de-
pendent operations.

3.4.1 Deferred update vs Direct update - Transaction Log Management

Some choices made in the modeling of this framework are directly related to the CBE architec-
ture or similar heterogeneous multiprocessor architecture with this 3-level memory organiza-
tion. This kind of architecture is unique until now, but the same approach would result in the
same benefits in any similar architecture. The fact that we use deferred update instead of direct
update relates directly with the fact that the SPE’s can not address directly memory, having
to DMA any data from memory to their LS. Considering this fact, a direct update approach
for a STM framework would have to deal with very high latency each time it would want to

33

3. ARCHITECTURE SOLUTION 3.4. Evaluating Design Choices

make a replacement on memory. This is undesirable since we aim at achieving the best perfor-
mance possible. Therefore a deferred update mode allows to execute the transactions locally
on the SPE’s and only committing the changes on the end of execution. This provides a much
more viable approach then the direct update mode since it minimizes accesses to main memory,
specifically the writes, since we will be recording the redo log locally in LS.

Also this goes towards the Computation-Acceleration Model where a transaction is offloaded
into a SPE.

Although this approach could be made simply by keeping the logs in SPEs LS, the low size
of the LS (256KB) introduces the problem of transactions manipulating high quantity of data. It
might easily out limit the LS size which is a problem. To solve this problem, we can transfer the
log into main memory to a previous determined location. This way it is possible to free space
in the LS. Now in order to do this efficiently we must use a double buffering approach for the
log. This way we can transfer one buffer, while using the other, due to the capacity of the SPEs
to execute one processor instruction and one memory operation per cycle. Also important to
refer is that this movement of data could also be made only for the read-set. Considering the
most basic model (see Section 3.3.1) we could keep the write-set always local but the read-set
be multi-buffered to main-memory. Since transactions do not need to verify the read-set during
execution this can be a good intermediate solution.

This is due to the deferred update approach, since any change during the scope of the
transaction is not made visible until successful commit. The changes are kept in the write-set,
therefore imposing the verification each time we read a value (TxLoad) if the data has been
manipulated during current execution. This verification is made through verifying the write-
set for the specific data. So if we transfer the write-set to main memory we will be increasing
the overhead of verifying the write-set, leading to the same inconvenience as the direct update
mode, higher level of main memory accesses.

Still it would be a huge limitation of the STM framework limiting the number of writes on
a scope of a transaction, therefore even though it imposes higher latency accesses it is provided
the guarantee that a transaction may make as many writes as necessary. This is made by flush-
ing the write-set into main memory.

The Multi-Buffered model keeps releasing space in LS to main memory and will reach at
some point of execution a Commit Transaction (TxCommit).

At this point the remaining log is flushed into main-memory and the PPE follows with
the validation of the transaction issuing the changes into main memory in successful case or
restarting the SPE execution in case of failure.

It could be possible to commit the changes directly through the SPE, with no PPE involve-
ment. This is a design choice in the development of this framework and is discussed in the next
section.

34

3. ARCHITECTURE SOLUTION 3.4. Evaluating Design Choices

3.4.2 PPE vs SPE Validation

Lets analyze the possibilities regarding SPE vs PPE validation.

1. In the full local transaction mode (see Section 3.3.1) the transaction could be validated in
the SPE. Assuming we have all the log locally we could verify it, making a set of DMA
operations in order to read and write the main-memory library space data, acquiring the
locks and issuing the necessary changes into main memory regarding user-space memory.
Atomic DMA operations allow us to perform atomic operations into the main memory.
Although this has some interesting possibilities it highly increases the cost of validation
due to the latency on DMA accesses to main memory. It could be interesting to see the
results but our approach goes towards PPE validation. This way latency is reduced and
free’s the SPE for another transaction while the PPE validates the current transaction.
Also it keeps the tracing mechanism implemented for CTL working.

2. The multi-buffered model could also be validated locally in the SPE but it would even
impose more latency since some of the logs are already in main memory. The PPE val-
idation scheme requires the transfer of the read-set and write-set to main memory to a
previous allocated memory space. This way we only have the need to transfer the rest of
the log. After this data transference the execution returns to the PPE that must validate
the transaction. The PPE then has all the necessary information in order to validate the
data. On end of validation, the PPE then either aborts or retries the transaction.

Considering both approaches, we believe that validation through the PPE is more rea-
sonable and effective since it reduces memory accesses and it might allow fast release of
valuable resources, the SPE, while the PPE validates the transaction.

Considering the use of a Software Managed Cache could greatly improve performance,
since it would (in most cases) reduce the number of main memory accesses by exploiting
all the caches properties. Using a cache would improve the probability of a given data
(write-set/read-set) being already in LS instead of having to be transferred from main
memory. A cache could minimize the effects of checking for a given entry of the write-set
in main memory. Also in order to improve performance a bloom filter is used locally in
each SPE regarding the remote main memory locations accessed in Transactional scope.

3.4.3 Framework configuration

Some improvements that can be made are related to the configuration of the transaction to be
executed in the SPE’s. Considering the full model, with double-buffering approach the user
should be capable of, considering the given user code, define the size of memory that SPE
library should reserve. So intensive demanding tasks with reduced data set can be given more
space to execute locally by the user of the library. This will result in a performance advantage
since any check on a previous written log will only need to verify locally sparing the latency
on a main memory access.

35

3. ARCHITECTURE SOLUTION 3.5. Conclusions

3.5 Conclusions

This approach towards developing a STM framework for CBEA aims at delivering a high per-
formance platform where a programmer might concurrently execute several threads maintain-
ing consistency of data and correctness of execution without big concerns except to identify
potential critical areas of code that need to be protected.

Also we present two distinct models in order to better evaluate the possibilities towards
developing a STM framework for CBEA. With this architectural solution we intend to prove
the usability and also state the versatility of this architecture and several possibilities that it
provides to the programmer.

36

4
Implementation

4.1 Introduction

In this section it is discussed the practical implementation of the provided solution. As stated
before CTL was used as a basis due to its feature richness. Porting CTL from x86 architecture
to CBEA consisted on the first step towards the development of a STM framework for CBEA
making it possible to execute transactions in the PPE processor. Here we propose the following
steps in order to correctly achieve this goal.

1. The first step was to implement the communication layer between PPE and SPE, and
ensure the correct usage of the memory locations allocated previously by the PPE for
exchanging data with SPE.

2. The second step consisted in implementing a simple support for transactions, including
managing the read/write-sets, making the integrity checks and completing the transac-
tions successfully considering no further improvements. As a first approach we consid-
ered that the LS was able to handle all data in its 256KB, therefore the functionality tests
at this point were very simple and handled small amount of data. Note that between this
step and the next one a big change occurred, since in this step the SPE is able to verify
for locally the write-set locally whether in the next step the write-set has to be verified
remotely.

3. After the basic functionality was implemented and tested the multi-buffering techniques
were implemented in order to allow to release some memory in SPE’s LS. In this step the
verification of the remote write-set by the SPE was implemented. The remote search is
necessary since part of the write-set is remotely stored in main memory and the algorithm

37

4. IMPLEMENTATION 4.2. Execution Flow

requires checks on write-set to see if it the transaction has made any previous write on
variable when TxLoad is made.

4.2 Execution Flow

In order to produce a program to use CBEA with SPE support we must compile our SPE code
using a compiler that supports SPE, in this specific case spe-gcc GNU compiler [IBM07a],
linking this compiled object into our PPE code creating the final executable.

Figure 4.1 shows how to use CTL libraries to compile the final executable that will be ran
by the PPE. The programmer starts by using the SPE STM library which will produce an em-
bedded object represented in the figure as spu embedded.o. The programmer must then code the
main application for the PPE using the PPE STM library and the given embedded code will
produce the final executable.

Note that the embedded spu code is used by the PPE on runtime which is declared as a
variable in PPE code.

Listing 4.1: Declaration of SPE embeddeded code

1 extern spe_program_handle_t spuCode;

Figure 4.1: How to compile an executable.

4.3 Porting CTL from x86 to CELL

CTL [Cun07] was ported originally from a SPARC architecture to x86 on the scope of a previ-
ous MsC thesis developed by Gonçalo Cunha and it ran under the Linux OS. Linux OS also
supports PowerPC architecture and CBE architecture, therefore implying minor modifications
to the CTL source code in order to support the PowerPC processor present in CBEA. Taking
this premises the framework was almost compatible with PowerPC except for the architecture
dependent code. Since the previous implementation of CTL supported both 32 bits and 64
bits x86 processors the changes needed to support PowerPC were in the basis of architecture
dependent instructions.

38

4. IMPLEMENTATION 4.4. Extending CTL to SPE’s

CTL, as a C-based STM framework, has the necessity of making atomic operations on crit-
ical sections, to guarantee integrity of data and correct execution of code. CTL uses a global
clock versioning as a mechanism to maintain integrity and changes on that clock have to be
atomic. This is made through gcc inline asm operations, in order to keep it atomic, more specif-
ically it is a CAS (Compare and Swap) operation, that compares two clock timestamp values,
and swaps the clock value in case a premise is true. This gcc inline asm operations are architec-
ture dependent (or processor dependent since we are manipulating directly processor registers)
and therefore had to be implemented to support PowerPC processor.

Memory Barriers were removed since we are dealing with a in-order execution [Mck05]
processor, therefore eliminating the need for memory barriers, which were used the other ar-
chitectures (SPARC and x86)

Some minor adjustments were made also to allow the detection of a PowerPC processor,
since the objective was to maintain the compatibility with other architectures.

4.4 Extending CTL to SPE’s

As stated in the solution layout (see Section 3.3), the porting of CTL to the CBEA uses the
SPE’s as accelerators. Using SPE’s to execute computing demanding tasks as transactions in
SPE environment and returning the library space data-set to the PPE in order to be validated.
In order to achieve this is necessary to previously malloc the necessary library memory space
in main-memory for further transfer of the transaction log. This could be made dynamically
on runtime but it would increase the costs of computation since a message would had to be
passed to PPE to ask for a memory location.

So in order for a transaction to execute, the library space memory is reserved for that trans-
action. Each call to the TxStartSPE (see Section 3.3.3) starts a thread on the PPE side which will
be responsible for launching the SPU user-code into the SPE and executing it. This PPE thread
launches a transaction in PPE environment, which already allocates the necessary memory for
execution. The SPE will use this transaction memory space and the PPE will, on end of execu-
tion of the SPE, Commit the changes. The memory addresses are passed as arguments to the
SPE on beginning of execution so it knows where to fetch data from/to.

Since the user needs to pass its own data-set memory addresses to his SPE execution, a
structure composed by pointers to user-space memory and library-space memory is passed to the
SPE which is responsibility of the STM framework. This should be interpreted by the SPE
even before a TxStart is issued on the user-code in SPE environment since the user should
be allowed to access its own memory-space pointer in non-transactional mode before any call
to our STM framework. In tlCell it must be made a call to TxStart() in order to obtain the
user-space memory pointer.

In order to execute transactions in the SPE’s we must keep a log structure locally in the LS.
They represent the read/write-set of the transaction. These are replicated as the CTL transac-
tion structure working in PPE which will be transferred to main memory on completion. This
is a sensitive issue since working in the PPE has few memory limitations contrary to working

39

4. IMPLEMENTATION 4.4. Extending CTL to SPE’s

in SPE environment. Some of these problems were stated before (see Section 3.2).
The objective here is to save as much space as possible in LS for the user data-set, and

executing efficiently transactions in the SPE so even though we intend to replicate the logs,
not everything is necessary to be transferred to LS. Also the DMA transferences have must be
multiple of 16B, or a power of two if less than 16B, so the structures must be padded in order
to work.

So a log is used for the write-set and another for the read-set. We keep some of the trans-
action information locally in the LS like the Thread ID and the global clock stamp. This is
necessary to the correct execution of the transaction in SPE environment. We need the global
clock to abort a transaction in case of a dirty read and the thread id to assign the owner of the
current transaction change into every write and read. All changes are recorded locally and then
moved into main memory.

The usage of a bloom filter can be of great use [Cou09], specially in SPE environment but
also has performance issues. The fact that it is possible to exclude the existence of a given
data-set, both in local store and main memory reduces access time, specially regarding main
memory in the Multi-Buffered model.

Lets take a deeper look at all the primitives and how they are effectively implemented in
SPE context.

Note the SPE composed structure in listing 4.2 with the user struct pointer and remote
library struct pointer.

Listing 4.2: Composed Structure

1 typedef struct{

2 unsigned long long userStruct; //user memory space

3 unsigned long long txStruct; //library memory space

4 vwLock rv; //Versioned writeLock value.

5 } controlStruct_t __attribute__((aligned(128)));

Below in listing 4.3 are the local variables malloced in SPE for computation and the control-
Struct which contains all the remote pointers to main memory. Note the instruction SPE ALIGN FULL

which aligns the structures to 128 bits.

Listing 4.3: SPE control variable and local Transactional log variable

1 volatile controlStruct_t theStruct SPE_ALIGN_FULL;

2 volatile Tx *txStruct SPE_ALIGN_FULL;

40

4. IMPLEMENTATION 4.4. Extending CTL to SPE’s

• TxStart

Listing 4.4: TxStart pseudo-code

1 unsigned long long TxStart(long long int argp){

2 mfc_get(&theStruct, argp, sizeof(theStruct));

3 *txStruct =malloc(sizeof(txStruct));

4 return theStruct->userStruct; //Returns user remote pointer

5 }

TxStart() is pretty simple. It retrieves from main memory the controlStruct (theStruct)
in order to obtain the transactional remote address (theStruct->txStruct) and user remote
address (theStruct->userStruct) and allocate the local structure memory space for further
computation. It returns on the end the userStruct pointer.

• TxLoad

Listing 4.5: TxLoad pseudo-code

1 void TxLoad(void *destination,void *address,int size){

2 if(BloomFilterCheck(address)){

3 if(SearchWrSet(address)) return addressValue;

4 }

5

6 if(remoteAdress.readVersion<=txStruct.readVersion){

7 getRemoteAddressValue(address);

8 addEntryRdSet(address);

9 return;

10

11 else{

12 TxAbort(); //inconsistent read.

13 }

14 }

TxLoad receives as arguments the destination of the DMA transfer (destination), the re-
mote address of data to retrieve (address) and the size of the transfer. In line 2 and 3 of the
listing 4.5 it is checked if the correspondent remote address is already present in bloom-
filter . Since bloom filters accuse false-positives we need to double check on the write-set
if it is effectively present. If it is found on the write-set the correspondent address then it
is returned the previously written value.

Otherwise we need to transfer from main memory the correspondent memory address.
For that we need to check if we are still running in a consistent state. This is done by
double checking if the versioning of the remote address is previous to our transaction
timestamp. In the case where this is true (line 6 of listing 4.5) then we are running in con-

41

4. IMPLEMENTATION 4.4. Extending CTL to SPE’s

sistent state and we can transfer the data from main-memory to local memory, proceeding
with the local procedure to store the value into read-set and returning successfully.

If it is found that the remote address versioning is bigger then our transaction timestamp
it means that some later transaction than ours has modified the remote address value and
it is not possible to proceed with computation since we are now in an inconsistent state.
Then we shall abort the transaction as stated in line 12 in listing 4.5.

• TxStore

Listing 4.6: TxStore pseudo-code

1 void TxStore(unsigned long long address, void *value){

2 addToBloomFilter(address);

3 storeEntryInWriteSet(address);

4 return;

5 }

A TxStore receives as arguments the remote address (address) where to store the value
present in the argument value. The address is added to the bloom filter and the opera-
tion is logged in the local transaction write-set and simply returns.

• TxCommit(void)

Listing 4.7: TxCommit pseudo-code

1 void TxCommit(void){

2 transferReadSet();

3 transferWriteSet();

4 PPEValidation();

5 return;

6 }

TxCommit(void) transfers the (remaining) read-set and write-set into main-memory so
PPE is able to validate it, afterwards the PPE must validate the write/read-set in order
to the transaction to commit or not. All this is done in PPE side, since the actual mem-
ory changes are made by the PPE, therefore the transaction ends and in the case where
the transaction fails (it has failed write/read-set validation) then the PPE launches the
transaction again.

42

5
Validation

5.1 Introduction

This section reports the functional validation and benchmarking results of the experimental
study developed in CBEA. This section aims at studying the impact of the design choices on
performance and evaluating the correctness and stability of the STM framework for CBEA.

Benchmarking a STM framework is not trivial. Usually micro-benchmarks are used to com-
pare different STM frameworks. Although it gives a way to compare the performance between
distinct frameworks usually they do not represent a real workload, complex data structures
or the unpredictable behavior of a “normal” application. Fortunately there have been a se-
rious effort to develop tools that are able to effectively benchmark STM frameworks [CM-
CKO08, GKV07, AKW+08], considering all the aspects like measuring commit and abort rates
and runtime overheads on the applications. This tools are all complex and would require port-
ing them for CBEA. Instead we use a series of custom made tests to ensure the Transactional
Memory properties in tlCell framework.

Section 5.2 describes the tests made to evaluate the correctness of the STM execution. Sec-
tion 5.3 refers to the performance evaluation of the experimental framework developed for
CBEA.

5.2 Functional Validation

Functional Validation guarantees the correct execution of the STM framework. Any STM im-
plementation must ensure the properties of Transactions, Atomicity, Consistency and Isolation.
In order to guarantee these properties several tests were made. This includes integrity of data
scoped by a transaction, persistent data across transactions, and correct reading of variables in

43

5. VALIDATION 5.2. Functional Validation

transactional scope. In this section we present the tests made, their objectives and the results.

In order to test the main properties of a Memory Transaction — Atomicity, Consistency and
Isolation — we prepared specific execution patterns that allows us to verify them. Lets analyze
the main properties of STM and describe how does tlCell support each of them.

5.2.1 Atomicity

In order to assure the Atomicity property, a test was prepared where a set of operations is exe-
cuted and one of the operations is ensured to be in conflict with another running transaction.
Consequently the whole set of operations must fail and no change can be effectively made.
Below we can see an example.

Listing 5.1: Transaction 1 — Conflict

1 int vector[nPositions];

2 int temp;

3 TxStart();

4 for(i=0;i<nPositions;i++){

5 TxLoad(temp, vector[i]);

6 TxStore(vector[i], temp++);

7 }

8

9

10 TxCommit();

Listing 5.2: Transaction 2 — Conflict

1 int vector[nPositions];

2 int temp;

3

4 TxStart();

5 TxLoad(&temp, vector[0]);

6 TxStore(vector[0], temp++);

7 TxCommit();

8

9

10 .

Here Transaction 1 must abort since the TxLoad(vector[0]) is now invalid since Trans-
action 2 committed changes (line number 6) and Transaction 1 issued a dirty read on that vari-
able.

It was also tested the abort scenario when changes are made but a TxAbort() is issued.
Pseudo-code below in listing 5.3.

Listing 5.3: Transaction 1 - Abort

1 int remoteVar,temp=0;

2 TxStart();

3 TxLoad(&temp, remoteVar);

4 TxStore(remoteVar, temp++);

5 TxAbort();

6 if(remoteVar!=0) return ERR;

The changes made in the scope of the Transaction cannot be made visible to the rest of the
system after a TxAbort() is issued. Therefore the variable remoteVar must stay unchanged,
as stated in listing 5.3.

44

5. VALIDATION 5.2. Functional Validation

5.2.2 Consistency

This is a discussable point. As stated in Section 2.2.1, if we assure the Atomicity and Isolation
properties we assure the Consistency property. Therefore no tests were directly made related to
this property.

5.2.3 Isolation

This matter is of the upmost importance for any STM framework. A isolated transaction main-
tains a coherent view of data through the whole system. In the specific case of tlCell, since we
are working in deferred update mode the changes are only made visible to the system after
commit, which means that no other transaction will see unstable data by any other transaction.
It is guaranteed that no transaction will read a dirty value, since it is a STM framework working
in deferred update, and locks of variables are held while the read-set is validated. This invali-
dates any possibility of other transaction reading a value while another is updating variables.
Also, non-repeatable reads do not happen in our case, since any read on a variable, will either
check the timestamp lock, which will detect an inconsistency if any update was made in the
meanwhile, or it will work on the last read value in the SPE cases. Regarding the Phantom Reads
it is also guaranteed that no transaction will ever read sequentially two different reads, since
that will also be detected on the second read (the timestamp is checked by local transaction, if
any change has been made to the transaction must abort) and will invalidate the transaction.

Some pseudo-code examples that are able to detect the isolation properties are shown be-
low. In the example 5.4 a TxLoad is issued, afterwards a TxStore on the same variable is made.
The next read must reflect this change locally.

Listing 5.4: Transaction 1 — Isolation

1 int remoteVar,var;

2 TxStart();

3 TxLoad(&var,remoteVar);

4 TxStore(remoteVar, var++);

5 if(TxLoad(&var,remoteVar)!=var) return ERR;

6 TxCommit();

In the example of Figure 5.5, we check for persistent values across transactions after a suc-
cessful commit.

45

5. VALIDATION 5.2. Functional Validation

Listing 5.5: Transaction 1 — Persistent Values

1 int remoteVar,var, var2;

2 TxStart();

3 TxLoad(&var,remoteVar);

4 TxStore(remoteVar, var++);

5 if(TxLoad(&var,remoteVar)!=var) return ERR;

6 TxCommit();

7

8 TxStart();

9 TxLoad(&var2, remoteVar);

10 if (var2!=var) return ERR;

11 TxCommit();

With this set of tests we ensure the ACI properties in tlCell framework.

5.2.4 Implementation Validation

While the previous tests aimed at ensuring the Transactional properties, other tests were made
to ensure correct execution of the framework in very specific cases. This tests are directly re-
lated to the implementation since their objective is to guarantee a stable framework in all pos-
sible scenarios of execution. Among the several tests made different patterns were used:

• Very Short Transactions — This pattern of execution simply launches a big number of
threads that make for instance only one operation over a vector.

• High Frequency of Variables Being Added and Deleted — This pattern of execution has
few transactions with high number of operations of reads and writes.

• High Number of Updates on a Small Number of Variables (High contention) — This
pattern execution operates on a small data set with a elevated number of threads manip-
ulating the data set.

• More Concurrent Transactions than CPUs — This pattern executes a much higher amount
of threads than the benefit that it brings, but it tests the correct interlace of transactions.

Also other tests were made regarding protection against buffer overflows (regarding the
transactional logs kept in buffers for DMA transference) and bloom filter functionality and
correct interlace of PPE and SPE transactions. The bloom filter was tested in order to ensure its
correct functionality, remember that the bloom-filter allows us to reduce the number of searches
of write-set entries, both in LS and specially in main memory which higher access time.

The interlace between PPE and SPE transactions was also tested which traduces in the pos-
sibility of using all the 9 processors (1 PPE + 8 SPEs) simultaneously taking advantage of tlCell.
Although it is possible to use the PPE to execute transactions in tlCell it is used more as a con-
troller of the framework and therefore the focus on the tests, both Functional and Performance,
were on using the computational power of the SPEs.

46

5. VALIDATION 5.3. Performance Evaluation

This batch of tests was made using several distinct datatypes and the most throughly exam-
ined were the ones using a scalable vector with varying number of threads. Several operations
were made in the vector, committing them on the end and issuing verifications on the data set.

With this group of tests we confirm the maintenance of Transactional Memory properties
(ACI) and the correct implementation of the architectural solution.

5.3 Performance Evaluation

Once functional validation has concluded, we step into benchmarking the performance of the
STM framework.

The tests were based in Ennals harness implementation([Enn05, DSS06]) which are highly
configurable in terms of number of running threads, workloads (percentage of reads, writes
and deletes), size of structures and time of execution. This implementation consist in either a
Red-Black Tree (RBT) or a Sorted List (SL) implementation and consist of a whole of operations
on a set (either RBT or SL) with variable size. It was necessary to port the previous implemen-
tation in order to support the CBEA architecture, specifically the support for Transactions in
SPE context.

The test harness is divided into two components, the set implementation and the harness
launcher. The set implementation refers to the RBT or SL while the harness launcher controls
all the variables that are intended to be tested like execution time, number of threads and etc
through arguments to the program. The variables that are possible to manipulate are shown in
the Table 5.1.

The harness launcher starts a number of threads in parallel. Each thread continuously loops
between: i) choosing an operation to execute (insert, remove or lookup) based on a random
number; ii) calculating a random key; and iii) executing the selected operation on that key.

Table 5.1: Harness Test Configuration
Variable Description and limits
Number of Threads Number of concurrent threads
Percentage of Put,Get,Delete Percentage of insertions, removes and gets[0 - 100]
Key range Size of the set
Time Time of execution

With this set of variables it is possible to measure on a specific set of data, with a specific
size, and specific percentage of inserts, removes and lookups the throughput of the framework.
The results of such test are number of successful commits and number of aborts for instance.

The patterns variations here vary between the number of executing threads, size of the
working set and the percentage of inserts/removes/lookups on the set. The variation on the
size of the working set is very important since it represents different contention levels. While
a very large working set is likely to have collisions, a very small working set is more likely

47

5. VALIDATION 5.3. Performance Evaluation

to ensure collisions. The variation of the percentage of insertions/removes/loads also aim to
study the impact of different workloads on the framework.

5.3.1 PowerPC vs x86 Processor

In this section we aim to state a performance comparison between x86 and PowerPC processors
only, not taking in consideration the SPEs processing capacity. The tests on x86 processors were
made under the SunFire which consists on eight Dual Core processors, and the CELL tests were
made on QS21b blade server using two blades, which results into two PowerPC processors with
capacity of executing four concurrent threads.

The configuration used varied from the percentage of insertions, removes and lookups and
number of threads using a Red-Black tree. The fixed values are the execution time of each
thread, polling randomly between inserting, removing and looking up a key on a set of data.
Also the size of the set was set to 1000 elements. In our result analysis we can see the three
different configurations used. We measure the Throughput, which is the total of operations
done (inserts, removes and lookups) and the number of aborts. The following Sections shows
the results obtained.

5% Inserts - 5% Removes- 90% Lookups

0

100000

200000

300000

400000

500000

600000

700000

 1 2 4 8

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Red-Black / Throughput 5% put, 5% del, 90% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.1: Throughput Red-Black-Tree Harness

Regarding the throughput shown in figure 5.1 we can see how PowerPC performance is
linear from one to four threads, after which stops scaling, being consistent with the fact we are
making the tests in a Cell Blade with two PowerPCs available which results into four possible
concurrent threads. Not so consistent is the behavior of the x86 tests, which scales much less
than the PowerPC, even though it has eight dual cores, resulting into sixteen possible concur-
rent threads. The PowerPC doubles its throughput when we double the number of threads, the
same does not happen with x86.

48

5. VALIDATION 5.3. Performance Evaluation

0

10000

20000

30000

40000

50000

60000

 1 2 4 8

N
um

be
r

of
 A

bo
rt

s

Number of threads

Red-Black / Aborts 5% put, 5% del, 90% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.2: Aborts Red-Black-Tree Harness

Regarding the abort test shown in figure 5.2 both architectures behave similarly, the x86
having a linear scalability until four threads where after that drops significantly and the Pow-
erPC quadrupling the number of aborts from two threads to four threads executions and still
slightly increasing for the eight threads execution.

49

5. VALIDATION 5.3. Performance Evaluation

45% Inserts - 45% Removes- 10% Lookups

0

100000

200000

300000

400000

500000

600000

 1 2 4 8

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Red-Black / Throughput - 45% put, 45% del, 10% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.3: Throughput Red-Black-Tree Harness

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

 1 2 4 8

N
um

be
r

of
 A

bo
rt

s

Number of threads

Red-Black / Aborts - 45% put, 45% del, 10% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.4: Aborts Red-Black-Tree Harness

In this configuration the x86 has a better throughput than the PowerPC as is shown in
figure 5.3. Still both the architectures scale only a little until the four threads execution. After
that they stabilize. Once again, as this is normal for the PowerPC, the x86 should scale after
four threads, or at least more than it does.

Regarding the aborts shown in figure 5.4 both x86 and PowerPC show similar behavior,
both of them approximately quadrupled the number of aborts between two threads execution
and four threads execution reducing after that on the eight threads.

50

5. VALIDATION 5.3. Performance Evaluation

20% Inserts - 20% Removes- 60% Lookups

0

100000

200000

300000

400000

500000

600000

 1 2 4 8

N
um

be
r

of
 A

bo
rt

s

Number of threads

Red-Black / Throughput 20% put, 20% del, 60% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.5: Throughput Red-Black-Tree Harness

0

50000

100000

150000

200000

250000

 1 2 4 8

N
um

be
r

of
 A

bo
rt

s

Number of threads

Red-Black / Aborts 20% put, 20% del, 60% get / 30 sec / 1000 keys

CBEA PowerPC
Sunfire x86

Figure 5.6: Aborts Red-Black-Tree Harness

The throughput results shown in figure 5.5 show very similar scalability between architec-
ture, almost linear until four threads and reducing a little for the eight thread execution being
the x86 the processor with better throughput.

In figure 5.6 we can see the number of aborts of both architectures. The PowerPC has a
big increase between the two and four threads execution (4x more aborts) while x86 triples the
number of aborts after which both decrease. The PowerPC shows a more irregular pattern,
specially taking in consideration the throughput.

51

5. VALIDATION 5.3. Performance Evaluation

Remarks

Regarding the PowerPC throughput results we can verify the non-scalability between 4 and 8
threads since the tests were made with two PowerPCs which allow up to 4 threads concurrently
so this results are expected. Also the number of aborts follow the same pattern, generally
increasing along with the throughput.

Regarding the results on x86 platform they are less expected. The Sunfire x86 blade where
the framework was tested is capable of running up to 16 threads simultaneous but that is not
represented in the results. The same framework base we used for CELL was previously tested
in exactly the same blade center [CLD08] under SunOS instead of Linux, achieving the expected
scalability which is not shown here. In order to eliminate the possibility of changes in the
framework being the cause of the problem, the base framework was tested also in Sunfire blade
achieving the same results which leads to the probable conclusion of being the Linux SO. At
first we though it could be related to GNU malloc instruction using locks, but we experimented
other solutions not achieving any improvement.

5.3.2 Ennals Harness test in SPE

The inital objective was to port the Ennals harness test in order to measure the effeciency of
transactions in SPE scope. Unfortunatelly several obstacles appeared which made the port to
the SPE’s harder than at first expected.

As described before the Ennals Harness test consists in the Harness section, which launches
the parallel threads and measures all the information related to the execution such as total
execution time, number of inserts, removes and gets, the total throughput of the execution
and number of aborts. This parallel threads launched by the harness test pool for a specified
amount of time executing in each cycle a random operation based on the percentage set by the
user. Each of this cycles starts a transaction, an insert, get or remove commiting afterwards.

The first approach towards porting the Harness tests to the SPE’s was to implement this
parallel thread execution one in each SPE, polling and executing random operations. The set
was prepared, aligned in memory in order to be transferable between PPEs and SPEs, the stats
structure was also modified in order to allow the SPE to issue the calculations. The fact here is
that tlCell only allows one Transaction execution during the whole execution in the SPE due to
a design choice, since the objective was to reduce the communication between SPE and PPE as
much as possible. Allowing more than one Transaction in the scope of the SPE would imply
dynamic allocation of remote variables in main memory, which would increasy latency. This
memory allocation mechanism will be discussed further on this section. Therefore the decision
was that only one Transaction would be allowed in each SPE execution scope, meaning that
the parallel thread would pool and execute the inserts, removes and gets all in one Transaction
scope.

The Harness Cell test being ported was an ordered Double Linked List implementation,
which means that the number of conflicts between Transactions is elevated since to find a key
in the List we must start from beggining until we find it making the approach of polling in

52

5. VALIDATION 5.3. Performance Evaluation

each SPE several gets, removes and inserts even more conflictuous with other Threads. This ap-
proach would traduce in nearly Serializable execution, since practically only one of the Threads
would be allowed to commit at the time. Also, the insert command would have the need to
allocate memory in main memory, since the set is located in main memory. Memory alloca-
tion in main memory is made through special memory mapped intruction. The instruction is
the malloc ea and has a high cost, so as references to any effective addres [IBM08b] so this
approach turned at each point more undesirable.

So at this point the approach turned to implementing the Harness Test more like the stan-
dard launching an amount of threads in PPE context which would be launching SPE threads,
each one executing at a cycle a transactional operation in the SPE, such as one get, remove or
insert. This approach although it makes more sense has also a big disavantage since the cost of
starting an Thread in SPE context is considerably higher than in PPE due to all the mechanisms
that are necessary to initiate the process. The recomendations are to use the same thread in SPE
context as much as possible in order to minimize the overhead of launching a thread, but in
this context the amount of threads launched plus the rate of collisions, since the set is ordered
Double Linked List, make this implementation also a bad choice. The collisions rates between
the threads and the re-execution of the SPEs, which is made from PPE side would traduce also
in an almost serializable execution of the harness test.

It would’ve been interesting to measure the results in order to really measure the cost. Un-
fortunatelly it was not possible in time to present here the results. Also considering all the
factors stated, in order to better measure the performance possibility in SPEs it is advisable to
test in a set like a Red Black Tree or a more sparse access pattern in order to avoid so many
collisions since the overhead of launching threads plus the high collision rates decreases the
possibility of obtaining a high performance Software Transactional Memory framework for
Cell Broadband Engine Architecture.

53

6
Conclusions and Future Work

The development of this prototype states the possibility of using Software Transactional Mem-
ory in Cell Broadband Engine. In such complex architecture the possible mechanisms to use,
improve or developing a new STM framework are numerous.

Cell Broadband Engine presents a novel architecture, unique memory distribution with a
heterogeneous multiprocessor architecture and several communications mechanisms makes it
very versatile and appealing for distinct Computer Science areas. The SPEs present the real po-
tential in this architecture being used nowadays for Digital Signal Processing and High Defini-
tion rendering for example and it is mainly used in such ”problems” which take real advantage
of the SIMD SPEs capacity. In general these are problems that can be data parallelized and not
task parallelized. The SPEs perform poorly with scalar operations, having the need to move
the data to the preffered scalar slot to perform this kind of operation, so any problem state has
to take in consideration this factor when developing an application for CBEA. Using the SIMD
capacity of the SPEs plus the special dedicated Memory Controllers in each SPE is the secret
towards taking advantage of this architecture.

There are still several possible improvement points on this framework. The usage of a
software managed cache to manage the transactional logs was a point we hoped to achieve but
unfortunately was not possible and is one of the possible improvements of this prototype. Also
using an Hashtable for keeping the logs could be of great advantage since it could be possible
to directly access main memory to retrieve the logs, calculating the address for that data-set,
instead of searching them through the PPE in the specific case of our Multi-Buffered model
which decreases performance.

Besides the possible improvement points on tlCell, for future work a development of a
STM framework for CBEA could go towards Distributed Software Transactional Memory using
Two-Phase Commit protocol for instance. Studying the possibility of implementing a direct-

55

6. CONCLUSIONS AND FUTURE WORK

update STM framework could be interesting also due to the hardware mechanisms that CBEA
provide for Atomic Operations through DMA operations.

In this dissertation we hope to contribute to the scientific community by introducing tlCell
and stating all the problems we have encountered during the development of the prototype,
evaluating the pros and cons of the framework design choices.

56

Bibliography

[AKW+08] Mohammad Ansari, Christos Kotselidis, Ian Watson, Chris Kirkham, Mikel
Luján, and Kim Jarvis. Lee-tm: A non-trivial benchmark suite for transactional
memory. In ICA3PP ’08: Proceedings of the 8th international conference on Algorithms
and Architectures for Parallel Processing, pages 196–207, Berlin, Heidelberg, 2008.
Springer-Verlag.

[BLKD07] Alfredo Buttari, Piotr Luszczek, Jakub Kurzak, and Jack Dongarra. Scop3: A
rough guide to scientific computing on the playstation 3. Technical report, Inno-
vative Computing Laboratory, University of Tennessee Knoxville, 2007.

[BLM05] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing transactions: The
subtleties of atomicity. In In Fourth Annual Workshop on Duplicating, Deconstruct-
ing, and Debunking, June 2005.

[CLD08] G. Cunha, J. Lourenço, and R. Dias. Consistent state software transactional mem-
ory. In Proceedings of IV Jornadas de Engenharia de Electrónica e Telecomunicações e de
Computadores (JEETC’2008). Instituto Superior Politécnico de Lisboa, November
2008.

[CMCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.
STAMP: Stanford transactional applications for multi-processing. In IISWC
’08: Proceedings of The IEEE International Symposium on Workload Characterization,
September 2008.

[Cou09] Maria Couceiro. Cache coherence in distributed and replicated transactional
memory systems. Technical report, Instituto Superior Tecnico, 2009.

[Cun07] Goncalo Cunha. Consistent state software transactional memory. Technical re-
port, FCT-UNL, Lisbon, Portugal, 2007.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In In Proc. of the
20th Intl. Symp. on Distributed Computing, 2006.

57

BIBLIOGRAPHY

[Enn05] R Ennals. Software transactional memory should not be obstruction-free. In .,
2005.

[GKV07] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: a benchmark for
software transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315–324, 2007.

[Han77] Per Brinch Hansen. The architecture of concurrent programs. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1977.

[HEM93] Maurice Herlihy, J. Eliot, and B. Moss. Transactional memory: architectural sup-
port for lock-free data structures. In in Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300, 1993.

[IBM07a] IBM. Cell broadband engine architecture. Technical report, 2007.

[IBM07b] IBM. Cell broadband engine programming handbook. Technical report, IBM,
2007.

[IBM07c] IBM. Cell broadband engine registers. Technical report, IBM, 2007.

[IBM07d] IBM. Software development kit for multicore acceleration version 3.0 program-
ming tutorial. Technical report, IBM, 2007.

[IBM08a] IBM. C/c++ language extensions for cell broadband engine architecture. Techni-
cal report, IBM, 2008.

[IBM08b] IBM. Spu runtime library extensions - programmer’s guide and api reference.
Technical report, IBM, 2008.

[JGMR07] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez. Performance analysis of cell
broadband engine for high memory bandwidth applications. Performance Anal-
ysis of Systems and Software, 2007. ISPASS 2007. IEEE International Symposium on,
pages 210–219, April 2007.

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. SIGPLAN Not., 12(3):128–137, 1977.

[LR06] James R. Larus and Ravi Rajwar. Transactional memory. Synthesis Lectures on
Computer Architecture, 1(1):1–226, 2006.

[Mck05] Paul E. Mckenney. Memory ordering in modern microprocessors. Linux Journal,
30:52–57, 2005.

[MMA06] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting dis-
tributed version concurrency in a transactional memory cluster. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 198–208, New York, NY, USA, 2006. ACM.

58

BIBLIOGRAPHY

[Mos81] E. B. Moss. Nested transactions: An approach to reliable distributed computing.
Technical report, ., Cambridge, MA, USA, 1981.

[Noe] Cyprien Noel. Extended software transactional memory. Technical report.

[Pet05] Hofstee H. Peter. Power efficient processor architecture and the cell processor.
In HPCA ’05: Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 258–262, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[Sco06] M. L. Scott. Sequential specification of transactional memory semantics. In In
TRANSACT:First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, 2006.

[SKS05] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts. McGraw-Hill Publishing Co., August 2005.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Pro-
ceedings of the fourteenth annual ACM symposium on Principles of distributed comput-
ing, pages 204–213, New York, NY, USA, 1995. ACM.

[WSMF03] Joe Wetzel, Ed Silha, Cathy May, and Brad Frey. Powerpc user instruction set
architecture. Technical report, IBM, 2003.

59

